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Abstract To improve human-computer interaction (HCI), computers need to recognize 
and respond properly to their user’s emotional state. This is a fundamental 
application of affective computing, which relates to, arises from, or deliber-
ately influences emotion. As a first step to a system that recognizes emotions 
of individual users, this research focuses on how emotional experiences are 
expressed in six parameters (i.e., mean, absolute deviation, standard devia-
tion, variance, skewness, and kurtosis) of not baseline-corrected physiological 
measurements of the galvanic skin response (GSR) and of three electromyogra-
phy signals: frontalis (EMG1), corrugator supercilii (EMG2), and zygomaticus 
major (EMG3). The 24 participants were asked to watch film scenes of 120 
seconds, which they rated afterward. These ratings enabled us to distinguish 
four categories of emotions: negative, positive, mixed, and neutral. The skew-
ness and kurtosis of the GSR, the skewness of the EMG2, and four parameters 
of EMG3, discriminate between the four emotion categories. This, despite the 
coarse time windows that were used. Moreover, rapid processing of the signals 
proved to be possible. This enables tailored HCI facilitated by an emotional 
awareness of systems.

1 Introduction
Computers are experienced by their users as coldhearted; i.e., ‘marked by 

lack of sympathy, interest, or sensitivity’ (Merriam-Webster, 2007). However, 
‘during the past decade rapid advances in spoken language technology, natural 
language processing, dialog modeling, multi-modal interfaces, animated charac-
ter design, and mobile applications all have stimulated interest in a new class of 
 conversational  interfaces’ (Oviatt et al., 2004). The progress made in this broad 
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range of research and technology enables the rapid  computation and  modeling of 
empathy for human-computer interaction (HCI) purposes. The latter is of impor-
tance since conversation is, apart from being an information exchange, a social 
activity, which is inherently enforcing (Oviatt et al., 2004). Futurists envision 
embodied, social artificial systems that interact in a natural manner with us. Such 
systems need to sense its user’s emotional state.

Empathic artificial systems can, for example, prevent user frustration in 
HCI. Users feel frequently frustrated by various causes; e.g., error messages, 
timed out/dropped/refused connections, freezes, long download time, and 
missing/hard-to-find features (Ceaparu et al., 2004). Picard (1999) posed the 
prevention of user frustration as one of the main goals in HCI. When preven-
tion is not sufficient, online detection and reduction of frustration is needed. 
Psychophysiological signals are expected to be useful in the detection of 
frustration (Picard, 1997). According to Hone, Akhtar, and Saffu (2003), an 
(embodied) affective agent, using techniques of active listening and empathy, 
could reduce user frustration.

The current paper discusses the emotions people can experience and their 
expression in and detection through psychophysiological measures, in Section 2 
and Section 3. Next, in Section 4, affective wearables are introduced in which the 
proposed apparatus for the measurement of the psychophysiological signals can 
be embedded. In Section 5, we present an experiment into the appropriateness of 
various statistical measures derived from psychophysiological signals, followed 
by a reduction of the data in Section 6. The experimental results are described 
in Section 7. The paper ends with Section 8 in which the results are discussed, 
limitations are denoted, and future research is described.

2 Emotion
Despite the complexity of the concept of emotion, most researchers 

agree that emotions are acute affective states that exist in a relatively 
short period of time and are related to a particular event, object, or action 
(Ortony et al., 1988; Picard, 1997). In relation with physiology, emotions 
are predominantly described as points in a two-dimensional space of affec-
tive valence and arousal, in which valence represents overall pleasantness 
of emotional experiences ranging from negative to positive, while arousal 
represents the intensity level of emotion, ranging from calm to excited 
(Ball and Breese, 1999; Lang 1995). This allows us to tell the difference 
between four rough categories of emotions, when differentiated between both 
high and low valence and high and low arousal. Some researchers even differ-
entiate between nine categories by including a neutral section on both 
the valence and arousal axis. However, an, in principle, infinite amount 
of other arbitrary number of categories can be defined, where the valence 
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and arousal axes are not necessarily are divided with the same precision 
(Bosma and Andre, 2004).

The valence-arousal model, however, does not account for mixed emotions: 
positive and negative at the same moment. In order to be able to cope with mixed 
emotions, Larsen et al. (2003) and Konijn and Hoorn (2005) suggest that valence 
should be unipolar instead of bipolar. When valence is rated on two scales, one 
for the intensity of positive affect and one for the intensity of negative affect, 
mixed emotions, in the sense of both positive and negative emotions, will show. 
As an extension to the valence-arousal model, a unipolar valence axis, with sepa-
rated positive and negative axes, might allow for a better discrimination between 
different emotions.

In the current research, solely the valence axis was explored. The reason is 
that the simplest differentiation of emotions is a differentiation between positive 
and negative emotions. In most cases of HCI, this is sufficient to improve 
the  dialog between user and computer; e.g., when a user has a negative emotion, 
the computer can adapt its dialog to that, depending on the context.

3 Psychophysiological measures
The roots of psychophysiological aspects of emotions lay in Darwin’s book 

‘The expression of emotions in man and animals’, which he wrote in 1872. 
The overall assumption is that emotion arouses the autonomic nervous sys-
tem (ANS), which alters the physiological state. This is expressed in various 
physiological measures, often stimulated through the ANS; e.g., heart rate, 
blood pressure, respiration rate, galvanic skin response, and muscle activity 
(Scerbo et al., 2001). The main advantage of using autonomic physiological 
measures is that autonomic variables are regulated by the ANS, which con-
trols functions outside individual’s conscious control (Scerbo et al., 2001).

In this research, we focused on how emotional experiences, rated to their 
positive and negative affect, are expressed in four physiological signals:

● Galvanic Skin Response (GSR), also often termed electrodermal activ-
ity (EDA; Boucsein, 1992), which is a measure of the conductivity of 
the skin: arousal of the ANS influences sweat glands to produce more 
sweat; consequently, skin conductivity increases. GSR was chosen 
because it is an autonomic variable; hence, it can not be controlled by 
the user.

● Three electromyography (EMG) signals: frontalis, corrugator super-
cilii, and zygomaticus major. EMG measures muscle activity of a cer-
tain muscle. Facial EMG is related to affective valence; however, the 
type of relation depends strongly on the muscle that is measured. The 
corrugator supercilii, which causes a frown when activated, increases 
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linearly with a decrease in valence, while the zygomaticus major, which 
is responsible for smiling when activated, increases with an increase 
in valence (Lang et al., 1998). These measures were chosen because a 
great deal of emotional expression is located in the face (Larsen et al., 
2003), as can be measured using facial EMG.

These measures have extensively proven their use to detect emotional expe-
riences in laboratory settings, mostly in group-averaged, baseline-corrected 
paradigms. In order to make them useful for emotion-aware systems, three 
aspects will have to change:

● The measurements will have to be done in a less obtrusive manner,

● the interpretation of the signals will have to be meaningful on an indi-
vidual (not a group-averaged) level,

● and robust signal interpretation algorithms will have to be developed 
that are baseline-free or incorporate automatic (non-manual) baseline 
correction.

The first issue is dealt with in the next paragraph, where we discuss the 
advent of unobtrusive affective wearables. Our focus for the remainder of the 
paper is on the search for robust signal interpretation algorithms that do not 
need a manual baseline correction.

4 Affective wearables
Using the GSR and EMG signals, a system will be able to determine the 

emotional state of its user, certainly if that system also possesses a user-
 profile. Affective wearables will facilitate such a system in monitoring the 
user in an unobtrusive manner. Direct physiological measures are often con-
sidered to be obtrusive to the user, but this is not necessarily true. In the field 
of affective computing, some efforts have been made to design unobtrusive 
measurement technology: affective wearables. Picard (1997) defines an affec-
tive wearable as “a wearable system equipped with sensors and tools which 
enables recognition of its wearer’s affective patterns”. Affective wearables 
become smaller in time, due to improved design and smaller technology 
components. Especially when hidden in daily used tools and objects, affec-
tive wearables could make a huge difference in user acceptance of direct 
physiological measures.

The acceptance of direct physiological measurements is of great importance 
since indirect physiological measurements are much more subject to noise. Indi-
rect physiological measurements (e.g., through voice analysis; Van den Broek, 
2004) have been applied in controlled settings such as telepsychiatry (Hilty 
et al., 2004) and evaluation of therapy effectiveness (Van den Broek, 2004). 
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However, outside such controlled conditions these measures have not proved 
to be reliable.

Measurement of physiological signals have already been embedded into 
wearable tools; e.g., Picard and Scheirer (2001) designed the  ‘Galvactivator’, 
a glove that detects the skin conductivity and maps its values into a led display. In 
an overview of previous work of the Affective Computing Research Group 
at MIT, Picard (2000) describes several affective wearables. One affective 
wearable that is of interest in this research is the expression glasses. The 
expression glasses sense facial movements, which are recognized as affec-
tive patterns.

5 Experiment
5.1 Aim

The goal of the present experiment was to enable a search for robust (e.g. 
baseline-free) algorithms for use in future emotional awareness systems, which 
interpret positive or negative emotions from psychophysiological signals.

5.2 Subjects
24 Subjects (20 female) were invited from a volunteers database. They signed 

an informed consent form, and were awarded with a small incentive for their 
participation. They were aged between 27 and 59 years (average 43 years).

5.3 Materials
Sixteen film sequences were selected for their emotional content.  Several of 

these sequences were described by Gross and Levenson (1995) for their capa-
bility of eliciting one unique emotion among various viewers. They were edited 
with Dutch subtitles, as is normal on Dutch TV and in Dutch cinemas. Since 
not enough material of Gross and Levenson (1995) was available with Dutch 
subtitles in acceptable quality, the set was completed with a number of similar 
sequences. The resulting video fragments each lasted between 9 seconds and 
4 minutes1. If the fragment lasted less than 120 sec, a plain blue screen was 
added to make a total of 120 sec.

The video fragments were presented on a large 42′′ 16:9 flat panel screen 
mounted on the wall of the room. Print-outs for significant scenes of each 
of the film fragments were used to jog the subjects memory of each film 
 fragment after the viewing session.

1 From Gross and Levenson (1995): Silence of the lambs (198 sec), When Harry met Sally (149 sec), 
The champ (153 sec), Sea of love (9 sec), Cry freedom (142 sec), The shining (80 sec), Pink Flamingoes 
(30 sec). Additional: Jackass the movie - paper-cut scene (51 sec), Static TV color bars (120 sec), The bear 
- intro (120 sec), Sweet home Alabama – wedding scene (121 sec), Tarzan - orchestra scene (133 sec), 
Abstract shapes – screen saver (120 sec), Lion King – dad’s dead (117 sec); Nature documentary (120 sec), 
Final destination – side-walk café scene (52 sec).
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Figure 1. The points indicate the electrodes that were placed on the face of the participants 
to determine the EMG signals. The EMG signals of the frontalis, corrugator supercilii, and 
zygomaticus major were respectively measured through electrodes 1–2, 3–4, and 5–6.

The psychophysiological measurements were performed with a TMS 
International Porti5–16/ASD measurement system connected to a computer, 
in combination with TMS Portilab software. A ground electrode was attached 
to the right-hand lower chest area. Three EMG measurements were done: at 
the right-hand corrugator supercilii muscle, the left-hand zygomaticus major 
muscle, and the frontalis muscle above the left eye. At each site 2 electrodes 
were placed in the direction of the muscle (see Figure 1). These signals were 
first high pass filtered at 20 Hz and then the absolute difference of the two 
electrodes was average filtered with a time constant of 0.2 sec.

For the skin conductivity (GSR) measurements, two active electrodes were 
positioned on the distal phalanges of the index and ring finger of the right 
hand (see Figure 2). Skin conductivity was calculated from the measured sig-
nal with a time constant of about 2 sec, thus capturing GSR signal variations 
reliably in first order.

5.4 Procedure
At the beginning of the session, the subject was invited to take place in 

a comfortable chair and the electrodes were positioned: first at the fingers, 
then at the face. Then, the recording equipment was checked and aligned 
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when needed. A rest period of 5 minutes was taken into account. The subjects 
were presented with the 16 video fragments, each segment was presented 
only once.

A pseudo-random order of presentation was generated for the 16 video 
presentations. This order was designed to spread positive and negative scenes 
evenly over the session. It was presented to 12 subjects, each starting with a 
different scene in the list, but maintaining the same order. The reverse order 
was presented to the other 12 subjects, again each starting with a different 
scene while maintaining the same presentation order. In between two frag-
ments, a plain blue screen was presented for 120 seconds.

After the measuring session, the electrodes were detached and the subject was 
requested to fill out a short questionnaire. In this questionnaire, representative pic-
tures of the 16 video fragments were represented sequentially and the subject was 
requested to rate them according to two emotion-related axes: intensity of positive 
feelings and intensity of negative feelings, both on a 7-point Likert scale.

6 Data reduction
Average intensities for both positive and negative ratings were calculated 

for each of the film fragments, allowing for a classification of the fragments 
in 4 emotion categories: neutral, mixed, positive, negative. In each emotion 
category, the two fragments with a duration closest to 120 seconds were 
selected for further analysis (see Table 1).

The EMG data of 2 subjects appeared to be corrupt; therefore, these data-
sets were not analyzed. For the other subjects, the GSR signal and three EMG 
signals (of the frontalis, corrugator supercilii, and zygomaticus major) were 

Figure 2. The points indicate the electrodes that were placed on the hands of the partici-
pants to determine the GSR signal.
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processed in order to determine their discriminating ability on the four  emotion 
categories induced by the eight films. To determine the latter, six parameters 
(mean, absolute deviation, standard deviation, variance, skewness, and kurto-
sis) were derived from the four signals. Where the mean, standard deviation, 
and average deviation are well-known dimensional quantities (i.e., have the 
same units as the measured quantities xj), the skewness and kurtosis are con-
ventionally defined as non-dimensional quantities. Both skewness and kurtosis 
are less well known statistical measures and both are defined in several ways 
(Press et al., 1992; Weisstein, 2002). Therefore, we provide the definitions as 
adopted in the current research.

The skewness characterizes the degree of asymmetry of a distribution 
around its mean. It characterizes only the shape of the distribution. The usual 
definition is (Press et al., 1992; Weisstein, 2002):

Skewness x x
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where σ = σ(x1 … xN) is the distribution’s standard deviation. A positive value 
of skewness signifies a distribution with an asymmetric tail extending out 

Table 1. The sixteen film scenes with the average ratings with the accompanying standard devia-
tions (between brackets) given by the subjects (n = 24) on both experienced negative and  positive 
feelings. Based on the latter two dimensions, four emotion categories are founded: neutral, mixed, 
positive, and negative. The top eight film scenes were selected for further analysis.

Film scene Positive Negative Emotion category

Color bars 1.60 (1.43) 2.20 (2.04) neutral
Abstract figures 1.20 (0.70) 2.10 (1.94) neutral
The bear 5.15 (1.50) 1.65 (0.88) positive
Tarzan 5.10 (1.17) 1.50 (0.95) positive
Final destination 3.11 (1.70) 4.32 (1.63) mixed
Lion King 3.85 (2.21) 3.65 (1.93) mixed
Cry freedom 1.95 (1.54) 6.25 (1.07) negative
Pink flamingos 1.75 (1.20) 5.60 (1.54) negative
Silence of the lambs 2.30 (1.38) 3.85 (1.73) neutral
When Harry met Sally 4.60 (1.47) 1.80 (1.15) positive
The champ 2.65 (1.46) 4.35 (1.05) mixed
Jackass the movie 1.85 (1.57) 5.95 (1.47) negative
Sea of love 2.15 (1.31) 3.90 (1.74) neutral
Sweet home Alabama 4.35 (1.66) 1.70 (1.26) positive
The shining 2.65 (1.39) 3.55 (1.47) neutral
Nature documentary 4.50 (2.04) 1.45 (1.28) positive
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towards more positive x; a negative value signifies a distribution whose tail 
extends out towards more negative x.

Kurtosis measures the relative peakedness or flatness of a distribution relative 
to a normal distribution. We applied kurtosis as (Press et al., 1992; Weisstein, 
2002):

Kurtosis x x
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where the −3 term makes the value zero for a normal distribution.

7 Results
For each of the six statistical parameters, for each film fragment, and for 

each subject, the complete GSR and EMG signals were processed over the last 
120 seconds of the film fragment. The duration of 120 seconds was chosen 
because it was available for the majority of the scenes. Two film fragments 
were shorter than that, and for them we included measurements taken during 
the blue screen following it in order to add up to a section of 120 seconds as 
well (see also Section 5.3). Note that we deliberately did not correct these 
values for their baseline, because – however useful in academic research – the 
baseline-correction procedure is not easily applicable in future emotionally 
aware systems.

Due to corrupted recordings during a few films with two of the subjects, 
the measurements of these two subjects were not taken into account. Moreo-
ver, for the same reason, the recordings of one subject, during the film scene 
of the “Pink flamingos”, were skipped. For each parameter of each physi-
ological measure, a repeated measures ANOVA was conducted, with the four 
emotions, each measured with two film scenes, as within-subject factors. So, 
a total of 24 (4 * 6) repeated measures ANOVAs were conducted.

The EMG of the frontalis did not provide a significant discrimination 
between the four emotion categories on any of the statistical parameters. Of 
all physiological measures, the zygomaticus major signal is the most dis-
criminative physiological signal (see Table 2). The mean, absolute deviation, 
standard deviation and variance calculated over the zygomaticus major EMG 
signal showed strong significant effects of emotions. Significant effects did 
also show in the skewness and kurtosis of the GSR signal and the skewness 
of the corrugator supercilii EMG signal (Table 2). For the skewness of the 
zygomaticus EMG signal a trend is present (F(3,18) = 3.013, p = 0.057) over 
the four emotions.
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8 Discussion
8.1 Comparison with literature

Most 120 sec. averaged values of the physiological signals did not yield sig-
nificant effects of emotion category, in contrast to what is generally reported 
in literature. One of the reasons might be that we chose not to correct our data 
for baseline values, as is common in psychophysiological literature. Another 
factor is that the present analysis was chosen to extend over a relatively long 
period of time including the beginning of the video fragment in which the 
targeted emotions were still in the process of getting elicited, which might 
have diminished the differences between categories of emotions.

For the zygomaticus major, we did find an effect for the average value, 
even when not corrected for baseline and averaged over 120 sec. This is 
in line with results of previous research of Larsen, Norris, and Cacioppo 
(2003), who concluded that valence influences both the corrugator super-
cilii and the zygomaticus major. They found that valence had a stronger 
effect on the corrugator supercilii than on the zygomaticus major in expe-
riencing standardized affective pictures, sounds, and words, while our 
research shows a stronger effect of emotions on the mean zygomaticus 
major signal, than on the corrugator supercilii. In addition, the effect is 
present with four statistical parameters of the zygomaticus major, where 
it is only present in one statistical parameter (skewness) of the corrugator 

Table 2. The discriminating statistical parameters for the galvanic skin response (GSR), 
EMG corrugator supercilii, and EMG zygomaticus signals. For each parameter, the average 
value for all four emotion categories is provided as well as the strength and significance of its 
discriminating ability.

Physiological 
measure

Statistic 
parameter average value on effect (F(3,18) )

neu-
tral

posi-
tive mixed

nega-
tive strength

signifi-
cance

GSR skewness  0.46  0.01 −0.15  0.39 7.289 p = 0.002

kurtosis −0.66 −0.78  0.55 −0.19 3.812 p = 0.028

EMG corrugator 
supercilii

skewness  1.99  2.84  3.49  3.29 3.500 p = 0.037

EMG zygomaticus mean  2.74  5.21  3.15  3.53 9.711 p < 0.001

abs. dev.  1.64  3.77  2.10  2.42 8.369 p < 0.001

SD  2.46  6.01  3.68  3.96 5.837 p = 0.006

variance  7.23 63.82 18.69 23.21 4.064 p = 0.023
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supercilii. The difference in strength of the effects found between the 
 current research and that of Larsen, Norris, and Cacioppo (2003) can possibly 
be explained by the absence of a baseline  correction in our procedure. 
Another difference between the two researches is the type of stimuli. Film 
scenes are dynamic and multi-modal, they induce emotions by both audi-
tory and dynamic visual stimuli, as well as affective words, in some frag-
ments. The dynamic and multi-modal characteristics of the film scenes 
also provide good means to build up emotions, or to create a shock effect. 
This is not possible with affective words, sounds or  pictures of a static 
character. On the one hand, all these factors give film scenes a relatively 
high degree of ecological validity (Gross and Levenson, 1995). On the 
other hand, it can not be determined which modality influences the emo-
tional state of the subjects to the highest extent.

For three of the four physiological signals the parameter skewness turned 
out to be important as a significant effect or as a trend. The skewness (and 
kurtosis) of EMG signals have been topic of previous research, although its 
use as discriminating descriptors is limited to only a few studies. In 1983, 
Cacioppo, Marshall-Goodell and Dorfman (1983) analyzed among a number 
of parameters, the skewness and kurtosis of skeletal muscle patterns, recorded 
through EMGs. Four years later, a paper of Cacioppo and Dorfman (1987) 
was published that discusses “waveform moment analysis in psychophysi-
ological research” in general. In 1989, Hess et al. (1989) conducted research 
toward experiencing and showing happy feelings, also using video segments. 
Hess et al. (1989) recorded four facial EMG signals and extracted the mean, 
variance, skewness and kurtosis of these signals. The current research is dis-
tinct from that of Hess et al. (1989) since it distinguishes four emotion cat-
egories instead of the presence or absence of only one.

8.2 Use in products
Not all investigated parameters of all measures proved to be equally suited 

for sensing human’s emotional state. This is no doubt due to the demand-
ing analysis conditions we imposed: No baseline correction and averages 
over relatively long time intervals. Nevertheless, even under these demand-
ing analysis conditions, still some of the measures succeed in distinguishing 
between the respective emotion categories.

For three of the four physiological signals used, the parameter skewness 
proved to be an interesting source of information. The skewness of the distri-
butions of the data of two of the physiological signals differs significantly over 
the four emotions, where a trend is present for a third signal. The  skewness 
characterizes the degree of asymmetry of a distribution around its mean. To 
inspect more distribution details of the signals, additional analyses could be 
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conducted. Measures such as the slope of the signal and the peak density 
could be taken into account for further analysis.

In addition to adding more descriptors of the physiological signals, the 
time windows of measurement can be changed. In the current setup, the time 
window enclosed the complete length of the film scene. However, smaller 
time windows (e.g., 10 or 30 sec.) can be applied. Moreover, dynamic time 
windows can be applied that enclose the time directly after a critical event (if 
any) appeared in the film scene. The drawback of the latter approach is that it 
can not be applied in practice, while it can be expected to prove good results 
for data gathered through experimentation, as in the current research.

A more general notion that can have a significant impact on measurement 
of emotions is that the emotional state of people changes over time, due to 
various circumstances. Moreover, different persons have different emotional 
experiences during the same events, objects, or actions. The latter is deter-
mined by a person’s personality. Personality traits correlate with affective 
states, especially with the personality traits extraversion and neuroticism, 
which have been linked both theoretically and empirically to the fundamental 
affective states of positive and negative affect, respectively (Matzler et al., 
2005). Hence, to enable tailored communication strategies in HCI, not only 
the emotional state of a person should be determined but also his personality. 
When the system  possesses a personality profile of its user, it will be able to 
react appropriately to its user’s emotions by selecting a suitable communica-
tion strategy.

We conclude that the set of psychophysiological measures as introduced 
suits the vision of ‘ambient emotion-aware intelligence’, which is character-
ized as embedded, aware, natural, personalized, adaptive, and anticipatory. 
With the robust algorithms presented, the measurement of the psychophysi-
ological signals can be embedded in wearables, can facilitate awareness for 
systems connected to it, can aim to mimic human empathy (i.e., is natural), 
can be connected to a user-profile, and can facilitate in utilizing knowledge to 
anticipate on people’s mood and adapt its communication strategy.
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