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Summary. In the present paper, we discuss the accuracy improvement for the free
mesh method: a node based finite element technique. We propose here a scheme
where the strain field is defined over clustered local elements in addition to the
standard finite element displacement field. In order to determine the unknown pa-
rameter, the least square method or the Hellinger-Reissner Principle is employed.
Through some bench mark examples, the proposed technique has shown excellent
performances.

1 Introduction

Recent advances in computer technology have enabled a number of compli-
cated natural phenomena to be accurately simulated, which were ever only
observed by experiments. Among various computer simulation techniques,
the finite element method (hereinafter referred to as ”FEM”) has been most
widely used due to the capability of analyzing an arbitrary domain, and re-
sults, accurate enough for engineering purposes, are obtainable at reasonable
cost[1][2]. However, mesh generation for finite element analysis becomes very
difficult and time consuming if the degree of freedom of the analysis model
is extremely large, for example exceeding 100-million, and the geometries of
the model are complex. In order to overcome the above shortcoming of the
standard FEM, the so called mesh-free methods[3][4] have been studied. The
Element-Free Galerkin Method (EFGM)[5][6] is among them with the use of
integration by background-cells instead of by elements, based on the moving
least square and diffuses element methods. The Reproducing Kernel Particle
Method (RKPM)[7][8] is another mesh-free scheme, which is based on a par-
ticle method and wavelets. The general feature of these mesh-free methods
is that, contrary to the standard FEM, the connectivity information between
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nodes and elements is not required explicitly, since the evaluation of the total
stiffness matrix is performed generally by the node-wise calculations instead
of the element-wise calculations.

On the other hand, a virtually mesh-free approach called the free mesh
method (hereinafter referred to as ”FMM”)[9][10] is based on the usual FEM,
having a cluster of local meshes and equations constructed in a node-by-node
manner. In other word, the FMM is a node-based FEM, which still keeps
the well-known excellent features of the standard FEM. Through the node-
wise manner of the FMM, a seamless flow in simulation procedures from local
mesh generation to visualization of the results without user’s consciousness
is realized. The method has been applied to solid/fluid dynamics [11], crack
problems[12], concrete problems[13], and so on. In addition, in order to achieve
a high accuracy, the FMM with vertex rotations has been studied[14][15].

In this paper, we discuss another high accurate FMM: the Enriched FMM
(hereinafter referred to as ”EFMM”). In the following section, the fundamen-
tal concept of the original FMM is reviewed, and the third section deals with
two EFMMs, one is ”EFMM based on the localized least square method” and
the other ”EFMM based on the Hellinger-Reissner principle”. In the fourth
section, some numerical examples are presented, and concluding remarks are
given in the final section.

2 Basic Concept of Free Mesh Method (FMM)

The FMM starts with only the nodes distributed in the analysis domain (Ω),
without the global mesh data, as following equation.

pi(xi, yi, ri) ∀i ∈ {1, 2, · · · ,m} (1)

where m is the number of node, pi(xi, yi) are the Cartesian coordinates, and
ri is the nodal density information, which is used to generate appropriate
nodes as illustrated in Fig. 1(a). From above nodal information, a node is
selected as a central node and nodes within a certain distance from the central
node are selected as candidate nodes. This distance is usually decided from
the prescribed density of the distribution of nodes. Then, satellite nodes are
selected from the candidate nodes, which generate the local elements around
the central node (shown in Fig. 1(b)). For each local element, the element
stiffness matrix is constructed in the same way as the FEM, however in FMM,
only the row vector of stiffness matrix for each local element is necessary. The
local stiffness matrix of each temporary element is given by

kei
= [kpi

kSj
kSk ] (2)

where kei
is the row vector of the stiffness matrix for element ei and kpi

,
kSi

and kSk
are components for node of pi, Si and Sk (j and k are number
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Fig. 1. Concept of Free Mesh Method

of current satellite nodes). Through the above procedures are carried out for
all local elements, the stiffness matrix for a central node is given by

kpi
=

ne∑

i=1

kei
(3)

where kpi
is the stiffness matrix for central node pi, and ne the number of

local elements. Through the above procedures for all nodes is carried out,
the global stiffness matrix is given by assembling kpi

which are computed by
node-wise manner:

K =

⎡

⎢
⎢
⎢
⎣

kp1

kp2

...
kpm

⎤

⎥
⎥
⎥
⎦

(4)

Brief of the nodal stiffness matrix is shown in Fig. 1(c). After the construc-
tion of the global stiffness matrix, a derivation of the solution is processed.
The great advantage of the FMM is that the global stiffness matrix can be
evaluated in parallel with respect to each node through the node-wise manner,
and only satellite node information is required with each nodal calculation.
Finally, a derivation of the solution is performed as the usual FEM. Thus, the
FMM is a node-wise FEM, which still keeps the well-known excellent features
of the usual FEM. The features of FMM are summarized as follows,

(1) Easy to generate a large-scale mesh automatically
(2) Processed without being conscious of mesh generation
(3) The result being equivalent to that of the FEM
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Fig. 2. Concept of enriched free mesh method

3 Enriched Free Mesh Method (EFMM)

3.1 Outline of EFMM

”Assumed strain on the clustered local elements” is the concept of EFMM as
shown in Fig. 2. In the EFMM, the strain field on the clustered local elements
and the displacement field of each local element are assumed independently.
Relating these independent fields, we propose here two approaches, one is
the localized least square method and the other is the method based on the
Hellinger-Reissner principle.

3.2 EFMM Based on the Localized Least Square Method

The EFMM based on the localized least square method (hereinafter referred
to as ”EFMM-LS”) assumes the strain field on the clustered local elements as

{ε(x)} = [Nε]{a} (5)

where {ε(x)} = {εxx, εyy, γxy} is the strain field defined on the clustered local
elements and each component of {εxx, εyy, γxy} is assumed independently, and
[Nε] is a matrix, which consists of arbitrary polynomials as follows,

[Nε] =

⎡

⎣
pt(x) 0 0

0 pt(x) 0
0 0 pt(x)

⎤

⎦ (6)

where pt(x) is given on the clustered local elements as

pt(x) =
[
1 x y

]
linear basis

pt(x) =
[
1 x y x2 xy y2

]
quadratic basis

pt(x) =
[
1 x y x2 xy y2 x3 x2y xy2 y3

]
cubic basis

· · ·
(7)
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In this paper, pt(x) is assumed to be linear or quadratic basis polynomial.
The coefficients vector {a} in Eq. (5) is determined by minimizing the discrete
L2 norm as follows,

J =
ne∑

c=1

p∑

i=1

[{ε(x)} − {εc
i}]2 (8)

where ne is the number of local elements with c(= 1, 2, · · · , ne) being cur-
rent local element, p the number of points, which are called as the ”strain
monitoring points” on the clustered local elements with i(= 1, 2, · · · , p) being
the current strain monitoring point and {εc

i}the strain vector of i-th strain
monitoring point on the c-th local element, which is called as the ”mother
element”. The stationary condition of Eq. (8) is

δJ = 2{a}T
ne∑

c=1

p∑

i=1

[
[Nε

i ]
T [Nε

i ]{a} − [Nε
i ]

T {εc
i}

]
= 0 (9)

which yields the coefficients vector {a} as follows,

{a} =
ne∑

c=1

p∑

i=1

[[
[Nε

i ]
T [Nε

i ]
]−1

[Nε
i ]

T {εc
i}

]
(10)

Let us consider a simple Constant Strain Triangle as the mother element
in which the displacement field of each local element is defined by

{u} =
3∑

i=1

{ui}ζi (11)

where {u} is the displacement field of the local element, {ui} is the nodal
displacement, and ζi is the area-coordinate[16]. Thus, the strain value on the
strain monitoring points is given by

{εc
i} = [Bc

i ]{ui} (12)

where
[Bc

i ] =
[
[B1] [B2] [B3]

]

with

[Bj ] =

⎡

⎣
∂ζj/∂x 0

0 ∂ζj/∂y
∂ζj/∂y ∂ζj/∂x

⎤

⎦ , j = 1, 2, 3
(13)

By substituting Eq. (12) into Eq. (10), the unknown coefficient {a} is deter-
mined as

{a} =
ne∑

c=1

p∑

i=1

[[
[Nε

i ]
T [Nε

i ]
]−1

[Nε
i ]

T [Bc
i ] {ui}

]
(14)
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Substituting Eq. (14) into Eq. (15), we obtain

{ε(x)} = [Nε]
ne∑

e=1

p∑

i=1

[
[[Nε

i ]
T [Nε

i ]]
−1[Nε

i ]
T [Bc

i ]{ui}
]
= [A]{ui} (15)

where

[A] = [Nε]
ne∑

e=1

p∑

i=1

[
[[Nε

i ]
T [Nε

i ]]
−1[Nε

i ]
T [Bc

i ]
]

(16)

In the elasticity problem, the stress vector {σ} and the strain vector {ε}
have the relation as follows,

{σ} = [D]{ε} (17)

where [D] is a symmetric matrix of material stiffness. With [D] given by
Eq. (16), the stiffness matrix based on the localized least square method is
computed on the clustered local elements as

[kLS ] =
∫

Ω

[A]T [D][A]dΩ (18)

where Ω is area of the clustered local elements. It is important to say that
the above stiffness matrix is computed in a node-wise manner.

It is noted that the present EFMM-LS is closely related to the superconver-
gent patch recovery proposed by Zienkiewicz and Zhu[17][18]. In an adaptive
finite element method[19][20], the Z-Z error estimator has been most widely
used to estimate the error. The error estimator requires an exact solution, but
generally it is impossible to compute the exact value because the exact solu-
tion is not available in general. The Z-Z technique then obtains the recovered
solution in a post processing stage. The clustered local elements in the present
method are equivalent to the superconvergent patch used in the Z-Z technique.
The difference lies in that the recovering procedure in the EFMM-LS is in a
main process stage when computing element stiffness matrices. The use of the
assumed strain is therefore, in some sense, equivalent to the ”post-process” of
the Z-Z superconvergent patch recovery.

3.3 EFMM Based on Hellinger-Reissner Principle

In the EFMM based on the Hellinger-Reissner principle [1][21] (hereinafter
referred to as ”EFMM-HR”), the Hellinger-Reissner (hereinafter referred to
as ”HR”) principle is employed to obtain better accuracy. Let the HR principle
of a linear elastic body be defined on the clustered local elements by

∏
(ε,u) =

∫

Ω

{ε}T[D]{∂u}dΩ − 1
2

∫

Ω

{ε}T[D]{ε}dΩ

−
∫

Ω

{u}T{b}dΩ −
∫

Sσ

{u}T{t̃}dS (19)
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where
{∂u} = [B]{ū} , {ε} = [Nε]{ε̄} (20)

with {b} being the applied body force per unit mass, and {t̃} the applied
traction on boundary Sσ. {ū} is the unknown nodal displacement and {ε̄}
the unknown nodal strain. The unknown values (ū, ε̄) of the HR principle
satisfy the following equations in a weak manner,

∫

Ω

δ{ε}T[D] ([B]{ū} − [N]{ε̄}) dΩ = 0 (21)

∫

Ω

δ{u}T[B]T[D][N]{ū}dΩ −
∫

Ω

δ{u}T{b}dΩ −
∫

Sσ

δ{u}T{t̃}dS = 0 (22)

It is noted here that the strain field is defined on the clustered local elements
by node-wise manner, where the displacement field is defined on each element
by element-wise manner. Equations (21) and (22) yields the following linear
matrix equation, [−A C

CT 0

] {
ε̄
ū

}
=

{
f1
f2

}
(23)

where ⎧
⎪⎪⎨

⎪⎪⎩

A =
∫

Ω
[Nε]T[D][Nε]dΩ

C =
∫

Ω
[Nε]T[D][B]dΩ

f1 = 0
f2 =

∫
Ω

[Nu]T{b}dΩ +
∫

Γ
[Nu]T{t̃}dΓ

(24)

By condensing the coefficient matrix of Eq. (23), we obtain the following
equation,

CT
(
A−1Cū

)
= f2 (25)

where the condensation should be executed on the clustered local elements.
Thus, the stiffness matrix based on the HR principle is computed on the
clustered local elements as follows,

[kHR] = CT A−1C (26)

It is noted here that we can obtain the enriched stiffness matrix without
increasing the number of nodal degrees of freedom.

4 Examples

4.1 Convergence Study: Displacement

To study the convergence characters of the present methods, a cantilever
model is solved as shown Fig. 3, where the three different mesh patterns
are prepared and the mesh division in the x direction is varied. As shown
in the figure, a beam of length L = 10, height D = 1 and thickness t = 1
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Fig. 3. Mesh patterns for cantilever beam model

is subjected to a shear load in plane stress condition. The material param-
eters are given as the Young’s modulus E = 1000.0 and the Poisson’s ratio
ν = 0.25. The displacements at the loaded edge normalized by the exact value
are plotted against the degrees of freedom (see Fig. 4). From the comparison
of displacement results among the six different solutions, it can be observed
that

(a) The accuracy of the FEM with the three noded linear element of constant
strain is the worst, whereas that with the six noded quadratic element is
the best irrespective of the mesh patterns.

(b) As the number of layers in the thickness direction increase, the accuracy
of EFMMs approaches that of the quadratic FEM.

(c) Regarding the comparisons among the EFMMs, the accuracy of the
EFMM-HR and the EFMM-LS with the linear strain field are the best,
whereas, for the finer meshes (see Fig. 4(c)), the results of EFMMs with
the quadratic strain field are almost equivalent to those of the formers.

4.2 Convergence Study: Error Norms

As another convergence measures, two kinds of error norms for the beam
problems as shown Fig. 5 [22] are employed, which are, respectively, given as

‖E‖2 =
[∫

Ω

(
u − uexact

)T (
u − uexact

)
dΩ

]1/2

(27)
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Fig. 4. Normalized displacements at the loaded edge vs. DOFs (The figures in the
right hand side are zoomed ones)
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Fig. 5. Cantilever beam model for error norm study; only the case of mesh is shown
as examples

‖E‖e =
[∫

Ω

1
2

(
ε − εexact

)T (
σ − σexact

)
dΩ

]1/2

(28)

where ‖E‖2 is the displacement error norm and ‖E‖e that of the energy error.
u, ε and σ are, respectively, the numerical results of displacement, strain and
stress, whereas uexact, εexact and σexact are the exact solutions. A beam of
length L = 10, height D = 2 and thickness t = 1 is subjected to a shear load
in plane stress condition. The material parameters are given by the Young’s
modulus E = 1000.0 and the Poisson’s ratio ν = 0.25. The above displacement
and energy convergence norms are plotted against the DOFs in Figs. 6 and 7,
respectively, where the meshes are, respectively, 1 × 1, 2 × 2, 4 × 4, 16 × 16,
32 × 32, and 64 × 64. It can be seen from these figures that

(a) Again, the error norms of the displacement of the EFMMs are between
those of the linear and the quadratic FEMs (see Fig. 6). However, the
convergence slopes of the EFMMs are almost equal to that of the quadratic
FEM.

(b) The error norms of the energy of the quadratic EFMMs are almost the
same as that of the quadratic FEM and those of the linear EFMMs are
between the linear and the quadratic FEMs.

4.3 Patch Test

The patch test is performed using the three models of patch as shown in Fig.
8, where the displacement field

{
u(x)
v(y)

}
=

{
0.2x
−0.6y

}
(29)

is applied at the boundary. Table 1 shows the test results for the FEMs and
the EFMMs. As illustrated in the table, all the method passes the patch test
for the Model A, which is a regular mesh division model. However, for the
Model B and C, which are irregular ones, the EFMM-LSs do not pass the
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Fig. 8. Models for patch tests

test. Here, ”Pass” means that the displacement of the internal node (M1 or
M2) satisfies Eq. (29). This means that the EFMM-LSs are nonconforming
for irregular mesh, which is an open question.
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Table 1. Displacements at internal nodes M1 and M2

Model A Model B Model C
u(M1) v(M1) u(M1) v(M1) u(M1) v(M1) u(M2) v(M2)

FEM(linear) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800
FEM(quadratic) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

EFMM-LS(linear) 0.900 -2.400 1.198 -3.170 0.611 -2.372 1.285 -1.899
EFMM-LS(quadratic) 0.900 -2.400 1.198 -3.141 0.611 -2.368 1.290 -1.859

EFMM-HR(linear) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800
EFMM-HR(quadratic) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

Exact 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

5 Concluding remarks

A new Free Mesh Method called ”Enriched Free Mesh Method” is proposed
in this paper, in which a high accuracy can be obtained without explicitly
increasing the degree of freedoms. The work is summarized as follows,

(1) The key idea of the proposed method is that the strain field is assumed
on clustered local elements, in addition to the usual displacement field on
each element. To relate the above two fields, the localized least square
method or the Hellinger-Reissner principle are, respectively, employed.

(2) The convergence characteristics of the displacement L2 error norms in the
cantilever problem are between that of the FEM with the linear displace-
ment field and that with the quadratic one, whereas that of the energy
error norms with the quadratic strain field for the clustered elements is
equivalent to that of the FEM with the quadratic displacement field.

(3) The EFMM based on the Hellinger-Reissner principle passes the patch
test, whereas, for irregular nodal arrangements, the EFMM based on the
localized least square method does not. This would be an open question
and there is a room for future research.
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