
Chapter 3
Analytical Methods for Solving
Boundary-Value Problems

3.1 Method of Green’s Function

The potential of a unit source s, located in Q at a distance r from the field point P in
an unbounded homogeneous domain Ω, is called Green’s function and is given the
symbol G′.

Let ΩQ ⊂ Ω be the subdomain represented by all source points and let ΩP ⊂ Ω

be the subdomain of all field points, such that ΩQ ∪ ΩP = Ω and ΩQ ∩ ΩP = 0.
In a three-dimensional unbounded domain, after (2.48) for s = δ(rQ) one has

G′(rP , rQ) = 1

4π
∣∣rP − rQ

∣∣ = 1

4πr
(3.1)

where r = ∣∣rP − rQ
∣∣ is the distance between source and field point (see Appendix,

Fig. A1).
From (2.48) the potential fulfilling Poisson’s equation ∇2φ = −s is

φ(rP) =
∫

Ω

G′(rP , rQ) s(rQ) dΩ (3.2)

Therefore, knowing G′ and s, by means of (3.2) it is possible to calculate φ. The
Green’s function G′ is called the fundamental solution of the Poisson’s equation.

For a bounded domain with boundary Γ the modified Green’s function G is the
potential due to a unit source plus that, g, due to the unit source distributed along the
boundary

G(rP , rQ) = 1

4π
∣∣rP − rQ

∣∣ + g(rP , rQ) (3.3)

Knowing g, and so G, and substituting ψ with 4πG in the Green’s formula (2.63), it
is possible to calculate φ.

By definition, the Green’s function is symmetrical, i.e. it is the same, exchanging
the source and the field point G′(rP, rQ) = G′(rQ, rP).
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46 3 Analytical Methods for Solving Boundary-Value Problems

Following the same procedure, in a two-dimensional unbounded domain Ω the
Green’s function G′ results

G′(rP , rQ) = 1

2π
ln
∣∣rP − rQ

∣∣ (3.4)

3.1.1 Green’s Formula for Electrostatics

In a homogeneous three-dimensional domain Ω with boundary Γ = Γ1 ∪ Γ2 and
permittivity ε, from (2.63) taking φ = u and ∇2φ = ∇2u = − ρ

ε
and substituting ψ

with 4πG, one has

u(x) =
∫

Ω

G(x, y)
ρ(y)

ε
dΩ +

∫
Γ1

G(x, y)
∂u(y)

∂n
dΓ +

−
∫

Γ2

u(y)
∂G(x, y)

∂n
dΓ (3.5)

where n is the normal versor of Γ while the space vectors x ≡ rP and y ≡ rQ identify
field and source point, respectively.

Formula (3.5) is the Green’s formula for electrostatics. Using it to determine u,
the actual problem is to know the modified Green’s function G related to the given
field domain Ω.

3.1.2 Green’s Functions for Boundary-Value Problems

The particular case of Ω, denoted by B(0, R), representing the region within a sphere
(n = 3) or a circle (n = 2) is considered. The modified Green’s function, related to
the domain and to Poisson’s equation

−∇2u = f (3.6)

subject to Dirichlet’s or Neumann’s conditions, is to be found.
To this end, let the compound function v – called Kelvin’s transformation of u –

be considered. It is defined by the formula

v(x) = |x|n−2 R−n+2u(a(x)), n = 2, 3 (3.7)

where the transform a(y), given by the formula

a(y) = R2 |y|−2 y, y ∈ Rn\ {0} (3.8)

leaves the boundary ∂B(0, R) invariant. In fact, for y = R it results

a(y) = y, v(x) = |x|n−2 R−n+2u(x) (3.9)
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The equation satisfied by u is now found; for this task, the radial symmetry is
exploited.

In the case n = 3 (sphere), using spherical coordinates (r, ϕ, ϑ), setting

ũ(r, ϕ, ϑ) = u(r cos ϕ sin ϑ, r sin ϕ sin ϑ, r cos ϑ) (3.10)

with r ∈ (0, R) ; ϕ ∈ (0, 2π), ϑ ∈ (0, π), and

ṽ(r, ϕ, ϑ) = Rr−1u
(

R2r−1 cos ϕ sin ϑ, R2r−1 sin ϕ sin ϑ, R2r−1 cos ϑ
)

=
= Rr−1ũ

(
R2r−1, ϕ, ϑ

)
(3.11)

with r ∈ (R, +∞) ; ϕ ∈ (0, 2π), ϑ ∈ (0, π), developing the Laplacian in spherical
coordinates (see A.20)

∇2 = 1

r2
Dr(r

2Dr) + 1

r2
D2

ϑ + cot(ϑ)

r2
Dϑ + 1

r2 sin2 ϑ
D2

ϕ (3.12)

where Dr ≡ ∂
∂r , Dϕ ≡ ∂

∂ϕ
, Dϑ ≡ ∂

∂ϑ
, the following relations hold

r2Drṽ(r, ϕ, ϑ) = −Rũ
(

R2r−1, ϕ, ϑ
)

+
− R3r−1Drũ

(
R2r−1, ϕ, ϑ

)
(3.13)

r−2Dr

(
r2Drṽ

)
(r, ϕ, ϑ) = 2R3r−4Drũ

(
R2r−1, ϕ, ϑ

)
+

+ R5r−5D2
r ũ
(

R2r−1, ϕ, ϑ
)

(3.14)

Dj
ϑṽ (r, ϕ, ϑ) = Rr−1Dj

ϑũ
(

R2r−1, ϕ, ϑ
)
, j = 1, 2 (3.15)

Dj
ϕṽ (r, ϕ, ϑ) = Rr−1Dj

ϕũ
(

R2r−1, ϕ, ϑ
)
, j = 1, 2 (3.16)

Consequently, it can be deduced

∇2ṽ(r, ϕ, ϑ) = R5r−5
[
D2

r ũ
(

R2r−1, ϕ, ϑ
)

+ 2R−2rDrũ
(

R2r−1, ϕ, ϑ
)

+

+
(

Rr−2
)−2

D2
ϑũ
(

R2r−1, ϕ, ϑ
)]

+

+ R5r−5
[

cot ϑ
(

Rr−2
)−2

Dϑũ
(

R2r−1, ϕ, ϑ
)

+

+ 1

sin2 ϑ

(
Rr−2

)−2
D2

ϕũ
(

R2r−1, ϕ, ϑ
)]

=

= R5r−5∇2ũ
(

R2r−1, ϕ, ϑ
)

=
= −R5r−5f̃

(
R2r−1, ϕ, ϑ

)
(3.17)

with r ∈ (R, +∞), ϕ ∈ (0, 2π), ϑ ∈ (0, π).
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If ω represents the region outside the sphere B(0, R), (3.17) proves that function
v satisfies the Dirichlet’s boundary-value problem

∇2v(x) = f̂ (x), in ω =
{

x ∈ R3 : |x| > R
}

(3.18)

v(x) = g(x), on ∂ω =
{

x ∈ R3 : |x| = R
}

(3.19)

with

f̂ (x) = −R5|x|−5f
(
R2|x|−2x

)
, x ∈ ω (3.20)

and g(x) given function of the boundary.
The case n = 2 (circular domain) is now considered. As in the three-dimensional

case, the functions

ũ(r, ϕ) = u(r cos ϕ, r sin ϕ) (3.21)

with r ∈ (0, R), ϕ ∈ (0, 2π), and

ṽ(r, ϕ) = u
(

R2r−1 cos ϕ, R2r−1 sin ϕ
)

= ũ
(

R2r−1, ϕ
)

(3.22)

with r ∈ (R, +∞), ϕ ∈ (0, 2π), are introduced. Developing the Laplacian in polar
coordinates (see A.18), one has

∇2 = D2
r + 1

r
Dr + 1

r2
D2

ϕ (3.23)

Accordingly, the following relations hold

Drṽ(r, ϕ) = −R2r−2Drũ
(

R2r−1, ϕ
)

(3.24)

D2
r ṽ(r, ϕ) = R4r−4D2

r ũ
(

R2r−1, ϕ
)

+ 2R2r−3Drũ
(

R2r−1, ϕ
)

(3.25)

Dj
ϕṽ(r, ϕ) = Dj

ϕũ
(

R2r−1, ϕ
)
, j = 1, 2 (3.26)

Consequently, it results

∇2ṽ (r, ϕ) = R4r−4
[

D2
r ũ
(

R2r−1, ϕ
)

+
(

R2r−1
)2

Drũ
(

R2r−1, ϕ
)

+

+
(

Rr−2
)−2

D2
ϕũ
(

R2r−1, ϕ
)]

=

= R4r−4∇2u
(

R2r−1, ϕ
)

= R4r−4f̃
(

R2r−1, ϕ
)
, r ∈ (R, +∞)

(3.27)

Therefore, it has been shown that function v fulfils the Dirichlet’s boundary-value
problem
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∇2v(x) = f̂ (x), in ω =
{

x ∈ R2 : |x| > R
}

(3.28)

v(x) = g(x), on ∂ω =
{

x ∈ R2 : |x| = R
}

(3.29)

with

f̂ (x) = R4|x|−4f
(

R2 |x|−1 x
)
, x ∈ ω (3.30)

and g(x) given function of the boundary.
It is now possible to determine the Green’s function GD related to the Dirichlet’s

condition when n = 2 and n = 3. It is given by the formula

GD(x, y) = G′(x − y) − G′ (R−1 |y| (x − a(y))
)
, x, y ∈ B(0, R) (3.31)

where

a(y) = R2|y|−2y, y ∈ Rn\ {0} , n = 2, 3 (3.32)

and G′ stands for the fundamental solution of the Laplacian operator, i.e.

G′(x) = (2π)−1 ln |x|, if n = 2 (3.33)

and

G′(x) = (4π)−1 |x|−1 , if n = 3 (3.34)

assuming that the unit source is located at y = 0.
It is necessary to show that

GD(x, y) = 0, x ∈ ∂B(0, R), y ∈ B(0, R) (3.35)

To this purpose, the identity

|x − y|2 = |x|2 + |y|2 − 2x · y (3.36)

holding for any pair of vectors x, y ∈ Rn, is used. In particular, for any x ∈ ∂B (0, R),
i.e. |x| = R, and for any y ∈ B(0, R) it turns out to be

R−2|y|2|x − a(y)|2 = R−2 |y|2
[
|x|2 + |a(y)|2 − 2x · a(y)

]
=

= R−2 |y|2
[
R2 + R4 |y|−2 − 2R2 |y|−2 x · y

]
=

= |y|2 + R2 − 2x · y = |y|2 + |x|2 − 2x · y = |x − y|2
(3.37)

implying that (3.36) holds.
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Fig. 3.1 Inner spherical domain Ω

Now, the Green’s function related to a sphere B(0, R) when n = 3 can be
determined. It is given by the formula:

GD (x, y) = 1

4π
(
r2 − 2rρux · uy + ρ2

) 1
2

+

− R

4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 1
2

(3.38)

where x = rux and y = ρuy. In other words, r and ρ are the Euclidean norms of
vectors x and y, respectively, while ux and uy are the unit vectors in the directions of x
and y, respectively. The situation is represented in Fig. 3.1, where γ = cos−1

(
ux · uy

)
Comparing (3.3) and (3.38), it follows

g(x, y) = − R

4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 1
2

(3.39)

Moreover, from (3.38), the following relation can be deduced:

Dn(y)GD(x, y) = Dρ

[
GD
(
rux, ρuy

)]
= ρ − rux · uy

4π
(
r2 − 2rρux · uy + ρ2

) 3
2

+

+ R
(
r2ρ − rR2ux · uy

)
4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 3
2

, x, y ∈ B(0, R) (3.40)

where the operator Dn(y) stands for the normal derivative along the direction of
vector y; in particular, the relation

Dρ

[
GD
(
rux, Ruy

)] = − R − rux · uy

4π
(
r2 − 2rRux · uy + R2

) 3
2

+

+ r
(
r − Rux · uy

)
4Rπ

(
r2 − 2rRux · uy + R2

) 3
2

=

= r2 − R2

4Rπ
(
r2 − 2rRux · uy + R2

) 3
2

(3.41)
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with x ∈ B(0, R), y ∈ ∂B(0, R), can be obtained. Consequently, the following
representation holds:

Dn(y)GD(x, y) = |x|2 − R2

4Rπ |x − y|3 , x ∈ ∂B(0, R), y ∈ B(0, R) (3.42)

Therefore, it can be concluded that the solution to the Dirichlet’s problem in Ω =
B(0, R)

−∇2u(x) = f (x) (3.43)

with u(x) = g(x) on Γ = ∂B(0, R), according to (3.5) is given by the formula

u (x) =
∫

Ω

GD(x, y)f (y) dΩ −
∫

Γ

g(y)Dn(y)GD(x, y) dΓ (3.44)

where the functions GD and Dn(y)GD have been explicitly computed.
In the case n = 2, the Green’s function is given by the formula

GD(x, y) = 1

4π

{
ln(ρ) − ln(R) + ln

(
r2 − 2rρux · uy + ρ2

)
+

− log
(

r2ρ2 − 2rR2ρux · uy + R4
)}

(3.45)

Then, one gets

2πDn(y)GD(x, y) = 2πDρ

[
GD
(
rux, ρuy

)] =

= 1

ρ
+ ρ − rux · uy

r2 − 2rρux · uy + ρ2
− r2ρ − R2rux · uy

r2ρ2 − 2rR2ρux · uy + R4

(3.46)

and

2πDn(y)GD
(
x, Ruy

) = 1

R
+ R − rux · uy

r2 − 2Rrux · uy + R2
− r2 − Rrux · uy

R
(
r2 − 2Rrux · uy + R2

) =

= 1

R
+ R2 − r2

R
(
r2 − 2Rrux · uy + R2

) (3.47)

In turn, this gives

Dn(y)GD(x, y) = 1

2πR
+ R2 − r2

2πR
(
r2 − 2Rrux · uy + R2

) (3.48)

with x ∈ B(0, R), y ∈ ∂B(0, R).
Therefore, it can be concluded that, according to (3.5), the solution to the

Dirichlet’s problem

−∇2u(x) = f (x) in Ω = B(0, R), u(x) = g(x) on Γ = ∂B(0, R) (3.49)
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Fig. 3.2 Outer spherical domain ω

is given by the formula

u(x) =
∫

Ω

GD(x, y)f (y) dΩ −
∫

Γ

g(y)Dn(y)GD(x, y) dΓ (3.50)

Finally the solution to the Dirichlet’s problem for the domain ω and its boundary ∂ω

outside the domain Ω can now be obtained (Fig. 3.2).
Using (3.43) and (3.20) the representation for the solution v to the problem (3.18)–

(3.19) can be deduced from the solution u to the Dirichlet’s problem for the sphere,
where B(0, R) = Ω and B(0, R)c = ω:

−∇2u(x) = f (x) in B(0, R), u(x) = g(x) on ∂B(0, R) (3.51)

where f is defined through the equation

f̂ (x) = −R5|x|−5f
(

R2|x|−2x
)
, x ∈ ω (3.52)

The solution to the equation R2|x|−2x = y, x �= {0} is x = R2|y|−2y. Indeed, if a
solution x exists, then |x| = R2|y|−1, so that x = R−2|x|2y = R2|y|−2y. Of course,
it is easy to check that x = R2 |y|−2 y solves the given equation. In other words,
the inverse transform coincides with the transform itself. Consequently, it is easy to
verify that f can be expressed in terms of f̂ by the formula

f (y) = −R5|y|−5f̂
(

R2|y|−2y
)
, y ∈ ω (3.53)

Then u can be expressed as follows

u(x) = R5
∫

B(0,R)

GD(x, y) |y|−5 f̂
(

R2 |y|−2 y
)

dω(y) +

+
∫

∂B(0,R)

g(y)Dn(y)GD(x, y) dσ(y) =

= u1(x) +
∫

∂B(0,R)

g(y)Dn(y)GD(x, y) dσ(y) (3.54)
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Achange of variable in the volume integral defining u1 is convenient. To this purpose,
the Jacobian J(η) of the transformation y = R2 |η|−2 η is to be computed. Assuming

yk = R2|η|−2ηk, Dηj yk = −2R2|η|−4ηjηk + R2|η|−2δj,k (3.55)

with j, k = 1, . . . , n, n = 2, 3, where δj,k = (−1)j+k is the Kronecker’s index, it
turns out to be

J(η) = 2R2|η|−10 (3.56)

whence the formula

u1(x) = 1

2
R5
∫

B(0,R)

GD(x, y) |y|−5 f̂
(

R2 |y|−2 y
)

dω(y) =

= R−5
∫

B(0,R)c
GD

(
x, R2|η|−2η

)
|η|5f̂ (η)dω(η) (3.57)

is obtained. Since the solution v to the problem (3.28) and (3.29) is related to u by
the formula v(ξ) = u

(
R2|ξ|−2ξ

)
, from (3.57) the desired representation

v
(
ξ
) = 1

2
R−5

∫
B(0,R)c

GD

(
R2
∣∣ξ∣∣−2

ξ, R2 |η|−2 η
)

|η|5 f̂ (η) dω(η) +

+
∫

∂B(0,R)

g(η) Dn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dσ(η) (3.58)

is derived.
Finally, in the two-dimensional case one has

f (y) = R4 |y|−4 f̂
(

R2 |y|−1 y
)
, y ∈ B(0, R) (3.59)

and

J(η) = R2 |η|−4 (3.60)

It follows

u1(x) = R2
∫

B(0,R)

GD(x, y) |y|−4 f̂
(

R2 |y|−2 y
)

dω(y) =

= R−4
∫

B(0,R)c
GD

(
x, R2 |η|−2 η

)
|η|4 f̂ (η) dω(η) (3.61)

and

v
(
ξ
) = R−4

∫
B(0,R)c

GD
(
R2
∣∣ξ∣∣−2

ξ, R2 |η|−2 η
) |η|4 f̂ (η)dω(η) +

+
∫

∂B(0,R)

g(η)Dn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dσ(η) (3.62)

respectively.
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3.1.3 Field of a Point Charge Surrounded by a Spherical Surface
at Known Potential

The source charge +q gives rise to an induced charge −q on the sphere; in addition
to it, the free charge on the sphere, originating the potential U = k, is q′ = 4πεRk
(see 2.119).

From Gauss’s theorem the field turns out to be

E(r) = q

4πεr2
, 0 < r < R; E (r) = Rk

r2
, r > R (3.63)

Independently, the problem can be solved using the method of Green’s function.
When f (y) = q

ε
δ(y) and |x| < R, from (3.44) with g(y) = k, it turns out to be

U(x) =
∫

Ω

q

ε
GD(x, y)δ(y)dΩ −

∫
Γ

kDn(y)GD(x, y)dΓ (3.64)

After (3.38) and (3.41) one has
∫

Ω

q

ε
GD(x, y)δ(y)dΩ = q

ε
GD(x, 0) = q

ε

(
1

4πr
− 1

4πR

)
, r < R (3.65)

and ∫
Γ

kDn(y)GD(x, y)dΓ = k
∫

Γ

|x|2 − R2

4πR
∣∣x − Ruy

∣∣3 dΓ = −k (3.66)

respectively.
It can be verified that U(r) = k solves the particular case of q = 0, for which

∇2U(r) = D2
r U(r) + 2

r
DrU(r) = 0, U(R) = k (3.67)

holds.
The potential is given by

U(r) = q

ε

(
1

4πr
− 1

4πR

)
+ k, 0 < r < R (3.68)

x

y

P

Q
n

Γ

+q

Fig. 3.3 Point charge surrounded by a sphere at potential k
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whence (3.63) follows.
In turn, when R < |x|, from (3.58) with f̂ (η) = 0 and g(η) = k one has

v(ξ) =
∫

Γ

kDn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dΓ = Rk

r
, r > R (3.69)

Again, it can be verified that u(r) solves the particular case of q = 0, for which

∇2U(r) = D2
r U(r) + 2

r
DrU(r) = 0, U(R) = k, U(∞) = 0 (3.70)

holds.
Potential and field are represented in Figs. 3.4 and 3.5, respectively.
At r = R, U is continuous for any k, while E is not if k �= q

4πεR . The particular
cases of a grounded sphere and a supplied sphere follow, when k = 0 with q �= 0
and k �= 0 with q = 0, respectively.

r

U

k

R

Fig. 3.4 Potential vs position

R r

E

q

4πεR2

R

k

Fig. 3.5 Field vs position (q > 4πεRk)
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Fig. 3.6 Surface dipole distribution on a sphere

3.1.4 Field of a Surface Dipole Distributed on a Sphere
of Radius R

Let a double-layer distribution of charge be considered, characterized by a uni-
form dipole density τ̄ = q

4πR ir (Fig. 3.6). According to (2.124), the potential of a
single dipole of moment p is given by p·ir

4πεr2 , r �= 0; summing elementary contribu-
tions, the potential due to the surface dipole distribution is

U(r) =
∫

Γ

τ · ir
4πεr2

dΓ = τ
4πεR2

∫
Γ

dΓ = τ
ε

= q

4πεR
, 0 < r < R (3.71)

The latter holds when the field point P is within the sphere; when P crosses the sphere,
the solid angle subtended by the surface has a discontinuity equal to 4π. Consequently,
the potential has a discontinuity equal to τ

ε
determining U(r) = 0, r > R.

Remarks

The following remark can be put forward. Denoting by σ = ε ∂U
∂n the charge density

(C m−2) on Γ and with τ = εU the dipole density ((C m−1), see Section 2.2.6) on
Γ, respectively, Green’s formula (3.5) can be also expressed as

U(x, y) =
∫

Ω

ρ(y)

ε
G(x, y) dΩ +

∫
Γ1

σ(y)

ε
G(x, y) dΓ +

−
∫

Γ2

τ(y)

ε

∂G(x, y)

∂n
dΓ (3.72)

Hence, the electrostatic potential U in a domain Ω bounded by Γ is known, knowing
G′ and ρ in the domain, σ and τ on the boundary. The three terms are called volume
term, single-layer term and double-layer term, respectively.

In the case of the surface dipole distributed on a sphere, using (3.72) with ρ =
0, σ = 0 and taking G = 1

4πr and U = τ
ε
, the potential results



3.1 Method of Green’s Function 57

U(r) = −
∫

Γ

τ
ε

∂G

∂n
dΓ =

∫
Γ

τ
ε

1

4πr2
dΓ =

= q

4πεR

1

4πR2

∫
Γ

dΓ = q

4πεR
, 0 < r < R (3.73)

with U(r) = 0, r > R.
It can be noted that, at r = R, both U and E are not continuous (Fig. 3.6); in

particular, the field is singular and can be expressed as E(r) = q
4πεR δ(r − R)ir .

As a final example, let a surface distribution of charges and dipoles be identified,
such that the field external to the sphere of radius R is zero, while the inner field is
that due to a point charge +q located at the centre.

To this end, forcing a uniform charge distribution of density σ = − q
4πR2 on

the sphere, the relevant potential is Uσ(r) = − q
4πεR , 0 < r < R and Uσ(r) = − q

4πεr ,
R < r.

Then, adding a surface dipole distribution of density τ = q
4πR the contributions

Uτ(r) = q
4πεR , 0 < r < R and Uτ(r) = 0, R < r to the potential originate.

Since the potential due to the point charge is U0(r) = q
4πεr , r �= 0, summing the

three terms above, one obtains U(r) = q
4πεr , 0 < r < R and U(r) = 0, R < r.

3.1.5 Green’s Formula for Two-Dimensional Magnetostatics

The formula of vector potential A corresponding to (3.5) is

A =
∫

Ω

GμJ dΩ +
∫

Γ1

G
∂A

∂n
dΓ−

∫
Γ2

A
∂G

∂n
dΓ (3.74)

where Γ = Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = 0; in the latter G′ is the modified Green’s
function and μ is the permeability (H m−1) of the material.

3.1.6 Field of a Line Current in a Three-Dimensional Domain:
Integral Approach

Let a straight conductor, placed in an unbounded three-dimensional domain and
carrying direct current of density J, be considered. Assuming cylindrical coordinates,
from (3.74) it follows

A = Aiz, J = Jiz, A = μ
4π

∫
Ω

J

|r| dΩ (3.75)

where r is the distance between the fixed field point P and the source point Q (Fig. 3.7)
oriented from Q to P and Ω is the conductor volume.

Moving from potential to field, at point P one has

B = ∇P × A = μ
4π

∫
Ω

∇P × J

|r| dΩ (3.76)
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Fig. 3.7 Line current

where the operator ∇P acts on the coordinates of point P. The following identity holds

∇P × J

|r| = 1

|r|∇P × J − J × ∇P
1

|r| (3.77)

Since J depends on the coordinates of point Q and not on those of point P, it follows
that ∇P × J = 0; then, according to (A.3), it comes out that

−J × ∇P
1

|r| = J × r

|r|3 (3.78)

and therefore

B = μ
4π

∫
Ω

J × r

|r|3 dΩ (3.79)

which is called Laplace’s law of the elementary action.
Since the conductor is cylindrical and the current density is uniform, J dΩ = I dz

and the volume integral becomes a line integral

B = μ
4π

∫ +∞

−∞
Iiz × r

|r|3 dz = μI

4π

∫ +∞

−∞
iϑ |r| sin α

|r|3 dz = iϑ
μI

4π

∫ +∞

−∞
sin α
|r|2 dz

(3.80)

Substituting r cos β = R and cos β dz = r dβ, since sin α = cos β, finally it results

B = iϑ
μI

4πR

∫ + π
2

− π
2

cos β dβ = iϑ
μI

2πR
(3.81)

and

H = iϑ
I

2πR
(3.82)

coincident with (2.227) when β = 0, so that r ≡ R.
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3.1.7 Field of a Current-Carrying Conductor of Rectangular
Cross-Section

In a two-dimensional unbounded domain, which is supposed to be homogeneous
and free of ferromagnetic material, after (3.4) the Green’s function for a cylindrical
conductor carrying a constant current I is given by

A(r) = μ0I

2π
ln r, r > 0 (3.83)

Let a conductor of rectangular cross-section, having width 2a and height 2b and car-
rying a constant current distributed with uniform density J, be considered (Fig. 3.8).
At the gravity centre of the conductor cross-section the origin of a rectangular system
of coordinates is placed.

After integrating the elementary contributions, the potential of the rectangular
conductor is given by

A(x, y) = μ0J

2π

∫ a

−a

∫ b

−b
ln
[
r
(
x, y, x′, y′)] dy′dx′ =

= μ0J

4π

∫ a

−a

∫ b

−b
ln
[(

x − x′)2 + (y − y′)2] dy′dx′ (3.84)

where (x′, y′) and (x, y) are source point Q and field point P, respectively. It turns
out to be

A(x, y) = μ0J

4π

{
(a − x) (b − y) ln

[
(a − x)2 + (b − y)2

]
+

+ (a + x) (b − y) ln
[
(a + x)2 + (b − y)2

]
+

+ (a − x) (b + y) ln
[
(a − x)2 + (b + y)2

]
+

+ (a + x) (b + y) ln
[
(a + x)2 + (b + y)2

]
+

a−a

−b

b

x

y

P (x,y)

Q(x’,y’)

⊗

Fig. 3.8 Conductor of rectangular cross-section
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+ (a − x)2
(

arctg
b − y

a − x
+ arctg

b + y

a − x

)
+

+ (a + x)2
(

arctg
b − y

a + x
+ arctg

b + y

a + x

)
+

+ (b − y)2
(

arctg
a − x

b − y
+ arctg

a + x

b + y

)
+

+ (b + y)2
(

arctg
a − x

b + y
+ arctg

a + x

b + y

)}
(3.85)

for x �= ±a, y �= ±b. If the assumption b << a holds, the model of the current
sheet follows. It turns out to be

A(x, y) = μ0J

4π

∫ a

−a
ln
[(

x − x′)2 + y2
]

dx′ =

= μ0J

4π

{
(a + x) ln

[
(a + x)2 + y2

]
+ (a − x) ln

[
(a − x)2 + y2

]
+

+ 2y

(
arctg

a + x

y
+ arctg

a − x

y

)
− 4a

}
, y �= 0 (3.86)

where J is the line current density (A m−1). After (3.85) or (3.86), from (2.205) the
components of induction field can be obtained.

3.2 Method of Images

Field problems characterized by concentrated sources in non-homogeneous domains
with simple boundaries can be solved by the method of images.

Electrostatic images

Let a dielectric half-space Ω of permittivity ε with a point charge q at a distance h
from a conducting half-space be considered. The field in the dielectric region Ω is
uniquely specified by the charge q and the boundary condition of the region, where
E · t = 0 holds. Comparing this field with that produced in an unbounded dielectric
domain of permittivity ε by two point charges q and −q at a distance 2h, one can
conclude that in the dielectric region Ω the fields are the same. Therefore in this
region the field is equal to that produced by charge q and its image −q placed at
distance 2h in a homogeneous domain of permittivity ε (Fig. 3.9).

Therefore, according to (2.118) the electric field is expressed by

E = 1

4πε
q

1

x2 + (y − h)2
ir1 − 1

4πε
q

1

x2 + (y + h)2
ir2 , y > 0 (3.87)
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Fig. 3.9 Point charge near the boundary with a conducting half space: source and image charge

where the radial unit vectors are defined as follows

ir1 =
⎛
⎜⎝ x√

x2 + (y − h)2
,

y − h√
x2 + (y − h)2

⎞
⎟⎠, y > 0 (3.88)

ir2 =
⎛
⎜⎝ x√

x2 + (y + h)2
,

y + h√
x2 + (y + h)2

⎞
⎟⎠, y > 0 (3.89)

In turn, the electric field for y < 0 is given by E = 0.
Field lines are plotted in Fig. 3.10.
More generally, let a dielectric medium of permittivity ε1 be considered, filling

the upper half-space where a point charge q is located; at a distance h from the charge,
let another dielectric medium of permittivity ε2 fill the lower half-space (Fig. 3.11).

In this case, the field in the upper half-space is equivalent to that produced in a
homogeneous region of permittivity ε1 by both source charge q and image charge
q′ = −αq with 0 ≤ α < 1, placed at a distance 2h from q.

In an analogous way, the field in the lower half-space is equivalent to that produced
by a second image charge q′′ = βq with 0 ≤ β < 1, placed instead of q in a
homogeneous region of permittivity ε2.

In fact, at the interface y = 0, the transmission conditions for tangential compo-
nent of electric field and normal component of induction (2.78) and (2.77) imply

Ex − αEx = βEx, y = 0+ (3.90)

ε1Ey + ε1αEy = ε2βEy, y = 0− (3.91)

respectively. It is easily found that

α = ε2 − ε1

ε1 + ε2
; β = 2ε1

ε1 + ε2
(3.92)
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Fig. 3.10 Electrostatic images: field lines for y > 0

Fig. 3.11 Point charge near the boundary of two dielectric half-spaces

Therefore, the electric field for y > 0 is expressed by

E = 1

4πε1
q

1

x2 + (y − h)2
ir1 − 1

4πε1

ε2 − ε1

ε1 + ε2
q

1

x2 + (y + h)2
ir2 (3.93)

ir1 =
⎛
⎜⎝ x√

x2 + (y − h)2
,

y − h√
x2 + (y − h)2

⎞
⎟⎠ (3.94)

ir2 =
⎛
⎜⎝ x√

x2 + (y + h)2
,

y + h√
x2 + (y + h)2

⎞
⎟⎠ (3.95)
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Fig. 3.12 Image of a charge with respect to a grounded sphere

In turn, the electric field for y < 0 is given by

E = 1

4πε2

2ε1

ε1 + ε2
q

1

x2 + (y − h)2
ir1 (3.96)

Now, let a point charge q1 be located at point P1 externally to a conducting sphere,
of radius r0 and centre O, having potential U = 0; the distance between P1 and the
centre of the sphere is d.

The field distribution does not change if the spherical surface is replaced by
an equivalent point-charge q2, located at a suitable point P2, such that the sphere
represents its zero-potential surface; in that case q2 is called the image charge of q1
with respect to the sphere. The problem is that of identifying: (i) distance a between
P1 and P2; (ii) displacement b of P2 with respect to the sphere centre O; (iii) value
q2 of the image charge, knowing the value q1 of source charge and the distance
d = a + b (Fig. 3.12).

From (2.119) the potential at point P is

U = 1

4πε0

(
q1

r1
+ q2

r2

)
(3.97)

where r1 and r2 are the distances of P from P1 and P2, respectively.
All points of the domain for which U = 0 should fulfil

q1

r1
+ q2

r2
= 0 (3.98)

or
r1

r2
= −q1

q2
= k (3.99)

In a two-dimensional domain they belong to a circle surrounding the point P2 where
the image charge should be located. Equation (3.99) for points A and B gives

a + b − r0

r0 − b
= a + b + r0

r0 + b
= k (3.100)

The last two equations yield

k = d

r0
(3.101)
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Fig. 3.13 Contour plot of potential for two unlike charges of different magnitude

a = d2 − r2
0

d
(3.102)

b = r2
0

d
(3.103)

q2 = −q1

k
(3.104)

It should be noted that source and image charge are unlike and have different
magnitude.

Assuming q1 = 4 μC, d = 40 cm, r0 = 12 cm, one has 1
k = 0.3, q2 =

−1.2 μC, a = 36.4 cm and b = 3.6 cm; the corresponding potential lines are shown
in Fig. 3.13.

Finally, if the potential of the sphere is U = U0 �= 0, the problem can be solved
as above with the addition of a second image charge q3 = 4πε0r0U0 placed at the
centre of the sphere.

Magnetostatic images

A magnetic region Ω of permeability μ with a line current I, located at a distance h
from a half-space of infinite permeability and parallel to the space itself, is considered.

The field in the magnetic region Ω is uniquely specified by the current I and the
boundary condition, where H · t = 0 holds. Comparing this field with that produced
in an unbounded magnetic domain by two line currents of equal magnitude and equal
sign at a distance 2h, one can conclude that in the magnetic region the fields are the
same. Therefore in this region the field is equal to that of current I and its image I at
distance 2h placed in a homogeneous domain of permeability μ (Fig. 3.14).
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Fig. 3.14 Source and image currents

Therefore, the flux density for y > 0 is expressed by

B = μ
2π

I
1√

x2 + (y − h)2
it1 + μ

2π
I

1√
x2 + (y + h)2

it2 (3.105)

where the tangential unit vectors are defined as follows

it1 =
(

− y − h√
x2 + (y − h)2

,
x√

x2 + (y − h)2

)
(3.106)

it2 =
(

− y + h√
x2 + (y + h)2

,
x√

x2 + (y + h)2

)
(3.107)

In turn, the flux density for y < 0 is given by B = 0.
Field lines for y > 0 are plotted in Fig. 3.15.
More generally, let a line current I, placed in a half-space of permeability μ1 at

a distance h from the boundary of a half-space of permeability μ2, be considered
(Fig. 3.16).

In analogy to the electrostatic case, the magnetic field in the upper half-space is
equivalent to that produced, in a homogeneous region of permeability μ1, by both
source current I and image current I′ = αI with 0 ≤ α < 1 placed at a distance 2h
from I.

In a similar way, the field in the lower half-space is equivalent to that produced by
a second image current I′′ = βI with 0 ≤ β < 1 placed instead of I in a homogeneous
region of permeability μ2.

The transmission conditions for tangential component of magnetic field and
normal component of induction at y = 0 imply

Hx − αHx = βHx, y = 0+ (3.108)

μ1Hy + μ1αHy = μ2βHy, y = 0− (3.109)

0 ≤ α < 1 0 ≤ β < 1 (3.110)
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Fig. 3.15 Magnetostatic images: vector plot for y > 0

y
h•I
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x

Fig. 3.16 Line current near the boundary of two magnetic half-spaces

respectively. It is easily found that

α = μ2 − μ1

μ1 + μ2
; β = 2μ1

μ1 + μ2
(3.111)

Therefore, the flux density for y > 0 is expressed by

B = μ1

2π
I

1√
x2 + (y − h)2

it1 + μ1

2π
μ2 − μ1

μ1 + μ2
I

1√
x2 + (y + h)2

it2 (3.112)

it1 =
⎛
⎜⎝− y − h√

x2 + (y − h)2
,

x√
x2 + (y − h)2

⎞
⎟⎠ (3.113)
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Fig. 3.17 Line current: field of source and image current (μ2 = 20μ1)

it2 =
⎛
⎜⎝− y + h√

x2 + (y + h)2
,

x√
x2 + (y + h)2

⎞
⎟⎠ (3.114)

In turn, the flux density for y < 0 is given by

B = μ2

2π
2μ1

μ1 + μ2
I

1√
x2 + (y − h)2

it1 (3.115)

In Fig. 3.17 the contour plot of flux lines is reported in the case μ2 = 20μ1.

3.2.1 Magnetic Field of a Line Current in a Slot

Let the test case shown in Fig. 2.13b be considered.Arectangular slot, having width a
and height b is surrounded by ferromagnetic material of infinite permeability (closed
slot). A constant line current I is concentrated at the gravity centre of the slot where
the origin of a system of rectangular coordinates is placed (Fig. 3.18). Due to the
presence of ferromagnetic material, the following boundary conditions hold:

Bx = 0 for y =
(

+b

2

)−
and y =

(
−b

2

)+
(3.116)

By = 0 for x =
(
+ a

2

)−
and x =

(
− a

2

)+
(3.117)

for an observer located in the slot (flux lines orthogonal to the air/iron boundary).
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Fig. 3.18 Closed slot and images

Table 3.1 Location of images for the closed slot (single images)

Image k xk yk

1 a 0
2 a b
3 0 b
4 −a b
5 −a 0
6 −a −b
7 0 −b
8 a −b

If images due to multiple reflections in x and y directions are neglected, then eight
equivalent currents Ik = I, k = 1, 8 approximate the effect of the slot boundary; they
have to be placed symmetrically according to Table 3.1.

The closed slot is characterized by a double air/iron boundary in both x and y
directions: in principle, the images form an infinite series, because each image current
gives rise to a new reflection with respect to the boundaries. A better approximation
of the field in the slot is obtained if a second layer of images is taken into account;
then, twenty-four sources are originated, according to Table 3.2.

The total field is thus given by the superposition of the fields due to source cur-
rent and like image currents, all of them being located in an unbounded domain of
permeability μ0, namely

B = μ0I

2π
√

x2 + y2
it +

∑
k

μ0Ik

2π
√

(x − xk)
2 + (y − yk)

2
it,k

− a

2
≤ x ≤ a

2
, −b

2
≤ y ≤ b

2
, x �= xk, y �= yk

(3.118)
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Table 3.2 Location of images for the closed slot (double images)

Image k xk yk

1 a 0
2 a b
3 0 b
4 −a b
5 −a 0
6 −a −b
7 0 −b
8 a −b
9 2a 0

10 2a b
11 2a 2b
12 a 2b
13 0 2b
14 −a 2b
15 −2a 2b
16 −2a b
17 −2a 0
18 −2a −b
19 −2a −2b
20 −a −2b
21 0 −2b
22 a −2b
23 2a −2b
24 2a −b

with

it =
(

− y√
x2 + y2

,
x√

x2 + y2

)
(3.119)

and

it,k =
⎛
⎜⎝− y−yk√

(x − xk)
2 + (y − yk)

2
,

x − xk√
(x − xk)

2 + (y − yk)
2

⎞
⎟⎠ (3.120)

where (xk, yk) are the coordinates of kth image, while the summation index is
k = 1, . . ., 8 and k = 1, . . ., 24 when single and double images are considered,
respectively.

The case of a magnetically open slot, the height of which is assumed to be much
greater than its width a, accommodating a conductor of height b, can be easily treated;
boundary conditions become

Bx = 0, y =
(

−b

2

)+
(3.121)

By = 0, x =
(
− a

2

)+
,
( a

2

)−
(3.122)
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Again, the field is given by (3.118)–(3.120), this time taking the summation index
k = {1, 5, 6, 7, 8} and k = {1, 5, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24} when sin-
gle and double images are considered, respectively.

The following remark can be put forward. Expanding the field in terms of current
images is equivalent to set a particular solution fulfilling the given boundary condi-
tions. The fact that boundary conditions (3.116) and (3.117) are not fully satisfied is
due to the truncation of multiple images.

3.2.2 Magnetic Field of a Line AC Current over a Conducting
Half-Space

The case of an AC line current located in a magnetic region of permeability μ at a
distance h from a conducting half-space of infinite conductivity is here discussed
(Fig. 3.19). The effect of induced currents in the conducting space gives rise to a flux
barrier, i.e. the conducting plane can be treated as a space of zero permeability located
at a distance h from the current; therefore, the field for y > 0 can be expressed as

B = μ
2π

I
1√

x2 + (y − h)2
it1 +

− μ
2π

I
1√

x2 + (y + h)2
it2, y > 0, y �= h (3.123)

Fig. 3.19 AC line current near a conducting half-space of infinite permeability: field lines
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with

it1 =
⎛
⎜⎝− y − h√

x2 + (y − h)2
,

x√
x2 + (y − h)2

⎞
⎟⎠ (3.124)

and

it2 =
⎛
⎜⎝− y + h√

x2 + (y + h)2
,

x√
x2 + (y + h)2

⎞
⎟⎠ (3.125)

In other words, the field for y > 0, is given by the superposition of source current
I and image current −I located at a distance 2h in an unbounded homogeneous
region of permeability μ; the boundary between magnetic and conducting regions is
a flux line.

3.3 Method of Separation of Variables

In a two-dimensional homogeneous domain Ω, with constant permeability μ and
no current, using rectangular coordinates, Laplace’s equation of magnetic vector
potential A is from (2.208)

∂2A

∂x2
+ ∂2A

∂y2
= 0 (3.126)

If the domain boundaries lay along constant x or constant y lines, then the following
solution can be tried

A(x, y) = X(x)Y(y) (3.127)

where X and Y depend on x only and y only, respectively. Consequently, substituting
(3.127) into (3.126), it turns out to be

Y
d2X

dx2
+ X

d2Y

dy2
= 0,

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= 0 (3.128)

if X(x) �= 0 for any x and Y (y) �= 0 for any y.
The only way (3.128) are true is that separately

1

X

d2X

dx2
= −k2 (3.129)

1

Y

d2Y

dy2
= k2 (3.130)

where k2 �= 0 is called the separation constant; it is assumed that both X(x) and Y(y)
are non-constant functions.
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Then, the partial differential equations (3.128) reduce to a pair of ordinary
differential equations

d2X

dx2
+ k2X = 0 (3.131)

d2Y

dy2
− k2Y = 0 (3.132)

For k2 �= 0, the two general solutions are given by

X(x) = αk sin(|k| x) + βk cos(|k| x) (3.133)

Y(y) = γksh(|k| y) + δkch(|k| y) (3.134)

If k2 = 0, it results

X(x) = α0 + α1x, Y(y) = β0 + β1y (3.135)

The most general solution of (3.126) is then given by

A(x, y) = c1 + c2x + c3y + c4xy +

+
∞∑

n=1

[
αn sin(n |k| x) + βn cos(n |k| x)

][
γnsh(n |k| y) + δnch(n |k| y)

]

(3.136)

In principle, the separation constant and all unknown coefficients can be determined
by imposing the boundary conditions. The actual problem is to fit the latter; although
there is an infinite number of solutions to Laplace’s equation, it is often impossible
to identify analytically the right set of constants fulfilling field conditions along the
boundary.

In the case of a current source in the field domain, the Poisson’s equation holds

∂2A

∂x2
+ ∂2A

∂y2
= −μJ (3.137)

and a particular solution should be added to the general one in order to take the source
term J into account. In that case, boundary conditions are then imposed on the whole
solution.

Finally, the following remark can be put forward. If the case

d2X

dx2
− h2X = 0 (3.138)

d2Y

dy2
+ h2Y = 0 (3.139)

with h2 �= 0 is considered, the behaviour of X(x) and Y(y) is found to be symmetrical
with respect to the corresponding solutions of the case (3.131)–(3.132).
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Fig. 3.20 Conductor in the slot

3.3.1 Magnetic Field of a Current Uniformly Distributed in a Slot

Let the test problem shown in Fig. 2.13a be considered; the height of the slot
(Fig. 3.20) is assumed to be much greater than its width a.

A conductor of rectangular cross section, having width a and height b, is located
at the bottom of the slot. The conductor carries a constant current I,supposed to be
uniformly distributed inside the cross section. Due to the presence of ferromagnetic
material of infinite permeability, the following boundary conditions hold

A = 0, for y = 0+ (3.140)

∂A

∂x
= 0, for x =

(
+ a

2

)−
and x =

(
− a

2

)+
(3.141)

Because of symmetry, the potential should be an even function of x; taking this into
account, after (3.136) the general solution to the Laplace’s equation in a rectangular
domain can be expressed as

AL =
∞∑

n=1

cnsh(nky) cos(nkx) (3.142)

with k and cn to be determined. A particular solution AP to Poisson’s equation, after
integrating twice the right-hand side of (3.137) with respect to y, is

AP(y) = −1

2
μJy2 with J = I

ab
(3.143)

Consequently, the solution for the potential is

A = AP + AL = −1

2
μJy2 +

∞∑
n=1

cnsh(nky) cos(nkx) (3.144)

with − a
2 ≤ x ≤ a

2 , 0 ≤ y ≤ b.
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In the region y > b, J = 0 and the field tends to be uniform such that
(
Bx, By

) =
(B0, 0) at least for y >> b; accordingly, a suitable expression of the potential in
this region is

ÃL = α + βy +
∞∑

n=1

γne−nky cos(nkx), − a

2
< x <

a

2
, b ≤ y (3.145)

with α, β, γn to be determined.
Boundary conditions are now imposed. It follows

∂A

∂x
= −

∞∑
n=1

nkcnsh(nky) sin(nkx) (3.146)

and

∂A

∂x

∣∣∣∣
x=± a

2

= μ
∞∑

n=1

nkcnsh(nky) sin
(

nk
a

2

)
= 0 (3.147)

which is true if k = 2π
a , cn �= 0.

Moreover A(x, 0) = 0 is automatically fulfilled.
Finally, the asymptotic boundary condition states

lim
y→∞ Bx = B0 (3.148)

lim
y→∞ By = 0 (3.149)

From (3.145), for y > b and − a
2 < x < a

2 , one has

Bx = ∂ÃL

∂y
= β −

∞∑
n=1

nkγn e−nky cos(nkx) (3.150)

and, because of (3.148), it results β = B0.
In turn, one has

By = −∂ÃL

∂x
=

∞∑
n=1

nkγne−nky sin(nkx) (3.151)

and (3.149) is always fulfilled, for y >> b and − a
2 < x < a

2 .

At y = b, the continuity of potential requires AL + AP = ÃL i.e.

−1

2
μJb2 +

∞∑
n=1

cnsh(nkb) cos(nkx) = α + B0b +
∞∑

n=1

γne−nkb cos(nkx) (3.152)

Moreover, the continuity of field components Bx and By requires
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−μJb +
∞∑

n=1

nkcnch(nkb) cos(nkx) = B0 −
∞∑

n=1

nkγne−nkb cos(nkx) (3.153)

and
∞∑

n=1

nkcnsh(nkb) sin(nkx) =
∞∑

n=1

nkγne−nkb sin(nkx) (3.154)

respectively.
It follows

B0 = −μJb (3.155)

α = 1

2
μJb2 (3.156)

γn = −cnenkbch(nkb) = cnenkbsh(nkb) (3.157)

One has γn = cn = 0 if nkb �= 0.
Therefore, one obtains

A = −1

2
μJy2, 0 ≤ y ≤ b (3.158)

A = μJb

(
b

2
− y

)
, b ≤ y (3.159)

Fig. 3.21 Conductor in the slot: plot of flux lines
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Correspondingly, the field components are

Bx = −μJy, 0 ≤ y ≤ b (3.160)

Bx = −μJb, b ≤ y (3.161)

and By = 0 everywhere. Fig. 3.21 shows the plot of flux lines.




