
Chapter 1

WHERE DO WE GO FROM HERE?

Research and Commercial Spoken Dialogue Systems

Roberto Pieraccini
SpeechCycle Inc.
New York, NY, USA
roberto@speechcycle.com

Juan M. Huerta
IBM T.J.Watson Research Center
Yorktown Heights, NY, USA
huerta@us.ibm.com

Abstract The spoken dialogue industry has reached a maturity characterised by a verti-
cal structure of technology vendors, platform integrators, application develop-
ers, and hosting companies. At the same time industrial standards are pervading
the underlying technology and providing higher and higher levels of interoper-
ability. On the one hand commercial dialogue systems are largely based on a
pragmatic approach which aims at usability and task completion. On the other
hand, spoken dialogue research has been moving on a parallel path trying to at-
tain naturalness and freedom of communication. However, given the constraints
of the current technology, the evolution of the commercial path shows that natu-
ralness and freedom of expression are not necessarily a prerequisite for usability.
The difference between the two goals has been influencing a parallel evolution
of the architectures and in particular of the dialogue management abstractions.
We believe it is the time to get a high level perspective on both lines of work,
and aim at a synergistic convergence.

Keywords: Spoken dialogue system; voice user interface; dialogue manager

1. Introduction: Overview of Dialogue Systems
There are different lines of research in the field of spoken dialogue. Some
researchers attempt at understanding, and possibly replicating, the mechanisms
of human dialogue through linguistically motivated studies on human–human

1
L. Dybkjær and W. Minker (eds.), Recent Trends in Discourse and Dialogue, 1–24.
c© 2008 Springer Science + Business Media B.V.



2 RECENT TRENDS IN DISCOURSE AND DIALOGUE

corpora. Others are interested in general design principles that, once applied,
would result in usable human–machine user interfaces based on speech recog-
nition and speech synthesis technology. Then, there is spoken dialogue system
engineering (McTear, 2004), which aims at developing programming styles,
models, engines and tools which can be used to build effective dialogue ap-
plications. The three lines of research are, in a way, orthogonal and comple-
mentary. The focus of the first is on understanding human communication,
the second on designing the interface for usable machines, and the third on
building those usable machines. The topic of this chapter is concerned with
the latter, namely the engineering of spoken dialogue systems. However, every
discussion on the engineering of dialogue systems would be flawed if we did
not take into consideration both the nature of human–human dialogue – as
this is the most efficient realization of spoken dialogue available in nature –
and the goal of usability. Dialogue systems can be further studied in accor-
dance to other dimensions, for example modality (e.g., speech only, audiovi-
sual, multimodal), input sensors (e.g., telephone, microphone, keyboard, joy-
stick, touch screen, gesture capture), target platform (e.g., embedded, server-
based), application domains (e.g., pervasive help, personal assistance, transac-
tional systems, command and control) and many others. We believe that these
dimensions are complementary to the focus of this chapter.

The goal of usability – i.e. building machines that are usable by untrained
users – is often confused with that of building human-like conversational sys-
tems. This is based on the underlying tacit assumption that a machine that
approximates human behaviour, from the linguistic point of view is certainly
more usable than one that does not. Although possibly true in the limit, this as-
sumption is often misleading, especially if we consider that the performance of
spoken language technology1 today is still far from near-human performance.
However, most of the research carried out during the past decade has been
directed towards unconstrained natural language interactions based on the as-
sumption that naturalness and freedom of expression are the essential goals to
pursue, and usability would automatically follow from having reached these
goals.

The limitation of current spoken language technology is a fact we have
to live with. Thus, if we undertake the goal of building usable systems with
that limitation, we would find that naturalness and freedom of expression may
actually hinder usability (Oviatt, 1995; Williams and Witt, 2004) for a large
number of useful applications. For instance let us consider spoken language
understanding technology. In spite of the advances of the past decade, even in

1With the term spoken language technology we refer to all the technologies that attempt the replication of
human spoken language skills by machines, including speech recognition, spoken language understanding,
speech to speech translation, speech synthesis, and text to speech.



Where Do We Go From Here? 3

well-defined domains, unrestricted understanding of speech is still far to be on
a par with humans. So, any spoken language system that encourages free and
natural user interactions is bound to a non-insignificant level of understanding
errors (Sagawa et al., 2004; Bohus and Rudnicky, 2007). Moreover, as of today,
there are no effective error recovery dialogue strategies2 available for uncon-
strained natural language interactions. Conversely there are several types of
transactional applications that achieve high usability with interactions that are
not natural and free. After all call centres often adopt scripts to be followed
by their customer service representatives (CSR) which do not leave much free-
dom to callers.3 Most of the applications in this category are characterised by a
domain model that is well understood by the user population. For instance, the
model for ordering pizzas is known to most of the users: a number of pies of a
certain size (small, medium, or large) with a selection of toppings (mushroom,
pepperoni, etc.) The same applies to the domain of flight status information:
flights can be on time, late, or cancelled, they arrive and depart daily from air-
ports which serve one or more cities and can be identified by a number or by
their itinerary and time. All of this is generally well understood by most of the
users of commercial flights. Banking, stock trading, prescription ordering, and
many other services belong to the same category.

Generally, when the domain model is quite simple and known by the users,
as in the above cases, applications can be implemented in a structured dia-
logue fashion, generally referred to as directed dialogue. Directed dialogue,
even if seemingly more restrictive from the point of view of the user, can at-
tain much higher usability and task completion rates than free form interaction
does, given the limitations of the current technology. In fact, when users are
prompted to provide specific pieces of information, the system can activate
grammars designed to collect exactly that information. Moreover, as discussed
in Oviatt (1995), user guidance reduces user disfluencies. Thus, the combina-
tion of user direction, strict grammars, and less disfluent speech can attain quite
high recognition accuracy. On the other hand, a more open interaction would
increase the space of possible user expressions at each turn, often causing a
reduction of the recognition accuracy. Furthermore, without direct guidance,
most users will be lost and would know neither what to say nor what the capa-
bilities and limitations of the system are.

The concept that well-structured directed dialogue strategies may out-
perform natural language free-form interactions was realized by speech

2One of the problems arising when trying to implement error recovery in unconstrained speech is the au-
tomatic detection of recognition errors. In fact, today’s speech recognition confidence measures are still
highly unreliable, especially when one attempts to apply them to portions of an utterance. Without viable
error correction, interaction with machines may be extremely frustrating for the user.
3As a matter of fact, human–human flight reservation generally follows a precise script that is dictated by
the order of the entries in the CSR database.



4 RECENT TRENDS IN DISCOURSE AND DIALOGUE

technology vendors during the early and mid-1990s. The development of a
spoken dialogue market during those years led to the rise, in the late 1990s, of
a well-structured industry of speech engines, platform and tool vendors, appli-
cation developers, and hosting companies, together with an increased attention
to the industrial standards. In fact several standards are today governing the
speech industry, such as VoiceXML 2.0,4 MRCP,5 SRGS,6 SSML,7 CCML,8

and EMMA.9 Mainly driven by the VoiceXML standards, the speech and the
Web world started to merge, and the benefits of this standardisation trend took
a momentum amplified by the simultaneous emergence of Web standards (e.g.
J2EE10 and JSP11).

From a different point of view it is interesting to notice that the research
community has often adopted dialogue approaches based on general principles
(e.g. Grice, 1975) that once coded give machines a reasonable behaviour for
reacting to different dialogue situations. Then, in order to cope with the limi-
tations of the technology, research started falling back to more restrictive dia-
logue strategies. In contrast, the commercial community started from a prag-
matic approach, where each interaction is practically designed in the minimal
details by voice user interface (VUI) experts (Barnard et al., 1999).

After mastering the crafting of directed dialogue applications, the commer-
cial community is moving now towards more free-form types of interactions.
One example of that is offered by a category of applications where directed
dialogue cannot be applied. Applications of this type are characterised by a do-
main model which is complex and unknown to the majority of users. Help desk
applications, for instance, fall in this class. For example, a directed dialogue
system for routing callers to the appropriate computer support may prompt
the user with: Is your problem related to hardware, software, or networking?
Unfortunately the vast majority of users would not know which of the three cat-
egories would apply to their problem. A solution to that would be to provide a
menu that includes all possible problems, but that menu would be too long to

4http://www.w3.org/TR/voicexml20/.
5Media Resource Control Protocol: a protocol for the low level control of conversational resources like spe-
ech recognition and speech synthesis engines: http://www.ietf.org/internet-drafts/draft-shanmugham-mrcp-
06.txt.
6Speech Recognition Grammar Specification: a language for the specification of context-free grammars
with semantic attachments: http://www.w3.org/TR/speech-grammar/.
7Speech Synthesis Markup Language: a language for the specification of synthetic speech:
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/.
8Call Control Markup Language: a language for the control of the computer-telephony layer:
http://www.w3.org/TR/ccxml/.
9Extensible MultiModal Annotation: a language for the representation of semantic input in speech and
multimodal systems: http://www.w3.org/TR/emma.

10Java Platform, Enterprise Edition is the industry standard for developing portable, robust, scalable and
secure server-side Java applications: http://java.sun.com/javaee/index.jsp.

11Java Server Pages technology provides an effective way to create dynamic web content:
http://java.sun.com/products/jsp/.



Where Do We Go From Here? 5

be practical. In other words, the underlying domain model, unlike that of pizza
orders and flight information, is largely unknown by the user population. The
solution to this problem consists in letting callers express themselves freely,
and back the system with a statistical classifier able to assign user utterances
to one of several predefined categories. In other words the system is charged
with the burden of mapping user expressions to the domain model, and not
the users themselves. This technique, known as How May I Help You (Gorin
et al., 1997), statistical call routing, or statistical natural language understand-
ing (Chu-Carroll and Carpenter, 1999; Goel et al., 2005) is not more than a
very simple form of language understanding which combines the robustness
of a structured approach (a limited number of categories, or routes) with the
flexibility of natural language (an open prompt leading to a large number of
possible user expressions). In fact, using this technology, the dialogue can still
be structured in a directed dialogue manner, because the output of the interac-
tion is going to be one of a predefined number of categories.

The goal of this chapter is to give a high level view of the domain of dia-
logue systems both in the research as well as in the commercial domain, with
a focus on the problem of dialogue management. The rest of this chapter is or-
ganised as follows: Section 2 describes the importance of dialogue control and
authoring expressiveness in commercial dialogue applications and the princi-
ple of VUI completeness. Section 3 provides a working definition of dialogue
management. Section 4 gives a detailed overview of the basic architectures
used for building dialogue applications. The following sections (5, 6 and 7)
describe the main approaches to dialogue management, namely programmatic,
finite state, and inference based. Section 8 provides an overview of the lat-
est trends in commercial dialogue systems, and finally Section 9 reports our
closing conclusions.

2. VUI Completeness
The need for a detailed control of the VUI is thus an important factor driving
the architectural and engineering choices in commercial dialogue systems. We
call this the VUI-completeness principle: the behaviour of an application needs
to be completely and explicitly specified with respect to every possible situa-
tion that may arise during the interaction. No unpredictable user input should
ever lead to unforeseeable behaviour. Only two outcomes are acceptable, the
user task is completed as specified in the design specification, or a fallback
strategy is activated (e.g. escalation to an operator).

In order to ensure that an application is VUI-complete, its behaviour needs to
be specified for each possible situation, or class of situations. Today, a complete
VUI specification is standard procedure in commercial deployments and is
generally represented by a graph that describes all the possible dialogue states,
complemented by tables that describe all the details of each state. Transitions



6 RECENT TRENDS IN DISCOURSE AND DIALOGUE

between dialogue states are described with conditions predicated on the user
inputs and other pieces of information (e.g. previous user inputs, back-end re-
sponse and personal user information). The precise wording of system prompts
is also specified in the design, along with an indication of the type of utterances
accepted at each turn. The VUI specification document is then handed to a team
of developers who implement the application using the platform of choice. In
some situations the VUI designers use advanced authoring tools that lead to the
complete development of the application without, or with limited, intervention
of software engineers and developers. In order to reduce development costs, it
is thus important to guarantee a direct mapping between the formalisms and
abstractions used by the VUI designers and the programming models available
to the developers. This is the reason why most commercial dialogue managers
follow the same abstraction utilised in the VUI specification.

Research systems, on the other hand, are typically designed to manage di-
alogue in situations where the product space of inputs, dialogue states, and
outputs makes an explicit and exhaustive enumeration of all the possibilities
impossible or impractical at best. This is due in part to the aim that the re-
search community has towards handling unrestricted natural language input
and mixed-initiative12 dialogue control. On the other hand, an explicit enumer-
ation (e.g., expansion into a deterministic graph) of the possible inputs as well
as the possible dialogue transition states is required in commercial systems to
establish a complete VUI specification that can be signed off by the client who
pays for the development of the system itself. It is in general uncommon to find
research systems which present full VUI-completeness.13

2.1 Control and Expressiveness
In order to allow developers to implement detailed VUI specifications, the
programming paradigm adopted by the dialogue manager or authoring tools
should allow a fine control of the system behaviour. However, a too low-level
development paradigm may result in prohibitive development costs for large
and complex applications. Hence the programming paradigm needs also to be
expressive enough to allow implementing complex behaviour in a simple and
cost effective way. These two features are often competing, since in order to
guarantee more expressiveness the dialogue manager has to allow for sophis-
ticated built-in behaviour, which may be hard to bypass if one wants to attain

12The term mixed-initiative is generally used to refer to those dialogue systems that allow the user, as well
as the system, to change the course of the interaction at any point in the dialogue.

13In the DARPA Communicator evaluations, participant sites implemented systems with common require-
ments on the travel planning problem. Had a VUI-complete specification been set forth by the community as
a joint effort, part of the evaluation would had simply consisted in verifying application compliance against
the specification document. Still the user experience and the usability of the interfaces would have played
an important role in the differentiation and evaluation of the systems.



Where Do We Go From Here? 7

a detailed control of the interface. An effective programming and authoring
paradigm for dialogue systems is thus the result of a trade-off between control
and expressiveness. This can be summarised by the following principle: simple
things should be simple and complex things should be possible.14

3. Dialogue Management
The design of a proper dialogue management mechanism is thus at the core
of dialogue system engineering. The study of better dialogue managers and
proper dialogue engineering aims mainly at reducing the application develop-
ment costs. But it is also a way to move towards more sophisticated human ma-
chine interactions, since it is only with proper engineering of dialogue systems
that we can raise the complexity threshold that separates what is practically
realizable from what is not.

There is not an agreed upon definition of what a dialogue manager is; dif-
ferent systems described in the literature attribute different functions to it.
Some of these functions are: integrating new user input, resolving ambigui-
ties, confirming and clarifying the current interpretation, managing contextual
information, communicating with the back-end, managing speech recognition
grammars, generating system outputs, etc. In fact, the minimal functionality
required by a dialogue manager covers two fundamental aspects of all inter-
active applications: keeping track of session states and deciding what the next
action for the system to take is. Of course there are many ways of coding these
two functions in order to achieve a desired interactive behaviour. The rest of
this chapter will describe some of them.

4. Reference Architectures: Research
and Commercial

In order to describe different approaches to dialogue management, it is impor-
tant first to define, at a high level, the architecture of spoken dialogue systems.

Figure 1 shows a general functional architecture of a dialogue system,
mostly used in research prototypes. We refer here and in the following to
telephone-based systems. However, some of the concepts expressed in this
chapter can be generalised to other types of system that do not make use of
telephone communication, such as embedded systems for mobile devices and
for automobiles. While the description of how some of these principles ap-
ply to different non-telephony systems is beyond the scope of this chapter, we
should mention that commercial systems, especially in the embedded area, are

14This maxim is attributed to Alan Kay.



8 RECENT TRENDS IN DISCOURSE AND DIALOGUE

Figure 1. Functional architecture of a dialogue system mostly used in research prototypes.

moving towards multimodal applications. Applications where speech is not the
only modality, but is integrated with haptic and visual interfaces, are becoming
more and more common, and certainly need more sophisticated architectures
than the ones described here.15 A discussion on some of the issues related to
multimodal systems can be found in Pieraccini et al. (2005).

In the most common configuration of a spoken dialogue system architec-
ture, input speech is collected via a telephone interface and dispatched to the
speech recognition engine which provides one or more recognition results (for
instance the n-best recognition results). Each recognition result is then fed to
a natural language understanding processor which extracts the semantics of
the utterance. A formal representation of the semantics, generally a structured
set of attribute-value pairs, is then passed on to the dialogue manager. The di-
alogue manager, based on the current utterance semantics, and on the stored
contextual information derived from previous turns, decides the next action
to take according to a dialogue strategy. The most obvious action performed
by the system as a response to a user utterance is a system utterance, gen-
erally referred to as prompt, which can be generated as text and transformed
into speech by a text-to-speech engine, or selected from a set of pre-recorded
samples.16 Other types of action performed by the dialogue manager include
interactions with the back-end system, or any other type of processing required
by the application.

The above described architecture has been implemented in many different
forms in research. Of particular interest is the Galaxy architecture (Seneff et al.,

15Examples are SmartKom (http://smartkom.dfki.de/) and Embassi (http://www.embassi.de).
16High-quality prompts are today obtained by splicing pre-recorded phrases with TTS generated content,
using concatenative speech synthesis.



Where Do We Go From Here? 9

1999) which was used in the DARPA Communicator17 project and allowed the
interchange of modules and plug-and-play across different research groups.

One thing to notice in the above described architecture is that the specific
language models used by the speech recognition and natural language under-
standing engines are supposed to be constant throughout a whole session. In
fact, one of the basic assumptions behind most research prototypes is that the
system should be able to understand all the possible expressions defined by
the language model at any point during the interaction. However it is clear that
there is a correlation between the distribution of possible utterances and the di-
alogue state or context. Thus in order to improve system performance, the dia-
logue manager can change the parameters of the language model and language
understanding depending on the current dialogue context. Several systems did
implement this feedback loop with resulting improved performance (Xu and
Rudnicky, 2000).

Commercial system architectures, instead, evolved in a different way. The
basic assumption on which most of the commercial deployed systems were,
and still are, based can be expressed by the following statement: properly
designed prompts can effectively control the space of user expressions. Thus,
based on this assumption, there is no need for the system to be able to under-
stand, at each turn, all the possible expressions that users could say, since the
user will mostly speak what is suggested by the prompts. Users are in fact di-
rected (thus the term directed dialogue) and guided to speak exactly what the
system expects. It is clear how this assumption, if true, can potentially allow the
attainment of very high task completion rates by limiting the unknowns. Under
this assumption, commercial dialogue systems provide the speech recogniser
with grammars that are specifically designed for each turn of the interaction.
Each grammar – typically a context-free grammar with semantic attachments –
is specifically designed to accept the utterances that are expected to be possible
user reactions to the specific prompt played at that particular turn. So, instead
of a generic prompt like Hello, this is XYZ flight status information line, how
can I help you today? commercial dialogue system designers use more specific
prompts such as Are you interested in arrivals or departures? or From which
city is the flight departing? Prompts and grammars, thus, need to be designed
together.

The benefit of using restricted grammars in directed dialogue applications
becomes evident when looking at the error control logic typically adopted by
commercial systems. In fact even with very restricted grammars there is always
a chance for the recogniser to produce erroneous interpretations, or for the
user to speak utterances outside the domain. Thus in case of poor recognition

17http://communicator.sourceforge.net/.



10 RECENT TRENDS IN DISCOURSE AND DIALOGUE

scores, commercial dialogue systems direct users to correct presumably erro-
neous interpretations by using very strict prompts, such as: I think you said
Austin, is that correct? Please say yes or no. And since the system cannot af-
ford to confuse a yes with another phonetically similar word at this point in
dialogue (misrecognitions in correction subdialogues would lead to enormous
user frustration), the grammar associated with the confirmation prompt is typi-
cally restricted to yes/no utterances and a reasonable number of synonyms and
command words (such as help and operator).

Early commercial dialogue systems were built using proprietary architec-
tures based on IVR (Interactive Voice Response) platforms. Soon, the speech
application development community realized the importance of industrial stan-
dards and started to create recommendations to guarantee interoperability of
platforms and engines. After the introduction of VoiceXML 1.018 in year 2000,
conversational systems started to conform to a general Web architecture, such
as the one shown in Figure 2. The convergence of speech and Web technologies
(the so called Voice Web) has allowed the speech industry to leverage existing
Web skills and resources, and reduce the need for specialised developers.

The core of commercial dialogue systems exemplified by Figure 2 is the
voice browser which accepts documents written in a markup language specific
for speech applications, such as VoiceXML. The voice browser exchanges in-
formation with a Web server using the HTTP protocol in analogy with the
browser and server in traditional visual Web applications. VoiceXML markup
documents instruct the browser to activate the speech resources (speech re-
cognition, TTS, prompt player, etc.) with a specific set of parameters, such as
grammars for the speech recognition engine, prompts to be synthesised by the
text-to-speech system, or audio recording to be played. Once the user’s speech
has been recognised, and the recognition results returned to the browser in the
form of a structured set of variables, the browser sends them back to the Web

Figure 2. Typical architecture of commercial dialogue system.

18Voice eXtensible Markup Language.



Where Do We Go From Here? 11

server, together with the request for another VoiceXML document. The Web
server then replies by sending the requested document to the browser, and the
interaction continues in this fashion.

Using static VoiceXML documents, the dialogue manager function is actu-
ally distributed across the various VoiceXML pages, as in a static visual web-
site, the navigation is distributed across the collection of HTML documents.
In fact each document includes instructions for the browser to request the next
document once the current one has been executed. All the VoiceXML docu-
ments and the corresponding resources (such as grammars, prompts, etc.) are
typically stored statically on the Web server and served19 to the browser upon
request. However, as it happened in the visual Web world, developers found
the mechanism of encoding the whole system in static VoiceXML pages quite
limiting, and soon they started to write programs on the server for generating
dynamic VoiceXML documents. In this case the application is actually man-
aged by a program running on the application server, which acts as a dialogue
manager and that generates dynamic VoiceXML documents upon requests by
the browser. The introduction of the J2EE/JSP technology makes this process
straightforward and in line with mainstream Web programming.

Generating VoiceXML dynamically on the server has the advantage of pro-
viding the developer with more powerful computational capabilities than those
available on the voice browser client, and thus accommodating, in a more flex-
ible way, the dynamic nature of sophisticated interactions and business logic.
Moreover, there are security restrictions on the client browser that may prevent
direct access to external resources, such as back-end databases. The evolution
of server-based programming of applications brought the separation of the di-
alogue management functionality from the presentation (i.e. the activation of
speech engines, playing of the prompts, etc.), and the realization of general
purpose dialogue managers and programming models for developing speech
applications on the server.

In spite of the different architectural evolution of research and commercial
dialogue systems, the need for a powerful dialogue manager is felt by both
communities. In the next few sections we will discuss some of the available
models of dialogue manager which have been introduced in recent years.

5. Programmatic Dialogue Management
The simplest form of dialogue manager is a generic program implemented in
a procedural programming language such as C++ or Java (or as a Java servlet
in the case of Web-based architectures) that implements a dialogue application

19Voice browsers use caching strategies similar to those used by visual Web browsers. So, large grammars
may be cached on the client so as to avoid significant resource provisioning latency.



12 RECENT TRENDS IN DISCOURSE AND DIALOGUE

without any underlying general interaction model. Early commercial dialogue
applications were typically developed, on the deployment platform, as native
code following a given VUI specification. Before the advent of VoiceXML and
the Web programming paradigm for voice applications, IVR vendors integrated
speech recognition engines directly in the platforms which had proprietary pro-
gramming environments or proprietary APIs.20

However, building each application from scratch becomes soon an ineffi-
cient and repetitive activity. Like in all areas of software development, vendors
tried to reduce the cost of application development by introducing libraries
of reusable functions and interaction templates, often for internal consump-
tion, but also as products that could be licensed to third parties. Libraries
were also complemented by programming frameworks, generally in the form
of sample code or templates, which could be reused and adapted to different
applications.

Dialogue modules21 developed by various speech recognition and tool
providers, constitute one of the first forms of commercial reusable dialogue
functions. Dialogue modules encapsulate all the low level activities required to
collect one or more pieces of information from the user. That includes prompt-
ing, re-prompting in case of rejection and timeout, confirmation, disambigua-
tion, etc. The collection procedure, including prompts, grammars, and logic
for standard pieces of information, such as dates, times, social security num-
ber, credit card numbers, currency, etc., was thus encoded once and for all in
pieces of reusable and configurable software. Developers could also build their
own custom dialogue modules. Thus dialogue modules became, for many, the
standard approach to directed dialogue. Applications were then implemented
with the programming model available for the chosen platform. Each state of
the dialogue flow was associated to a specific dialogue module, and the pro-
gramming model of the platform was the glue used to implement the whole
dialogue.

6. Finite State Control Management
The finite state control dialogue manager is an improvement on the program-
matic dialogue manager. The finite state control dialogue manager implements
a separation between the logic of directed dialogue and its actual specification.
The logic is implemented by a finite state machine engine which is application

20Some platforms used GUI application development environments that were originally designed for touch-
tone (DTMF) applications, and then extended to handle speech recognition and TTS. Other commercial
platforms allowed access to the functionality of the IVR and the speech recognition/TTS engines by expos-
ing a proprietary API, and allowing it to be invoked by common programming languages such as C, Java,
and Visual Basic.

21Commercialised by SpeechWorks as Dialogue Modules and by Nuance as Dialogue Objects.



Where Do We Go From Here? 13

independent and therefore reusable. Thus, rather than coding their own finite
state machine mechanism directly in computer code, as in the programmatic
model, developers had to provide a description of the finite state machine topol-
ogy in terms of a graph of nodes and arcs. This can be defined as a data driven
approach. Often the topology could be derived directly from the VUI specifi-
cation. Then developers had to complement that with a set of custom functions
required by the application. Without a separation between the finite state ma-
chine mechanism and its topology, the implementation of the dialogue state
machine logic was often left to the programming skills of developers, often
resulting in an unmanageable spaghetti-like nest of if-else or case statements,
with increased debugging and maintenance costs, and made it impossible to
build applications above a certain level of complexity.

One of the obvious advantages of the finite state control management ap-
proach is that the topology of the finite state machine is generally easier to
write, debug, and maintain than the finite state machine mechanism itself.
Moreover, the finite state machine engine can allow for hierarchical and mod-
ular dialogue definition (e.g. dialogues and subdialogues). Finally, the engine
itself can be harnessed to verify the overall topology, check for obvious de-
sign and implementation mistakes, such as unreachable nodes and loops, and
provide debugging and logging facilities. More sophisticated engines can
have built-in behaviour like for instance handling specific navigation across
dialogue networks, recording usage information for personalised services, im-
plementing functions such as back-up and repeat, etc. (Pieraccini et al., 2001).

The simplest form of finite state control dialogue manager is built around
the concept of call flow developed initially for IVR systems. In its simplest
realization a call flow is a graph where the nodes represent prompts, and the
arcs represent transitions conditioned on the user choice at that particular node
(e.g. Figure 3). By navigating the call flow graph and by selecting the right
choices, the user can reach the desired goal and complete the task. The call
flow model is quite limited and breaks for complex dialogue systems since one
has to explicitly enumerate all the possible choices at any node in the dialogue.

In fact the pure call flow model is inadequate to represent even modest levels
of mixed-initiative, such as over-specification, when more than one piece of
information is given by the user in a single utterance. For instance, if asked for
the date of a flight22 in a mixed-initiative system that allows for over-specified
requests, users may instead respond with any subset of date, origin, destination,
and airline. In order to be able to handle this, the simple call flow model would
need to represent explicitly all the possible subsets of user choices (e.g. date,
date + time, date + origin, date + origin + destination) making the design and
development impractical.

22It looks like the spoken dialogue community has a penchant for applications related to flights. We hope to
see other domains of interest in the future.



14 RECENT TRENDS IN DISCOURSE AND DIALOGUE

Figure 3. Example of call flow.

However, one can easily extend the concept of call flow and allow the state
machine to assume any topology, to invoke any arbitrary function (action) at
each node, and assume any arbitrarily complex condition on the arcs. Further-
more, one can allow any arbitrarily complex data structures (session state) to
be writable and readable by the actions associated to the nodes. In this new
extended form, the finite state control dialogue manager (we will refer to it as
the functional model ) has enough expressive power to represent sophisticated
directed dialogue and mixed-initiative interactions. A full functional model of
dialogue management can also allow for recursion, i.e. full dialogues speci-
fied in a functional fashion can be, themselves, used as actions and associated
to nodes of a higher level dialogue, enabling thus hierarchical description of
applications, and promoting modularity and reuse. An example of a control
graph that handles over-specified utterances is shown in Figure 4 (explained
later in this chapter). More detailed descriptions of functional models of dia-
logue management can be found in Pieraccini et al. (1997, 2001).

There are common misconceptions about the effective expressiveness and
computational power of the finite state dialogue model. In fact limited capabili-
ties with respect to more sophisticated abstractions are often wrongly attributed
to finite state models of dialogue control. These misconceptions derive from
the confusion that often exists between the functional model described above
and the simplistic call flow model which is completely described by a state ma-
chine with prompts on the nodes and choices on the arcs. In its simpler form the
call flow model is indeed, computationally, a finite state model of dialogue: i.e.
the state of the dialogue is univocally determined by the node of the call flow.
By contrast, the functional model allows arbitrary functions at each node to
manipulate arbitrary memory structures that can be shared across nodes. Thus



Where Do We Go From Here? 15

Figure 4. Graph representing a functional dialogue controller able to handle over-specified
utterances. The conditions on the arcs exiting a node are verified in a left-to-right fashion. Arcs
without conditions are to be considered as having an else condition.

the extended functional model is not, computationally, a finite state model of
dialogue; it just makes use of a finite state representation – i.e. nodes and
arcs – for the dialogue control mechanism. In fact each node of the finite
state machine describing the dialogue control does not represent univocally
the state of the dialogue because we need also to take into consideration the
state of all the memory structures associated with the controller (e.g. the ses-
sion state).

A functional dialogue manager is equivalent to a procedural program with
a fixed structure based on nested conditional or case statements. The nodes
are equivalent to function calls, while the conditions are equivalent to the con-
ditional statements, and a whole dialogue is analogous to the definition of a
function. However, a functional dialogue manager specification is much easier
to author and debug than a set of nested conditional or case statements.23

6.1 Handling Mixed-Initiative in Functional
Models

A clear limitation of functional models is that they often require a complete
topological definition of the task that may be rather complex for certain types of
applications. For instance, the implementation of mixed-initiative interactions

23As a proof of this, we leave to the reader the exercise of rewriting the controller in Figure 4 as a series of
nested if/else-if/else statements.



16 RECENT TRENDS IN DISCOURSE AND DIALOGUE

may result in a control graph with a large, unmanageable number of arcs. One
way to reduce the cost of designing and developing mixed-initiative dialogue
applications within the functional model paradigm consists in providing the
controller engine with a behaviour that corresponds to complex topologies,
without the need for the developer to specify those in term of nodes and arcs.
For example, in Pieraccini et al. (2001), the concept of state transition was
extended to include special GOTO and GOSUB arcs to easily implement topic
changes and digressions at any node of the dialogue. Powerful engines for
functional dialogue models can also allow for effective authoring of global
transitions that apply to whole sets of nodes.

6.2 Fixed Topology Models
One can implement functional dialogue managers that allow the developer to
specify the control graph topology (Carpenter et al., 2002). On the other hand
one could restrict the control graph to assume a fixed topology and allow de-
velopers to specify only a limited number of parameters.

The Form Interpretation Algorithm (FIA), the basis for the VoiceXML stan-
dard, is an example of a functional model of dialogue management with a
fixed topology. The topology of the FIA controller is in fact the one shown in
the example of Figure 4. The FIA topology is particularly suited for handling
overspecified requests, allowing filling forms with multiple fields in any order.
For instance, if after the initial question Which flight? the user specifies the
destination and the airline, the arc !origin (i.e. NOT origin, meaning that the
origin slot has not been filled) is traversed and the node origin? is executed
next. As a result the user is asked to provide the origin of the flight. Then, the
date? node is executed next since the condition !date proves to be true (i.e. a
specific date is not available yet). After the user has provided all the required
pieces of information (origin, destination, airline, and date) the subdialogue
exits through node 3.

Another example of functional model with a fixed topology controller is the
MIT dialogue management system (Seneff and Polifroni, 2000). In this case the
control is defined by a sequence of functions that are activated when the associ-
ated conditions fire. Each function can modify a session state (i.e. a frame-like,
or attribute-value memory structure) by adding additional information, includ-
ing a flag which instructs the controller on what to do next. Possible flags are:
CONTINUE, causing the execution of the next rule in the sequence, RETURN,
causing the controller to return to the initial rule, or STOP the execution. Again,
as in the VoiceXML case, developing a dialogue does not require a topological
description of the control graph, which is fixed and has the functional form
described by Figure 5, but the specification of the functions associated to the



Where Do We Go From Here? 17

Figure 5. Functional control graph representing a rule based system.

nodes, and the conditions. The following is an example of a set of rules that
implement the same subdialogue as the one in Figure 4.

!origin → prompt origin()

!destination → prompt destination()

!airline → prompt airline()

!date → prompt date()

7. Inference-Based Dialogue Managers
We have shown in the previous section how several types of dialogue man-
ager can be reduced to a unique underlying model: the functional finite-state
dialogue controller. The difference between them is whether developers are
allowed to change the topology of the controller, and in the way they can au-
thor an application (e.g. by specifying a graph or a set of rules). However,
there are classes of applications for which a specification through a finite state
controller may appear impractical. As we discussed earlier, transactional appli-
cations with a well defined goal (e.g. giving information to the user, selling or
buying) can often be effectively implemented with a finite state controller. On
the contrary, some applications of the problem solving type (Allen et al., 2000)



18 RECENT TRENDS IN DISCOURSE AND DIALOGUE

with a high complexity require a higher degree of planning, for which the fi-
nite state controller can be inappropriate. Although we start seeing commercial
technical support applications, which belong to the problem solving category,
being successfully adopted by certain industries, most of the more complex
problem solving applications have not yet found a channel to the market of spo-
ken dialogue systems. This is probably because the research prototypes have
not yet demonstrated the level of usability needed for commercial use. For in-
stance, the deployment of some sophisticated research systems would require
highly specialised development teams that may be prohibitively expensive in
a commercial setting. Moreover the performance of the systems for the most
complex problem solving tasks is not yet at the level required for commercial
exploitation.

In spite of its difficulty, the research community has been actively pushing
the technology towards the solution of the dialogue management problem for
complex systems, especially under the auspices of the DARPA Communica-
tor program. Successful prototypes have been demonstrated and tested based
on sophisticated dialogue managers that deviate from the finite-state controller
model, and include some degrees of inference. A distinguishing feature of the
inference based systems is that they refrain from attempting at a more or less
explicit description of the relationship between states and actions, as in the fi-
nite state controllers, but rather resort to engines that draw decisions on the
next action to perform based on a general strategy and on a formal description
of the domain, typically in terms of goals and subgoals. Thus, in order to de-
velop an application, rather than describing the VUI, one starts from a formal
description of the domain model in such a way to allow the inference engine
to drive the system to a cooperative solution.

In Stallard (2001) the dialogue control model is described by a tree repre-
senting the goal/sub-goal structure, with the leaves of the tree being the actions.
Actions, which include pre-conditions for their execution, are associated to in-
dividual goals. Internal nodes represent conditional controls on the execution
of the underlying nodes. A dialogue manager based on task ontology and a
hierarchy of nodes is described in Pellom et al. (2000). The dialogue man-
ager described in Wei and Rudnicky (2000) constructs a dynamic structure,
called agenda, which is a list of subgoals, where each subgoal corresponds
to the collection of some piece of information. A task is completed when all
the items in the agenda are completed. The agenda is created, dynamically, by
traversing a tree (i.e. the product tree) that describes, at any point in time, the
current task to be completed. The product tree has to be created dynamically
since the nature of the task may be dynamic as well (e.g. the number of legs
of a flight is determined during the interaction and not known beforehand).
In the form based dialogue manager described in Papineni et al. (1999) the
inference mechanism is driven by a numeric function computed on a set of



Where Do We Go From Here? 19

partially completed forms (i.e. sets of task-relevant slots), based on how close
to the goal (i.e. the retrieval of information from the database) each individual
hypothesis is.24

Another line of research is based on statistical learning of the dialogue strat-
egy using mathematical models derived from statistical machine learning, such
as Markov Decision Process (Levin et al., 2000) or Bayesian network frame-
works (Meng et al., 2003). It is still too early to be able to understand whether
automated design of dialogue can allow building usable systems with a quality
comparable to that of those designed by VUI expert designers.

It is not yet clear whether any of the sophisticated inference dialogue man-
agers developed in research could be effectively used for mass production
of commercial systems. One of the problem is that their behaviour is quite
complex, and it may be difficult to predict all possible situations that could
arise during the interaction. Thus VUI completeness may be hard to achieve.
Research prototypes, so far, have been built by researchers with an intimate
knowledge of the quirks of the dialogue manager itself, and often by those who
built it. Thus, in order to succeed in the commercial arena, inference engines
have to produce systems with usability and robustness comparable or superior
to that of an equivalent directed dialogue for the same task, or implement ap-
plications that are so complex that they cannot be approached with directed
dialogue, still with usability as their main goal. VUI completeness is an essen-
tial requirement which should be seriously taken into proper consideration for
the more sophisticated dialogue manager models.

8. Current Industrial Trends
Reusable components (Huerta et al., 2005) and pre-packaged applications are
the main trends of the industry of spoken dialogue systems today. Componen-
tization and reuse effectively allow reducing deployment costs and risks and, at
the same time, simplifying the design and development of more sophisticated
applications. Thus the commercial world is approaching the creation of more
complex applications through more and more sophisticated building blocks
which allow reuse and interplay.

Additionally, the need for language flexibility and robustness has motivated
the use of Natural Language Understanding (NLU) technology. This require-
ment has allowed NLU technology to move from just call routing (Gorin et al.,
1997) to a more sophisticated use, like for instance understanding and cate-
gorising symptoms in technical support applications.25

24A commercial version of this dialogue manager was implemented by IBM and used in a financial applica-
tion (T. Rowe Price).

25http://www.speechcycle.com.



20 RECENT TRENDS IN DISCOURSE AND DIALOGUE

9. Conclusions
The way applications are authored, what capabilities the systems have, and
the overall usability that is eventually perceived by users reflect the different
goals that research and industry have in the field of spoken dialogue systems.
Whereas usability and cost effectiveness are the primary goals of the commer-
cial community, research has traditionally aimed at naturalness of interactions
and freedom of expression. However, often the latter does not necessarily lead
to the former. The actual form assumed by dialogue managers in both commu-
nities is the consequence of those different goals. In fact, in order to achieve
high usability, commercial deployments aim at having completely definable
interfaces (control and VUI completeness), using efficient languages and ar-
chitectures (expressiveness and simple-things-should-be-easy) while keeping
the ability to achieve complex levels of interaction (complex-things-should-
be-possible). At the same time, the focus of research is towards abstracting,
validating and achieving complex levels of natural interaction. While at first
glance both sets of goals might seem in conflict, we believe that an evolution
towards more complex levels of interaction, while using an effective develop-
ment framework and implementing a “controllable” (VUI complete) interface
is possible.

We have shown that most commercial dialogue management abstractions
fall into the functional finite-state controller mechanism, as well as some of the
dialogue managers developed in research. The difference is in the constraints
applied to the topology of the controller and in the type of authoring (graphs
vs rules). We have also shown that there is a second category of dialogue man-
agers, inference based, which is devoted to handling more complex interac-
tions, such as problem solving applications. VUI completeness and economy
of development are required for them to become viable and reach the level of
usability needed to succeed in the commercial arena.

We believe that the authoring of applications should be aligned with the
model used at design time, and possibly to the runtime environment. In this
way efficiency can be achieved at all levels: design, development, and deploy-
ment. The framework should allow for the encapsulation of dialogue mech-
anisms into templates, components, and subroutines that abstract behaviours.
Beyond allowing for a reduction of development costs, this is also the first step
towards the implementation of more complex interaction mechanisms. Finally,
the framework should have strict “directed” and thus controllable default be-
haviour, but at the same time should allow for more complex interactions to be
triggered if and when these dialogue mechanisms would benefit the interaction
(e.g. expert and power users).

An important consideration that needs to be made when talking about the
use and usability of commercial dialogue systems is that their success has to



Where Do We Go From Here? 21

take into account the willingness of the user to cooperate. Even the best de-
signed application based on the most advanced architecture fails when callers
refuse to use it. The problem is that the general public, the population of users
of commercial dialogue systems, is at best annoyed when they are faced with a
computer rather than a live agent. This phenomenon can be attested by the
cheat-sheets26 published on the Web that suggest words and sequences of
touch tone keys for callers of commercial customer care applications to get
a human operator right away. We can make an analogy with many other au-
tomated systems that are massively used today, and that provoked a similar
reaction when they were introduced first a few years ago, such as ATMs (or
cash machines) and answering machines. ATMs and answering machines are
ubiquitous today and nobody would ever think of them as replacements for
bank tellers and receptionists, but useful tools that improve our way of life.
Similarly dialogue systems are to be considered as tools that, if used prop-
erly, can provide faster and better service for the most common situations and
problems.

So, what is the main difference between research and commercial dialogue
systems? We can certainly say that while some research was originally inspired
by the dream of moving towards human-like interfaces characterised by fully
unconstrained interactions (the dream of a HAL 9000-like machine from the
celebrated 1968 2001, A Space Odyssey movie), commercial dialogue systems
have to have more practical goals such as robustness, usability, testability, and
ease of design and maintenance. Because of that, the commercial community
took the approach of very controlled interfaces with constrained input and lim-
ited initiative on the part of the user. In other words they assumed that compli-
ant users will learn how to use non-natural and highly limited interfaces, when
compared with a human–human analogy, in order to get their task done. While
the goal of research is certainly more ambitious, it has not had yet the oppor-
tunity to bring to life truly natural language mixed-initiative dialogue systems
as a viable alternative to the constrained commercial directed dialogues. This
is due, in part, to the lack of exposure that research systems have to a high vol-
ume usage that helps drive their improvement, the lack of research funds and
the interest of the funding agencies, and also in part to the choice of research
applications that often can be easily outperformed by analogous directed di-
alogue commercial applications. Should research concentrate on applications
that are so complex that they could not be approached with equal or higher
effectiveness by commercial systems, that would help establish a research goal
way beyond the current technology.

26http://gethuman.com.



22 RECENT TRENDS IN DISCOURSE AND DIALOGUE

Finally we believe that a consolidation of the goal priorities (i.e. usability
and naturalness of interaction) between research and the commercial world
will foster further maturation of the technology. For this to happen, though, the
dialogue needs to start.

References
Allen, J. F., Ferguson, G., and Stent, A. (2000). Dialogue Systems: From The-

ory to Practice in TRAINS-96. In Dale, R., Moisl, H., and Somers, H.,
editors, Handbook of Natural Language Processing, pages 347–376. Marcel
Dekker, New York.

Barnard, E., Halberstadt, A., C., K., and Phillips, M. (1999). A Consistent Ap-
proach to Designing Spoken-Dialog Systems. In Proceedings of IEEE Work-
shop on Automatic Speech Recognition and Understanding (ASRU), pages
363–366, Keystone.

Bohus, D. and Rudnicky, A. (2007). Sorry, I Didn’t Catch That! An In-
vestigation of Non-Understanding Errors and Recovery Strategies. In
Dybkjær, L. and Minker, W., editors, Recent Trends in Discourse and
Dialogue. Springer. (This volume).

Carpenter, B., Caskey, S., Dayanidhi, K., Drouin, C., and Pieraccini, R. (2002).
A Portable, Server-Side Dialog Framework for VoiceXML. In Proceed-
ings of International Conference on Spoken Language Processing (ICSLP),
pages 2705–2708, Denver.

Chu-Carroll, J. and Carpenter, B. (1999). Vector-Based Natural Language Call
Routing. Computational Linguistics, 25(3):361–388.

Goel, V., Kuo, H.-K., Deligne, S., and Wu, S. (2005). Language Model Esti-
mation for Optimizing End-to-End Performance of a Natural Language Call
Routing System. In Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 565–568, Philadelphia.

Gorin, A. L., Riccardi, G., and Wright, J. H. (1997). How May I Help You?
Speech Communication, 23:113–127.

Grice, H. P. (1975). Logic and Conversation. Syntax and Semantics. In Cole, P.
and Morgan, J. L., editors, Speech Acts, volume 3, pages 41–58. Academic,
New York.

Huerta, J., Akolkar, R., Faruquie, T., Kankar, P., Rajput, N., Raman, T.,
Udupa, R., and Verma, A. (2005). Reusable Dialog Component Framework
for Rapid Voice Application Development. In Proceedings of International
SIGSOFT Symposium on Component-Based Software Engineering (CBSE),
pages 306–321, St. Louis.

Levin, E., Pieraccini, R., and Eckert, W. (2000). A Stochastic Model of Human-
Machine Interaction for Learning Dialog Strategies. IEEE Transactions on
Speech and Audio Processing, 8(1):11–23.



Where Do We Go From Here? 23

McTear, M. (2004). Spoken Language Technology: Toward the Conversational
User Interface. Springer, London.

Meng, H. M., Wai, C., and Pieraccini, R. (2003). The Use of Belief Networks
for Mixed-Initiative Dialog Modeling. IEEE Transactions on Speech and
Audio Processing, 1(6):757–773.

Oviatt, S. L. (1995). Predicting Spoken Disfluencies during Human-Computer
Interaction. Computer Speech and Language, 9:19–35.

Papineni, K., Roukos, S., and Ward, R. (1999). Free-Flow Dialog Management
Using Forms. In Proceedings of European Conference on Speech Commu-
nication and Technology (EUROSPEECH), pages 1411–1414, Budapest.

Pellom, B., Ward, W., and Pradhan, S. (2000). The CU Communicator: An Ar-
chitecture for Dialog Systems. In Proceedings of International Conference
on Spoken Language Processing (ICSLP), pages 723–726, Beijing.

Pieraccini, R., Carpenter, B., Woudenberg, E., Caskey, S., Springer, S., Bloom,
J., and Phillips, M. (2005). Multimodal Spoken Dialogue with Wireless
Devices. In Minker, W., Bühler, D., and Dybkjær, L., editors, Spoken
Multimodal Human-Computer Dialogue in Mobile Environments, pages
169–184. Springer.

Pieraccini, R., Caskey, S., Dayanidhi, K., Carpenter, B., and Phillips, M.
(2001). ETUDE, a Recursive Dialog Manager with Embedded User
Interface Patterns. In Proceedings of IEEE Workshop on Automatic Spe-
ech Recognition and Understanding (ASRU), pages 244–247, Madonna di
Campiglio, Trento.

Pieraccini, R., Levin, E., and Eckert, W. (1997). AMICA: The AT&T Mixed
Initiative Conversational Architecture. In Proceedings of European Confer-
ence on Speech Communication and Technology (EUROSPEECH), pages
1875–1878, Rhodes.

Sagawa, H., Mitamura, T., and Nyberg, E. (2004). Correction Grammars for
Error Handling in a Speech Dialog System. In Proceedings of Annual
Meeting of the Human Language Technology Conference/North American
chapter of the Association for Computational Linguistics (HLT-NAACL),
pages 61–64, Boston.

Seneff, S., Lau, R., and Polifroni, J. (1999). Organization, Communication,
and Control in the Galaxy-II Conversational System. In Proceedings of
European Conference on Speech Communication and Technology (EURO-
SPEECH), pages 1271–1274, Budapest.

Seneff, S. and Polifroni, J. (2000). Dialogue Management in the MERCURY
Flight Reservation System. In Proceedings of ANLP/NAACL, pages 11–16,
Seattle.

Stallard, D. (2001). Dialogue Management in the Talk’n Travel System. In
Proceedings of IEEE Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU), pages 235–239, Madonna di Campiglio, Trento, Italy.



24 RECENT TRENDS IN DISCOURSE AND DIALOGUE

Wei, X. and Rudnicky, A. (2000). Task-Based Dialog Management using an
Agenda. In Proceedings of ANLP/NAACL, pages 42–47, Seattle.

Williams, J. and Witt, S. (2004). A Comparison of Dialog Strategies for Call
Routing. International Journal of Speech Technology, 7(1):9–24.

Xu, W. and Rudnicky, A. (2000). Language Modeling for Dialog System. In
Proceedings of International Conference on Spoken Language Processing
(ICSLP), volume 1, pages 118–121, Beijing.


