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Preface

This book contains state of the art contributions in the field of computational
plasticity. This topic encompasses a wide spectrum of areas in non-linear com-
putational solid mechanics and modelling of materials and their industrial
applications.

Despite the apparent activity in the field, the ever increasing rate of de-
velopment of new engineering materials required to meet advanced technolo-
gical needs poses fresh challenges in the field of constitutive modelling. The
complex behaviour of such materials demands a closer interaction between
numerical analysts and material scientists in order to produce thermodynam-
ically consistent models which provide a response in keeping with fundamental
micromechanical principles and experimental observations. This necessity for
collaboration is further highlighted by the continuing remarkable develop-
ments in computer hardware which makes the numerical simulation of com-
plex deformation responses increasingly possible.

The book contains 14 invited contributions written by distinguished au-
thors who participated in the VIII International Conference on Computa-
tional Plasticity held at CIMNE/UPC (www.cimne.com), Barcelona, Spain,
from 5th to 8th September 2005. The meeting was one of the Thematic Con-
ferences of the European Community on Computational Methods in Applied
Sciences (ECCOMAS, www.eccomas.org).

The different chapters of this book present recent progress and future re-
search directions in the field of computational plasticity. A common line of
many contributions is that a stronger interaction between the phenomenolo-
gical and micromechanical modelling of plasticity behaviour is apparent and
the use of inverse identification techniques is also more prominent. The devel-
opment of adaptive strategies for plasticity problems continues to be a challen-
ging goal, while it is interesting to note the permanence of element modelling
as a research issue. Industrial forming processes, geomechanics, steel and con-
crete structures form the core of the applications of the different numerical
methods presented in the book.

The book includes contributions sent directly by the authors and the ed-
itors cannot accept responsibility for any inaccuracies and opinions contained
in the text.

vii



viii Preface

The editors would like to take this opportunity for thanking all authors for
submitting their contributions. We also express our gratitude to Maria Jesús
Samper from CIMNE for her excellent work in the edition of this volume.
Many thanks finally to ECCOMAS and Springer for accepting the publication
of this book.

Eugenio Oñate Roger Owen
Universitat Politècnica de Catalunya University of Wales
Barcelona, Spain Swansea, United Kingdom



A Multi-Scale Continuum Theory for
Heterogeneous Materials

Franck Vernerey, Cahal McVeigh, Wing Kam Liu and Brian Moran

Department of mechanical engineering, Northwestern University,
2145 Sheridan Road, Evanston, IL 60208-3111, USA
w-liu@northwestern.edu

Summary. For the design of materials, it is important to faithfully model the
physics due to interactions at the microstructural scales [18, 17, 19]. While brute-
force modeling of all the details of the microstructure is too costly, current homoge-
nized continuum models suffer from their inability to sufficiently capture the correct
physics - especially where localization and failure are concerned.
To overcome this limitation, a multi-scale continuum theory is proposed so that
kinematic variables representing the deformation at various scales are incorporated.
The method of virtual power is then used to derive a system of coupled governing
equations, each equation representing a particular scale and its interactions with the
macro-scale. A constitutive relation is then introduced to preserve the underlying
physics associated with each scale. The inelastic behavior is represented by multiple
yield functions, each representing a particular scale of microstructure, but collec-
tively coupled through the same set of internal variables. The proposed theory is
applied to model porous metals and high strength steel. For the high strength steel
the microstructure of interest consists of two populations of inclusions at distinct
scales, in an alloy matrix.

1 Multi-Physics Multi-Scale Material Model

1.1 Kinematics and Virtual Power

In the spririt of the work performed by Cosserat [2], Mindlin [11] and Ger-
main [10], the building blocks of the multi-scale continuum theory are a set
of kinematic variables which represent the motion within the material’s mi-
crostructure. These variables can capture the heterogeneous deformation due
to the micro-mechanisms occuring at each scale. For an N-scale material, in
addition to the macro-velocity field v we introduce N-1 independent micro-
velocity gradients

{
LI

}
1≤I≤N−1

. In the context of a first gradient theory, the
internal virtual power density is written as a linear combination of the various

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 1–11.
© 2007 Springer. Printed in the Netherlands.



2 Franck Vernerey, Cahal McVeigh, Wing Kam Liu and Brian Moran

kinetic variables and their gradients. Integrating over the body Ω, the virtual
internal power is written as:

δPint =
∫

Ω

(

σ : δD +
N−1∑

I=1

{
β

I
:
(
δLI − δL

)
+ β

I ... δLI←−∇
})

dΩ. (1)

where σ is the Cauchy stress, β
I

is the Ith micro-stress and β
I

is the Ith micro-
stress couple. The Ith micro-stresses are interpreted as a stress redistribution
arising from the presence of heterogeneities within the Ith microstructure.
The kinetic virtual power, external virtual power, governing equations and
boundary conditions can be found here [4].

1.2 Constitutive Relation

For convenience, we introduce the generalized stress Σ and strain D measures
in a vector form containing the components of the macroscopic quantities
as well as the various microscopic quantities defined in the previous section.
Hence, we write:

Σ =
[
σ β

1
β

1 · · · β
N−1

β
N−1

]
.

D =
[
D

[
L1 − L

]
L1←−∇ · · · [

LN−1 − L
]
LN−1←−∇ ]

.

The generalized rate of deformation D is decomposed into an elastic part De

and a plastic part Dp:
D = De + Dp. (2)

In the elastic regime, it is possible to introduce a generalized elastic matrix
C such that the generalized stress increment Σ� is related to the elastic part
of the rate of deformation De as follows:

Σ� = C · De (3)

where Σ� is an objective stress rate. The plastic response is written in a
multi-physics plastic potential framework. We introduce a yield function φI

with the Ith micro-scale of interest. The plastic flow at each scale is determined
from the corresponding yield function in the context of associative plasticity.

2 Application to Porous metals

Substantial effort has been dedicated to the study and development of micro-
mechanical models applicable to the plastic deformation and failure of porous
metals. Two distinct mechanisms contribute to failure. The first stage involves
the independent growth of voids subject to a remote hydrostatic stress. The
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Fig. 1. Multi-scale decomposition for a two-scale porous material

second occurs when the voids a large enough to trigger a necking instability of
the inter-void ligament. The second stage of failure is therefore characterized
by an acceleration in the loss of load carrying capacity of the material as void
coalescence occurs.
The use of traditional continuum methods to treat failure of porous metals
is limited due to their inability to handle localization problems. To overcome
this problem, the outlined multi-scale continuum theory is used to describe
the response of porous metals after the onset of localization. The additional
degrees of freedom introduced through the microfields can represent the in-
homogeneous strains arising due to void interactions and coalescence.

2.1 Multi-Scale Model

The multiscale description of porous metal is based on the definition of two
domains, representing the micro- and macro-scales, respectively (Fig. 1)

The kinematics are expressed in terms of the velocity v associated with the
macro-scale and the rate of micro-deformation D1. The generalized stress and
rate of deformation for the two-scale porous metal can therefore be written
as:

Σ =
[
σ β

1
β

1
]

, D =
[
D

(
D1 − D

)
D1←−∇

]
, (4)

where D is the symmetric part of the macro-velocity gradient, σ is the macro-

stress, and β
1

and β
1

are the micro-stress and micro-stress couple, respec-
tively. From (1), the internal power is written as:

δPint =
∫

Ω

(
σ : δD +

{
β

1
:
(
δD1 − δD

)
+ β

1... δD1←−∇
})

dΩ. (5)
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A physical interpretation is provided as follows: the macro-stress σ represents
the macroscopic response that undergoes a loss of load carrying capacity due
to void growth and coalescence. The presence of the micro-stress β

1
represents

the stress redistributions around voids as they grow. It provides a resistance
of the matrix material to highly localized deformations.

2.2 Constitutive Relation

A two-potential plasticity model with yield functions Φ(σ) and Φ1(β
1
,β

1
) is

employed to represent the material plastic behavior at the macro and micro-
scale, respectively. Homogenization is performed over two averaging domains
(macro and meso) as described. The macro-stress σ is determined by an av-
eraging operation over the RVE Ω̄ (macro domain). The macroscopic plastic
deformation is based on an extension of the von-Mises plasticity model that
incorporates the effects of the porosity f . A standard yield function accounting
for softening mechanisms due to void growth is given as follows:

Φ = Φ (σ, f, ε) = 0, (6)

where the material constants which appear in the function Φ are determined
through cell modeling computer simulations. Microscopic plastic deformation
is defined as the plastic deformation of the matrix material after the onset of
void coalescence. The plastic model is taken in the form of J2 flow plasticity
modified to account for the effects of higher order stress. The microscopic
yield function Φ1 is given by:

Φ1 = Φ1(β
1
,β

1
, E1) (7)

where E1 is the microscopic effective plastic strain.

2.3 Numerical Results

We multi-scale model is now implemented and compared to a direct numer-
ical sumilation (DNS) of a porous metal bar loaded in tension. In the DNS,
the explicit microstructure is represented by a periodic distribution of circular
voids of diameter 1µm and volume fraction 3%. An imperfection is introduced
by making the void in the center of the specimen slightly larger than others.
As localization is expected to occur around the imperfection, voids are only
modeled in the central region. For the two-scale continuum simulation, the
finite element discretisation is fine enough to capture size effects at the scale
of the voids. An imperfection, in the form of a higher initial average poros-
ity, is introduced in the center of the specimen to initiate localization. The
comparison of the macroscopic plastic strain distribution for the DNS and the
two-scale continuum is depicted in Fig. 2. The results are displayed at four
different times t1, t2, t3 and t4. At time t = t1, the material response reaches
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Fig. 2. Snapshots of the distribution of equivalent plastic strain in a specimen in
tension for (a) the explicit microstructure (b) the equivalent two-scale continuum

Fig. 3. Comparison of the distribution of plastic strain for (a) the explicit mi-
crostructure (b) the two-scale material (c) conventional continuum model (one-scale
porous model)

the macroscopic instability point (softening of the macroscopic constitutive
relation due to void growth), and deformation localizes in a shear band at 45

degrees to the tensile direction. The micro-stresses β
1

and β
1

act to stabilize
the void growth at time t = t2. The onset of void coalescence occurs at time
t = t3 in a plane perpendicular to the loading direction. This mechanism is
modeled by a yielding of the micro-stresses and therefore a decrease in resis-
tance to micro-deformation. Consequently, a plane of highly localized plastic
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strain arises in the horizontal direction as shown at time t4. The behavior
of the two-scale continuum compares well with the behavior of the explicit
microstructure. The main attraction of the two-scale continuum resides in the
gain of computational time. For instance, the typical element size for the two-
scale model is ten times as large as that used for the DNS (1 µm and 0.1 µm
respectively).

3 Three-scale Model of High-Strength Steels

In the previous example, two scales of analysis where considered. Physically
speaking, these were the average macroscale behavior of a population of voids
and the microscale behavior defined by the coalescence between neighboring
voids. We now consider a material in which three distinct scales can be con-
sidered. In high strength steels, previously examined within the hierarchical
methodology [14, 12, 13, 15, 16, 3], the embedded particles are divided into
two groups: the primary particles with the diameter around microns and the
secondary particles in the range of 10 to 100 nanometers. By adding alloys
during metallurgical processes, the desirable dispersed secondary particles,
such as M2C carbides, are formed through precipitation or dissolved from
primary particles, which blocks the dislocation path; thus, the strength of
steel rise. Whereas the primary particles, such as nitrides, usually have lower
toughness as compared with the iron matrix. The formation of primary parti-
cles is inevitable during manufacture process. A key-issue in steel design is to
establish the relationships between the micro/nano-structures of steel and its
macro-scale mechanical properties. To this end, we use the proposed multi-
scale continuum theory. Three mechanisms are considered here: (i)the failure
at the level of primary particles, (ii) the failure at the level of secondary par-
ticles and (iii) the failure by necking of the ligaments between micro-voids [1].

3.1 Multi-Scale Model

The three levels of microstructure are shown in Fig. 4. The macro-scale con-
tains primary particles (large square particles) and secondary particles (small
circular particles). The micro-scale contains only secondary particles and the
sub-micro scale represents the matrix material. Following the framework de-
scribed before, we introduce the macro-velocity v, the micro-velocity gradient
D1 and the sub-micro velocity gradient D2. The internal power for a three
scale material is written as:

δPint =
∫

Ω

σ : δD +
{

β
1

:
(
δD1 − δD

)
+ β

1... δD1←−∇
}

+
{

β
2

:
(
δD2 − δD

)
+ β

2... δD2←−∇
}

dΩ. (8)
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Fig. 4. Proposed multi-scale framework for the modelling of high strength steel

A physical interpretation of the various terms can be given as follows. The
quantity D1 − D is the inhomogeneous deformation resulting from the local-
ization that occurs from the nucleation of large voids (from primary particles)
and the inhomogeneous deformation D2 − D is the result of the localization
that occurs from nucleation of micro-voids (from secondary particles). The
micro-stress at a scale is interpreted as the stress exerted by the microstruc-
ture to redistribute plastic deformation around the voids at that scale.

3.2 Constitutive Relation

The failure of High Strength Steels involves mechanisms which involve the
microstructure at each scale. Three yield functions are introduced: the macro-

potential Φ(σ) and the first and second micro-potential Φ1(β
1
,β

1
) and

Φ2(β
2
,β

2
), respectively. Each of the above functions is associated with a

failure mechanism summarized as follows: (i) void nucleation and growth at
primary particles followed by strain localization of width approximately equal
to the diameter of a ’primary’ void. (ii) void nucleation and growth at primary
particles followed by strain localization of width approximately equal to the
diameter of a ’secondary’ void. (iii) secondary-void coalescence by necking of
the inter-void ligament and localization of the deformation in the neck.
The macroscopic yield function Φ describes the evolution of the macro-stress
and plastic strains. It represents the plastic deformation and response of the
RVE and can be derived within the hierarchical methodology. The form of the
constitutive relation at the macro-scale is such that:

Φ = Φ (σ, f, ε) (9)

where f and ε are the porosity and effective plastic strain, respectively. This
function accounts for the loss of load carrying capacity of the material due to
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the cumulative effects of void nucleation, growth and coalescence from both
the primary and secondary particles.

The micro-stresses (β
1
,β

1
) are the local stress and moment generated in the

matrix by larger voids as they grow. When the matrix material fails, the micro-
couple and micro-stress can no longer be sustained to the same extent i.e. they
yield. The yielding point of the micro-stress is controlled by the degradation
and strain localization in the material between the primary particles, which
is driven by the formation of a void sheet mechanism originating at the scale
of the secondary particles. The microscopic plastic deformation is therefore a
function of the nucleation and growth of secondary particle nucleated voids
(void sheet). As such, volumetric deformation must be accounted for. A simple
model can be developed in the form of a Drucker-Prager plasticity model,
modified to account for the effects of higher order stress. It is written in the
form:

Φ1 = Φ1(β
1
,β

1
, E1) (10)

where E1 is the microscopic effective plastic strain.
The submicro-stresses provide a measure of the local stress distribution around
the secondary particle nucleated voids during void growth. This mechanism
is similar to that described in the previous section for porous materials. The
yielding point of the submicro-stresses corresponds to the inability of the ma-
trix material to transmit stress moments after ligament instability. Submicro-
scopic plastic deformation is subsequently defined as the plastic deformation
of the matrix material after the onset of void coalescence (necking of the liga-
ment). The yield function is written in the form of a plasticity model modified
to account for the effects of higher order stress:

Φ2 = Φ2(β
2
,β

2
, E2) (11)

where E2 is the sub-microscopic effective plastic strain.

3.3 Numerical Results

A two-dimensional plane strain analysis of a shear test was employed to eval-
uate the performance of the three-scale material model in shear. The behavior
of high strength steel in pure shear has been investigated experimentally by
Cowie et al. [5]. Two computations are performed here: (a) direct numerical
simulation (DNS) of the shear test with explicit modeling of particles and
(b) a computation of the same model using the three-scale steel model. A
comparison is then drawn between the two simulations.

The stages of shear failure are explained as follows.

(a) Debonding of primary particles, and strain localization between the pri-
mary particle nucleated voids. In the multi-scale model this corresponds
to the yielding of the macro-stress and the formation of a shear band of
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Fig. 5. Contours of effective plastic strain at different stages of deformation

width related to the primary particle size. During this stage the micro-
stress remains in the elastic regime and is responsible for sustaining the
observed size effect.

(b) Shear driven nucleation and growth at the scale of the secondary parti-
cles leads to a terminal shear instability. In the multi-scale simulation this
mechanism is modeled through the yielding of the micro-stress. The size
effect resulting from the micro-stress can no longer be sustained. The for-
mation of a shear band of width related to the secondary particle size is
then observed. This size effect arises from the existence of a sub-microstress
that remains in the elastic regime.

(c) As deformation increases, coalsecence of secondary particle nucleated voids
will occur, leading to a rapid decrease in the load carrying capacity of the
material. In the multiscale model this is captured through a yielding of the
sub-microstress. No size effect is then captured. This is consistent with the
final failure of a material.

4 Conclusion

The outlined multiscale model offers several advantages over traditional con-
tinuum theory. It can be used to model a material which contains an ar-
bitrary number of scales of microstructure. The internal interactions in the
microstructure and the resulting size effects can be accounted for at each
scale within the mathematical framework. The mechanisms resulting in het-
erogeneous deformation at each scale are modeled individually through the
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introduction of mutliple plastic potentials, while being coupled through the
internal state variables. This theory has been successfully applied to describe
the behavior of a porous metal and a high strength steel. This multi-scale
framework has been successfully used in [4] to capture the fracture toughness
of a high strength steel in terms of the underlying microstructure. Improve-
ments in efficency may be possible by employing the Bridging Scale Method
[7, 8, 9, 6].
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Towards a Model for Large Strain Anisotropic
Elasto-Plasticity

F.J. Montáns1 and K.J. Bathe2

1 Universidad de Castilla-La Mancha. E.T.S. de Ingenieros Industriales
C/ Camilo José Cela s/n. 13071-Ciudad Real. Spain. fco.montans@uclm.es

2 Massachusetts Institute of Technology. Dept. of Mechanical Engineering
77 Massachusetts Avenue. Cambridge, U.S.A. kjb@mit.edu

Summary. The modeling of large strain anisotropic elasto-plasticity requires that
the elastic response can be anisotropic, the yielding is governed by anisotropic
yield functions, the hardening is anisotropic and the principal anisotropic elastic
and yield directions can align themselves to more favorable stress directions dur-
ing the response. For general finite element analysis, the model also needs to be
macroscopically-based and computationally effective. We have worked towards such
a model based on using the decomposition of the deformation gradient into elastic
and plastic parts, logarithmic strains, exponential mapping and the plastic spin as
an internal variable. The objective of this presentation is to give basic theoretical
considerations and a computational framework for this anisotropic elasto-plasticity
model. We also present some numerical results.

1 Introduction

Computational large strain plasticity is now well established for the case of
isotropic elasto-plasticity, see for example References [1–4]. In these formula-
tions, the use of hyperelasticity [5] was important both conceptually —to not
dissipate energy during elastic cycles, see Reference [6]— and algorithmically
—to avoid the integration of objective stress rates. Also, the use of the Lee
multiplicative decomposition of the deformation gradient into an elastic and
a plastic part [7, 8] —previously used by Bilby et al. [9]— and the formulation
of the incremental equations in terms of logarithmic strains and Kirchhoff
stresses resulted into a remarkable simplicity for the computational return
mapping algorithm [10, 11]. Indeed, the backward integration of the rate equa-
tion, via the exponential product formula, rendered the incremental algorithm
in the logarithmic strain space identical to the small strain return mapping
algorithm. This simplicity allowed for an extension of both the theory and
the algorithm to anisotropic mixed hardening [11]. Both “unrotated” [10, 11]
and spatial formulations and algorithms followed, sometimes formulated in
the principal stress/strain space [12, 13]. Of course, all these formulations are
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completely equivalent, see Reference [14]. However, if kinematic hardening is
considered, special care must be used because some plastic spin effects may
be inadvertently introduced, resulting in completely different response pre-
dictions, see Reference [15]. Alternatively, a special but not standard type of
kinematic hardening may be considered [16].

Computational plasticity formulations based on logarithmic strains and
work-conjugate stresses have now been used extensively and have also been
extended successfully to applications in soil mechanics, see Reference [17].
Common to the different formulations are the following ingredients: isotropic
hyperelasticity, exponential mapping and the additive return in the logarith-
mic strain space.

In this framework, the algorithm of Eterović and Bathe [11] seems to be
the first implicit algorithm to allow for some anisotropy. This anisotropy is
given by the kinematic hardening rule. The algorithm is consistently linearized
in Reference [15], where it is noted that anisotropic yield functions may be
directly employed in the formulation.

However, all the large strain computational plasticity algorithms based
on logarithmic strains are using one hypothesis: the elastic strains and
the work-conjugate stress measures commute. This property only holds in
isotropic elasticity and hence the previous formulations are not applicable in
anisotropic elasticity. While some publications appeared recently on computa-
tional anisotropic plasticity, see for example [18–21], the published algorithms
are not developed following the successful framework of using the deformation
gradient decomposition into an elastic and a plastic part, logarithmic strains
and exponential mapping.

In many cases the effect of the elastic anisotropy is considerably smaller
than the effect of the plastic anisotropy and, hence, elastic isotropy is assumed
with an anisotropic yield function, see for example Reference [22]. The algo-
rithm presented in [15] is then directly applicable. An important observation
discussed in this reference is that, then, the plastic spin does not enter in
the dissipation equation and as a consequence, any plastic rotation is pos-
sible. Hence, a constitutive hypothesis may be chosen. However, for general
anisotropic elasto-plasticity the plastic spin requires special attention. In order
to understand the nature and practical effects of the plastic spin, researchers
have proposed several ad-hoc constitutive equations, see for example [23–31].

A possible effect of the plastic spin is to cause rotations of the elastic
and plastic anisotropy directions during loading. These rotations take place
at different strain levels depending on the type of material considered [22], as
observed and measured experimentally, see References [32–36]. Some materials
preserve an almost isotropic elastic behaviour as aluminum [37, 38], and also
only show a small rotation of the preferred plasticity orthotropy directions
[22, 34, 35]. In these References, approximately 5o of rotation is measured for
20% of strains. Other metals such as steel contain both a substantial elastic
and plastic anisotropy and show a significant rotation of the orthotropy direc-
tions, see References [32, 33, 36]. In these works a realignment of the anisotropy
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directions in steel sheets to new directions during the loading is experimen-
tally observed for strain levels of about 10%. Considering a thermodynamical
framework of continua, it seems natural to relate the development of these
rotations to the plastic flow and to a decrease of the stored energy.

In the following sections we present a model and an algorithm to describe
the plastic behaviour of metals with both elastic and plastic anisotropies, and
consider the rotation of the elastic and plastic anisotropy directions. This
theory is an extension of the formulation presented in References [11] and
[15]. The theory employs the multiplicative decomposition of the deformation
gradient, logarithmic strain measures, the exponential mapping formula and
the plastic spin to govern the rotations of the elastic and plastic anisotropy
directions.

2 Kinematics and Incremental Integrations

In the derivation of the continuum formulation and the algorithm for the
stress calculation we follow the notation used in References [1], [2] and [39].
We include in this section both the continuum and algorithmic formulations
since they are closely related.

2.1 Kinematics of Deformation: Multiplicative Decomposition and
Strain Rate Tensors

The Lee decomposition yields the following multiplicative decomposition for
the deformation gradient

t
0X = t

p(t)X
p(t)

0 X := t
0X

e t
0X

p (1)

where, conceptually, p (t) is a configuration with the elastic strains relaxed
(stress-free configuration). Hence, t

p(t)X ≡ t
0X

e and p(t)
0 X ≡ t

0X
p. Of course

the decomposition of Equation (1) is unique if t
0X

p is known, for example,
via the integration of the plastic path.

The spatial velocity gradient tl = ∂ tv/∂ tx, where tv ( tx) is the time
derivative of the displacements, is

tl = t
0Ẋ

t

0X
−1 (2)

and its symmetric part, the spatial deformation rate tensor, is

td = 1
2

(
t
0Ẋ

t

0X
−1 + t

0X
−T t

0Ẋ
T
)

(3)

In view of Eq.(1), Eq.(2) can be decomposed as

l = le + lp = Ẋ
e
(Xe)−1 + Xe

[
Ẋ

p
(Xp)−1

]
(Xe)−1 (4)
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In the equations to follow we frequently omit the time left-indices when a
confusion is hardly possible. The tensor

Lp := Ẋ
p
(Xp)−1 (5)

is the modified plastic velocity gradient. The tensor Lp operates in the inter-
mediate stress-free configuration. The symmetric part of Lp is the modified
plastic deformation rate tensor

Dp := 1
2

[
Ẋ

p
(Xp)−1 + (Xp)−T

Ẋ
pT

]
(6)

while its skew part is the modified plastic spin.

W p := 1
2

[
Ẋ

p
(Xp)−1 − (Xp)−T

Ẋ
pT

]
(7)

On the other hand, if we define L, the modified velocity gradient as the
pull-back of l to the intermediate configuration, we arrive at

L = Le + CeLp (8)

where Ce ≡ Xe T Xe is the right Cauchy-Green deformation tensor in the
stress-free configuration. Note that some of our definitions differ from those
sometimes found in the literature. For example Dp is sometimes defined as
Dp = sym (CeLp), see for example [40–42].

2.2 Integration of the Plastic Deformation Gradient

This section follows the same procedure presented in Reference [15]. From
Equation (5), the evolution of the plastic deformation gradient tensor is given
by the differential equation

t
0Ẋ

p
= tLp t

0X
p (9)

whose backward-Euler exponential solution is given by

t+∆t
0X

p = exp
(
∆t t+∆tLp

)
t
0X

p (10)

where the exponential function of a matrix exp
(
∆t t+∆tLp

)
for small steps

such that
∥
∥∆t t+∆tLp

∥
∥ � 1 can be approximated by

exp
(
∆t t+∆tLp

) � I + ∆t t+∆tLp (11)

Using
∆t t+∆tLp = ∆t t+∆tDp + ∆t t+∆tW p (12)

we have that for small steps the following property holds

exp
(
∆t t+∆tLp

) � exp
(
∆t t+∆tDp

)
exp

(
∆t t+∆tW p

)
(13)
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yielding the following update formulas:

t+∆t
0X

p −1 = t
0X

p −1 exp
(−∆t t+∆tW p

)
exp

(−∆t t+∆tDp
)

(14)

t+∆t
0X

e = Xe
∗ exp

(−∆t t+∆tW p
)
exp

(−∆t t+∆tDp
)

(15)

where the tensor Xe
∗ := t+∆t

tX
t
0X

e is the trial elastic deformation gradient
(i.e. with the plastic state frozen). The polar decomposition theorem applied
to the trial elastic deformation gradient yields

Xe
∗ = Re

∗ U←−
e
∗ (16)

where U←−e
∗ is the trial (elastic) right stretch tensor and Re

∗ is the trial rotation
tensor.

We now define the following incremental (“plastic”) rotation

t+∆t
tR

w = exp
(
∆t t+∆tW p

)
(17)

Using (15) and defining C←−e
∗ := Xe T

∗ Xe
∗ (the trial right Cauchy-Green

deformation tensor) we obtain

C←−
e
∗ = t+∆t

tR
wT exp

(
∆t t+∆tDp

)
t+∆t

0C
e exp

(
∆t t+∆tDp

)
t+∆t

tR
w (18)

We now define the logarithmic strains by

t+∆t
0E

e := 1
2 log t+∆t

0C
e and E←−

e
∗ := 1

2 log C←−
e
∗ (19)

The following tensors are the measures updated to the stress-free configuration

Ce
∗ := t+∆t

tR
w C←−

e
∗

t+∆t
tR

wT (20)

Ee
∗ := t+∆t

tR
w E←−

e
∗

t+∆t
tR

wT (21)

For future expressions we note that (·)←− are the quantities (·) rotated to the

rotationally-frozen configuration (defined below), i.e.

(·)←− = t+∆t
tR

wT (·) t+∆t
tR

w (22)

Using Equations (11) and (19), Equation (18) may be written as

Ee
∗ � t+∆t

0E
e + ∆t t+∆tDp (23)

with the additional restriction that ‖ Ee
∗‖ � 1, i.e. the elastic strains and in-

cremental steps are only moderately large. This restriction is typically fulfilled
in metal plasticity. Alternatively, expression (23) may be written as

t+∆t
0E←−

e � E←−
e
∗

︸︷︷︸
known

− ∆t t+∆tD←−
p (24)
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configuration is given by t+∆t
0R

eT , only known after integration. Fortunately,
Equations (24) and (25) show that the additive algorithm also holds in the
configuration in which the plastic rotation t+∆t

tR
w has not been applied yet.

From a continuum perspective, using the following definitions

we
∗ = Ṙ

e

∗ ReT
∗ , we = Ṙ

e
ReT , W p = Ṙ

w
RwT and wp = Re W p ReT

(30)
performing the time derivative of Equation (27) and multiplying by ReT

∗ =
RwT ReT to transfer the Equation to the spatial configuration, we obtain

Ṙ
e

∗ ReT
∗ = Ṙ

e
ReT + Re Ṙ

w
RwT ReT (31)

i.e.
we

∗ = we + wp (32)

3 Free Energy Function and Dissipation Inequality

The global free energy ψ is assumed to admit the additive decomposition into
a stored energy function W and a hardening potential H
ψ

(
Xe,Xi,Xi-history

)
= W (

Xe,Xi-history
)

+ H (
Xi,Xi-history

)
(33)

where Xi are internal variables which can be defined by a gradient of some
local internal displacements. Obviously, by objectivity, the stored energy func-
tion should depend only on the stretch part of Xe, since it must remain
unaffected by rigid body motions.

We assume that the solid deforms in such a way that the total potential
energy is minimum and that the dissipation energy is maximum including the
effect of plastic spin. We assume that the rotation of the anisotropy directions
is also related to a change of the potential energy. Hence, special consider-
ations arise for the stored energy function and the hardening potential. We
incorporate these considerations in the energy function and hardening poten-
tial proposed below.

3.1 Stored Energy Function: Orthotropic Hyperelasticity Based on
Logarithmic Strain Measures

In the case of isotropic elasticity, the right Cauchy deformation tensor Ce and
the second Piola-Kirchhoff stress tensor S commute. Then, the Mandel stress
tensor Ξ := CeS and the symmetric part of the Mandel stress tensor, Ξs,
results in

Ξs = Ξ = 1
2 (CeS + SCe) = U eSUe (34)

which in terms of the spatial Kirchhoff stress tensor τ may be written as

Ξs = U eXe−1τXe−T U e = ReT τ Re = τ̄ (35)
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where τ̄ is the rotated Kirchhoff stress tensor [2]. Assuming isotropic elasticity,
the governing strain energy function can be expressed as

W = U (J) + µ Eed : Eed

= U (J) + µ Ee : P : Ee (36)

where Ee := ln U e are the logarithmic strains, Eed := P : Ee are the devi-
atoric logarithmic strains, P := I − 1

3I ⊗ I is the deviatoric projector tensor
and I and I are, respectively, the fourth and second order identity tensors.
The two terms in Equation (36) represent the volumetric and deviatoric strain
energies respectively. The rotated Kirchhoff stress tensor is obtained as (see
for example Reference [15])

Ξ ≡ Ξs ≡ τ̄ =
∂W
∂Ee = JU ′ (J) + 2µ P : Ee (37)

whereas the skew-symmetric part of the Mandel stress tensor, Ξw, vanishes.
As also mentioned in the introduction, in anisotropic plasticity, the elastic

properties are frequently considered as isotropic given that experimentally
much smaller deviations from isotropy are observed for elastic properties than
for plastic properties. In this work we wish to relax the assumption of isotropy
for the elastic properties and allow moderate anisotropic elasticity, and hence
we use the following function:

tW = U
(

tJ
)

+ µ tEe : t
A

d : tEe (38)

where t
A

d is the orthotropy structural tensor which has the same characteristic
space as P (commutes with P) and is, in general, close to P. Note that in this
case the volumetric component is assumed as isotropic reducing the number
of independent constants to seven. Of course, a general anisotropic tensor t

A

(with nine constants) may also be employed with the logarithmic strain. In
this case the stored energy function is of the type

tW = 1
2

tEe : t
A : tEe (39)

where t
A

−1 in the principal material orthotropy axes { tP i, i = 1, 2, 3}, may
be written as —see for example Reference [1]—

t
A

−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/Ea −νba/Eb −νca/Ec 0 0 0
−νab/Ea 1/Eb −νcb/Ec 0 0 0
−νac/Ea −νbc/Eb 1/Ec 0 0 0

0 0 0 1/Gab 0 0
0 0 0 0 1/Gbc 0
0 0 0 0 0 1/Gca

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

{ tP i}

(40)

where Ea, Eb, Ec are the Young’s moduli in the principal directions, νba, νca,
νcb, νab, νac, νbc are the Poisson ratios and Gab, Gbc, Gca are the shear moduli.
These constants need to satisfy certain conditions, see e.g. [1].
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In Equations (38) and (39), the strain tensor, and thus also the elastic
anisotropy tensor, are defined in the unrotated configuration (i.e. with the
elastic rotations given by Re removed). Between time t and time t + ∆t,
this configuration and all objects defined in this configuration rotate by the
amount t+∆t

tR
w due to the plastic spin—see Equation (28). And during the

plastic flow, also the lattice rotation takes place, resulting in an additional
rotation t+∆t

tR
A for the anisotropy directions. For example, the resulting

energy of Equation (39) at t + ∆t is

t+∆tW = 1
2

t+∆tE←−
e : t

Ã : t+∆tE←−
e

= 1
2

t+∆tE←−
e : t+∆t

A←− : t+∆tE←−
e

= 1
2

t+∆tEe : t+∆t
A : t+∆tEe (41)

where by t
Ã =: t+∆t

A←− we imply that the tensor has rotated by t+∆t
tR

A

with respect to t
A. The rotation tensor t+∆t

tR
A represents the rotation of the

elastic anisotropy tensors. Therefore, the energy expression in the stress-free
configuration is obtained by the rotation t+∆t

tR
w and the rotation t+∆t

tR
A.

The derivative of the stored energy function in absence of plastic rotations
is

Ẇ
∣
∣
∣
apr

= E←−
e : A←− : Ė←−

e (42)

= Ee : A : L←−Ee (43)

The tensor T←− = ∂W / ∂E←−e
∣
∣
∣
apr

= A←− : E←−e is defined as the symmet-

ric logarithmic stress tensor (or generalized Kirchhoff stress tensor) in the
rotation-free configuration. If the lattice structure is not fixed, the variation
of the strain energy function in the rotation-free configuration is

Ẇ = T←− : Ė←−
e + 1

2 E←−
e : Ȧ←− : E←−

e (44)

The second term in Equation (44) is the work variation due to a rotation of the
lattice, which after plastic flow will be in a more favorable orientation. Hence
this term must be negative. Defining W←−A := Ṙ

A
RA T as the structural

anisotropy spin tensor and using t+∆t T←− = t+∆t
A←− : t+∆tE←−e, the second

term of Equation (44) can be written in symbolic notation as

1
2 E←−e : Ȧ←− : E←−e = 1

2

(
E←−

eW←−
A − W←−

AE←−
e
)

: T←− + 1
2 T←− :

(
E←−

eW←−
A − W←−

AE←−
e
)

= T←− :
(
E←−

eW←−
A − W←−

AE←−
e
)

= T←−w : W←−A (45)
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where T←−w is a skew tensor defined as

T←−w := E←−
e T←−− T←− E←−

e (46)

Of course we can define equivalent measures in the unrotated configuration:

T := t+∆t
tR

w T←−
t+∆t

tR
wT = A : Ee and T w := Ee T − T Ee (47)

or in the spatial configuration

t+∆tt := t+∆t
0R

e t+∆tT t+∆t
0R

eT = Re
∗ T←− ReT

∗ and tw := eet− tee (48)

where ee := lnV e and V e is the stretch tensor obtained from the left polar
decomposition theorem.

Finally we obtain

Ẇ = T←− : Ė←−e + T←−w : W←−A (49)

Ẇ = T : L←−Ee + T w : W A (50)

Here T w is determined once T and Ee are known, i.e., it is not an inde-
pendent or internal variable. The second term in the variation of the stored
energy function is the variation due to the rotation of the anisotropy axes,
and depends on the non-coaxiality of stresses and elastic strains.

Figure 1 refers to the different rotations and configurations used. The
spatial configuration for strains is known from the material configuration by
t+∆t

0X. From this spatial configuration we can directly obtain the trial unro-
tated configuration (rotationally frozen) by the rotation ReT

∗ , obtained from
the polar decomposition Eq.(16) of the trial elastic gradient (292). Then, as
shown below, we obtain the plastic correction t+∆t

tR
w for the trial unrotated

configuration, which has the final value given by Equation (28). Due to the
rotation t+∆t

tR
w the preferred elastic and plastic anisotropy directions rotate

by the additional amount t+∆t
tR

A in the form given below. Since we are
assuming moderate incremental steps, both t+∆t

tR
w and t+∆t

tR
A may be

considered to commute.

3.2 Hardening Potential

Consider a hardening potential of a similar form to that of the stored energy
function

H = Hkin+Hiso+Hw = 1
2 h̄

[
(1 − M) 3

2 Ei : H : Ei + M ζ2
]
+ 1

2Kwξ2

(51)

= 1
2 h̄

[
(1 − M) 3

2 E←−
i : H←− : E←−

i + M ζ2
]

+ 1
2Kwξ2

(52)
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a principal strain direction

or principal orthotropy di-

rection in the final spatial

configuration

a principal strain

direction in the trial

unrotated configuration

a principal orthotropy

direction in the trial

unrotated configuration

a principal strain direction

or principal orthotropy di-

rection in the final unrotated

configuration

Fig. 1. Configurations involved in the stress-integration algorithm

where M is the mixed hardening parameter, 2
3H := h̄ (1 − M) is the effec-

tive kinematic hardening modulus and K := h̄M is the isotropic hardening
modulus. The parameter h̄ plays the role of effective hardening modulus. The
parameter Kw is a hardening for couple-stresses. Eq.(51) corresponds to a
SPM description of hardening, see Reference [43]. However, for constant h̄ it
coincides with the SPS method. In (51) we have included the possibility of
anisotropic kinematic hardening through the use of an anisotropy tensor H,
similar to A

d. The tensor H←−, rotates at the speed given by the internal spin
tensor W H for similar reasons as those given for the stored energy function.

We define the internal overstresses as

κ :=
∂ψ

∂ζ
and κw :=

∂ψ

∂ξ
(53)

Hence,

κ =
∂ψ

∂ζ
=

∂H
∂ζ

= Kζ and κw =
∂ψ

∂ξ
=

∂H
∂ξ

= Kwξ (54)

or

κ̇ =
∂2ψ

∂ζ2
ζ̇ =

∂2H
∂ζ2

ζ̇ = Kζ̇ and κ̇w =
∂2ψ

∂ξ2
ξ̇ =

∂2H
∂ξ2

ξ̇ = Kw ξ̇ (55)

the internal backstress as

B←−s =
∂ψ

∂E←−i

∣
∣
∣
∣
∣
apr

=
∂H
∂E←−i

∣
∣
∣
∣
∣
apr

= H H←− : E←−
i (56)

Then, the derivative of the hardening potential is

Ḣ = B←−s : Ė←−
i + 1

2H E←−
i : Ḣ←− : E←−

i + κζ̇ + κw ξ̇ (57)

We define
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and following the same steps as for the stored energy function

1
2H E←−

i : Ḣ←− : E←−
i = B←−w : W←−

H (58)

where B←−w is a skew tensor defined as

B←−w := E←−
i B←−s − B←−s E←−

i (59)

Finally we have

Ḣ = B←−s : Ė←−
i + B←−w : W←−

H + κζ̇ + κw ξ̇

= Bs : L←−Ei + Bw : W H + κζ̇ + κw ξ̇ (60)

However, we note that equations (51), (54) and (56) may not be formally
adequate because they are defined in terms of total internal strains and, as
the plastic strains, they are path dependent. Hence directly assuming (60),
(55) and the rate form of (56) is more appropriate, and (51) should be taken
just for motivation purposes. Furthermore, Equation (33) should formally be
assumed in rate form, and in the derivations to follow only the rate form will
be used.

4 Mapping Tensors from Quadratic to Logarithmic
Strain Space

In large strain plasticity, logarithmic strain measures frequently yield simple
and natural descriptions. Of course, these strains may be used in any config-
uration simply using the proper stretch tensor to obtain them. The following
relationship holds:

Ee = Re T eeRe with Ee = ln U e, ee = ln V e (61)

Hence, it is noted that for logarithmic strain tensors, the push-forward and
pull-back operations are performed with the rotation part of the deformation
gradient alone. One may say that the stress-free configuration and the “unro-
tated” configuration are coincident in the logarithmic strain space. Obviously,
since the logarithmic strain tensors and the Almansi and Green strains are
all unique for a given deformation gradient, there exist a one-to-one mapping
between them. For example

Ee = M
E
A : Ae (62)

where if the spectral forms of the strain tensors are

Ee =
3∑

i=1

ln λe
i N i ⊗ N i, Ae =

3∑

i=1

1
2

(
λe 2

i − 1
)

N i ⊗ N i (63)
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M
E
A can be written as

M
E
A =

3∑

i=1

2 ln λe
i

λe 2
i − 1

N i ⊗ N i ⊗ N i ⊗ N i (64)

as it is straightforward to verify. Conversely

M
A
E =

3∑

i=1

λe 2
i − 1
2 ln λe

i

N i ⊗ N i ⊗ N i ⊗ N i (65)

is such that Ae = M
A
E : Ee. In a similar way, there is a one-to-one mapping

between the deformation rate tensor and the time-derivative of the logarithmic
strains. These mapping tensors may be found to be (see Reference [51])

M
Ė
D =

∂Ee

∂Ae =
3∑

i=1

1
λe 2

i

M i ⊗ M i +
3∑

i=1

∑

j �=i

2
ln λe

j − ln λe
i

λe 2
j − λe 2

i

M i

s� M j (66)

and

M
D
Ė

=
∂Ae

∂Ee =
3∑

i=1

λe 2
i M i ⊗ M i +

3∑

i=1

∑

j �=i

1
2

λe 2
j − λe 2

i

ln λe
j − ln λe

i

M i

s� M j (67)

where

M i := N i ⊗ N i (68)

M i

s� M j := 1
4 (N i ⊗ N j + N j ⊗ N i) ⊗ (N i ⊗ N j + N j ⊗ N i) ≡ M j

s� M i

(69)

These tensors have major and minor symmetries and represent the one-to-one
mappings relating deformation rates as

Ė
e

= M
Ė
D : De and De = M

D
Ė

: Ė
e

(70)

respectively. Furthermore, in the rotation-frozen configuration

Ė←−
e = M←−

Ė
D : D←−

e and D←−
e = M←−

D
Ė

: Ė←−
e (71)

Also, in the stress-free configuration

L←−Ee = M
Ė
D : L←−Ae and L←−Ae = M

D
Ė

: L←−Ee (72)

For future use, we define two fourth order mapping tensors

W←−
M :=

1
2

(
C←−

e 3· M←−
Ė
D − C←−

e 4· M←−
Ė
D

)
(73)
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and

S←−
M :=

1
2

(
C←−

e 3· M←−
Ė
D + C←−

e 4· M←−
Ė
D

)
(74)

where by
(

n·
)

we imply the contraction of the n − index of the fourth order
tensor with the second index of the second order tensor. Then, it can be shown
that if we define

K←− := S←− : M←−
D
Ė

so that S←− =: K←− : M←−
Ė
D (75)

we obtain

Ξ←− := C←−
e S←− = C←−

e

(
K←− : M←−

Ė
D

)
= K←− :

(
S←−

M + W←−
M

)
(76)

and
K←−w := K←− : W←−

M = E←−
eK←−− K←−E←−

e ≡ Ξw (77)

Ξ←−s = K←− : S←−
M (78)

stress tensor T , see also
below, and hence the conversion to the symmetric part of the Mandel stress
tensor Ξs is given by Equation (78).

5 Dissipation Inequality

The stress power in the reference volume may be expressed in the intermediate
configuration as

P ≡ S : L = S : (Le + CeLp) (79)
= S : (De + W e) + S : Ce (Dp + W p) (80)

where S is the pull-back of the Kirchhoff stress τ to the stress-free configura-
tion. Since S is symmetric the product S : W e = 0, i.e. the modified elastic
spin (which also contains the rigid-body spin) produces no work. Thus, in a
rotationally-frozen configuration we are left with

P ≡ S←− : L←− = K←− : Ė←−
e + S←− : C←−

e
(
D←−

p + W←−
p
)

(81)

where we used (71) and (75). Alternatively, in the stress-free configuration

S : L = K : L←−Ee + S : Ce (Dp + W p) (82)

= K : L←−Ee + CeS : (Dp + W p) (83)

Using Ξ = CeS, the stress power can be written as

S : L = K : L←−Ee + (Ξs + Ξw) : (Dp + W p)

= K : L←−Ee + Ξs : Dp + Ξw : W p (84)

The tensor K is actually the generalized Kirchhoff
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Thus, the symmetric Mandel stress tensor produces power on the modified
plastic strain rate, whereas the skew-symmetric Mandel tensor produces power
on the modified plastic spin. This last work is due to the kinematic cou-
pling produced by the Lee decomposition and the possible rotation of elastic
anisotropy axes. In the case of isotropy or deformation through the orthotropy
axes, the term vanishes. Neglecting the effect of temperature, the dissipation
inequality from the second law of the thermodynamics is

Ḋ = P − ψ̇ ≥ 0 (85)

where ψ̇ is the free energy function rate, assumed to be ψ̇ = Ẇ + Ḣ. Thus
using (49) and (60)

ψ̇ = T : L←−Ee + T w : W A + Bs : L←−Ei + Bw : W H + κζ̇ + κw ξ̇ (86)

and
Ḋ = (K − T ) : L←−Ee + Ξs : Dp + Ξw : W p

−T w : W A − Bs : L←−Ei − Bw : W H − κζ̇ − κw ξ̇ ≥ 0 (87)

Since the equality must hold for pure elastic deformations,

T = K (88)

and, in consequence,
T w = Kw ≡ Ξw (89)

The reduced (plastic) dissipation inequality is now

Ḋp = Ξs : Dp + Ξw : W d − Bs : L←−Ei − Bw : W H − κζ̇ − κw ξ̇ ≥ 0 (90)

where we defined the dissipative spin tensor in the unrotated configuration as

W d := W p − W A (91)

We note that if W p = W A then the skew part of the Mandel stress tensor does
not contribute to the dissipation function. On the other hand, since W A is
assumed to be a function of W p, if W p = 0 then W A = 0 and no dissipation
takes place either due to the skew part of the Mandel stress tensor. We will
assume that the following relationship holds

W A = ρW p (92)

where ρ is a material scalar parameter. Then

W d = (1 − ρ) W p (93)

We assume now –without loss of generality– that the elastic region is
enclosed by two yield functions fs (Ξs,Bs, κ) and fw (Ξw,Bw, κw), the La-
grangian for the constrained problem is L = Ḋp − ṫfs − γ̇fw, where ṫ and γ̇
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are the consistency parameter increments. Note also that L←−Ei ≡ Di. If we
claim that the principle of maximum dissipation holds, the stress and other
internal variables are such that ∇L = 0, i.e. for the yield function expressions
given

∇L = 0 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂Ξs
= 0 ⇒ Dp = ṫ

∂fs

∂Ξs
and

∂L

∂Ξw
= 0 ⇒ W d = γ̇

∂fw

∂Ξw

∂L

∂Bs
= 0 ⇒ L←−Ei = −ṫ

∂fs

∂Bs
and

∂L

∂Bw
= 0 ⇒ W H = −γ̇

∂fw

∂Bw

∂L

∂κ
= 0 ⇒ ζ̇ = −ṫ

∂fs

∂κ
and ξ̇ = −γ̇

∂fw

∂κw

(94)
These expressions are the associated flow and hardening rules for general
elastoplasticity at finite strains. It is noted that if, as usual, the enclosure of the
elastic region for the symmetric part is expressed in the form of fs (Ξs − Bs...)
then for associative plasticity the following relationship is automatically en-
forced

L←−Ei ≡ Di = Dp (95)

Furthermore, W i does not affect the dissipation function and can be freely
(95), and assuming that internal vari-

ables rotate as the plastic variables, we will set

W i = W p (96)

and, as a consequence
Xi = Xp (97)

The loading/unloading (complementary) Kuhn-Tucker conditions are, as
usual

ṫ ≥ 0, fs ≤ 0 and ṫfs ≡ 0 (98)

γ̇ ≥ 0, fw ≤ 0 and γ̇fw ≡ 0 (99)

and the consistency conditions are

ṫḟs ≡ 0 and γ̇ḟw ≡ 0 (100)

The formulations presented herein and in Reference [44] show some simi-
larities with some other works, see for example References [18, 20, 45–48], but
there are also some significant differences; in particular we are using logarith-
mic strains in an incremental form.

6 Yield Functions

There is still much experimental work needed to establish the elastic domain
and yield functions for the symmetric and skew parts of the Mandel stress
tensor. From the current experimental evidence it is difficult to infer sound

prescribed. In view of Equation
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data about a macroscopic (continuum) elastic domain for the skew part of the
Mandel stress tensor, and for the plastic spin evolution. Hence, at this point a
“reasonable” proposition is necessary. An ad hoc extension of the small strains
theory without plastic spin follows.

6.1 Yield Function for the Symmetric Part

For the symmetric part of the Mandel stress tensor the well-known Hill’s
quadratic yield criterion is assumed to hold, i.e. the yield function for Ξs is
given by the expression (see for example Reference [1])

fs :=
3

2κ2
(Ξs − Bs) : A

p
s : (Ξs − Bs) − 1 = 0 (101)

where A
p
s is the plastic anisotropy tensor which in this work we assume to

have the same preferred anisotropy directions as the elastic anisotropy tensor.
Given this function, the specific values of the internal variable increments are
obtained from Equations (94) and (95) as

Di = Dp = ṫ
∂fs

∂Ξs
=

3
κ2

A
p
s : (Ξs − Bs) ṫ (102)

The internal isotropic variable rate is obtained as

ζ̇ = −ṫ
∂fs

∂κ
=

2
κ

(fs + 1) ṫ (103)

which, at the yield condition (fs = 0) takes the value ζ̇ = 2ṫ /κ. The physical
meaning of ζ̇ is the effective plastic strain rate, see Reference [1].

6.2 Yield Function for the Skew Part

For the skew part, in this work we consider the simplest possible yield function,
of the Mises type

fw = ‖Ξw‖ −
√

2κw (104)

where κw is the allowed yield value, which may take the value of zero. From
Equation (94), the specific flow variables take the form

W d = γ̇
∂fw

∂Ξw
= γ̇Ξ̂w (105)

ξ̇ = −γ̇
∂fw

∂κw
=

√
2γ̇ (106)

where we defined the “direction” Ξ̂w := Ξw/ ‖Ξw‖. The physical meaning of
ξ̇ is the effective dissipative rotation rate. Using Equations (92) and (93) we
obtain

W p =
1

(1 − ρ)
γ̇Ξ̂w and W A =

ρ

(1 − ρ)
γ̇Ξ̂w (107)
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One important consequence of the function fw defined in Equation (104)
and the expression (1072) is that if 1 > ρ > 0 then W A and Ξw ≡ T w have
the same direction. But as noted just after Equation (44), the term T w : W A

should be negative. Hence possible values are ρ > 1 and ρ < 0. If ρ > 1 then
the term T w : W A is negative and W p and W A have the same direction.
If ρ < 0 then the term T w : W A is also negative and W p and W A have
opposite direction. The actual rotation direction is not only determined by ρ,
but also by the elastic anisotropy tensor because its shape may change the
direction of Ξw.

6.3 Coupling of Symmetric and Skew Parts

The yield function Equation (104) would mean an instantaneous rotation once
‖Ξw‖ is over the allowed value

√
2κw. However this is not consistent with

experiments, in which progressive rotations are observed. Aside, in mechanics
of single crystals this rotation is not independent of the ordinary (symmetric)
plastic flow (Schmid’s law). Hence, in this work we propose a viscoplasticity-
like flow for the skew part in which the effective plastic strain plays the role
of the time variable. This proposed expression is

ξ̇ =
(

< fw >

η

)m

ζ̇ (108)

where < · > is the Macauley bracket function, η is the “viscosity” material
parameter with units of (couple-)stress and m is another material parameter.
Hence, fw may have values greater than zero which relax with plastic flow. In
terms of consistency parameters, Equation (108) may be written as

γ̇ =
√

2
κ

(
< fw >

η

)m

ṫ (109)

Hence, γ̇ is zero if either fw ≤ 0 or ṫ = 0.

7 Numerical Example

In order to test the capabilities of the present theory in modelling the rotation
of the anisotropy directions, we have carried out some numerical experiments.
In these numerical tests, we aim for predictions of the experimental results
reported in Reference [32]. In these experiments, a rotation of the material
symmetry was observed when a steel sheet is strained in a direction that forms
an angle θ with the rolling or prestrain direction. Details of the experiments are
given in Reference [32]. Only small changes in the shape of the yield function
were observed and hence the shape of the yield function can be assumed to
remain constant, see also Reference [33].
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However, unfortunately, in Reference [32] only the measured plastic ani-
sotropy and its evolution are reported. Since our theory includes and indeed
uses elastic anisotropy, we need to assume elastic anisotropy parameters. In
a uniaxial test, a relevant degradation of Young’s modulus and a variation of
Poisson’s ratio in the test direction has been reported [49]. Elastic anisotropy
has also been measured in rolled steel, brass and aluminum, see for example
[50]. We therefore assume the following elastic (only slightly anisotropic) mate-
rial parameters: Ea = 2.04×1011 Pa, Eb = 2.03×1011 Pa, Ec = 2.10×1011 Pa,
νab = 0.3, νac = 0.3, νbc = 0.3, and Gab = 0.82 × 1011 Pa. The yield stress κ0

and Hill’s yield function parameters have been reported in Reference [32],
i.e. f = 0.3613, h = 0.4957, g = 0.3535 and we used N = 1.175 and
κ0 = 23 × 107 Pa. The hardening has been considered as isotropic according
to the formula κ = κ∞ − (κ∞ − κ0) exp (−δζ) + h̄ζ, for which the constants
have been deduced from the experimental data, h̄ = 3.5×108 Pa, κ∞ = 1.2κ0,
δ = 30. We also used the parameters κw = 0, m = 2, ρ = −2 and η = 600Pa.
All these parameters should really be chosen based on experimental results.
However, we used the mentioned values and only adjusted η to match the ex-
perimental data. Details of the numerical implementation of the theory may
be found in Reference [51].

The Young’s modulus and the yield stress in the different directions, as
well as their evolution are shown in Figure 2. In this figure we also compare
the predicted yield stresses with the experimental data for the case of the ap-
plied load at θ = 30o to the rolling direction. Figure 3 compares experimental
data and computed results for θ = 30o, 45o and 60o. Of course, different
elastic anisotropy constants (obtained experimentally) would change the pre-
dictions, but then also the material parameters η, ρ and m should be based on
experimental results. An important feature of our formulation is that different
rotation rates are obtained for different angles, and the predictions may not be
symmetric for 30 and 60 degrees —in accordance with experimental results—
even though the yield function is almost symmetric about the direction 44.7
degrees with the rolling direction. This is due to the selected shape for the
anisotropy tensors.

8 Conclusions

We presented our research towards a model for anisotropic elasto-plasticity.
The model shall represent possible anisotropic elasticity, anisotropic yield sur-
faces, hardening and the rotation of the elastic and plastic orthotropy direc-
tions during plastic flow. Both the continuum and time integration incremental
formulations are simultaneously derived since incremental formulations give
some insight into the continuum formulation. The model and the integration
algorithm are derived using the multiplicative Lee decomposition of the total
deformation gradient into an elastic and a plastic part. However, no total plas-
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Fig. 2. (a) Prediction of the evolution of the Young’s modulus profile at different
spatial strains ex for a uniaxial load at an angle of θ = 30o with respect to the rolling
direction (RD). (b) Angles involved in the example. Angle of the uniaxial load with
the rolling direction (θ), angle of the principal direction a with the uniaxial load
(β) —initially β = θ—, angle of the Young’s modulus and yield stress shown in the
curves with the uniaxial load (α). (c) Comparison of the experimental data of [32]
with the prediction of the evolution of the yield stress profile at different spatial
strains ex for a plane stress load at an angle of θ = 30o with respect to the rolling
direction
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Fig. 3. (a) Prediction for the evolution of the principal orthotropy directions and
comparison with the experimental values of Reference [32]. (b) Uniaxial stress and
couple-stress evolutions

tic deformation measure is used. Plastic deformations and plastic rotations are
considered only incrementally.

The stresses are directly obtained from the logarithmic elastic strains, with
the model assuming linear elastic anisotropy and moderate elastic strains, but
accounting for possible large plastic strains.

The model presented offers, in particular, possibilities to simulate the rota-
tion of the material axes observed in experiments on anisotropic elasto-plastic
materials, and as an example good correlation to the experimental data of
Kim and Yin has been obtained.

However, clearly, the model must be studied much more. The sensitivity
of the model predictions with respect to the model parameters needs to be
identified, and comparisons of computed solutions with test data for many
more and varied material tests need to be obtained. These studies will also
identify the limitations of the model and whether the model could be simplified
without significant loss of predictive capability.
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Localized and Diffuse Bifurcations in Porous
Rocks Undergoing Shear Localization and
Cataclastic Flow

Ronaldo I. Borja

Department of Civil and Environmental Engineering, Stanford University,
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Summary. Under normal temperature porous rocks can fail either by shear strain
localization or cataclastic flow. Shear localization results from the coalescence of
microcracks leading to a tabular deformation band, whereas cataclastic flow is char-
acterized by grain crushing and pore collapse resulting in a severely damaged but
macroscopically homogeneous compacted continuum. In this paper we view the two
types of instability as arising from two distinct bifurcation modes. The first mode,
predicted from the singularity of the acoustic tensor, produces a strain rate jump
tensor of rank one and defines a deformation band. The second mode, predicted
from the singularity of the tangent constitutive operator, is diffuse and produces a
full-rank strain rate jump tensor. After identifying the relevant bifurcation mode,
we present a framework for capturing post-failure responses through constitutive
branching. The post-collapse constitutive response features a cohesion softening-
friction hardening applied either to an emerging fault for shear localization or to the
bulk constitutive theory for diffuse pore collapse instability.

1 Introduction

Under normal laboratory testing conditions porous rocks tested under triax-
ial compression can fail either by shear strain localization or by cataclastic
flow [1–4]. The relevant mode of failure depends on the confining pressure
and temperature under which the rock sample is tested. Trends are depicted
pictorially in Figs. 1 and 2 for the case of triaxial compression testing of
Adamswiller sandstone (the details of the testing are given in [4]). At lower
confining pressures (5 and 20 MPa) the rock sample first compacts and then
dilates until it forms a well-defined shear band. This is characteristic of brittle
failure. The specimen tested at 40 MPa exhibits multiple bands representing
transition from localized to cataclastic failure. Multiple compaction bands are
not atypical at this transition pressure, with the axial strain increasing in
Fig. 1 due to porosity reduction as the thickness of the compaction bands
increases (Wong, personal communication).

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 37–53.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Mechanical data for Adamswiller sandstone from six triaxial compression
tests under different effective pressures as indicated. Samples tested at 5 and 20 MPa
failed by shear localization; sample tested at 40 MPa exhibited multiple bands; sam-
ples tested at higher confining pressures failed by cataclastic flow. Figure reproduced
from [4]

At higher confining pressures (60, 100, and 150 MPa) the sample com-
pacts throughout as the mean normal stress increases up to a knee in the
stress-strain curve (Fig. 2b), after which an accelerated volume compaction
occurs with some hardening in the principal stress difference (Fig. 1) and mild
increase in the mean normal stress (Fig. 2). The micromechanical processes
may be considered brittle in all specimens due to the pervasive grain-scale
microcracking. However, on a macroscopic scale the modes of failure may be
described very differently in that shear localization manifests a brittle mode
whereas cataclastic flow appears much more ductile. Though not reported for
this particular sandstone, Hirth and Tullis [1] observed that cataclastic flow
in a porous quartzite is only a transient behavior in that when the pores
have collapsed any subsequent deformation could become more localized into
a shear band. This typically occurs at much higher strains, of the order 25%,
and subsequent volume deformation could eventually become dilative.

In this paper we employ classical bifurcation analysis to predict shear
localization and cataclastic flow failure modes in rocks at macroscale. Shear
localization is predicted from the singularity of the acoustic tensor as described
by Rudnicki and Rice [5]. The upshot of the prediction is a planar band across
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Fig. 2. Shear-induced dilation and compaction in Adamswiller sandstone: (a) sam-
ples tested at 5 and 20 MPa confining pressures localized in shear across a single
band, sample tested at 40 MPa exhibited multiple bands; (b) samples tested at
higher confining pressures failed by cataclastic flow. Figure reproduced from [4]

which the velocity gradient exhibits a uniform jump while the nominal traction
rate vector remains continuous. In this case the jump in the velocity gradient
is a rank-one tensor. Cataclastic flow does not involve a deformation band,
so we predict the occurrence of this mode from the singularity of the tangent
constitutive operator as described by Borja [6]. In this case the jump in the
velocity gradient is a full-rank tensor obtained from the condition that the
nominal stress rate remain continuous. We term a full-rank velocity gradient
jump tensor as diffuse bifurcation, in contrast to ‘global bifurcation’ as used,
for example, in [7]. A comparison of rank-one and full-rank velocity gradient
tensors is shown in Fig. 3.
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Fig. 3. Eigenmodes for bifurcations leading to pore collapse for: (a) singular tangent
constitutive operator; (b) singular tangent acoustic tensor, see Reference [6]

Grain crushing and pore collapse in rocks lead to a drastically different
material. For rocks experiencing shear localization, these processes are lim-
ited to a narrow zone called deformation band [8, 9]. In cataclastic flow, on
the other hand, grain crushing and pore collapse are pervasive throughout
the entire volume. Deformation at post-collapse is dominated by continued
grain fracturing, as well as by rigid body rotation and relative translation of
the fractured grains and fragments. Effectively, the ‘new’ material now be-
haves as a dense particulate medium possessing much different constitutive
properties than those of the intact rock. In this paper we also present a frame-
work for constitutive branching to allow the constitutive model to capture the
new material properties in both shear localization and cataclastic flow failure
regimes.

Notations and symbols used in this paper are as follows: bold-faced letters
denote tensors and vectors; the symbol ‘·’ denotes an inner product of two
vectors (e.g. a · b = aibi), or a single contraction of adjacent indices of two
tensors (e.g. c · d = cijdjk); the symbol ‘:’ denotes an inner product of two
second-order tensors (e.g. c : d = cijdij), or a double contraction of adjacent
indices of tensors of rank two and higher (e.g. C : εe = Cijklε

e
kl); the symbol

‘⊗’ denotes a juxtaposition, e.g., (a ⊗ b)ij = aibj . Finally, for any symmetric
second order tensors α and β, (α⊗β)ijkl = αijβkl, (α⊕β)ijkl = αjlβik, and
(α � β)ijkl = αilβjk.

2 Shear Localization

2.1 E-mode for Shear Localization

The condition for shear localization is given by

Aep · m = 0 , Aep
ij = NAAep

iAjBNB , (1)

where Aep is the elastoplastic acoustic tensor, Aep = ∂P /∂F is the first
tangential elastoplastic moduli tensor, P is the first Piola-Kirchhoff stress
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tensor, F is the deformation gradient, m is the unit vector in the direction
of velocity jump across the band, and N (with component NA) is the unit
normal vector to the band in the undeformed configuration, see [10].

Determining the eigenmode (e-mode) provides an insight into the volume
change response at bifurcation. Let J = det(F ) > 0 denote the Jacobian of
the motion, with material time derivative J̇ = Jdiv v. The jump in J̇ induced
by a non-unique velocity field is given by

[[J̇ ]] = J̇ − J̇∗ = J div [[v]] = J tr [[l]] = J tr([[Ḟ ]] · F−1) . (2)

Accordingly, we characterize the appropriate volume change mode from the
following criteria:

sgn [[J̇ ]] =

{
(−) =⇒ contraction/implosion;
(+) =⇒ dilation/explosion.

(3)

The transition condition [[J̇ ]] = 0 denotes an isochoric mode.
For condition (1) to provide a non-trivial solution we must have

inf{D(N) ∈ �|D(N) = det(Aep)} = 0 , (4)

where we view the field of determinants of Aep as a set function of N and we
want the infimum of this set to vanish at a critical orientation defined by the
band normal N . At this critical orientation the tensor Aep is singular and the
vector m defines its e-mode. We determine the correct algebraic sign of this
e-mode from the conditions described in [9, 10].

For shear localization the form of the jump tensor [[Ḟ ]] is given by

[[Ḟ ]] = ϕm ⊗ N , (5)

where ϕ denotes the magnitude of the jump. Noting from Nanson’s formula
that

n = (h/h0)N · F−1 , (6)

where h and h0 are the band thicknesses in the deformed and undeformed
configurations, respectively, then we get

[[J̇ ]] = J
h

h0
tr(m ⊗ n) = J

h

h0
(m · n) . (7)

The shear band mode is then classified as either compactive or dilative de-
pending on the sign of the vector dot product m ·n. Following [9], we classify
a deformation band according to the following criteria:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m · n = 1 : pure dilation band;
0 < m · n < 1 : dilatant shear band;
m · n = 0 : simple shear band;
−1 < m · n < 0 : compactive shear band;
m · n = −1 : pure compaction band.

(8)
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Note that the above definitions only pertain to the specific mode at bifurca-
tion.

2.2 Constitutive Branching for Shear Localization

Slip weakening, a process describing the mechanical response of rocks from the
onset of shear localization to the beginning of the residual state, provides a
critical link between pre-localization and residual state behaviors. Developing
a constitutive framework for this initial stage of slip instability requires knowl-
edge of the residual state to which the slip weakening model will branch. For
a shear band that is deforming by tangential frictional sliding we consider the
classical Mohr-Coulomb friction law formulated in the Lagrangian description.
Following [11], we take the nominal traction vector at material point X on
the band as t = P ·N , where N defines the unit band normal in the reference
configuration (determined from the bifurcation analysis). We can resolve this
traction into normal and tangential components at the current configuration
as

t(X, t) = tN (X, t)n + tT (X, t)ξ , (9)

where n = N · F−1/‖N · F−1‖, and tN and tT are normal and tangential
components obtained from

tN = n · P · N , tT = ‖tT ‖ , ξ = tT /tT , tT = t − tNn , (10)

assuming planar sliding (some metric transformation may be required for slid-
ing along curvilinear surfaces). Note that tN (negative for compression) and tT
are resolved nominal stresses representing forces in the current configuration
per unit undeformed area.

Next we write the Mohr-Coulomb friction law at residual state using the
format of classical plasticity. Let µ denote the coefficient of friction; then we
have

Φ = tT + µtN ≤ 0 , [[v]] = ζ̇ξ , ζ̇ ≥ 0 , Φζ̇ = 0 . (11)

In the above expressions Φ takes the role of the yield function at residual state,
[[v]] is the velocity jump across the band (evaluated from a non-associative
flow rule), ζ̇ is the nonnegative slip rate, and the fourth expression is the
Kuhn-Tucker condition. The band kinematics yields [[J̇ ]] = J tr[[l]] = 0, since
[[v]] · n = 0 for a band that moves by tangential sliding. Furthermore, the
flow rule suggests that the velocity jump [[v]] across the band is fully plastic,
consistent with results obtained for strong discontinuity kinematics [12, 13].

We can also accommodate a variable coefficient of friction with this frame-
work. For small slips and slow slip velocities the variation of the coefficient of
friction µ may be described by the Dieterich-Ruina law [14–16]

µ = µ∗ + A ln(ζ̇/V ∗) + B ln(θ/θ∗) (12)

θ̇ = 1 − θζ̇/Dc , (13)



Localized and Diffuse Bifurcations 43

where ζ̇ is the magnitude of [[v]], θ is a state variable, and A, B, µ∗, V ∗, θ∗,
and Dc are material parameters. The state variable θ has been linked to the
changing set of frictional contacts and wear on the materials [16], and Dc is a
characteristic slip required to replace a contact population representative of
a previous sliding condition with a contact population created under a new
sliding condition.

For zero and near-zero slip velocities, such as what occurs near the tip of a
nucleating fault, the expression for µ as given by the above logarithmic func-
tion becomes singular. To circumvent this problem we view frictional sliding
as a rate process and add backward jumps in the spirit of the Arrhenius law
to obtain the regularized form [17]

µ = A sinh−1
[ ζ̇

2V ∗ exp
(µ∗ + B ln(θ/θ∗)

A

)]
. (14)

This equation then predicts a zero coefficient of friction at zero slip velocity.
The above variable friction model has been implemented in the context of
strong discontinuity finite elements [18, 19]. Note that for large slips and
high slip velocities, such as those encountered in earthquake fault nucleation

Fig. 4. Model for fault nucleation and propagation in rock: (a) fault nucleates
(dashed line) over a characteristic distance; (b) slip weakening takes place over
characteristic slip ζ∗; (c) initially dilatant shear band becomes isochoric over a char-
acteristic slip ζ′

(a)

(b)

(c)
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Fig. 5. Slip weakening models for rocks during fault nucleation: (a) linear slip weak-
ening resulting from a combined cohesion softening-friction hardening on an emerg-
ing fault; (b) nonlinear slip weakening. Shaded area GII represents shear fracture
energy that has been correlated with the magnitude of an earthquake for regional-
scale faulting, see [20]

processes, a much lower coefficient of friction may be activated by additional
weakening mechanisms such as flash heating [17].

The concept of slip weakening leading to the above rate- and state-
dependent residual friction model was motivated by the cohesive zone models
for tensile fracture and extended to the shear fracture problem by Ida [20] and
Palmer and Rice [21]. To better understand this process we consider a rock
through which a shear band (or fault) is nucleating and propagating, as shown
in Fig. 4. At the bifurcation point we assume that slip begins to accumulate,
as defined by the integral

ζ =
∫

t

ζ̇ dt , (15)

where the integration is taken over the slip path, see Fig. 4a.
Figure 4b shows the resolved nominal shear stress tT decaying to a residual

state value away from the tip of a propagating band, where the cumulative
slip ζ has exceeded a value ζ∗ ≈ 0.5 mm for most rocks (Rice, personal
communication, see also [22]). Figure 5 further depicts this narrow region of
slip weakening [20], in which tT decreases either linearly or nonlinearly with
ζ (Figs. 5a and 5b, respectively). The shaded area GII represents the shear
fracture energy that has been correlated by many authors with the magnitude
of an earthquake.

Figure 6 portrays the notion of constitutive branching during slip weak-
ening in the context of classical elastoplasticity. Prior to bifurcation, plastic
deformation of an intact rock is described by the yield function F = 0, which is
assumed isotropic on the π-plane and dependent on all three principal Kirch-
hoff stresses. A deformation band-type bifurcation is detected at point A, and
consequently the constitutive theory branches to the slip weakening law

Φ = tT − c + µtN = 0 . (16)

(a)
(b)
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Fig. 6. Slip weakening on the π-plane in principal Kirchhoff stress space. Yield
surface for intact rock F = 0 branches at the bifurcation stress point A to the
Mohr-Coulomb failure criterion Φ = 0 for a planar fault; at residual state B the
cohesion decays to zero and the failure criterion passes through the origin

This equation plots as a straight line on the π-plane. However, the slip velocity
is zero at the bifurcation point, so µ = 0 initially, and the shear resistance is
then purely cohesive. As slip accumulates the coefficient of friction µ quickly
increases while the cohesion c decays to zero. During this time tN may also
vary, and the slip weakening law then plots as a fan of straight lines on the
π-plane. At the conclusion of slip weakening the cohesion is zero and the shear
resistance is purely frictional; hence, the straight line passes through the origin
of the π-plane. This interplay between the cohesive and frictional resistances
is also shown in Fig. 5a.

Assuming the shear resistance on the band is purely frictional and the slip-
weakening constitutive law is linear, we can write an ‘effective yield function’
of the form

Φ = tT −
[
t◦T − (t◦T + µt∗N )

ζ

ζ∗
]
≤ 0 , ζ ∈ [ 0, ζ∗] , (17)

where Φ = 0 now describes a linear slip weakening. However, the condition
Φ = 0 is not a trivial linear constraint to impose since t∗N is unknown during
the slip weakening process. A first-order approximation may be obtained by
assuming t∗N ≈ tN [18], in which case (17) reduces to the form

Φ = tT −
[
t◦T − (t◦T + µtN )

ζ

ζ∗
]
≤ 0 , ζ ∈ [ 0, ζ∗] . (18)

This equation predicts a nonlinear slip weakening similar to Fig. 5b for the
case of a variable tN , and recovers a linear slip weakening for the case of a
constant tN , see [18, 19] for further details.

A

B
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3 Cataclastic Flow

3.1 E-mode for Cataclastic Flow

The condition for stationary stress rate is given by

[[Ṗ ]] = Aep : [[Ḟ ]] = 0 . (19)

For a non-trivial solution [[Ḟ ]] �= 0 to exist, we must have

det(Aep) = 0 . (20)

The e-mode in this case is the jump tensor [[Ḟ ]]. Borja [6] provides details on
how the correct sign of this e-mode may be determined.

To further characterize the e-mode associated with condition (19), we write

τ = P · F t , (21)

where τ is the symmetric Kirchhoff stress tensor. Taking the jumps in the
rates gives

[[τ̇ ]] = P · [[Ḟ ]]t + [[Ṗ ]] · F t . (22)

Noting that [[Ṗ ]] = 0 and [[Ḟ ]] = [[l]] · F at bifurcation, we get

[[τ̇ ]] = (τ � 1) : [[l]] , (23)

where (τ �1)ijkl = τilδjk and δjk is the Kronecker delta. Now, consider a rate
constitutive equation of the form [10]

τ̇ = αep : l , (24)

where αep is a rank-four spatial elastoplastic tangential moduli tensor with
minor symmetry on its first two indices. This yields an eigenvalue problem

aep : [[l]] = 0 , aep = αep − τ � 1 . (25)

Thus, Aep is singular whenever aep is singular.
The singularity of aep is of three types [23], and here we shall consider only

the one relevant to pore collapse instability. We recall the polar decomposition
of the deformation gradient F and spectral decomposition of the left stretch
tensor V ,

F = V · R , V =
3∑

A=1

λAm(A) , (26)

where m(A) = n(A) ⊗ n(A), R is a proper orthogonal rotation tensor, λA are
the principal stretches, and n(A) are the principal directions of V . Taking the
time derivative gives

Ḟ = V̇ · R + V · Ṙ , (27)
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where

V̇ =
3∑

A=1

λ̇Am(A) +
3∑

A=1

∑

B �=A

ωAB(λB − λA)m(AB) , (28)

m(AB) = n(A) ⊗n(B), and ωAB is the spin of the (Eulerian) principal axes of
V .

The velocity gradient can be expressed in the form

l = Ḟ · F−1 = V̇ · V −1 + V · Ω · V −1 , Ω = Ṙ · Rt . (29)

Using the spectral forms and taking the jumps gives

[[l]] =
3∑

A=1

[[ε̇A]]m(A) (30)

+
3∑

A=1

∑

B �=A

{
[[ωAB ]]

(
1 − λA

λB

)
+ [[wAB ]]

λA

λB

}
m(AB) , (31)

where wAB = Ω : m(AB) and εA = ln λA is the principal logarithmic stretch.
Note that wAB arises from the finite rotation of the stretch tensor V whereas
ωAB describes the spin of the principal axes of V ; the former vanishes in the
infinitesimal theory whereas the latter generally does not.

The particular e-mode of interest is characterized by [[ωAB ]] = [[wAB ]] = 0,
where the volume simply implodes at fixed principal directions. In this case
the jump in the velocity gradient [[l]] is equal to the jump in the rate of
deformation [[d]] (since the spins are ‘frozen’), and the relevant jump tensor
becomes

[[l]] = [[d]] =
3∑

A=1

[[ε̇A]]m(A) . (32)

By a simple tensor manipulation the jumps in the principal logarithmic stretch
rates, characterizing the e-mode at bifurcation, may be obtained from the
eigenvalue problem

3∑

A=1

aep
AB [[ε̇B ]] = 0 , (33)

where
aep

AB = m(A) : aep : m(B) (34)

is a 3× 3 matrix of elastoplastic moduli, which also includes the initial stress
terms arising from finite deformation effects. Pore collapse is characterized by
the condition

3∑

A=1

[[ε̇A]] < 0 . (35)

Note that the e-mode predicted above is diffuse in the sense that it does not
entail the formation of a deformation band.
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3.2 Constitutive Branching for Cataclastic Flow

As in classical continuum plasticity we consider yield and plastic potential
functions, Φ and Ψ , respectively, representing yield behavior of the compacted
material at the conclusion of cataclastic flow. We assume that these functions
depend on the Kirchhoff stress tensor τ and some plastic internal variable
κ. By multiplicative plasticity we write the velocity gradient as the sum of
elastic and plastic parts,

l = le + lp , (36)

where
le = Ḟ e · F e−1 (37)

and
lp = F e · Lp · F e−1 , Lp = Ḟ

p · F p−1 . (38)

Ignoring plastic spin, we have lp = sym(lp) := dp, and the flow rule thus gives

dp = λ̇q , q =
∂Ψ

∂τ
. (39)

Subject to the usual Kuhn-Tucker conditions

Φ(τ , κ) ≤ 0 , λ̇ ≥ 0 , Φ(τ , κ)λ̇ = 0 , (40)

along with an appropriate hardening law, we have thus formulated a consti-
tutive model appropriate for the ‘new’ material at post-cataclasis.

It has been reported [1] that cataclastic flow is only a transient behavior.
When the pores have collapsed and the compacted material is loaded fur-
ther, any subsequent deformation could result in a net dilatancy leading to
strain localization. For porous quartzite this occurs at nominal axial strains
greater than about 25%. This suggests that constitutive models for a porous
but intact rock, initially exhibiting compactive tendencies, should branch to a
model exhibiting dilative tendencies at the conclusion of cataclastic flow. Dur-
ing this time the effective cohesion exhibited by the intact rock decays to a
near-zero value while the effective frictional strength increases with increased
compaction. Interestingly, these features are analogs of those encountered in
the development of the slip weakening model of the previous section, with the
exception that they now apply to the bulk response of the material.

For a more concrete illustration, we assume the following form of the yield
function to which the constitutive response branches at the onset of cataclastic
flow:

Φ = (f1 − 27)(I1/pa)m − κ ≤ 0 , f1 = I 3
1 /I3 , (41)

where
I1 = τ1 + τ2 + τ3 , I3 = τ1τ2τ3 (42)
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Fig. 7. Yield surface for intact rock F = 0 branches at the bifurcation stress point
A into yield surface Φ(τ , κ) = 0 signifying onset of cataclastic flow. Post-bifurcation
yield surface undergoes cohesion softening-friction hardening. Transient cataclastic
flow concludes at stress point B where the compacted continuum can now potentially
undergo shear localization with plastic dilatancy

are, respectively, the first and third invariants of the translated principal
Kirchhoff stresses

τ1 = τ1 − a , τ2 = τ2 − a , τ3 = τ3 − a , (43)

a > 0 is a stress shift on the hydrostatic axis to account for cohesion, and pa

is the atmospheric pressure (a normalizing constant). The exponent m is a
given parameter describing the curvature of the surface on a meridian plane
(straight line for m = 0), and κ is the slope that varies with the frictional
yield strength. Lade [24] utilizes this function to characterize yielding of dense
sands.

The yield function described above has the shape of an asymmetric bullet
with the pointed apex initially on the tensile side of the hydrostatic axis
(Fig. 7) and initially coinciding with the apex of the yield surface for the
intact rock, which is represented in the same figure by the boundary of the
region with a compression cap. Cataclastic flow-type bifurcation occurs at
point A, and by requiring that Φ = 0 for this given stress state we obtain
the initial value κ0 of the frictional parameter κ. Cohesion softening during
cataclastic flow is simulated by a degrading value of a, while friction hardening
is captured by an increasing value of κ.

4 Transient Plastic Flow

During slip weakening and cataclastic flow, the directions of plastic flow evolve
from those predicted at bifurcation to those attained at residual state. To cap-
ture the evolution during these ‘transient’ conditions we can interpolate these

A

B

p

q
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plastic flow directions to satisfy the initial (bifurcation) and final (residual)
states.

4.1 Slip Weakening

The region of interest is 0 ≤ ζ ≤ ζ ′, as shown in Fig. 4c. Inside this region
the velocity jump [[v]] evolves from being parallel to m at bifurcation to be-
ing parallel to ξ when the fault begins to deform by pure tangential sliding.
Interpolating linearly with ζ (as a first-order approximation), we get

[[Ḟ ]] = ζ̇b ⊗ N , (44)

where
b =

β

‖β‖ , β =
(
1 − ζ

ζ ′
)
m +

ζ

ζ ′
ξ . (45)

The corresponding jump in velocity gradient is

[[l]] = [[Ḟ ]] · F−1 = ζ̇
h0

h
b ⊗ n . (46)

It follows that the jump in the Jacobian rate is

[[J̇ ]] = Jtr[[l]] = ζ̇
J

‖β‖
h0

h

(
1 − ζ

ζ ′
)
m · n . (47)

This yields [[J̇ ]] = 0 when ζ = ζ ′, so at this level of deformation any initial
dilation or compaction of the band will cease and subsequent motion will be
characterized by pure tangential sliding.

4.2 Cataclastic Flow

The region of interest is J1 ≤ J ≤ J0, where J0 is the value of the Jacobian
at the bifurcation point and J1 is the value at the conclusion of cataclastic
flow. It is fitting that in this case we select J as our parameter since we are
concerned with pore collapse instability and J is a measure of volume change.

At the bifurcation stress we take the e-mode as the instantaneous plastic
flow direction,

dp
0 = λ̇

3∑

A=1

[[ε̇A]]m(A) , J = J0 . (48)

At the conclusion of cataclastic flow the plastic flow direction is given by the
flow rule

dp
1 = λ̇

∂Ψ

∂τ
, J = J1 . (49)

A linear interpolation gives

dp =
J − J1

J0 − J1
dp

0 +
J0 − J

J0 − J1
dp

1 , J1 ≤ J ≤ J0 . (50)
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Of course, other forms of interpolation are possible provided they satisfy the
two end conditions.

We emphasize that both slip weakening and cataclastic flow are microme-
chanical processes. The plastic flow theory presented in this section should
thus be interpreted simply as a rough approximation of the micromechanical
phenomena and not as a faithful description of the grain-scale flow processes
taking place during these transient periods of instability.

5 Closure

We have presented a framework for mathematical modeling of shear localiza-
tion and cataclastic flow in porous rocks. Classical bifurcation theory provides
conditions for the occurrence of these two instability modes, in which shear
localization is equated to a singular acoustic tensor whereas cataclastic flow is
equated to a singular tangent constitutive operator. For general 3D kinemat-
ics, the corresponding e-modes are given by velocity gradient jump tensors of
ranks one and three, respectively. We have also proposed a framework for con-
stitutive branching to allow the model to capture post-bifurcation responses.
Slip weakening provides a critical link to modeling post-shear localization in
rocks. The process is captured by a cohesion softening-friction hardening law
applied to the nucleating fault plane. A similar cohesion softening-friction
hardening law has been proposed for bifurcation leading to cataclastic flow,
except that the law is applied to the bulk constitutive response.
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1 Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1,
Delft, The Netherlands r.deborst@tudelft.nl

2 LaMCoS, UMR CNRS 5514, INSA de Lyon, 69621 Villeurbanne, France
3 LTDS-ENISE, UMR CNRS 5513, ENISE, 42023 Saint-Etienne, France

Summary. In fluid–saturated media wave propagation is dispersive, but the as-
sociated internal length scale vanishes in the short wave–length limit. Accordingly,
upon the introduction of softening, localisation in a zero width will occur and no
regularisation is present. This observation is corroborated by numerical analyses of
wave propagation in a finite one–dimensional bar.

1 Introduction

Strain softening and the ensuing phenomenon of localisation have been the
subject of profound investigations in the past two decades. While, initially, the
incorporation of strain softening in constitutive equations was considered to
be a straightforward exercise, it soon appeared that the use of strain-softening
models led to an excessive dependency of the solution on the discretisation
in numerical analyses. At first, deficiencies in the numerical methods were
believed to cause this severe mesh dependency. However, it was demonstrated
that the underlying cause was the local change of character of the partial differ-
ential equations that govern the initial/boundary value problem: from elliptic
to hyperbolic for quasi–static problems and from hyperbolic to elliptic in dy-
namic problems. This local change of character renders the initial/boundary
value ill–posed, unless special interface conditions are imposed between both
regimes. For ill–posed problems, numerical methods, including finite element
methods, still try to capture ‘the best possible’ solution, but this solution
changes for every other discretisation.

To repair this ill–posedness, several proposals have been put forward. In-
variably, the aim is to enrich the continuum description to include more of
the underlying physical properties of the material, such as grain rotations in
granular materials — the Cosserat continuum approach, e.g. [1, 2] —, the in-
corporation of viscosity or rate–dependency, e.g. [3, 4], or nonlocal approaches
which reflect medium and long–range forces which emerge in materials where
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© 2007 Springer. Printed in the Netherlands.
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the heterogeneity is in the same order of magnitude as the fracture process
zone [5, 6, 7, 8]. While these ideas have been suggested and elaborated for
single–phase media, they are also effective for multi–phase media, such as
fluid–saturated porous solids, e.g. [9]. The question has arisen whether the
diffusive character of the movement of the fluid in such a medium already
provides a physically based regularisation mechanics. Indeed, it has already
been shown by Biot [10], see also Loret and co-workers [11, 12] that wave
propagation in such a medium is dispersive, and, accordingly, that an inter-
nal length scale must exist. This issue has been debated intensely in recent
years [13, 14, 15, 16, 17].

In a previous contribution [17], we have demonstrated that stability in a
‘standard’ two–phase medium is assured until the tangent modulus ceases to
be positive, at least in a one–dimensional medium and for a normal range
of material parameters. Thus, the stability condition coincides with that of
a single–phase medium. Moreover, it was shown by an analysis of dispersive
waves that the length scale associated with wave dispersion vanishes in the
short wave–length limit. In this contribution, we supplement the previous
analysis by a more comprehensive study in which the momentum balance in
the fluid is kept explicitly in the analysis, which enables the identification of
the second wave speed in the mixture. The main conclusion of the previous
study, namely that the length scale associated with wave dispersion vanishes
in the short wave–length limit, so that no regularisation exists, is corroborated
by the present analysis, and therefore put on a solid basis.

2 Governing Equations

We consider a two–phase medium subject to the restriction of small displace-
ment gradients and small variations in the concentrations [18]. Furthermore,
the assumptions are made that there is no mass transfer between the con-
stituents and that the processes which we consider, occur isothermally. With
these assumptions, the balances of linear momentum for the solid and the
fluid phases read:

∇ · σσσπ + p̂π + ρπg =
∂(ρπ vπ)

∂t
+ ∇(ρπvπ ⊗ vπ) (1)

with σσσπ the stress tensor, ρπ the apparent mass density, and vπ the absolute
velocity of constituent π. As in the remainder of this paper, π = s, f , with
s and f denoting the solid and fluid phases, respectively. Further, g is the
gravity acceleration and p̂π is the source of momentum for constituent π
from the other constituent, which takes into account the possible local drag
interaction between the solid and the fluid. Evidently, the latter source terms
must satisfy the momentum production constraint:

∑

π=s,f

p̂π = 0 (2)
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We now neglect convective terms and the gravity acceleration, so that the
momentum balances reduce to:

∇ · σσσπ + p̂π = ρπ
∂vπ

∂t
(3)

Adding both momentum balances, and taking into account Eq.(2), one obtains
the momentum balance for the mixture:

∇ · σσσs + ∇ · σσσf − ρs
∂vs

∂t
− ρf

∂vf

∂t
= 0 (4)

where
σσσf = −αpI (5)

with p the fluid pressure, I the second–order identity tensor, and α the Biot
coefficient, cf. [19]. Substitution of Eq.(5) into the momentum balance of the
mixture gives:

∇ · σσσs − α∇p − ρs
∂vs

∂t
− ρf

∂vf

∂t
= 0 (6)

In a similar fashion as for the balances of momentum, one can write the
balance of mass for each phase as:

∂ρπ

∂t
+ ∇ · (ρπvπ) = 0 (7)

Again neglecting convective terms, the mass balances can be simplified to
give:

∂ρπ

∂t
+ ρπ∇ · vπ = 0 (8)

We multiply the mass balance for each constituent π by its volumic ratio nπ,
add them and utilise the constraint

∑

π=s,f

nπ = 1 (9)

to give:

∇ · vs + nf∇ · (vf − vs) +
ns

ρs

∂ρs

∂t
+

nf

ρf

∂ρf

∂t
= 0 (10)

The change in the mass density of the solid material is related to its volume
change by:

∇ · vs = −Ks

Kt

nf

ρs

∂ρs

∂t
(11)

with Ks the bulk modulus of the solid material and Kt the overall bulk
modulus of the porous medium. Using the definition of the Biot coefficient,
1 − α = Kt/Ks [19], this equation can be rewritten as

(α − 1)∇ · vs =
nf

ρs

∂ρs

∂t
(12)
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For the fluid phase, a phenomenological relation is assumed between the in-
cremental changes of the apparent fluid mass density and of the fluid pres-
sure [19]:

1
Q

dp =
nf

ρf
dρf (13)

with the overall compressibility, or Biot modulus

1
Q

=
α − nf

Ks
+

nf

Kf
(14)

where Kf is the bulk modulus of the fluid. Inserting relations (12) and (13)
into the balance of mass of the total medium, Eq.(10), gives:

α∇ · vs + nf∇ · (vf − vs) +
1
Q

∂p

∂t
= 0 (15)

The governing equations, i.e. the balance of momentum of the saturated
medium, Eq.(6), that of the fluid, Eq.(3) with π = f , and the balance of mass,
Eq.(15), are complemented by the kinematic relation,

εεεs = ∇sus (16)

with us, εεεs the displacement and strain fields of the solid, respectively, the
superscript s denoting the symmetric part of the gradient operator, and an
incrementally linear stress–strain relation for the solid skeleton,

σ̇σσs = Dtan : ε̇εεs (17)

where Dtan is the fourth–order tangent stiffness tensor of the solid material
and the superimposed dot denotes differentiation with respect to a virtual
time. For the pore fluid flow, Darcy’s relation for isotropic media is assumed
to hold,

nf (vf − vs) = −kf∇p (18)

with kf the permeability coefficient of the porous medium, and defines the
drag force of the solid on the fluid:

p̂f = −nfk−1
f (vf − vs) (19)

The boundary conditions

nΓ · σσσ = tp , v = vp (20)

hold on complementary parts of the boundary ∂Ωt and ∂Ωv, with Γ = ∂Ω =
∂Ωt ∪ ∂Ωv, ∂Ωt ∩ ∂Ωv = ∅, tp being the prescribed external traction and vp

the prescribed velocity, and

nf (vf − vs) = qp , p = pp (21)

hold on complementary parts of the boundary ∂Ωq and ∂Ωp, with Γ = ∂Ω =
∂Ωq ∪ ∂Ωp and ∂Ωq ∩ ∂Ωp = ∅, qp and pp being the prescribed outflow of
pore fluid and the prescribed pressure, respectively.
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3 Reduction of the Governing Equations

Henceforth, we shall consider the problem of a uniaxially stressed homoge-
neous bar. Then, vsx �= 0, vsy = 0, vsz = 0 and the momentum balances for
the mixture and for the fluid reduce to:

∂σs

∂x
− α

∂p

∂x
− ρs

∂vs

∂t
− ρf

∂vf

∂t
= 0 (22)

where for notational simplicity the subscript x has been dropped and σs de-
notes the axial stress in the solid, and

α
∂p

∂x
+ nfk−1

f (vf − vs) + ρf
∂vf

∂t
= 0 (23)

respectively. From Eq.(23) we observe that Eq.(19) has been used as the source
of momentum for the fluid from the solid phase. The mass balance of the
mixture, Eq.(15) becomes:

α
∂vs

∂x
+ nf

(
∂vf

∂x
− ∂vs

∂x

)
+ Q−1 ∂p

∂t
= 0 (24)

To allow for inelastic constitutive equations, we take the incremental format
of Eqs.(22)–(24):

∂σ̇s

∂x
− α

∂ṗ

∂x
− ρs

∂v̇s

∂t
− ρf

∂v̇f

∂t
= 0 (25)

α
∂ṗ

∂x
+ nfk−1

f (v̇f − v̇s) + ρf
∂v̇f

∂t
= 0 (26)

and

α
∂v̇s

∂x
+ nf

(
∂v̇f

∂x
− ∂v̇s

∂x

)
+ Q−1 ∂ṗ

∂t
= 0 (27)

We will observe in the next section, where, using an analysis of wave disper-
sion in this medium, the localisation properties are derived, that the ensuing
equations are rather complicated. For this reason, in [17] the pressure p was
eliminated from the above equations by inserting Darcy’s relation explicitly
in the balances of momentum and mass for the mixture. For the momentum
balance this results in:

∂σs

∂x
+ αnfk−1

f (vf − vs) − ρs
∂vs

∂t
− ρf

∂vf

∂t
= 0 (28)

The mass balance, Eq.(24) is first differentiated with respect to x. Interchang-
ing the order of spatial and temporal differentiation and inserting Darcy’s
relation then results in:

α
∂2vs

∂x2
+ nf

(
∂2vf

∂x2
− ∂2vs

∂x2

)
− nf (kfQ)−1

(
∂vf

∂t
− ∂vs

∂t

)
= 0 (29)

The above two equations solely have the velocity in the solid, vs, and that in
the fluid, vf , as unknowns. They are better amenable to analytical manipula-
tions. However, the reduction to two equations makes that the velocity of the
wave in the fluid is no longer contained in the set of equations.
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4 Dispersion Analysis

In a strain–softening medium the presence of a non-vanishing internal length
scale that arises from physical properties of the system, is directly related to
the well–posedness of the initial value problem. A method for the quantifi-
cation of this internal length scale is to investigate the dispersive properties
of wave propagation. Wave propagation is called dispersive when harmonics
propagate with different velocities [20]. Since a wave is composed of different
harmonics, the shape of a dispersive wave can then change upon propaga-
tion. The ability to transform the shape of waves is a necessary condition
for continua to properly capture localisation phenomena, since it is otherwise
impossible that the shape of an arbitrary loading wave is changed into a sta-
tionary wave with for instance a sinusoidal shape in the localisation zone. On
the other hand, dispersivity of loading waves in a strain–softening medium is
not a sufficient condition for localisation to be captured in a zone of finite size,
and thus, for the initial value problem to be regularised. As said, such a reg-
ularisation will only be present if, in addition to dispersivity, a non-vanishing
internal length scale can be identified.

To analyse the characteristics of wave propagation in the two–phase
medium, a damped, harmonic wave is considered:

⎛

⎝
δu̇s

δu̇f

δṗ

⎞

⎠ =

⎛

⎝
As

Af

Ap

⎞

⎠ exp (ikx + λt) (30)

where As, Af , Ap are the amplitudes of the perturbations for the displacement
rates in the solid, u̇s, in the fluid, u̇f , and for the pressure rate, ṗ, respectively,
while k is the wave number. The eigenvalue λ = λr−iω can have a real compo-
nent λr, which characterises the damping properties of the propagating wave,
and an imaginary component ω, which is the angular frequency. Substitution
of the first of these equations into the one–dimensional versions of the kine-
matic relation (16) and the incremental stress–strain relation (17) yields after
differentiation with respect to x:

∂σ̇s

∂x
= −EtanAsk

2 exp (ikx + λt) (31)

with Etan the tangential stiffness modulus of the solid. Substitution of this
relation and the perturbation (30) into Eqs.(25) – (27) yields:

−Etank2As − iαkAp − ρsλ
2As − ρfλ2Af = 0

iαkAp + nfk−1
f λAf − nfk−1

f λAs + ρfλ2Af = 0

(nf − α)λk2As − nfλk2Af + iQ−1kλAp = 0

(32)
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A non–trivial solution to this set of homogeneous equations exists if and
only if: ∣

∣
∣
∣
∣
∣

Etank2 + ρsλ
2 ρfλ2 iαk

−nfk−1
f λ nfk−1

f λ + ρfλ2 iαk

(nf − α)k −nfk iQ−1

∣
∣
∣
∣
∣
∣
= 0 (33)

from which the characteristic equation for the eigenvalues λ derives in a
straightforward manner as:

λ4 + aλ3 + bk2λ2 + ck2λ + dk4 = 0 (34)

with

a =
nfk−1

f (ρs + ρf )
ρsρf

(35a)

b =
nfρsαQ + ρfEtan

ρsρf
(35b)

c =
nfk−1

f (Etan + α2Q)
ρsρf

(35c)

d =
nfαQEtan

ρsρf
(35d)

Decomposing Eq.(34) into real and imaginary parts leads to:

λ4
r + aλ3

r + (bk2 − 6ω2)λ2
r + (ck2 − 3aω2)λr + dk4 − bω2k2 + ω4 = 0 (36)

and
(a + 4λr)ω2 − 4λ3

r − 3aλ2
r − 2bk2λr − ck2 = 0 (37)

From the latter equation the phase velocity can formally be deduced as:

cf =
ω

k
=

√
1

a + 4λr
(4k−2λ3

r + 3ak−2λ2
r + 2bλr + c) (38)

Evidently, wave propagation is dispersive, since Eq.(38) is such that the phase
velocity cf is dependent on the wave number k, cf. [10, 11, 12, 13, 14, 15, 16].

Taking the long wave–length limit in Eqs.(36) and (37) by letting k → 0,
and eliminating ω yields the following sixth-order equation in λr:

λ3
r(8λ3

r + 12aλ2
r + 6a2λr + a3) = 0 (39)

which has two triple roots: λr = 0 and λr = − 1
2a. Substitution of the first root

in Eq.(37) gives for the long–wave limit aω2 = ck2, so that with Eqs.(35–a)
and (35–c), the phase velocity in the mixture is obtained as:

cf =

√
Etan + α2Q

ρs + ρf
(40)
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This expression is identical to that which has been found by an analysis of
the reduced equations (28)–(29). The second wave speed is obtained by sub-
stituting the second independent root λr = − 1

2a into Eq.(37), which results in
cf =

√
(b − c/a) − (a/2k)2. For k → 0 this expression becomes imaginary, and

harmonics with small wave numbers cannot propagate. The cut-off wave num-
ber below which harmonics cannot propagate is given by k =

√
a3/(ab − c).

This situation is somewhat reminiscent of some gradient–enhanced plasticity
models [21].

For the short wave-length limit, i.e. when k → ∞, we assume, inspired by
the closed-form solution of the reduced equations (28)–(29), a general form for
the damping coefficient as λr ∼ −kn, n > 1. Substitution of this identity into
Eq.(38) and taking k → ∞ yields that cf → kn−1. In analogy with a single–
phase, rate–dependent medium [4], an internal length scale can be defined
as:

l = lim
k→∞

(
− cf

λr

)
∼ lim

k→∞
k−1 = 0 (41)

which indicates that the internal length scale l vanishes in the short wave–
length limit. Again, this result is in agreement with earlier analyses using the
reduced set of equations [17].

The observation that in a fluid–saturated medium a non–vanishing physi-
cal internal length scale cannot be identified for the short–wave length limit,
is different from the situation in a rate–dependent single–phase medium [4].
The lack of a non–vanishing physical internal length scale in the present case
causes that in numerical analyses the grid spacing takes the role of the inter-
nal length scale and localisation necessarily occurs between two neighbouring
grid points. Evidently, this leads to a dependence of the solution on the dis-
cretisation, as is the case for localisation in the underlying strain–softening,
single–phase continuum.

5 Numerical Examples

To verify and elucidate the theoretical results of the preceding section, a finite
difference analysis has been carried out. The spatial derivatives in Eqs.(28) and
(29) have been approximated with a second–order accurate finite difference
scheme. Explicit forward finite differences have been used to approximate
the temporal derivatives, which is first-order accurate. The choice for a fully
explicit time integration scheme was motivated by the analysis of Benallal
and Comi [16], in which they showed that in this case no numerical length
scale was introduced in the analysis, apart from the grid spacing. As implied
in Eqs.(28) and (29) the velocities vs and vf of the solid skeleton and the fluid
have been taken as fundamental unknowns and the displacements have been
obtained by integration. This scheme may not be the most accurate, but it
suffices to provide the numerical evidence needed to support the analytical
findings of the preceding section.
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Fig. 1. Applied stress as function of time (left) and local stress–strain diagram
(right)
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Fig. 2. Strain profiles along the bar for 101 grid points and time step ∆t = 0.5·10−3 s

All calculations have been carried out for a bar with a length L = 100 m.
For the solid material, a Young’s modulus E = 20 GPa and an absolute
mass density ρ′s = ρs/ns = 2000 kg/m3 have been assumed. For the fluid,
an absolute mass density ρ′f = ρf/nf = 1000 kg/m3 was adopted and a
compressibility modulus Q = 5 GPa was assumed. As regards the porosity,
a value nf = 0.3 was adopted and in the reference calculations α = 0.6 and
the permeability kf = 10−10 m3/Ns. In all cases, the external compressive
stress was applied according to the scheme shown in Fig. 1, with a rise time
t0 = 0.05 s to reach the peak level σ0 = 1.5 MPa. In the reference calculations
a time step ∆t = 0.5 · 10−3 s was adopted, which is about half the critical
time step for this explicit scheme.

The results of the reference calculation are shown in Fig. 2 in terms of the
strain profile along the bar for t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95
s. For the above set of parameters, the phase velocity for the long wave–
length limit is captured exactly. In line with this expression, a variation of the
permeability kf does not influence the phase velocity. Also, the influence of
α according to Eq.(40) was correctly reproduced, as was verified by varying



64 René de Borst and Marie-Angèle Abellan
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Fig. 3. Strain profiles along the bar for 126 grid points and time step ∆t = 0.5·10−3 s

α between 0 and 1. In all cases the maximum error with respect to the phase
velocity remained within 3%.

Upon reflection at the right boundary, the stress intensity doubles and
the stress in the solid exceeds the yield strength σy = 2.5 MPa and enters
a linear descending branch with an ultimate strain εu = 1.125 · 10−3, see
Fig. 1. Figure 2 shows that a Dirac–like strain distribution develops imme-
diately upon wave reflection. This is logical, since a two–phase medium with
neither constituent being equipped with viscosity in its constitutive model,
does not have regularising properties. To further strengthen this observation
the analysis was repeated with a slightly refined mesh (126 grid points), which
resulted in a marked increase of the localised strain (Fig. 3, which has been
plotted on the same scale as the results of the original discretisation in Fig. 2).
In dynamic calculations of softening media without regularisation, not only
the spatial discretisation strongly influences the results, but also the time dis-
cretisation [16]. This is exemplified in Fig. 4 for a time step that is only 20%
smaller than the time step used in the reference calculation.

6 Concluding Remarks

In two–phase media waves propagation is dispersive. However, in the short
wave–length limit, the physical internal length scale disappears. Since this
limiting case governs the development of localisation in a zone of finite width
after the onset of strain softening, regularising properties, which are directly
related to the existence of a non–vanishing internal length scale, are absent.
This conclusion is corroborated by the results of numerical analyses of wave
propagation in a finite one–dimensional bar, which show that, upon the intro-
duction of a softening stress–strain relation for the solid constituent, strain
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Fig. 4. Strain profiles along the bar for 101 grid points and time step ∆t = 0.4·10−3 s

localisation develops in the smallest possible size, i.e. between two neighbour-
ing grid points. Additional computations with a different spatial resolution
and with a different time step confirm this observation. Regularisation can be
introduced in a two–phase medium, but this necessitates the introduction of
rate or gradient dependence in the solid constituent, or explicitly taking into
account the effect of grain rotations.
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1. Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular
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Summary. This article summarizes recent results pertaining to the implementation
of mortar-based contact formulations in nonlinear computational solid mechanics.
In particular, the authors discuss extension of the mortar framework to encompass
large sliding, searching algorithms, treatment of self-contact phenomena, and use of
the mortar framework to treat problems of lubricated contact.

1 Introduction

This paper describes recent progress in the development of mortar-based
methods for analysis of contact mechanics problems using finite elements.
The mortar element method was first conceived as a domain decomposition
method, whereby possibly distinct meshes may be joined across interfaces such
that optimal convergence results expected from the underlying finite element
method can be obtained (the reader may consult [4, 2, 3, 15] for early de-
scriptions of the idea, as well as useful overviews). In the context of nonlinear
mechanics, one of the appealing applications of this idea is “mesh tying.” In
such an application, separate meshes can be generated for subcomponents of
an assembly to be analyzed, and then the mortar formulation can be used to
“join” these parts by enforcing compatibility of the solution across the inter-
faces where they meet. Using this approach, accurate results can be obtained
even for nonconforming meshes, as long is there is not too large a discrep-
ancy in mesh fineness across each interface. In mortar methods in general,
the key idea is that the kinematic constraints between neighboring domains
are enforced in an integral sense, rather than locally at each of a finite set of
collocation points.

Since contact problems frequently feature nonconforming meshes in con-
tact regions, the potential applicability of mortar techniques to such problems

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 67–86.
© 2007 Springer. Printed in the Netherlands.
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is not hard to imagine. Several early authors recognized this fact and pro-
posed mortar-based formulations for kinematically linear applications with
considerable success (see [1, 9, 10, 6]). In extending such methods to the large
deformation, large sliding regime, however, one is confronted with the need to
not only reformulate the constraint definitions to reflect changing connectivity
during relative sliding, but also to provide robust algorithmic implementations
of these definitions such that (for example) Newton-Raphson or similar itera-
tive schemes for solution of the nonlinear equations will be effective. In a set
of recent papers [12, 13, 17], such large deformation formulations have been
thoroughly described, and have been shown to be robust for large deformation
applications in both two and three dimensions, and under either dynamic or
quasistatic circumstances.

In this paper, we review some of the key constructs of mortar-based con-
tact algorithms, starting by looking at the mesh tying problem as a template
and briefly discussing the extension to truly large sliding contact. After this
review, the emphasis will be on recent extensions of the mortar methodology,
which allow it to encompass a much broader set of applications. Specifically,
the self-contact problem and the lubricated contact problem will be examined.
Generally speaking, the mortar framework allows us to put the spatial dis-
cretization of contact phenomena on a much firmer theoretical basis, opening
up a large range of interfacial phenomena that can be reliably simulated. In
addition to the accuracy exhibited by these approaches, they also lend con-
siderable robustness to a nonlinear equation solving strategy as compared to
traditional contact descriptions, due to the nonlocal nature of the constraints
produced by the formulation.

2 Background: Mortar Projection in Contact Mechanics

2.1 The Mesh Tying Problem

The key conceptual concept behind mortar projection is illuminated by tak-
ing the mesh tying application as a first example. To fix ideas, we consider
the large deformation response of two bodies (i), with an eye toward approxi-
mately computing the deformation mappings ϕ(i) ∈ H1(Ω(i)), describing the
current positions of reference configurations Ω(i) . As per a common proce-
dure, the surfaces of the bodies ∂Ω(i) are assumed to be decomposed into
prescribed traction, displacement and contact regions via

∂Ω(i) = Γ (i)
σ ∪ Γ (i)

u ∪ Γ (i)
c

Γ (i)
σ ∩ Γ (i)

u = Γ (i)
u ∩ Γ (i)

c = Γ (i)
σ ∩ Γ (i)

c = ∅
(1)

and boundary conditions are summarized as

P
(J)
iJ N

(i)
J = t̄

(i)
i on Γ (i)

σ

ϕ
(i)
i = ϕ̄

(i)
i on Γ (i)

u

(2)
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Γ
(2)
c

h

Γ
(1)
c

h

Fig. 1. Simple two dimensional illustration of how dissimilar polynomial interpola-

tion of the same surface causes Γ
(1)h

c �= Γ
(2)h

c . The dark curve indicates the surface
to be approximated

In (2), PiJ denotes the components of the first Piola-Kirchhoff stress, NJ rep-
resents the components of the outward normal to the reference configuration,
and t̄

(i)
i and ϕ̄

(i)
i are the prescribed tractions and displacements, respectively.

The summation convention is applied, where uppercase Roman indices refer
to reference quantities, while lowercase counterparts are spatial. We leave un-
specified the specific constitutive law governing PiJ ; in fact, the formulations
we propose in this paper for treatment of interfaces are conceived indepen-
dently of the material laws used to describe the contacting continua.

The mortar method is to be applied over the tied regions, which are de-
noted here by Γ

(i)
c , i = 1, 2, such that the mesh tying constraint becomes

ϕ(1) = ϕ(2) on Γ (1)
c = Γ (2)

c . (3)

In the continuum setting, the reference positions of the tied regions coincide,
so that one could equivalently require

U (1) = U (2) on Γ (1)
c = Γ (2)

c , (4)

where U (i) = ϕ(i) − X(i) is the Lagrangian displacement. In a numerical ap-
proximation, the discretized versions of the surfaces (denoted Γ

(i)h

c , i = 1, 2)
are no longer coincident; indeed, it is easy to show that discretizations of the
same (curved) surface will in general produce areas of unintended overlap and
void (see Fig. 1). This fact is important in practice (see for example [11]), and
means that quite often reference geometries must be corrected after mesh gen-
eration so that the initial configuration obeys the mortar-based constraints.
This is particularly true if the continuity constraints are written in terms of
(3) rather than (4), which are not equivalent in the spatially discrete case. To
simplify our discussion here, however, we neglect this subtlety.
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By convention, we introduce a mortar multiplier field λh, defined over the
non-mortar (sometimes termed slave) surface Γ

(1)h

c . This field is written in
terms of the shape functions NA describing Γ

(1)h

c , such that

λh =
ns∑

A=1

λAN
(1)
A , (5)

where ns is the set of all nodes comprising Γ
(1)
c . A mortar method enforcing

compatibility of the two bodies’ responses over the tying region is defined by
enforcing:

0 = Gint,ext(ϕh,
∗
ϕ

h
) + Gc(ϕh,

∗
ϕ

h
) (6)

which must hold for all admissible variations { ∗
ϕ

(1)h

,
∗
ϕ

(2)h

}, and

0 =
∫

Γ
(1)h
c

qh · (U (1)h − U (2)h

) dΓ (7)

which must hold for all qh ∈ Mh, where Mh is the space of admissible
variations of the multiplier field λh. In (6), Gint,ext is the usual virtual work
of the internal stresses and applied loads, while Gc denotes the contact virtual
work, given here as

Gc(ϕh,
∗
ϕ

h
) = −

∫

Γ
(1)h
c

λh · ( ∗
ϕ

(1)h

− ∗
ϕ

(2)h

) dΓ. (8)

Equation (6) is recognized as the usual expression of global equilibrium,
while the constraints implied by (7) weakly enforce compatibility between
U (1)h

and U (2)h

. Weighting functions associated with the constraint equation
are given as

qh =
ns∑

A=1

qAN
(1)
A . (9)

Writing the Lagrangian displacements on both surfaces as

U (1)h

=
ns∑

A=1

UAN
(1)
A , U (2)h

=
nm∑

C=1

UCN
(2)
C , (10)

where nm is the number of nodes C that comprise Γ
(2)h

c (the mortar surface),
we find that substitution into (7) renders

0 =
ns∑

A=1

qA ·
{∫

Γ
(1)h
c

N
(1)
A

(
ns∑

B=1

UBNB −
nm∑

C=1

UCN
(2)
C

)

dΓ

}

. (11)

Equation (11) must hold for arbitrary qA, so that a vector-valued constraint



Surface-to-Surface Discretization Strategies for Interface Mechanics 71

is implied at each node A in Γ
(1)h

c :

0 = cA =
∫

Γ
(1)h
c

N
(1)
A

(
ns∑

B=1

UBNB −
nm∑

C=1

UCN
(2)
C

)

dΓ

=
ns∑

B=1

n
(1)
ABUB −

nm∑

B̂=1

n
(2)
ACUC .

(12)

In (12), n
(1)
AB and n

(2)
AC are given by

n
(1)
AB =

∫

Γ
(1)h
c

N
(1)
A N

(1)
B dΓ , and n

(2)
AC =

∫

Γ
(1)h
c

N
(1)
A N

(2)
C dΓ. (13)

One may readily see that (12) forces U (1)h

to equal a least squares projection

of U (2)h

onto the discretization Γ
(1)h

c of Γ
(1)
c . The multiplier field λh defined in

(5) enforces these discrete constraints, and may be understood as the surface
tractions distribution appearing in the contact virtual work, as given in (8).

2.2 Generalization to Sliding Contact

In extending the mortar idea to true contact-impact interaction, one must
recognize that the definition of the mortar operators (as summarized above in
(13)) is now affected by changing connectivity as sliding occurs. This suggests
that it is now more natural (in contrast to (8)) to represent the contact virtual
work Gc in terms of spatial configuration quantities, via

Gc(ϕ,
∗
ϕ) = −

∫

γ
(1)
c

λ ·
( ∗
ϕ

(1)
(XXX) − ∗

ϕ
(2)

(ȲYY )
)

dγ, (14)

where γ
(1)
c is the current configuration of the (non-mortar) contact surface

on Γ
(1)
c , the mortar multiplier λ now denotes the Cauchy contact traction,

and where ϕ(2)(ȲYY ) is the current position of the contact point for XXX. Super-
script h’s have been omitted in (14) to simplify notation. The notation ȲYY has
been used to denote the contact point on Γ

(2)
c corresponding to each point

X ∈ Γ
(1)
c . In traditional contact implementations, this point is typically ex-

plicitly determined for each point at which which contact constraints are to
be enforced. Here we will employ a spatial integration procedure which will
only indirectly define pairings between points X and Ȳ .

Another important distinction between the contact problem and the mesh
tying problem is that inequality constraints now govern the Lagrange mul-
tipliers (tractions) and associated kinematics. We may define a gap function
g(XXX, t) as

g(XXX, t) = nnn ·
[
ϕ(1) (XXX, t) − ϕ(2)

(
ȲYY , t

)]
(15)
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where n denotes the outward unit normal to γ
(1)
c at x = ϕ(1) (XXX, t). The

Kuhn-Tucker conditions governing the normal part of the contact interaction
are then written as

g(XXX, t) ≤ 0
λN (XXX, t) ≥ 0

λN (XXX, t)g(XXX, t) = 0
(16)

where λN (XXX, t) = −λ ·n is the Cauchy contact pressure at material point XXX
on the slave surface. Equation (162) implies that only compressive interaction
is allowed, while (163) allows the contact pressure to be non-zero only when
g(XXX, t) = 0.

The frictional response can be characterized by isolating the relative tan-
gential velocity vT via

vvv = ϕ̇(2)
(
ȲYY , t

) − ϕ̇(1) (XXX, t)
= vvvN + vvvT

(17)

where vvvT is that part of the relative velocity in the tangent plane associated
with n. The contact traction λ is similarly resolved,

λ = λN + λT . (18)

With these notions in hand, the conditions for Coulomb friction can be written
as:

vvvT − γ̇
λT∥

∥
∥λT

∥
∥
∥

= 000

Φ :=
∥
∥
∥λT

∥
∥
∥ − µ

∥
∥
∥λN

∥
∥
∥ ≤ 0

γ̇ ≥ 0
Φγ̇ = 0,

(19)

where, as can be seen, the frictional traction λT is forced to oppose the tan-
gential velocity vT .

A discrete version of the contact problem is achieved through substitution
of finite dimensional approximations for deformation mappings, variations,
and Lagrange multipliers. This results in the following mortar approximation
to the contact virtual work, denoted as Gcm:

Gcm(ϕh,
∗
ϕ

h
) = −

ns∑

A

ns∑

B

nm∑

C

λA ·
[
n

(1)
AB

∗
ϕ

(1)
B − n

(2)
AC

∗
ϕ

(2)
C

]
. (20)

The expressions for n
(1)
AB and n

(2)
AC are similar to those given in the tying

problem (see (13), but now live in the spatial configuration:

n
(1)
AB =

∫

γ(1)h
N

(1)
A

(
ξ(1)(XXX)

)
N

(1)
B

(
ξ(1)(XXX)

)
dγ,

n
(2)
AC =

∫

γ(1)h
N

(1)
A

(
ξ(1)(XXX)

)
N

(2)
C

(
ξ(2)

(
ȲYY (XXX)

))
dγ.

(21)
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The normal and tangential portions of the contact operator are now ex-
posed by splitting each nodal λA into normal and frictional parts:

λA = λNA
+ λTA

. (22)

The normal part of the contact traction may be represented as (see [12])

λNA
= −λNA

nnnA (no sum) (23)

where λNA
represents the contact pressure at node A. It is subject to Kuhn-

Tucker conditions via
λNA

≥ 0
gA ≤ 0

λNA
gA = 0

(24)

where the mortar projected gap gA at slave node A is defined as

gA = nnnA · gA,

gA = κA

[
ns∑

B

n
(1)
ABϕϕϕ

(1)
B −

nm∑

C

n
(2)
ACϕϕϕ

(2)
C

]

,
(25)

where κA is a scale factor defined as

κA =
1

∑
D n

(1,ref)
AD

,

n
(1,ref)
AD =

∫

Γ (1)h
N

(1)
A

(
ξ(1)(XXX)

)
N

(1)
D

(
ξ(1)(XXX)

)
dΓ.

(26)

The scaling defined in (26), while not by any means unique, is performed so
that the gap function gA is dimensionally correct; this feature is of crucial
importance when implementing penalty methods in particular. Equation (25)
is written in terms of a nodal normal nA associated with each slave node A.

Although other implementations of mortar-based frictional contact are
possible, we consider here a penalty regularization of conditions (19). This
may be expressed via

LvλT = εT

⎡

⎣vvvT − γ̇
λT∥

∥
∥λT

∥
∥
∥

⎤

⎦

Φ :=
∥
∥
∥λT

∥
∥
∥ − µ

∥
∥
∥λN

∥
∥
∥ ≤ 0

γ̇ ≥ 0
Φγ̇ = 0

(27)

where εT is the frictional penalty parameter. The frictional conditions in (19)
are recovered in the limit as εT → ∞. LvλT is the Lie derivative of the
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frictional traction, and may be defined (for example) in a two dimensional
context via

LvλT = λ̇T τ (28)
where τ is a tangential base vector. Equation (28) contains material time
derivatives of the components of λT only; the absence of derivatives of base
vectors assures its frame indifference.

Correspondingly, as shown in [17], the appropriate notion of tangential
velocity to use in a mortar projected framework is

vvvTA
= −κA

[
nm∑

C

ṅ
(2)
ACϕϕϕ

(2)
C −

ns∑

B

ṅ
(1)
ABϕϕϕ

(1)
B

]

· (I − n ⊗ n) (29)

where ṅ
(2)
AC and ṅ

(1)
AB are time derivatives of the mortar integrals (holding node

A constant). Note that the scaling factors κA have again been introduced to
retain dimensional consistency. Since the mortar integral time derivatives are
invariant with respect to any rigid body motion relative to the original spatial
frame, vvvTA

is frame indifferent.
With these definitions in hand, a trial state-return map strategy is em-

ployed to determine the Coulomb frictional tractions in an algorithmic, time
stepping procedure. The algorithm begins by computation of a trial state,
assuming no slip during the increment:

λtrial
TAn+1

= λTAn
− εTκA

[ nm∑

C

(
n

(2)
ACn+1

− n
(2)
ACn

)
ϕϕϕ

(2)
C

−
ns∑

B

(
n

(1)
ABn+1

− n
(1)
ABn

)
ϕϕϕ

(1)
B

]
· (I − nA ⊗ nA),

(30)

with a corresponding trial value for the slip function

Φtrial
An+1

=
∥
∥
∥λtrial

TAn+1

∥
∥
∥ − µ|λNAn

|. (31)

A return map is then used to define the final frictional traction via

λTAn+1
=

⎧
⎪⎨

⎪⎩

λtrial
TAn+1

if Φtrial
An+1

≤ 0 (stick),

µ|λNAn
|

λtrial
TAn+1

‖λtrial
TAn+1

‖ otherwise (slip).
(32)

In these expressions, the subscript n + 1 means a state associated with the
current iteration for the unknown solution at tn+1, while n is associated with
the last (converged) time level.

3 An Extension of the Framework: Mortar-Based
Self-Contact

In many applications, such as are encountered in post-buckling analysis, a
surface may fold upon itself such that so-called self contact takes place. A two
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Fig. 2. Notation for a large deformation self-contact problem

dimensional self-contact problem, with large deformation and large sliding, is
shown schematically in Fig. 2. Recent work shows that the mortar framework
can be extended to such settings, and we highlight some of the key steps here
in accomplishing that extension.

In writing the virtual work for such a system, the expression given origi-
nally in (8) must be generalized not only to account for the possibility of slid-
ing, but also to account for the possibility of multiple contact patches which
can be generated as the surface folds over on itself. We therefore replace (8)
by

Gc(ϕ,
∗
ϕ) := −

k∑

i=1

∫

γ
(i,1)
c

λ(i,1)(XXX, t) ·
( ∗
ϕ

(i,1)
(XXX, t) − ∗

ϕ
(i,2)

(ȲYY , t)
)

dγ,

(33)
where ϕ(i,2)(ȲYY ) is the current position of the contact point for XXX. Indices i
refer to the multiple contact patches which might be identified at any instant
in the simulation, with k being the number of these patches. As before, the
surface γ

(i,1)
c is the nonmortar surface where the Lagrange multipliers will be

interpolated, and γ
(i,2)
c is the mortar surface. As summarized earlier in (22),

the contact traction λ can be resolved into normal and tangential components,
and the conditions of normal contact are given by (24), and the frictional
conditions by (19), just as in the frictional contact case. The contact searching
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Fig. 3. Mortar segments in (a) two dimensions; (b) three dimensions. A segment is
shown in green

algorithm for mortar contact, however, must be considerably generalized to
deal with the phenomenon of self-contact.

As discussed in [17] and [12] for general mortar contact formulations, we
need to find all the mortar segments to compute the mortar integrals, n

(1)
AB

and n
(2)
AC , defined in (21). For example, in three dimensional problems, the

mortar integrals are computed as:

n
(i,1)
AB =

∑

seg

n
(i,1)
AB

seg
=

∑

seg

∑

tri

n
(i,1)
AB

tri,seg
, i = 1, ..., k,

n
(i,1)
AB

tri,seg
=

∫

γtri,seg,i
c

N
(1)
A

(
ξ(1)(XXX)

)
N

(1)
B

(
ξ(1)(XXX)

)
dγ

(34)

n
(i,2)
AC =

∑

seg

n
(i,2)
AC

seg
=

∑

seg

∑

tri

n
(i,2)
AC

tri,seg
, i = 1, ..., k,

n
(i,2)
AC

tri,seg
=

∫

γtri,seg,i
c

N
(1)
A

(
ξ(1)(XXX)

)
N

(2)
C

(
ξ(2)

(
ȲYY (XXX)

))
dγ

(35)

In these equations, the superscript seg refers to a mortar segment , which is
constructed such that each segment is defined by the mutual projection of a
single slave element surface with a single master element surface, as shown
in Fig. 3. The polygonal intersections of element surfaces, shown in green
in Fig. 3(b), are in turn divided into triangles for numerical evaluation of
the integrals, giving rise to the superscripts tri above. The segments change
dynamically during a simulation of sliding contact, and the dependence of the
method on the determination of the segments is why we refer to the contact
algorithms in this work as being surface to surface algorithms.

Given a discretized contact surface, an efficient contact algorithm depends
crucially on efficient determination of these mortar segments. In our imple-
mentation, we recursively split the surface into subsurfaces to build a tree
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Fig. 4. A bounding volume tree for a 2D surface

structure; the approach has been extensively described in [16] and will only
be briefly recounted here. The subsurfaces related to leaf tree nodes are the
elements of the surface. Each node of the tree will be termed a T-node, to dif-
ferentiate from a finite element node. Each subsurface is defined and stored in
terms of an inflated bounding volume (specifically, a k-DOP), which is saved
in its corresponding T-nodes. Binary trees are used in this work so each non-
leaf T-node has exactly two children, a left child and right child. A typical
bounding volume hierarchy is shown in Fig. 4. If there are n elements for a
contact surface, the number of T-nodes in bounding volume tree is 2n − 1.
The storage space for a bounding volume tree is then O(n).

In [16], two methods for building bounding volume trees are discussed:
top-down and bottom-up approaches. A top-down approach, which is used
to build the bounding volume trees for multi-body contact problems, starts
with one T-node (a root T-node) which is related to the entire surface. The
surface is then recursively split into subsurfaces and each of them is saved in
a newly created T-node. The bottom-up approach, by contrast, begins with
the input elements as the leaves of the bounding volume tree and applies
some algorithms to group elements recursively. Usually, by this approach, the
subsurface corresponding to a T-node is a connected surface so it is a more
appropriate way than the top-down approach to build the bounding volume
trees for self-contact problems. In this work, we apply the surface clustering
algorithm introduced in [14, 7] to build bounding volume trees.

In the face clustering algorithm, one first creates a dual graph for the mesh
of the contact surface. A dual graph is constructed by mapping each element
of the surface mesh to a dual node and connecting every two dual nodes by
a dual edge if the corresponding elements are adjacent and share an element
edge. An example of a dual graph is shown in Fig. 5, where dashed lines are
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Finite Element Edge

Finite Element Node

Dual Node

Dual Edge

Fig. 5. Dual graph for a surface mesh. Each dual node represents an element or
subsurface in the finite element mesh

finite element edges, solid lines are dual edges, grey dots are finite element
nodes, and black dots are dual nodes.

By contracting a dual edge (i.e., removing the dual edge and collapsing
its two dual nodes into a new dual node) one can group two elements into
an element cluster (or a subsurface) which corresponds to a new dual node
in the dual graph, as seen in Fig. 6. Basically, this contraction will group
two contiguous elements or subsurfaces into a new subsurface, which will be
their parent in the bounding volume hierarchy. One may also notice that each
dual node in the dual graph corresponds to a T-node in the bounding volume
tree. By doing this contraction iteratively, one can finally build a hierarchical
structure of the surface mesh, as shown in Fig. 7.

To control the quality of the bounding volume hierarchy, i.e. the balance
of the bounding volume tree and the shape and tightness of the bounding
volumes, one has to follow a carefully designed rule to contract the dual edges.
This rule identifies which edge should be contracted first and which should be
contracted later. To do this, a cost function is assigned to each dual edge; the
cost function applied in this work is similar with that was used by [14]. All dual
edges are saved in a heap data structure (see [5] for an introduction) and the
key values of the heap entries are the contraction costs of the corresponding
dual edges. Thus, the dual edge with the least cost is saved on the top of the
heap. The procedure to construct a bounding volume hierarchy with the face
clustering algorithm can be summarized as:

1. Build the initial dual graph for the finite element mesh, compute cost
functions of all dual edges, and save all the dual edges in a heap.
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Dual Graph

Contract This Dual Edge

Surface Mesh

New  Subsurface

(a) (b)

Fig. 6. Contraction of a dual edge to construct a new subsurface (i.e. removal of
a dual edge and collapsing of its two dual nodes): (a) initial dual graph, and (b)
new dual graph. The bigger dot on (b) denotes the new generated dual node by this
contraction, and the new dual node corresponds to a new constructed subsurface
denoted by the shaded area

2. Remove a dual edge from the top of the heap and contract it to construct
a new subsurface.

3. Generate a new T-node for the new subsurface. The two children of the
new T-node are the two T-nodes corresponding to two dual nodes (sub-
surfaces or elements) connected by the dual edge.

4. Update all cost functions of dual edges that are connected with the two
dual nodes of the contracted dual edge.

5. Update the heap.
6. Repeat 2 through 5 iteratively until the whole tree is constructed.

From this procedure, one can see that the bounding volume tree is built
in a bottom-up manner. For each node of the tree, the bounding volume
of its corresponding subsurface is computed. For large deformation contact
problems, the updating of the bounding volume trees is required after each
iteration since the bounding volumes are dependent on deformation.

Finally, after the contact detection has been accomplished, it is necessary
to do some post processing after the searching, to avoid the situation where the
contact traction fields on each contact patch could be defined on discontinuous
surfaces, as shown in Fig. 8. As can be seen, without some type of intervention,
an element can be a slave element in one contact pair and a master element
in another, and there may be a mixture of slave and master elements on a
continuous contact element patch (the lower or upper solid line in Fig. 8). A
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(a) (b)

(c) (d) (e)

Fig. 7. A hierarchy (tree) structure from the bottom level to the top level

S

S

S

M
M

M − MasterS − Slave

M

S S

M

M

Fig. 8. Discontinuous definition of slave and master elements (a double arrow de-
notes a contact element pair) which should be avoided

simple sorting procedure is applied so that each side of each contact patch
retains its own identity as master or slave.

As an example of the type of problem to which this self-contact approach is
applicable, we consider the rolling of a highly loaded tire which is nearly flat.
In this problem, the part of the surface in self-contact (inside the tire) contin-
ually changes due to the rolling, placing a significant demand for robustness
on the searching algorithm and Newton-Raphson iterative scheme. Deformed
configurations of the nearly flat tire at different load steps are shown in Fig. 9,
where (c) and (d) only show a quarter of the tire to demonstrate self-contact
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Fig. 9. Deformed configurations of the tire rolling problem at different load steps;
parts (c) and (d) only show a quarter of the tire

inside the tire. Significant deformation and sliding are seen to occur in this
problem. Notably, it is difficult if not impossible to perform this situation
using node-to-surface contact discretization strategies.

4 Mortar Formulation of Lubricated Contact

Another recent extension of the mortar formalism involves its use to describe
lubricated contact, such as might occur for example in many metal forming
applications, or underneath a tire rolling on wet pavement. Such a problem,
with two deformable solid bodies and a thin fluid film between them, is shown
in Fig. 10. The two solid bodies occupy the open sets Ω

(1)
s and Ω

(2)
s , where a

subscript s represents the solid phase.
The solid phase of a lubricated contact problem is governed by the usual

solid continuum mechanics equations. Here we assume infinitesimal deforma-
tions for the solid phase for simplicity, although it is possible to extend the
formulation to large deformation cases with proper treatments of geometric
nonlinearities. No assumptions are made for the constitutive laws: the material
response may be either elastic or inelastic, rate dependent or independent.
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Fluid phase

Ω
(2)
s

Ω
(1)
s

Γ
(1)
su

Γ
(2)
su

Γ
(1)
sσ

Γ
(2)
sσ

Γ
(1)
sc

Γ
(2)
sc

Fig. 10. Notation for two body lubricated contact problems

In the problems considered here, the through-the-thickness dimension of
the fluid film is assumed to be much smaller than the size of the contact
patch in surface coordinates. Under such conditions, the fluid phase of a lu-
bricated contact problem is governed by the Reynolds equation, which can be
derived from the Navier-Stokes and continuity equations based on the thin-
film assumption (see, e.g., [8]). The Reynolds equation is defined on a surface
domain, which considered to be parameterized by the slave side of a contact
surface in this formulation. As shown in Fig. 11, the contact domain Ωf , cor-
responding to the slave surface Γ

(1)
sc less the dry contact region Ωd, is divided

into two different subdomains, Ωfl
and Ωfc

. Ωfl
is the subdomain where the

lubricant is continuous and has positive pressure, while Ωfc
is the subdomain

where the lubricant has cavitations and is ruptured (the fluid film is assumed
to support only a negligible amount of tension before rupture). ΓfD

is the sur-
face where the Dirichlet boundary conditions are prescribed for the Reynolds
equation, while ΓfN

is the boundary between the dry contact domain and the
lubrication domain and where Neumann boundary conditions are prescribed.
ΓfR

, which is called the Reynolds boundary, is the boundary between Ωfl
and

Ωfc
. Based on these definitions,

Ωf = Γ (1)
sc

\ Ωd, (36)

and
Ωf = Ωfl

∪ Ωfc
. (37)
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Ωfl

ΓfD

Ωd ΩfcΓfN

ΓfR

Fig. 11. Notation for the lubrication domain

The virtual work for the solid phase can be written in the usual way via

Gc(uuu, p,
∗
uuu) := −

∫

Γ
(1)
sc

ttt(1)(XXX) ·
(∗
uuu

(1)
(XXX) − ∗

uuu
(2)

(ȲYY )
)

dΓ, (38)

where ȲYY is the position of the contact point for XXX, with the understanding
that the contact traction t is now inherited from the traction field prevailing in
the intervening fluid, consisting in general of a fluid pressure p in the normal
direction and a viscous tangential component.

It is the fluid part of the formulation that makes the mortar approach
attractive in this case, since the pressure distribution in the thin film is subject
to a governing differential equation (the Reynolds equation). The fact that the
mortar approach produces a consistent surface discretization gives an ideal
way to not only approximate this differential equation, but also to couple
it to the solid response. As presented by [8], the general Reynolds equation
which governs the fluid pressures within Ωfl

is

∂ (ρh)
∂t

+ ∇̃ ·
(

−ρh3

12µ
∇̃p +

ρ(ṼVV
(1)

+ ṼVV
(2)

)
2

h

)

= 0, (39)

where ρ is the current mass density of the lubricant, h is the fluid film thickness
(negative of the gap function g), µ is the viscosity of the lubricant, ṼVV

(1)
and
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Fig. 12. Finite element mesh of the three dimensional lubricated contact problem
with two different perspectives

ṼVV
(2)

are projections of slave and master surface velocity vectors onto the slave
surface, and p is the fluid pressure (the primary unknown of Equation (39)).
Operators ∇̃ indicate divergence and gradient operators in reduced (surface)
coordinates. The fluid viscosity may be dependent on the fluid pressure; both
constant viscosity cases and exponential pressure dependence of viscosity have
been tested in our early work.

We have implemented a mortar-based monolithic strategy to solve the
coupled Reynolds equations and global equilibrium equations, with the solid
phase displacement coupling to the fluid equations through the film thickness
h and the fluid equations coupling to the solid mechanics equations through
generation of the pressure field p and the viscous shear stresses. Although the
full numerical formulation is too involved to recount in detail here, we present
a simple three dimensional example to demonstrate the type of simulation
for which the technique has been tested. The problem is depicted in Fig. 12,
where the relative rotation of two cylinders with a lubricant-filled interface is
considered. A quasi-static rotation is applied to the inner surface of the inside
cylinder, corresponding to an angular speed of ω = 500. Figure 12 presents
the finite element mesh for the two cylinders. The inside surface of the outer
cylinder is chosen as the slave surface and the outside surface of the inner
cylinder is chosen as the master surface.

Only one load step is applied for this problem. The computed pressure
distribution in the fluid film is plotted in Fig. 13.

5 Conclusion

This paper has discussed the mortar method as an underlying spatial dis-
cretization technique for large deformation contact problems, and has empha-



Surface-to-Surface Discretization Strategies for Interface Mechanics 85

Fig. 13. Computed pressure distribution for the three dimensional lubricated con-
tact problem

sized two promising recent extensions of this idea: incorporation of self-contact
phenomena, and consideration of lubricated contact problems. Contact formu-
lations based on mortar concepts have been seen not only to be extremely ac-
curate in comparison with more traditional node-to-surface strategies, but are
also extremely robust numerically, particularly within the implicit dynamic
and quasistatic applications of primary interest here.
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Universitat Politécnica de Catalunya (UPC)
Campus Nord UPC, Edifici C-1, c/ Jordi Girona 1-3, 08034 Barcelona, Spain
xavier.oliver@upc.edu

Summary. The paper examines the possibilities of extending the Particle finite
element methods (PFEM), which have been successfully applied in fluid mechanics,
to solid mechanics problems. After a review of the fundamentals of the method, their
specific features in solid mechanics are presented. A methodology to face contact
problems, the anticipating contact interface mesh, is presented on the basis of a
penalty-like constitutive models for imposing the contact and friction conditions.
Finally, the PFEM is applied to same representative solid mechanics problems to
display the capabilities of the method and some final conclusions are obtained.

1 Introduction

Particle finite element methods (PFEM) have received considerable attention
in the recent years due to their modeling capabilities for same specific prob-
lems. So far, most of the research and applications of PFEM can be found in
the context of computational fluid dynamics (CFD) to tackle fluid mechanics
problems in typical solid mechanics settings: i.e. using Lagrangean descrip-
tions of the motion of the continuum medium (Onate et al., 1996; Lohner
et al., 2002; Idelsohn et al., 2003a, 2003b, 2004). Their main advantages are
found in modeling confined fluids exhibiting moving free surfaces. There, the
limited character of the particle displacement makes suitable a Lagrangean de-
scription which, in turn, facilitates the tracking and modeling of the existing
free surfaces.

On the other hand, Lagrangean descriptions are the natural way of describ-
ing motion of solids, and, therefore, there is a long solid mechanics tradition
in this sense. However in certain processes, of considerable practical interest,
the material undergoes very large deformations, rapidly changing boundaries
are involved and the motion resembles that of fluids. Metal forming and ma-
chining processes, or manufacturing processes involving powder and granular

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 87–103.
© 2007 Springer. Printed in the Netherlands.
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materials are typical cases where the border between solid and fluid behaviors
becomes fuzzy.

Therefore, the application of PFEM to solid mechanics problems appears
as a new research field deserving to be explored. The purpose of this work is
precisely investigating the possibilities offered by the particle finite element
methods in some representative solid mechanics problems involving large de-
formations, multiple contacts, new boundaries generation, etc., thus providing
some insights on the future developments in that field.

2 Fundamentals: The Particle Finite Element Method

Particle finite element methods emerged as a natural result of previous explor-
ations in the context of the meshless methods (Belytschko et al., 1994, 1996;
Onate et al., 1998). They can be characterized by the following ingredients:

1. The use of a Lagrangean format for describing the motion (Malvern, 1969).
A selected cloud of particles of infinitesimal size (material points) are
tracked along the motion to describe the continuum medium properties
evolution (position, displacement, velocities, strain, stresses, internal vari-
ables, etc.). When necessary, the properties of the remaining particles of
the continuum medium are obtained by interpolation of the properties at
points of that cloud. Numerical computations are done on the basis of a
finite element mesh that is constructed at every time step on the basis of
the particle positions. Then, Delaunay triangulations, allowing the con-
struction of a finite element mesh for a given sets of nodes, emerge as a
suitable meshing procedure (George, 1991; Calvo et al., 2003).

2. The use of a boundary recognition procedure to identify what particles of
the cloud define an external (or internal) boundary. The so-called alpha-
shape method (Calvo et al., 2003; Xu et al., 2003) constitutes a suitable
strategy for this purpose (see Figure 1). It essentially consists of identifying
those sides/segments of the cloud that can be inserted into an empty
circle/ball (not including other particles of the cloud) of size larger than
a given parameter (the alpha-shape parameter). The vertices/particles of
those segments are then identified as boundary particles. Large values of
the alpha-shape parameter result in a boundary which is the convex hull
of the cloud. Small values of the alpha-shape parameter return a boundary
constituted of all the particles of the cloud.1

2.1 Equations of Motion. Boundary Value Problem

Let us consider a solid body B experiencing a deformation ϕ(X, t) : B ×
[0, T ] → R2, where [0, T ] is the time interval of interest. Let us also consider a

1For a uniformly distributed cloud of particles (with typical separation h) alpha-
shape values of 1.1h − 1.5h are recommended for a good estimation of the actual
boundary.
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Fig. 1. The alpha-shape method for recognizing boundaries of a cloud of particles

Fig. 2. Incremental non-linear problem at time step [tn, tn+1]

finite set of particles of B ⊃ P := {P1, P2, . . . , Pnpart}, occupying, at a specific
time interval t ∈ [0, T ], spatial points with coordinates X̄i = [X1, X2]T , which
define the particle reference configuration Ωt := {X̄P1 , X̄P2 , . . . , X̄Pnpart

} (see
Figure 2).

Let us assume, at time t, a Delaunay triangulation, with all its vertices, i,
placed at corresponding positions, X̄i, of the particle configuration Ωt, thus
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defining an open set, Vt, at the Euclidean 2D space, with boundary ∂Vt.
The particles of B belonging to the material volume Vt define a body B̃ ⊂ B
approaching B as npart → ∞. Let us also consider a time discretization of [0, T ]
in time intervals and a specific time slice [tn, tn+1] ⊂ [0, T ] characterizing the
time interval/step n+1 of length ∆t = tn+1−tn. The boundary value problem
at the material domain during the time interval can be written as:

Given vn, an, σn,qn,u∗
n+1, t

∗
n+1

Find un+1 ≡ ϕn+1(Xn) such that:

∇ · σn+1 + bn+1 = ρn+1an+1 (momentum equation)

σn+1 = σn + Σ(en+1, σn+1,qn+1)︸ ︷︷ ︸
∆σn+1

qn+1 = qn + Q(en+1, σn+1,qn+1)︸ ︷︷ ︸
∆qn+1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(constitutive equations) (1)

en+1 = E(un+1) (kinematic equation)

σn+1,nn+1 = t∗n+1 (natural boundary condition) at ∂σVn+1

un+1 = u∗
n+1 (essential boundary condition) at ∂uVn+1

where vn, an, σn, qn are, respectively, the velocities, accelerations, stresses
and internal variable values at the beginning of the interval, u∗

n+1, t∗n+1 are the
prescribed values of displacements and tractions, respectively, at the bound-
ary ∂Vn+1 with outward normal nn+1, un+1 = Xn+1 − Xn are the interval
displacements and en+1 is a suitable measure of the interval strains.

2.2 Time Marching Scheme

The problem described in Section 2.1 allows considering the motion of the
approximating body B̃ as a sequence of discrete (in time) boundary value
problems ruled by equations (1). Then, at every time step the corresponding
problem is solved according to the following strategy:

Step I: Finite element discretization: Spatial discrete problem
Let us now consider a finite element discretization of Vn, on the basis of the
existing triangularization, so that the nodes match the vertices (therefore,
nnode = npart ), and that every property, µ, of the particles of B̃ is evaluated
via interpolation of the corresponding property at the vertices/nodes as:

µ(X) =
nnode∑

1

Ni(X)µ̄i ∀X ∈ Vn (2)

where Ni and µ̄i stand for the shape/interpolation function and the nodal
value of the property, respectively, at node i.
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Then, using standard Galerkin’s procedures, and a Newmark’s time in-
tegration scheme (Hughes, 2000), the discrete counterpart of the continuum
boundary value problem in equations (1) at the space-time slice Vn×[tn, tn+1] ⊂
R2 × [0, T ] reads, in matrix form:

Mn+1 · ān+1 + Fint
n+1(ūn+1) − Fext

n+1(ūn+1) = 0

ūn+1 = ūn + ∆tv̄n + 1
2 ∆t2[(1 − 2β)ān + 2βān+1] (3)

v̄n+1 = v̄n + ∆t[(1 − γ)ān + γān+1]

where Mn+1, Fint
n+1 and Fext

n+1 are, respectively, the mass-matrix, the internal
forces vector and the external forces vector, ūn+1, v̄n+1 and ān+1 are, re-
spectively, the nodal displacement, velocities and accelerations and β and γ
are the classical Newmark’s integration parameters. Equations (3) are a set
of non-linear equations that can be solved for ūn+1, v̄n+1 and ān+1.

Combining interpolations, according to equation (2), and substitution
in equations (1) allows determining the stresses and the internal variables
σn+1(X),qn+1(X) at points X ∈ Vn as required in next step.

Step II: Spatial information transfer
All the information necessary in subsequent time steps has now to be trans-
ferred to the nodes/particles of Ωn. This is achieved by standard extrapolation
(smoothing) procedures (Zienkiewicz et al., 2000) from the element Gauss
points to the nodes. For instance, the nodal values, σ̄n+1 and q̄n+1, to be
considered as initial values for the next time step, n + 1, are computed as:

σ̄n+1 = σ̄n + [Mσn ]−1 ·
∫

Vn

Nσn · ∆σn+1 dV

q̄n+1 = q̄n + [Mqn ]−1 ·
∫

Vn

Nqn · ∆qn+1 dV (4)

where Mσn and Mqn are standard “mass-like matrices”, and Nσn and Nqn

are “transfer” matrices, with dimensions appropriated to the set of variables,
σ and q, computed in terms of the interpolation functions Ni of the finite ele-
ment mesh on the domain Vn, and ∆σn+1 and ∆qn+1(X) are the point-wise
corresponding increments computed at the present time step [tn, tn+1].

Step III: Update
Finally the set of particles of Ωn are updated to the new positions according
to:

(X̄Pi)n+1 = (X̄Pi)n + (ūPi)n+1 ∀Pi ∈ P (5)

and the new particle configuration is determined as:

Ωn+1 := {(X̄Pi)n+1, (X̄P2)n+1, . . . , (X̄Pnpart
)n+1} (6)
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Fig. 3. Anticipating contact interface strategy

Then, the boundary of the new cloud of positions of the set of particles P is
recognized via de corresponding alpha-shape strategy, and a new triangulariz-
ation, determining the new spatial domain Vn+1, is performed. The algorithm
proceeds to Step I of the next time step.

3 Contact Strategy: Anticipating Interface Mesh

One of the main difficulties found in standard contact algorithms in solid
mechanics, is the identification of the interacting parts of two contacting bod-
ies (master-slave based algorithms). The previously described PFEM setting
provides a very interesting feature to be exploited in this sense: the possibil-
ity of anticipating the contact boundaries and of imposing the corresponding
contact constraints in a diffuse manner, without the necessity of a precise
identification of the contact topologies.

Let us consider, for illustration purposes, a forming process characterized
by a forming material and some (elastic) tooling, amenable to experience
mutual contact (see Figure 3). We can consider each of them as a specific
class, constituted by its own cloud of particles. At every time step, a Delaunay
triangularization is performed for every class and its boundary (in terms of the
boundary particles) is recognized as indicated in Section 2 by the alpha-shape
procedure.

Then, an additional triangularization is performed: the particles of the
identified boundaries are defined as a new class (the contact interface class)
and sent to the mesher that returns an interface mesh, which connects an-
ticipating contacting particles of different classes. The value of the supplied
alpha-shape value determines the maximum size of the resulting interface ele-
ments and, therefore, rules the degree of anticipation of the contacts.

The contact interface mesh constructed in this way, enjoys some specific
properties:

• It is an interface mesh in the sense that there is no interior node (all the
nodes are placed at the boundary). In consequence, all the computations
done in that finite element are naturally condensed out to the boundary
nodes.
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Fig. 4. Penalty strategy at the contact interface

• Typical properties of the Delaunay tessellation procedure ensure that the
contact interface connects nearest particles in the contacting bodies.

• The identification of the contact topologies is trivially done via the mesh
topology: potentially contacting nodes are those belonging to the same
element of the mesh. This overcomes many of the difficulties and compu-
tational challenges found in classical contact recognition procedures.

• The contact condition, imposing that nodal gaps should be positive (no
penetration), can be fulfilled in weak form in terms of strain measures
defined at the elements of the interface mesh (see Section 3.1).

Generalization of this procedure to multiple contacting bodies is trivial.
As for the imposition of the contact conditions there are several options. In
next sections, a penalty strategy for this purpose is presented.

3.1 A Penalty Strategy at the Contact Interface

Let us consider the time step [tn, tn+1] and two contacting boundaries, ∂B
(1)
n+1

and ∂B
(2)
n+1, and the resulting interface mesh (see Figure 4) defining the inter-

face Bint
n+1.

We realize that every element of Bint
n+1 has one node (node P) placed on

one of the contacting bodies, and two nodes, Q1 and Q2, on the other (see
Figure 4b), which can be trivially identified. The signed distance of P to the
segment Q1 −Q2, according to the normal2 n of the boundary corresponding
to this segment, is defined as the initial elemental normal gap:

2Information about the normals corresponding to the boundary segments is gen-
erated, during the boundary recognition procedure, for every body and transmitted
to the boundary interface class.
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g
(e)(0)

n+1 = (XP − XQ1) · n = (XP − XQ2) · n ∀e ∈ Bint
n+1 (7)

Notice that g
(e)(0)

n+1 ≥ 0 corresponds to no initial penetration of node P on
the opposite boundary. Therefore, negative values of the gap correspond to
boundary penetrations.

Let us now define the current normal gap for the element e, at the iteration
i of the linearization procedure, as:

g
(e)(i)

n+1 (u(i)
n+1 = g

(e)(0)

n+1 + ∆g
(e)(i)

n+1

= g
(e)(0)

n+1 +
∣
∣g(e)(0)

n+1

∣
∣(n · ∇Su(e)(i)

n+1 · n)
︸ ︷︷ ︸

∆g
(i)
n+1

∀e ∈ Bint
n+1 (8)

which involves the iterative displacements3 u(e)(i)

n+1 at the element e. Now, let
us define a strain measure associated to that gap as:

ε̃
(e)
n+1 =

g
(e)
n+1



(9)

where 
 stands for the typical local particle distance (see Figure 4). The con-
tact condition for boundaries, ∂B

(1)
n+1 and ∂B

(2)
n+1, can be immediately written

as the positive character of the strain measure ε̃(un+1):

g
(e)
n+1 ≥ 0 ⇔ ε̃

(e)
n+1 ≥ 0 ∀e ∈ Bint

n+1 (10)

In a variational context, condition (10) can be imposed via a Lagrange
multiplier procedure:

Π(un+1, λn+1) = Π
B

(1)
n+1

(un+1) + Π
B

(2)
n+1

(un+1) +
∫

Bint
n+1

λn+1ε̃(un+1) dΩ

δΠ(un+1, λn+1) = 0; g(un+1) ≥ 0; λn+1 ≥ 0; λn+1g(un+1) = 0 (11)

where Π
B

(1)
n+1

(un+1) and Π
B

(2)
n+1

(un+1) stand for the original minimizing func-

tionals for the contacting bodies B
(1)
n+1 and B

(2)
n+1, and λn+1 are the corres-

ponding Lagrange multipliers. Now, all the typical strategies for solving the
problem in equations (11) can be used. In particular, penalty-based strategies
will be recovered by imposing a specific format to the Lagrange multipliers
as:

λ
(e)
n+1 = 1

2 Eint ε̃
(e)
n+1

Eint =

{
0 for ε̃

(e)
n+1 ≥ 0

K for ε̃
(e)
n+1 < 0

∀e ∈ Bint
n+1 (12)

3Superindex (·)S stands for the symmetric part of (·).
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where K > 0 is the penalty parameter. The resulting problem is formally
equivalent to the introduction of an elastic-type constitutive law, σ− ε̃, in the
normal direction, defined in terms of the parameter, Eint , as a pseudo-elastic
modulus:

σ
(e)
n+1 = σ̃

(e)
n+1n⊗ n

︸ ︷︷ ︸
contact stress

σ̃
(e)
n+1 = Eint ε̃

(e)
n+1 ∀e ∈ Bint

n+1 (13)

and extending the boundary value problem in equations (1) to the interface
domain Bint

n+1.

Inclusion of Frictional Effects

Frictional effects can be now included in a very simple manner. For instance,
on the basis of a simple Coulomb model, additional tangential stresses can be
considered in the constitutive model for every element of the interface (see
Figure 5):

σ
(e)
n+1 = σ̃

(e)
n+1n⊗ n

︸ ︷︷ ︸
contact stress

+ 2τ̃
(e)
n+1(t ⊗ n)S

︸ ︷︷ ︸
frictional stress

σ̃
(e)
n+1 = Eint ε̃

(e)
n+1 ∀e ∈ Bint

n+1 (14)

τ̃
(e)
n+1 = µ|σ̃(e)

n+1| sign(γ̃(e)
n+1) (γ̃(e)

n+1 = 2t · ∇Su(e)
n+1 · n)

where t stands for the tangent vector associated to the normal n in anticlock-
wise sense.

Numerical Treatment

Resolution of the variational problem (11), in the context of the finite ele-
ment method, leads to the following expression for the equivalent nodal forces,
Fcont

i , at the nodes i of the interface mesh, due to contact/friction actions:

δΠ = 0 ⇒
Fcont

i = −
∫

Bint
n+1

∇Ni · σn+1 dΩ ∀i ∈ ∂B
(1)
n+1 ∪ ∂B

(2)
n+1 (15)

Besides, it can be readily proven that the elemental counterparts, Fcont(e)

i ,
of those contact/friction forces in a given element e, constitute a set of self-
equilibrated forces:

i=3∑

i=1

Fcont(e)

i = −
∫

Bint(e)
n+1

∇N
(e)
i · σ(e)

n+1 dΩ = 0 (16)
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Fig. 5. Contact/friction effects: interface constitutive model

which proves the self-equilibrated character of those forces as action-reactions
at the contacting boundaries ∂B

(1)
n+1 and ∂B

(2)
n+1, i.e.:

∑

j∈∂B
(1)
n+1

Fcont
j +

∑

j∈∂B
(2)
n+1

Fcont
j =

∑

e∈Bint
n+1

i=3∑

i=1

Fcont(e)

i = 0 (17)

Finally, in view of the structure of the problem in equations (11), the con-
tact/friction nodal forces, Fcont

i , once computed at every node of the interface
mesh Bint

n+1 according to equation (15), can be formally added to the original
problem (1), for every contacting body, as external prescribed point forces
acting on the boundary ∂σVn+1.

In this way, the contact/friction problem gets reduced to computing
nodal/friction forces at all the generated interface meshes, and incorporat-
ing them, as external point forces, at the boundaries of the contacting classes.
No additional degrees of freedom are involved.

4 Representative Examples

In order to illustrate the modeling capacities of the methodology described
so far, in next sections some applications to solid mechanics problems are
presented.

4.1 Flexible Spring with Multiple Self-contacts

In Figure 6 an elastic flexible spring (Figure 6a) is pushed down vertically as
to impose multiple contacts, as displayed in Figures 6b and 6c. In the figures,
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Fig. 6. Flexible spring: (a) initial configuration, (b) and (c) shrunk deformed con-
figurations displaying the contact interfaces

the contact interface mesh is artificially amplified, for visualization purposes,
and the contacting bodies are shrunk in correspondence.4 The actual contacts,
keep very little gaps that would not allow that visualization. Two facts should
be noticed there:

• The contact interface mesh only affects a limited part of the boundary.
This is ruled by the value of the alpha shape parameter precluding interface
elements larger than the specified size.

4This criterion will be kept from now on, to allow visualizing the contact interface
mesh.
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Fig. 7. Rivet forming. Top: Riveting parts. Bottom: (a), (b) and (c) deformed finite
element mesh at different stages of the forming process. At every stage: actual mesh
(left) and shrunk mesh (right), showing the contact interface is displayed

• Only few elements of the contact interface mesh are active in the sense that
g
(e)
n+1 = 0 ⇔ ε̃

(e)
n+1 = 0 and, therefore, there is a positive reaction at the

contact points according to equations (12) and (13). They are displayed
in grey in Figure 6.

This example displays that multiple self-contacts, as the ones occurring in
this problem, are trivially solved by the proposed procedure.

4.2 Riveting Process

In Figure 7, the geometrical description of a metallic rivet, and the deforma-
tion of the finite element mesh (axisymmetric cross-section) for different stages
of the forming simulation process, are presented.

This is a very representative example of application of the proposed meth-
odology to a variety of metal forming processes.5 It is remarkable the capacity
of the method to handle large strains in the deformed body, minimizing the
angular distortions of the resulting finite element mesh. This is an advantage-
ous property of the Delaunay triangulation based meshing procedure.

5Certainly, the reliability of the simulation requires the use of appropriate con-
stitutive models, typically J2 plasticity models and large strain kinematics.
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Fig. 8. Machining process: (a) chip forming process, (b)–(e) particle configurations
(left: actual particle configurations, right: shrunk finite element meshes displaying
the anticipating contact interfaces)
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Fig. 9. Filling of a two-stepped cavity with powder material: finite element meshes
displaying the contact interfaces at different stages

4.3 Machining Process

In Figure 8, simulation of an orthogonal cutting process on a metallic part is
considered.

This is, again, a very illustrative example of the proposed methodology
potential to handle challenging solid mechanics problems. In this case, the
formation of the chip, very relevant for the quality of the mechanical pro-
cess, generates a new boundary at the cutting tool edge. The alpha shape
method automatically generates the new boundary as the deformed size at
the elements, close to the cutting edge, exceeds the alpha-shape tolerance.
The contact/friction model allows sliding the formed chip on the upper sur-
face of the machined part. Both the boundary recognition and the imposition
of the dynamic contacts are automatically done by the mesher.

4.4 Powder Filling Process

There are many interesting solid mechanics processes, involving flows of gran-
ular materials, where PFEM methods can be advantageously applied. Powder
metallurgy manufacturing processes or casting processes are typical examples.

In Figure 9 the numerical simulation of a powder filling process is presen-
ted using a specific solid-type constitutive model (Oliver et al., 1996; Cante
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et al., 2005). The feeder moves horizontally, from left to right, dropping the
powder into a two steps cavity. The goal of the analysis is to obtain, through
a physically meaningful simulation of the process, the density distribution of
the powder at the end of the process. This type of powder filling processes
has been often modelled by the so called discrete element methods, on the
basis of models made of a finite number of interacting balls or cylinders rep-
resenting the powder grains (Wu et al., 2004; Coube et al., 2005). However,
the large number of particles involved in the physical process translates into
unaffordable computations when a realistic modelling is intended.

Here, the powder is treated as a continuum medium, ruled by an elasto-
plastic constitutive model, and modelled via the PFEM by tracking a limited
number of the constituent particles. In the figure it can be observed as the
powder/tool contact conditions are correctly imposed by the contact interface
(also displayed in the figure). In addition, the alpha shape method allows
reproducing the complex dynamics of the generated free surface of the powder
during the filling process.

5 Concluding Remarks

In the previous sections, PFEM techniques applied to solid mechanics prob-
lems have been explored. In addition to their appealing properties, already
explored for fluid mechanics problems, some additional advantages can be
obtained when they are applied to solids i.e.:

• Delaunay tessellation techniques, for constructing finite element meshes on
the basis of the selected cloud of points, minimize the angular distortion
effects of the resulting elements, thus providing additional robustness to
the modelling in problems dominated by large strains. The relatively low
computational cost (Calvo et al., 2003) of those techniques allows frequent
remeshing without leading to unaffordable computational costs.

• Alpha-shape techniques for boundary recognition purposes, constitute a
powerful tool in those solid problems where new physical boundaries are
generated (for instance, cutting processes) or when there is a continuous
creation and disappearance of boundaries, as a natural part of the physics
of the problem (i.e. powder filling processes).

• Contacting boundaries problems can be solved by constructing anticipat-
ing contact interfaces as it is presented in Section 3. Construction of those
contact interfaces becomes an easy and automatic task by using, Delaunay
tessellation techniques on the basis of particles of the contacting boundar-
ies. Typical highly computationally demanding techniques, for recognizing
point/segment contacts, can then be overcome by imposing the contact
conditions on the generated contact interfaces by using, for instance, pen-
alty techniques (Section 3.1). Then, friction effects can be trivially imple-
mented (Section 3.1.1). This confers larger computational efficiency and
robustness to simulation of problems involving a large number of contacts.
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Although the formulation, and the corresponding examples, has been here
restricted to 2D cases, extension to 3D problems seems straightforward and
in essence the benefits of PFEM should be similar to the ones mentioned
above.
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Summary. Multi-scale models can be helpful in the understanding of complex ma-
terials used in engineering practice. Applications related to this class of problems
covers different length scales in the range from µm to m. Using the concept of rep-
resentative volume elements (RVE), the theoretical background is discussed in this
contribution as well as the numerical treatment of the resulting three-dimensional
RVEs.
The developed methodology is applied to a specific engineering material which is
concrete. This construction material has to be investigated on three different scales:
the hardened cement paste (hcp), the mortar and finally the concrete. Here, a suc-
cessive two-stage approach is followed in which first the multi-scale model of hcp
and mortar is applied. The resulting homogenization can then be used in the next
step for a multi-scale mortar-concrete model.
At the micro-scale of hcp, a finite element mesh based on a three-dimensional
computer-tomography with different constitutive equations for the three parts unhy-
drated residual clinker, pores and hydrated products is introduced. With respect to
the finite element solution, homogenization techniques are used in order to calculate
effective elastic material properties.
The constitutive equations at the micro-scale contain inelastic parameters, which
cannot be obtained through experimental testings. Therefore, one has to solve an
inverse problem which yields the identification of these properties. For computa-
tional efficiency and robustness, a combination of the stochastic genetic algorithm
and the deterministic Levenberg-Marquardt method is used. In order to speed-
up the computation time significantly, all calculations are distributed automatically
within a network environment.
Inelastic behavior occurs when the micro-structure hcp is filled partly with water
and a freezing process takes place. A constitutive model for ice is applied to the
water filled parts of the micro-structure. The expansion of the ice leads to damage
in the hcp which is associated with inelastic material behavior. If such a calculation
is performed for different moisture and temperatures, a correlation between mois-
ture, temperature and the inelastic material behavior can be obtained. The effective
constitutive equation of hcp will serve as a basis for a multi-scale mortar-concrete
model.

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 105–122.
© 2007 Springer. Printed in the Netherlands.
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1 Introduction

A deeper understanding of the constitutive behavior of complex materials such
as concrete can be achieved on one hand by experimental investigations and on
the other hand by numerical simulations. While the experimental techniques
are applied successfully since several decades, the use of numerical simulation
techniques is quite young. This is due to the fact that the underlying three-
dimensional models are very complex and need considerable computer power
which only in the last decade has reached a sufficient state. The advantage
of a numerical simulation is that one can look inside a specimen during the
loading process and also is able to resolve fast processes on a different time
scale. Figure 1 depicts the multi-scale modeling process which can be used for
a material like concrete. The underlying nano-scale is not considered in this
contribution.

Fig. 1. Multi-scale model of concrete

Within the above mentioned multi-scale approach, different three-dimen-
sional mechanical models are applied on each length scale in order to describe
the constitutive behavior on that scale. These are called representative volume
elements (RVEs). Normally, the material on a specific length scale consists of
different phases which have to be taken into account in order to characterize
the material with sufficient accuracy.

The RVE is then subjected to different loading conditions which lead to
a material response. Based on these results a homogenization process can be
initiated to describe the material behavior averaged over the whole RVE. The
resulting homogenized constitutive equation is then applied within the the
next scale to model the constituents of the RVE belonging to that scale.
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Fig. 2. Cut through of a CT-scan (1750 × 1750µm)

In this contribution, a multi-scale model for hardened cement paste (hcp)
is introduced. The scale of the superior system is denoted meso-scale, the
underlying microscopic system of hcp micro-scale [17], [5]. The homogenized
properties of hcp serves as a basis for the constitutive model of mortar at the
meso-scale.

2 Micro-structure of Hardened Cement Paste (hcp)

The FE-analysis of hcp requires the discretization of the micro-structure. Here,
the geometry on the micro-scale is obtained from a three-dimensional com-
puter tomography (CT) which provides a spatial resolved distribution of the
density. In this contribution, CT-scans of several specimens with an edge
length of 1750µm and a resolution of 1µm have been performed by the Bun-
desanstalt für Materialforschung und -prüfung in Berlin, Germany.

The CT-scans have been applied for a hcp with the water-cement ratio of
wc = 0.45 and a degree of hydration of h = 0.945. In Fig. 2 a cut through
of such a CT-scan is shown. The unhydrated residual clinker is black and the
hydrated part is middle gray colored. One can see the accumulation of pores,
which are marked in light gray. Each CT-file contains 17503 data points (each
corresponds to 1µm3) and allocates totally 5GB of memory.

For the mechanical analysis, the surrounding synthetic tube is not relevant.
Hence, only the interior part of the CT-scan is used for further mechanical
simulations which contains 10083 data points (see Fig. 3).

Due to noise, a median filter has to be applied to the raw data. Based
on the theory of Powers and coworkers [13], [12] the fractional volume of the
pores cp and the unhydrated residual clinker cu are calculated

cp =
wc − 0.36h

wc + 0.32
, cu =

0.32(1 − cp)
wc + 0.32

. (1)
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Fig. 3. Cut through of the raw data (1008 × 1008µm)

pores unhydr. residual clinker

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  50  150  200  250 100
d

N(d)

Fig. 4. Histogram of the raw data

In order to distinguish unhydrated residual clinker, hydration products
and porosity a histogram is generated, where N(d) describes the number of
voxels at a specific density d (see Fig. 4).

Threshold values for the pores and the unhydrated residual clinker are
calculated with respect to (1). Hence, the raw data can be segmented in the
hydrated part, unhydrated residual clinker and porosity. In Fig. 5 a cross
section of the filtered data is shown which is obtained from the raw data
(see Fig. 3). The hydrated part has a volume fracture of 84Vol.%, the pores of
approximately 14Vol.% and the unhydrated residual clinker of roughly 2Vol.%.

The micro-structure of hcp can also be generated by simulating the chem-
ical reactions of the hydration. Result of such a simulation is an artificial
micro-structure with different phases. The chemical reaction of the hydration
can be simulated with respect to a cellular automata, as the programme from
NIST does [6]. Herein, the whole micro-structure is divided into topological,
geometrical and physical uniform cells. Each cell has an individual state, cor-
responding to its current property. A set of rules calculate the new state for
each cell at time n + 1. The result of this calculation depends on the state at
time n, the states of the neighbors and a random part. The rules are applied
at the same time to all cells.
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Fig. 5. Cross section of the filtered data (1008 × 1008µm)

Fig. 6. Simulated micro-
structure (128 × 128µm)

Fig. 7. CT-based micro-
structure (128 × 128µm)

If the hydration is simulated with the above mentioned cellular automata,
one obtains a different geometry as those obtained from CT-scans, compare
Figs. 6 and 7. Due to the random based rules of the programme, the porosity is
evenly distributed. There are no accumulations of pores as the corresponding
CT-scan depicts, but for a reliable simulation of frost heave a proper geome-
try of the pores is necessary. Therefore, only CT-based micro-structures are
applied within the further calculations.

3 Constitutive Equations

Numerical results on the micro-scale are obtained by use of the finite ele-
ment method which is applied to discretize the representative volume elements
(RVEs). The RVEs are generated directly from the filtered CT-data and have
different material properties for each phase. In this contribution RVEs with
an edge length of 64µm are used. Since each voxel is represented by one finite
element this leads to a 643 finite element mesh. Hence each RVE has about
800 000 degrees of freedoms (DOFs).
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Fig. 8. Embedded RVE

Due to the different properties classical constant strain boundary con-
ditions – leading to Voigt bounds – will cause problems at the boundary.
Constant stress boundary conditions – leading to Reuss bounds – are also
not be used. Instead the RVEs are embedded in a matrix of average stiffness,
see Fig. 8. This corresponds to the self-consistency method from analytical
micro-mechanics and is sometimes referred to as window-technique.

Material properties for the elastic behavior of the different phases from
hcp can directly be taken from the literature [1], [2], [3]. To avoid numeri-
cal problems and further mechanical influences the pores are described using
an elastic material of negligible stiffness. With respect to the minor volume
fraction, averaged properties can be chosen for the unhydrated phase.

Table 1. Elastic properties of the phases

phase E ν
N

mm2 −

unhydrated phase ≈ 132 700 0.30
hydrated phase 20 000 0.21
pores 1 0.00

Experimental tests of hcp show that the inelastic effects of hcp are related
to damage behavior combined with visco-plastic effects. Due to that a model
for the hydrated phase is selected which consists of a visco-plastic constitutive
relation of the classical Perzyna-type combined with a damage model.

Due to mechanical loading, cracks occur at the nano-scale. These nano-
cracks are statistically distributed and oriented, thus isotropic damage can
be chosen for the micro-structure. Stress-strain relations for isotropic damage
can be found in [9], here we select

σ = (1 − D)C : ε . (2)
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The scalar variable D describes the damage and C refers to the material
tensor of the undamaged elastic material. An evolution law for the damage
variable

Ḋ = ∆ξ
∂S(εeq)

∂εeq
(3)

and a damage surface S(εeq) are introduced. The damage surface determines,
whether the damage increases or not. It is defined by an exponential relation
and depends on the equivalent strain εeq. The parameter a, b and c constitute
the material properties of this model

S(εeq) := 1 − exp
[
−

(
εeq − a

b

)c]
− D � 0 . (4)

For the visco-plastic part, a penalty formulation P is introduced, see e.g.
[14], based on the second fundamental theorem of thermodynamics. Here, the
scalar variable η describes the viscosity, φ(f) denotes a penalty-function of
power type

P = σ : ε̇pl + 1
η φ(f) ,

φ(f) =

{
0 ; f ≤ 0

1
m+1fm+1 ; f > 0

.
(5)

In order to keep the constitutive model at the micro-scale as simple as pos-
sible, a Drucker-Prager model with the yield surface f is chosen. There-
fore, different behavior of hcp in compression and tension can be described

f := αtr σ + ‖dev σ‖ −
√

2
3kf ≤ 0 . (6)

Within the associated theory of visco-plasticity, the evolution equation for

the inelastic strains ε̇pl = ∆λ̇
∂f

∂σ
has to be integrated. Here we apply an

Euler backward integration leading to

εpl
n+1 = εpl

n + ∆λ
∂f

∂σ

∣
∣
∣
∣
n+1

. (7)

The increment ∆λ = ∆t
η φ+ is locally, at every Gauss point, calculated by a

Newton-scheme

∆λk+1 = ∆λk −
[

∂Gk

∂∆λk

]−1

Gk , (8)

where Gk describes the nonlinear equation resulting from the evaluation of
(5) and (6)

Gk =
η∆λk

∆t
−

(
f trial − 9α2κ∆λk − 2µ∆λk

)m
!= 0 . (9)

For computational efficiency, the above mentioned set of constitutive equa-
tions is linearized consistently.
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4 Homogenization

In order to determine effective elastic material properties for each RVE, ho-
mogenization is needed and the effective material tensor has to be calculated.
The effective material tensor C eff maps the average of the strains 〈ε〉 (effective
strains) onto the average of the stress 〈σ〉 (effective stresses) by

〈σ〉 = C eff : 〈ε〉 , (10)

where 〈•〉 denotes the volume average within the RVE, Ω being the volume
of the RVE.

〈•〉 =
1
|Ω|

∫

Ω

• dΩ . (11)

In order to calculate the effective stresses and strains, one has to define
boundary conditions and solve the boundary value problem on the micro-scale.
The latter will be performed by using finite elements. Since the application of
a pure stress field to the RVE leads to some difficulties regarding the suppres-
sion of rigid body modes, we apply here only pure displacement boundary
conditions (constant stress state). Subsequently, the volume average of the
strain can be evaluated from the finite element solution of the RVE by

〈ε〉 =
ne∑

e=1

1
Ωe

∫

Ωe

εh dΩ (12)

where εh is the strain computed from the finite element solution, Ωe the
volume of a finite element and ne the total number of finite elements of the
RVE. The same relation holds for the computation average of the stresses.

Once the effective strains and stresses are known the effective material
tensor C eff can be computed within the homogenization step.
In this this step a linear elastic effective material of

σ(〈ε〉) = λefftr 〈ε〉1 + 2µeff〈ε〉
is chosen. A least square functional is introduced to fit the averaged stresses
with those obtained from the effective constitutive equation σ(〈ε〉)

Π :=‖ 〈σ〉 − σ(〈ε〉) ‖→ min . (13)

The differentiation of this relation with respect to the effective material prop-
erties yields a symmetric linear equation for the two Lame constants λeff and
µeff

(
2tr 〈ε〉 tr 〈σ〉
4〈σ〉 : 〈ε〉

)
=

[
6tr 2〈ε〉 4tr 2〈ε〉
4tr 2〈ε〉 8〈ε〉 : 〈ε〉

]
·
(

λeff

µeff

)
. (14)

Due to the randomly distributed phases within the micro-structure of hcp,
a Monte Carlo method was selected to compute the average values for the con-
stitutive parameters. Hence a sufficiently large number of different RVEs has
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to be investigated. Each homogenization yields the effective material proper-
ties λeff and µeff of the specific RVE. Therefore, one obtains statistical dis-
tributed effective parameters, e.g. a probability density.

The probability density W of the effective Young‘s modulus Eeff and ef-
fective Poisson‘s ratio µeff are shown in Figs. 9 and 10 for a set of 9200 RVEs,
respectively. Both are close to a Gaussian distribution (dashed lines). Fur-
thermore, the above mentioned numerical results are in excellent agreement
with results obtained from experimental tests of hcp, see Table 2.

Table 2. Experimental versus numerical results

test Emed
eff νmed

eff

N
mm2 −

numerical 17 665 0.211
experimental series 1 17 455 0.210
experimental series 2 17 727 0.210

By applying loading in different directions one can test whether the ma-
terial response of a RVE is isotropic or anisotropic. For loadings only in the
x-direction (constant strain εxx), the above mentioned homogenization pro-
cedure yields nearly the same results as for simultaneously loading in x, y
and z-direction (full strain tensor). The same holds for loadings only in the
y or z-direction (see Table 3). This depicts clearly that the response of the
micro-structure (RVE) is isotropic. This result corresponds to the irregular
geometry of the phases and the large number of finite elements for each RVE.

The above mentioned homogenization is a result from a real multi-scale
approach. The geometry has been obtained from CT-scans of hcp. The mate-
rial properties of the different phases of the RVE were taken directly from the
literature, without any modification. The accuracy of this procedure is very
good since the effective properties, obtained numerically, agree excellently
with results from experimental tests.
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Table 3. Results for different loadings

loading direction Eeff νeff

N
mm2 −

every direction 17 665 0.2107
only x-direction 17 952 0.2108
only y-direction 17 779 0.2110
only z-direction 17 740 0.2100

5 Parameter Identification

The inelastic material model on the micro-scale described in Section 3 contains
constitutive parameters κ, which neither can be found in the literature, nor
obtained through experimental testing. Therefore, one has to compute these
by parameter identification.

The displacement of the micro-structure 〈u(κ)〉 depends, under a given
loading, upon the unknown material properties. For an assumed constitutive
model, see Section 3, the material parameters can be identified. The identifi-
cation of these parameters is carried out, such that the displacements 〈u(κ)〉
from the numerical simulation fit with the displacements d from an experi-
mental test. This yields an ill-posed inverse problem which cannot be solved
directly. Instead, an optimization problem is carried out.

The material parameters of the constitutive model presented in Section
3 have to be calculated, such that an objective function is minimized. The
objective function A is defined by a least-square sum between each numerical
and experimental value

A(κ) =
n∑

i=1

(〈u(κ)〉i − di

)2 → min . (15)

The identification is obtained by solving the above mentioned optimiza-
tion problem. For computational efficiency and robustness, a combination of
the stochastic genetic algorithm [16], [15] and the deterministic Levenberg-
Marquardt method is used [4]. Here, the gradient information of the objec-
tive function is obtained numerically from a central difference quotient

∇κA(κ)i ≈ A(κ + εei) − A(κ − εei)
2ε

. (16)

In a first step a pre-optimization with a genetic algorithm is performed
in order to get close to the global minimum. Once the value of the objective
function falls below a certain threshold value, the optimization procedure
switches to the more efficient Levenberg-Marquardt method.

Due to the complex micro-structure, the inelastic material behavior and
the large number of loading steps, each examination of the objective func-
tion A(κ) needs approximately 12 hours on a standard PC computer system.
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Fig. 11. Numerical fit of the experimental data

Therefore, a typical parameter identification with 120 evaluations requires
roughly two month CPU time on a modern standard computer.
In order to keep the overall computing time within reasonable bounds, the
calculations, which can be performed stand alone, are distributed within a
network environment. A client-server based system has been implemented, a
detailed introduction of those systems can be found in [11].

For the optimization procedure, a client is started. This client does not
evaluate the objective function itself, but distributes the computation to the
compute-servers via a network connection. The evaluation of the objective
function A(κ) is performed on those servers. Once the necessary output data
is produced on the servers, it is transported back to the client automatically.
The results are then used on the client for the next iteration step of the
optimization procedure.

Within the network environment using 11 standard computers, the iden-
tification can be completed within six days. This yields a speed-up factor of
approximately 10. In Fig. 11 a result of the parameter identification is shown.
One can see a satisfying accuracy between the experimental and the numerical
results. The experimental load-deflection curve varies with respect to differ-
ent specimens, therefore it is not reasonable to fit the experimental data more
exactly.

The identified parameters are presented in the subsequent table. The prop-
erties marked with •� have not been identified, but were chosen in advance.
They describe the exponent of the equivalent strain and the penalty function,
respectively. For their definition see Section 3.

A real multi-scale approach cannot be set up for the inelastic behavior since
there do not exist experimental tests which yield values for the constitutive
behaviour of the different phases within the micro-structure. Only effective
load-deflection curves can be obtained through experiments. In order to get
the desired inelastic properties of the micro-structure, one has to solve the
inverse problem via parameter identification. Hence, the experimental effective
behavior is used to calculate the inelastic properties at the micro-scale which
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Table 4. Identified parameters

parameter value

a 0.488
b 0.1
c� 3.0
α 0.538
kf 48.27
m� 3
η 84 650

is not a multi-scale approach. However, the obtained inelastic constitutive
data for the micro-structure are needed within the next step which then is
related to a multi-scale approach.

6 Thermo-mechanical Coupling

Hardened cement past is a part of mortar which in itself is part of concrete.
Concrete structures are often subjected to fluids such as rain. When this water
permeates into the concrete, it actually fills the pores of the hcp to a certain
degree. In freezing condition this water changes its phase to ice and with it
expands. This expansion process may lead to damage in some parts of hcp.
This process will be investigated in this section. For that we have to know the
water contents of the hcp, its constitutive behaviour, see last section, and the
constitutive behaviour of the ice which depends on temperature. A numerical
simulation of this process has to take into account thermal effects besides the
mechanical ones.

Considerable work related to the simulation of water permeability and
water vapor diffusion in hcp has been performed in [8]. These results are used
in the further calculations to obtain a realistic distribution of water on the
micro-structural level. In Figs. 12-15 cuts through the RVE with different
moisture contents wh are shown. The water filled parts of the micro-structure
are colored in blue. As expected the water prefers the boundaries of a pore.

For the coupled thermo-mechanical simulation, transient thermal conduc-
tion is introduced. The mechanical and the thermal behavior is coupled in a
weak sense. We assume that cooling down of hcp leads to strains, but strains
due to mechanical loading do not change the temperature.

The strains are separated into a mechanical part εu and a thermal part in
an additive way

ε = εu + αt(Θ − Θ0)1 . (17)

The parameter αt denotes the coefficient of thermal expansion. With re-
spect to the above mentioned split, the weak form of the internal part of the



Micro-Meso-Macro Modelling of Composite Materials 117

Fig. 12. Cut through of a RVE,
wh = 80% (64 × 64µm)

Fig. 13. Cut through of a RVE,
wh = 85% (64 × 64µm)

Fig. 14. Cut through of a RVE,
wh = 90% (64 × 64µm)

Fig. 15. Cut through of a RVE,
wh = 95% (64 × 64µm)

mechanical equilibrium is given by

Gu
int =

∫

Ω

grad ηu : C :
(
ε − αt(Θ − Θ0)1

)
dΩ . (18)

Hence, the mechanical equilibrium depends both on the temperature Θ and
the displacement u

Gu = Gu(Θ,u) (19)

while the thermal weak form only depends on the temperature

GΘ = GΘ(Θ) . (20)

The linearization and subsequent discretization of the thermal and me-
chanical weak yields the tangential stiffness matrix for the finite element
method. It contains of the sub-matrices of the thermal and of the mechanical
problem [

Kuu KuΘ

0 KΘΘ

] {
∆u
∆Θ

}
= −

{
Gu

GΘ

}
(21)

The thermo-mechanical coupling is described by the couple-matrix KuΘ.
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In general it is possible to subject the RVE to thermal and mechanical
loading conditions which leads to a specific material response. For this analysis
a constitutive model for ice has to be introduced and applied to the water filled
parts of the micro-structure. In this contribution, the micro-structural ice is
assumed to have the same properties as macroscopic ice. The material model
for ice is chosen as visco-plastic model of Perzyna type (see section 3) and
is coupled thermo-mechanically. The previously mentioned expansion of ice is
described through a negative coefficient of thermal expansion αt.

In this contribution Young‘s modulus of ice is assumed to depend on the
current temperature. The other constitutive parameters µ, kf , α and ν are
assumed to be constant.
It is well known that water filled pores with a hydraulic diameter of r < 0.5µm
freeze at temperatures of Θ ≈ −20◦C. The pores in the micro-structure of
hcp have this size. Hence Young‘s modulus of ice reaches a certain limiting
value E∞ which is kept constant below this temperature

E =

{
E∞ ;Θ ≤ −20◦C
≈ 0 ;Θ ≥ 0◦C

. (22)

In order to describe this experimental evidence an equation is introduced in
which Young’s modulus depends upon the temperature and the four consti-
tutive parameters E0, E∞, e and f .

E(Θ) := E0 +
E∞ − E0

e
exp

[
1 − exp

(
Θ − f

e

)]
. (23)

The parameter E0 describes the stiffness of unfrozen ice (respectively water)
and has a negligible value. E∞ denotes the stiffness of ice. The parameters e
and f effect the development of Young‘s modulus and are selected such that
the stiffness E∞ is reached at a temperature of Θ ≈ −20◦C (see Fig. 16).

Within the analysis of the damage due to frost within the hcp the consti-
tutive equation for ice is applied to the water filled pores of hcp. The material
properties of ice are given in the Table 5. They are taken directly from the
literature, see e.g. [7]. The properties indicated with •� are chosen in order to
describe the temperature dependency of Young‘s modulus using (23).

Within the numerical simulations thermal loading is increased linearly
such that the temperature inside the micro-structure reaches 〈Θ〉 ≈ −20◦C.
Mechanical loadings are not applied within this investigation. However they
are present e.g. due to dead loads and have to be considered for a determina-
tion of damage within hcp in a real structure. Here we want to compare with
experiments of hcp in which we can neglect these loads. For the mechanical
properties of hcp the identified parameters from Section 5 are used.

The principal stress due to thermal expansion is depicted in Fig. 17. Com-
pression stress is marked in dark gray and tension stress in light gray. Obvi-
ously, the water filled pores are in compression state due to the expansion of
ice.
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Fig. 16. Temperature dependency of Young‘s modulus (e = 2.5, f = −5.0)

Table 5. Material properties for ice

parameter value

E�
0 1.0

E∞ 3 500
ν 0.35
kf 1.633
α 0.333
η 1.0
m 0
e� 2.5
f� -5.0

The thermal loading (freezing) leads to damage in the micro-structure and
hence is related to an inelastic material response. For the given loading, one
can observe damage zones in Fig. 6. The undamaged material is marked in
light gray and the damaged material in dark gray. As one can expect, damage
occurs between the water filled pores and will reduce the load carrying ca-
pacity of the hcp and thus the mortar. So far these simulations have only be
performed for one sample related to the degree of water filling. Hence these re-
sults can be used to understand the mechanical behaviour of the freezing pro-
cess, but not for quantitative evaluations leading to new constitutive relations
for the effective material properties. For this purpose statistical computations
have to be made with different samples as performed in section 4.

Based on such statistical evaluations we will compare the numerical results
with those obtained from experimental tests of frozen hcp in future research.
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Fig. 17. Principal stress due to frost Fig. 18. Damage due to frost

When the above mentioned numerical simulations are performed for dif-
ferent moisture and temperatures states, a correlation between moisture, tem-
perature and inelastic material behavior is obtained. In order to describe such
inelastic mechanical phenomena at the meso-scale, an effective material model
has to be constructed. In such meso-scale model the constitutive parameters
have to depend now upon the mechanical strains, the moisture and the tem-
perature.
Results for two different degrees of moisture are depicted in Fig. 19. From
such numerical simulation one obtains the development of the effective dam-
age variable 〈D〉 as a function of the effective temperature 〈Θ〉. The effective
values are computed within the RVE by volume averaging of the local damage
and local temperature using the procedure described in equation (12).

Such curves have now to be computed for different degrees of moisture
in order to get a function on meso-scale which relates the state of effective
damage to temperature and moisture.

7 Outlook

On the next length scale, a model for mortar will be introduced. This model
consists of an effective material for hcp, aggregates, pores and the cohesive
zone around the aggregates. The geometry of mortar will be based on CT-
scans. But additionally, a generated structure of mortar is also used. A particle
generator has been implemented, which shuffles spherical particles in order to
get close to a given sieve curve (see Fig. 20). With respect to this particle
distribution, one obtains an artificial mortar. Further comparisons with CT-
scans will prove, if such an artificial structure is realistically.

A corresponding FE-mesh is generated using the hanging nodes technique.
The hanging node technique leads to a more accurate mesh without any dis-
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Fig. 19. Damage evolution due to frost

Fig. 20. Generated particle distribution Fig. 21. Damage in artificial mortar

torted elements. In a first approach the aggregates are described with an elas-
tic constitutive equation and the cohesive zone is neglected. Further research
will prove, if these assumptions yield reliable results.

Due to mechanical loading, damage zones occur between the aggregates.
A first result was calculated in [10] and is shown in Fig. 21. As expected,
damage zones occur around the particles. Further research will compare those
numerical results with accompanying experimental tests of mortar.
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Summary. A robust computational approach for transient dynamic impact pro-
cesses will be presented. Main focus will be on an adaptive remeshing strategy and
constitutive models for metals and geomaterials under impact loading. Practical
relevant numerical examples will complete this contribution.

Key words: Impact, Large Deformations, Adaptive Remeshing, Metals, Geomate-
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1 Introduction

The present study is concerned with a special case of solid mechanics, where
structures are exposed to short-time, highly concentrated loading. Such tran-
sient impact processes appear in civil and military security technology, dy-
namic soil compaction, vehicle crash or fastening and demolition technology.
They are characterized by varying non-linearities, as e.g. large deformations
and strains, highly non-linear material behavior, frictional contact between
multiple bodies and stress wave propagation. Development and combination
of different methods in the fields of adaptivity, constitutive modeling, element
technology, efficient time discretization and contact are essential for reliable
computations and predictions in engineering practice. Accuracy, robustness
and efficiency are mandatory requirements for the solution of those complex
problems.
In this contribution, we will mainly focus on two issues, namely adaptive
remeshing and constitutive modeling of metals and geomaterials especially
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elaborated for impact loading. The proposed methods are tested for model
problems and their performance in relevant industrial applications is verified.

2 Class of Problems

The specific class of problems focussed in this study excel themselves through
a large complexity. Essentially these are fast transient plane strain or axisym-
metric problems that are treated in an explicit way. Adopted material models
range from simple elastic up to large strain thermo-elastic-viscoplastic models.
The problems exhibit large deformations and may even include severe mesh
distortion. Frictional contact is an essential feature of the related physical
processes.

3 Adaptive Remeshing

Since large deformations occur in impact simulations and a Lagrangean de-
scription is used, repeated remeshing of individual domains is necessary [6]
[21]. To achieve a quality controlled solution and an optimal deployment of
used computational resources at the same time, an adaptive strategy is ap-
plied [12]. The essential ingredients of an adaptive remeshing strategy in this
highly nonlinear regime are (i) a mesh quality check for triggering automatic
remeshing, (ii) a reasonable assessment of discretization errors and derivation
of a corresponding mesh density distribution, (iii) an automatic mesh genera-
tion tool for graded meshes and (iv) methods for the transfer of state variables
from old to new discretization. The core of this strategy is the assessment of
discretization errors by adequate indicators. Different indicators are presented
and new methods are developed, which are especially suited for the simulation
of transient impact processes. Theoretical definitions and numerical treatment
of these aspects are dealt with.

3.1 Mesh Quality Check

In our approach, mesh quality is evaluated for each element by a combination
of two geometrical criteria, the so-called ’corner angle criterion’ and the ratio
of the radius of the inscribed circle to the radius of the circumscribed circle
[12]. If the combination of these two measures, e.g. the mean value falls below a
prescribed threshold value for a prescribed number of elements, the remeshing
procedure starts automatically. With this mesh quality check, it is guaranteed,
that the FE solution is prevented from occurence of a negative Jacobian.

3.2 Error Assessment and Mesh Density Distribution

In our approach, three categories of error indicators, gradient-based, local
quantity-based as well as geometric, are used for adaptive remeshing [12].
In the following, all indicators that have been studied and implemented are
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presented in more detail along with their associated refinement strategy, i.e.
the determination of a corresponding mesh density distribution.

Gradient-Based Indicators

Gradient-based indicators use the fact that there is a connection between the
size of local gradients and the quality of solution. Here, ’gradients’ not only
mean stresses, but local variations of arbitrary quantitites like strains, plastic
work, etc.. The corresponding adaptive remeshing strategy is characterized by
an equi-distribution - with respect to the element length - of those gradients
in the domain of solution. This leads to a refinement in high gradient zones on
the one hand and to a coarsening in low gradient areas on the other hand. Now
the question is, which relevant quantities for the gradient calculation should
be used to indicate a meaningful error and subsequently govern the mesh
density? We have chosen two different elastic and one plastic variable, whose
gradients are tightly connected to some of the specific physical phenomena or
processes occurring in complex problems like in our applications, depending
on the specific example at hand. The first quantity is the von Mises stress

ψ1 := µ
√

2(dev(εe) : dev(εe)) (1)

which especially tracks elastic shape changing behavior, whereas the second
one, the hydrostatic stress

ψ2 := κ tr(εe) (2)

mainly grasps elastic volumetric changes. Plastic regions in a structure, e.g.
localization zones, can be detected with the third quantity ’plastic work’

ψ3 :=
∫ t

t0

J−1τ : ε̇pdt (3)

Gradients of these quantities need to be calculated at all nodes of the old
mesh. Therefore, the superconvergent patch recovery technique in an element
patch [31] is used to get information about the local gradient at the particular
assembly node, i.e. the central node of the patch. According to this method, a
least square fit between a polynomial approximation and discrete values (e.g.
at quadrature points) leads to a minimization problem. After solution of the
corresponding system of linear equations, the norm of the gradient can be
calculated at the position of node N (central node of patch)

gk := ‖∇ψk(xN )‖ = (∇ψk(xN ) · ∇ψk(xN ))1/2 (4)

The local element size of the new mesh has to be inversely proportional to
the size of the local gradient due to the above mentioned reasons. In addition,
the magnitude of refinement needs to be controlled in order to adapt the
element sizes to the different indicator and/or examples. This can be achieved



126 Ekkehard Ramm, Tobias Erhart and Wolfgang A. Wall

by scaling the gradient with a prescribed value ∆ψk, which describes the
maximal allowed change of the considered quantity ψk per element. At the
end the new element size hnew

e,k results in

hnew
e,k =

∆ψk

gk
(5)

Local Quantity Indicators

On the basis of pure physical considerations, local refinement indicators can
be developed that control the mesh density in the interior mesh. For this
purpose, a physically relevant quantity is calculated for each element in the
old mesh. The new mesh is then generated provided that this quantity becomes
equi-distributed so that every element experiences roughly the same ’physical
action’. This obviously results in refinement for high values and in coarsening
for small values of this quantity per old element. For these indicators, no
gradients need to be calculated. In the following we sketch some of these local
quantity indicators that are given in the literature and that we adopted for
our study. For problems of strain localization, Ortiz and Quigley [19] proposed
an adaptive strategy, which is based on the equi-distribution of variation of
the velocity field v over the elements of the mesh. Such localization problems
can be characterized by large differences between the mechanical behavior of
the global structure and a local zone, e. g. shear bands, bringing along a loss
of ellipticity of the governing equations. For a two-dimensional element, this
indicator can be expressed as the maximum deviation for the velocity vi of
two nodes a and b

φ1 := max
i

{max
a,b

|ve
ia − ve

ib|} (6)

This is a suitable indicator for the analysis of transient processes with wave
propagation as well as localization. It is however restricted to dynamic cal-
culations. Singularities in quasi-static zones of transient problems or poor
approximations of quasi-static quantities are not treated appropriately.
Another physical indicator was used by Batra and Ko [2] for shear bands
in plane strain compression and by Camacho and Ortiz [6] for different im-
pact and penetration calculations. The intention of this indicator is that the
integral of the second invariant of the deviatoric strain-rate tensor over an
element

φ2 :=
∫

ϕ(Ωe)

√
1
2
devε̇ : devε̇ dv (7)

is the same for all elements. This indicator is capable of resolving strain lo-
calizations in dynamic calculations.
A third indicator, based on the equi-distribution of plastic power, was devel-
oped by Marusich and Ortiz [17] for simulation of high-speed machining:

φ3 :=
∫

ϕ(Ωe)

Ẇ p dv =
∫

ϕ(Ωe)

J−1τ : ε̇pdv (8)
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This indicator is especially suited for nonlinear, highly dynamic problems
with large plastic deformations, since it leads to refinement in high strain rate
regions. In order to be able to combine different indicators later, we adopt here
a similar strategy as before. At first, the elementwise calculated quantities φl

are related to the respective old element size hold
e

g̃l =
φl

hold
e

(9)

Now we use the same refinement strategy as we did for the gradient-based error
indicators, i.e. the new element size is inversely proportional to the ’variation
per element’ g̃l and it is scaled by a prescribed value ∆φl

hnew
e,l =

∆φl

g̃l
(10)

Geometric Indicator

Strongly curved surfaces have to be discretized with sufficiently small elements
to avoid significant ’geometrical errors’. This is especially important with
respect to mass conservation and in contact situations. The curvature of the
boundary is used as a geometric indicator to control this problem. However,
this indicator is only activated if it suggests refinement of the ’mechanical’
indicator driven mesh density. In case of a discrete boundary description, e.g.
the polygonal boundary of a finite element mesh, the discrete curvature κh at
the position of a finite element node is given as

κh :=
2ϑ

s1 + s2
(11)

where ϑ is the smaller angle between two boundary segments with lengths s1

and s2, respectively. If this measure is calculated for boundary nodes of the
old mesh, the element size in the new mesh results in

hnew
e,g =

ϑadm

κh
(12)

where ϑadm is a prescribed value, which can be interpreted as admissible angle
between two adjacent boundary segments. A similar indicator was used by
Camacho and Ortiz [9]. In general, through application of this indicator, there
is no connection between internal element size and boundary element size. In
such cases, a mesh smoothing technique is used to avoid large differences
between element sizes in the interior and at the boundary.

Selection of Indicators and Final Mesh Density Distribution

The objective of the different indicators and possible application areas have
been given above. For real and complex applications the question of the fi-
nal selection of indicator remains. Which specific indicator or combination of
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different indicators should be used? The answer is both trivial and difficult
at the same time. It should be rather clear from the above discussion which
indicators are not suited in which cases. The final selection however can only
be based on engineering intuition and on a deep insight into the physics of
the problem or the class of problems. It is crucial to know what the govern-
ing phenomena and the dominating processes are. One should be aware that
the answers not only depend on the problem itself but also on the respective
quantities of interest of a specific simulation.
To obtain the final mesh density, two further steps are needed. As already
pointed out it is in some cases useful to combine different error indicators.
For this purpose, the minimum of the different element sizes hnew

e,k (which be-
long to the five gradient-based indicators), hnew

e,l (which belong to the three
local quantity indicators) and hnew

e,g (the geometric indicator for the boundary)
has to be chosen as final element size

hnew
e = min{hnew

e,k , hnew
e,l , hnew

e,g } (13)

On the other hand, the element size has to be restricted by some prescribed
threshold values, because undesirably small elements (time step size in explicit
scheme!) or large elements (approximation quality!) should be avoided:

hmin
e ≤ hnew

e ≤ hmax
e (14)

3.3 Mesh Generation

Generating a graded mesh needs two sources of information: the boundary of
the domain and the mesh density inside the domain mostly given on a back-
ground mesh. In our case of large deformations and changing topologies the
background mesh is preferably the old mesh of the preceding time step, for
which the error assessment is done and the mesh density distribution is calcu-
lated. Secondly, a polygonal description of the boundary has to be provided.
Boundary nodes must be generated adaptively, i.e. subject to the calculated
mesh density. Special care has to be taken of boundaries in contact situations.
The re-ordering of nodes on convexly curved boundaries during remeshing
can result in sudden gaps between contacting bodies, which results in so-
called ’remeshing shocks’: oscillations induced by unphysically high contact
forces. This is remedied by a smooth contact formulation combined with a
procedure for precise surface recovery [9]. After that, a new ’almost-all-quad’
mesh is generated inside the domain by an ’advancing front method’ starting
from these previously generated boundary nodes and based on the given mesh
density found at the nodes of the old mesh [16] [20]. In exceptional cases, e.g.
for sharp corners, triangular elements (e.g. CST - constant strain triangles)
are also allowed. This has the advantage, that no ’bad quads’ have to be
generated and therefore the time span until next remeshing is increased.
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3.4 Transfer of State Variables

Since results are determined in an iterative or in an incremental process for
nonlinear or transient problems, a transfer of state variables between old and
new spatial discretization is essential [21] [6]. Examples of variables, which
have to be ’mapped’ are strains, stresses, velocities, boundary conditions, etc.,
i.e. a mapping strategy for both nodal and integration point data is needed.
The location and number of nodes and integration points changes totally in
case of complete remeshing of a domain. Therefore, the location of new points
in the old mesh has to be determined by an intelligent search algorithm, e.g.
directional search [20], and thereafter, state variables have to be transfered
by a suitable mapping method like inter/extrapolation [21], inverse distance
weighting [8] or moving least square techniques [31] [26]. Especially in the
context of explicit time integration the quality of the mapping scheme is cru-
cial. Since mapping cannot be supplemented by equilibrium iterations in these
cases mapping errors may propagate and pollute the whole simulation. Other
aspects like minimization of diffusion should be met as in implicit situations.

4 Constitutive Modeling

Based on the theory of finite plasticity, constitutive models for thermovis-
coplastic metals and cohesive as well as non-cohesive frictional materials are
presented and developed. One focus will be on a formulation for loose, granu-
lar media under high pressure loadings. For this a Drucker-Prager-Cap model
is modified and enhanced. The properties and effects of the developing powder
will be examined.
Our implementation of finite strain plasticity is based on the multiplicative
split of the deformation gradient into elastic and plastic parts F = FeFp and
an isotropic Eulerian formulation in eigenvalues [24] [23] [18]. Using a spec-
tral decomposition of the Finger-tensor b = FFT and the Kirchhoff stress
tensor τ = Jσ, a general return mapping scheme with elastic predictor and
closest point projection algorithm formulated in principal logarithmic strains
ε = 1/2 ln(b) = [ε1, ε2, ε3]T and in principal Kirchhoff stresses τ = [τ1, τ2, τ3]T

is applied. With this approach, which is valid for isotropic materials, the func-
tional form of the return mapping is identical to the algorithm of the infinites-
imal theory [23]. Therefore, the whole scheme with elastic predictor, plastic
corrector etc. is not shown here, but only the most important parts of our
models are presented briefly.

4.1 Metals

The mechanical behavior of metals under transient impact loadings is mainly
affected through strain rate and temperature. Therefore, a Johnson-Cook plas-
ticity model [15] is used, where the yield limit is a function of effective plastic
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Fig. 1. Qualitative influence of strain, strain rate and temperature on yield limit
in Johnson-Cook plasticity model

strain ε̄p, effective plastic strain rate ˙̄εp and absolute temperature T :

f(τ , q) = ‖s‖ −
√

2
3
q(ε̄p, ˙̄εp

, T ) ≤ 0 (15)

with norm of stress deviator ‖s‖ = ‖dev(τ )‖ and yield limit

q(ε̄p, ˙̄εp
, T ) =

(
σy + B(ε̄p)k1

) (
1 + C ln

(
1 +

˙̄εp

˙̄ε0

))
(
1 − (T ∗)k2

)
(16)

σy indicates the static yield limit and material parameters B and k1 describe
the strain hardening behavior (see Fig. 1). The increase of strength due to
high strain rates, i.e. the viscosity, is considered through the second term of eq.
(16). Factor C quantifies the strain rate dependency, whereas the rate of plas-
tic strain ˙̄εp is normalized by ˙̄ε = 1.0 [1/s]. With the last part in (16), the effect
of decreasing strength for high temperatures is reproduced: The homologous
temperature T ∗ = (T −T0)/(Tm −T0) is a measure for the mobility of crystal
grid components and is modeled as a function of current temperature T , room
temperature T0 and melting temperature Tm. This non-dimensional variable
ranges from 0 (current = room temp.) to 1 (current = melt. temp.). Thermal
softening is controlled by exponent k2. Since transient impact and penetra-
tion processes are of very short duration, adiabatic temperature changes are
assumed in our study. In addition, for the local temperature evolution, the
empirical assumption is used, that most (90-100 percent) of the plastic work
W p is transformed into heat

Ṫ =
ηd

	cv
Ẇ p =

ηd

	cv
J−1τT ε̇p, 0.9 ≤ ηd ≤ 1.0 (17)

with density 	, grade of dissipation ηd and specific heat capacity cv. The return
mapping algorithm ends up in a local Newton iteration, where plastic strain
and plastic strain rate are the implicitely considered unknowns, whereas the
temperature is accounted for in an explicit manner, i.e. it is computed from
previous time step values.
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Fig. 2. Failure modes of geomaterial under impact loading (left) and typical com-
paction behavior of powder (right)

4.2 Geomaterials

A constitutive model for cohesive and non-cohesive frictional materials will
be presented, which is especially suited for dynamic impact processes. During
a high velocity impact acting on cohesive frictional material (e.g. sandstone),
a crushed zone appears directly under the impactor nose. In this region of
highly confined loading, the intact material disintegrates and loose, granular
or powder-like media develops. Realistic description of this powderization and
the material modeling of powder itself are important topics of our study.

Characterization of Geomaterials Under Impact Loading

Considering a solid structure made of intact, cohesive frictional material (e.g.
concrete, sandstone, rock) under transient impact loading, different states
of stress and therefore different states of failure can be observed, which we
divided into three zones (Fig. 2): (i) high-pressure driven crushing (or powder-
ization) directly under the impactor, (ii) moderate compaction due to mixed
compression/shear loading and (iii) tensile fracture with low shearing. As
already stated above, our main focus will be on the first part, where com-
pact cohesive frictional material is going to be totally disintegrated to loose,
granular powder. The material will obviously change its mechanical proper-
ties during this crushing process. Due to comminution, a higher density can
be achieved than with the original material. This densification reserve leads
to a temporary decrease of hardening behavior and an increase of maximal
density. Additionally, crushing causes total loss of internal cohesion due to
particle and matrix breaking, which results in full decrease of cohesion and
tensile strength on macroscopic level. The effect becomes obvious, when the
evolved powder gets unloaded and loaded in the opposite direction (i.e. ten-
sion): Without tensile strength and cohesive capability, unlimited motion of
powder particles is possible and dilatant loosening of the material will be
observed. Since powder-like materials are distinctly compressible, depending
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on the initial density, they can have severe damping and energy absorbing
effects in dynamic impact processes that are of interest in a number of dif-
ferent applications. Herein, the kinetic energy of a system is transformed into
internal energy by a relative volume change of the powder (Fig. 2). A better
understanding of this phenomenon is needed to extenuate or to intensify the
damping and energy absorbing influence of powder in a quantitative and pre-
dictable way. In our investigations, the powder material of interest is of dry
fine sand type.
In this study, a continuum cap model for the numerical simulation of geomate-
rials under quasi-static as well as dynamic loading is presented. A nonsmooth
multisurface plasticity model with tension cutoff, Drucker-Prager failure enve-
lope and strain hardening cap provides the reproduction of the relevant phe-
nomena: tensile failure, material flow under shearing and compaction under
pressure. For the comminution process, i.e. the transition from intact, cohesive
frictional material to loose, granular media, this model will be enhanced. It
includes a criterion for the powder development, different evolution laws for
material parameters like tensile strength, cohesion and compressibility and a
modified hardening law.

Modified Drucker-Prager-Cap Model

The original multi-surface plasticity model consists of a nonlinear Drucker-
Prager cone for shear failure, an elliptical cap for compressive strain hardening
and a limit in the tension region for tensile failure [22] [7] [13]. Therefore, the
elastic region is bounded by following three yield criteria:

f1(τ ) := ‖s‖ − Fe(I1) ≤ 0

f2(τ , q) := Fc(‖s‖ , I1, q) − Fe(q) ≤ 0

f3(τ ) := I1 − T ≤ 0

(18)

These yield surfaces f1 = 0, f2 = 0 and f3 = 0 (see Fig. 3) are functions
of stress invariants I1 = tr(τ ) and ‖s‖ = ‖dev(τ )‖ as well as functions

Fe(I1) := α − λ exp(βI1) − θI1 (19)

and

Fc(‖s‖ , I1, q) :=

√

‖s‖2 +
1

R2
(q − I1)

2 (20)

Fe defines the nonlinear Drucker-Prager cone and Fc describes the elliptical
cap. The transitions between yield surfaces is discontinuous with two so-called
corner regions. At the position, where cap and shear failure envelope intersect,
we have

Fe(I1 = q) =
q − X(q)

R
(21)
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Fig. 3. Yield surfaces of Drucker-Prager Cap plasticity in meridian plane

with hydrostatic compressive strength

X(q) = q − R(α − λ exp(βq) − θq) (22)

Material parameters of this formulation are the Drucker-Prager parameters α,
λ, β and θ, the cap ellipticity R, the initial hydrostatic compressive strength
X0 and the hydrostatic tensile limit T . Internal variable q < 0 is a function of
volumetric plastic strain and it is responsible for the position and movement
of the cap (hardening).
The original Drucker-Prager-Cap (DPC) model of Hofstetter et al. [13] comes
with associated flow rules for all three failure surfaces. However, we will use
non-associated flow rules for the Drucker-Prager cone section and the tensile
region to get rid of discontinuous flow directions in both corners and to receive
less dilatant behavior for shear failure, which seems to be more realistic from
an experimental point of view [25]. Finally, our three flow directions m1, m2

and m3 are given by:

m1 := s
‖s‖ −

(
I1−q
T−q

)
∂Fe(I1)

∂I1
1 = s

‖s‖ + (λβ exp(βI1) + θ)
(

I1−q
T−q

)
1

m2 := ‖s‖
Fc(‖s‖,I1,q)

s
‖s‖ − q−I1

R2Fc(‖s‖,I1,q) 1

m3 := ‖s‖
Fe(T )

s
‖s‖ +

[
1 −

(
1 + ∂Fe(T )

∂I1

)
‖s‖

Fe(T )

]
1

(23)

A comparison between associated and non-associated flow directions for the
DPC model is shown in Fig. 4.
Assuming that the relation between pressure and volume change is known
from triaxial experiments, a strain hardening law can be defined, which de-
scribes the dependence of internal variable q from volumetric plastic strain
εp
vol = tr(εp). Here, two similar functions for that relation are provided. The
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Fig. 4. Flow directions of DPC model: associated and non-associated

first one was proposed by Sandler and Rubin [22], whereas the second one
was developed for better agreement with our experimental results for dry fine
sand type:

εp
vol =

⎧
⎨

⎩

W (exp (D(X(q) − X0)) − 1) Sandler and Rubin [22]

DW X(q)−X0
1−D(X(q)−X0)

Erhart et al. [11]
(24)

In Fig. 5 both hardening functions are shown. It can be observed, that the
second curve (representing the second hardening law [11]) approaches the
asymptote at εp

vol = −W in a more moderate way.
In triaxial experiments, cohesive as well as non-cohesive geomaterials show a
dependence from third invariant of stress deviator J3 = det(s) when it comes
to failure. To reproduce this behavior in simulations, we scale all three yield
surfaces with the Willam-Warnke function [28]

r(υ, e) =
2(1 − e2) cos υ + (2e − 1)

√
4(1 − e2) cos2 υ + 5e2 − 4e

4(1 − e2) cos2 υ + (2e − 1)2
(25)

with Lode angle

υ =
1
3

arccos

(
3
√

3
2

J3

(J2)
1.5

)

(26)

In our algorithm, the third stress invariant is considered in an explicit sense,
i.e. Lode angle υ is calculated at tn and then yield surfaces are scaled with
the Willam-Warnke function r(υ, e) at tn+1. Therefore, the stress update al-
gorithm is not affected here.

Powderization Under High Pressure

With the plasticity model presented above, it is possible to reproduce the
mechanical behavior of compact, cohesive geomaterials (sandstone, concrete,
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Fig. 5. Strain hardening laws for modified DPC model

mortar, etc.) as well as loose, granular media (sand, powder, etc.). The distinc-
tion between them is achieved by appropriate choice of material parameters.
Now, this model will be enhanced in order to describe the transition from com-
pact to loose material, i.e. the powderization under high pressure. At first, a
criterion is needed, which indicates the beginning of powder formation. On
the other hand, a consistent transition from ’compact’ to ’loose’ is necessary.
Therefore, a strategy is developed, where a new internal variable is used to
modify the material parameters tensile strength (T ) and cohesion (α, λ). Ad-
ditionally, hardening response is modified in loading and unloading to grasp
the different behavior of cohesive and non-cohesive material. In our approach,
a stress dependent criterion is used as ’powderization indicator’

1 − 2ν

1 + ν
δ < δcrush and I1 < I1,crush (27)

where δcrush and I1,crush are material parameters and factor δ (’triaxiality’)
is a function of stress invariants [14]:

δ = − I1

2
√

3
√

J2cosυ
(28)

With this criterion, beginning of crushing is detected for very high pressures
and highly confined material (e.g. under impactor nose). If the criterion is
fulfilled, tensile strength and cohesion will decrease, which is reproduced by
softening in tension and shear regime in our constitutive model. Therefore,
material parameters α, λ and T are now functions of new internal crushing
variable qc. Following the hardening law (section 4.3), this history variable
is chosen in such a way that it is identical with the 1/D-scaled volumetric
plastic strain, which develops after the beginning of powderization:

q̇c =

⎧
⎨

⎩

1
D ε̇p

vol if ε̇p
vol > ε̇p

vol,crush

0 else
(29)
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Shear strength α − λ at I1 = 0 is reduced by modification of the nonlinear
Drucker-Prager yield surface with following exponential softening (given in
incremental form)

λn+1 = αn − (αn − λ0) exp
(
− qc,n

qcu

)

αn+1 = αn + (λn+1 − λn) exp(βqn)
(30)

with material parameter qcu controlling the reduction intensity. With these
two equations it is guaranteed, that the position of the cap is not changed in
the current time step. To receive the same amount of softening for the tensile
limit, following nonlinear equation has to be solved for unknown Tn

Fe(Tn)
Tn

=
Fe(T0)

T0
(31)

The increase of hydrostatic compressive strength X(q) with increasing plas-
tic compression (i.e. the expansion of the cap) is controlled by hardening law
(24). On the other hand, the contraction of the cap due to dilatant plastic flow
in shear or tension depends on the material at hand. Loose, granular media
like sand or powder is able to break up quite easily due to missing cohesion,
whereas for intact cohesive geomaterials like concrete this phenomenon is not
very distinct. We incorporated this observation in our model by allowing cap
contraction only for powder-like materials (see Fig. 6).
As already mentioned above, comminution of initially compact material has
the consequence that a higher compaction is possible, clearly depending on
the initial density. This phenomenon was observed in experiments [30] [29] and
is incorporated in our model by modification of the original hardening law.
In Fig. 7, this modified hardening/loosening behavior is shown schematically.
At point A, the intact material begins to deform plastically under hydro-
static pressure. Further increase of loading leads to an increase of density
(contraction). At point B, powderization begins and hardening slope is less
than before. Now, the material is crushed and condensed and therefore, higher
compaction is possible (C) compared to a load path without powderization
(C’). The transition from B to C is defined analog to the usual hardening law

I1

� s �

I1

� s �

intact material:
no loosening
(cap remains)

loose material:
loosening
(cap contracts)

Fig. 6. Different cap treatment for dilatant plastic flow
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Fig. 7. Modified hardening for geomaterials with powderization

with two new material parameters Wcrush and Dcrush. If the highly condensed
powder is now loaded in shear or tensile direction (dilatant plastic flow), loos-
ening of the material and a decrease of hydrostatic compressive strength can
be observed (C → D). Further reduction of powder density is achieved with
nearly no effort, i.e. unlimited flow of the material is possible.

5 Numerical Examples

Practical relevant applications will demonstrate the performance of our overall
approach. In Sec. 5.1, adaptive simulations with high-speed deformations of
metals will be presented, followed by several geomaterial computations with
our modified DPC model in Sec. 5.2.

5.1 Adaptive Computations

To demonstrate the effectiveness of our adaptive strategy and to examine the
suitability of different error indicators for large deformation transient prob-
lems, three numerical examples will be presented: Taylor bar impact, high-
strain rate compression of WHA block and penetration of a steel cylinder by
WHA long rod. For a detailed description of model settings, material param-
eters, etc. we refer to [12]. Here, only short descriptions of most interesting
results are given.

Taylor Bar Impact

A cylindrical rod made of soft metal hits a rigid wall with high velocity [27] [6].
During the impact, elastic and slower plastic waves are initiated, propagating
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t � 20�s

t � 40�s

t � 80�s

smooth changes in time

Fig. 8. Taylor bar impact with indicator ’gradient of plastic work’: Adaptive meshes
and plastic energy (0–1500 Nmm)

t � 20�s

t � 40�s

t � 80�s
propagating plastic wave

Fig. 9. Taylor bar impact with indicator ’plastic power’: Adaptive meshes and
plastic strain rates (0-75000 1/s)

in axial direction and reflecting at the bar tails. Therefore, the initial kinetic
energy is transformed into internal energy and large plastic deformations can
be observed.
In our analysis, we compared different error indicators. In Figs. 8 and Fig.9
the interrelation between adaptive meshes and choice of indicators is illus-
trated. The indicator ’gradient of plastic work’ causes a smooth and contin-
uous growth of fine mesh regions being consistent with the evolving plastic
zone (Fig. 8). The indicator ’rate of plastic work’ also depicts the connection
between adaptive discretizations and the corresponding physical/mechanical
process: Refinement occurs where rate of plastic strain is very high, i.e. where
current material flow takes place. Therefore, the propagating plastic wave is
accompanied by a shift of fine mesh region (Fig. 9).



Numerical Modeling of Transient Impact Processes 139

Fig. 10. WHA block: Adaptive meshes and temperature distribution

High-Strain Rate Compression of WHA Block

In the second example, a prismatic metal block undergoes highly dynamic
compression, which causes large plastic strains, which again effects significant
temperature rise [3]. The involved thermal softening finally results in adia-
batic shear bands, i.e. strain localization in consequence of heat. Figure 10
shows the evolution of shear bands represented by temperature distributions
and appropriate adaptive meshes. For error assessment, the local quantity
indicator ’variation of velocity’ was used as refinement indicator. This indi-
cator is well suited here, since dynamically developing strain localizations are
detected automatically. The development of localizations results in expedi-
ent mesh refinements, which again provide high resolutions in corresponding
regions.

Penetration of a Steel Cylinder by WHA Long Rod

A cylindrical rod made of tungsten heavy alloy (WHA) hits an externally
clamped cylindrical block made of high-strength steel at high velocity [6] [1].
Figure 11 shows deformed meshes and appropriate equivalent plastic strain
distributions at time instances 20 µs and 40 µs with a logarithmic spectrum.
The physical process gets obvious: The impactor penetrates the steel cylinder
and produces a deep crater. At the same time, the melted tungsten is pressed
outwards and the bar almost completely erodes. Plastic deformations are very
high in both parts. These phenomena can be observed in experiments [1] and in
corresponding simulations [6] in the same way. In our calculation with repeated
remeshings, the spatial discretization adaptively follows the transient process.
At the beginning, strong refinement in the process zone under the impactor
is ascertained. Beyond this area of high plastic deformation, the material
behaves elastically and therefore the mesh density is relatively low. The fine
mesh region increases with proceeding penetration depth. The error indicator
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Fig. 11. Adapive meshes and equivalent plastic strains of WHA long rod penetration

’gradient of plastic work’ is apparently well suited to follow the physics of this
problem in an intelligent way.

5.2 Geomechanical computations

In this section, we present some results from numerical simulations with our
enhanced DPC model for geomaterials. More detailed descriptions of these
examples can be found in [11] and [10].

Quasi-Static Tests

First, verification and evaluation was done on different quasi-static tests like
confined or hydrostatic compression for several geomaterials [4] [5] [29]. Af-
ter identification of appropriate material parameters good correlation with
experimental results can be achieved (see Fig. 12). Here, especially the third
diagram of a hydrostatic compression test on sandstone [29] has to be pointed
out, since the distinct change of hardening behavior due to powderization is
well captured by our modified DPC model.

Triple Impact on Microconcrete

A steel rod with spherical tail hits the surface of a fine grade concrete [10].
Due to the impacts, the material powderizes in a small zone directly under the
impactor, which is kept in our model through the criterion described in Sect.
4.2: In Fig. 13, ’powderized elements’ are represented by dark grey coloring.
Additionally, the evolution of the hydrostatic compressive stress is shown for
point A: The densification and loosening of the comminuted material leads to
increasing strength followed by decreasing strength for every single impact.
On the other hand, this behavior is not discovered for the intact microconcrete
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(point B). Hence it follows that part of the kinetic energy is dissipated by the
arised powder layer. Further inspection of this phenomenon will be done in
our last example.

Dynamic Compaction of Powder

This example could be deemed to be a ’dynamic oedometer test’, i.e. we
carried out dynamic compression (with several impacts) of confined dry fine
sand type powder measuring penetration depth and contact force [11]. In the
penetration-time diagram (Fig. 14), the periodical indentation for three differ-
ent layer heights can be observed as well as the decrease of penetration depth
after a maximum compression was reached. As gets obvious from Fig. 14 the
experimental and numerical results are in good agreement for all three thick-
nesses. The time dependent behavior of the contact force shows the damping
effect of powder (Fig. 14). The periodical impact causes peak loads at the
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powder

same instances but they are different in size depending on the layer thickness.
Also the time of maximum contact force is delayed with increasing height.
The amount of absorbed energy, i.e. the grade of damping by powder depends
on layer thickness and initial density.

6 Conclusion

High-velocity impact problems are physically extremely complex and therefore
numerically very demanding. The specific challenge is due to the interaction
of several areas like large deformations exhibiting large strains needing effi-
cient adaptive schemes, dynamic frictional contact algorithms avoiding non-
physically oscillations of contact forces and in particular distinct non-linear
material models. It was found that the applied explicit formulation was very
successful. It came along with time step control and continuous updates of the
FE meshes based on physically motivated error indicators. Impact automati-
cally drives the constitutive response into the highly non-linear range. Despite
this fact macroscopic continuum based material models turned out to be suf-
ficient for a realistic simulation of the structural response, both for metals as
well as for geomaterials. It is remarkable that one constitutive model, namely
the Drucker-Prager-Cap plasticity model, is rich enough to represent the ma-
terial disintegration of geomaterials from the intact phase via a powderization
stage with a subsequent hardening to a potential loosening after unloading. It
opens a large variety of applications from soil compaction to fasting problems,
demolition techniques, crash simulations and other impact problems in civil
and military engineering.
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Summary. This contribution is concerned with the numerical modelling of non-

linear solid material behaviour in the presence of ductile damage. The description

of the complex inelastic material behaviour is accomplished by coupling the elasto-

viscoplastic constitutive model, discussed by Perić (1993)[1], with a ductile damage

evolution law, introduced by Ladevèze & Lemaitre (1984) [2]. The evolution of the

damage internal variable includes the important effect of micro-crack closure, which

may dramatically decrease the rate of damage growth under compression [3]. The

theoretical basis of the material model and the computational treatment, within

the framework of a finite element solution procedure, are presented. The resulting

integration algorithm reduces to the solution of only one scalar non-linear equation

and generalizes the standard return mapping procedures of the infinitesimal theory.

Numerical tests of the integration algorithm, which rely in the analysis of iso-error

maps, are provided.

1 Introduction

The numerical treatment of different material phenomena, in the context of
finite element simulations, has been addressed in several publications (see
[4, 5, 6, 7, 8, 9, 10, 11] and references therein) during the last three decades
or so. As a result, a wide range of material models, incorporating elastic,
viscoelastic and elasto-plastic material behaviour is currently available in
standard commercial finite-element codes. The computational algorithms that
model the inelastic material behaviour have achieved a high degree of matu-
rity. This is particularly true for the isotropic material response and situations
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in which different rheological phenomena (elasticity, viscoelasticity, plasticity)
can be considered independently of each other.

Despite such developments, it is often necessary to enhance the consti-
tutive description to describe noticeable features of the material behaviour
and also to formulate models with greater predictive capability. Here, we are
particularly interested in the inelastic constitutive description of materials
subjected to forming operations. These processes are usually characterised by
the presence of extreme deformations and strains, often resulting in localised
material deterioration with possible fracture nucleation and growth. Rate sen-
sitivity and strain rate effects are also known to have a significant role in the
constitutive description. In many relevant practical problems, even when the
material is initially isotropic, plastic flow is usually responsible for inducing
anisotropy. In this case, the experimental identification of material parame-
ters becomes a very difficult and complicated task, with very few examples in
the published literature. Bearing in mind that a model intended to represent
such phenomena should be simple enough to allow efficient numerical treat-
ment and easy experimental verification of material parameters, this work
is restricted to situations in which the overall behaviour can be regarded as
isotropic. Therefore, a scalar damage variable is chosen to represent the mate-
rial internal degradation. The assumption of isotropic damage in many cases
is not too far from reality, as a result of the random shapes and distribution
of the included particles that trigger damage initiation and growth.

The purpose of this contribution is the formulation and numerical im-
plementation of a phenomenological constitutive model for elasto-viscoplastic
solids, capable of handling regions of high rate-sensitivity to rate independent
conditions in the presence of ductile damage. The description of the com-
plex inelastic material behaviour is accomplished by coupling a power-law
elasto-viscoplastic constitutive model [1, 12], which is widely accepted for the
description of rate-dependent deformations of solids, with a ductile damage
evolution law [2, 13]. The damage growth is influenced by the hydrostatic
stress state and includes the important effect of micro-crack closure. The in-
troduction of unilateral damage effects allows for a clear distinction between
states of identical triaxiality but stresses of opposite sign (tension and com-
pression) in the damage evolution. This effect may dramatically decrease the
rate of damage growth under compression, which was highlighted by numerical
tests carried out by the authors [3].

The chapter is organized as follows: Section 2 discusses the essential as-
sumptions of the model and outlines the set of constitutive equations that
govern the coupled elasto-viscoplastic damage behaviour. The algorithm for
numerical integration of the model is described in detail in Section 3 and the
closed form of the consistent tangent operator is presented. An assessment of
the accuracy and stability of the elastic predictor-viscoplastic corrector algo-
rithm is carried out relying on the analysis of iso-error maps in Section 4. The
chapter ends with the concluding remarks presented in Section 5.
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2 Elasto-Viscoplastic Damage Constitutive Model

In this section, the constitutive relations, represented by a set of equations
in time, which govern the elasto-viscoplastic damage model with crack clo-
sure effects are presented. The undamaged phenomenological behaviour of
the material is modelled by a von Mises type power-law elasto-viscoplastic
model described in Section 2.1. The important concept of effective stress [14]
is recalled in Section 2.2. In Section 2.3 the principle of strain equivalence is
used to derive effective constitutive equations for the damaged material. The
damage evolution law, which includes the important effect of crack closure, is
presented in Section 2.4.

2.1 Viscoplastic Model

It is well known that the phenomenological behaviour of real materials is gen-
erally time-dependent in the sense that the stress response always depends
on the rate of loading and/or the time scale considered. The effects of time
dependent mechanisms are particularly visible at higher temperatures. Sev-
eral different visco-plasticity models have been proposed in the past and, in
practice, a particular choice should be dictated by its ability to model the de-
pendency of the plastic strain rate on the state of stress for the material under
consideration. This section provides a brief review of the equations governing
the undamaged material. The elasto-viscoplastic model described is based on
a von Mises yield criterion and a power-law isotropic hardening [1].

The model is defined by an elastic constitutive equation, i.e., a linear elastic
relation between the stress tensor, σ, and the elastic strain, εe:

σ = De : εe (1)

where the symbol : denotes double contraction and De is the standard isotropic
elasticity fourth order tensor given by

De = 2G
[
I − 1

3I ⊗ I
]

+ K I ⊗ I (2)

where I, is the fourth order identity tensor. The material constants G and
K are, respectively, the shear and bulk moduli. The conventional additive
decomposition of the total strain rate, ε̇, into an elastic contribution, ε̇e, and
an inelastic contribution, ε̇vp:

ε̇ = ε̇e + ε̇vp (3)

is assumed. Furthermore, an associative plastic flow rule is adopted:

ε̇vp = γ̇
∂Φ(σ, σy)

∂σ
, (4)
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where γ̇ is the plastic multiplier whose expression is defined later. In the above,
Φ is the von Mises yield function

Φ(σ, σy) ≡ q (s (σ)) − σy =
√

3J2(s) − σy , (5)

where s ≡ σ− 1
3 (trσ) I, with I the identity tensor, is the stress deviator, and

σy = σy(ε̄ vp) (6)

is the stress-like variable associated with isotropic hardening. In the present
case (isotropic strain hardening), σy is an experimentally determined function
of the equivalent plastic strain, ε̄ vp, whose evolution is defined by the rate
equation:

˙̄ε vp =
√

2
3 ‖ε̇vp‖ . (7)

The yield function Φ defines an elastic domain such that the material be-
haviour is purely elastic (no viscoplastic flow) whenever

q < σy.

Among the various possibilities for the definition of γ̇, here, the following form
of a power-type law is adopted [1]:

γ̇ =
1
µ

〈(
q

σy

)1/ε

− 1

〉

, (8)

where µ and ε are the viscosity and rate-sensitivity , respectively. These ma-
terial parameters are, generally, temperature-dependent and can only assume
positive values. The symbol 〈·〉 represents the ramp function defined as

〈x〉 = (x + |x|)/2. (9)

The evolution problem described by the set of constitutive equations (1)–
(8), has a firm experimental basis and is widely accepted as a description of
rate-dependent deformations of solids.

Remark 1. The elasto-viscoplastic model contains, as special limiting cases,
two important models[1]:

(i) When µ → 0 (no viscosity) and/or ε → 0 (no rate-sensitivity), the stan-
dard rate-independent von Mises elasto-plastic model is recovered.

(ii) When µ → ∞ a form of viscoelastic model is recovered.

2.2 Concept of Effective Stress

An important step in the formulation of damage models is the introduction
of damage effects without loosing the properties of well established models of
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elasto-plasticity and elasto-viscoplaticity. Therefore, several different concepts
and postulates have been introduced in the literature in order to account
for the material progressive internal deterioration. The most frequently used
concept, which is crucial to the definition of the theory, is the concept of
effective stress [15, 16].

Due to the diversity of forms in which internal damage manifests itself at
the microscopic level, variables of different mathematical nature (scalars, vec-
tors, tensors) possessing different physical meaning (reduction of load bearing
area, loss of stiffness, distribution of voids) have been employed in the de-
scription of damage under various circumstances. Here, only one single scalar
variable, D, will be used, representing the simplest possible isotropic formu-
lation. According with the concept of effective stress an effective stress tensor
is introduced as

σ̃ ≡ 1
1 − D

σ . (10)

The damage variable assumes values between 0 (for the undamaged material)
and 1 (for the completely damaged material). In practice, a critical value
Dc < 1 usually defines the onset of a macro-crack (i.e., complete loss of load
carrying capacity at a point).

Continuum damage mechanics relies on the postulate of strain equivalence,
which states that ”the strain behaviour of a damaged material is represented
by constitutive equations of the virgin material (without damage) in the po-
tential of which the stress is simply replaced by the effective stress” [14, 17].
This principle can be used to derive effective constitutive equations for the
damaged material based on the equations which govern the undamaged ma-
terial response, simply by replacing the stress tensor σ in these equations by
the effective stress tensor σ̃ according to (10).

2.3 Elasto-Viscoplasticity Coupled with Damage

A coupled elasto-viscoplastic model can be obtained by including the effect
of damage in the power-law viscoplastic model described in Section 2.1. This
can be accomplished by simply substituting Equation (10) in the definition of
the von Mises yield function:

Φ (σ, σy,D) ≡ q

1 − D
− σy =

√
3J2(s)
1 − D

− σy(ε̄ vp) . (11)

It should be noted that (11) accounts for two competing effects: damaging,
which shrinks (isotropically) the elastic domain (defined as the subset of stress
space for which Φ ≤ 0) as D grows; and hardening, which can expand the
elastic domain (also isotropically) with the growth of σy. The von Mises yield
function can be rewritten as

Φ (σ, σy,D) ≡ q − (1 − D)σy =
√

3J2(s) − (1 − D)σy(ε̄ vp) . (12)
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If this particular form is used, the associative plastic flow rule (4) remains
unchanged, i.e., is not directly affected by the introduction of damage. This
equation is more convenient and will be used later for the computational
implementation. In addition to Equation (12), damage effects will also be
included in the definition of the viscoplastic multiplier:

γ̇ =
1
µ

〈[
q

(1 − D)σy

]1/ε

− 1

〉

, (13)

or equivalently,

γ̇ =

⎧
⎪⎨

⎪⎩

1
µ

[(
q

(1 − D)σy

)1/ε

− 1

]

if Φ (σ, σy,D) > 0

0 if Φ (σ, σy,D) ≤ 0 .

(14)

Note that the effect of internal damage on the elastic behaviour of the
material is ignored in the present model. That is, the elasticity tensor is not
a function of the damage variable or in other words, elasticity and damage
are assumed to be decoupled. This simplification can be justified if the elastic
strain remains truly infinitesimal in the type of problems addressed with this
model.

Remark 2. The damage variable ranges between 0 and 1, with D = 0 corre-
sponding to the sound (undamaged) material and D=1 to the fully damaged
state with complete loss of load carrying capacity. Note that damage growth
induces softening, i.e., shrinkage of the yield surface defined by

Φ = 0 .

For D = 0 the yield surface reduces to that of the (pressure insensitive) von
Mises type power-law elasto-viscoplastic model. In the presence of damage,
i.e., for D 	=0 the yield surface shrinks and its size reduces to zero for D=1.

2.4 Damage Evolution Law

The damage evolution law should reflect the nucleation and growth of voids
and microcracks which accompany viscoplastic flow. Damage and viscoplas-
ticity are undoubtedly coupled, as the presence of internal deterioration in-
troduces local stress concentrations which may in turn drive viscoplastic de-
formation. The evolution of the damage internal variable is assumed to be
governed by the relation:

Ḋ =

⎧
⎪⎨

⎪⎩

0 if ε̄ vp ≤ ε̄ vp
D

γ̇

1 − D

(−Y

r

)s

if ε̄ vp > ε̄ vp
D ,

(15)
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where r, s and ε̄ vp
D are material constants. In the nucleation phase, experimen-

tal evidence reveals that there is no noticeable effect of damage on the mechan-
ical properties, therefore the constant ε̄ vp

D is the so-called damage threshold,
i.e., the value of accumulated plastic strain below which no damage evolution
is observed. The quantity

Y =
−1

2E(1 − D)2
[(1 + ν)σ+ : σ+ − ν 〈trσ〉2]

− h

2E(1 − hD)2
[(1 + ν)σ− : σ− − ν 〈−trσ〉2] ,

(16)

is the damage energy release rate, with E and ν denoting, respectively, the
Young’s modulus and the Poisson’s ratio of the undamaged material. The
tensors σ+ and σ+ are, respectively, the tensile and compressive components
of σ, defined as:

σ+ =
3∑

i=1

〈σi〉 ei ⊗ ei (17)

and

σ− =
3∑

i=1

〈−σi〉 ei ⊗ ei , (18)

with {σi} and {ei} denoting, respectively, the eigenvalues and an orthonormal
basis of eigenvectors of σ. The crack closure parameter, h, is an experimentally
determined coefficient which satisfies:

0 ≤ h ≤ 1 . (19)

This coefficient characterizes the closure of microcracks and micro-cavities
and depends upon the density and the shape of the defects. It is a material
dependent parameter and, for simplicity, h is considered as constant. A value
h≈0.2 is typically observed in many experiments [18]. This definition of the
energy release rate (16) was introduced by Ladevèze (1983)[13] and Ladevèze
& Lemaitre (1984) [2]. Note that, for a state of purely tensile principal stresses,
the damage energy release rate (16), can be simplified and rewritten as

Y =
−1

2E(1 − D)2
[
(1 + ν) σ : σ − ν (tr σ)2

]

=
−q2

2E(1 − D)2

[
2
3
(1 + ν) + 3(1 − 2ν)

(
p

q

)2
]

.

(20)

For states with purely compressive principal stresses, (16) will give absolute
values of Y smaller than those produced by (20), resulting in a decrease of
damage growth rates. Also note that the limit h = 1 corresponds to no crack
closure effect whereas the other extreme, h = 0, corresponds to a total crack
closure, with no damage evolution under compression. Any other value of h
describes a partial crack closure effect.
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Remark 3. The particular form of the energy release rate (20), was initially
proposed by Lemaitre (1983) [19] in order to describe the influence of stress
triaxiality ratio, p/q, on the rate of damage growth. The inclusion of the
hydrostatic component of σ in the definition of Y implies that Ḋ increases
(decreases) with increasing (decreasing) triaxiality ratio.

One important feature of damage growth is the clear distinction between
rates of damage growth observed for states of stress with identical triaxiality
but stresses of opposite sign (tension and compression). Such a distinction
stems from the fact that, under a compressive state, voids and micro-cracks
that would grow under tension will partially close, reducing (possibly dramat-
ically) the damage growth rate. This phenomenon can be crucially important
in the simulation of forming operations, particularly under extreme strains. It
is often the case that, in such operations, the solid (or parts of it) undergoes
extreme compressive straining followed by extension or vice-versa [3].

3 Integration Algorithm

In this section the derivation of an integration algorithm for the elasto-visco-
plastic damage constitutive model, described in the previous section is carried
out in detail. Operator split algorithms are particularly suitable for numerical
integration of constitutive equations and are widely used in the context of
elasto-plasticity and also elasto-viscoplasticity [20, 21, 22, 1, 7].

Let us consider a typical time step over the time interval [tn, tn+1], where
the time and strain increments are defined in the usual way as

∆t = tn+1 + tn, ∆ε ≡ εn+1 − εn . (21)

In addition, all variables of the problem, given by the set {σn, εe
n, ε vp

n , ε̄ vp
n ,Dn},

are assumed to be known at tn. The operator split algorithm should obtain
the updated set {σn+1, ε

e
n+1, ε

vp
n+1, ε̄

vp
n+1,Dn+1} of variables at tn+1 consis-

tently with the evolution equations of the model. The algorithm comprises
the standard elastic predictor and the visco-plastic return mapping which, for
the present model, has the following format.

Elastic Predictor

The first step in the algorithm is the evaluation of the elastic trial state where
the increment is assumed purely elastic with no evolution of internal variables
(internal variables frozen at tn). The elastic trial strain and trial accumulated
viscoplastic strain are given by:

εe trial = εe
n + ∆ε; ε̄ vp trial = ε̄ vp

n . (22)
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The corresponding elastic trial stress tensor is computed:

σtrial = De : εe trial , (23)

where De is the standard isotropic elasticity tensor. Equivalently, in terms of
stress deviator and hydrostatic pressure, we have:

strial = 2Gee trial, ptrial = K ve trial , (24)

where
ee trial = ee

n + ∆e, ve trial = ve
n + ∆v . (25)

The material constants G and K are, respectively, the shear and bulk moduli,
s and p stand for the deviatoric and hydrostatic stresses. The strain deviator
and the volumetric strain are denoted, respectively, by e and v. The trial yield
stress is simply

σtrial
y = σy(ε̄ vp). (26)

The next step of the algorithm is to check whether σtrial lies inside or
outside of the trial yield surface. With variables ε̄ vp and D frozen at time tn
we compute:

Φtrial := qtrial − (1 − Dn)σy(ε̄ vp)

=
√

3
2‖strial‖ − (1 − Dn)σy(ε̄ vp) .

(27)

If Φtrial ≤ 0, the process is indeed elastic within the interval and the elastic
trial state coincides with the updated state at tn+1. In other words, there is
no viscoplastic flow or damage evolution within the interval and

εe
n+1 = εe trial ; σn+1 = σtrial ; ε̄ vp

n+1 = ε̄ vp trial ;

σy n+1 = σtrial
y ; Dn+1 = D trial .

(28)

Otherwise, we apply the viscoplastic corrector algorithm described in the fol-
lowing.

Visco-plastic corrector (or return mapping algorithm)

At this stage, we solve the evolution equations of the model with the elastic
trial state as the initial condition. With the adoption of a backward Euler dis-
cretisation, the viscoplastic corrector is given by the following set of algebraic
equations:

σn+1 = σtrial − ∆γ D :
∂Φ
∂σ

∣
∣
∣
∣
n+1

ε̄ vp
n+1 = ε̄ vp

n + ∆γ

Dn+1 =

⎧
⎨

⎩

0 if ε̄ vp
n+1 ≤ ε̄ vp

D

Dn + ∆γ
1−Dn+1

(
−Yn+1

r

)s

if ε̄ vp
n+1 > ε̄ vp

D ,

(29)
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where the incremental multiplier , ∆γ, is given by:

∆γ =
∆t

µ

{[
q(σn+1)

(1 − Dn+1)σy(ε̄ vp
n+1)

]1/ε

− 1

}

, (30)

with ∆t denoting the time increment within the considered interval. After
solving (29), we can update:

εvp
n+1 = εvp

n + ∆γ
∂Φ
∂σ

∣
∣
∣
∣
n+1

εe
n+1 = εe trial − ∆γ

∂Φ
∂σ

∣
∣
∣
∣
n+1

. (31)

The visco-plastic corrector can be more efficiently implemented by reduc-
ing (29) to a single non-linear equation for the incremental multiplier ∆γ.

3.1 Single-Equation Corrector

As we shall see in what follows, analogously to what happens to the classical
von Mises model, the above system can be reduced by means of simple al-
gebraic substitutions to a single non-linear equation having the incremental
plastic multiplier, ∆γ, as a variable. Firstly, we observe that the plastic flow
vector:

∂Φ
∂σ

=
√

3
2

s

‖s‖ (32)

is deviatoric. The stress update equation (29)1 can then be split as:

sn+1 = strial − ∆γ 2G
√

3
2

sn+1
‖sn+1‖

pn+1 = ptrial ,
(33)

where p denotes the hydrostatic pressure and G is the shear modulus. Further,
simple inspection of (33)1 shows that sn+1 is a scalar multiple of strial so that,
trivially, we have the identity:

sn+1

‖sn+1‖ =
strial

‖strial‖ , (34)

which allows us to re-write (33)1 as:

sn+1 =
(

1 −
√

3
2

∆γ 2G

‖strial‖
)

strial =
(

1 − ∆γ 3G

qtrial

)
strial (35)

where qtrial is the elastic trial von Mises equivalent stress:

qtrial = q(strial) =
√

3
2 ‖strial‖ . (36)

Equation (35) results in the following update formula for q:
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qn+1 = qtrial − 3G∆γ . (37)

With the substitution of the above formula together with (29)2 into (30) we
obtain the following scalar algebraic equation for the incremental multiplier,
∆γ:

∆γ − ∆t

µ

{[
qtrial − 3G∆γ

(1 − Dn+1)σy(ε̄ vp
n+1)

]1/ε

− 1

}

= 0 , (38)

or, equivalently, after a straightforward rearrangement,

Dn+1 = D(∆γ) ≡ 1 −
√

3
2 ‖strial‖ − 3G∆γ

σy0 + R(ε̄ vp
n + ∆γ)

(
∆t

µ∆γ + ∆t

)ε

, (39)

which expresses Dn+1 as an explicit function of ∆γ. Finally, by introducing the
damage explicit function (39) into the discretised damage evolution equation
(29)3, the viscoplastic corrector is reduced to the solution of a single algebraic
equation for the incremental multiplier, ∆γ:

F (∆γ) ≡
⎧
⎨

⎩

D(∆γ) = 0 if ε̄ vp
n+1 ≤ ε̄ p

D

D(∆γ) − Dn − ∆γ
1−D(∆γ)

(
−Y (∆γ)

r

)s

= 0 if ε̄ vp
n+1 > ε̄ vp

D .
(40)

In (40)2, the dependency of Y on ∆γ originates from its dependency on the
updated values of D and σ:

Y (∆γ) =
−1

2E[1 − D(∆γ)]2
[(1 + ν)σ+(∆γ) : σ+(∆γ) − ν 〈trσ(∆γ)〉2]

− h

2E[1 − hD(∆γ)]2
[(1 + ν)σ−(∆γ) : σ−(∆γ) − ν 〈−trσ(∆γ)〉2] ,

(41)
The updated stress tensor, σn+1, whose tensile and compressive components
take part in the calculation of Yn+1, is obtained as:

σn+1 = sn+1 + pn+1 I , (42)

where I is the second order identity tensor and sn+1 is obtained from the
standard implicit return mapping as a function of ∆γ according to update
formula (35):

sn+1 =
(

1 − ∆γ 3G

qtrial

)
strial; pn+1 = ptrial . (43)

The single-equation viscoplastic corrector comprises the solution of the above
equation for ∆γ, followed by the straightforward update of the relevant vari-
ables. The solution of the equation for ∆γ is, as usual, undertaken by the
Newton-Raphson iterative scheme. The overall algorithm for the numerical
integration of the elasto-viscoplastic damage model, which includes the effect
of crack closure, is summarised in Box 1 in pseudo-code format.



156 D.R.J. Owen, F.M. Andrade Pires and E.A. de Souza Neto

(i) Elastic predictor. Given ∆ε, ∆t and the state variables at tn,
compute the elastic trial state:

εe trial = εe
n + ∆ε; etrial = dev[εe trial]; vtrial = tr[εe trial]

ε̄ vp trial = ε̄ vp
n ; Dtrial = Dn

strial = 2Getrial; ptrial = K vtrial

qtrial =
√

3
2 ‖strial‖,

(ii) Check for viscoplastic flow. First compute:

Φtrial = qtrial − (1 − Dn) [σy0 + R(ε̄ vp
n )] ,

IF Φtrial ≤ εtol THEN (elastic step)

Update (·)n+1 = (·)trial and EXIT

ELSE GOTO (iii)
(iii)Visco-plastic corrector . Solve the return mapping equation

F (∆γ) ≡
⎧
⎨

⎩

D(∆γ) = 0 if ε̄ vp
n+1 ≤ ε̄ vp

D

D(∆γ)−Dn− ∆γ
1−D(∆γ)

(
−Y (∆γ)

r

)s

= 0 if ε̄ vp
n+1 > ε̄ vp

D

with D(∆γ) defined by (39) and Y (∆γ) defined through (16),
(39) (42) and (43).

(iv) Update the variables:

sn+1 =
(
1 − ∆γ 3G

qtrial

)
strial; pn+1 = ptrial ;

σn+1 = sn+1 + pn+1 I ; ε̄ vp
n+1 = ε̄ vp

n + ∆γ ;

ε e
n+1 = 1

2G sn+1 + 1
3K pn+1 I ; Dn+1 = D(∆γ).

(v) EXIT

Box 1: Elastic predictor/visco-plastic return mapping integration algorithm
for the elasto-viscoplastic damage model with crack closure effect (over time
interval [tn, tn+1])

Remark 4. (computational implementation aspects) In the computer imple-
mentation of the model (as shown in Box 1), it is important to specify the
damage function D(∆γ), as expressed in equation (39). The reason for this
lies in the fact that, for low rate-sensitivity, i.e., small values of ε, the Newton-
Raphson scheme for solution of (38) becomes unstable as its convergence bowl
is sharply reduced with decreasing ε. The reduction of the convergence bowl
stems from the fact that large exponents 1/ε can easily produce numbers
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which are computationally intractable. This fact has been recognised by Perić
(1993) [1] in the context of a more general visco-plastic algorithm. In equation
(39), on the other hand, the term to the power ε on the left hand side can
only assume values within the interval [0, 1] and causes no numerical problems
within practical ranges of material constants.

3.2 Consistent Tangent Operator

To obtain the consistent tangent operator for the case of a strain-driven prob-
lem, all variables of the problem are considered as functions of the strain ε.
The exact linearization of the algorithm described in Box 1 is performed by
a systematic application of the concept of directional derivative.

In the elastic case, the elastic consistent tangent at tn+1, is simply the
standard elasticity operator

D̂ = De = 2G
[
I − 1

3I ⊗ I
]

+ K I ⊗ I (44)

where I, is the fourth order identity tensor.
In the elasto-viscoplastic damage case, i.e., when it is assumed that vis-

coplastic flow occurs within the step, the tangent operator is called the elasto-
viscoplastic damage consistent tangent and is denoted by D̂

vp
. For the present

model it is possible to obtain a closed form expression for the tangent oper-
ator. The details of derivation, which is rather lengthy, will be omitted here
and we shall limit ourselves to show only its final expression which is given
by:

Dvp = a1

[
I − 1

3I ⊗ I
]
+ a2 s̄n+1 ⊗ s̄n+1 + a3 s̄n+1 ⊗ I + K I ⊗ I , (45)

where s̄n+1 is the normalised stress deviator:

s̄n+1 =
sn+1

‖sn+1‖ , (46)

and the scalars a1, a2, a3, are given by:

a1 = 2G
(
1 − ∆γ 3G

qtrial

)

a2 = 6G2
[

∆γ
qtrial + ∂F

∂ (qtrial)
/ ∂F

∂ (∆γ)

]

a3 = 2G
√

2
3 K

[
∂F

∂ (ptrial)
/ ∂F

∂ (∆γ)

]
.

(47)

In the definition of constants a2 and a3, the scalars ∂F/∂ (∆γ), ∂F/∂ (qtrial)
and ∂F/∂ (ptrial), correspond to the derivatives of the return mapping residual
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function defined by (40):

∂F
∂ (∆γ) = ∂D

∂ (∆γ) + 1
1−Dn+1

(
−Yn+1

r

)s

{[
− ∂D

∂ (∆γ)/(1−Dn+1) − s ∂Y
∂ (∆γ)/Yn+1

]
∆γ − 1

}

∂F
∂ (qtrial)

= ∂D
∂ (qtrial)

− ∆γ ∂D

∂ (qtrial)
/(1−Dn+1)

2

(
−Yn+1

r

)s

− s ∆γ
r (1−Dn+1)

(
−Yn+1

r

)s−1
∂Y

∂ (qtrial)

∂F
∂ (ptrial)

= s ∆γ
r (1−Dn+1)

(
−Yn+1

r

)s
∂Y

∂ (ptrial)
.

(48)

where the scalars ∂Y /∂ (∆γ), ∂Y /∂ (qtrial) and ∂Y /∂ (ptrial), represent the
derivatives of the energy release rate function, defined by (16):

∂Y
∂ (∆γ) = −

∂D
∂ (∆γ)

E (1−Dn+1)3
b+ + 2G

√
3
2

E (1−Dn+1)2
C+ : s̄n+1 − h2 ∂D

∂ (∆γ)

E (1−h Dn+1)3
b−

+ 2G
√

3
2 h

E (1−h Dn+1)2
C− : s̄n+1

∂Y
∂ (qtrial)

= −
∂D

∂ (qtrial)

E (1−Dn+1)3
b+ −

√
2
3

E (1−Dn+1)2
C+ : s̄n+1 −

h2 ∂D

∂ (qtrial)

E (1−h Dn+1)3
b−

+
√

2
3 h

E (1−h Dn+1)2
C− : s̄n+1

∂Y
∂ (ptrial)

= − 1
E (1−Dn+1)2

C+ : I − h
E (1−h Dn+1)2

C− : I

(49)
furthermore, the scalars b+ and b− and the second order tensors C+ and C−
introduced in (49), are given by

b+ = (1 + ν)σ+ : σ+ − ν 〈tr σ〉2

b− = (1 + ν)σ− : σ− − ν 〈−trσ〉2

C+ = (1 + ν) ∂σ+
∂σ : σ+ − ν 〈tr σ〉 I

C− = (1 + ν) ∂σ−
∂σ : σ− − ν 〈−trσ〉 I

(50)

Here, one should note that the tensors C+ and C− defined in (50)3 and (50)4,
respectively, contain the terms:

∂σ+

∂σ
, and

∂σ−
∂σ

.
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To compute such derivatives, we first note that (17) and (18) define σ+ and
σ− as isotropic tensor-valued functions of σ. Such functions are particular
cases of the families of functions discussed by Chadwick & Ogden (1971)[23]
and Carlson & Hoger(1986) [24] and their derivatives are promptly available
in closed form. Finally, the scalars ∂D/∂ (∆γ) and ∂D/∂ (qtrial), which are
the outcome of the derivation of the damage function (39) are defined by

∂D
∂ (∆γ) =

(
∆t

µ ∆γ+∆t

)ε [
3G

σy(ε̄ vp
n+1)

+ H(qtrial−3G∆γ)
σy(ε̄ vp

n+1)
2 + µε

µ ∆γ+∆t

(
qtrial−3G∆γ

σy(ε̄ vp
n+1)

)]

∂D
∂ (qtrial)

= − 1
σy(ε̄ vp

n+1)

(
∆t

µ ∆γ+∆t

)ε

(51)
In the above, H denotes the derivative of the hardening function evaluated at
tn+1:

H =
dσy

dε̄ vp

∣
∣
∣
∣
ε̄ vp

n+1

. (52)

Remark 5. It is important to note that, the resulting elasto-viscoplastic tan-
gent operator Dep is generally unsymmetric so that, within the context of
finite element computations, an unsymmetric solver is required in the global
Newton-Raphson scheme.

4 Accuracy Analysis of the Integration Algorithm

To illustrate the accuracy of the integration algorithm in practical situations,
this section presents some iso-error maps, produced with material constants
covering a range of high rate-sensitivity to rate-independency. Iso-error maps
have long been accepted as an effective and reliable (if not the only) tool for
assessing the accuracy of constitutive integration algorithms under realistic
finite time/strain steps [25, 26, 20].

The maps have been generated in the standard fashion. Using the three-
dimensional implementation of the model, we start from a stress point at
time tn, σn, lying on the yield surface (refer to Fig. 1) and apply a sequence
of strain increments (within the interval [tn, tn+1]), corresponding to linear
combinations of trial stress increments of the form

∆σtrial =
∆σT

q
T +

∆σN

q
N, (53)

where N and T are, respectively, the unit normal and tangent vectors to the
yield surface and q is the von Mises equivalent stress. For each increment of
trial stress, we obtain a numerical solution, σnum

n+1, with the above described
algorithm in one step. In addition, a solution assumed to be ‘exact’, σexact

n+1 , is
obtained with the same algorithm by dividing the corresponding strain (and
time) increment into 1000 sub-increments of equal size. For each point in
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σn T

N
∆σ

trial

∆σN

∆σT

σtrial

Fig. 1. Isoerror map. Trial stress increment directions

Table 1. Material data for aluminium alloy

Description Symbol Value

Elastic Modulus E 69004 [MN/m2]
Poisson’s ratio ν 0.3
Initial yield stress σy0 80.559 [MPa]
Hardening curve σy(ε̄ vp) 589 · (10−4 + ε̄ vp)0.216

Damage data (exponent) s 1.0
Damage data (denominator) r 2.8 [MPa]

which a numerical and ‘exact’ solution is obtained, the error is computed as:

ERROR =
‖σexact

n+1 − σnum
n+1‖

‖σexact
n+1 ‖ × 100 .

The resulting iso-error map is the contour plot of the error field. The material
properties adopted in the present analysis, are listed in Table 1. These param-
eters were taken from Reference [27] for an aluminium alloy, except for the
value of the damage denominator, r. The value of this material constant has
been calibrated by performing several numerical tests with a single axisym-
metric finite element, such that critical value of damage (D = 1) is attained,
for the same applied displacement. To preserve the constant rate of total strain
∆ε/∆t for the iso-error map under consideration, the time increment ∆t is
appropriately scaled. Figure 2 shows iso-error maps obtained at low and high
strain rates with the non-dimensional rate

µ ‖ε̇‖

set respectively to 1 and 1000. For each non-dimensional rate, three values
of rate-sensitivity parameter, ε, have been used: 100, 10−1 and 0. For ε = 0
virtually identical maps are obtained for the two rates [see Figs. 2 (a)3 and
2 (b)3] and the algorithm recovers the rate-independent solution.
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5 Concluding Remarks

A computational model for elasto-viscoplastic solids, capable of handling re-
gions of high rate-sensitivity to rate independent conditions in the presence of
ductile damage, has been presented in this contribution. The material consti-
tutive model is derived by coupling a power-law elasto-viscoplastic constitu-
tive model, with a ductile damage evolution law. The evolution of the damage
internal variable includes the important effect of micro-crack closure.

The model can describe different concurrent physical phenomena and im-
plicitly contains, as limit cases, simpler constitutive descriptions. The resulting
integration algorithm generalizes the standard return mapping procedures of
the infinitesimal theory, and quite remarkably requires the solution of only
one scalar non-linear equation.
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Summary. This paper describes a multiscale homogenization procedure required
for computation of material response of non-linear microstructures undergoing small
strains. Such procedures are important for computer modelling of heterogeneous ma-
terials when the length-scale of heterogeneities is small compared to the dimensions
of the body.
The described homogenization procedure is based on the standard finite element
discretisation of both macro- and micro-structure. The attention is restricted to
two dimensional problem and the deformation-driven microstructures. Two classical
types of boundary conditions are imposed over the unit cell: (a) linear displacements
on the boundary, and (b) periodic displacements and antiperiodic tractions on the
boundary. These boundary conditions satisfy the fundamental averaging condition,
which equates microscopic and macroscopic virtual work. Numerical simulations,
performed for an elasto-plastic material with micro-cavities, illustrate the scope and
benefits of the described computational strategy.

1 Introduction

The ever increasing requirements in high-performance applications have pro-
vided a constant stimulus for the design of new materials. Often, this has
been achieved by appropriately manipulating microstructure, for instance, by
adding certain material component to the matrix phase, thus tailoring the
overall material properties to specific applications. The added material phase
is typically at a scale that is much smaller than the overall structural size,
hence making the direct modelling of the material behaviour impractical. In
many situations scales remain tightly coupled and the traditional phenomeno-
logical approach does not provide sufficiently general predictive modelling
capability. Therefore a means of continuous interchange of information be-

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 165–185.
© 2007 Springer. Printed in the Netherlands.



166 D. Perić, E.A. de Souza Neto, A.J. Carneiro Molina and M. Partovi

tween scales is needed if predictive modelling of material behaviour is to be
attempted.

Since the basic principles for the micro-macro modelling of heterogeneous
materials were introduced (see Suquet [12, 13]), this technique has proved
to be a very effective way to deal with arbitrary physically non-linear and
time dependent material behaviour at micro-level. A number of recent works
has been concerned with various approaches and techniques for the micro-
macro simulation of heterogeneous materials. Among these we highlight the
contributions by Moulinec and Suquet [10], Smit et al. [11], Miehe and co-
workers [7, 8, 9], Kouznetsova et al. [5], Terada and Kikuchi [15] and Zohdi
and Wriggers [16].

The present article discusses some issues related to computational strat-
egy for homogenisation of microstructures with non-linear material behaviour
undergoing small strains. Since the aim is to provide the basic ingredients of
the computational strategy allowing for the concurrent simulation at different
scales of the model, a simple model is considered comprising two scales arising,
for instance, in modelling of heterogeneous composite materials. The focus of
this article is on computational aspects; more specifically on the computa-
tional technique for prescribing the boundary conditions at the micro-scale
and calculation of the macro-scale tangent moduli characterising relations be-
tween the macroscopic stress and strain tensors.

The attention is restricted to the deformation-driven microstructures,
which have been proven to provide a convenient computational format [14].
Two types of boundary conditions are imposed over the unit micro-cell: (a)
linear displacements on the boundary, and (b) periodic displacements and an-
tiperiodic tractions on the boundary. These boundary conditions satisfy the
fundamental Hill-Mandel averaging condition, which equates microscopic and
macroscopic virtual work [4]. The resulting computational strategy is charac-
terised by the Newton-Raphson solution of the discrete boundary value prob-
lem, and incorporates the appropriate tangent operators. Numerical examples
of both micro-scale and two-scale finite element simulations are presented in
order to illustrate the scope and the benefits of the described computational
strategy.

2 Continuum Model at Small Strains

2.1 Preliminaries

A homogenized macro-continuum B ⊂ R
3 with locally attached microstruc-

tures B ⊂ R
3 is visualized in Fig. 1. A point x ∈ B of the homogenized

macromedium B ⊂ R
3 is represented as a microstructure B ⊂ R

3. The ten-
sors σ and σµ denote the macro and micro Cauchy stress tensor at x ∈ B
and y ∈ B, respectively. The representative volume element (RVE) of the
microstructure V ⊂ R

3 represents the part of the heterogeneous material con-
sisting of the solid part B and the hole H, i.e. V = B ∪H and ∂B = ∂V ∪ ∂H.
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Fig. 1. Micro to macro transition

It is assumed that the traction field on the surface of the holes in the interior
of RVE vanishes, i.e. t(y , t) = 0 at y ∈ ∂H, where t ≡ σµn on ∂B is the
traction field vector on the surface with outward normal n at y ∈ ∂B.

2.2 Basic Microvariables

Microscopic small strain tensor εµ is defined as the symmetric part of the
displacement gradient tensor,

εµ ≡ sym{∇(u)} (1)

where u is the displacement field at a material point y ∈ B.
Microequilibrium state is assumed in the presence of body forces per unit

of mass b,
div(σµ) + ρ b = 0 in B , (2)

where symmetric stress tensor σµ is assumed to be related to the strain tensor
εµ by some constitutive law

σµ = σ̂(εµ ;α ; y) in B, (3)

where α is the set of internal variables.

2.3 Basic Macrovariables and Averaging Theorem

Within the described homogenization technique no constitutive assumptions
have been assumed at the macrolevel. Overall macrostress σM of microstruc-
ture V is defined as an average of the microstresses over the unit cell. By
applying the Gauss theorem and microquilibrium (2), σM is given by the
expression

σM ≡ σ =
1
|V|

∫

V
σµ dV =

1
|V|

∫

∂V
sym[t⊗y ] dA+

1
|V|

∫

V
ρ sym[b⊗y ] dV

(4)
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in terms of the traction t at y ∈ ∂V and body force vector field b at y ∈ V.
By applying Green’s Lemma in similar way, overall macrostrain εM is

defined,

εM ≡ ε =
1
|V|

∫

V
εµ dV =

1
|V|

∫

∂V
sym[u ⊗ n] dA (5)

in terms of the displacement u at y ∈ ∂V.
Overall tangent modulus C relates the variations of overall macrostress σ

and the macrostrain ε in the form

C ≡ dσ

dε
(6)

The computation of these fourth-order tensors, in their discrete FE form, is
an important aspect of this work.

The Hill-Mandel Principle

The Hill-Mandel principle or averaging theorem [4], demands that macroscopic
stress work (or power) must equal the volume average of the microscopic stress
work (or power) over the RVE associated with the macroscopic point, that is

σ : ε =
1
|V|

∫

V
σ : ε dV (7)

Using (1) and integrating by parts the right hand side of (7) and then
applying microequlibrium (2), the averaging theorem can be expressed in the
following form

σ : ε =
1
|V|

∫

∂V
t · u dA +

1
|V|

∫

V
ρ b · u dV (8)

2.4 Definition of the Boundary Conditions for the Small Scale

The boundary conditions for the displacement u and traction t at the mi-
crostructure, are chosen such that condition (7) is satisfied. Two classical
types of boundary conditions that satisfy these conditions are prescribed on
the unit cell: (a) linear displacements on the boundary, and (b) periodic dis-
placements and antiperiodic tractions on the boundary. A crucial aspect is
the formulation in deformation-driven context, where the macroscopic strain
ε is prescribed as averaged over the microstructure. The deformation-driven
format has proved more convenient than the stress driven format [14].

The displacement field is divided in two parts:

u(y) = u∗(y) + ũ(y) = εy + ũ(y), (9)

where u∗ is the Taylor displacement, which defines a constant deformation ε
over the unit cell as

u∗ ≡ εy . (10)
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∂VV

Fig. 2. Microstructure for linear b.c.

The component ũ is known as the displacement fluctuation, which is con-
sidered to be unknown.

Insertion of (9) into the averaging theorem (8) yields in the following new
form of the Hill-Mandel principle

1
|V|

∫

∂V
t · ũ dA +

1
|V|

∫

V
ρ b · ũ dV = 0 (11)

Linear displacements on the boundary

In this state, the definition of the linear deformation boundary constraint over
the microstructure RVE shown in Fig. 2 assumes the following form

ũ(y) = 0 at y ∈∂V. (12)

This condition defines a linear deformation on the boundary ∂V of the
RVE. Insertion of the above condition (12) into the new averaging condition
form (11) confirms that this model satisfies the averaging theorem only when
body force effect is negligible.

Periodic deformation and antiperiodic traction on the boundary

Another possibility consists of applying periodic deformation and antiperiodic
traction on the boundary of the RVE ∂V, which can be represented as

ũ(y+) = ũ(y−) and t(y+) = −t(y−). (13)

In order to apply these conditions the boundary of the unit cell is de-
composed in two parts as indicated in Fig. 3. Thus ∂V = ∂V+ ∪ ∂V−

with outwards normals n+ = −n− which are associated with the points
y+ ∈ ∂V+ and y− ∈ ∂V−.

The body force effect is not taken into consideration so that this condition
satisfies the averaging theorem. This can be proved easily by inserting (13)1
and (13)2 into (11).
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∂V+

V

∂V−

Fig. 3. Microstructure for periodic b.c.

V

B
H

B

Fig. 4. Micro to macro transition

3 Discretised Model at Small Strains

3.1 Introduction

The discretisation of the continuum multi-scale problem described in Section
2 is based on finite element formulation. A representative finite element di-
cretisations of the macro and microstructure are depicted in Fig. 4. One can
notice that at every integration Gauss point of the macrostructure, a discrete
RVE microstructure is considered as representation of a Gauss point at the
macro-level.

The present approach is based on the deformation-driven microstructures,
in which the value of the overall macroscopic deformation ε is prescribed on
the discretised RVE. The goal is then to develop a numerical procedure for
computing macroscopic average stress σ and the overall tangent moduli C at
each macroscopic integration point with locally attached microstructure.
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3.2 Displacement Field Partition and Matrix Notation

Following the previous Section 2.4, where the continuum displacement field
partition (9) was established, the displacement field is divided in two parts:

u = u∗ + ũ (14)

where the Taylor displacement u∗ (previously defined in the continuum form
(10)) is expressed in its discrete form

u∗
j ≡ εy j j = 1 · · · n (15)

for the n nodes of the discretised microstructure RVE. The displacement fluc-
tuation ũ is the unknown for every node of the discretised microstructure.

In what follows the standard finite element matrix notation will be used,
where the tensor entities so far used, can be expressed in the matrix form as

ε ≡
⎧
⎨

⎩

ε11

ε22

2 ε12

⎫
⎬

⎭
, uj ≡

{
u1

u2

}

j

, σ ≡
⎧
⎨

⎩

σ11

σ22

σ12

⎫
⎬

⎭
and fj ≡

{
f1

f2

}

j

. (16)

Here ε is the matrix representation of the macrostrain tensor, uj is the dis-
placement field at the node j of the discretised unit cell V, σ is the averaged
stress field while fj denotes the force vector associated with the microcell
node j.

The Taylor displacement u∗
j of the node j is computed in the following

matrix form
u∗

j = D
T
j ε , j = 1 · · · n. (17)

where Dj is the coordinate matrix at node j of the microstructure defined in
[9].

3.3 Discretised Micro-equilibrium State and Solution Procedure

Following standard procedure, the discrete boundary value problem is formu-
lated as follows: Find the nodal displacements global vector u, such that

r(u) ≡ f int(u) − fext = 0 (18)

where f int and fext are, respectively, the internal and external global force
vectors, and r is the residual (or out-of-balance force) vector.

An iterative Newton-type procedure for the solution of the Non-linear
microscopic equilibrium (18) is considered here. Each iteration determines
the current fluctuation field assuming frozen macroscopic strain ε. At the end
of the procedure, when microequilibrium is reached, the averaged macroscopic
stress over the microstructure RVE can be updated.
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3.4 General Average Stress and Overall Tangent Modulus
Computation

Average Stress Computation

Assuming no body forces in the expression for the average stress (4), in the
discrete setting, t dA → fext

j , that is the infinitesimal force t dA becomes the
finite force fext

j at position y j on the boundary ∂V. Therefore (4) degenerates
into the discrete sum

σ =
1
|V|

nb∑

j = 1

sym[fext
j ⊗ y j ] (19)

where nb is the number of nodes on the boundary ∂V. Using matrix represen-
tation this expression becomes

σ =
1
|V|

nb∑

j = 1

Dj fext
j (20)

where Dj is the coordinate matrix evaluated at node j on the boundary of the
discretised microstructure RVE. The above expression can be rearranged in
the following global expression

σ =
1
|V| Db fext

b , (21)

where fext
b is the external nodal force vector of the boundary nodes, and Db

is the boundary coordinate matrix defined by:

Db ≡ [
D

b
1 D

b
2 . . . D

b
nb

]
. (22)

Overall Tangent Modulus Computation

In the computational homogenization approach no explicit form of the con-
stitutive behavior on the macrolevel is assumed a priori, so that the tangent
modulus has to be determined numerically by relations between variations
of the macroscopic stress and variations of the macroscopic strain at such
integration point. This can be accomplished by numerical differentiation of
the numerical macroscopic stress strain relation, for instance, by using for-
ward difference approximations as suggested in [8]. An alternative approach
is to condense the microstructural stiffness matrix to the macroscopic matrix
tangent modulus. This task is achieved by reducing the total RVE system of
equations to the relation between the forces acting on the boundary ∂V and
the displacement on the boundary. This procedure has been used in [5], [6],
and also in [9], in combination with the Lagrange multiplier method to im-
pose the boundary constraints. A similar scheme have been used in this work
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whereby the direct condensation is employed to obtain a relation between
the forces acting on the boundary ∂V and the Taylor displacement on the
boundary nodes array u∗ which depends linearly on the macroscopic strain ε.

The total microstructural system of equations that gives the relation be-
tween the iterative nodal displacement du and iterative nodal external force
vectors is

K du = dfext (23)

With the displacement partition (14) the system can be rearranged as

⇒ K du∗ + K dũ = dfext ⇒ K dũ = dfext − K du∗ (24)

The boundary constraints are then applied to this system in the following
sections to condense the system. This procedure gives the expression that
relates the variation of boundary external forces dfext

b against the variation
of the Taylor displacement du∗.

3.5 Linear Displacements on the Boundary Assumption

In view of the discrete formulation of the boundary conditions outlined before
in section 2.4, the nodes of the mesh are partitioned into those on the surface
∂V of RV and those in the interior of V. In this mesh nb boundary nodes and
ni internal nodes are distinguished. More details of the discrete form of this
linear constraint are given in [1].

Partitioning of Algebraic Equations

Partitioning of the current nodal displacements and internal forces is given as

u =
{

ui

ub

}
≡

{
Li u
Lb u

}
and f =

{
f i

fb

}
≡

{
Li f
Lb f

}
. (25)

Here Li and Lb are the connectivity matrices [2], which define the contri-
butions of the interior and boundary nodes, respectively. These are Boolean
matrices, i.e. they consist of integers 0 and 1. Displacements ui and ub are
arranged as shown in (25).

In line with (25) the tangent stiffness matrix is rearranged as

K =
df int

du
=

[
kii kib

kbi kbb

]
≡

[
Li K L

T
i Li K L

T
b

Lb K L
T
i Lb K L

T
b

]
(26)

into contributions associated with internal nodes and nodes on the surface of
the RVE.
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Linear Displacement

At each node j of the boundary ∂V the condition (12) induces the discrete
constraint

ũj = 0, j = 1 · · · nb. (27)

According to the matrix notation introduced in Section 3.2, we define the
global coordinate matrix

Dglobal,l ≡ [
Di Db,l

]
, (28)

where Di and Db are the interior coordinate matrix and the boundary coordi-
nate matrix, respectively, given as

Di ≡ [
D

i
1 D

i
2 . . . D

i
ni

]
and Db,l ≡ [

D
b
1 D

b
2 . . . D

b
nb

]
. (29)

Matrices Di and Db are defined in terms of the node coordinate matrices
of the interior and boundary nodes, as discussed in Section 3.2. The Taylor
displacement u∗ defined in (17), is now represented in global form as u∗ =
D

T
global,l ε, where ε is the matrix representation of the prescribed macroscopic

strain (16). In this model the variation of the Taylor displacement vector du∗

is represented as
du∗ = D

T
global,l dε, (30)

that is, as a function of the variation of the macroscopic average strain vector
dε.

Tangent Modulus of Linear Displacements on the Boundary
Constraint

Using Partitioning of the algebraic equations (25) and (26), the system (23)
can be rewritten for the case when dfext

i = 0.
The general procedure explained in Section 3.4, where the rearranged sys-

tem (24) was obtained, is followed. By applying linear displacement constraint
in discrete form (27) and by using the Taylor displacement variation du∗ given
by (30), after some algebraic manipulation, a variation for the external nodal
force vector at the boundary nodes is obtained as

dfext
b = KB

lin D
T
global,l dε (31)

in terms of the global coordinate matrix (28) and the overall averaged macros-
train.

The overall tangent moduli defined in (6), can be computed in its dis-
cretised matrix form, using previous averaged stress expression (21), in the
following way

Cl =
dσ

dε
=

1
|V| Db

dfext
b

dε
(32)
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Substituting (31) into (32), the overall tangent modulus representation is
obtained as

Cl =
1
|V| Db,l KB

lin D
T
global,l . (33)

Clearly the modulus Cl is given as a function of the boundary coordinate
matrix Db,l defined in (29), the condensed stiffness matrix KB

lin and the global
coordinate matrix D

T
global,l outlined in (28). Finally we remark that using

(33) the tangent moduli can be computed for heterogeneous material with
arbitrary microstructures. When using this tangent modulus the quadratic
rate of convergence is attained at the macroscopic level.

3.6 Periodic Displacements and Antiperiodic Traction on the
Boundary

In order to discretise the continuum model of the periodic boundary conditions
described in 2.4, the nodes of the mesh are partitioned in four groups: 1) ni

interior nodes, 2) np positive boundary nodes which are located at the top and
right of the microstructure boundary ∂V of the RVE, 3) np negative boundary
nodes which are located at the bottom and left of the microstructure boundary
∂V of the RVE, and 4) nc = 4 node at the corners. More details on these
discrete constraints are given in [1].

Partitioning of Algebraic Equations

The partition of the nodal displacements and internal forces for the periodic
boundary condition is as follows

u =

⎧
⎪⎪⎨

⎪⎪⎩

ui

up

un

uc

⎫
⎪⎪⎬

⎪⎪⎭
≡

⎧
⎪⎪⎨

⎪⎪⎩

Li u
Lp u
Ln u
Lc u

⎫
⎪⎪⎬

⎪⎪⎭
and f =

⎧
⎪⎪⎨

⎪⎪⎩

f i

fp

fn

f c

⎫
⎪⎪⎬

⎪⎪⎭
≡

⎧
⎪⎪⎨

⎪⎪⎩

Li f
Lp f
Ln f
Lc f

⎫
⎪⎪⎬

⎪⎪⎭
(34)

Here Li, Lp, Ln and Lc are the connectivity matrices which define respec-
tively: the interior contribution, the contribution of positive boundary nodes,
the one from their corresponding negative boundary nodes, and finally the
contribution from the nodes at the corners. In correspondence to (34), the
tangent stiffness matrix is partitioned in the following way

K=
df int

du
=

⎡

⎢
⎢
⎣

kii kip kin kic

kpi kpp kpn kpc

kni knp knn knc

kci kcp kcn kcc

⎤

⎥
⎥
⎦≡

⎡

⎢
⎢
⎣

Li K L
T
i Li K L

T
p Li K L

T
n Li K L

T
c

Lp K L
T
i Lp K L

T
p Lp K L

T
n Lp K L

T
c

Ln K L
T
i Ln K L

T
p Ln K L

T
n Ln K L

T
c

Lc K L
T
i Lc K L

T
p Lc K L

T
n Lc K L

T
c

⎤

⎥
⎥
⎦.

(35)
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Periodic Displacements and Antiperiodic Tractions

At each node pair j on the boundary ∂V+ ∪ ∂V−, the continuum conditions
(13)1 and (13)2 induce discrete constraints at boundary nodes of the discre-
tised RVE. The displacement fluctuation at the corners is prescribed to zero
in order to avoid the solid rigid body motion.

Using the matrix notation introduced in Section 3.2, we redefine the global
coordinate matrix for the periodic b.c. assumption as

Dglobal,p ≡ [
Di Db,p

]
(36)

where Di is the interior coordinate matrix defined in (29) and the Db,p is the
boundary coordinate matrix for periodic assumption defined this time as

Db,p =
[

Dp Dn Dc

]
(37)

where Dp, Dn, Dc are the positive boundary coordinate matrix, negative bound-
ary coordinate matrix and corner coordinate matrix, respectively.

The Taylor displacement u∗ defined as a constant for each node in (17),
is given in a compact form as u∗ = D

T
global,p ε , where Dglobal,p is the global

coordinate matrix for periodic assumption and ε is the matrix representation
of the prescribed macroscopic strain tensor. In this model the variation of the
Taylor displacement vector du∗ is considered as follows

du∗ = D
T
global,p dε , (38)

i.e. the displacement du∗ is a function of the variation of the macroscopic
average strain vector dε.

Tangent Modulus of Periodic Displacements and Antiperiodic
Traction on the Boundary Constraints

After rearranging the displacement nodal vector u, the external nodal force
vector fext and the stiffness matrix K, as defined in (34) and (35), respec-
tively, the general system (23) that relates the variations du and dfext can
be obtained.

Again the general procedure of Section 3.4 is followed to rearrange the
system in the way described in (24). The variation of the Taylor displacement
du∗ is given by (38). In this system the displacement fluctuation variation
vector dũ is considered as unknown. The application of the periodic displace-
ment and antiperiodic external force in its discrete form, after some algebraic
operations, gives the variation of the external force vector as

dfext
b = KB

per D
T
global,p dε (39)

where the Taylor displacement variation (38) has been inserted into the above
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equation (39). Therefore the desired expression is obtained as

dfext
b

dε
= KB

per D
T
global,p (40)

which gives the sensitivity of external boundary force vector dfext
b in terms

of the macroscopic average strain matrix dε.
The overall tangent moduli defined in (6), can be computed in its discre-

tised F.E. matrix form, using previous averaged stress expression (21), in the
following way

Cp =
dσ

dε
=

1
|V| Db,p

dfext
b

dε
(41)

Inserting (40) into (41), the overall tangent modulus matrix form for peri-
odic deformation and antiperiodic traction on the boundary of RVE is finally
obtained as

Cp =
1
|V| Db,p KB

per D
T
global,p . (42)

Clearly the modulus Cp is a function of the boundary coordinate matrix
Db,p defined in (37), the condensed periodic stiffness matrix KB

per and the
global coordinate matrix Dglobal,p outlined in (36). Finally we remark that
with the above expression (42), the tangent moduli can be computed for
heterogeneous materials with arbitrary microstructures of the RVE. This re-
sults in the desired quadratic rate of convergence of the Newton-type solution
procedure applied to solve the homogenized nonlinear macrostructure under
periodic deformation and antiperiodic traction on the boundary of the RVE.

4 Numerical Examples

In this section numerical examples are presented in order to illustrate the
scope and benefits of the described computational strategy. First set of nu-
merical simulations focuses on microstructure simulations and discusses some
important issues regarding numerical analysis at the micro-level such as the ef-
fect of boundary conditions, topology and distribution of heterogeneities, etc.
Second numerical example considers a full two-scale simulation of a bound-
ary value problem and incorporates all computational ingredients described
in this paper. This example also includes a comparison with a detailed single
scale analysis.

4.1 Study of the Effect of Topology of Cavities on the Properties
of the RVE

Problem Specifications

A square unit cell is considered representing an RVE at the micro-level. The
cell is composed of an elasto-plastic material with heterogeneity being induced
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Fig. 5. Regular cavity model

by cavities. Two models are considered: (i) a regular cell with a single circular
hole embedded in a soft matrix depicted in Fig. 5, (ii) randomly generated
distribution of cavities surrounded by soft matrix given in Fig. 7. For both
models the void volume fraction of the unit cell is taken as 15%.

Two types of finite elements are employed: linear 3-noded triangle element
and 8-noded quadrilateral element with 4-Gauss points. The matrix in all
models is assumed to be composed of the von Mises elasto-plastic material
with linear strain hardening. The material properties assigned are: Young’s
modulus E = 70GPa, Poisson’s ratio ν = 0.2, the initial yield stress σY0 =
0.243GPa and the strain hardening modulus H = 0.2GPa.

Analysis Approach

All simulations in this section have been performed by employing the com-
putational homogenisation under the plane-stress assumption in small strain
regime. The average stress is obtained by imposing the macro-strain over the
unit cell and solving the problem for defined boundary condition over the
RVE. The generic imposed macro-strain tensor is expressed by:

[ε̄11, ε̄22, 2ε̄12] = [0.001, 0.001, 0.0034] .

To obtain the load step at each load increment, the generic strain tensor
is multiplied by the relevant load factor. The analysis is performed under two
different boundary conditions: (i) linear displacement boundary condition, and
(ii) periodic displacement boundary condition.

Study of the Regular Cavity Model

An 8-node quadrilateral element with 4-Gauss points is employed in this sim-
ulation. Figure 5 depicts a finite element mesh containing 350 elements and
1158 nodes.

Figures 6 (a) and (b) show, respectively, the deformed mesh and the equiv-
alent plastic strain distribution for the linear displacement boundary condi-
tion. This plastic zone is clearly positioned along the diagonal side of the unit
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Fig. 6. Regular cavity model under linear displacement boundary condition and
periodic condition. a) Deformed mesh. b)Effective plastic strain contour plot

cell in direction of the imposed shear. The corresponding results for the pe-
riodic boundary condition are given in Figs. 6 (c) and (d). From Fig. 6, it
can be seen that the plastic zone has a distinctively different pattern under
periodic boundary condition.

The overall stress-strain response is presented in terms of the Euclidean
norm of the average stress and strain, given, respectively as

‖σ̄‖ =
√

σ̄2
11 + σ̄2

22 + σ̄2
12, ‖ε̄‖ =

√
ε̄2
11 + ε̄2

22 + ε̄2
12.

Figure 9 shows the resulting average stress - strain curves for this model.
The obtained results show that under linear displacement boundary condi-
tion the overall response of the regular cavity model shows significantly stiffer
behaviour with respect to the overall response under periodic boundary con-
dition.

The RVE with Randomly Generated Voids

In this study a unit cell at the micro-level with a randomly generated dis-
tribution of void placements and sizes is considered (see Fig. 7). A standard
3-node linear triangular element is employed in this simulation. Again plane-
stress conditions are prescribed and two boundary conditions at the micro-
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Fig. 7. Unit cell with randomly generated voids

level are considered: (i) linear displacement boundary condition, and (ii) peri-
odic boundary condition. The imposed macro-strain and material properties
for this model are identical to the previous examples in this section.

Figure 8 shows the equivalent plastic strain distribution for both linear
displacement boundary condition and periodic boundary conditions. The oc-
currence of localised bands with significant plastic straining can be observed
on both contour plots. Significantly, unlike in the case of the single cavity
model both boundary conditions give similar distribution of the plastic strain
indicating the convergence of the results at the micro-level with the increase
of the statistical sample of heterogeneities.

Figure 9 shows the average stress - strain curves for this model. It can
be observed that the micro-cell with randomly generated void distribution
results in the stress-strain behaviour that shows small difference between the
two different boundary conditions imposed at the micro-level. This clearly
indicates the convergence of the average properties with the increase of the
statistical sample representing the heterogeneities at the micro-level.

4.2 Two-scale Analysis of Stretching of an Elasto-plastic
Perforated Plate

In this section a full two-scale analysis of a perforated plate is performed. This
is a classical example often used as a verification problem in computational
plasticity. The plate is composed of an elasto-plastic material and contains
regularly distributed voids. The plate has width 10mm, length 18mm and
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Fig. 8. Effective plastic strain contours for the unit cell with randomly generated
voids under two boundary conditions

Fig. 9. Stress-Strain norm curves for dense model under two boundary conditions

uniform thickness of 1mm (see Fig. 10). For obvious symmetry reasons only
one-quarter of the specimen is considered (see Fig. 10). The simulation is
performed by imposing uniform displacement along the upper boundary. The
elasto-plastic material is assumed to follow the standard von Mises model
with linear isotropic hardening. Material properties are: Young modulus E =
70GPa, Poisson’s ration ν = 0.2, yield stress σY0 = 0.243GPa and hardening
modulus H = 0.2GPa. Both two-scale analysis and a single scale analysis of
this problem are performed.
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R=

Fig. 10. Plane-stress strip with a circular hole. Geometry and boundary conditions

Single-scale Analysis

Single scale analysis is used for comparative purposes and is performed on a
detailed finite element mesh of the problem given in Fig. 11 (a). The mesh is
composed of 11216 4-node quadrilateral elements and 12147 nodes. Figure 11
(b) illustrates distribution of an equivalent plastic strain at latter stages of
the simulation.

Two-scale Analysis

For the multi-scale finite element analysis the perforated plate is defined as
a homogeneous structure at the macro-level, while at the micro-level a unit
cell is defined with side length equal to 1 mm and a single void in the centre
of the micro-cell giving the volume fraction of 50%. Linear 3-noded triangle
element is employed at both macro and micro-level (see Fig. 12). The mesh
at the macro-level number is composed of 25 elements and 21 nodes, while at
the micro-level the FE mesh is composed of 603 elements and 352 nodes.

Multi-scale analysis has been performed under three different boundary
conditions at the micro-level: (i) Taylor assumption, (ii) linear displacement
boundary condition and (iii) periodic boundary condition. As can be seen
from Fig. 13, which gives reaction force against the prescribed displacement,
different boundary conditions result in markedly different force-displacement
diagrams. As expected, the results obtained for the Taylor assumption show
substantially stiffer behaviour with comparison to the other two boundary as-
sumptions. Periodic boundary assumption generates the softest response, and
significantly the resulting overall behaviour shows very good correspondence
with the results obtained by the detailed single-scale analysis.
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a) b)

Fig. 11. Single-scale analysis of an elasto-plastic perforated plate: (a) Finite element
mesh, and (b) distribution of equivalent plastic strain

Fig. 12. FE meshes at macro- and micro-level for multi-scale analysis

5 Conclusions

A multiscale computational strategy for homogenisation of material behaviour
of heterogeneous composites has been described. The presented numerical
tests have confirmed the successful implementation of the computational pro-
cedure and efficient solution of the discrete multiscale problem.



184 D. Perić, E.A. de Souza Neto, A.J. Carneiro Molina and M. Partovi

Fig. 13. Reaction along Y direction against the applied displacement

The ongoing research is concerned with the analysis of more general non-
linear material behaviour at the microscale and incorporation of the finite
strain kinematics. This work will be reported in future publications.
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Summary. Two safety topics in pipeline engineering are considered: (1) rockfall
onto gravel-buried steel pipes and (2) protection of the outer anti-corrosion coating of
soil-covered steel pipelines. For both cases, effective protection systems are identified,
based on the results of non-linear elasto-plastic Finite Element analyses.

Introduction

Two safety topics in pipeline engineering will be treated: (i) rockfall onto
gravel-buried steel pipes and (ii) protection of the outer anti-corrosion coating
of soil-covered steel pipelines. In both cases non-linear elasto-plastic Finite
Element (FE) analyses provide insight into the structural behavior, as needed
for the design of effective protection systems. For rockfall, a two-component
protection system is recommended. It consists of an impact damping layer and
of a buried load-distributing and load-carrying structure. As regards wear
of the anti-corrosion coating, two well-established means of protection are
considered to be most effective: (i) burying pipelines by sand and (ii) covering
pipelines by (fibre-)reinforced concrete.

1 Protection Systems for Gravel-Buried Pipelines
Subjected to Rockfall

Recent increase of rockfall activities in the European Alps has raised the need
for designing impact protection systems for pipelines in Alpine valleys. This
section deals with the assessment of different protection systems including

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 187–206.
© 2007 Springer. Printed in the Netherlands.
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surface of structure

of overburden

sand

90 cm
50 cm

soil/rock

H. . . height

gravel

150 cm

s = 11.13 mm

d=1016 mm

Fig. 1. Geometric dimensions of the gravel-buried steel pipeline in a section per-
pendicular to the axis of the pipe

sandy gravel as an energy-absorbing and load-distributing structural compo-
nent. In Subsection 1.1, the development of a FE model allowing for prediction
of the loading of a gravel-buried steel pipe subjected to rockfall is described.
In Subsection 1.2, results from a real-scale impact experiment of a boulder
onto a buried steel pipe are used for an assessment of this model. To ensure
the significance of this validation procedure, the identification of the model
parameters is based on experiments which are independent of the real-scale
impact test. Finally, in Subsection 1.3 and 1.4, respectively, the structural
model is used to study the performance of two different rockfall-protection
systems covering a steel pipe.

1.1 Development of a Structural Model

Geometric Dimensions of the Considered Problem

A pipeline with an outer diameter d = 1016mm and a wall thickness s =
11.13mm is considered. It is buried in the middle of a trench of 3m width,
resting on a 50 cm thick layer of sand. The tube is laterally buried up to a
height of 40 cm by sand. The rest of the trench is filled by sandy gravel, see
Fig. 1.

Impact Scenario and Mode of Analysis

Single boulders impacting vertically, directly above the axis of the steel pipe,
are considered as typical rockfall events. Making use of symmetries, it is suf-
ficient to discretize one fourth of the entire structure, see Fig. 2 (a). The ma-
terial beside and beneath the trench is represented by a Winkler foundation
modeled by bar elements representing linear springs, see Figs. 1 and 2 (a).
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Fig. 2. (a) FE discretization used for the validation of the structural model; (b)
axisymmetric analysis performed to obtain the distribution of surface loads applied
to the 3D FE model

Dead load results in stresses in the pipe, which are by two orders of mag-
nitude smaller than the stresses caused by the investigated types of impact.
Therefore, dead load is not taken into account and, hence, the overburden of
the pipe is only discretized to simulate the load distribution. Since the impact
stresses in the backfill material above the pipe occur only in the vicinity of the
impact axis, the discretization of the overburden of the pipe is restricted to a
longitudinal distance of 3.4m from the impact axis, see Fig. 2 (a). Outside this
domain, only the backfill material beside and beneath the tube is discretized.

The penetration process is not modeled in detail. Instead, the height of the
overburden H is reduced by the penetration depth W at which the maximum
impact force occurs, see Fig. 2 (a). Both dynamic and static 2D plain strain
analyses delivered approximately the same maximum stresses in the pipe [18].
Therefore, the maximum impact force is applied quasistatically onto the sur-
face of the FE model. This mode of modeling requires estimates of (i) the
maximum impact force and the penetration depth at maximum impact force,
both as a function of the mass m and the impact velocity v0 of an impacting
boulder, and (ii) the distribution of stresses corresponding to the maximum
impact force, which are prescribed as stress boundary conditions for the FE
analysis.

Estimates of the Maximum Impact Force and the Penetration
Depth at Maximum Impact Force

The final penetration depth X, i.e. the penetration depth after the end of the
impact, is estimated based on the dimensionless formula [16]

X

d
=

√
1 + k π/4N

(1 + I/N)
4k

π
I for

X

d
≤ k , with I =

mv2
0

d3 R
, (1)

where d denotes the characteristic size of the boulder, N is a geometry function
characterizing the “sharpness” of the boulder nose, k stands for the dimen-
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sionless depth of a surface crater, and R denotes the indentation resistance
of the hit material. For cubic granite boulders with a volume V and a mass
density equal to 2700 kg/m3, impacting with a tip onto gravel with a mass
density equal to 1800 kg/m3, the following relationships were obtained based
on a hybrid experimental-analytical approach [16]

N = 2.385 , k = 1.257 , d = 1.050 3
√

V , and R = 9.22MPa . (2)

Relations between X and the maximum impact force F , and between X and
the penetration depth at maximum impact force, W , were derived on the basis
of a model for the impact kinematics which was deduced from experimental
acceleration measurements [16, 17] as

X

d
=

mv2
0

F d
=

W

d

(
4π2

3π2 + 4

)
. (3)

Computation of the Distribution of Stresses Corresponding to the
Maximum Impact Force

In order to perform a 3D FE analysis of rockfall onto gravel as described
previously, the stress distribution corresponding to the maximum impact force
must be specified. Herein, this stress distribution is computed by means of an
axisymmetric linear-elastic FE model. It comprises the gravel and the tip of
the granite boulder approximated as a conical indenter at a penetration depth
W , see Fig. 2 (b). The maximum impact force F is applied to the conical
indenter as a spatially constant surface stress σ. The material parameters for
gravel and granite are taken from Table 1. The vertical stresses obtained for
the axisymmetric FE model in a horizontal section through the model at the
tip of the boulder, see Fig. 2 (b), serve as surface loads for the 3D FE model.

Material Modeling of Steel, Gravel and Sand

The material behavior of steel is modeled by small-strain von Mises elasto-
plasticity, see e.g. [10, 22] and Table 1 for Young’s modulus E, Poisson’s ratio
ν, and the uniaxial yield strength σy.

The material behavior of gravel is represented by the elasto-plastic Cap
Model [3, 5, 19]. The elastic domain follows the isotropic generalized Hooke’s
law [12]: σ = C : (ε − εp) , where σ denotes the Cauchy stress tensor, and ε
and εp stand for the linearized strain tensor and the plastic strain tensor, re-
spectively. C represents the isotropic constitutive elasticity tensor which can
be expressed as a function of the bulk modulus K and the shear modulus G,
reading C = K 1I⊗ 1I + 2G(II− 1

31I⊗ 1I) , where 1I and II denote the 2nd-order
unity tensor and the 4th-order unity tensor, respectively. In the principal
stress space the elastic domain is bounded by three surfaces, (i) a tension cut-
off accounting for tensile failure, (ii) a Drucker-Prager surface defining shear
failure under pronounced deviatoric stress states, and (iii) an ellipsoidal cap
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Fig. 3. Cap model for gravel: elastic domain and direction of plastic flow, respec-
tively, in a meridional plane of the principal stress and the plastic-strain space,
respectively

representing the hardening of the material associated with compaction, see
Fig. 3. In mathematical terms, these functions read [8, 9]

f1(σ) = I1 − T = 0 ,
f2(σ) =

∥
∥s

∥
∥ − Fe(I1) = 0 for T ≥ I1 ≥ ζ ,

f3(σ, ζ) = Fc(
∥
∥s

∥
∥, I1, ζ) − Fe(ζ) = 0 for ζ ≥ I1 ≥ X(ζ) with

(4)

Fe(ξ) = α − ϑ ξ ,

Fc(
∥
∥s

∥
∥, I1, ζ) =

√∥
∥s

∥
∥2 + ([I1 − L(ζ)]/R)2

and L(ζ) =
{

ζ if ζ < 0 ,
0 if ζ ≥ 0 ,

where I1 and s denote the first invariant of the stress tensor and the devia-
toric stress tensor, respectively. The direction of plastic flow is given by the
associated flow rule [7]

dεp =
∑

α∈Jact

dλα
∂fα

∂σ
, (5)

where the consistency parameters are denoted as dλα, whereas Jact stands for
the set of active yield surfaces, defined as Jact = {α ∈ [1, 2, 3] | fα(σ, ζ) = 0}.
Activation of the cap mode leads to compaction, whereas activation of the
failure-surface mode or the tension cut-off mode results in plastic volume
dilatation, see Fig. 3. The tension cut-off and the Drucker-Prager surface are
fixed in the stress space. The ellipsoidal cap, however, expands if it is activated,
reflecting material compaction described by

εp
vol = −W (1 − exp[D X(ζ)]) , with X(ζ) = ζ + R Fe(ζ) , (6)

where ζ denotes the hardening state variable. Algorithmic issues of this model
as well as the expressions for the consistent tangent moduli can be found in
[5, 8, 9, 22].
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Parameter Identification

The parameters K and G of the backfill material are identified on the basis of
the theory of elastic waves from a series of small strain acoustic experiments
on unloaded sandy gravel [15], see Table 1. The tested material (mass density
of 1800 kg/m3) consisted to 60–80 % of particles with diameters < 70 mm,
and to 20–40 % of edged stones with diameters from 70mm – 200mm. The
loading surfaces of the Cap Model are defined by seven material parameters
(see Fig. 2 (b)): T , α, ϑ, W , D, R, and ζini, denoting the initial value of the
hardening state variable ζ. Identification of the parameters α, ϑ, W , and D
was based on triaxial tests on gravel [14, 15, 18], where cylindrical specimens
were subjected to hydrostatic compression up to different confining pressures
p. While p was subsequently kept constant, the specimens were subjected to
additional uniaxial loading in the direction of the cylinder axis, up to shear
failure. The parameters α and ϑ (Table 1) were identified from the stress
states at failure. W and D were identified such that measured relationships
between the mean normal stress and the volumetric strain are well predicted
for p ≤ 0.9MPa, see (Table 1). The initial size and the shape of the cap were
determined from constant volume tests, R = 4.4 and ζini = 0kPa, see [8].
For numerical reasons, the material parameter referring to tensile failure of
gravel, T , was set equal to a very small positive value (100Pa). Since, in
a first approximation, material parameters of dense sand are comparable to
the material parameters of the investigated type of gravel [20], no distinction
between sand and gravel was made in the numerical simulation.

Table 1. Material parameters of steel, gravel, sand, granite, and concrete

Material parameters of steel: E = 210 GPa , ν = 0.3 , σy = 514MPa

Material parameters of sandy gravel (also valid for dense sand)

K = 244MPa , G = 72MPa , α = 149 kPa , ϑ = 0.40 , W = 0.28 ,
D = 0.05MPa−1 , R = 4.4 , ζini = 0kPa , T = 0.1 kPa ≈ 0

Material parameters of granite: E = 50 GPa , ν = 0.17

Material parameters of concrete

E = 26.2 GPa , ν = 0.3 , α = 21.74 MPa , ϑ = 0.099 , T = 0.1 kPa ≈ 0

1.2 Validation of the Developed Structural Model

Real-scale Impact Experiment

The assessment of the developed structural model is based on a real-scale
impact experiment, which is independent from all experiments related to the
development of the structural model. In an area of a quarry, used for disposal
of wet clay, a 22 m long steel pipe was buried with sandy gravel as illustrated
in Fig. 1. The height of the overburden H was equal to 2m. A granite boulder
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of approximately cubic shape with a mass m = 18260 kg (V = 6.76m3, d =
1.99 m) was dropped from a height hf = 18.85m (v0 = 19.23 m/s) onto the
buried pipeline such that it impacted with a tip. The impact of the boulder
caused a crater with a depth of X = 0.85 m.

The cross-section of the pipe containing the impact axis was equipped
with four strain gauge rosettes. The strain histories measured during the im-
pact were converted into stress histories by means of ideal elasto-plasticity of
von Mises type, see e. g. [10], assuming plane-stress conditions. The obtained
maximum von Mises stresses at the locations of the strain gauge rosettes are
listed in Table 2.

Table 2. Von Mises stresses and second invariant of the strain tensor referring to the
maximum loading of the pipe subjected to rockfall: experimental results, numerical
results, and relative errors

position experimental result FE result relative error∗

12h σexp
vM = 514 MPa = σy σFE

vM = 514MPa = σy 0.0 %

3h σexp
vM = 5386MPa σFE

vM = 357MPa 7.5 %

6h σexp
vM = 5204MPa σFE

vM = 305MPa 49.5 %

12h Jexp
2,ε = −3.4761 · 10−6 JFE

2,ε = −3.1754 · 10−6 8.7 %
∗ evaluated as |σexp

vM − σFE
vM |/σexp

vM and |Jexp
2,ε − JFE

2,ε |/Jexp
2,ε , respectively

Comparison between Model-predicted and Experimentally
Determined Stress Distribution in the Steel Pipe

The real-scale impact experiment was simulated by means of the developed
3D FE model. The maximum impact force and the penetration depth at
maximum impact force were calculated from Eqs. (3) as F = 7.94MN , and
W = 0.72m . The values for F and W served as input for modeling of the
impact as described in Subsection 1.1. The coefficient for the sub-grade re-
action, ks, characterizing the elastic foundation of the trench, was set equal
to 18MN/m3, which is the mean value of the interval [12MN/m3; 24MN/m3]
recommended for soft clay in [6]. Finite elements with trilinear shape functions
for the displacements were used. The nonlinear elasto-plastic FE simulation
was performed in an incremental-iterative manner, based on consistent tan-
gent moduli [5, 8, 9].

The computed stresses in the pipe were compared to the corresponding ex-
perimental results, see Table 2. For a graphical representation of the obtained
von Mises stresses along the inner surface of the pipe, see the thick solid line
in Fig. 4 (a). In general, the simulated behavior of the steel pipe reflects the
experimentally observed behavior of the tube satisfactorily, both qualitatively
and quantitatively. At the positions 12h and 3h, good agreement between the
numerical predictions and the experimental results is observed. Since the steel
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Fig. 4. Prognoses of the distribution of the von Mises stress along the inner surface
of the pipe in the cross-section beneath the impact as a function of (a) the coefficient
of the sub-grade reaction and (b) the height of overburden

yielded at the top of the pipe, also strain measurements and FE-predictions
are compared at the position 12h, based on the second invariant of the strain
deviator,

Jε
2 =

1
6

[
(εxx − εϑϑ)2 + (εϑϑ − εrr)2 + (εrr − εxx)2

]
+ ε2

xϑ + ε2
ϑr + ε2

rx . (7)

Also this comparison yields a discrepancy of less than 10 %, see Table 2. The
largest relative error between the numerical simulation and the experiment is
obtained at the position 6h. There, the numerically predicted loading of the
pipe is 49.5 % greater than the experimentally obtained value. Nevertheless,
in regions where the highest loading of the steel pipe occurs, the developed
structural model yields satisfactory results. Consequently, this model possesses
predictive capabilities, i. e., the model is successfully validated.

1.3 Prognoses of Structural Behavior

Prognoses Considering a Change of the Boundary Conditions

The trench in which pipelines in Alpine valleys are buried by gravel is usually
surrounded by rock rather than by soft clay. This provides the motivation to
study the influence of different coefficients of sub-grade reaction on the loading
of the pipe. In order to model the behavior of weathered rock, ks is set equal to
100MN/m3, as recommended for dense sand in [6]. Secondly, ks is set equal to
500MN/m3 in order to investigate an (almost) rigid bedding, as encountered
with unweathered rock. In both cases, the height of the overburden and the
intensity of the impact are the same as in the FE simulation described in
Subsection 1.2. For increased values of the coefficient of sub-grade reaction,
the FE-predicted maximum von Mises stress of the pipe does not reach the
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yield stress, see Fig. 4 (a). An increase of ks from 18MN/m3 to 100MN/m3 and
500MN/m3 results in a reduction of the loading of the pipe by approximately
25 % and 30 %, respectively.

Prognoses Considering a Change of the Structural Dimensions

In order to assess the capability of gravel layers to serve as a protection system
for steel pipes endangered by rockfall, the influence of different heights of
overburden (H = 2.5m and 3.0m) on the loading of the pipe is studied. In
these two simulations, the coefficient of sub-grade reaction and the intensity of
the impact are the same as in the FE simulation which allowed for validation
of the model, see the Subsection 1.2. For increased heights of the overburden,
the maximum von Mises stress of the pipe, predicted by the FE simulation,
does not reach the yield stress, see Fig. 4 (b). An increase of H from 2.0m to
2.5m and 3.5m results in a reduction of the loading by approximately 20 %
and 30 %, respectively. However, this decrease is less than linear. Therefore,
in order to effectively increase the safety of a gravel-buried pipeline subjected
to rockfall, the burying depth must be increased significantly.

Prognoses Considering a Change of the Boundary Conditions and
of the Structural Dimensions

In the two previous parameter studies the influence of the increasing height of
the overburden and the one of the increasing coefficient of sub-grade reaction
on the loading of the pipe were investigated separately. In order to investigate
the synergism of both modifications, H and ks are increased simultaneously
in an additional numerical analysis.

The height of overburden is set equal to 3m and the coefficient of sub-grade
reaction equal to 500MN/m3, whereas the intensity of the impact remains
unchanged. Results from this FE analysis show a further reduction of the
loading of the pipe (compare the thick line in Fig. 6 with the results illustrated
in Figs. 4 (a) and (b)). The maximum von Mises stress encountered along the
inner surface of the pipe is equal to 33.5% of the yield stress.

1.4 Assessment of an Enhanced Protection System Consisting of
Gravel and, Additionally, of Buried Load-Carrying Structural
Elements

A protection system for a steel pipe subjected to rockfall must satisfy two
requirements: (i) damping of the impact, in order to keep the forces arising
from rockfall reasonably small and (ii) load distribution and load-carrying
capacity, in order to reduce the loading of the steel pipe. As for the protection
system investigated so far, both tasks are accomplished by the layer of gravel.
However, the flexibility of gravel required for the damping of the impact is
opposed to the stiffness of the material required for distribution and carrying
of the load.
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Fig. 5. Alternative protection system consisting of gravel as an energy-absorbing
and impact-damping system and a buried steel plate supported by concrete walls as
a load-carrying structural component

In order to further improve the effectiveness of a protection system for
a steel pipe subjected to rockfall, the aforementioned two tasks should be
performed by two separate structural elements. Such an enhanced protection
system is investigated subsequently.

Buried Steel Plate Resting on Concrete Walls

The investigated protection system consists of (i) gravel as an energy-absorbing
and impact-damping system and (ii) a buried steel plate supported by con-
crete walls, representing a load-carrying structural component, as illustrated
in Figs. 5 (a) and (b). Length, width, and thickness of the steel plate are equal
to 264 cm, 234 cm, and 1.5 cm, respectively. It consists of the same steel as
used for the pipe (Table 1). The boundary conditions at the interface between
the steel plate and the concrete walls are chosen such that only compressive
forces can be transmitted to the concrete walls.

For the description of the material behavior of concrete, the Cap Model is
employed, with the ellipsoidal failure surface being removed. The considered
type of concrete is characterized by the uniaxial compressive strength fcu =
−30.3MPa (σ11 = fcu, σ22 = σ33 = σ12 = σ23 = σ31 = 0) and the biaxial
compressive strength fcb = −35.15MPa (σ11 = σ22 = fcb, σ33 = σ12 = σ23 =
σ31 = 0). These two strength values are the basis for calculating the material
parameters α and ϑ of the Drucker-Prager failure criterion

ϑ =

√
2
3

(
fcu−fcb

fcu−2 fcb

)
= 0.099 , α =

√
2
3

(
fcu fcb

fcu−2 fcb

)
= 21.74MPa . (8)
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Fig. 6. Prognoses of the distribution of the von Mises stress along the inner surface
of the pipe in the cross-section beneath the impact for a height of overburden H =
3m and a coefficient of sub-grade reaction ks = 500 MN/m3 with and without the
additional construction consisting of a steel plate and concrete walls

Young’s modulus E, Poisson’s ratio ν and the parameter T referring to the
tension cut-off are listed in Table 1.

Assessment of the Enhanced Protection System

The performance of the enhanced protection system is assessed considering
the same rockfall scenario as previously investigated, i.e., the mass and the
height of fall of the boulder are equal to 18260 kg and 18.85 m, respectively,
the coefficient of sub-grade reaction is set equal to 500MN/m3, the height of
overburden equal to 3 m, and F and W again equal to 7.94MN and 0.72 m,
respectively. Results from the FE analysis show that the additional structural
elements result in a further significant reduction of the loading of the pipe,
see Fig. 6.

1.5 Conclusions

It was shown that a protection system for a steel pipe subjected to rockfall
must satisfy two requirements: (i) damping of the impact, in order to keep
the forces arising from rockfall reasonably small and (ii) load distribution and
load-carrying capacity, in order to reduce the loading of the steel pipe. In case
of a purely gravel-based protection system, both tasks must be performed
by gravel. Thereby, the flexibility of gravel required for the damping of the
impact is opposed to the stiffness of the material required for the task of load
distribution and carrying of the load.

This was the motivation to investigate an enhanced protection system
consisting of (i) gravel as an energy-absorbing and impact-damping system
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and (ii) a buried steel plate supported by concrete walls as a load-carrying
structural component. This analysis showed that buried load-carrying struc-
tural elements can significantly increase the safety of pipelines endangered by
rockfall.

2 Protection Systems Against Abrasive Shear Loading
Caused by Thermal Deformation of Soil-Covered
Pipelines

Oil and gas pipelines are commonly bedded in and covered with sand. The
transport of sand to the construction site may be expensive. Therefore, the
replacement of sand by a (coarse) filling material which is directly available
at the construction site (e.g. possibly sharp-edged stones with dimensions up
to ≈ 10 × 10 × 10 cm) could prove profitable. However, such a construction
method would result in larger contact forces exerted from relatively large,
sharp-edged stones onto the pipelines. This is particularly disadvantageous
in combination with motions of the pipeline relative to the backfill material,
resulting from temperature-induced displacements of the pipeline in longitudi-
nal direction: Recurrent abrasive shear loading by tips of stones may damage
the anti-corrosion film at the outer surface of the pipeline.

This section deals with the protection of the anti-corrosion film against
such shear forces, discussing the role of geosynthetics and steel-fibre reinforced
concrete.

2.1 Assessment of Static Forces Exerted by Single Stone Tips onto
Soil-Covered Pipelines

Loading Scenario

The magnitude of forces acting onto soil-covered pipelines depends on the
height of the cover, on the mechanical properties and the specific weight of
the filling material, and on the settlements of the pipeline and the filling
material. If no settlements occur, the force acting onto the pipeline is equal
to the weight of the filling material directly above the pipeline. If, however,
the settlements of the filling material beside the pipeline are greater than
the ones of the pipeline, the forces acting onto the pipeline increase because
of significant load re-arrangement processes in the soil [21]. The extent of
this re-arrangement depends on the shear resistance of the filling material. It
increases with decreasing shear resistance.

Structural Model

The relevant force acting on a soil-covered pipeline follows from the combina-
tion of a filling material of low shear resistance, piled up to a standard maxi-
mum cover height of 1.5 m, with an adverse settlement scenario. We consider
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Fig. 7. Structural model of the soil body above and lateral of the pipeline

uniform settlements of the filling material on both sides of a fixed pipeline.
Consequently, no longitudinal displacements occur and displacements in a
plane orthogonal to the pipe axis do not change along the longitudinal direc-
tion. This corresponds to a plane state of strain, and allows for the use of a
plane structural model [12] (see Fig. 7).

Steel pipes for oil and gas pipelines are so stiff that the displacements
resulting from a soil cover of 1.5 m height are negligibly small as compared
to typical soil settlements of several centimeters. Hence, the pipe does not
have to be considered explicitly in the structural model. Instead, the con-
tact surface between the pipe and the filling material is spatially fixed in the
structural model. Since both the structure and the settlements are symmetric,
investigation of half the structure is sufficient. Thereby, the axis of symmetry
(left boundary in Fig. 7) and the boundary opposite to the axis of symmetry
(right boundary in Fig. 7) are fixed in the x-direction. The upper boundary,
corresponding to the ground surface, is stress-free. At the lower boundary,
settlements, i.e. displacements in the y-direction, are prescribed (see Fig. 7).
The boundary opposite to the axis of symmetry is sufficiently far from this
axis so to exert no influence on the stress state around the pipe.

Determination of this stress state requires a realistic consideration of the
nonlinear material behavior of the filling material. Therefore, the Cap Model
described in Subsection 1.1 is adopted. Aiming at determination of the rele-
vant forces that are acting on a soil-covered pipeline embedded in a material
with low shear resistance, the subsequent calculations are based on a cohe-
sionless material, i.e. we use the parameters of sandy gravel listed in Table 1,
setting, however, α equal to 0.5 kPa.
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Finite Element Simulation

The structural problem, involving elasto-plastic material behavior, is solved
numerically for three standard diameters of oil or gas pipelines (d = 500, 1000
and 1500 mm), by means of nonlinear FE simulations [21], which are per-
formed in an incremental-iterative manner, based on consistent tangent mod-
uli [5, 8, 9].

For determination of forces exerted by single stone tips onto a pipeline, the
distribution of the radial stresses along the pipeline perimeter must be com-
puted. Prior to settlements on both sides of the pipeline, radial compression
stresses amount to 25 kPa – 35 kPa, depending on the pipeline diameter [see
Fig. 8(a)–(c)]. After completion of the re-arrangement of the loading, caused
by the settlements, release occurs in the vicinity of the vertex of the pipeline.
In the lateral regions of the upper half of the pipeline the radial stresses are
increasing significantly (see Figs. 8). The increase of the maximum load is the
larger, the smaller the pipeline diameter [see Fig. 8(d)].

Relevant Forces of Tips of Single Stone Acting on Soil-covered
Pipelines, as a Function of the Pipe Diameter

These forces can be determined through integration of the maximum radial
stresses over parts of the surface associated with a characteristic distribution
of stone tips. For the sake of simplicity, a quadratic grid of stone tips with
distances a is assumed (see Fig. 9). Thus, forces exerted by one stone tip read
as

F = a2 ·max σrr,∆s with max σrr,∆s =

⎧
⎨

⎩

−106 kPa for d = 500mm,
−69 kPa for d = 1000mm,

−63.4 kPa for d = 1500mm.
(9)

Assuming a uniformly granulated filling material, the stone tip distance a
can be set equal to the grain size of the filling material. Thus, following from
Eq. (91), the force exerted by one tip of a stone for a given pipeline diameter
is a quadratic function of the grain size of the filling material (see Fig. 10).

2.2 Identification of Wear Protection Strategies

Archard’s Wear Law

Using Archard’s wear law [2], the maximum contact forces determined in
Subsection 2.1 allow for calculation of the service life of the protection layer
serving as an envelope of the pipe. In order to carry out this calculation, the
wear resistance must be determined experimentally (see Fig. 11). Archard’s
wear law reads as [2]

V̇ = KA
F v

H
. (10)
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Fig. 8. Distribution of radial stresses resulting from the dead load of the filling
material (specific weight γ of covering soil 20.0 kN/m3 and cover height 1.5 m) along
the perimeter of a soil-covered pipeline before (◦, σrr,DL) and after (�, σrr,∆s)
settlement-induced load re-arrangement for (a) d = 500 mm, (b) d = 1000mm, and
(c) d = 1500 mm; and (d) settlement-induced increase of maximum radial stresses
in the pipe

Fig. 9. Definition of distance a between stone tips and stress integration area A of
a single stone tip: stone tips exert contact force F in a regular grid (a × a) on the
pipeline surface
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Fig. 10. Relevant forces of single stone tips as function of the distance between
stone tips, and of pipeline diameter (specific weight γ of covering soil 20.0 kN/m3,
cover height 1.5 m)

Fig. 11. Definition of the term ’shear cycle’ in context with wear tests conducted
on specimens representing the protection layer of the outer anti-corrosion layer of
soil-covered steel pipelines: per shear cycle, twice the shear distance, 2l, is covered

In Eq. (10), V̇ is the abrasion rate (abrased volume per time), F is the com-
pressive force, v denotes the velocity of the abrasion-inducing body, H repre-
sents the hardness of the loaded body, and KA is a dimensionless parameter,
related to the probability of (microscopic) abrasion phenomena depending
on characteristics of the abrased and the abrasive body (e.g. mineralogical
hardness, viscosity, stiffness) [11, 13].
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Since time-dependent effects play no role in the considered wear tests, the
integration of Eq. (10) is trivial,

V = KA
F s

H
, (11)

where V is the abrased volume along the total shear path length s. V can be
expressed as the product of the tip width w of the abrasion-inducing body,
the shear distance l, and the cutting depth t. The total shear path length can
be expressed as the product of the shear cycle number n and twice the shear
distance covered during one shear cycle, 2l (see Fig. 11), s = n · 2l. Thus,
following from Eq. (11),

w · l · t = KA
F · n · 2l

H
⇒ t =

2KA

w H
· F · n . (12)

According to Eq. (12), the cutting depth t depends on the compressive force
F , on the number of conducted shear cycles n, on KA, on the metal tip width
w, and on the hardness H of the specimen. Notably, the shear distance l has
no influence on the cutting depth.

Protection Performance of Geosynthetics

The wear resistance of common geosynthetics was determined by means of
shear tests (see Fig. 11) on 6 mm thick geosynthetic specimens of the type
Polyfelt AR20 [4] (a = 21 cm, b = 14.85 cm). For this purpose, a metal tip
was used, similar to the cone-shaped tip described in [1]. It was attached to the
geosynthetic specimen, loaded by a compressive force of approximately 50N,
acting perpendicular to the specimen. In two independent tests the specimens
were completely transected after ≈ 50 shear cycles.

Evaluation of Eq. (12) for the tests (t = 6mm; n = 50; F = 50N) yields
(2KA)/(wH) = 2.4 · 10−6 m/N. This value, together with Eq. (12), allows
for estimation of the cutting depth t into a geosynthetic specimen of the
aforementioned type, as a function of the compressive force F and the shear
cycle number n.

The order of magnitude of the shear cycle number which leads to a tran-
section of a geosynthetic of 6 mm thickness can be assessed through insertion
of t = 6 mm, (2KA)/(wH) = 2.4 · 10−6m/N, and Eq. (9) into Eq. (12),

nd=500/1000/1500 mm =

⎧
⎨

⎩

60/90/100 for a = 2 cm ,
7/10/11 for a = 6 cm ,

2/4/4 for a = 10 cm .
(13)

For common pipe diameters (500 – 1500 mm) and grain sizes (distance between
stone tips) of 2 – 10 cm, the 6 mm geosynthetic investigated herein resists 2 –
100 shear cycles, until being completely transected.
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Given a typical service life of n = 5000 shear cycles for oil and gas pipelines,
the above results [see Eq. (13)] reveal that a 6 mm geosynthetic of the con-
sidered type protects the outer anti-corrosion film of the pipeline for only
≈ 1/2500 to 1/50 of the service life.

The stone tip force which results in transection of the 6 mm geosynthetic
of the type Polyfelt AR20 after 5000 shear cycles can be assessed through
insertion of t = 6 mm, (2KA)/(wH) = 2.4 · 10−6m/N, and n = 5000 into
Eq. (12). This force amounts to

F (n = 5000, tPolyfelt
AR 20 = 6 mm) = 0.5N . (14)

The maximum admissible distance a between stone tips exerting a force of
F = 0.5N, can be determined by means of Eqs. (9) as a function of the outer
pipe diameter,

a =

⎧
⎨

⎩

2.2mm for d = 500mm ,
2.7mm for d = 1000mm ,
2.8mm for d = 1500mm .

(15)

Hence, when covered by sand grains, the 6 mm geosynthetic investigated
herein resists 5000 shear cycles before being transected.

Effective Means of Protection

The results of the previous paragraph suggest two strategies for providing a
sufficient protection of the outer anti-corrosion film of soil-covered pipelines
for oil and gas transport against abrasive shear loading exerted by coarse
filling material, caused by temperature-induced displacements of the pipeline
in the longitudinal direction:

(a) Increase of the hardness H and the thickness t, respectively, of the pro-
tective layer subjected to wear: e.g. by coating the pipeline by steel-fibre
reinforced concrete (SFRC) [see Fig. 12(a)].

(b) Decrease of the abrasion force by reducing the distance a between the
stone tips, as the pipeline is embedded in and buried by sand. Thereby,
leaching of sand can be avoided by enveloping the sand body with a filtra-
tion layer which separates the sand body and the coarse filling material
from each other. Preferably, geosynthetics are attached as filtration layer
[see Fig. 12(b)].

2.3 Conclusions

The resistivity of geosynthetics of a type similar to ones tested herein against
abrasion through sharp-edged stones larger than 2 mm, is too low as to pro-
vide, during the entire service life, sufficient protection of the outer anti-
corrosion film of the pipeline. Hence, sand cannot be replaced by coarser
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Fig. 12. Strategies for protecting the outer anti-corrosion film of soil-covered steel
pipelines in case a mixture of sandy gravel and square-edged stones is used as filling
material: (a) increase of hardness and thickness of the protective layer, e.g. made of
steel-fibre reinforced concrete (SFRC) or (b) decrease of the abrasion force through
use of sandy material around the pipe

filling material together with an envelope of the steel pipe by geosynthetics
comparable to ones investigated herein. However, when subjected to shear
loading exerted by sand grains, failure (transection) of Polyfelt AR20 -type
geosynthetics can indeed be excluded prior to 5000 shear cycles, i.e. within the
entire service life of such a pipe. Hence, two strategies can be recommended for
protecting the outer anti-corrosion film of soil-covered steel pipelines against
abrasive shear loading: On the one hand, the wear resistance of the protection
layer can be improved by increasing its hardness and thickness, e.g. through
the use of steel-fibre reinforced concrete. On the other hand, encasing the
pipeline with sand minimizes the abrasion force, which can be withstood by
the outer anti-corrosion film of the pipeline without any additional means of
protection. Leaching of sand can be avoided by an envelope of the sand body
by geosynthetics.
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20. Sawicki A, Świdziński W (1998) Elastic moduli of non-cohesive particulate
materials. Powder Technology 96:24–32

21. Scheiner St, Pichler B, Hellmich Ch, Eberhardsteiner J (2006) Loading of
soil-covered oil and gas pipelines due to adverse soil settlements – protection
against thermal dilatation-induced wear, involving geosynthetics. Computers
and Geotechnics 33(8):371–380

22. Simo JC, Taylor RL (1985) Consistent tangent operators for rate independent
elasto–plasticity. Computer Methods in Applied Mechanics and Engineering
48:101–118

www.sciencedirect.com


Enriched Free Mesh Method: An Accuracy
Improvement for Node-based FEM

Genki Yagawa1 and Hitoshi Matsubara2

1 Center for Computational Mechanics Research, Toyo University, 2-36-5,
Hakusan, Bunkyo-ku, Tokyo, Japan, 112-8611
yagawa@eng.toyo.ac.jp

2 Center for Computational Science and Engineering, Japan Atomic Energy
Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo, Japan, 110-0015
matsubara.hitoshi@jaea.go.jp

Summary. In the present paper, we discuss the accuracy improvement for the free
mesh method: a node based finite element technique. We propose here a scheme
where the strain field is defined over clustered local elements in addition to the
standard finite element displacement field. In order to determine the unknown pa-
rameter, the least square method or the Hellinger-Reissner Principle is employed.
Through some bench mark examples, the proposed technique has shown excellent
performances.

1 Introduction

Recent advances in computer technology have enabled a number of compli-
cated natural phenomena to be accurately simulated, which were ever only
observed by experiments. Among various computer simulation techniques,
the finite element method (hereinafter referred to as ”FEM”) has been most
widely used due to the capability of analyzing an arbitrary domain, and re-
sults, accurate enough for engineering purposes, are obtainable at reasonable
cost[1][2]. However, mesh generation for finite element analysis becomes very
difficult and time consuming if the degree of freedom of the analysis model
is extremely large, for example exceeding 100-million, and the geometries of
the model are complex. In order to overcome the above shortcoming of the
standard FEM, the so called mesh-free methods[3][4] have been studied. The
Element-Free Galerkin Method (EFGM)[5][6] is among them with the use of
integration by background-cells instead of by elements, based on the moving
least square and diffuses element methods. The Reproducing Kernel Particle
Method (RKPM)[7][8] is another mesh-free scheme, which is based on a par-
ticle method and wavelets. The general feature of these mesh-free methods
is that, contrary to the standard FEM, the connectivity information between

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 207–219.
© 2007 Springer. Printed in the Netherlands.
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nodes and elements is not required explicitly, since the evaluation of the total
stiffness matrix is performed generally by the node-wise calculations instead
of the element-wise calculations.

On the other hand, a virtually mesh-free approach called the free mesh
method (hereinafter referred to as ”FMM”)[9][10] is based on the usual FEM,
having a cluster of local meshes and equations constructed in a node-by-node
manner. In other word, the FMM is a node-based FEM, which still keeps
the well-known excellent features of the standard FEM. Through the node-
wise manner of the FMM, a seamless flow in simulation procedures from local
mesh generation to visualization of the results without user’s consciousness
is realized. The method has been applied to solid/fluid dynamics [11], crack
problems[12], concrete problems[13], and so on. In addition, in order to achieve
a high accuracy, the FMM with vertex rotations has been studied[14][15].

In this paper, we discuss another high accurate FMM: the Enriched FMM
(hereinafter referred to as ”EFMM”). In the following section, the fundamen-
tal concept of the original FMM is reviewed, and the third section deals with
two EFMMs, one is ”EFMM based on the localized least square method” and
the other ”EFMM based on the Hellinger-Reissner principle”. In the fourth
section, some numerical examples are presented, and concluding remarks are
given in the final section.

2 Basic Concept of Free Mesh Method (FMM)

The FMM starts with only the nodes distributed in the analysis domain (Ω),
without the global mesh data, as following equation.

pi(xi, yi, ri) ∀i ∈ {1, 2, · · · ,m} (1)

where m is the number of node, pi(xi, yi) are the Cartesian coordinates, and
ri is the nodal density information, which is used to generate appropriate
nodes as illustrated in Fig. 1(a). From above nodal information, a node is
selected as a central node and nodes within a certain distance from the central
node are selected as candidate nodes. This distance is usually decided from
the prescribed density of the distribution of nodes. Then, satellite nodes are
selected from the candidate nodes, which generate the local elements around
the central node (shown in Fig. 1(b)). For each local element, the element
stiffness matrix is constructed in the same way as the FEM, however in FMM,
only the row vector of stiffness matrix for each local element is necessary. The
local stiffness matrix of each temporary element is given by

kei
= [kpi

kSj
kSk ] (2)

where kei
is the row vector of the stiffness matrix for element ei and kpi

,
kSi

and kSk
are components for node of pi, Si and Sk (j and k are number
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Fig. 1. Concept of Free Mesh Method

of current satellite nodes). Through the above procedures are carried out for
all local elements, the stiffness matrix for a central node is given by

kpi
=

ne∑

i=1

kei
(3)

where kpi
is the stiffness matrix for central node pi, and ne the number of

local elements. Through the above procedures for all nodes is carried out,
the global stiffness matrix is given by assembling kpi

which are computed by
node-wise manner:

K =

⎡

⎢
⎢
⎢
⎣

kp1

kp2

...
kpm

⎤

⎥
⎥
⎥
⎦

(4)

Brief of the nodal stiffness matrix is shown in Fig. 1(c). After the construc-
tion of the global stiffness matrix, a derivation of the solution is processed.
The great advantage of the FMM is that the global stiffness matrix can be
evaluated in parallel with respect to each node through the node-wise manner,
and only satellite node information is required with each nodal calculation.
Finally, a derivation of the solution is performed as the usual FEM. Thus, the
FMM is a node-wise FEM, which still keeps the well-known excellent features
of the usual FEM. The features of FMM are summarized as follows,

(1) Easy to generate a large-scale mesh automatically
(2) Processed without being conscious of mesh generation
(3) The result being equivalent to that of the FEM
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Mixed 

Fig. 2. Concept of enriched free mesh method

3 Enriched Free Mesh Method (EFMM)

3.1 Outline of EFMM

”Assumed strain on the clustered local elements” is the concept of EFMM as
shown in Fig. 2. In the EFMM, the strain field on the clustered local elements
and the displacement field of each local element are assumed independently.
Relating these independent fields, we propose here two approaches, one is
the localized least square method and the other is the method based on the
Hellinger-Reissner principle.

3.2 EFMM Based on the Localized Least Square Method

The EFMM based on the localized least square method (hereinafter referred
to as ”EFMM-LS”) assumes the strain field on the clustered local elements as

{ε(x)} = [Nε]{a} (5)

where {ε(x)} = {εxx, εyy, γxy} is the strain field defined on the clustered local
elements and each component of {εxx, εyy, γxy} is assumed independently, and
[Nε] is a matrix, which consists of arbitrary polynomials as follows,

[Nε] =

⎡

⎣
pt(x) 0 0

0 pt(x) 0
0 0 pt(x)

⎤

⎦ (6)

where pt(x) is given on the clustered local elements as

pt(x) =
[
1 x y

]
linear basis

pt(x) =
[
1 x y x2 xy y2

]
quadratic basis

pt(x) =
[
1 x y x2 xy y2 x3 x2y xy2 y3

]
cubic basis

· · ·
(7)
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In this paper, pt(x) is assumed to be linear or quadratic basis polynomial.
The coefficients vector {a} in Eq. (5) is determined by minimizing the discrete
L2 norm as follows,

J =
ne∑

c=1

p∑

i=1

[{ε(x)} − {εc
i}]2 (8)

where ne is the number of local elements with c(= 1, 2, · · · , ne) being cur-
rent local element, p the number of points, which are called as the ”strain
monitoring points” on the clustered local elements with i(= 1, 2, · · · , p) being
the current strain monitoring point and {εc

i}the strain vector of i-th strain
monitoring point on the c-th local element, which is called as the ”mother
element”. The stationary condition of Eq. (8) is

δJ = 2{a}T
ne∑

c=1

p∑

i=1

[
[Nε

i ]
T [Nε

i ]{a} − [Nε
i ]

T {εc
i}

]
= 0 (9)

which yields the coefficients vector {a} as follows,

{a} =
ne∑

c=1

p∑

i=1

[[
[Nε

i ]
T [Nε

i ]
]−1

[Nε
i ]

T {εc
i}

]
(10)

Let us consider a simple Constant Strain Triangle as the mother element
in which the displacement field of each local element is defined by

{u} =
3∑

i=1

{ui}ζi (11)

where {u} is the displacement field of the local element, {ui} is the nodal
displacement, and ζi is the area-coordinate[16]. Thus, the strain value on the
strain monitoring points is given by

{εc
i} = [Bc

i ]{ui} (12)

where
[Bc

i ] =
[
[B1] [B2] [B3]

]

with

[Bj ] =

⎡

⎣
∂ζj/∂x 0

0 ∂ζj/∂y
∂ζj/∂y ∂ζj/∂x

⎤

⎦ , j = 1, 2, 3
(13)

By substituting Eq. (12) into Eq. (10), the unknown coefficient {a} is deter-
mined as

{a} =
ne∑

c=1

p∑

i=1

[[
[Nε

i ]
T [Nε

i ]
]−1

[Nε
i ]

T [Bc
i ] {ui}

]
(14)
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Substituting Eq. (14) into Eq. (15), we obtain

{ε(x)} = [Nε]
ne∑

e=1

p∑

i=1

[
[[Nε

i ]
T [Nε

i ]]
−1[Nε

i ]
T [Bc

i ]{ui}
]
= [A]{ui} (15)

where

[A] = [Nε]
ne∑

e=1

p∑

i=1

[
[[Nε

i ]
T [Nε

i ]]
−1[Nε

i ]
T [Bc

i ]
]

(16)

In the elasticity problem, the stress vector {σ} and the strain vector {ε}
have the relation as follows,

{σ} = [D]{ε} (17)

where [D] is a symmetric matrix of material stiffness. With [D] given by
Eq. (16), the stiffness matrix based on the localized least square method is
computed on the clustered local elements as

[kLS ] =
∫

Ω

[A]T [D][A]dΩ (18)

where Ω is area of the clustered local elements. It is important to say that
the above stiffness matrix is computed in a node-wise manner.

It is noted that the present EFMM-LS is closely related to the superconver-
gent patch recovery proposed by Zienkiewicz and Zhu[17][18]. In an adaptive
finite element method[19][20], the Z-Z error estimator has been most widely
used to estimate the error. The error estimator requires an exact solution, but
generally it is impossible to compute the exact value because the exact solu-
tion is not available in general. The Z-Z technique then obtains the recovered
solution in a post processing stage. The clustered local elements in the present
method are equivalent to the superconvergent patch used in the Z-Z technique.
The difference lies in that the recovering procedure in the EFMM-LS is in a
main process stage when computing element stiffness matrices. The use of the
assumed strain is therefore, in some sense, equivalent to the ”post-process” of
the Z-Z superconvergent patch recovery.

3.3 EFMM Based on Hellinger-Reissner Principle

In the EFMM based on the Hellinger-Reissner principle [1][21] (hereinafter
referred to as ”EFMM-HR”), the Hellinger-Reissner (hereinafter referred to
as ”HR”) principle is employed to obtain better accuracy. Let the HR principle
of a linear elastic body be defined on the clustered local elements by

∏
(ε,u) =

∫

Ω

{ε}T[D]{∂u}dΩ − 1
2

∫

Ω

{ε}T[D]{ε}dΩ

−
∫

Ω

{u}T{b}dΩ −
∫

Sσ

{u}T{t̃}dS (19)
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where
{∂u} = [B]{ū} , {ε} = [Nε]{ε̄} (20)

with {b} being the applied body force per unit mass, and {t̃} the applied
traction on boundary Sσ. {ū} is the unknown nodal displacement and {ε̄}
the unknown nodal strain. The unknown values (ū, ε̄) of the HR principle
satisfy the following equations in a weak manner,

∫

Ω

δ{ε}T[D] ([B]{ū} − [N]{ε̄}) dΩ = 0 (21)

∫

Ω

δ{u}T[B]T[D][N]{ū}dΩ −
∫

Ω

δ{u}T{b}dΩ −
∫

Sσ

δ{u}T{t̃}dS = 0 (22)

It is noted here that the strain field is defined on the clustered local elements
by node-wise manner, where the displacement field is defined on each element
by element-wise manner. Equations (21) and (22) yields the following linear
matrix equation, [−A C

CT 0

] {
ε̄
ū

}
=

{
f1
f2

}
(23)

where ⎧
⎪⎪⎨

⎪⎪⎩

A =
∫

Ω
[Nε]T[D][Nε]dΩ

C =
∫

Ω
[Nε]T[D][B]dΩ

f1 = 0
f2 =

∫
Ω

[Nu]T{b}dΩ +
∫

Γ
[Nu]T{t̃}dΓ

(24)

By condensing the coefficient matrix of Eq. (23), we obtain the following
equation,

CT
(
A−1Cū

)
= f2 (25)

where the condensation should be executed on the clustered local elements.
Thus, the stiffness matrix based on the HR principle is computed on the
clustered local elements as follows,

[kHR] = CT A−1C (26)

It is noted here that we can obtain the enriched stiffness matrix without
increasing the number of nodal degrees of freedom.

4 Examples

4.1 Convergence Study: Displacement

To study the convergence characters of the present methods, a cantilever
model is solved as shown Fig. 3, where the three different mesh patterns
are prepared and the mesh division in the x direction is varied. As shown
in the figure, a beam of length L = 10, height D = 1 and thickness t = 1
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L = 10 

D = 1 E = 1000, v = 0.25 P  

x 

y 

(a) Cantilever beam model

(b) One layer mesh

(c) Two layers mesh

(d) Three layers mesh

Fig. 3. Mesh patterns for cantilever beam model

is subjected to a shear load in plane stress condition. The material param-
eters are given as the Young’s modulus E = 1000.0 and the Poisson’s ratio
ν = 0.25. The displacements at the loaded edge normalized by the exact value
are plotted against the degrees of freedom (see Fig. 4). From the comparison
of displacement results among the six different solutions, it can be observed
that

(a) The accuracy of the FEM with the three noded linear element of constant
strain is the worst, whereas that with the six noded quadratic element is
the best irrespective of the mesh patterns.

(b) As the number of layers in the thickness direction increase, the accuracy
of EFMMs approaches that of the quadratic FEM.

(c) Regarding the comparisons among the EFMMs, the accuracy of the
EFMM-HR and the EFMM-LS with the linear strain field are the best,
whereas, for the finer meshes (see Fig. 4(c)), the results of EFMMs with
the quadratic strain field are almost equivalent to those of the formers.

4.2 Convergence Study: Error Norms

As another convergence measures, two kinds of error norms for the beam
problems as shown Fig. 5 [22] are employed, which are, respectively, given as

‖E‖2 =
[∫

Ω

(
u − uexact

)T (
u − uexact

)
dΩ

]1/2

(27)
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(c) Three layer mesh

FEM (linear) 
EFMM-LS (linear) 
EFMM-HR (linear) 

FEM (quadratic) 
EFMM-LS (quadratic) 
EFMM-HR (quadratic) 

Fig. 4. Normalized displacements at the loaded edge vs. DOFs (The figures in the
right hand side are zoomed ones)
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Fig. 5. Cantilever beam model for error norm study; only the case of mesh is shown
as examples

‖E‖e =
[∫

Ω

1
2

(
ε − εexact

)T (
σ − σexact

)
dΩ

]1/2

(28)

where ‖E‖2 is the displacement error norm and ‖E‖e that of the energy error.
u, ε and σ are, respectively, the numerical results of displacement, strain and
stress, whereas uexact, εexact and σexact are the exact solutions. A beam of
length L = 10, height D = 2 and thickness t = 1 is subjected to a shear load
in plane stress condition. The material parameters are given by the Young’s
modulus E = 1000.0 and the Poisson’s ratio ν = 0.25. The above displacement
and energy convergence norms are plotted against the DOFs in Figs. 6 and 7,
respectively, where the meshes are, respectively, 1 × 1, 2 × 2, 4 × 4, 16 × 16,
32 × 32, and 64 × 64. It can be seen from these figures that

(a) Again, the error norms of the displacement of the EFMMs are between
those of the linear and the quadratic FEMs (see Fig. 6). However, the
convergence slopes of the EFMMs are almost equal to that of the quadratic
FEM.

(b) The error norms of the energy of the quadratic EFMMs are almost the
same as that of the quadratic FEM and those of the linear EFMMs are
between the linear and the quadratic FEMs.

4.3 Patch Test

The patch test is performed using the three models of patch as shown in Fig.
8, where the displacement field

{
u(x)
v(y)

}
=

{
0.2x
−0.6y

}
(29)

is applied at the boundary. Table 1 shows the test results for the FEMs and
the EFMMs. As illustrated in the table, all the method passes the patch test
for the Model A, which is a regular mesh division model. However, for the
Model B and C, which are irregular ones, the EFMM-LSs do not pass the
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Fig. 6. L2 error norms of displacement vs. DOFs
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Fig. 7. Energy error norms vs. DOFs
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(c) Model C

Fig. 8. Models for patch tests

test. Here, ”Pass” means that the displacement of the internal node (M1 or
M2) satisfies Eq. (29). This means that the EFMM-LSs are nonconforming
for irregular mesh, which is an open question.
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Table 1. Displacements at internal nodes M1 and M2

Model A Model B Model C
u(M1) v(M1) u(M1) v(M1) u(M1) v(M1) u(M2) v(M2)

FEM(linear) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800
FEM(quadratic) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

EFMM-LS(linear) 0.900 -2.400 1.198 -3.170 0.611 -2.372 1.285 -1.899
EFMM-LS(quadratic) 0.900 -2.400 1.198 -3.141 0.611 -2.368 1.290 -1.859

EFMM-HR(linear) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800
EFMM-HR(quadratic) 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

Exact 0.900 -2.400 1.200 -3.000 0.600 -2.400 1.300 -1.800

5 Concluding remarks

A new Free Mesh Method called ”Enriched Free Mesh Method” is proposed
in this paper, in which a high accuracy can be obtained without explicitly
increasing the degree of freedoms. The work is summarized as follows,

(1) The key idea of the proposed method is that the strain field is assumed
on clustered local elements, in addition to the usual displacement field on
each element. To relate the above two fields, the localized least square
method or the Hellinger-Reissner principle are, respectively, employed.

(2) The convergence characteristics of the displacement L2 error norms in the
cantilever problem are between that of the FEM with the linear displace-
ment field and that with the quadratic one, whereas that of the energy
error norms with the quadratic strain field for the clustered elements is
equivalent to that of the FEM with the quadratic displacement field.

(3) The EFMM based on the Hellinger-Reissner principle passes the patch
test, whereas, for irregular nodal arrangements, the EFMM based on the
localized least square method does not. This would be an open question
and there is a room for future research.
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Summary. The main physical phenomena which can be coupled with the mechan-
ical computation of metal forming processes are analyzed. Recalling the classical
thermal coupling, it is shown that a stronger numerical coupling is necessary when
localization of the deformation occurs. Several situations where we have mechan-
ical solid and liquid interactions with thermal coupling are briefly mentioned. A
more complete description of electro magnetic and thermal coupling is given in
view of induction heating. Finally the case of multi scale coupling for metallurgic
microstructure evolution is introduced.

Key words: Computational Plasticity, Forming Process, Thermal Coupling,

Induction Heating, Micro-Structure.

1 Introduction

Since about thirty years ago, numerical modeling of metal forming processes
was starting to be developed in laboratories [1] to [4] and later in software
companies as well, using mostly the finite element method. To-day, with the
help of powerful modern computers and parallel computation, it is possible
to predict accurately several important technical parameters, for complex 3-D
forming processes such as forging, rolling or extrusion.

On the other hand, several physical phenomena still remain very approxi-
mately known, either during the forming process itself, or during the heating
or cooling process, and in heat treatment operations. It is an industrial de-
mand to predict with the same software the material evolution during the
whole process. This particularly important if one wants to predict the mi-
crostructure evolution.

The objective of the paper is to review some of the most important physical
evolutions, which are coupled with the mechanical working process, keeping
in mind that the final microstructure is responsible for the final properties of
the work-piece.

Eugenio Oñate and Roger Owen (eds.), Computational Plasticity, 221–238.
© 2007 Springer. Printed in the Netherlands.
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2 Mechanical Approach of Metal Forming Processes

For a detailed account of the finite element modeling of metal forming pro-
cesses, the reader is referred to [5].

2.1 Constitutive Modeling

Despite rigid plastic or rigid viscoplastic laws are still widely used in many
research teams, the elastic plastic or viscoplastic laws must be preferred. The
later ones are intrinsically more realistic; they allow the user to model prop-
erly unloading after forming, to predict spring back and the associated residual
stresses. The elastic viscoplastic laws are also compulsory when small deforma-
tion processes are simulated such as during cooling, heat treatment, stretching,
etc. In the literature, several degrees of sophistication can be found.

The most widely used approximation, which reveals accurate enough in
most forming processes is the additive decomposition of the strain rate tensor
ε̇εε into the elastic and plastic parts. It is usually written:

ε̇εε = ε̇εεe + ε̇εεp (1)

Introduction of an objective derivative of the stress tensor; which is nec-
essary when large rotations take place:

djσσσ

dt
= λetrace(ε̇εεe) + 2µeε̇εεe (2)

The relatively general Perzyna formalism is often retained for the plastic
component of the strain rate tensor:

ε̇εεp =
1
k

〈
σeq − R

K

〉 1
m−1

σσσ′ (3)

where σσσ′ is the deviatoric stress tensor, σeq the equivalent stress, R the yield
stress, K the consistency and m the strain rate sensitivity index. At the
interface between part and tool the friction shear stress can be modelled by :

τττ = αf (σn)K|∆v|q−1∆v (4)

where αf is the friction coefficient, σn function of the normal stress and ∆v
is the tangential velocity.

For an incompressible or quasi incompressible flow, it is desirable to utilize
a mixed formulation. In the domain Ω of the part, this formulation is written
for any virtual velocity and pressure fields v∗, p∗ as:

∫

Ω

σ̇σσ′ : ε̇εε∗dV −
∫

∂Ωc

τ̇ · v∗dS −
∫

Ω

ṗdiv(v∗)dV = 0 (5)

∫

Ω

(div(v) + ṗ/κ)p∗dV = 0 (6)
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2.2 Finite Element Approximation

Many different finite element formulations were proposed, and developed at
the laboratory level, but it is now realized that the discretization scheme must
be compatible with other numerical and computational constraints, among
which we can quote:

• Remeshing and adaptive remeshing,
• Unilateral contact analysis,
• Iterative solving of non linear and linear systems;
• Domain decomposition and parallel computing;
• Easy transfer of physical internal parameters, when multi physic coupling

must be taken into account.

Today a satisfactory compromise is based on a mixed velocity and pressure
formulation using tetrahedral elements, and a bubble function to stabilize the
solution for incompressible or quasi incompressible materials. The velocity
field is discretized with shape functions Nn, in term of nodal velocity vectors
Vn:

v =
∑

n

VnNn(ξ) (7)

Using isoparametric elements the mapping between the physical space with
coordinates x and the reference space, with coordinate ξ is:

x =
∑

n

XnNn(ξ) (8)

The strain rate tensor can be computed with the help of the conventional B
discretized linear operator:

ε̇εε =
∑

n

VnBn(ξ) (9)

The discretized mixed integral formulation for the mechanical problem is:

RV
n =

∫

Ω

ργNndV +
∫

Ω

dK(
√

3 ˙̄ε)m−1ε̇ : BndV

+
∫

∂Ωc

αfK|∆v|p−1∆vNndS −
∫

Ω

ptr(Bn)dV = 0 (10)

RP
m =

∫

Ω

Mm(div(v) + 3αdṪ )dV = 0 (11)

The most widely used integration method remains the simple Euler one
step scheme. It was recognized that a two levels Runge and Kutta method
leads to a considerable improvement of the solution, which is particularly
desirable when the work-piece undergoes a large rotation, such as in ring
rolling.



224 J.-L. Chenot and F. Bay

2.3 Numerical Issues

The non-linear equations resulting from the mechanical behaviour are lin-
earized with the Newton-Raphson method. The resulting linear systems are
often solved now with iterative methods, which appear faster and require much
less CPU memory than the direct ones.

Prediction of possible formation of folding defects during forging is based
on the analysis of the contact of the part with itself, so providing a similar
problem like the coupling with tools.

Automatic dynamic remeshing during the simulation of the whole form-
ing process is almost always necessary, as elements undergo very high strain
which could produce degeneracy. Before this catastrophic event, decrease of
element quality must be evaluated and a remeshing module must be launched
periodically to recover a satisfactory element quality. The global mesh can be
completely regenerated, using a Delaunay or any front tracing method, but
the method of iterative improvement of the mesh, with a possible local change
of element structure and connectivity, seems to be much more effective.

For industrial, complicated applications with short delays, the computing
time can be decreased dramatically using several or several tens of processors.
This requires to use an iterative solver and to define a partition of the domain,
each sub domain being associated with a processor. But the parallelization is
made more complex due to remeshing and the remeshing process itself must
be parallelized.

In order to avoid the necessity for the user to perform several computa-
tions, with different meshes to check the accuracy, an error estimation can
be developed using for example the generalization of the method proposed by
Zienckiewicz and Zhu. Then, if the rate of convergence of the computation is
known, the local mesh refinement necessary to achieve a prescribed tolerance
can be computed, and the meshing modules are improved to be able to respect
the refinement when generating the new mesh.

3 Thermal and Fluid-Solid Coupling

3.1 Classical Thermal and Mechanical Coupling

The classical heat equation for deformable bodies is written simply:

ρc
dT

dt
= div(kgrad(T )) + fw(

√
3 ˙̄ε)m+1 (12)

where the last term is a fraction fw of the viscoplastic heat dissipation. The
constitutive law depends on temperature. For example we have the equations:

K = K0(ε0 + ε̄)n exp(β/T ), m = m0 + m1T (13)



Modelling of Metal Forming Processes and Multi-Physic Coupling 225

The radiation condition on the free surface ∂Ωs is written:

−k
∂T

∂n
= εrσr(T 4 − T 4

0 ) (14)

where εr is the emissivity parameter, σr the Stephan constant and T0 the
outside temperature.

The conduction with the tools on ∂Ωc, is modeled by:

−k
∂T

∂n
= hcd(T − Ttool) +

b

b + btool
αfK|∆v|q+1 (15)

where Ttool is the tool temperature, b and btool are the effuvisity parameters
of the part and of the tool respectively. The thermal integral formulation can
be written, for any test function w:
∫

Ω

ρc
dT

dt
wdV +

∫

Ω

kgrad(T ) · grad(w)dV −
∫

Ω

q̇V wdV +
∫

∂Ωf

εrσr(T 4 − T 4
0 )wdS+

+
∫

∂Ωc

(
hcd(T − Ttool) +

b

b + btool
αK|∆v|q+1

)
wdS = 0

(16)

The previous equations are discretized with finite element, generally sim-
ilar to those for the mechanical problem:

T =
∑

n

TnNn(ξ) (17)

so that the discretized form of the equations is:
∫

Ω

ρcṪNndV +
∫

Ω

kgrad(T ) · grad(Nn)dV −
∫

Ω

q̇V wNndV

+
∫

∂Ωf

εrσr(T 4 − T 4
0 )NndS +

∫

∂Ωc

(
hcd(T − Ttool) − b

b + btool
τf∆v

)
NndS = 0

(18)

Different time discretization schemes can be used, which allow to compute
the temperature field at time t+∆t, knowing it at time t and t−∆t, using an
explicit scheme which avoids solving a non linear thermal equations. In most
codes, coupling between mechanical and thermal equations is not performed
at the increment level, as the scheme consists in computing first the thermal
field, then the mechanical field (without a fixed point iteration algorithm).
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3.2 Localization

When the thermal and mechanical coupling is strong enough, such as in pro-
cesses where localization in narrow shear bands can occur (e. g. in high speed
machining), the previous method is not satisfactory and a fixed point algo-
rithm may not converge. In this case it is desirable to solve simultaneously
the mechanical and thermal equations. Therefore we have a non linear prob-
lem with the following unknowns nodal unknowns at time t+∆t: temperature
Tt+∆t, velocity Vt+∆t, and pressure Pt+∆t when a mixed formulation is used.
A Newton-Raphson method must be utilized, where the unknowns are the
same and the stiffness matrix must contain all the derivatives of the residual
equation, including the coupling terms.

3.3 Fluid Solid Coupling During Heating or Heat Treatment

Fluid solid coupling is an important issue in several industrial processes. Dur-
ing heating in a furnace, we must take into account the flow of the surrounding
gas and heat exchange between the gas and the preforms, in order to determine
precisely the temperature field inside the work-pieces which will be formed.
The problem is even more complicated when one wants to predict the quench-
ing process with water which will be vaporized at the contact of a hot work
piece. The prediction of the temperature evolution in the part is again im-
portant, as it will be responsible for the geometric change of the part and the
microstructure evolution.

An analogous situation arises in casting of large work pieces during the
cooling process, when a solid fraction interacts with a moving fluid with com-
plicated thermal and mechanical evolutions.

An efficient frame for this coupling is to use an ALE formulation for the
liquid phase where the material velocity v is different from the mesh velocity
vg, which will be defined by a smoothing operator, such as:

div(grad(vg)) = 0 (19)

and boundary conditions preserving the geometry of the free surface: (vg −
v) · n = 0. With the ALE scheme, the grid derivative of any parameter a will
be evaluated in term if the material derivative according to:

dga

dt
=

da

dt
+ (vg − v) · grad(a) (20)

4 Electro Magnetic Coupling

4.1 The Induction Heating Process

Many industrial processes are based on an efficient use of coupling between
electromagnetic, thermal and mechanical phenomena. They generally use di-
rect or induced currents to generate heat inside a work piece in order to get
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Fig. 1. Induction heating setup

either a prescribed temperature field or some given mechanical or metallur-
gical properties through an accurate control of temperature evolution with
respect to time.

The basic induction setup [6] consists of one or several inductors and metal-
lic work pieces to be heated (see Fig. 1). The inductors are supplied with alter-
nating current with frequencies ranging from fifty to several hundred thousand
cycles per second. A rapidly oscillating magnetic field is generated and in turn
induces eddy currents in the work piece due to the Joule effect. These currents
generate ohmic heat losses inside the work piece. Moreover, for ferromagnetic
materials, alternating magnetization and hysteresis effect also contribute to
heat generation.

Most of the heat is produced in a thin layer under the surface of the work
piece; the skin depth - defined as the depth at which the magnitude of the
field drops to a value of e−1 of its surface value:

δ =
√

1
πfσµ

(21)

where f is the frequency, σ the electrical conductivity and µ the magnetic
permeability. High frequencies are used to achieve surface heating, while low
frequencies generate a more uniform heating.

4.2 The Direct Electro-Thermal Formulation

The electromagnetic model is classically based on the set of Maxwell equa-
tions:

div(B) = 0 (22)

div(D) = 0 (23)
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rot(E) = −∂B
∂t

(24)

rot(H) = J +
∂D
∂t

(25)

where H is the magnetic field, B the magnetic induction, E the electric field,
D the electric flux density, and J the electric current density associated with
free charges.

We also have the following relations which for the intrinsic material prop-
erties:

D = εE (26)

B = µ(|H|)H (27)

J = σE (28)

where ε is the dielectric constant, µ the magnetic permeability, and σ the elec-
trical conductivity. They all depend on temperature and the magnetic perme-
ability µ depends also on H. The range of frequencies dealt with in induction
heating (less than 106 Hz) enables us to neglect the displacement currents in
the Maxwell-Ampere equation (magneto-quasi-static approximation). A com-
bination of the previous relations leads us to the following equation where the
unknown is the electric field.

σ
∂E
∂t

+ rot
(

1
µ
rot(E)

)
= −∂JS

∂t
(29)

with σ = σ(T ) and µ = µ(T,H).
We deal here with axisymmetrical cases, in which the electric field will

only have a non-zero component in the θ direction:

E = (0, Eθ(r, z), 0) (30)

Temperature evolution in the work piece is governed by the classical heat
transfer equation:

ρC
∂T

∂t
− div(kgrad (T )) = Q̇em (31)

where ρ denotes the material density, C and k respectively the specific heat
and thermal conductivity, all temperature dependent.

Q̇em denotes the local heat rate, generated by the eddy currents, and
integrated over one period:

¯̇Qem =
1
T

T∫

0

σ|E|2dt (32)

The boundary conditions can be of various kinds: prescribed heat flux or
temperature, convection or radiation.
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4.3 Finite Element Numerical Approximation

We define Ω as being a two-dimensional axisymmetrical domain which covers
the part to be heated Ωpart, the inductor Ωinductor and a finite volume of air
air surrounding the inductor and the part. We have chosen here to carry out
coupling between the part and the inductor for the electromagnetic compu-
tations using finite elements rather than boundary elements; the air domain
thus needs to be wide enough in order to model accurately electromagnetic
wave propagation.

The domain is discretized using second order triangular finite elements (6-
nodes triangles). The unknown fields - electric field Eθ for the electromagnetic
computations, temperature field T for the thermal computations and velocity
field V for the mechanical computations - can thus be approximated over the
whole domain by the classical finite element approximation:

E(t, r, z) =
∑

n

En(t)Nn(ξ) (33)

where E : n(t) denotes the approximated value of the θ-component of the
electric field at the node n and at time t. The discretized expression of the
variational formulation is:

[Cem]
{

∂E

∂t

}
+ [Kem] {E(t)} = {Bem} (34)

The temperature distribution is discretized according in the same way as
in Eq.(18).

Numerical models in induction heating often solve a harmonic model. This
assumption is quite restrictive when one deals with non-linear magnetic ma-
terials. We have thus chosen to solve the time-dependent model. We need
therefore to integrate numerically in time the electromagnetic and thermal
equations.

We detail here the selected time integration scheme for the electromag-
netic equation. The procedure is the same for the thermal equation. We use
a second-order two time step finite difference scheme:

Step 1: the system is solved at time t∗ such that t < t∗ < t + δt2 with:

t∗ = α1(t − δt1) + α2t + α3(t + δt2) (35)

with α1 + α2 + α3 = 0.
The electric field E∗ at time t∗ and its time derivative write:

E∗ = α1E
t−δt1 + α2E

t + α3E
t+δt2 (36)

∂E∗

∂t
= γ

Et+δt2

δt2
+ (γ − 1)

Et−δt2 − Et

δt1
(37)
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The following system Eq.(38) is written at time t∗. E∗ and its derivative
are replaced by Eqs.(36) and (37) and the system are solved for the unknown
variable E∗:
(

γ

α3δt2
[Cem]∗ + [Kem]∗

)
E∗ = {Bem}∗ +c1[Cem]∗Et +c0[Cem]∗Et−δt1 (38)

where c1 =
γ

δt2
+

γ − 1
δt1

+
γα2

α3δt2
, c2 =

γα1

α3δt2
− γ − 1

δt1
.

The two time steps scheme we have requires the solving of a non-linear
equation, as the matrix [C] is dependant on the magnetic field. In order to
avoid an additional non-linearity, the matrix is linearized and is approximated
using its values at time t and t − δt1:

[C]∗ =
(

α1 − α3
δt2
δt1

)
[C]t−δt1 +

(
α2 + α3

(
1 +

δt2
δt1

))
[C]t−δt1 (39)

Step 2: computation of:

{E}t+δt2 =
1
α3

(
{E}∗ − α1 {E}t−δt1 − α2 {E}t

)
(40)

4.4 The Electromagnetic/Thermal Coupling Procedure

Physical problems arising from heat transfer and electromagnetism have in
common the fact that they are both time-dependent. Their specific time-
scales are however very different. The specific time scale of an electromagnetic
problem is related to the wave-associated period –typically 102s for a 100 Hz
frequency down to 108s for a 100 MHz frequency– whereas the specific time
scale for heat transfer averages normally one second.

A direct model based on finite elements has been developed in our labo-
ratory to cope with these specificities. The model includes a specific coupling
procedure for solving:

• the Maxwell equations - in order to access the electromagnetic fields giving
the eddy currents dissipated in the material (main source term for the heat
transfer equation),

• the heat transfer equation - leading to temperature evolution in the ma-
terial.

The coupling between the electromagnetic and thermal computations relies
on a convergence test over the mean heating power and on tests over the
variations of the magnetic parameters that determine respectively the passage
from an electrical to thermal resolution or inversely from a thermal to an
electric one.

Once the electromagnetic field has been calculated, the rate of heat gen-
eration Q̇em for the heat equation needs to be evaluated at every integration
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points. As the electromagnetic time step is far smaller than the thermal one,
we do not consider the instantaneous Joule power calculated at a given time
at every integration points. We rather consider a mean Joule power averaged
over one period of the electromagnetic field:

Qem(nT, int) =
1
T

nT∫

(n−1)T

σ(int, t)|E(int, t)|2dt (41)

where int is the considered integration point, T is the period of the power
supply currents, n is number of periods considered and Eθ(int, t) is the value
at time t of the electric field interpolated at the integration point int.

At the end of each electromagnetic period, the newly calculated mean
power is compared to the one calculated at the previous period until it sta-
bilizes. Thermal computations are started with the stabilized thermal source
power calculated at (n + 1) T if the following convergence test (33) is con-
ducted at every integration points:

Q̄em((n + 1)T ) − Q̄em(nT )
Q̄em(nT )

< ε (42)

where ε is the user-supplied convergence parameter.
These thermal computations are valid as long as the variation of the phys-

ical magnetic parameters such as the magnetic permeability and the electric
conductivity do not exceed 5%. Their variations with temperature are tested
after each new thermal computation. The following criteria are tested for every
mesh element:

σ(Tn+1
max) − σ(Tn

max)
σ(Tn

max)
< 5%

µ(Tn+1
max) − µ(Tn

max)
µ(Tn

max)
< 5%

(43)

where Tn+1
max is the maximum value of the temperature field in a given element

at time t + dtther and Tn
max is the maximum value of the temperature field

in the same given element at current time t. When the maximum relative
variations reach the threshold of 5%, the previously calculated mean heat
power is assumed to be irrelevant, and a new electromagnetic calculation is
carried out.

For their part, mechanical computations are carried out at the same time
steps than thermal computations.

4.5 Results

The first case deals with a static long inductor in ferromagnetic EN3 mild
steel annealed at 930 ◦C. In this case, the work piece is heated by an inductor
of the same length as the work piece. The geometry consists in a cylindrical
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Fig. 2. a) Finite element mesh; b) Electric field; c) Temperature field

EN3 part surrounded with Kaowool insulation, a ceramic tube and finally a
three-layer coil. The mesh used for this case is displayed in Fig. 2a. The multi-
turn coil is modeled as a continuous single coil with a uniform initial current
density. Two thermocouples have been placed: the first one on the surface on
the middle of the part and the second one in a hole bored in the center of the
part so as to measure temperature inside the part.

Process parameters are:

• frequency: 500Hz
• current density: 8.108 Amps/m2
• electromagnetic time step: T/64=3.125 10−5s
• thermal time step: 0.5s

In order to enable a visualization of the dissipated joule power, an effective
electrical field has been defined at a given node as the integration over an
electromagnetic period of the square of the real instantaneous electrical field:

Eeff =

√√
√
√
√ 1

T

(n+1)T∫

nT

E2(t)dt (44)

This effective electrical field is also proportional to the amplitude of the
electric field in a harmonic complex formulation. Figure 2b shows the effective
electric fields isovalues. Due to the high value of the permeability, we can notice
the concentration of the magnetic field along the work piece surface; this is
a well-known physical effect since magnetic field lines tend to concentrate on
material surface when the magnetic permeability gets high.

We can see on Fig. 2c how the heat propagates here rather uniformly from
the surface towards the centre. This is typical of a global homogeneous heating
application.
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Fig. 3. Experimental validation

Figure 3 shows the excellent agreement between experimental and com-
puted temperatures on the surface and inside the work piece. On one hand,
the computed temperatures on the surface provide a good way to validate the
dissipated heat due to eddy currents inside the work piece - and thus the elec-
tric field computation and the whole electromagnetic procedure. On the other
hand, the good agreement observed between the experimental and numeri-
cally computed delay on heat propagation to the internal part of the work
piece validates the heat transfer diffusion model and the thermal coupling
procedure.

This case deals with a moving short inductor - a case representative of what
takes place in an induction heat treatment process. The inductor displacement
is modeled through a continuous variation of physical properties of the mesh.
Figure 4 shows the geometry and the initial location of the inductor in the
mesh. Figure 5 shows an example of electric field distribution at a given time
step; in this case, the electric field is non-symmetric since the inductor location
changes continuously.

The numerical model presented here is described more in detail in [7].
Extension to parallel computations is detailed in [8].

This model has also been used for magnetic parameters identification as
detailed in [9]. A global optimization procedure has also been developed to
achieve better control of induction heating processes. This strategy can be
extended to various multiphysics coupled problems; it is detailed in [10].
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Fig. 4. Moving inductor case: geometry and initial mesh

Fig. 5. Moving inductor case: electric field isovalues

5 Coupling with Microstructure Evolution

5.1 Introduction

The microstructure of the materials changes significantly during forming op-
erations. For instance in metals, dynamic or static recovery and recrystal-
lization can take place. These evolutions need to be modeled when the final
microstructure is to be optimized, or when the behavior of the metal must
be described accurately during forming. Several strategies can be developed
to compute microstructure evolutions in forming processes with large spatial
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heterogeneity of strain rate, strain and temperature fields. The finite element
method allows to model microstructure evolutions in complementary ways.

5.2 Macroscopic Approach

In a first classical way, one can assume that each node covers a material
volume sufficiently large to be summarized by a Homogeneous Equivalent
Medium (HEM). Laws for microstructure evolution of homogeneous media
are then applied. This strategy is adequate for modeling a large volume of
material, for instance at the scale of a component. A well-known example of
a microstructure model is the Avrami equation [11]. It is typically used in an
integrated form to describe the recrystallization phenomena for metals as a
function of time t:

X = 1 − exp

(

− ln
(

t

t0.5

)k
)

(45)

where X is the state variable describing the recrystallized volume fraction, t0.5

is the half recrystallization time, and k the Avrami exponent. Such microstruc-
ture evolution laws are typically obtained from isothermal experiments. How-
ever, a typical forming process induces significant temperature evolutions. It
is assumed that non isothermal path can be divided into a number of isother-
mal steps. Using the results of isothermal tests to calculate the microstructure
evolution for any thermal path implies that an integration rule can be applied.
Additivity rules are often used in recrystallization studies, the procedure uses
a fictitious time method [12], [22] to discretize the microstructure evolution
equation. Using for instance the Avrami equation, the algorithm is as follows:
at step i of the computation, the recrystallized volume fraction Xi at time
ti has been computed; the fictitious time t∗i+1 is calculated as the total time
needed to obtain a recrystallized volume fraction Xi at constant tempera-
ture Ti+1. In order to calculate the next recrystallized volume fraction Xi+1,
Avrami equation is used for temperature Ti+1 and time (t∗i+1 + ti+1 − ti).

This strategy has been used with the 3D Finite Element code Forge3©R for
forging simulations. Figure 6 illustrates the case of a 316L austenitic stainless
steel part deformed at 1273K and annealed at 1373K during 50 seconds. The
simulation allows us to take into account both the strain and temperature
variations throughout the part, leading to a complex map of statically recrys-
tallized volume fractions, ranging from 10 to 100%, as shown in Fig. 6. The
challenge is now to model microstructure evolutions over multiple interpass
and forming steps; this requires to go back and refine the description of the
physical phenomena integrated in the macroscopic evolution laws.

5.3 Multi-Scale Coupling and the Digital Material

A second approach may be taken at a smaller scale, within a HEM. It consists
in meshing a heterogeneous microstructure, possibly of complex topology and
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Fig. 6. Recrystallized volume fraction maps of a forged 316l part

geometry, for studying the detailed relationships between the microstructure
and its evolution, or even the associated constitutive law.

This is the case for instance when dealing with the plastic deformation
of a steel during phase transformation (e.g. [13]). An austenite and ferrite
composite is in fact a two-phase HEM which needs to be analyzed in order
to determine the mechanical behavior of the steel and the strain distribution
within each phase. Analytical bounds and estimates for the mechanical be-
havior of a two-phase aggregate imply strong topological assumptions. The
calculation of the mechanical response of these composite materials can be
calculated using the F. E. M. with a representative description of the mi-
crostructure, and well posed boundary conditions. The HEM must contain
enough grains so that the global behavior is statistically representative of ma-
terial response. Predictions of such FEM simulations can then be compared
with analytical models.

An example of a two-phase topology is shown in Fig. 7 with the corre-
sponding 3D finite element discretization. A calculation of strain distribution
for this two-phase ensemble is presented in Fig. 8.

The F.E. discretization allows us to capture strong strain gradients at
the interface between the two phases. Such digital multiphase volume calcula-
tions can first be used to validate appropriate analytical models. These simpler
models can be used as constitutive laws in large scale finite element simula-
tions and coupled with the phase transformation diagram to calculate local
percentage of each phase. This complete numerical model allows us to cal-
culate thermal, mechanical and metallurgical evolutions in forming processes
inducing large strain such as forging or rolling.
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Fig. 7. Austenite-ferrite topology and corresponding 3d finite element mesh

Fig. 8. Strain field calculated for the two-phase material volume of Fig. 7

This digital material approach can be further refined to integrate the crys-
tallographic textures. A statistically representative finite element polycrystal
can be created by considering each finite element as a single crystal. Such a
strategy proves to be very efficient when the mechanical response is dictated
by the heterogeneity of the elastic-plastic behavior throughout a polycrystal,
as in fatigue [14].

6 Conclusions

We have reviewed several coupling problems where the classical mechanical
treatment must be completed in order to take also into account other physical
phenomenons: thermal behavior with possible localization of the strain rate,
fluid-solid coupling, electro magnetic heating and microstructure evolution.
The simple examples which are presented show that the domain is still under
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development, and that much effort must be devoted to these fields before it
can be used routinely in industry for any metallic material.
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Summary. An enhanced rotation-free three node triangular shell element (termed
EBST) is presented. The element formulation is based on a quadratic interpolation
of the geometry in terms of the six nodes of a patch of four triangles associated
to each triangular element. This allows to compute an assumed constant curvature
field and an assumed linear membrane strain field which improves the in-plane be-
haviour of the element. A simple and economic version of the element using a single
integration point is presented. The implementation of the element into an explicit
dynamic scheme is described. The efficiency and accuracy of the EBST element and
the explicit dynamic scheme are demonstrated in many examples of application in-
cluding the analysis of a cylindrical panel under impulse loading and sheet metal
stamping problems.

1 Introduction

Triangular shell elements are very useful for the solution of large scale shell
problems occurring in many practical engineering situations. Typical exam-
ples are the analysis of shell roofs under static and dynamic loads, sheet
stamping processes, vehicle dynamics and crash-worthiness situations. Many
of these problems involve high geometrical and material non linearities and
time changing frictional contact conditions. These difficulties are usually in-
creased by the need of discretizing complex geometrical shapes. Here the use
of shell triangles and non-structured meshes becomes a critical necessity. De-
spite recent advances in the field [1]–[6] there are not so many simple shell
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triangles which are capable of accurately modelling the deformation of a shell
structure under arbitrary loading conditions.

A promising line to derive simple shell triangles is to use the nodal dis-
placements as the only unknowns for describing the shell kinematics. This
idea goes back to the original attempts to solve thin plate bending problems
using finite difference schemes with the deflection as the only nodal variable
[7]–[9].

In past years some authors have derived a number of thin plate and shell
triangular elements free of rotational degrees of freedom (d.o.f.) based on
Kirchhoff’s theory [10]–[26]. In essence all methods attempt to express the
curvatures field over an element in terms of the displacements of a collection
of nodes belonging to a patch of adjacent elements. Oñate and Cervera [14]
proposed a general procedure of this kind combining finite element and finite
volume concepts for deriving thin plate triangles and quadrilaterals with the
deflection as the only nodal variable and presented a simple and competi-
tive rotation-free three d.o.f. triangular element termed BPT (for Basic Plate
Triangle). These ideas were extended in [20] to derive a number of rotation-
free thin plate and shell triangles. The basic ingredients of the method are
a mixed Hu-Washizu formulation, a standard discretization into three node
triangles, a linear finite element interpolation of the displacement field within
each triangle and a finite volume type approach for computing constant cur-
vature and bending moment fields within appropriate non-overlapping control
domains. The so called “cell-centered” and “cell-vertex” triangular domains
yield different families of rotation-free plate and shell triangles. Both the BPT
plate element and its extension to shell analysis (termed BST for Basic Shell
Triangle) can be derived from the cell-centered formulation. Here the “control
domain” is an individual triangle. The constant curvatures field within a tri-
angle is computed in terms of the displacements of the six nodes belonging to
the four elements patch formed by the chosen triangle and the three adjacent
triangles. The cell-vertex approach yields a different family of rotation-free
plate and shell triangles. Details of the derivation of both rotation-free trian-
gular shell element families can be found in [20].

An extension of the BST element to the non linear analysis of shells was
implemented in an explicit dynamic code by Oñate et al. [25] using an up-
dated Lagrangian formulation and a hypo-elastic constitutive model. Excel-
lent numerical results were obtained for non linear dynamics of shells involving
frictional contact situations and sheet stamping problems [17,18,19,25].

A large strain formulation for the BST element using a total Lagrangian
description was presented by Flores and Oñate [23]. A recent extension of
this formulation is based on a quadratic interpolation of the geometry of the
patch formed by the BST element and the three adjacent triangles [26]. This
yields a linear displacement gradient field over the element from which linear
membrane strains and constant curvatures can be computed within the BST
element.
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In this chapter an enhanced version of the BST element (termed EBST
element) is derived using an assumed linear field for the membrane strains
and an assumed constant curvature field. Both assumed fields are obtained
from the quadratic interpolation of the patch geometry following the ideas
presented in [26]. Details of the element formulation are given. An efficient
version of the EBST element using one single quadrature point for integration
of the tangent matrix is presented. An explicit scheme adequate for dynamic
analysis is briefly described.

The efficiency and accuracy of the EBST element is validated in a number
of examples of application including the non linear analysis of a cylindrical
shell under an impulse loading and practical sheet stamping problems.

2 Basic Thin Shell Equations Using a Total Lagrangian
Formulation

2.1 Shell Kinematics

A summary of the most relevant hypothesis related to the kinematic behaviour
of a thin shell are presented. Further details may be found in the wide litera-
ture dedicated to this field [8,9].

Consider a shell with undeformed middle surface occupying the domain Ω0

in R3 with a boundary Γ 0. At each point of the middle surface a thickness h0 is
defined. The positions x0 and x of a point in the undeformed and the deformed
configurations can be respectively written as a function of the coordinates of
the middle surface ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ and the normal t3 at the point as

x0 (ξ1, ξ2, ζ) = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0 (ξ1, ξ2) + λt0
3 (1)

x (ξ1, ξ2, ζ) = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ (ξ1, ξ2) + ζλt3 (2)

where ξ1, ξ2 are arc-length curvilinear principal coordinates defined over the
middle surface of the shell and ζ is the distance from the point to the middle
surface in the undeformed configuration. The product ζλ is the distance from
the point to the middle surface measured on the deformed configuration. The
parameter λ relates the thickness at the present and initial configurations as:

λ =
h

h0
(3)

This approach implies a constant strain in the normal direction. Parameter
λ will not be considered as an independent variable and will be computed
from purely geometrical considerations (isochoric behaviour) via a staggered
iterative update. Besides this, the usual plane stress condition of thin shell
theory will be adopted.

A convective system is computed at each point as

gi (ξ) =
∂x
∂ξi

i = 1, 2, 3 (4)
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gα (ξ) =
∂ (ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ (ξ1, ξ2) + ζλt3)

∂ξα
= ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α + ζ (λt3)′α α = 1, 2 (5)

g3 (ξ) =
∂ (ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ (ξ1, ξ2) + ζλt3)

∂ζ
= λt3 (6)

This can be particularized for the points on the middle surface as

aα = gα (ζ = 0) = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α (7)
a3 = g3 (ζ = 0) = λt3 (8)

The covariant (first fundamental form) metric tensor of the middle surface
is

aαβ = aα · aβ = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′β (9)

The Green-Lagrange strain vector of the middle surface points (membrane
strains) is defined as

εεεεεεεεεεεεεεm = [εm11 , εm12 , εm12 ]
T (10)

with
εmij

=
1
2
(aij − a0

ij) (11)

The curvatures (second fundamental form) of the middle surface are ob-
tained by

καβ =
1
2

(
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α · t3′β + ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′β · t3′α

)
= −t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′αβ , α, β = 1, 2 (12)

The deformation gradient tensor is

F =[x′1,x′2,x′3] =
[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1 + ζ (λt3)′1 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2 + ζ (λt3)′2 λt3

]
(13)

The product FT F = U2 = C (where U is the right stretch tensor, and C the
right Cauchy-Green deformation tensor) can be written as

U2 =

⎡

⎣
a11 + 2κ11ζλ a12 + 2κ12ζλ 0
a12 + 2κ12ζλ a22 + 2κ22ζλ 0

0 0 λ2

⎤

⎦ (14)

In the derivation of expression (14) the derivatives of the thickness ratio λ′a
and the terms associated to ζ2 have been neglected.

Equation (14) shows that U2 is not a unit tensor at the original configu-
ration for curved surfaces (κ0

ij �= 0). The changes of curvature of the middle
surface are computed by

χij = κij − κ0
ij (15)

Note that δχij = δκij .
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For computational convenience the following approximate expression (which
is exact for initially flat surfaces) will be adopted

U2 =

⎡

⎣
a11 + 2χ11ζλ a12 + 2χ12ζλ 0
a12 + 2χ12ζλ a22 + 2χ22ζλ 0

0 0 λ2

⎤

⎦ (16)

This expression is useful to compute different Lagrangian strain measures.
An advantage of these measures is that they are associated to material fibres,
what makes it easy to take into account material anisotropy. It is also useful
to compute the eigen decomposition of U as

U =
3∑

α=1

λα rα ⊗ rα (17)

where λα and rα are the eigenvalues and eigenvectors of U.
The resultant stresses (axial forces and moments) are obtained by inte-

grating across the original thickness the second Piola-Kirchhoff stress vector
σσσσσσσσσσσσσσ using the actual distance to the middle surface for evaluating the bending
moments. This gives

σσσσσσσσσσσσσσm ≡ [N11, N22, N12]T =
∫

h0
σσσσσσσσσσσσσσdζ (18)

σσσσσσσσσσσσσσb ≡ [M11,M22,M12]T =
∫

h0
σσσσσσσσσσσσσσλζ dζ (19)

With these values the virtual work can be written as
∫ ∫

A0

[
δεεεεεεεεεεεεεεT

mσσσσσσσσσσσσσσm + δκκκκκκκκκκκκκκTσσσσσσσσσσσσσσb

]
dA =

∫ ∫

A0
δuT tdA (20)

where δu are virtual displacements, δεεεεεεεεεεεεεεm is the virtual Green-Lagrange mem-
brane strain vector, δκκκκκκκκκκκκκκ are the virtual curvatures and t are the surface loads.
Other load types can be easily included into (20).

2.2 Constitutive Models

In order to treat plasticity at finite strains an adequate stress-strain pair must
be used. The Hencky measures will be adopted here. The (logarithmic) strains
are defined as

Eln=

⎡

⎣
ε11 ε21 0
ε12 ε22 0
0 0 ε33

⎤

⎦ =
3∑

α=1

ln (λα) rα ⊗ rα (21)

For the type of problems dealt within the paper we use an elastic-plastic
material associated to thin rolled metal sheets.
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In the case of metals, where the elastic strains are small, the use of a loga-
rithmic strain measure reasonably allows to adopt an additive decomposition
of elastic and plastic components as

Eln= Ee
ln + Ep

ln (22)

A linear relationship between the (plane) Hencky stresses and the logarithmic
elastic strains is chosen giving

T = H Ee
ln (23)

where H is the constitutive matrix. The constitutive equations are integrated
using a standard return algorithm. The following Mises-Hill [30] yield function
with non-linear isotropic hardening is chosen

(G + H) T 2
11 + (F + H) T 2

22 − 2H T11T22 + 2N T 2
12 = σ0 (e0 + ep)n (24)

where F, G, H and N define the non-isotropic shape of the yield surface and
the parameters σ0, e0 and n define its size as a function of the effective plastic
strain ep.

The simple Mises-Hill yield function allows, as a first approximation, to
treat rolled thin metal sheets with planar and transversal anisotropy.

The Hencky stress tensor T can be easily particularized for the plane stress
case.

We define the rotated Hencky and second Piola-Kirchhoff stress tensors as

TL = RT
L T RL (25)

SL = RT
L S RL (26)

where RL is the rotation tensor obtained from the eigenvectors of U given by

RL =
[
r1 , r2 , r3

]
(27)

The relationship between the rotated Hencky and Piola-Kirchhoff stresses
is (α, β = 1, 2)

[SL]αα =
1
λ2

α

[TL]αα

[SL]αβ =
ln (λα/λβ)

1
2

(
λ2

α − λ2
β

) [TL]αβ (28)

The second Piola-Kirchhoff stress tensor can be computed by

S =
2∑

α=1

2∑

β=1

[SL]αβ rα ⊗ rβ (29)

The second Piola-Kirchhoff stress vector σσσσσσσσσσσσσσ used in Eqs.(18–19) can be
readily extracted from the S tensor.
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3 Enhanced Basic Shell Triangle

The main features of the element formulation (termed EBST for Enhanced
Basic Shell Triangle) are the following:

1. The geometry of the patch formed by an element and the three adjacent
elements is quadratically interpolated from the position of the six nodes in
the patch (Fig. 1).

2. The membrane strains are assumed to vary linearly within the central
triangle and are expressed in terms of the (continuous) values of the de-
formation gradient at the mid side points of the triangle.

3. An assumed constant curvature field within the central triangle is chosen.
This is computed in terms of the values of the (continuous) deformation
gradient at the mid side points.

Details of the derivation of the EBST element are given below.

3.1 Definition of the Element Geometry and Computation of
Membrane Strains

A quadratic approximation of the geometry of the four elements patch is
chosen using the position of the six nodes in the patch. It is useful to define
the patch in the isoparametric space using the nodal positions given in the
Table 1 (see also Fig. 1).

Table 1. Isoparametric coordinates of the six nodes in the patch of Fig. 1

1 2 3 4 5 6

ξ 0 1 0 1 -1 1

η 0 0 1 1 1 -1

The quadratic interpolation is defined by

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ =
6∑

i=1

Niϕϕϕϕϕϕϕϕϕϕϕϕϕϕi (30)

with (ζ = 1 − ξ − η)

N1 = ζ + ξη N4 = ζ
2 (ζ − 1)

N2 = ξ + ηζ N5 = ξ
2 (ξ − 1)

N3 = η + ζξ N6 = η
2 (η − 1)

(31)

This interpolation allows to computing the displacement gradients at selected
points in order to use an assumed strain approach. The computation of the
gradients is performed at the mid side points of the central element of the
patch denoted by G1, G2 and G3 in Fig. 1. This choice has the following
advantages.
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Fig. 1. (a) Patch of three node triangular elements including the central triangle (M)
and three adjacent triangles (1, 2 and 3); (b) Patch of elements in the isoparametric
space

• Gradients at the three mid side points depend only on the nodes belonging
to the two elements adjacent to each side. This can be easily verified by
sampling the derivatives of the shape functions at each mid-side point.

• When gradients are computed at the common mid-side point of two ad-
jacent elements, the same values are obtained, as the coordinates of the
same four points are used. This in practice means that the gradients at the
mid-side points are independent of the element where they are computed.
A side-oriented implementation of the finite element will therefore lead to
a unique evaluation of the gradients per side.

The Cartesian derivatives of the shape functions are computed at the orig-
inal configuration by the standard expression

[
Ni,1

Ni,2

]
= J−1

[
Ni,ξ

Ni,η

]
(32)

where the Jacobian matrix at the original configuration is

J =
[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0

′ξ · t1 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0
′η · t1

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0
′ξ · t2 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0

′η · t2

]
(33)

The deformation gradients on the middle surface, associated to an arbi-
trary spatial Cartesian system and to the material cartesian system defined
on the middle surface are related by

[ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1,ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2] =
[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′ξ,ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′η

]
J−1 (34)

The membrane strains within the central triangle are obtained using a
linear assumed strain field ε̂εεεεεεεεεεεεεm, i.e.

εεεεεεεεεεεεεεm = ε̂εεεεεεεεεεεεεm (35)
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with

ε̂εεεεεεεεεεεεεm = (1 − 2ζ)εεεεεεεεεεεεεε1
m + (1 − 2ξ)εεεεεεεεεεεεεε2

m + (1 − 2η)εεεεεεεεεεεεεε3
m =

3∑

i=1

N̄iεεεεεεεεεεεεεε
i
m (36)

where εεεεεεεεεεεεεεi
m are the membrane strains computed at the three mid side points Gi

(i = 1, 2, 3 see Fig. 1). In Eq.(36) N̄1 = (1 − 2ζ), etc.
The gradient at each mid side point is computed from the quadratic in-

terpolation (30):

(ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α)Gi
= ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′α =

⎡

⎣
3∑

j=1

N i
j,αϕϕϕϕϕϕϕϕϕϕϕϕϕϕj

⎤

⎦ + N i
i+3,αϕϕϕϕϕϕϕϕϕϕϕϕϕϕi+3 , α = 1, 2 , i = 1, 2, 3

(37)
Substituting Eq.(11) into (36) and using Eq.(9) gives the membrane strain

vector as

εεεεεεεεεεεεεεm =
3∑

i=1

1
2
N̄i

⎧
⎨

⎩

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′1 − 1
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′2 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′2 − 1

2ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′2

⎫
⎬

⎭
(38)

and the virtual membrane strains as

δεεεεεεεεεεεεεεm =
3∑

i=1

N̄i

⎧
⎨

⎩

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1 · δϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′1
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

2 · δϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′2

δϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′2 + ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1 · δϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

2

⎫
⎬

⎭
(39)

We note that the gradient at each mid side point Gi depends only on
the coordinates of the three nodes of the central triangle and on those of an
additional node in the patch, associated to the side i where the gradient is
computed.

Combining Eqs.(39), (37) and (30) gives

δεεεεεεεεεεεεεεm = Bmδap (40a)

with
δap

18×1
= [δuT

1 , δuT
2 , δuT

3 , δuT
4 , δuT

5 , δuT
6 ]T (40b)

where δap is the patch displacement vector and Bm is the membrane strain
matrix. An explicit form of this matrix is given in [26].

Note that the membrane strains within the EBST element are a function
of the displacements of the six patch nodes.

3.2 Computation of Curvatures

We will assume the following constant curvature field within each element

καβ = κ̂αβ (41)
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where κ̂αβ is the assumed constant curvature field defined by

κ̂αβ = − 1
A0

M

∫

A0
M

t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′βα dA0 (42)

where A0
M is the area (in the original configuration) of the central element in

the patch.
Substituting Eq.(42) into (41) and integrating by parts the area integral

gives the curvature vector within the element in terms of the following line
integral

κκκκκκκκκκκκκκ =

⎧
⎨

⎩

κ11

κ22

2κ12

⎫
⎬

⎭
=

1
A0

M

∮

Γ 0
M

⎡

⎣
−n1 0
0 −n2

−n2 −n1

⎤

⎦
[
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2

]
dΓ (43)

where ni are the components (in the local system) of the normals to the
element sides in the initial configuration Γ 0

M . The integration by parts of
Eq.(42) is typical in finite volume methods for computing second derivatives
over volumes by line integrals of gradient terms [28,29].

For the definition of the normal vector t3, the linear interpolation over the
central element is used. In this case the tangent plane components are

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′α =
3∑

i=1

LM
i,αϕϕϕϕϕϕϕϕϕϕϕϕϕϕi , α = 1, 2 (44a)

t3 =
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1 ×ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2
|ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1 ×ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2|

= λ ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ1 ×ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ2 (44b)

From these expressions it is also possible to compute in the original con-
figuration the element area A0

M , the outer normals (n1, n2)
i at each side and

the side lengths lMi . Equation (44b) also allows to evaluate the thickness ratio
λ in the deformed configuration and the actual normal t3.

The numerical evaluation of the line integral in Eq.(43) results in a sum
over the integration points at the element boundary which are, in fact, the
same points used for evaluating the gradients when computing the membrane
strains. As one integration point is used over each side, it is not necessary
to distinguish between sides (i) and integration points (Gi). In this way the
curvatures can be computed by

κκκκκκκκκκκκκκ =
1

A0
M

3∑

i=1

lMi

⎡

⎣
−n1 0
0 −n2

−n2 −n1

⎤

⎦
[
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′1
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ′2

]
dΓ (45)

Eq.(45) is now expressed in terms of the shape functions of the 3-noded tri-
angle LM

i (which coincide with the area coordinates [4]). Noting the property
of the area coordinates

∇LM
i =

[
LM

i,x

LM
i,y

]
= − lMi

2AM

[
ni

x

ni
y

]
(46)
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the expression for the curvature can be expressed as

κκκκκκκκκκκκκκ = 2
3∑

i=1

⎡

⎣
LM

i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤

⎦
[
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′1
t3 ·ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′2

]
(47)

The gradient ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′α is evaluated at each side Gi from the quadratic interpo-

lation
[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′1

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′2

]
=

[
N i

1,1 N i
2,1 N i

3,1 N i
i+3,1

N i
1,2 N i

2,2 N i
3,2 N i

i+3,2

]
⎡

⎢
⎢
⎣

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ1

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ2

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ3

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi+3

⎤

⎥
⎥
⎦ (48)

This is a basic difference with respect of the computation of the curvature
field in the original Basic Shell Triangle (BST) where the gradient at the side
mid-point is computed as the average value between the values at two adjacent
elements [20, 23, 26, 27].

Note again than at each side the gradients depend only on the positions of
the three nodes of the central triangle and of an extra node (i+3), associated
precisely to the side (Gi) where the gradient is computed.

Direction t3 in Eq.(47) can be seen as a reference direction. If a different
direction than that given by Eq.(44b) is chosen at an angle θ with the former,
this has an influence of order θ2 in the projection. This justifies Eq.(44b) for
the definition of t3 as a function exclusively of the three nodes of the central
triangle, instead of using the 6-node isoparametric interpolation.

The variation of the curvatures can be obtained as

δκκκκκκκκκκκκκκ = 2
3∑

i=1

⎡

⎣
LM

i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤

⎦

{
3∑

i=1

[
N i

j,1(t3 · δuj)
N i

j,2(t3 · δuj)

]
+

[
N i

i+3,1(t3 · δui+3)
N i

i+3,2(t3 · δui+3)

]}

−

−
3∑

i=1

⎡

⎣
(LM

i,1ρ
1
11 + LM

i,2ρ
2
11)

(LM
i,1ρ

1
22 + LM

i,2ρ
2
22)

(LM
i,1ρ

1
12 + LM

i,2ρ
2
12)

⎤

⎦ (t3 · δui) = Bbδap (49)

In Eq.(49)
Bb = [Bb1 ,Bb2 , · · · ,Bb6 ] (50)

Details of the derivation of the curvature matrix Bb are given in [26, 27].

3.3 The EBST1 Element

A simplified and yet very effective version of the EBST element can be ob-
tained by using one point quadrature for the computation of all the element
integrals. This element is termed EBST1. Note that this only affects the mem-
brane stiffness matrices and it is equivalent to using a assumed constant mem-
brane strain field defined by an average of the metric tensors computed at each
side.

Numerical experiments have shown that both the EBST and the EBST1
elements are free of spurious energy modes.
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4 Boundary Conditions

Elements at the domain boundary, where an adjacent element does not exist,
deserve a special attention. The treatment of essential boundary conditions
associated to translational constraints is straightforward, as they are the natu-
ral degrees of freedom of the element. The conditions associated to the normal
vector are crucial in the bending formulation. For clamped sides or symmetry
planes, the normal vector t3 must be kept fixed (clamped case), or constrained
to move in the plane of symmetry (symmetry case). The former case can be
seen as a special case of the latter, so we will consider symmetry planes only.
This restriction can be imposed through the definition of the tangent plane at
the boundary, including the normal to the plane of symmetry ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0

′n that does
not change during the process.

The tangent plane at the boundary (mid-side point) is expressed in terms
of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian
system (see Fig. 2) defined as

[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0

′n, ϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ′s
]

(51)

where vector ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0
′n is fixed during the process while direction ϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ′s emerges from

the intersection of the symmetry plane with the plane defined by the cen-
tral element (M). The plane (gradient) defined by the central element in the
selected original convective Cartesian system (t1, t2) is

[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕM

′1 , ϕϕϕϕϕϕϕϕϕϕϕϕϕϕM
′2

]
(52)

the intersection line (side i) of this plane with the plane of symmetry can be
written in terms of the position of the nodes that define the side (j and k)
and the original length of the side lMi , i.e.

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′s =

1
lMi

(
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕk −ϕϕϕϕϕϕϕϕϕϕϕϕϕϕj

)
(53)

That together with the outer normal to the side ni = [n1, n2]
T = [n · t1,n · t2]

T

(resolved in the selected original convective Cartesian system) leads to
[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕiT

′1
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕiT

′2

]
=

[
n1 −n2

n2 n1

] [
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕiT

′n
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕiT

′s

]
(54)

where, noting that λ is the determinant of the gradient, the normal component
of the gradient ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′n can be approximated by

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′n =

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ0
′n

λ|ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′s|

(55)

For a simple supported (hinged) side, the problem is not completely de-
fined. The simplest choice is to neglect the contribution to the side rotations
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Fig. 2. Local Cartesian system for the treatment of symmetry boundary conditions

from the adjacent element missing in the patch in the evaluation of the curva-
tures via Eq.(43) [20, 23, 26]. This is equivalent to assume that the gradient
at the side is equal to the gradient in the central element, i.e.

[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi

′1, ϕϕϕϕϕϕϕϕϕϕϕϕϕϕi
′2

]
=

[
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕM

′1 , ϕϕϕϕϕϕϕϕϕϕϕϕϕϕM
′2

]
(56)

More precise changes can be however introduced to account for the different
natural boundary conditions. One may assume that the curvature normal to
the side is zero, and consider a contribution of the missing side to introduce
this constraint. As the change of curvature parallel to the side is also zero along
the hinged side, this obviously leads to zero curvatures in both directions.

We note finally that for the membrane formulation of element EBST, the
gradient at the mid-side point of the boundary is assumed equal to the gradient
of the main triangle.

More details on the specification of the boundary conditions on the EBST
element can be found in [26, 27].

5 Explicit Solution Scheme

For simulations including large non-linearities, such as those occuring in sheet
metal forming processes involving frictional contact conditions on complex
geometries or large instabilities, convergence is difficult to achieve with im-
plicit schemes. In those cases an explicit solution algorithm is typically most
advantageous. This scheme provides the solution for dynamic problems and
also for quasi-static problems if an adequate damping is chosen.

The dynamic equations of motion to solve are of the form

r(u) + Du̇ + Mü = 0 (57)

where M is the mass matrix, D is the damping matrix and the dot means the
time derivative. The solution is performed using the central difference method.
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To make the method competitive a diagonal (lumped) M matrix is typically
used and D is taken proportional to M. As usual, mass lumping is performed
by assigning one third of the triangular element mass to each node in the
central element.

The explicit solution scheme can be summarized as follows. At each time
step n where displacements have been computed:

1. Compute the internal forces rn. This follows the steps described in Box 1.
2. Compute the accelerations at time tn

ün = M−1
d [rn − Du̇n−1/2] (58)

where Md is the diagonal (lumped) mass matrix.
3. Compute the velocities at time tn+1/2

u̇n+1/2 = u̇n−1/2 + ünδt (59)

4. Compute the displacements at time tn+1

un+1 = un + u̇n+1/2δt (60)

5. Update the shell geometry
6. Check frictional contact conditions

6 Example 1. Cylindrical Panel under Impulse Loading

The geometry of the cylinder and the material properties are shown in Fig.
3. A prescribed initial normal velocity of vo = −5650 in/sec is applied to
the points in the region shown modelling the effect of the detonation of an
explosive layer. The panel is assumed to be clamped along all the boundary.
One half of the cylinder is discretized only due to symmetry conditions. Three
different meshes of 6 × 12, 12 × 32 and 18 × 48 triangles were used for the
analysis. The deformed configurations for time = 1msec are shown for the
three meshes in Fig. 3.

The analysis was performed assuming an elastic-perfect plastic material
behaviour (σy = ky k′

y = 0). A study of the convergence of the solution with
the number of thickness layers showed again that four layers suffice to capture
accurately the non linear material response [25].

A comparison of the results obtained with the BST and EBST1 elements
using the coarse mesh and the finer mesh is shown in Fig. 4 where experimental
results reported in [32] have also been plotted for comparison purposes. Good
agreement between the numerical and experimental results is obtained. Figs.
4 show the time evolution of the vertical displacement of two reference points
along the center line located at y = 6.28in and y = 9.42in, respectively. For
the finer mesh results between both elements are almost identical. For the
coarse mesh it can been seen that the BST element is more flexible than the
EBST1.
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1. Generate the actual configuration ϕϕϕϕϕϕϕϕϕϕϕϕϕϕn+1 = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕn + ∆un

2. Compute the metric tensor an+1
αβ and the curvatures κn+1

αβ . Then at each
layer k compute the (approximate) right Cauchy-Green tensor. From
Eq.(14)

Cn+1
k = an+1 + zkχχχχχχχχχχχχχχ

n+1 (61)

3. Compute the total (21) and elastic (22) deformations at each layer k

εεεεεεεεεεεεεεn+1
k =

1
2

lnCn+1
k (62)

[εεεεεεεεεεεεεεe]
n+1
k = εεεεεεεεεεεεεεn+1

k − [εεεεεεεεεεεεεεp]
n
k

4. Compute the trial Hencky elastic stresses (23) at each layer k

Tn+1
k = H [εεεεεεεεεεεεεεe]

n+1
k (63)

5. Check the plasticity condition and return to the plasticity surface. If nec-
essary correct the plastic strains [εεεεεεεεεεεεεεp]

n+1
k at each layer

6. Compute the second Piola-Kirchhoff stress vector σσσσσσσσσσσσσσn+1
k and the general-

ized stresses

σσσσσσσσσσσσσσn+1
m =

h0

NL

NL∑

k=1

σσσσσσσσσσσσσσn+1
k wk

σσσσσσσσσσσσσσn+1
b =

h0

NL

NL∑

k=1

σσσσσσσσσσσσσσn+1
k zkwk (64)

Where wk is the weight of the through-the-thickness integration point. Re-
call that zk is the current distance of the layer to the mid-surface and not
the original distance. However, for small strain plasticity this distinction
is not important.
This computation of stresses is exact for an elastic problem.

7. Compute the residual force vector from

re
i =

∫∫

A

Lit dA−
∫∫

A◦
(BT

mi
σσσσσσσσσσσσσσm + BT

bi
σσσσσσσσσσσσσσb)dA (65)

Box 1. Computation of the internal forces vector



254 Eugenio Oñate, Fernando G. Flores and Laurentiu Neamtu

re
gio

n with

v 0
=3

65
0 in/

se
c

10
.2

03
in

12.56

3.08

R=2.9375

E = 10.5 x 106 lb/in2

= 2.5 x 104 lb sec2/in4ρ
ν = 0.33

ky = 44 000 lb/in2

k’
y = 0 lb/in2

h = 0.125 in

X

YZ

X

Y

Z

Fig. 3. Cylindrical panel under impulse loading. Geometry and material properties.
Deformed meshes for time = 1msec

Time [msec.]

D
ef

le
ct

io
n

[in
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Experimental
BST mesh 3
EBST1 mesh 3
BST mesh 1
EBST1 mesh 1

Fig. 4. Cylindrical panel under impulse loading. Time evolution of the displacement
of two points along the crown line. Upper lines y = 6.28in. Lower lines y = 9.42
in. Comparison of results obtained with BST and EBST1 elements (mesh 1: 6 × 12
elements and mesh 3: 18 × 48 elements) and experimental values



Enhanced Rotation-Free Basic Shell Triangle 255

The numerical values of the vertical displacement at the two reference
points obtained with the BST and EBST1 elements after a time of 0.4 ms
using the 16 × 32 mesh are compared in Table 2 with a numerical solution
obtained by Stolarski et al. [31] using a curved triangular shell element and
the 16 × 32 mesh. Experimental results reported in [32] are also given for
comparison. It is interesting to note the reasonable agreement of the results
for y = 6.28in. and the discrepancy of present and other published numerical
solutions with the experimental value for y = 9.42in.

Table 2. Cylindrical panel under impulse load. Comparison of vertical displacement
values of two central points for t = 0.4 ms

Vertical displacement (in.)

element/mesh y = 6.28in y = 9.42in

BST (6 × 12 el.) -1.310 -0.679
BST (18 × 48 el.) -1.181 -0.587
EBST1 (6 × 12 el.) -1.147 -0.575
EBST1 (18 × 48 el.) -1.171 -0.584
Stolarski et al. [31] -1.183 -0.530
Experimental [32] -1.280 -0.700

The deformed shapes of the transverse section for y = 6.28in. and the
longitudinal section for x = 0 obtained with the both elements for the coarse
and the fine meshes after 1ms. are compared with the experimental results
in Figs. 5 and 6. Excellent agreement is observed for the fine mesh for both
elements.

7 Application to Sheet Metal Forming Problems

The features of tghe EBST1 element make it ideal for analysis of sheet metal
stamping processes. A number of examples of simulations of practical prob-
lems of this kind are presented. Numerical results have been obtained with
the sheet stamping simulation code STAMPACK where the EBST1 element
has been implemented [35].

7.1 S-rail Sheet Stamping

The next problem corresponds to one of the sheet stamping benchmark tests
proposed in NUMISHEET’96 [33]. The analysis comprises two parts, namely,
simulation of the stamping of a S-rail sheet component and springback com-
putations once the stamping tools are removed. Figure 7 shows the deformed
sheet after springback.



256 Eugenio Oñate, Fernando G. Flores and Laurentiu Neamtu

X [in]

Z
[in

]

0 1 2

1

2

3

Original
Experimental
EBST1 mesh 1
BST mesh 1
EBST1 mesh 3
BST mesh 3

Fig. 5. Cylindrical panel under impulse loading. Final deformation (t = 1msec) of
the panel at the cross section y = 6.28in. Comparison with experimental values

Y-direction [in]

Z
-d

ire
ct

io
n

[in
]

0 2 4 6 8 10 12
0

1

2

3

Experimental
BST mesh 3
EBST1 mesh 3
BST mesh 1
EBST1 mesh 1
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the panel at the crown line (x = 0.00in). Comparison with experimental values

The detailed geometry and material data can be found in the proceedings
of the conference [33] or in the web [34]. The mesh used for the sheet has
6000 triangles and 3111 points (Fig. 7). The tools are treated as rigid bodies.
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Fig. 7. Stamping of a S-rail. Final deformation of the sheet after springback obtained
in the simulation. The triangular mesh of the deformed sheet is also shown

The meshes used for the sheet and the tools are those provided by the bench-
mark organizers. The material considered here is a mild steel (IF) with Young
Modulus E = 2.06GPa and Poisson ratio ν = 0.3. Mises yield criterion was
used for plasticity behaviour with non-linear isotropic hardening defined by
σy(ep) = 545(0.13+ ep)0.267[MPa]. A uniform friction of 0.15 was used for all
the tools. A low (10kN) blank holder force was considered in this simulation.

Figure 8 compares the punch force during the stamping stage obtained
with both BST and EBST1 elements for the simulation and experimental
values. Also for reference the average values of the simulations presented in
the conference are included. Explicit and implicit simulations are considered as
different curves. There is a remarkable coincidence between the experimental
values and the results obtained with both the BST and EBST1 elements.

Figure 9 plots the Z coordinate along line B”–G” after springback. The
top surface of the sheet does not remain plane due to some instabilities due
to the low blank holder force used. Results obtained with the simulations
compare very well with the experimental values.

7.2 Stamping of Industrial Automotive Part

Figure 10 shows the geometry of the lateral panel of a car and the mesh
of 457760 EBST1 elements used for the computation. Results of the stamp-
ing simulation are shown in Fig. 11. Note that the outpus of the simulation
have been translated into graphical plots indicating the quality of the stamp-
ing process and the risk of failure in the different zones of the panel. This
helps designers to taking decissions on the adequacy of the stamping process
and for introducing changes in the design of the stamping tools (dies, punch,
blankholders, etc.) and the process parameters if needed.

Figure 12 shows the geometry mesh and results of the stamping of a front
fender part of an automotive. The initial mesh had 121960 EBST1 elements.
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Fig. 8. Stamping of a S-rail. Punch force versus punch travel. Average of explicit
and implicit results reported at the benchmark conference are also shown

Adaptive mesh refinement was used along the simulation process leading to a
final mesh of 389870 elements. Finally, Figs. 13 and 14 show the same type of
information for the stamping of a car tail gate. The initial and final meshes
(after adaptive mesh refinement) had 186528 and 489560 EBST1 elements,
respectively. The simulation results are displayed in both problems with an
“engineering insight” in order to help the design and manufacturing of the
stamping tools and the definition of the stamping process as previously men-
tioned.

8 Concluding Remarks

An enhanced rotation-free shell triangle (termed EBST) is obtained by using
a quadratic interpolation of the geometry in terms of the six nodes belonging
to the four elements patch associated to each triangle. This allows to com-
puting an assumed constant curvature field and an assumed linear membrane
strain field which improves the in-plane behaviour of the original element. A
simple and economic version of the element using a single integration point
has been presented. The efficiency of the rotation-free shell triangle has been
demonstrated in examples of application including the analysis of a cylinder
under impulse loading and practical sheet stamping problems.
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Fig. 10. Lateral panel of an automotive. Finite element mesh of 457760 triangles
used for the simulation
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Fig. 11. Lateral panel of a car. Results of the stamping analysis

The enhanced rotation-free basic shell triangle element with a single in-
tegration point (the EBST1 element) is an excellent candidate for solving
practical sheet metal stamping problems and other non linear shell problems
in engineering involving complex geometry, dynamics, material and geomet-
rical non linearities and frictional contact conditions.
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Fig. 12. Front fender. Results of the stamping analysis using an initial mesh of
121960 EBST1 elements. The final adapted mesh had 389870 elements
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Fig. 13. Car tail gate. Geometry and final adapted mesh of 489560 EBST1 elements
used for the stamping simulation
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Fig. 14. Car tail gate. Map of relative thickness distribution and forming zones on
the stamped part
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