
Chapter 3
Multi-Criteria Decision Problems

3.1 Theoretical Aspects

The basis for decision making is that given two objects, say A and B, people can
meaningfully say whether they prefer A to B, B to A or whether they are indifferent
(von Winterfeldt and Edwards 1986). Usually, it is assumed that people can also
state the strength of this preference. The strength could be expressed either in ordinal
terms, or in cardinal terms. If the decision maker can say that change from A to B
is preferable to change from B to C, then the judgment is ordinal. If the decision
maker can say by how much, the judgment is cardinal.

Multi-Attribute Utility Theory, where the utility of the decision maker is con-
sidered to consist of several attributes, is usually shortened with MAUT. In dif-
ferent contexts, concepts ‘objectives’ and ‘criteria’ are used instead of ‘attributes’.
Malczewski (1999, p. 85) defines multi-criteria decision making as a broader class,
which includes both multi-attribute decision making for discrete decision problems
and multi-objective decision making for continuous problems. He defines attributes
as measures of performance of an object, and objects as statements about the desired
state of a system. In this book, the attributes and criteria are used as synonyms, and
multi-objective is only used in the context of optimization.

In many cases also the term MAVT, Multi-Attribute Value Theory, is used. The
difference between MAUT and MAVT is that the value functions do not include the
risk preferences of the decision maker but the utility function does. von Winterfeldt
and Edwards (1986, p. 215) think this difference is spurious, however. A utility
function is also a value function, while a value function is not necessarily a utility
function.

The problem is formulated with a set of distinct alternatives di, i = 1, . . . ,n and
a set of decision criteria c j, j = 1, . . . ,m so that cij represents the performance of
alternative i with respect to criterion j. It is simply not possible to independently
maximize or minimize several criteria at the same time: you cannot maximize the
gross incomes while at the same time minimizing the costs, or maximize the yield
and minimize the risks (Keeney and Raiffa 1976, p. 66).
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24 3 Multi-Criteria Decision Problems

Therefore, the big issue in multi-criteria decision making is that of tradeoffs:
how much is the decision maker willing to give up in one criterion, in order to
improve the performance with respect to another criterion by some fixed amount.
For instance, the decision maker needs to decide, how much more risk of beetle
outbreak she/he will tolerate in order to improve net incomes by 100AC, or how
much incomes is she/he willing to give up in order to reduce the risk by 10%.

The tradeoffs decisions are about personal values, and thus, they require subjec-
tive judgment of the decision maker. This means that there are no correct or wrong
answers to the value questions; people may have very different preference struc-
tures. The tradeoffs problem can be solved in two ways: (1) the decision maker can
informally weigh the tradeoffs is his/her mind or (2) the decision maker can for-
malize his/her preferences to a multi-criteria utility function and use it to solve the
problem (Keeney and Raiffa 1976). Either way, the tradeoffs are inevitable in any
multiple-criteria decision.

There are a few choice procedures that do not require utility functions in order to
make choices. One of these is dominance. We can say that alternative i dominates
alternative i′, if

cij ≥ ci′ j, ∀ j = 1, . . . ,m

cij > ci′ j, for some j = 1, . . . ,m

It means that alternative i is at least as good as alternative i′ for all criteria j, and,
in addition, alternative i is strictly better than alternative i′ with respect to at least
one criterion j. If an alternative is dominated by some other alternative, it can be
left out from the analysis: it can never be chosen as the best alternative, whatever
the preference structure. If there is one alternative among the n alternatives that
dominates all other alternatives, the choice would then be easy. However, such is the
case only rarely. It may, however, be that some of the alternatives can be eliminated
before further analysis.

What is important in the non-dominated alternatives, is that they form the effi-
cient frontier or the Pareto optimal set among the alternatives (Fig. 3.1).

One possible way of choosing among a set of alternatives, without considering
the tradeoffs, is to utilize a lexicographic ordering (Keeney and Raiffa 1976). In this
method, the decision maker first ranks the criteria with respect to their importance.
Then, the most important criterion is c1 and the least important criterion is cm. Then,
alternative i is preferred to alternative i′, denoted by i � i′, if and only if

(a) ci1 > ci′1 or

(b) cij = ci′ j, j = 1, . . . ,k

ci(k+1) > ci′(k+1), for some k = 1, . . . ,m−1

It means that the choice is made only based on the most important criterion. If there
are several alternatives that are equal with respect to that criterion, then the second
most important criterion is considered and so on.
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Fig. 3.1 Dominated alternatives are presented with squares, and non-dominated with diamonds.
The non-dominated alternatives form the efficient frontier of the problem

3.2 Multi-Attribute Utility Functions

3.2.1 Function Forms

In a case of multi-attribute utility function, it is assumed that there are m criteria,
and a unidimensional utility (or value) function is evaluated or can be evaluated
for each of these criteria. The task is now to aggregate these utility functions to
describe the overall utility of the alternatives. This aggregation is done by weighting
the different criteria in the utility function with respect to their importances. The
relations between the weights of different criteria describe the tradeoffs between the
criteria.

The most applied multi-attribute utility function is the linear additive utility
function

Ui =
m

∑
j=1

a jc ji (3.1)

where Ui describes the overall utility of alternative i (or priority of alternative i)
and cij is the performance of the alternative i with respect to criterion j and a j is
the importance weight of criterion j. In this equation, it is assumed that the criteria
values cij are already in utility scale or are scaled to a utility scale with Formula
(2.4) or (2.5), for instance.

Typically, it is required that
m

∑
j=1

a j = 1, (3.2)

otherwise the utility could always be increased by increasing the weights. The trade-
offs between criterion k and k′ can be calculated from the ratio of the weights ak/ak′ .
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In general, the marginal rate of substitution between criteria k and k′ can be calcu-
lated as a ratio of partial derivatives of the utility function as

λ =
U ′

k

U ′
k′

=
ak

ak′
(3.3)

This means that the decision maker is willing to give up λ units of criterion k′ in
order to increase the value of criterion k by one.

Example 3.1. Assume a utility function with Uk = 0.67c1k + 0.33c2k, where c1 de-
notes units of money and c2 the number of animals in some wildlife species. Then,
the decision maker is willing to give up one animal in order to increase the incomes
with 0.67/0.33 = 2 units of money.

In the linear additive utility function, the tradeoff between the criteria is constant.
It means, that the willingness of the decision maker to change one unit of criterion
k′ to λ units of criterion k does not change, even if there is only a few units left of
criterion k′, or even if there is already plenty of criterion k. If a decreasing marginal
utility is assumed, this does not hold. In this case, a more general function, namely
the additive utility function needs to be used. It is of the form

Ui =
m

∑
j=1

a ju j(cij) (3.4)

where u j(cij) is the partial utility due to criterion j. It is described with the unidi-
mensional utility function for this criterion. In this function, the marginal rate of
substitution is a function of the current values of criteria j.

The additive utility models are compensatory at nature. In this respect, this utility
function differs from other forms of utility functions. It means that even if some
criteria assume their lowest possible levels, this can be compensated if some other
criterion or criteria assume very good values. The compensation is dictated by the
marginal rate of substitution.

Example 3.2. Let us consider six non-dominant alternatives from Fig. 3.1. The over-
all utility function is assumed to be

Ui = a1 ·0.00506 · ci1 +a2 ·1.55251 · exp(−60.2556/ci2)

and the resulting utilities are presented in Table 3.1. The weights of these two criteria
are assumed to be equal, i.e. 0.5, and the greatest overall utility is observed for
alternative 2, with 164 units of money and 80 animals. If the number of wildlife were
1, this could be fully compensated with 309 units of money, i.e. such an alternative
would get the largest overall utility, 0.782. On the other hand, if the amount of
money were 10 units, this could be compensated with 2,100 animals, giving overall
utility 0.780. The marginal utility of additional animals is very small, when the
number of animals is high.

The partial derivatives of these functions are a1 ·0.00506 with respect to criterion
c1, money, and a2 1.55251 · exp(−60.2556/ci2)(60.2556/c2

i2) with respect to crite-
rion c2, number of wildlife animals. Thus, the marginal rate of substitution does not
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Table 3.1 Overall utilities of the alternatives

Alternative Money Wildlife Overall utility

1 197 18 0.526
2 164 80 0.780
5 30 137 0.576
8 186 34 0.603
9 182 38 0.619

10 93 121 0.707

depend on money, but it depends on the amount of animals. When the number of
wildlife animals varies from 30 to 530, the marginal rate of substitution varies from
0.36 to 17.02 animals: the more animals there are, the more the decision maker
is willing to give up for additional unit of money. The partial derivatives and the
resulting λ are presented in the Table 3.2.

In addition to these two utility functions, there exist a number of different func-
tions. One example is the multiplicative model (von Winterfeldt and Edwards 1986,
p. 291)

1+aUi =
m

∏
j=1

[1+aa ju j(cij)] (3.5)

which can also be presented in a form of an additive utility function with interac-
tion terms

Ui =
m

∑
j=1

a ju j(cij)+a
m

∑
j=1

m

∑
k> j

aia jui(cij)uk(cik)+ · · ·+am−1
m

∏
j=1

a ju j(cij). (3.6)

In this function, the interaction between the partial utility of different criteria is
presented using products of each pair of alternatives, products of each group of
three criteria, and finally the product of all criteria. The interactions are dealt with

Table 3.2 Ratio of partial derivatives

Wildlife Money Wild λ
30 0.00253 0.00697 0.3628
80 0.00253 0.00344 0.7352

130 0.00253 0.00174 1.4531
180 0.00253 0.00103 2.4493
230 0.00253 0.00068 3.7184
280 0.00253 0.00048 5.2589
330 0.00253 0.00036 7.0704
380 0.00253 0.00028 9.1527
430 0.00253 0.00022 11.5057
480 0.00253 0.00018 14.1293
530 0.00253 0.00015 17.0234
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using one parameter, a, with a power of p−1, where p is the number of terms in the
product. It means, that for two-term interactions p = 1, and for m-term interactions
p = m−1. This parameter a must lie between −1 and ∞. As the value of a increases,
the amount of interaction increases, for a = 0 this formula simplifies to additive
utility function. In a two-dimensional case a can be calculated from (von Winterfeldt
and Edwards 1986)

a =
1−a1 −a2

a1a2
(3.7)

It means that if a1 +a2 = 1, a is 0, and if a1 = a2 = 0, a is infinite.
Using this function, the degree of compensation cannot be calculated as neatly as

with the previous additive models. Furthermore, also the interpretation of the model
is more complicated, as the level of any one criterion affects to the utility obtained
from a fixed level of another criterion.

Example 3.3. Assume the criteria in the example 3.2 have an interaction, i.e. the
level of money affects to the utility obtained from wildlife. Both criteria have
equal weight, 0.4, and thus the interaction term a = 1−0.4−0.4

0.4·0.4 = 1.25. The partial
utilities are calculated with the same functions as in example 3.2 and the result-
ing utilities are presented in Table 3.3. In this case, as the alternative 2 has the
most even distribution of the criteria, it is the best alternative also with this utility
model.

Since all the interactions are dealt with the same parameter, this function is fairly
inflexible. In principle, it would be possible to estimate separate interaction term for
each interaction pair of criteria, but this would require a lot of data from decision
makers: each parameter requires at least one observation in order to be estimated,
and the number of observations increases very fast as m increases.

Another common utility function form is the conjunctive function

Ui =
m

∏
j=1

(u j(cij))
a j (3.8)

This model is non-compensatory at nature. If the utility due to one of the criteria
assumes zero value, the overall utility is also zero. It favours alternatives having
fairly similar partial utility values for all criteria (e.g. Tell 1976).

Table 3.3 Overall utilities with interaction term

Alternative Money Wildlife Overall utility

1 197 18 0.431
2 164 80 0.746
5 30 137 0.491
8 186 34 0.532
9 182 38 0.554

10 93 121 0.654
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One example of utility functions is also the distance function (Tell 1976; Tell and
Wallenius 1979)

Ui =

√
m

∑
j=1

a2
j

(
copt

j − cij

)2
(3.9)

where copt
j defines the optimal state of each criterion. This model needs to be scaled

so that the optimal value of criterion is given value 1 and the least preferred value
of that criterion is given zero value.

The weights a j have throughout the chapter been interpreted as importances of
the different criteria. However, this approach has also been criticized. For instance,
Keeney and Raiffa (1976) consider the weights to be simple rescaling method which
is necessary to match the units of one unidimensional utility function with another.
Since it is possible to obtain very different value functions from the same data for
any one criterion (e.g. Formulas 2.4 and 2.5) this needs to be kept in mind. For
instance, when Formula 2.4 is used, the weights can be interpreted to describe the
importance of change from 0 level in natural scale to the maximum level, and when
Formula 2.5. is used, the same weights should describe the importance of change
from the minimum value at natural scale, i.e. 0 at utility scale, to the maximum value
at both natural and utility scale.

Example 3.4. In the data of the example 3.2, also a conjunctive utility function can
be used. The partial utilities are calculated with the same functions as in exam-
ple 3.2. The criteria are assumed to be equally important also in this example, and
the resulting utilities are presented in Table 3.4. In this case, as the alternative 2
has the most even distribution of the criteria, it is the best alternative also with this
utility model.

3.2.2 Basis for Estimating the Weights

There exist a large amount of methods that can be used for estimating the weights
in the utility function. Generally, they can be divided to two main categories: direct
and indirect methods. In indirect methods, the estimation may be based on the ear-
lier, true decisions. These revealed preferences are commonly utilised for evaluating

Table 3.4 Overall utility assuming a conjunctive utility function

Alternative Money Wildlife Overall utility

1 197 18 0.233
2 164 80 0.779
5 30 137 0.390
8 186 34 0.498
9 182 38 0.541

10 93 121 0.666
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non-market values. In direct methods, the estimation is based on direct questions
concerning the importances of criteria in the decision situation at hand.

It has been claimed that the old decisions are the only reliable way to estimate
the true utility function. Such utility function is true only with respect to the old
decision, however. The preferences and situation of the decision maker may have
totally changed after that old decision was made, and thus, the model may not be at
all useful in a new decision situation. The estimated utility model may also be in-
correct for the old decision, if it was made based on imperfect information on the
alternatives. Therefore, studying the old decisions and the preferences implied by
these decisions are mainly useful in descriptive studies. When aiming at decision
support, direct methods can be assumed more useful.

Direct estimation methods can be further divided to two groups, statistical and
subjective methods (Schoemaker and Waid 1982). In statistical methods, the deci-
sion makers are asked to holistically evaluate some decision alternatives, and the
utility function is estimated based on these values. In subjective methods, the deci-
sion problem is divided to several criteria, and preferences are asked regarding these
criteria.

Different estimation method for utility functions, have been tested, for instance
by Eckenrode (1965), Fishburn (1967), Tell (1976), Tell and Wallenius (1979),
Eliashberg (1980), Jacquet-Lagreze and Siskos (1981), Schoemaker and Waid
(1982), Horsky and Rao (1984), and Laskey and Fischer (1987). In this sub-chapter,
only one group of subjective direct methods of estimation are presented, namely
SMART. Later in the chapter, some additional techniques like the pairwise com-
parisons of Analytic Hierarchy Process are presented. These can also be used for
estimating a utility function. However, these methods do not necessarily belong un-
der the MAUT, and therefore they are dealt with separately.

3.2.3 Smart

SMART (Simple Multi-Attribute Rating Technique) is a decision support method
developed at the close of the 1960s and early 1970s in the field of multi-attribute
utility theory (von Winterfeldt and Edwards 1986). In fact, several methods based
on direct evaluation are involved in the family of SMART methods, of which vari-
ous researchers have developed new versions over the years. Generally, in SMART,
additive models are applied.

Direct rating in SMART means, for example, that criteria are directly assigned
numerical values depicting their importance. The least important criterion is first
given 10 points and the points of other criteria are related to that. Then, the points are
summed, and the final weights are the points of each criterion divided by the sum.

a j =
p j

m
∑

i=1
pi

(3.10)

The same principles can, of course, also be used for estimating the value function
with respect to each criterion (Chapter 2).
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When the importance of the individual criteria and the priorities of each of the
alternatives with respect to each of the criteria have been determined, the overall
utility of alternatives can be calculated. SMART methods have been applied in
natural resources management by Reynolds (2001) and Kajanus et al. (2004), for
instance.

Another version of SMART, namely SMARTS (SMART using Swings) also
exists. In SWING weighting, it is first assumed that all criteria are their lowest pos-
sible values, e.g. at utility function value 0. Then it is asked, which criteria is most
important to change from its minimum level to its maximum level. This criterion is
given 100 points. After that, the rest of the criteria are evaluated relative to that crite-
rion. This approach has the advantage that the importance weights explicitly depend
on the range of criteria values on the problem at hand, while the former SMART
weighting does not necessarily do so.

Example 3.5. The case example presented next is applied throughout the book to
illustrate different MCDM tools. The data comes from a real-life case of strategic
planning in a 320.9 ha area in northern Finland, owned by state and managed by
the Finnish State Forest Enterprise Metsähallitus. It has been used in many planning
studies. The data consists of three criteria and six alternatives (see Kangas et al.
1992). The problem was to assess the priority of the forest plans generated for the
area. The plans were

Continue natural growth with no cuttings (NAT)
Optimize scenic beauty index (SCEN)
Normal forestry guidelines (NORM)
Optimize game values (GAME)
Modest regeneration (MREG)
Maximize income (INC)

The decision criteria in this problem were timber production, scenic beauty, and
game management. Each of the criteria was further decomposed into several sub-
criteria. In order to keep the example as simple as possible, only timber production
and scenic beauty of the main criteria were used here. The timber production was
divided to two sub-criteria, namely net incomes during first 10 years and stumpage
value after 20 years. The decision hierarchy is presented in Fig. 3.2.

Utility

Timber production

Net incomes

Scenic beauty

Future value of
timber

Fig. 3.2 The decision hierarchy in SMART example
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Table 3.5 Net incomes, stumpage values and scenic beauty index of the six alternative plans

Net incomes Stumpage value Scenic
1000AC millionAC beauty index

NAT 0.00 0.71 5.5
SCEN 79.6 0.28 5.7
NORM 38.0 0.60 5.4
GAME 33.0 0.61 5.5
MREG 102.3 0.51 5.2
INC 191.7 0.13 4.9

Table 3.6 Cutting schemes of the example alternatives

Regeneration Per cent Regeneration Per cent
1st period (ha) Clear-cut 2nd period (ha) Clear-cut

NAT 0 0 0 0
SCEN 55.1 0 104.3 0
NORM 14.9 81 15.6 81
GAME 17.0 0 17.2 0
MREG 50.3 96 44.5 11
INC 109.6 68 87.2 29

Table 3.7 Sub-utility function values

Net incomes Stumpage value Scenic beauty

NAT 0.000 1.000 0.750
SCEN 0.631 0.546 1.000
NORM 0.360 0.954 0.625
GAME 0.319 0.959 0.750
MREG 0.740 0.893 0.375
INC 1.000 0.000 0.000

Table 3.8 Global and local utilities

Global utility Timber production Scenic beauty

NAT 0.350 0.200 0.150
SCEN 0.688 0.488 0.200
NORM 0.532 0.407 0.125
GAME 0.533 0.383 0.150
MREG 0.697 0.622 0.075
INC 0.600 0.600 0.000
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Table 3.9 Weights based on ranking

Rank Exponent
Rank reciprocal Rank sum with z = 1.6 ROC

Timber production 0.67 0.67 0.75 0.75
Scenic beauty 0.33 0.33 0.25 0.25

Net incomes describe the timber harvesting income during the first half of the
20-year planning period, and stumpage value describes the monetary value of the
remaining trees at the end of the 20-year period. Scenic beauty is an index describ-
ing scenic beauty after 20 years, calculated with MONSU software (see Pukkala
2006). The data for the example is presented in Table 3.5. From the alterna-
tives, NAT means that there are no cuttings at all. In SCEN and GAMES alter-
natives, regeneration is carried out, but no clear-cuts are allowed. In INC alterna-
tive, the area of clear-cutting is largest: in MREG the regeneration area is only
half of that, although most of the regeneration is carried out with clear-cutting
(Table 3.6.).

In SMART analysis, an exponential utility function (of the form a · e−b/x) was
assumed for net incomes and stumpage value, and a linear utility function (For-
mula 2.5) for Scenic beauty. The utility functions were calculated with WebHIPRE
program (http://www.hipre.hut.fi). The utility function values for each alternative
and each criterion are given in the Table 3.7.

The criteria were next weighted. Since the criteria form a decision hierarchy,
the lowest-level criteria were first weighted. The least important criterion, stumpage
value, was given 10 points and the most important, net incomes, was given 30 points.
Then, the weight of net incomes becomes 0.75 and that of stumpage value 0.25. The
higher-level criteria were compared in the same way: the scenic beauty was given
10 points and the timber production was given 40 points, which gave weights 0.2 for
scenic beauty and 0.8 for timber production. Then, the global weights of net incomes
and stumpage value were calculated as 0.8 · 0.75 = 0.6 and 0.8 · 0.25 = 0.2. With
these weights, the priorities of the alternatives could be calculated. In Table 3.8. the
priorities of each alternative with respect to both higher-level criteria, and the global
priorities are shown.

It is also possible to use the importance ranks of the criteria to calculate the
weights a j for the alternatives. This approach is called SMARTER (Simple Multi-
Attribute Rating Technique Exploiting Ranks). One possible approach for calculat-
ing the weights from ranks are the so-called Rank Order Centroid or ROC weights
(Edwards and Barron 1994)

a j = (1/m)
m

∑
i= j

1/i, (3.11)

where the criteria are assumed to be arranged from most important ( j = 1) to
least important ( j = m). von Winterfeldt and Edwards (1986; also Stillwell et al.
1981) presented three other formulas that can be used for calculating weights from
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Table 3.10 Global utilities with ROC weighting

Global utility

NAT 0.375
SCEN 0.707
NORM 0.538
GAME 0.547
MREG 0.677
INC 0.563

importance ranks of criteria, namely the rank reciprocal rule,

a j =
1/r j

∑
i

1/ri
(3.12)

the rank sum – rule

a j = (m+1− r j)
/ m

∑
i=1

ri (3.13)

and the rank exponent rule

a j = (m+1− r j)
z
/ m

∑
i=1

rz
i , (3.14)

where z is estimated with
a j

ai
=

(m+1− r j)
z

(m+1− ri)
z (3.15)

where r j is the rank of criterion j.
In the last formula, the decision maker needs to give a preference ratio (3.15)

for one pair of weights, in order to calculate the rest of them. This ratio could, for
instance, be the weight ratio of the most and least important criteria.

All three of the formulas can be considered ad hoc procedures (Stillwell et al.
1981; Edwards and Barron 1994). Yet, they could be useful if the decision maker
does not want to evaluate the magnitude of his/her preferences.

Example 3.6. In the example above, in the higher hierarchy level there are two crite-
ria. In this case, the weights for these two criteria, calculated with the formulas based
on ranks are in Table 3.9. Using ROC weighting, the global priorities of the alterna-
tives are presented in Table 3.10., SCEN alternative being the most preferred one.

3.3 Even Swaps

Even swaps, originally developed by Hammond et al. (1998a, b), is a method for
making tradeoffs among criteria across a range of alternatives. The method is based
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on direct comparison of the preferences of each pair of decision elements: one cri-
terion is valued in terms of another criterion. The criteria can be qualitative as well
as quantitative. The method goes on in four steps (Hammond et al. 1998a, b).

Step 1. The consequence matrix is created. Each row represents an alternative, and
each column a criterion. Each cell contains the consequence of the given
alternative with respect to the given criterion.

Step 2. Dominated alternatives are eliminated. For instance, if alternative A is bet-
ter than alternative B on one or more criteria, and no worse on all other
criteria, then alternative B can be eliminated. Also such alternatives that are
practically dominated (i.e. have only a slight advantage in one criterion and
are dominated in other criteria) can be removed.

Step 3. Criteria, which have equal rating for each alternative, can be ignored in
decision making. Therefore, the criteria are made equivalent by making
tradeoffs. This is carried out with the following steps (Kajanus et al.
2001):

• Determining the change necessary to eliminate one criterion
• Assessing what change in another objective would compensate for the needed

change
• Making the even swap in the consequence table by reducing the one objective

while increasing the other
• Cancelling out the now irrelevant objective

Step 4. Steps 2 and 3 are repeated until there is only one objective left. Then, the
dominant alternative is selected.

Example 3.7. The original table of consequences is the same as in example 3.5

Net Stumpage Scenic
incomes value beauty
1000AC millionAC index

NAT 0.00 0.71 5.5
SCEN 79.6 0.28 5.7
NORM 38.0 0.60 5.4
GAME 33.0 0.61 5.5
MREG 102.3 0.51 5.2
INC 191.7 0.13 4.9

From this table, the swaps are made in order to get either some alternatives dom-
inated, or either some criteria irrelevant. The example was carried out with the
SMART-SWAPS program (http://www.smart-swaps.hut.fi, Mustajoki and
Hämäläinen 2005; Mustajoki and Hämäläinen 2006). The SMART-SWAP program
actively proposes swaps for the decision maker, to make the analysis easier.

The first swap was to compensate a change 5.4 → 5.5 in NORM’s scenic beauty
with a decrease of incomes 38 → 33. The resulting table shows that NORM is now
dominated by GAME, and can be removed.
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Net Stumpage Scenic
incomes value beauty
1000AC millionAC index

NAT 0.00 0.71 5.5
SCEN 79.6 0.28 5.7
NORM 33.0 0.60 5.5
GAME 33.0 0.61 5.5
MREG 102.3 0.51 5.2
INC 191.7 0.13 4.9

The second swap was to compensate a change 4.9 → 5.5 in INC’s scenic beauty
with a decrease of incomes 191.7 → 170

Net Stumpage Scenic
incomes value beauty
1000AC millionAC index

NAT 0.00 0.71 5.5
SCEN 79.6 0.28 5.7
GAME 33.0 0.61 5.5
MREG 102.3 0.51 5.2
INC 170.0 0.13 5.5

The next swap was to compensate a change 5.2 → 5.5 in MREG’s scenic beauty
with a decrease of incomes 102.3 → 90

Net Stumpage Scenic
incomes value beauty
1000AC millionAC index

NAT 0.00 0.71 5.5
SCEN 79.6 0.28 5.7
GAME 33.0 0.61 5.5
MREG 90.0 0.51 5.5
INC 170.0 0.13 5.5

and the next swap was to compensate a change 5.7 → 5.5 in SCEN’s scenic beauty
with a increase of stumpage value 0.28→ 0.38. Now, SCEN alternative is dominated
and can be removed from the table. In addition, scenic beauty is irrelevant and can
be removed from the table.

Net Stumpage Scenic
incomes value beauty
1000AC millionAC index

NAT 0.00 0.71 5.5
SCEN 79.6 0.38 5.5
GAME 33.0 0.61 5.5
MREG 90.0 0.51 5.5
INC 170.0 0.13 5.5
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The next swap was to compensate a change 0.61→ 0.71 in GAME’s stumpage value
with a decrease of incomes 33 → 28, resulting NAT being a dominated alternative
that can be removed.

Net Stumpage
incomes value
1000AC millionAC

NAT 0.0 0.71
GAME 28.0 0.71
MREG 90.0 0.51
INC 170.0 0.13

The next swap was to compensate a change 0.51→ 0.71 in MREG’s stumpage value
with a decrease of incomes 90→ 80, resulting GAME being a dominated alternative
that can be removed

Net Stumpage
incomes value
1000AC millionAC

GAME 28.0 0.71
MREG 80.0 0.71
INC 170.0 0.13

Then, the final swap was to compensate a change 0.13 → 0.71 in INC’s stumpage
value with a decrease of incomes 170 → 145, resulting MREG being a dominated
alternative, and INC the recommended one

Net Stumpage
incomes value
1000AC millionAC

MREG 80.0 0.71
INC 145.0 0.71

3.4 Analytic Hierarchy Process

3.4.1 Decision Problem

The Analytic Hierarchy Process (AHP), originally developed by Saaty (1977, 1980),
is a widely used MCDS method and perhaps the most popular in many applica-
tion fields, including natural resource management. Mendoza and Sprouse (1989),
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Fig. 3.3 The decision hierarchy

Murray and von Gadow (1991), and Kangas (1992), among others, have used AHP
in forestry applications, and the number of applications is continuously increasing
(e.g. Rauscher et al. 2000; Reynolds 2001; Vacik and Lexer 2001). AHP has also
gained interest among forestry practitioners. The Finnish State Forest Enterprise
Metsähallitus, which governs the vast majority of state-owned lands in Finland, has
used AHP, or more precisely the HIPRE software, in practical natural resource plan-
ning (Pykäläinen et al. 1999). For a review of AHP forestry applications, readers
are referred to Kangas (1999), and to Schmoldt et al. (2001) for extensions and for
AHP-related development.

Basically the AHP is a general theory of measurement based on some mathe-
matical and psychological principles. In the method, a hierarchical decision schema
is constructed by decomposing the decision problem in question into decision ele-
ments – goals, objectives, attributes and decision alternatives. The general goal is at
the top of a decision hierarchy, and decision alternatives constitute the lowest level
(Fig. 3.3).

The branches of the decision hierarchy are assumed to be independent of each
other. It means that the decision criteria are not supposed to measure the same values
from the decision maker’s point of view. For instance, if scenic beauty measures, for
instance, the recreational value of the forest estate, but has no intrinsic value besides
that, it should not be included as a criterion of its own, but as a sub-criterion for
recreational value. Defining the decision hierarchy is important, as splitting the cri-
teria in different ways has been noted to affect their weight in the decision analysis
(e.g. Pöyhönen and Hämäläinen 1998; Pöyhönen et al. 2001). This does not mean,
however, that the decision criteria should not be correlated. On the contrary, it often
happens that, for instance, criteria describing biodiversity and recreation value may
be correlated.
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On the other hand, the independency means that the criteria should not have
interactions. It is possible that the incomes in the different alternatives also affect
the importance of aesthetic or ecological values (e.g. Leskinen et al. 2003). In basic
AHP this is not allowed, but in regression AHP context (e.g. Leskinen and Kangas
2005a) and in ANP such interactions can be accounted for.

The importances or preferences of decision elements are compared in a pair-
wise manner with regard to each element above in the hierarchy. Based on these
comparisons, an additive model on a ratio scale describing the preferences of the
decision maker and priorities of decision alternatives with respect to the objectives
or attributes is estimated. The model is called a priority function. The decision alter-
native which produces the greatest global priority is considered the “best” and most
satisfactory.

Differences in measurement scales and units do not present any difficulty when
the AHP is used, because the method is based on straight comparison between the
significance and preference of each pair of decision elements without using any
physical unit. Thus, AHP can deal with qualitative attributes as well as those which
are quantitative.

3.4.2 Phases of AHP

The four basic steps involved in using the AHP to address decision problems are:

1. The decision hierarchy is constructed by decomposing the original decision prob-
lem into a hierarchy of interrelated decision elements.

2. Pairwise comparisons are made at each level of the hierarchy. In making the
comparison, the question is, which of the two factors has a greater weight in
decision making, and how much greater, or which of the two decision alternatives
is more preferred with regard to a certain decision attribute.

3. Using the pairwise comparisons as input, the relative weights (importance/
preference) of elements at each level are computed using the eigenvalue method.
The resulting weights or priorities represent the decision maker’s perception
of the relative importance or preference of the elements at each level of the
hierarchy.

4. The ratings for the decision alternatives are calculated based on the relative
weights of the decision elements.

Pairwise comparisons give the decision maker a basis on which to reveal his/her
preferences by comparing two elements at a time. The importances or preferences
of decision elements are compared in a pairwise manner with regard to each ele-
ment above in the hierarchy. First, each of the alternatives from 1 to n is compared
to each other alternative with respect to decision attribute 1. These comparisons,
with respect to one decision element, form one comparison set. Then, each of the
alternatives is compared to each other alternative with respect to rest of the decision
attributes, one by one. After that, the decision attributes are compared pairwisely
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with respect to each decision objective above them, and finally, the decision objec-
tives are compared in a pairwise manner with respect to the goal.

In the standard method presented by Saaty (1977, 1980), the decision maker has
the option of expressing preferences between the two elements as:

(i) Equal importance or preference of both elements
(ii) Weak importance or preference of one element over another

(iii) Essential or strong importance or preference of one element over another
(iv) Demonstrated importance or preference of one element over another
(v) Absolute importance or preference of one element over another

These preferences are then translated into numerical values of 1, 3, 5, 7 and 9,
respectively, with 2, 4, 6 and 8 as intermediate values. Many other variations of
the scale have been presented (see Leskinen 2001). It is also possible to carry out
comparisons by using a continuous scale, e.g. by making use of graphical bars in
the computer interface (e.g. Pukkala and Kangas 1993).

For estimating the priorities, the matrix of pairwise comparisons A is constructed
for each set of comparisons. The elements of the matrix, aij, describe the comparison
of alternative (or attribute or objective) i to j. The matrix is required to be reciprocal,
i.e. in the matrix the element aij = 1/a ji. It means that if alternative i is twice as good
as j, then j has to be half as good as i. Each alternative is then indifferent with itself,
i.e. when i = j, aij = 1.

If there were no inconsistencies in judgements, matrix A has unit rank since every
row is a constant multiple of the first row, and all the eigenvalues of the matrix are
zero except one. (Rank of a matrix is the number of mutually independent rows in
it). Based on a consistent matrix A, relative weights can be determined by solving
the equation

Aw = λw, (3.16)

where λ is the only nonzero eigenvalue of a consistent matrix A, and w is its right
eigenvector. The solution w of this problem is any column of A. These solutions dif-
fer only by a multiplicative constant. Thus, the same relative weights are got based
on any column of the matrix. In human decision making, some inconsistencies can
be expected: people’s feelings and preferences are not always consistent. Further-
more, as the largest value used in the comparison matrix is 9, and there are only
nine possible answers, in many cases it may be impossible to compare the decision
elements consistently using this scale.

Example 3.8. If the comparisons were such that decision maker considers alterna-
tive 1 to be twice as good as 2, alternative 2 three times as good as 3, and alter-
native 1 six (= 2 · 3) times as good as alternative 3, (i.e. a12 = 2, a23 = 3 and
a13 = 6), the decision matrix is considered to be consistent. The matrix A would
then be

⎡
⎣

1 1/2 1/6
2 1 1/3
6 3 1

⎤
⎦
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In this case, the weights can be obtained simply by dividing each column with the
sum of its cell values, giving weights

⎡
⎣

0.111
0.222
0.667

⎤
⎦

When A contains inconsistencies, the estimated weights can be obtained using the
eigenvector equation.

(A−λmaxI)q = 0 (3.17)

where λmax is the largest eigenvalue of matrix A, q its right eigenvector and I
the identity matrix. The right eigenvector, q, constitutes the estimation of relative
weights. It is the first principal component of the matrix of pairwise comparisons.
The first principal component of a matrix is a linear combination of the variables
(i.e. comparisons with respect to one alternative) that describes the largest part of
the variation in the matrix. It gives the relative weights to the compared elements,
which best fit to the made comparisons. If the matrix does not include any inconsis-
tencies, i.e. the judgements made by a decision maker have been consistent, q is an
exact estimate of the priority vector.

Each eigenvector is scaled to sum to one to get the priorities. The form of pri-
ority functions is the same as the form of additive linear utility functions without
interaction terms.

Global priorities of decision elements are calculated downwards from the top of
the hierarchy by multiplying the local priorities by the priority of their correspond-
ing decision element at the level above. Global priority of an element is then used
to weight the local priorities of elements at the level below and so on down to the
bottom level. Global priorities at each level sum up to one.

It has been shown that λmax of a reciprocal matrix A is always greater or equal
to n (= number of rows = number of columns) (e.g. Saaty 1977). If the pairwise
comparisons do not include any inconsistencies, λmax = n. The more consistent the
comparisons are, the closer the value of computed λmax is to n. Based on this prop-
erty, a consistency index, CI, has been constructed

CI = (λmax −n)/(n−1). (3.18)

CI estimates the level of consistency with respect to the entire comparison process.
A consistency ratio, CR, also measures the coherence of the pairwise compar-
isons. To estimate the CR, the average consistency index of randomly generated
comparisons, ACI, has to be calculated (CR = CI/ACI). ACI varies as a func-
tion of the size of matrix (e.g. Saaty 1980). As a rule of thumb, a CR value of
0.1 or less is considered to be acceptable. Otherwise, all or some of the compar-
isons must be repeated in order to resolve the inconsistencies of pairwise compar-
isons.
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Fig. 3.4 The decision hierarchy of the AHP example

Example 3.9. The problem of example 3.5 is analysed using AHP. There are six de-
cision alternatives and three criteria. They form a decision hierarchy (Fig. 3.4). The
alternatives were compared pairwisely with respect to each criterion, namely net
incomes, value of timber and scenic value (Table 3.11). The obtained CR results
mean that the comparisons were a bit too inconsistent for a good analysis, and it
would be recommendable to make some of them again. After comparing the alter-
natives, the criteria were compared. First, the second-level criteria, net incomes and
value of timber, were compared to each others and then the higher level criteria were
compared (Table 3.12)

The priorities and the consistency rations were calculated with webHIPRE pro-
gram (http://www.hut.hipre.fi/). The priorities were first calculated at the level of
decision attributes and objectives (Table 3.13). Then, INC is the best alternative with
respect to net incomes, NAT with respect to stumpage value and SCEN with respect
to scenic beauty. The local weight of net incomes was 0.75 and that of stumpage
value 0.25, the local weights of scenic beauty was 0.2 and that of timber production
0.8. Thus, the global weight of net incomes was 0.8 ·0.75 = 0.6 and that of stumpage
value 0.25 ·0.8 = 0.2. The global priorities of the alternatives with respect to deci-
sion attributes were obtained by multiplying the priorities at the decision objective
level with the global weights (Table 3.14). Global priorities with respect to timber
production were obtained by adding together the global priorities with respect to net
incomes and stumpage value, and the overall priorities by adding the priorities of
timber production and scenic beauty together (Table 3.14). It can be noted that INC
is the best alternative with respect to timber production as a whole, since the weight
of stumpage value is quite low, and also its overall priority was the best.

To illustrate the notion of inconsistency, the priorities of the alternatives were
calculated from each column in matrix 3.11 (Table 3.15). It means that six
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Table 3.11 Pairwise comparisons

NAT SCEN NORM GAME MREG INC

(a) with respect to net incomes
NAT 1/1 1/4 1/2 1/2 1/7 1/9
SCEN 4/1 1/1 2/1 2/1 1/3 1/5
NORM 2/1 1/2 1/1 1/1 1/4 1/7
GAME 2/1 1/2 1/1 1/1 1/5 1/7
MREG 7/1 3/1 4/1 5/1 1/1 1/2
INC 9/1 5/1 7/1 7/1 2/1 1/1
CR = 0.099

(b) with respect to value of timber
NAT 1/1 6/1 3/1 3/1 4/1 8/1
SCEN 1/6 1/1 1/4 1/4 1/3 3/1
NORM 1/3 4/1 1/1 1/1 2/1 6/1
GAME 1/3 4/1 1/1 1/1 2/1 6/1
MREG 1/4 3/1 1/2 1/2 1/1 4/1
INC 1/8 1/3 1/6 1/6 1/4 1/1
CR = 0.159

(c) with respect to scenic beauty
NAT 1/1 1/2 1/1 1/1 3/1 5/1
SCEN 2/1 1/1 3/1 5/1 5/1 6/1
NORM 1/1 1/3 1/1 1/1 2/1 4/1
GAME 1/1 1/5 1/1 1/1 2/1 4/1
MREG 1/3 1/5 1/2 1/2 1/1 3/1
INC 1/5 1/6 1/4 1/4 1/3 1/1
CR = 0.146

Table 3.12 Pairwise comparisons between the criteria

Net incomes Value of timber

Net incomes 1/1 3/1
Value of timber 1/3 1/1
CR = 0.000

Timber production Scenic beauty
Timber production 1/1 4/1
Scenic beauty 1/4 1/1
CR = 0.000.

Table 3.13 Local utilities with respect to different criteria

Net incomes Stumpage value Scenic beauty

NAT 0.036 0.421 0.186
SCEN 0.113 0.057 0.382
NORM 0.064 0.188 0.155
GAME 0.061 0.188 0.155
MREG 0.272 0.114 0.081
INC 0.455 0.031 0.04
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Table 3.14 Overall utility and global utility with respect to timber production criterion and scenic
beauty

Overall utility Timber production Scenic beauty

NAT 0.143 0.106 0.037
SCEN 0.156 0.079 0.076
NORM 0.107 0.076 0.031
GAME 0.105 0.074 0.031
MREG 0.202 0.186 0.016
INC 0.287 0.279 0.008

different priority estimates were obtained. It can be noted that these priority esti-
mates have a lot of variation among them, for instance, the priority of INC with
respect to net incomes varies from 0.360 to 0.509 (0.455 in eigenvalue analysis,
Table 3.13), and that of NAT from 0.024 to 0.053 (0.036 in eigenvalue
analysis).

3.4.3 Uncertainty in AHP

Many decision scientists have criticized the AHP method. Perhaps the two foremost
problems with the application of AHP have been that the original comparison scale
does not allow for the expression of any hesitation regarding a single comparison,
and that the AHP itself does not provide tools for in-depth analyses of the com-
parisons, particularly of the uncertainty inherent in the data (e.g. De Jong 1984;
Crawford and Williams 1985; Alho et al. 1996). The only means to analyse the
uncertainty in AHP is to calculate the inconsistencies. Moreover, part of the incon-
sistencies in the pairwise analysis may be due to the scale, not the answers given by
the people (Leskinen 2001).

In basic AHP the number of comparisons increases rapidly as the number of
alternatives and criteria increases. Large numbers of comparisons may be too costly

Table 3.15 Priorities calculated by scaling each column of pairwise comparisons matrix
separately

1 2 3 4 5 6

NAT 0.040 0.024 0.032 0.030 0.036 0.053
SCEN 0.160 0.098 0.129 0.121 0.085 0.095
NORM 0.080 0.049 0.065 0.061 0.064 0.068
GAME 0.080 0.049 0.065 0.061 0.051 0.068
MREG 0.280 0.293 0.258 0.303 0.255 0.238
INC 0.360 0.488 0.452 0.424 0.509 0.477
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and tedious, especially for participatory planning problems. However, eigenvalue
technique requires a full comparison matrix in order to be carried out.

Finally, rank reversal occurring when using the AHP may cause problems (e.g.
Belton and Gear 1983). This means that if new alternative is included in the analy-
sis, it is possible that the rank of the previously considered alternatives changes,
although the preferences do not change. For instance, if the preferences originally
are so that A is preferred to B, and B to C, after including a new alternative D the
situation may change so that B is preferred to A. The rank reversal may be partly
due to the arithmetic aggregation rule applied in the basic AHP, and partly due to
inconsistencies in the pairwise comparisons (Leskinen and Kangas 2005b). Accord-
ing to, rank reversal is acceptable if it is due to inconsistencies (i.e. new alternatives
give new information concerning the preferences), but not acceptable if it is due to
the method itself. Using geometric aggregation rule, the rank reversal problem can
be avoided (Barzilai and Golany 1994; Leskinen and Kangas 2005b). The problem
of rank reversal does not only apply to AHP, but also, for instance, SMART, if the
sub-utility functions are calculated using interval scale.

To alleviate these problems, different modifications of AHP have been devel-
oped. In these, the concept of decision hierarchy and the pairwise comparisons may
be similar to the basic AHP, but the techniques are different. The number of compar-
isons can be reduced by the use of regression techniques for estimating preferences
instead of the eigenvalue technique (Alho et al. 1996, 2001; Leskinen 2001). The
pairwise comparisons are denoted with rij = vi

/
v j exp(εij), where exp(εij) describes

the uncertainty in each pairwise comparison. Since all the values of items i, vi are
positive, with no loss of generality, it can be expressed as

vi = exp(µ +αi) (3.19)

where µ and αi are parameters. Then, the ratio can, in turn, be expressed as

vi/v j = exp(αi −α j) (3.20)

and the model can be expressed as

log(rij) = yij = αi −α j + εij (3.21)

Thus, expressing the values vi as exponents and using a logarithmic transforma-
tion enables using a linear model. The parameters αi, i = 1, . . . , n − 1 are then
estimated using standard regression tools, for instance SAS program. The para-
meter αn related to the item n is assumed to be zero for definiteness, i.e. oth-
erwise there would be an infinite number of solutions to this model. The mini-
mum number of observations in regression analysis is the number of parameters
to be estimated, i.e. it would be enough to include only one row or column from
the pairwise matrix in the analysis. In that case, however, it would not be pos-
sible to estimate the inconsistency involved. For that, additional observations are
needed.
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In this model, the distribution of the error term, εij, describes the uncertainty of
the analysis. With this formulation, the error variance describes the inconsistency of
the comparisons: if the variance is 0, the comparisons are consistent and the higher
the variance, the more inconsistency there is.

The priorities of the alternatives that sum up to one are finally calculated as

qi =
exp(αi)

n
∑

i=1
exp(αi)

(3.22)

With this formula, the scale is transformed from logarithmic scale back to original
one (value scale). The division by the sum of transformed values scales the sum
of priorities to one. Finally, if the weight for each criterion j is denoted by a j, the
utility of each alternative i can be calculated with geometric aggregation rule as

Ui = ∏ j q
a j
ij /∑i ∏ j q

a j
ij . (3.23)

Example 3.10. The pairwise comparisons of example 3.9 with respect to net in-
comes were analyzed with regression AHP. In Table 3.16 are the data used in the
analysis. The explanatory variables are just zeros and ones. They describe, which al-
ternative has been compared to which, according to model 3.21. Since the parameter
for the last alternative is set to 0, INC is not included in the data. The parameters
were calculated using SAS, and the priorities of the alternatives with respect to net
incomes could be calculated (Table 3.17).

The standard error of the model is 0.19 and R2 is 0.9863. They indicate that the
pairwise comparisons are not quite consistent, but the consistency is fairly high.
These comparisons were consistent enough also with respect to CR criterion.

Table 3.16 Pairwise comparison data for a model

NAT SCEN NORM GAME MREG r y

1 −1 0 0 0 0.25 −1.38629
1 0 −1 0 0 0.5 −0.69315
1 0 0 −1 0 0.5 −0.69315
1 0 0 0 −1 0.143 −1.94491
1 0 0 0 0 0.111 −2.19823
0 1 −1 0 0 2.0 0.693147
0 1 0 −1 0 2.0 0.693147
0 1 0 0 −1 0.33 −1.10866
0 1 0 0 0 0.2 −1.60944
0 0 1 −1 0 1.0 0
0 0 1 0 −1 0.25 −1.38629
0 0 1 0 0 0.143 −1.94491
0 0 0 1 −1 0.2 −1.60944
0 0 0 1 0 0.143 −1.94491
0 0 0 0 1 0.5 −0.69315
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Table 3.17 Estimated priorities of alternatives

α Exp(α) q

NAT −2.55106 0.077999 0.035316
SCEN −1.38936 0.249235 0.112846
NORM −1.95364 0.141757 0.064183
GAME −1.99083 0.136582 0.06184
MREG −0.50575 0.603053 0.273044
INC 0 1 0.45277

Sum 2.208626 1

Another example of accounting for uncertain preferences in AHP framework is
interval AHP (Leskinen and Kangas 1998; see also Arbel 1989; Salo and Hämäläinen
1992). In interval AHP, the decision makers are asked the probability that the
preference lies in a certain interval, or the interval the preference lies in with a
certain probability.

The regression approach to AHP can also be reformulated to Bayesian frame-
work (e.g. Alho and Kangas 1997; Basak 1998). Bayes theorem is then used to
derive the conditional distributions of the parameters. Then, it is easy to calculate
the probabilities that one plan is better than all the others, for example.

Yet another example of accounting for uncertainty in AHP context is the fuzzy
AHP. In fuzzy AHP, preference ratios of criteria or alternatives are described by
membership functions (e.g. Mendoza and Prabhu 2001).

3.4.4 ANP

The Analytic Network Process (ANP) is an extension of the AHP (Saaty 2001) that
answers some of the development challenges of the basic AHP methodology. Basi-
cally, the ANP is a general theory of ratio scale measurement of influence, with a
methodology that deals with dependence and feedback. The comparisons are made
using pairwise comparisons like in original AHP, but the relations between the cri-
teria are included in the comparisons. The main idea is to avoid the assumption of
independence among criteria of the standard AHP.

ANP model can be designed either using a so-called control hierarchy (i.e. a hi-
erarchy of subsystems with inner dependencies) or as a non-hierarchical network,
which includes both decision criteria and alternatives as clusters (e.g. Wolfslehner
et al. 2005). The clusters are connected with arrows that describe the flow of in-
fluence. Thus, each criterion can have an interaction with other criteria (outer de-
pendence), and each sub-criterion can have interaction with other sub-criteria in the
same cluster (inner dependence).

A hypothetical example of ANP network is presented in Fig. 3.5. In the exam-
ple, decision objective 1 influences to objectives 2, 3 and 6, and objective 3 is also
influencing objective 1. In addition, there is a feedback loop back to the objective
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Fig. 3.5 An example of ANP network

itself. The influence means that instead of comparing decision attributes of objective
2 in pairwise manner, the influence is accounted for. Thus it is asked, for instance,
“With regard to decision objective 1, decision attribute 1 is how many times more
important than decision attribute 2?”. For a forestry example concerning criteria
and indicators of sustainable management, readers are referred to Wolfslehner et al.
(2005).

The ANP utilises a so-called supermatrix calculation in order to deal with inter-
actions among the network of criteria and decision alternatives. Saaty (2001) stated
that, generally taken, the ANP is more objective and more likely to capture what
happens in the real world than the AHP. However, applying the ANP is much more
laborious and time-consuming. Obviously the ANP has potential application in for-
est management, where different kinds of interdependencies between decision ele-
ments are usual.

3.5 A’WOT

In the so called A’WOT method (Kurttila et al. 2000; Pesonen et al. 2001a) the
Analytic Hierarchy Process (AHP) and its eigenvalue calculation framework are
integrated with SWOT analysis. SWOT is a widely applied tool in strategic deci-
sion support. In SWOT, the internal and external factors most important for the
enterprise’s future are grouped into four categories: Strengths, Weaknesses, Oppor-
tunities, and Threats. By applying SWOT in a strategic planning process, the aim
usually is to develop and adopt a strategy resulting in a good fit between these in-
ternal and external factors. When used properly, SWOT can provide a good basis
for strategy formulation. However, SWOT could be used more efficiently than nor-
mally has been the case in its applications. The most crucial problem with SWOT is
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Fig. 3.6 A’WOT framework (Kurttila et al. 2000)

that it includes no means of analytically determining the importance of factors or of
assessing the fit between SWOT factors and decision alternatives.

The aim in applying the hybrid method is to improve the quantitative infor-
mation basis of strategic planning processes. AHP’s linking with SWOT yields
analytically–determined priorities for the factors included in SWOT analysis and
makes them commensurable (Fig. 3.6). In addition, decision alternatives can be eval-
uated with respect to each SWOT factor by applying the AHP. So, SWOT provides
the basic frame within which to perform an analysis of the decision situation, and the
AHP assists in carrying out SWOT more analytically and in elaborating the analysis
so that alternative strategic decisions can be prioritised.

The main phases of A’WOT are as follows:

1. The SWOT analysis is carried out. The relevant factors of the external and inter-
nal environment are identified and included in SWOT analysis.

2. Pairwise comparisons between the SWOT factors are carried out separately
within each SWOT group. When making the comparisons, the issue at stake is
which of the two factors compared is more important and how much more im-
portant. With these comparisons as the input, the mutual priorities of the factors
are computed.

3. The mutual importance of the SWOT groups is determined by applying pairwise
comparisons. There are several possibilities as how to do this. For instance, it
is possible to compare the groups as such or the most important factors in each
group pairwisely.

4. The strategy alternatives are evaluated with respect to each SWOT factor by using
pairwise comparisons and the eigenvalue technique.

5. Global priorities are calculated for the strategy alternatives.

In the earliest A’WOT applications (Kurttila et al. 2000; Pesonen et al. 2001a), only
steps (1)–(3), as listed above, were carried out in an early stage of a strategic plan-
ning process. A’WOT strengthens the decision basis also in the case where the result
is only the quantification and commensuration of SWOT factors. However, the fi-
nal goal of any strategic planning process as a whole is to develop and propose a
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strategy resulting in a good fit between internal and external factors. When steps (4)
and (5) are included in the A’WOT process, the initial SWOT analysis might not
always be applicable as such (Pesonen et al. 2001b).

The reason for this is that the SWOT factors could have been formulated so that
strategy alternatives can not be evaluated with respect to them. This being the case,
SWOT factors need some value-focused modification and fine-tuning (e.g. Leskinen
et al. 2006). For A’WOT, SWOT factors should be determined by asking, which are
the internal and external factors of the operational environment that should be taken
into account in choosing the strategy for the enterprise. Then it is possible to com-
pare strategy alternatives with respect to strengths, weaknesses, opportunities, and
threats as listed in SWOT. To take an example of the pairwise comparisons: which
of the two strategy alternatives compared (when implemented) makes it possible to
better exploit a certain opportunity, and how much better? According to the experi-
ences of A’WOT applications and tests, the combined use of the AHP and SWOT
analysis is a promising approach in supporting strategic decision-making processes
(Kurttila et al. 2000; Pesonen et al. 2001a, b).
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