
Chapter 2
Unidimensional Problems

2.1 Decisions Under Risk and Uncertainty

From the viewpoint of decision theory, the decision problems including uncertainty
can be presented according to a decision table
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The components of a decision table are the decision alternatives (di, i = 1, . . . n),
the states of nature (ω j, j = 1, . . .m), and the consequences (cij, i = 1, . . .n, j =
1, . . .m). The consequence of an action is determined by the action, and by a number
of external factors which are beyond the control of the decision maker. A state of
nature is a particular set of values that these external factors might assume.

If the state of nature that will actually occur and the consequences associated with
the decision alternatives are known, a decision is made under certainty. Under risk
and uncertainty, the state of nature that would prevail is not known with certainty.
Under risk, the probability of each state of nature occurring and, correspondingly,
the probability distribution of consequences are known; otherwise, the decision is
made under uncertainty.

The probabilities of the states of nature are rarely known, but it is often possible
to estimate these probabilities. If objective probabilities can not be determined, sub-
jective ones, based, for example, on expertise, may be used. This being the case, risk
management methods can be applied also to support decision making under uncer-
tainty. Therefore, the distinction between risk and uncertainty is not always clear. In
addition to the future states of nature, uncertainty may be related to other elements
of the decision making as well. These sources of uncertainty are dealt with in later
chapters.
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Different decision-makers can take different attitudes towards risk and uncer-
tainty, which may lead to different priority orders among choice alternatives. People
can search for good profits, although their probability is not great (risk-seeking per-
son), or settle with lower profits that have great probability if there is risk of large
losses (risk-averse person). Decision maker can also be risk-neutral.

Maximization of expected utility is a risk-neutral decision strategy for supporting
risky choices (e.g. von Winterfeldt and Edwards 1986). Assume a problem where
there are m possible consequences of a decision di, ci1, ci2, . . ., cim that have prob-
abilities of realization p1, p2, . . ., pm. Then, the expected utility from decision di

is

E(u(di)) = p1u(ci1)+ p2u(ci2)+ · · ·+ pmu(cim) =
m

∑
j=1

p ju(cij). (2.2)

For decision support under uncertainty, several different decision strategies or rules
have been developed (see, e.g. Miller and Starr 1969; Lee and Moore 1975; Cook
and Russell 1981). For example, according to Maximin- or Wald-criterion, alterna-
tives are ranked according to the worst possible consequences (risk avoiding behav-
iour), and the alternative with the best worst-case consequence is chosen. According
to Maximax-criterion, alternatives are ranked according to the best possible conse-
quences (risk taking behaviour), and the alternative with the best best-case conse-
quence is chosen. Hurwicz-criterion is a combination of these two categorical rules;
the alternative with the greatest weighted mean of the worst and the best possible
outcomes is chosen. Here, the weights for the worst and the best possible outcomes
reflect the attitude towards risk; e.g. for a risk neutral decision maker the weights
are equal.

A more general criterion, which produces the above mentioned criteria as spe-
cial cases, has been developed by Kangas (1992, 1994). In this approach, the
decision-maker determines the importance of three priority measures in decision-
making: (i) the worst possible outcome, (ii) the expected outcome, and (iii) the
best possible outcome associated with the decision alternative. The alternatives
can then be ranked based on the weighted average of these three outcomes. Then,
if the weight of the worst outcome, bw, is one, one speaks of the maximin-
criterion. Correspondingly, if the weight of the best outcome, bb, is 1, alternative
is chosen according to the maximax-criterion. If the weight of the expected out-
come, be, is 1 alternative is selected from a risk neutral decision maker’s point of
view.

If bb > be > bw the decision maker can be classified as a risk seeker. In general, if
bb is greater than bw, one can speak about risk seeking behaviour. Correspondingly,
if bb < be < bw, or, more generally, if bb < bw, the decision maker can be classified
as a risk avoider. The decision strategy can be changed flexibly by weighting the
coefficients using different weighting schemes. Sensitivity analysis can be made,
for example, of the meaning of the attitude towards risk in the choice of the forest
plan.
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2.2 Measuring Utility and Value

2.2.1 Estimating a Utility Function

All methods for estimating the utility (or value) functions are based on certain ax-
ioms. Eilon (1982) presented three basic axioms that are needed in estimation:

2.2.1.1 Connectivity

The decision maker is able to say from two alternative outcomes A and B, if he/she
prefers A to B, B to A or if he/she is indifferent between these outcomes.

2.2.1.2 Transitivity

If the decision maker prefers outcome A to B and outcome B to C, then he/she also
prefers outcome A to C.

2.2.1.3 Comparability

If the decision maker has three outcomes, A, B and C, and he/she prefers A to B and
B to C, he/she can choose a coefficient x such that utility of xA+(1− x)C = B.

The first of these axioms may be violated, if the decision maker cannot make
his/her mind. In practical work, it has often been noted that axioms 2 and 3 may
not hold (e.g. Eilon 1982; Knowles 1984; Bell and Farquhar 1986). Furthermore,
the last axiom only makes sense if the outcomes that are compared are quantitative,
such as money.

Estimating the utility function at unidimensional scale is typically based on indif-
ference methods (von Winterfeldt and Edwards 1986, p. 217). In practise it means,
that decision maker needs to match two outcomes or pairs of outcomes to meet in-
difference relation. In essence, it means estimating the utility function based on the
comparability axiom above.

As the utility is relative, the utility of two consequences can be arbitrarily as-
signed, and the rest of the utilities are assessed relative to these (Keeney and Raiffa
1976, p. 140). It is assumed that the most preferred consequence is defined as c∗

and the least preferred as c0. The utilities provided by these consequences can
be scaled to u(c∗) = 1 and u(c0) = 0, respectively. In the next stage, the conse-
quences ci are compared to lotteries, where the consequence is c∗ with probability
π and c0 with probability (1−π). Such lotteries are defined with (c∗, π, c0). The
decision-maker is required to state, which is the probability π with which he/she
is indifferent between the certain consequence ci and the lottery. Because of the
indifference, the utility u(ci) must be equal to the expected utility of the lottery.
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It follows that

u(ci) = πu(c∗)+(1−π)u(c0) = π1+(1−π)0 = π. (2.3)

When several such comparisons are made, the utility function can be fitted to the
expressed probabilities. This approach is called variable probability method (von
Winterfeldt and Edwards 1986).

The other possibility is to use a constant probability, say 0.5, and to change the
consequence ci to such amount that the utility it provides would be indifferent with
the lottery. This approach is called variable certainty equivalent method.

The well-known von Neumann–Morgestern utility function was already based
on such comparisons. In their approach, risk attitudes are dealt with implicitly;
form of the utility function describes the decision maker’s attitude towards risk
(von Neumann and Morgestern 1947). In many cases, the certainty equivalent
ci, which gives the same utility as the lottery, is actually larger or smaller than
the expected payoff of the lottery. For instance, the decision-maker may say that
80AC is the certainty equivalent for lottery (200, 0.5, 0). Then, the difference be-
tween the expected payoff and certainty equivalent, 100AC–80AC, is the risk-premium.
This is the amount a risk-avert decision maker is willing to “give up” in order to
avoid uncertain lottery. If the risk premium is negative, the decision maker is a
risk-seeker.

The utility function of risk-neutral person is according to this theory linear, and
that of risk-seeker convex. This result has, however, been criticized, since a con-
cave utility function can also be reasoned based on an assumption of decreasing
marginal utility (e.g. Sarin 1982; Sheng 1989; Kangas 1992). The estimation of
Neumann–Morgenstern type utility function is also considered to be too compli-
cated for practical decision-making processes (Leung 1978; Kirkwood and Sarin
1985; Butler and Loomes 1988). Therefore, risk is not accounted for in most real
applications.

Example 2.1. Certainty equivalent method
Assume a game with the best possible outcome being a gain of 10,000AC and

the worst outcome a loss of 10,000AC. The decision maker is asked what amount
of money obtained for certain is indifferent (i.e. giving the same utility) as game

Table 2.1 The obtained utility data

Income Utility

−10,000 0
−8,400 0.125
−6,400 0.25
−4,400 0.375
−2,000 0.5

400 0.625
3,200 0.75
6,000 0.875

10,000 1
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Fig. 2.1 Utility function

(10,000, 0.5, −10,000). If the DM answers −2,000, the risk premium is
(0 – −2,000)AC = 2,000AC, which means that the decision maker is risk – avoider.

The next question is, what certain outcome is indifferent to game (−10,000,
0.5, −2,000) and game (−2,000, 0.5, 10,000). If the answers were, for instance,
−6,400AC and 3,200AC, next games to be analyzed are (−10,000, 0.5, −6,400),
(−6,400, 0.5, −2,000), (−2,000, 0.5, 3,200) and (3,200, 0.5, 10,000). When the
answers to these games are obtained, and u(−10,000) = 0 and u(10,000) = 1, utility
of −2,000 is calculated with u(−2,000) = 0.5 · 0 + 0.5 · 1.0 = 0.5. The rest of the
utilities can be calculated in the same way. Finally, the utility function can be fitted
to the obtained data (Table 2.1) and the utility of income can be drawn (Fig. 2.1).
The function in example 2.1 is concave, which describes a risk-avoider according to
theory of von Neumann and Morgestern (1947).

2.2.2 Estimating a Value Function

Unidimensional value functions – or utility functions for no-risk situations – are
formed based on comparisons between alternatives, but without lotteries. There exist
several methods for estimating value function, of which only a few are presented in
this book.

One possibility is to utilize the natural scale with which the performance of alter-
natives is measured, for instance, money, and scale it to range 0–1 (Keeney 1981).
The most popular scaling approach is the maximum score based approach

vi = ci/max(c), (2.4)

That is, the criterion values ci are divided with the maximum value among alter-
natives. The best alternative is assumed to have value one. Rest of the alternatives
are relative to that and zero value is only given to an alternative also having zero
value in natural scale. Then, the values follow a ratio scale. Another possibility is to
scale the natural scale values with score range procedure

vi = (ci −min(c))/(max(c)−min(c)) (2.5)
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The best alternative is assumed to have a value one also in this case, and the worst
the value zero. In this case, if min(c) > 0, the alternatives do not follow a ratio scale,
but an interval scale. In ratio scale, it is meaningful to compare the ratios between
values, in interval scale only the differences. In interval scale, ratio comparisons
simply do not make sense: all the alternatives are infinitely better, when compared
to the worst alternative. Interval scale can be interpreted as local scale, the length of
which depends on the specific planning situation (e.g. Kainulainen et al. 2007). If
min(c) = 0, these cases are equal.

The scaled scores obtained with (2.4) and (2.5) are often interpreted as value
function. Such interpretation is quite common in practical decision support tools,
as it is not necessary to ask decision makers any questions to form this kind of
value function. Another interpretation is that the different variables and measure-
ment scales are just standardized to the same scale.

If the scaled values are interpreted as a value function, it means that the analy-
sis is based on an assumption of a linear value function. The value function may,
however, be assumed to follow a certain type of non-linear function. In such a case,
the decision-maker can choose the shape from a few predefined ones (e.g. expo-
nential function). Then, a function of that type is fitted to the values presented in
natural scale, but no more questions concerning the value function are asked from
the decision-maker.

A group of methods useful for estimating value function are the so-called direct
rating methods. In these methods, the decision maker is assumed to be able to rank
the alternatives from best to worst. The best alternative and/or the worst alternative
are given some arbitrary number of points, for instance 100 points for the best alter-
native and 0 for the worst alternative. Decision maker is then asked to give the rest
of the alternatives points, related to the best and worst alternatives (von Winterfeldt
and Edwards 1986, p. 229). These points are then scaled to 0–1 interval.

Example 2.2. Assume five alternatives, which all produce different amounts of
money. It is assumed that the natural scale is in linear relationship with the value
scale. The alternatives are scaled to value scale both utilising a ratio scale and an
interval scale. The alternatives and different versions of scaling are presented in
Table 2.2. In Fig. 2.2, the ratio scale value function is presented with diamonds and
the interval version with squares.

Example 2.3. The decision maker was first asked to rank the alternatives from best
(1) to worst (5). After that, decision maker was asked to give points between

Table 2.2 Scaling from original scale to utility scale

Alternative Money Ratio scale Interval scale
1 250 1 1
2 124 0.496 0.427
3 76 0.304 0.209
4 55 0.22 0.114
5 30 0.12 0
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Table 2.3 Points given to the alternatives

Alternative Money Order Points Value
1 250 1 100 1
2 124 2 60 0.6
3 76 3 35 0.35
4 55 4 20 0.2
5 30 5 0 0
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Fig. 2.2 Scaled utilities
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Fig. 2.3 Value function obtained from given points



20 2 Unidimensional Problems

Table 2.4 Indifferent changes

i xi xi+1 zi+1 Points

0 0 30 30 1
1 30 70 40 1
2 70 120 50 1
3 120 180 60 1
4 180 250 70 1

0 and 100 to the three middle alternatives of the example 2.2. The obtained data is
presented in Table 2.3 and the resulting value function is presented in Fig. 2.3.

Methods based on indifference are also used for estimating value functions, not
only utility functions. In the case of value functions, decision makers are not asked to
select a certain amount of money equal in utility to some lottery, but for selecting an
outcome or difference in outcome that is indifferent to another outcome or difference
in outcomes. One example of the indifference methods is the difference standard
sequence method. In this approach, first a zero level x0 is defined, i.e. the level
which is least preferred. Then, a small but meaningful improvement z1 from this
level x0 to a better level x1 = x0 + z1 is selected. Then, the decision maker is asked,
which improvement z2 from level x1 to level x2 = x1 + z2 is equally preferred to
the improvement z1 from level x0. After that, the decision-maker is asked which
improvement z3 from level x2 is equally preferred to the improvement z2 from level
x1 and so on. Thus, decision maker has to compare changes, the utility of which is
assumed to depend on the level achieved so far. Since all these improvements z1. . .zn

are equally preferred, they can all be given same amount of points, say 1. Then,
the points at each level can be calculated, so that v(x0) = 0, v(x1) = 1, v(xn) =
n, and the value function can be calculated by dividing the points at each level
by n.

If the change zi is smaller than the equally preferred change zi+1, the value
function is concave and shows marginally decreasing value (von Winterfeldt and
Edwards 1986, p. 233). Thus, a concave utility function can be due to decreasing
marginal value, not just the sign of risk-aversion.

Table 2.5 Resulting values

Money Points Value

0 0 0
30 1 0.20
70 2 0.40

120 3 0.60
180 4 0.80
250 5 1.00
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Fig. 2.4 Utility function resulting from indifferent changes

Example 2.4. The situation is the same as in the above examples. In this case the
zero level x0 is set to 0AC, and the first improvement step z1 is 30AC. Then the decision
maker evaluates that a change 0 → 30 is equally preferred to a change 30 → 70, and
a change 30→ 70 is equally preferred to change 70→ 120 and so on. All the equally
preferred changes are given in Table 2.4., the resulting values in Table 2.5., and the
obtained value function is presented in Fig. 2.4.
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