
Beyond Engineering

Software Design as Bridge
over the Culture/Technology Dichotomy

Bernhard Rieder and Mirko Tobias Schäfer

Abstract In this chapter, we first consider the growing cultural significance of
software as a motive for having a closer look at software production. We then show
how networked computing has stimulated new practices of technical creation that
question the traditional logic of engineering; open source software development
serves as an example. Consequently, it is no longer feasible to separate the techno-
logical dimension from its cultural context. An integrated perspective could lead
both humanities scholars and technologists to revaluate established dichotomies
and refocus the debate on technological policies.

1 Introduction

In his book “Le Geste et la Parole”, the paleontologist André Leroi-Gourhan
sketched the evolution of Homo sapiens as leaving the domain of biological
advancement to continue, with an accelerated pace, in the field of language and
technology. While many of Leroi-Gourhan’s proposals have not aged well, his
concept of humanity being shaped by a man-made web of objects and symbols –
of machinery and discourse one might say – has been a powerful image in a time
when the idea of the tool as neutral artifact is still an important paradigm. In the
last decade there has been a resurgence of academic interest in technology, not
purely as a means to an end but as a cultural force. Together with this shift in
perspective on the role of technical artifacts in our high-tech collectives, we see,
more specifically, an increased awareness of the “toolmaker” as the assumed
locus of technical progress. Every age seems to have an epitomical figure of
technical creation: the craftsman for the Middle Ages, the inventor in the
Industrial Revolution, and the engineer in the 20th century. Late capitalism has
introduced a new figure for the beginning of the 21st century: the designer as the
toolmaker of the information age.

B. Rieder, Paris 8 University

M. T. Schäfer, Utrecht University

P. E. Vermaas et al. (eds.), Philosophy and Design. 159
© Springer 2008

160 B. Rieder and M. T. Schäfer

The last two decades have produced a plethora of literature on the new mode of
creating technical objects: from product design to Web design, from industrial
design to experience design, design is everywhere but no two definitions are the
same. As a consequence, the term refers less to a clear-cut concept or methodology;
rather it functions as a means of differentiation. Software design1 for example is not
a well-defined practice: it is a way of saying that what is being done is somehow
going beyond the well-defined practice of software engineering. Behind the term
“design” actually lurks a multiplicity of quite different ways of creating, shaping,
and maybe even using.

2 Hybrid Practices

In industrial societies there remain few tasks that are not in one way or another
dependent on computers. Our communication and information routines have shifted
in a large part to a computer-based network infrastructure of globally connected
computers, the metamedia (Kay and Goldberg, 1977) of our time. Classic electronic
media like television and telephony are currently passing onto the universal
 protocol of TCP/IP,2 becoming yet another piece of software that runs on the
Internet. Creative work, game play, social intercourse, information search and
management, so many of the things we do in our everyday lives have become
directly connected to digital tools and networks (Castells, 2000). We are steering
towards a unified digital environment in which computer hardware and software
define possibilities for action and conditions of expression.

Interest in technology within the humanities has historically been limited. When
considered, technical artifacts have been assimilated into the industrial complex
and treated as producers of capital rather than of meaning. But the dense entangle-
ment between human and non-human we witness today increasingly calls for
 perspectives that zoom in at the micro-level and theorize not only the general
aspects of how “society and culture” relate to “technology,” but first and foremost
the increasingly hybrid everyday practices that are the content of human affairs.

In reference to de Certeau (1980), we can describe these practices as ways of
doing that embed actions in a dense network of meaning, provide a rationale for
why something is done, and sketch a proper way of doing it. There is a non-
 discursive dimension to such an art de faire, e.g., motor movement, objects, and
spatial settings, and a strong discursive element, e.g., morals, laws, rules, and
 narratives. These two aspects are woven together by continuous action. Collins and
Kusch (1998) have detailed how the atomic particles of practices, actions, can
themselves be theorized as series or trees of micro-acts, coalescing motor movement

1 The term was first coined in Kapor (1986).
2 Transmission Control Protocol / Internet Protocol are the communication protocols that unite all
the different networks that make up the Internet.

Beyond Engineering 161

and meaning. And Actor-Network-Theory has shown (Latour, 1999) that actions
are not properties of individual agents, but of chains linking human and non-human
“actants”, combining each ones “program of action” to form hybrid actors. If
we understand practice as an embedding of action in time and habit, in these views,
the discursive dimension of an art de faire cannot be severed from its non-discursive,
mechanic counterpart.

When applying this view, we see that in general, and with ICT in accelerated and
enlarged form, machines are responsible for always larger parts of the action trees
or action chains, rendering actions intrinsically hybrid. As a consequence, our
 practices have become riddled with the work of machines, in many cases without
us even noticing. Software – the prime interest of this chapter – now goes even
deeper than “classic” technology because many of the tasks being delegated to
 logical machinery are semantic in nature. Among other things, algorithms now
 filter, structure, interpret, and visualize information in an automatic fashion,
 performing tasks previously reserved for humans.

From a practical standpoint, we can understand this process of hybridization
along two axes: new actions and practices are becoming possible, e.g., drawing on
a virtual canvas, video communication across oceans, and real-time data-mining,
and existing actions and practices are done in new ways, e.g., different in form,
style, speed, efficiency, difficulty, and range.

In this sense, software is responsible for extending, both quantitatively and
qualitatively, the role that technology plays in the everyday practices that make up
modern life. Culture and technology are intertwined at the micro-level, to the extent
that even the analytical separation of the two becomes highly problematic (Latour,
1999). Is separation between a discursive and a non-discursive level still possible
when computer programs analyze email, news bulletins, and scientific publications
to decide which ones to bring to our attention and which ones silently to discard?
When the visibility of an opinion becomes a question of algorithms,3 meaning is
deeply embedded in the non-discursive: in the software itself. Technology is not
only surrounded by discourse, it is discourse. Although we do not share Heidegger’s
hostile stance toward technology, his understanding of the tool as an ontological
agent, as a way of “Entbergen” (revealing), is still worth considering. In “Gestell”
(enframing), the discursive and the non-discursive conflate; it is both object and
logic – a diagram, in the terms of Foucault, but with the difference in nature
between the two planes largely gone. The lesson we take from this is diametrically
opposed to Heidegger’s position: involvement instead of withdrawal.

We would like to argue that technology affords not one but multiple ways of
revealing being, and that the way we create technical artifacts – and software most
importantly – heavily influences the cultural role they will play. Tools are not
 neutral; they integrate and propagate human values (Friedman, 1997). But these

3 The Slashdot communication platform (http://www.slashdot.org) for example uses an elaborate
discussion system that includes a technological measure of symbolic capital and modulates the
visibility of individual messages accordingly.

162 B. Rieder and M. T. Schäfer

values are not necessarily those of technocratic reasoning as Heidegger would have
it, the whole gamut of human apprehension is possible. Software brings technology
closer to us than ever before and it is time to look at the practices that spawn what
has become an important part of the constitutional fabric of our cultures.

3 Software, Design and Open Source

Since the advent of modern computing in the late forties and especially the market-
ing of the consumer PC in the eighties, computers have come to be ubiquitous. But
while the terms “computer” and “technology” have almost become synonymous
and the basic technical principles have remained the same for the last sixty years,
there remains an aura of vagueness around these machines. Herein actually lays
their power. Computers themselves are functionally underdetermined; they need
software to turn them into complete devices with distinct functions. While the
 hardware, the Universal Machine, coupled with peripherals like input/output
devices, networks, etc., is the necessary mechanical base layer, the “specific”
machine – a series of functions and procedures that manipulate information and,
with proper connection, matter and energy – is the result of programming. Alan
Turing stated that,

The importance of the universal machine is clear. We do not need to have an infinity of
 different machines in doing different jobs. A single one will suffice. The engineering
 problem of producing various machines for various jobs is replaced by the office work of
‘programming’ the universal machine to do these jobs. (1984, 4)

These words mark the technical novelty and yet another reason for the cultural sig-
nificance of IT: somebody who buys a computer today gets not only the physical
apparatus, but also gains access to a seemingly infinite world of logical machinery.
These software programs spring from a burgeoning environment where work styles
nowadays go well beyond the classical methods of engineering or even beyond the
“office work” mentioned by Turing. Before we can get a closer look at these prac-
tices, we must first review some of the qualities of software.

3.1 Properties of Software

While there has been a continuous reflection of what software actually is, this
 problem is still far from being completely understood. Despite the stability of the
mathematical foundations of software since Turing, Church, and Shannon, the final
jury on what we can really do with it is still out. As society changes, software
changes and every day there are new applications that surface around the globe. It is
possible, however, to specify some of the basic properties of logical machinery.

Unlike other technological objects, software is immaterial. It is similar to language
with respect to structure and similar to technology with respect to effect. Written as

Beyond Engineering 163

a text, it functions like a machine. Latour (1992) pointedly observes, paraphrasing
Austin, that “how to do things with words and then turn words into things is now clear
to any programmer.” The classical distinction made in engineering between design-
ing, i.e., drawing the blueprints, and building, i.e., assembling the physical structure,
does therefore not translate well into software programming. According to Jack W.
Reeves (1992) writing the source code can be compared to designing but building is
nothing but the automatic translation of source code into machine language by a
compiler program. In contrast to classic (hardware) engineering, software is thus
expensive to design – it takes a lot of time to write a functional piece of software– but
cheap to build. From an economic perspective, we can even speak of an apparatus of
production unlike other areas of technology, specific to the creation of software:
except for the price of a computer, producing software is basically free, time becom-
ing the essential cost factor. In this sense, software is again closer to literature or
music than to industrial production – the workstation is the factory floor. This greatly
facilitates people shifting from consumers to producers.

Like knowledge and information, software can be shared without tangible loss
for the giver. The Internet transports and copies computer code as simply as text,
sound, or images; algorithms, program libraries, and modules pile up at different
sites, contributing to what could be seen as the equivalent of a fully equipped
 workshop with an unlimited spare parts inventory attached to it, accessible again at
the cost only of time and skill. A general-purpose programming language like Java
nowadays comes with thousands of ready-made building blocks and writing code
is often closer to playing Lego than to the laborious task of manipulating memory
registers it used to be.

Unlike the products of industry, a computer program is always tentative, never
really finished or “closed”. Classic machinery also has to be tended, calibrated, and
repaired, but with software the provisional aspect is pushed to the extreme. One
mouse click and an entire subsystem can be copied to another program and the out-
put of one piece of software can instantly become the input of another. We do not
want to encourage in any way the view that holds that everything digital is fluid,
chaotic, and auto-organized, but there remains the fact that this freedom from most
physical constraints renders software easier to manipulate and handle than hard-
ware objects. The only constraining factors are time and skill. This relative freedom
is one reason for the production of software in practice being so unlike engineering
by the book.

3.2 Software Design as Heterogeneous Practice

According to IEEE Standard 610.12, software engineering is “the application of a
systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software.”4 The attempt to translate the strategies and methods of

4 See: http://standards.ieee.org/catalog/olis/se.html

164 B. Rieder and M. T. Schäfer

classic engineering into the area of software has never been entirely successful and
has been criticized from several directions. We cannot possibly summarize all the
different views expressed in this complex and long-standing debate, but there are
several main critical positions that can be distinguished.

One argument holds simply that programming is based less on method than on
skill, that it is craftsmanship rather than engineering, and that “in spite of the rise
of Microsoft and other giant producers, software remains in a large part a craft
industry” (Dyson, 1998). The main question for design, then, is not how to find the
proper methods but how to acquire the appropriate skills.

Another argument is that software engineering has its place but that specific
methods and strategies cannot be directly imported from traditional engineering,
because building software is very different from building bridges and houses
(Reeves, 1992). Debugging for example should not be treated as a hassle to be
eliminated by using mathematical rigor, but as an essential part of creating computer
programs.

Finally there are those who believe that software engineers should be supple-
mented by other professions, in particular by software designers who take inspiration
from architects rather than engineers because buildings and software “stand with a
foot in two worlds – the world of technology and the world of people and human
purposes” (Kapor, 1996). In this view, building a computer program is not so much
about technical problems, but about how to bring users and tools together in a
meaningful way.

Independent of these different views the empiric observation remains that the
practice of creating software rarely resembles the top-down engineering models
like the lifecycle- or the waterfall-model where the process of going from neat
requirements to a working program is thought of as an advancing in clear cut
stages. The “real world” of software development is most often described as
“messy, ad hoc, atheoretical” (Coyne, 1995), as consisting of “bricolage, heuristics,
serendipity, and make-do” (Ciborra, 2004), or as the result of “methodological and
theoretical anarchism” (Monarch et al., 1997). While this does not automatically
make software production “art”, as Paul Graham (2003) suggests, we have to accept
that the engineering ideal is just that: an ideal. Software production in practice
 commonly takes paths that go in different ways beyond engineering. Two important
factors have to be taken into account: changing problems and increasing
complexity.

First, the problems software is expected to be used to solve are becoming more
“cultural” and less “technical.” If computers were still doing what they did in the
1960s, namely number crunching and data storage, there would probably be no
discussion about software engineering or design. With computers now performing
semantic and social functions this has changed. Methods like participatory design
or end-user development are now used to try to integrate the fuzziness of specifica-
tions for software by integrating future users into the construction process.

Second, the complexity of software is increasing rapidly and this makes it
always more difficult to plan a program in every detail before starting to write code.
It is often impossible to foresee problems early on and plans and models have to be

Beyond Engineering 165

changed, tests have to be made, and specifications have to be modified during the
construction process. Agile methods like extreme programming and rapid-
 prototyping strive to make complexity more manageable and transform the top-down
waterfall into a long series of iterations.

The properties of software, the distribution of these properties into space by
means of the Internet, and the changing technological landscape are slowly eroding
the modern ideal of a neat separation between technology and culture, between
detached rationality and human motivations. This argument is endorsed by a closer
look at the diverse landscape of software production. As an example, we will
briefly analyze the open source scene to show how a whole new array of actors,
strategies, and practices can emerge in a situation where material cost is no longer
a limiting factor.

3.3 The Open Source Scene

On one level, the term “open source” refers to a certain way of handling and sharing
computer software.5 It implies that programs are not just available in machine code,
but also in source code, i.e., in text files written in a programming language acces-
sible to human beings. To qualify as open source, it is essential that the public is
allowed to modify and redistribute the product. On another level, the term refers to
communities6 built around this notion of openness and sharing that is responsible
for a considerable amount of today’s software production. There is now an open
source equivalent for nearly every type of program

The open source scene is rather diverse, but it is possible to sketch a rough ideal
type for how it functions. Most importantly, it is impossible to imagine open source
without the existence of the Internet. Platforms like sourceforge.net, along with
mailing lists and newsgroups, are the tools used to organize and coordinate a
 globally dispersed and mostly voluntary workforce. A project usually starts with an
embryonic program written by an individual or a group which is released under an
open source license, to people who are invited to participate in its development. If
it can stimulate enough interest, a lively process is set in motion: following the
“release early, release often” maxim, versions of the program are regularly
 published on the Web where anybody interested can add code, report bugs, and fix
them. Which features and fixes are integrated is usually decided by a moderator
(group or individual), supplemented by a community process very similar to
 scientific peer-review. The very linear structure of classic engineering is thus trans-
lated into a rapid succession of coding/building/debugging, where requirements
specification, interface design, and user testing are carried out concurrently and

5 We are referring here to the open source definition given by the Open Source Initiative (http://
www.opensource.org/docs/definition.php).
6 The open source scene is far from homogenous and there is some infighting between the very
political Free Software Movement and the rather pragmatic Open Source Movement.

166 B. Rieder and M. T. Schäfer

subject to constant change. Collaboration is the main “tool” to tackle complexity.
The Internet-based development platforms provide the infrastructure for a project’s
representation, for communication between its participants and for the coordination
of bug tracking and code maintenance; they are the media that render possible what
could be called a “virtual factory” where a diverse and dispersed public channels
its collective intelligence.

The open source scene also distinguishes itself from traditional engineering in
social norms and general mindset. Mathematical rigor is valued less than an open and
involved communication style. Similar to other (youth) subcultures, the demonstration
of skill (and not diplomas) is the main source of symbolic capital. Inclusiveness,
discussion, collaboration, and the open circulation of information is more important
than the clear-cut attribution of tasks, positions, and responsibilities.

On an institutional level, the open source scene has become an important
 element in the socialization and education of programmers. The lively and helpful
online communities allow one to get help and learn from individuals who have
achieved status based on their contribution to the field. The accessible code
 landscape and participatory culture of the open source scene make for a powerful
learning environment for individuals of all levels of skill. While engineering is
 traditionally connected to the somewhat authoritarian institutions of school and
university, the open source community supplements these forms by offering a
learning-by-doing environment based on playful imitation and autodidactic skill
acquisition.

To show that open source products are an important part of the software land-
scape, we will briefly discuss three examples: the Linux operating system, the
Apache Web server, and the Internet browser Firefox.

Linux started out in 1991 when a Finnish student, Linus Torvalds, wrote a very
basic kernel program, the core of any operating system, as a hobby project and
released it on the Web, inviting others to participate. Since then, Linux has
 developed into a modern, robust, and complete operating system and is now
 probably the only serious competitor for Microsoft Windows left. It is available for
free and constantly maintained and extended by a community of thousands of
 programmers around the globe. Most Fortune 500 companies now use Linux, as do
the metropolitan administrations of Vienna, Munich, and Paris. One reason for this
success is cost, but other factors come into play, including reliability, platform
independence, and the possibility to fix bugs directly without having to go through
a vendor company.

The Apache project was initiated in 1995 and has since then steadily grown to
become the dominant Web server application with a market share of over 52%.7
Open source and available for free, it is developed and maintained under the guid-
ance of the Apache Software Foundation, a non-profit company that helps to
 organize the development process, assures legal support for the community, and
protects the brand. Linux and Apache, coupled with the free database system

7 Netcraft ServerWatch July 2007, http://www.serverwatch.com/stats/article.php/3686926

Beyond Engineering 167

MySQL and an open source programming language, PHP, form the most common
platform (called LAMP) for dynamic Web applications.

The Firefox Web browser grew out of code released to the community in 1998
by the ailing company Netscape. After several rather unsuccessful products, the
Mozilla Foundation released Firefox at the end of 2004 as version 1.0. Carried by
strong critique of Microsoft’s Internet Explorer for its various security leaks, the
open source browser captured considerable market share8 in 2005. It is also a good
example for how the open source community allows for the participation of non
programmers. Using Bugzilla, a tool for tracking bugs, anybody can report errors
and ask for features in future releases. Skilled users may extend the browser
through plug-ins without having to get to know the code of the main application.
Firefox is finally not just a piece of software, it is also a community providing
logos, T-shirts, images, and wallpapers as well as an entire viral marketing
campaign.

The open source scene shows that methods and strategies in technical produc-
tion cannot be divorced from the social, economic, and cultural environment they
are stimulating and being stimulated by. The culture of engineering is but one of
many possibilities in a field that has opened up to manifold models for production.
Computers have made technical creativity accessible to a larger and more diverse
audience than any previous technologies have. From writing code to designing levels
for computer games, there is a wide scale of possible involvement for every level
of skill. While the new modes of creation are in many ways similar to earlier
forms of amateur culture they are different in a very important aspect: the three
programs we discussed are not just niche products but highly competitive arti-
facts of great quality that hold strong market positions. This signals an extended
culture industry, where the production of cultural artifacts opens up to the for-
merly excluded: the consumers.9 There are of course many commercial actors
playing a role in the open source scene – IBM, Novell, Intel, and others take an
active part in financing and developing. However, the intertwined networks of
production that span companies and individuals go beyond the mono-directional
processes Adorno and Horkheimer (1944) have criticized so severely. The idea
has been contagious and phenomena like Wikipedia, blogging, or the countless
music labels on the Web take the open source principle to a larger context of cul-
tural production. Computers and the Internet can be seen as enabling technologies
that give users the opportunity to extend the culture industry and to participate in
the production of cultural artifacts, stimulating the social dynamic we are
 witnessing today (Jenkins, 2002)-recently branded around the term “Web 2.0”.

While engineering is often seen as a neutral, detached, and “objective” way of
problem-solving, the collaborative and auto-organized design process that marks

8 In Europe Firefox is ranging up to 34% in Finland and 24% in Germany; see XiTi Browser
Survey, September 2005, online: http://www.xitimonitor.com/etudes/equipement11.asp
9 According to Walter Benjamin (2002), facilitating the transformation from consumers to producers
is every artist’s political obligation.

168 B. Rieder and M. T. Schäfer

the open source scene does not strive to separate the social and cultural aspects of
technological creation from the task of designing and writing code.

These developments are not necessarily aimed at replacing the traditional, and
more organized institutions of work, education, and research; what we witness
today is a trend toward plurality and cross-fertilization. With reference to Eric
Raymond (1998), we could say that the bazaar does not supplant the cathedral but
blossoms in the city streets around it, slowly infiltrating the sacred halls; and the
development of “alternative” methods and strategies for the production of software
is by no means limited to the open source community: because of the increasing
complexity and “culturalization” of computing problems mentioned above, most
fields are constantly forced to go beyond established methodology. Taken together,
we see software design as a shifting field that unites a plurality of heterogeneous
methods, mindsets, and actors.

4 Bridging the Culture/Technology Divide

So far, we have made two separate arguments: first, we have tried to show that
software plays an increasingly important role in our everyday lives, accentuating
culture as a hybrid of technology and discourse. Second, we have discussed how
software production flourishes outside of the classical institutions and methodology
of engineering. In the third part of this chapter, we want to briefly discuss these two
arguments in relation to their impact in three different areas: the humanities,
 technology, and policymaking.

4.1 The Humanities Discourse

Traditionally philosophy and cultural theory have subscribed to a view of technology
as something external to, or at least different from, society and culture. In this per-
spective, the practice of creating a technical artifact is very dissimilar in nature from
processes of symbolization, e.g., the writing of law or literature. The first is suppos-
edly oriented toward the material domination of our “lifeworld” (Lebenswelt)
through efficiency, while the second is concerned with the social (law) or cultural
(literature) dimension of human existence. This separation has the convenient effect
of exempting those thinking about technology to have any need for technical knowl-
edge because “techno-science” always produces only more of the same, the true
challenge lying in the discovery of the essential dynamics between the strata, an
endeavor reserved to the masters of symbolization. However, there is a very danger-
ous side to this outlook: subtracting the dimension of meaning from technology
implies the subtraction of responsibility. If the creation of technology is not under-
stood to be a deeply cultural, social, symbolic, and political activity, there is no rea-
son for the creators to adopt any ethical and political stance toward their work

Beyond Engineering 169

beyond the question of physical harm to others. We believe that in a time when the
use of logical machinery is a part of so many of the practices that make up our lives,
we need concepts that take into account not only the “effects” of technology on cul-
ture, but which recognize that technology is a form of culture: embodying not just
the homogenous logic of “Gestell,” but being continuously differentiated into a plu-
rality of forms, practices, values, and power struggles.

There is a growing amount of empirical work on large software projects to which
social scientists have contributed. However, looking at the field of software design we
should ask whether our concepts of technology are adequate for grasping the
 multiplicity of possible connections between methodologies, the artifacts they pro-
duce, and the consequences for society. The humanities could take up the task of
broadening our still very restrained technological imagination and lead the way
towards modes of production that facilitate finding other liaisons between the human
and non-human than those marked only by domination, efficiency, and convenience.

4.2 The Technologist Discourse

If we recognize software design as a pluralistic and fractured practice which takes a
part in shaping the fabric of the world in which we live, we have to rethink our stance
not only as theorists, but also as creators of technology. Terry Winograd and Fernando
Flores wrote nearly twenty years ago that “we encounter the deep question of design
when we recognize that in designing tools we are designing ways of being” (Winograd
and Flores, 1986). A dialogue between the different groups implicated in designing
software is necessary to foster awareness of the cultural dimension of their work.
A start has already been made: a part of the open source community has adopted an
explicit stance on the political issues surrounding their technical efforts and the soft-
ware design community is making a strong effort to link up with the humanities.

The field that is lagging severely behind is education. There is still very little
 discourse between technical departments and the humanities, and current curricula
are neither fit for producing the “culturally-aware technologist” nor the “technically-
aware theorist”. Herein lies the true challenge of bridging the dichotomy between
culture and technology: bringing the more inclusive understanding of technology
that is currently emerging to places where it can have an effect.

4.3 Policies

The third area of our discussion is policy, and luckily there is already a very lively
debate going on in this area, especially around the questions of software patents and
open source. The discussion however is strongly centered on economic and juridical
questions, treating the cultural aspects as mere collaterals. It is rarely recognized
that the creators of technology, operating outside of the classic pathways of established

170 B. Rieder and M. T. Schäfer

industry, are a crucial part of civil society in that they actively produce means for
expression and action. Only when we understand writing software as one possible
way of participating as a citizen can the political issues be properly addressed. The
state, as the arbiter in the ongoing battle around software patents, will have to
decide whether the amorphous coder communities sprawling on the Web, that put
their work at the disposition of the public domain, are of special value to society
and therefore worth protecting against the overwhelming financial capacities of the
established commercial actors. The new design practices that we have tried to
present and theorize in this chapter are by no means inevitable; although the
Universal Machine is a strong base for the social and cultural activities surrounding
them, the free flourishing of technical creativity is a fragile thing that can easily be
reduced to the point of mere hobbyist dabbling, as it was the case with many other
technologies. There is (still) democratic potential in the new metamedia and we will
have to decide whether we want to nurture it or not.

5 Conclusion

We have entitled this chapter “beyond engineering”, because the term “engineer-
ing” has come to stand for the technocratic separation between a sphere of
 technology and a sphere of culture, society, and politics; for a mindset that treats
the creation of technical artifacts as a detached and orderly process, closer to
 calculation than to creativity. The modern ideal of engineering as a politically and
culturally neutral process – unspoiled by human motivations and uncontaminated
by morals and emotions – appears today to be rather anachronistic. A closer look
at software design shows that there are multiple methods, strategies, and mindsets
guiding the creation of programs, systems, and applications. Our short analysis of
the open source scene is evidence that extensions to classic methodologies,
 alternative routes, collaborative approaches, and auto-organized forms of workflow
are both possible and effective.

We believe that the fluctuations in how technical artifacts are created are not just
minor adjustments but necessary adaptations to the changing place of technology
in our societies. As technology infiltrates the practices that make up our everyday
lives, culture stabs back by invading the terrain of production, bringing all its
 contingencies, contradictions, and complexities along. Their separation was never
clear anyhow, but the level of interpenetration has reached new heights today. The
immaterial qualities of software, distributed into space using the global infrastruc-
ture of the Internet, affect an increasing number of people, users as well as designers.
We have called the resulting space of production, distribution, and consumption an
extended culture industry where the boundaries between consumers and producers
are blurring and social and technical forces are closely intertwining.

While there is some understanding of how to channel social forces in a democratic
fashion, it is still unclear how we can achieve the same for the technical part of the
hybrid. It now seems evident that in high-tech societies the creation of tools and

Beyond Engineering 171

objects plays an important role in shaping cultural practice, expression, and imagina-
tion; it is a highly cultural gesture. Looking at the similarities between language and
software can help us to understand the nature of our currently complicated techno-
social situation; it can also make us see that freedom of technical creation is a form of
freedom of speech. It is the duty of the humanities to seek out what that could mean.

References

Adorno, T., and Horkheimer, M., 1988, Dialektik der Aufklärung, Fischer, Frankfurt a. M., first
published in 1944.

Benjamin, W., 2002, Der Autor als Produzent, in: W. Benjamin, Medienästhetische Schriften,
Suhrkamp, Frankfurt a. M., pp. 231–247, first published in 1934.

Castells, M., 2000, The Information Age: Economy, Society and Culture, Blackwell, Malden, MA,
3 volumes, first published in 1996.

Certeau, M. de, 1994, L’invention du quotidien, Gallimard, Paris, first published in 1980.
Ciborra, C., 2004, Encountering information systems as a phenomenon, in: The Social Study of

Information and Communication Technology: Innovation, Actors, and Contexts, C. Avgerou,
C. Ciborra, and F. Land, Oxford University Press, Oxford, pp. 17–37, p. 19.

Collins, H., and Kusch, M., 1998, The Shape of Actions: What Humans and Machines Can Do,
MIT Press, Cambridge, MA.

Coyne, R., 1995, Designing Information Technology in the Postmodern Age: From Method to
Metaphor, MIT Press, Cambridge, MA, p. 32.

Dyson, F. J., 1998, Science as a craft industry, Science 280(5366):1014–1015.
Friedman, B., ed., 1997, Human Values and the Design of Computer Technology, Cambridge

University Press, Cambridge.
Graham, P., 2003, Hackers and Painters, Lecture at Harvard, http://www.paulgraham.com/hp.html
Jenkins, H., 2002, Interactive audiences?, in: The New Media Book, D. Harries, ed., British Film

Institute, London, pp. 157–170.
Kay, A., and Goldberg, A., 2003, Personal dynamic media, in: The New Media Reader, F. Wardrip

and N. Montford, eds., MIT Press, Cambridge, MA, pp. 393–404, first published in 1977.
Kapor, M., 1996, A software design manifesto, in Bringing Design to Software, T. Winograd, ed.,

Addison-Wesely, Boston, pp. 1–10, p. 4.
Latour, B., 1992, Where are the missing masses?, in: Shaping Technology / Building Society, W.

Bijker and J. Law, eds., MIT Press, Cambridge, MA, pp. 225–258, p.255.
Latour, B., 1999, Pandora’s Hope: Essays on the Reality of Science Studies, Harvard University

Press, Cambridge, MA.
Monarch, I. A., Konda, S. L., Levy, S. N., Reich, Y., Subrahmanian, E., and Ulrich, C., 1997,

Mapping sociotechnical networks in the making, in: Social Science, Technical Systems, and
Cooperative Work: Beyond the Great Divide, G. C. Bowker, S. L. Star, W. Turner, and
L. Gasser, eds., Lawrence Erlbaum Associates, Mahwah, pp. 331–354, p. 337.

Raymond, E. S., 1998, The cathedral and the bazaar, First Monday 3(3), http://www.firstmonday.
org/issues/issue3_3/raymond/

Reeves, J. W., 1992, What is software design?, C++ Journal, Fall 1992.
Turing, A. M., 1948, Intelligent Machinery, National Physical Laboratory Report (http://www.

alanturing.net/turing_archive/archive/l/l32/L32-001.html).
Winograd, T., and Flores, F., 1986, Understanding Computers and Cognition: A New Foundation

for Design, Addison-Wesley, Boston, p. xi.

