
Chapter 3
The Mitochondrial Death Pathway

Anas Chalah and Roya Khosravi-Far*

Abstract Mitochondria have long been known to be critical for cell survival due 
to their role in energy metabolism. However, not until the mid-1990s did it become 
evident that mitochondria are also active participants in programmed cell death 
(PCD). This chapter focuses mainly on the role the mitochondria in mammalian 
cell death and cancer progression and therapy.
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1 Introduction

Apoptosis, or programmed cell death (PCD), is an evolutionarily conserved 
mechanism for the selective removal of aging, damaged or otherwise unwanted 
cells (Abe et al., 2000; Degli Esposti, 1999; Lawen, 2003; Ozoren and El-Deiry, 
2003; Peter and Krammer, 1998; Strasser et al., 2000; Thorburn, 2004). It is an 
essential component of many normal physiological processes such as embryogene-
sis, normal tissue development, and the immune response (Vaux and Korsmeyer, 
1999). Thus, regulation of apoptosis is critical for tissue homeostasis and its dereg-
ulation can lead to a variety of pathological conditions including carcinogenesis 
and chemoresistance (Burns and El-Deiry, 2003; Daniel et al., 2001; Green and 
Evan, 2002; Ozoren and El-Deiry, 2003; Sheikh and Huang, 2004; Thompson, 
1995; Zornig et al., 2001).

Apoptosis is mediated primarily through the activation of specific proteases called 
caspases (cysteinyl, aspartate-specific proteases) (Algeciras-Schimnich et al., 2002; 
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Ozoren and El-Deiry, 2003; Salvesen and Dixit, 1997; Stegh and Peter, 2001; 
Thorburn, 2004). Caspases are effectors of cell suicide and cleave multiple sub-
strates, leading to biochemical and morphological changes that are characteristic of 
apoptotic cells(Abe et al., 2000; Strasser et al., 2000). These alterations include: 
mitochondrial outer membrane permeabilization; cell membrane remodeling and 
blebbing; exposure of phosphatidylserine (PS) at the external surface of the cell; cell 
shrinkage with cytoskeletal rearrangements; nuclear condensation; and DNA frag-
mentation (Ashkenazi and Dixit, 1999; Green and Evan, 2002; Lawen, 2003; Peter 
and Krammer, 2003; Schulze-Osthoff et al., 1998; Thorburn, 2004). These morpho-
logical changes culminate in the formation of apoptotic bodies that are normally 
eliminated by phagocytosis (Geske and Gerschenson, 2001; Wallach, 1997). In 
mammalian systems, the extrinsic death receptor pathway and the intrinsic mito-
chondrial pathway are the two major signaling systems that result in the activation 
of the executioner/effector caspases and the consequent demise of the cell (Abe et 
al., 2000; Ozoren and El-Deiry, 2003; Peter and Krammer, 2003; Strasser et al., 
2000; Thorburn, 2004). In many cell types, including cancer cells, activation of the 
extrinsic pathway also engages the mitochondrial pathway for full execution of cell 
death (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 2003; Newmeyer 
and Ferguson-Miller, 2003; Thorburn, 2004). Thus, many apoptotic signals merge 
at the mitochondria, and thus mitochondria have been termed “gatekeepers” of the 
apoptotic machinery (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 
2003; Newmeyer and Ferguson-Miller, 2003; Thorburn, 2004).

As gatekeepers, the proteins comprising the intrinsic mitochondrial pathway are 
the major mediators of the cytotoxic effects of many chemotherapeutic agents and 
radiation therapy (Brenner et al., 2003; Costantini et al., 2000; Debatin et al., 2002; 
Hersey and Zhang, 2003). Cancer cells often evade this apoptosis and develop 
chemoresistance and radioresistance. Indeed, disruption of the mitochondrial apop-
totic machinery has been observed in many tumors (Daniel et al., 2001; Morisaki 
and Katano, 2003). It is also likely that disruption of the mitochondrial machinery 
or mutations in the mitochondrial DNA could play a role in cancer initiation. 
Because of the central role of mitochondria in these processes, various components 
of the mitochondrial machinery can be targets for novel therapeutic strategies.

2 The Mitochondrial Pathway of Apoptosis

Mitochondria are thought to be the primary organelles involved in mediating most 
apoptotic pathways in mammalian cells (Green and Kroemer, 2004; Kroemer, 
2003; Newmeyer and Ferguson-Miller, 2003; Ravagnan et al., 2002; Sorice et al., 
2004; Zamzami and Kroemer, 2001). Mitochondria are engaged via the intrinsic 
pathway of cell death, which can be initiated by a variety of stress stimuli, includ-
ing ultraviolet (UV) radiation, γ-irradiation, heat, DNA damage, the actions of 
some oncoproteins and tumor suppressor genes (i.e., P53), viral virulence factors, 
and most chemotherapeutic agents (Fig. 3.1) (Kroemer, 2003). These diverse forms 
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of stress are sensed by multiple cytosolic or intraorganellar molecules. Transduction 
of these signals to the mitochondria ultimately results in alterations of the outer 
mitochondrial membrane (OM) (Esposti et al., 2003; Green and Kroemer, 2004; 
Kuwana et al., 2002; Newmeyer and Ferguson-Miller, 2003; Zamzami and 
Kroemer, 2001). These changes in the OM then lead to increased permeability to 
proteins that normally reside between the OM and the inner mitochondrial mem-
brane (IM), enabling these proteins to escape the mitochondria and diffuse into the 
cytosol.

The mitochondrial pathway of apoptosis can also be activated in response to 
death ligands. In a majority of cells (type II cells), including tumor cells, extracel-
lular death signals engage the mitochondria in a way that is equivalent to the intrin-
sic pathway (Abe et al., 2000; Algeciras-Schimnich et al., 2002; Ozoren and 
El-Deiry, 2002; Peter and Krammer, 1998). In these cells, signals originating from 
the death ligand-induced activation of caspase-8 and caspase-10 bifurcate into two 
arms, one of which directly engages mitochondria via a sequence of events causing 
activation of the effector caspases (i.e., caspase-3). The second arm promotes the 
cleavage of noncaspase substrates, such as Bid, inducing changes in the mitochon-
drial OM and the release of apoptogenic factors and activation of caspase-9, which 
then cooperates with the less-efficient activation of caspase-8 in these cells.

Fig. 3.1 Schematic representation of the intrinsic and extrinsic apoptotic pathways
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3 The Release of Proapoptotic Factors

Mitochondria contain and release many soluble proteins that are involved in the 
apoptotic cascade (Fig. 3.2) (Daniel et al., 2001; Debatin et al., 2002; Green and 
Kroemer, 2004; Reed, 2004). The variety of mitochondrial proteins participating in 
this pathway indicates the pivotal role of these organelles in determining cellular 
fates. Bcl-2 family members control apoptosis by regulating the permeabilization 
of the mitochondrial membrane (Chao and Korsmeyer, 1998; Cory et al., 2003; 
Daniel et al., 2001). The release of mitochondrial proteins, including cytochrome c,
apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases 
(Smac/Diablo), high-temperature requirement A2 (HtrA2/Omi), and endonuclease 
G, is believed to play a pivotal role in inducing PCD (Martinou and Green, 2001; 
Zamzami and Kroemer, 2001).

Fig. 3.2 Mitochondrial membrane permeabilization is regulated by an elegant balance of oppos-
ing actions of proapoptotic and antiapoptotic Bcl-2 family members. Bax, Bad, and Bak promote 
the release of cytochrome c and AIF through the formation of transmembrane channels across the 
mitochondrial outer membrane, while Bcl-2 and Bcl-X

L
 delay this release and abort the apoptotic 

response, leading to cell survival. Besides the release of mitochondrial proapoptotic components, 
the loss of mitochondrial membrane integrity results in the loss of many essential biochemical 
cellular functions such as ATP synthesis and results in the generation of reactive oxygen species 
(ROS). The increased levels of ROS are directly linked to the oxidation of lipids, proteins, and 
nucleic acids
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4 Cytochrome C

Cytochrome c (Cyt c), a small (13 kDa) nuclear encoded mitochondrial protein, was 
the first protein identified as being released from mitochondria upon apoptosis. It 
is considered a key regulator of apoptosis because once it is released from the 
mitochondrial intermembrane space (IMS), the cell is irreversibly committed to 
death (Green and Evan, 2002; Kluck et al., 1997; Zhivotovsky et al., 1998a; 
Zhivotovsky et al., 1998b) and Cyt c is synthesized in the cytosol and translocates 
to the mitochondria as an unfolded apoprotein through the TOM (translocase in the 
OMM) complex (Diekert et al., 2001). The driving force for translocation of apo-
Cyt c into the IMS appears to be its interaction with the enzyme cytochrome c heme 
lyase (Dumont et al., 1991; Mayer et al., 1995).

The release of cytochrome c to the cytosol is considered among the major steps 
in the intrinsic death pathway (Kluck et al., 1997; Newmeyer and Ferguson-Miller, 
2003; Zhivotovsky et al., 1998a). Once it escapes to the cytosol, it is captured by 
the apoptosis protease activating factor (APAF-1), a 130 kDa adaptor protein 
(Soengas et al., 1999; Zou et al., 1999). Prior to binding Cyt c, APAF-1 is virtually 
inactive. Once bound to Cyt c, the APAF-1 monomer goes through a cytochrome 
c-induced conformational change that promotes its activation. Further oligomeriza-
tion occurs, resulting in a cartwheel-shaped heptameric structure containing seven 
Cyt c/APAF-1 complexes. This larger multiprotein complex is termed the apopto-
some (Acehan et al., 2002; Adrain et al., 2001; Adrain et al., 1999; Srinivasula 
et al., 1999). Pro-caspase-9 is recruited to the apoptosome through its CARD 
domain, promoting its cleavage and converting it to an active protease (Adrain 
et al., 1999). Consequently, caspase-9 dissociates from the complex and goes on to 
activate effector caspases (3, 6, and 7) which collectively orchestrate the execution 
of apoptosis (Slee et al., 1999; Srinivasula et al., 1999; Zou et al., 1999).

5 Apoptosis-Inducing Factor

The precursor of the protein AIF is synthesized in the cytosol and imported into 
mitochondria (Susin et al., 1999). It contains an N-terminal mitochondrial localiza-
tion sequence (MLS) which is cleaved upon its mitochondrial translocation to form 
the mature 57 kDa AIF (Susin et al., 1999). Under apoptosis-inducing conditions, 
AIF translocates through the permeabilized mitochondrial outer membrane to the 
cytosol (Cande et al., 2002; Susin et al., 1999). Subsequently, AIF is transported to 
the nucleus where it induces ATP-independent nuclear chromatin condensation, as 
well as large-scale DNA fragmentation (Cande et al., 2002; Susin et al., 1999). In 
contrast to cytochrome c, AIF acts in a caspase-independent fashion and does not 
require the presence of cytosolic factors to induce apoptotic features in the nuclei 
(Lorenzo et al., 1999; Miramar et al., 2001; Susin et al., 1999; Zamzami and 
Kroemer, 2001). Moreover, AIF translocation occurs in Apaf-1-null mice which 
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fail to activate the executioner caspase (Cecconi et al., 1998). However, some stud-
ies indicate that crosstalk does occur between AIF and the apoptotic caspase cas-
cade (Cande et al., 2002). For instance, AIF was observed to trigger the release of 
cytochrome c from isolated mitochondria (Susin et al., 1999). Additionally, AIF 
interacts with heat-shock protein 70 (Hsp70), a known protective factor and inhibi-
tor of Apaf-1-dependent caspase activation (Ravagnan et al., 2002).

6 Smac/Diablo

Second mitochondria-derived activator of caspases (Smac) is a 22 kDa mitochondrial 
protein also known as direct IAP-associated binding protein with low pI (Diablo). 
Inhibitors of apoptosis (IAP) family members have the ability to interact and inhibit 
the enzymatic activity of caspases through their baculovirus inhibitor repeat (BIR) 
functional motif (Deveraux and Reed, 1999; Miller, 1999). Smac/Diablo was first 
identified as a mammalian IAP (Srinivasula et al., 1999; Verhagen and Vaux, 2002). 
Specifically, XIAP, c-IAP1, and c-IAP2 are proapoptotic factors regulated by Smac/
Diablo (Ekert et al., 2001; Srinivasula et al., 1999; Verhagen and Vaux, 2002). The 
Smac/Diablo precursor is synthesized in the cytosol, then imported to the mitochon-
dria where it is cleaved and activated. A mature form of Smac/Diablo is released to the 
cytosol under apoptotic conditions. Unlike cytochrome c, which directly activates 
APAF-1 and caspase-9, Smac/Diablo binds to the BIR domains of multiple IAP mem-
bers, antagonizing them and promoting indirect caspase activation (Ekert et al., 2001; 
Srinivasula et al., 1999; Verhagen and Vaux, 2002). Smac/Diablo and cytochrome c
were found to be released from the mitochondria at around the same time. Moreover, 
the release was found to coincide with mitochondrial membrane potential depolariza-
tion (Rehm et al., 2003; Springs et al., 2002; Verhagen and Vaux, 2002). However, a 
recent study presented evidence suggesting that the release of Smac/Diablo may, in 
fact, depend on the release of cytochrome c (Hansen et al., 2006).

7 HtrA2/Omi

HtrA2, also referred to as Omi, is a mitochondrial protein that belongs to the family 
of serine proteases. This proapoptotic protein is expressed as a 50 kDa precursor that 
is cleaved at the N-terminal, upon translocation to the mitochondria, to generate the 
active 36 kDa protein (Hegde et al., 2002; Martins et al., 2002; Suzuki et al., 2001; 
Verhagen and Vaux, 2002). Similar to cytochrome c and Smac/Diablo, mature 
HtrA2/Omi localizes to the IMS (Hegde et al., 2002; Suzuki et al., 2004). Its release 
to the cytosol is stimulated by apoptotic triggers. Upon its release, HtrA2/Omi binds 
directly to the BIR domain of IAPs and inhibits their caspase-inhibitory activity 
(Suzuki et al., 2001). The first four N-terminal amino acids of the mature HtrA2 
protein (AVPS) constitute the IAP-binding motif.
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In addition to the proapoptotic effect of IAP binding and inhibition, Omi/HtrA2 
appears to utilize its serine protease activity to induce an IAP inhibition-independ-
ent, caspase-independent apoptosis (Hegde et al., 2002; Suzuki et al., 2001). 
Recently, it was reported that the proapoptotic serine protease activity of HtrA2/Omi 
also plays a significant role in antagonizing IAPs. The observed HtrA2 cleavage of 
c-IAP produced significant caspase activation and sensitized cells to apoptosis 
(Yang et al., 2006).

8 Endonuclease G

As with most mitochondrial proteins, Endonuclease G is expressed as a precursor 
in the cytosol. Upon its translocation to the mitochondria, the 33 kDa protein is 
cleaved to a 28 kDa mature form (Cote and Ruiz-Carrillo, 1993). During apoptosis, 
endonuclease G is released from the mitochondrial IMS and translocates to the 
nucleus, where it causes oligonucleosomal DNA fragmentation (Li et al., 2001; van 
Loo et al., 2001). Endonuclease G release appears to be dependent on caspase acti-
vation downstream of mitochondria (Arnoult et al., 2003). Interestingly, endonucle-
ase G-induced DNA degradation was observed to be caspase-independent (Li et al.,
2001; Susin et al., 1999), suggesting an important role for endonuclease G in 
 bringing about caspase-independent cell death.

9 Mitochondrial Proteins and Caspase Activation

Among the various proteins that leak out of mitochondria, a few, such as cytochrome c,
play a major role in promoting caspase activation. (Kluck et al., 1999; Saelens et al., 
2004) These apoptogenic factors are released in a hierarchical manner during cell 
death. Upon activation of the intrinsic pathway, cytochrome c, Htr2A/Omi and Smac/
Diablo are released first, with similar kinetics (Saelens et al., 2004). The subsequent 
release of AIF and endonuclease G (Arnoult et al., 2003; Penninger and Kroemer, 
2003) is associated with more severe damage to both the outer and inner membranes. 
Notably, cytochrome c has been shown to be directly involved in the mediation of cell 
death, as it is indispensable for the activation of Apaf-1 and subsequent formation of 
the apoptosome (Arnoult et al., 2003).

The apoptosome itself is a platform for recruiting and facilitating the autocata-
lytic activation of pro-caspase-9, the apical caspase of the intrinsic pathway of 
apoptosis (Adams and Cory, 2002; Baliga and Kumar, 2003; Cain et al., 2002; 
Chinnaiyan, 1999; Hill et al., 2003; Salvesen and Renatus, 2002; Shi, 2002). The 
activation of caspase-9 leads to the local accumulation of zymogens, promoting an 
autocatalytic process of downstream caspase activation (Adams and Cory, 2002; 
Baliga and Kumar, 2003; Cain et al., 2002; Chinnaiyan, 1999; Hill et al., 2003; 
Salvesen and Renatus, 2002; Shi, 2002). However, the apoptosome requires additional
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regulatory factors, including Smac/Diablo, for full activation of the caspase cas-
cade. Smac/Diablo interacts with several IAPs to release them from their inhibitory 
interaction with pro-caspase-9 and other caspases (Adams and Cory, 2002; Baliga 
and Kumar, 2003; Cain et al., 2002; Shi, 2002). Smac/Diablo is also present in the 
mitochondria, where it is directly attached to the OM and is released upon altera-
tions in the OM permeability (Cain et al., 2002; Saelens et al., 2004).

10 Mechanisms of Mitochondrial Protein Release

The exact mechanism by which mitochondrial proapoptotic components are 
released from the IMS is a matter of a long and ongoing debate. Currently, two 
general mechanisms are considered: nonspecific and specific release (Lim et al., 
2001). The opening of the permeability transition pore (PTP) located in the mito-
chondrial IMS is proposed as the first possible mechanism. The permeability pore 
is comprised of three proteins: cyclophilin D, adenine nucleotide translocator 
(ANT), and voltage-dependent anion channel (VDAC), a matrix, an inner mem-
brane, and an outer membrane protein, respectively (Crompton, 1999). The open-
ing of the PTP triggers many processes, including (A) loss of the proton gradient 
produced by the electron transport machinery; (B) leakage of cellular water into the 
mitochondrial matrix, resulting in the gradual swelling of the IMS and the rupturing 
of the inflexible OM (Green and Kroemer, 2004); and (C) leakage of apoptotic fac-
tors from the IMS into the cytoplasm, which begins the cascade of proteolytic 
activities leading ultimately to nuclear damage and cell death (Brenner et al., 2000; 
Dejean et al., 2006; Kroemer, 2003; Marzo et al., 1998a; Marzo et al., 1998b). This 
mechanism represents a nonspecific release mode for proapoptotic mitochondrial 
mediators. However, the physical outer membrane disruption theory fails to explain 
the release of proapoptotic factors such as cytochrome c and AIF in the absence of 
any loss of outer membrane structural integrity (Dejean et al., 2006).

The second suggested mode of release involves the opening of large outer 
membrane channels that would allow cytochrome c and other IMS proteins to 
move into the cytosol. In contrast with the other scenarios, this model would 
leave the outer membrane largely intact. A benefit of this model is that there is 
no need for the mitochondrial matrix to swell. This better fits with the evidence 
that mitochondrial morphology remains the same in most cell death in vivo. 
Several outer membrane channels, including the VDAC and mitochondrial 
 apoptosis-induced channel (MAC), have been targeted as possible specific regu-
lators of mitochondrial release. Both provide aqueous pathways through the 
hydrophobic environment of the mitochondrial membrane.

VDAC is a 30 kDa highly conserved voltage-dependent, ion-selective, mito-
chondrial OM protein. The OM is densely packed with VDAC proteins which form 
barrel structures that enclose 3 nm internal diameter channels. VDAC can switch 
between two functional states, open and partially open. The “open” state is defined 
by large conductance and anion selectivity, while the “partially open” state is 
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defined by lower conductance (about half that of the fully open state) and cation 
selectivity. The voltage-dependent change between these two states is widely 
attributed to structural rearrangements that lead to changes of size and charge dis-
tributions within the channel (Colombini et al., 1996; Mangan and Colombini, 
1987; Thomas et al., 1993).

MAC was first identified in 2001. It is a mitochondrial outer membrane channel 
that, according to some reports, forms at early stages of the intrinsic apoptotic path-
way (Dejean et al., 2006; Guo et al., 2004). Alternatively, other studies have reported 
the formation of MAC at late stages of the extrinsic apoptotic pathway (Guihard et 
al., 2004). MAC was found to be slightly cation-selective, and unlike VDAC, volt-
age-independent (Dejean et al., 2005; Guo et al., 2004). MAC activity was found to 
be induced by apoptosis and regulated by Bax, a proapoptotic Bcl-2 family protein. 
Bax translocation to the mitochondria was linked to MAC formation and cyto-
chrome c release (Antonsson et al., 1997; Dejean et al., 2006; Guo et al., 2004; Saito 
et al., 2000; Schendel et al., 1997). Bax oligomerization is proposed to form MAC 
channels (Cheng et al., 2001; Dejean et al., 2006; Wei et al., 2001). The pore diame-
ter of the MAC channel was measured to be ∼4 nm, which is proposed to allow for 
the release of the ∼3 nm diameter cytochrome c (Pavlov et al., 2001).

11  The Bcl-2 Family of Proteins and Regulation 
of the Mitochondrial Pathway to Cell Death

The process of mitochondrial release of proapoptotic factors such as cytochrome 
c is elegantly regulated through members of the Bcl-2 family (Fig. 3.2) (Antonsson 
et al., 1997; Cory et al., 2003; Danial and Korsmeyer, 2004; Green and Kroemer, 
2004; Schendel et al., 1997). In mammals, the antiapoptotic members of this fam-
ily include Bcl-2, Bcl-X

L
, and Bcl-W, while the proapoptotic members include 

Bax, Bak, Bad, Bik, Bim, and Bid. The proapoptotic family members are further 
classified based on domain sequence homology into two groups: one that contains 
multiple BH domains and one that contains only the BH3 domain (Cheng et al., 
2001; Fiers et al., 1999; Kuwana and Newmeyer, 2003; Wei et al., 2001). The fate 
of the cell depends to a great degree on the precious balance of function between 
these proapoptotic and antiapoptotic Bcl-2 proteins. Studies have shown that Bax, 
Bad, and Bak promote the release of AIF and cytochrome c, while Bcl-2 and 
Bcl-X

L
 delay the release and abort the apoptotic response, promoting cell survival 

(Cory and Adams, 2002; Yang et al., 1997).
It is believed that Bcl-2 family members regulate the apoptotic response by 

controlling mitochondrial membrane permeabilization (MMP) (Green and 
Kroemer, 2004). The proapoptotic proteins Bax and Bak have been shown to con-
tribute to the formation of transmembrane channels across the mitochondrial OM, 
leading to the escape of AIFs (Dejean et al., 2005; Korsmeyer et al., 2000; Kuwana 
et al., 2002; Nechushtan et al., 2001; Wei et al., 2001). Bcl-2, Bcl-W, and Bcl-X

L

are, on the other hand, believed to prevent pore formation and to inhibit the release 
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of cytochrome c from the mitochondria (Kluck et al., 1997; Yang et al., 1997). 
Moreover, heterodimerization of Bax or Bad with Bcl-2 or Bcl-X

L
 is thought to 

inhibit their protective effect.
Bid is a potent proapoptotic protein that is normally located in the cytosol, but also 

shuttles through the surfaces of intracellular membranes due to its lipid-interacting 
capacity. Bid plays an important role in the mitochondrial pathway to apoptosis as 
it has been identified as the link between the death receptor signal and the release of 
cytochrome c. Activated caspase-8 engages the intrinsic apoptotic pathway through 
the truncation of Bid (Li et al., 1998; Luo et al., 1998). Upon death signaling, acti-
vated caspase-8 cleaves Bid (26 kDa) into two fragments: a C-terminus fragment 
(15 kDa) and an N-terminus fragment (11 kDa) (Luo et al., 1998). The 15 kDa frag-
ment, which contains the BH3 domain, is termed truncated Bid or tBid. This func-
tional fragment translocates to the mitochondria where it interacts with several 
proteins through its BH3 domain (Wang et al., 1996). There are two modes of Bid 
proapoptotic action. (1) In the BH3-dependent mode, Bid interacts with the antia-
poptotic Bcl-X

L
 through its BH3 domain and prevents the formation of the Bcl-

X
L
/Apaf1 antiapoptotic complex. (2) In the BH3-independent mode, after 

truncation, Bid is proposed to form selective channels similar to BAX through its 
structural motifs (Chou et al., 1999; McDonnell et al., 1999). Moreover, tBid has 
been shown to induce the oligomerization of Bax and Bak, resulting in MAC for-
mation and the subsequent release of proapoptotic cytochrome c (Eskes et al., 
2000; Wei et al., 2000).

The mitochondrial receptor for caspase-cleaved Bid is thought to be cardiolipin 
(CL), a mitochondrial lipid (Esposti et al., 2003; Kuwana et al., 2002; Newmeyer 
and Ferguson-Miller, 2003; Sorice et al., 2004). CL is a glycerophospholipid that is 
synthesized and localized in the inner membrane of the mitochondria, making it one 
of its major constituents (Khosravi-Far and Esposti, 2004; McMillin and Dowhan, 
2002; Schlame et al., 2000; Wright et al., 2004). This dimeric molecule apparently 
plays a significant role in controlling the mitochondrial membrane structure and 
function. Abnormal mitochondrial morphology and function have been observed in 
cells defective in the CL synthesis mechanism (Ohtsuka et al., 1993). It has been 
proposed that upon apoptotic stimulation, CL contributes to the apoptotic signal 
through the recruitment of cytosolic proteins such as tBid to the mitochondrial mem-
brane. Additionally, it is thought that CL is involved in altering MMP, leading to the 
subsequent release of proapoptotic factors (Lutter et al., 2000).

12 Mitochondria and Oxidative Stress

Mitochondria are the sites of aerobic respiration. Energy is generated in mito-
chondria through the process of ATP synthesis via the oxidative phosphorylation 
pathway. This process, however, also results in the formation of single unpaired 
electrons, leading to reactive oxygen species (ROS). ROS such as hydrogen per-
oxide (H

2
O

2
), the superoxide anion (O

2
−), and hydroxyl radicals (OH) are highly 
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reactive molecules generated and eliminated in a balanced process in normal cells. 
In particular, free radicals (superoxides) are byproducts of ATP generation by the 
mitochondrial respiratory chain (Andreyev et al., 2005; Beyer, 1992; Raha and 
Robinson, 2000). Cellular energy is usually liberated from ATP molecules through 
the removal of single phosphate-oxygen groups, producing adenosine diphosphate 
(ADP). ADP is recycled in the mitochondria where it is recharged through oxida-
tive processes to reproduce ATP. Since ROS are harmful, the balance between 
energy supply and energy demand is extremely critical. Any shift in this balance 
would introduce excess ROS to cells and would result in oxidative stress.

The damaging effect of elevated levels of ROS is thought to be due to the highly 
reactive free electrons available to form stable chemical bonds. While H

2
O

2
 is free 

to escape the mitochondrion, both the superoxide anion and hydroxyl radicals have 
limited diffusion, and are more likely to contribute to inner membrane damage of 
mitochondria (Szeto, 2006). Several studies have demonstrated a direct relationship 
between mitochondrial ROS and the mitochondrial apoptotic pathway. For exam-
ple, the release of cytochrome c to the cytosol has been linked to mitochondrial 
oxidation (Shidoji et al., 1999). It is believed that the release mechanism might 
involve the opening of mitochondrial PTPs (Vieira et al., 2001). Several antioxi-
dant compounds, such as ascorbic acid (vitamin C), α-tocopherol (vitamin E), and 
ubiquinol are naturally present in the cell and act to protect against the effects of 
ROS (Sies and de Groot, 1992).

13 Mitochondria and Cancer

Given the important roles mitochondria play in cellular energy metabolism, free 
radical formation and PCD, defects in mitochondrial function are suspected to con-
tribute to the development and progression of cancer and to resistance to therapy 
(Bettaieb et al., 2003; Brenner et al., 2003; Costantini et al., 2000; Debatin et al., 
2002; Hersey and Zhang, 2003; Jaattela, 2004; Kasibhatla and Tseng, 2003; Kim et 
al., 2004). Defective apoptosis is one of the hallmarks of tumorigenicity and is 
implicated in multiple stages of tumor progression (Burns and El-Deiry, 2003; 
Hanahan and Weinberg, 2000; Ozoren and El-Deiry, 2003). Furthermore, the abil-
ity of tumor cells to escape apoptosis plays a key role in promoting resistance to 
conventional chemotherapy and radiation therapy (Abe et al., 2000; Barnhart et al., 
2004; Daniel et al., 2001; El-Deiry, 1997; Thompson, 1995; Zornig et al., 2001).

A link between mitochondria and cancer progression was suggested over half a 
century ago when Warburg reported the role of mitochondria in cellular energy 
metabolism. This phenomenon was coined the “Warburg effect.” The Warburg 
effect suggested that the development of an injury to the respiratory machinery is 
an important event in carcinogenesis (Warburg, 1951). This injury results in com-
pensatory increases in glycolytic ATP production to fulfill the energy needs of 
tumor cells. Since then, preferential reliance on glycolysis over the oxidative 
metabolism has been shown to correlate with tumor progression in several types of 
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cancer (Semenza et al., 2001). Since the initial report of the Warburg effect, a 
number of cancer-related mitochondrial defects have also been identified (Brenner 
et al., 2003; Carew and Huang, 2002; Debatin et al., 2002; Jaattela, 2004). These 
defects include altered expression and activity of respiratory chain subunits and 
glycolytic enzymes, changes in oxidation of NADH-linked substrates and muta-
tions in mitochondrial DNA. Thus, the differences in energy metabolism between 
normal cells and cancer cells constitute a biochemical basis for the development of 
therapeutic strategies that might selectively kill cancer cells in their compromised 
respiratory state.

Furthermore, dysregulation of members of the Bcl-2 family has been detected in 
a variety of malignancies, especially hematological cancers. Bcl-2 itself was origi-
nally discovered as an oncogene in B cell lymphoma Danial and Korsmeyer, 2004. 
Additionally, overexpression of Bcl-2 has been detected in AML and non-Hodgkin’s 
lymphomas. Dysregulation of other Bcl-2 family proteins have also been detected 
in other cancers; for example, increased expression of Mcl-1 has been detected in 
relapsed AML and multiple myeloma. Increased expression levels and mutations in 
the promoter of the mcl-1 gene have also been observed in chronic lymphoblastic 
leukemias. These studies reiterate that changes to the mitochondrial-associated 
proteins, mainly members of the Bcl-2 family, are directly involved in tumor 
progression.

Additionally, there is some evidence that alterations in the mitochondrial DNA 
could also be involved in cancer progression. Besides hosting hundreds of nuclear 
encoded proteins, mitochondria have their own DNA that encodes 13 mitochon-
drial proteins (Schatz, 1995; Singh et al., 1999). Mutations in mtDNA could occur 
during oxidative phosphorylation involving ROS. Investigations of human bladder, 
lung, neck, and head primary tumors revealed a high percentage of mtDNA muta-
tion (∼50%) in these tumors (Fliss et al., 2000). These observations suggest a link 
between cancer development and mitochondrial dysfunction; however, they do not 
present a clear answer to whether mitochondrial DNA mutation is simply a result, 
or rather the cause, of alterations in PCD.

Mitochondria also play an important role in resistance to chemotherapy and radia-
tion therapy. Since mitochondria are integrators of apoptotic signaling pathways, 
induction of apoptosis in many cell types leads to the induction of MMP (Brenner 
et al., 2003; Kroemer, 2003). MMP defines the point of no return in most PCD 
 pathways and is regulated by pre-mitochondrial signal transduction pathways. These 
pathways involve caspase-dependent and caspase-independent mechanisms, members 
of the Bcl-2 family of proteins and changes in the composition of mitochondrial mem-
branes (Bettaieb et al., 2003; Brenner et al., 2003; Green and Kroemer, 2004; Kim et 
al., 2004; Kroemer, 2003; Kuwana et al., 1998; Newmeyer and Ferguson-Miller, 2003; 
Peter and Krammer, 1998; Ravagnan et al., 2002; Sorice et al., 2004; Waterhouse 
et al., 2001; Zamzami and Kroemer, 2001). In response to MMP, proapoptotic factors 
are released into the cytosol to trigger the execution of cell death. This is likely due to 
the opening of protein channels such as the VDAC. Under pathological conditions, 
cancer cells escape from apoptosis and/or become resistant to treatment by affecting 
MMP (Bettaieb et al., 2003; Debatin et al., 2002; Hersey and Zhang, 2003; Kim et al.,
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2004). Therefore, overcoming abnormalities in tumor cells that suppress MMP 
could lead to therapeutic targets by generating a potent proapoptotic stimulus. 
Additionally, since MMP is an early event in apoptosis, strategies to detect this 
process can be useful in assessing the response to chemotherapy.

Mutations in mtDNA have been implicated in the cellular response to chemo-
therapy. For example, Singh et al. (1999) examined the response of a tumor cell 
line lacking mitochondrial DNA to several anticancer drugs, including adriamy-
cin (a DNA-interacting drug widely used in chemotherapy for its role in binding 
DNA and stopping the process of replication). Cancer cells lacking mtDNA 
showed great chemotherapy resistance, indicating an important role of the mito-
chondrial genome in regulating the cellular response to therapeutic agents. 
Similar findings were also reported in A549 non-small-cell lung cancer cell lines 
and their rho0 derivatives in which mitochondrial DNA has been eradicated (Lo 
et al., 2005). The parental cell line showed increased sensitivity to chemotherapy 
when compared with the mtDNA-compromised derivative cell line. Notably, the 
restoration of mtDNA restored chemosensitivity of the resistant cell line (Lo et 
al., 2005).

14 Targeting Mitochondria in Cancer Therapy

As mitochondria are gatekeepers of apoptotic signals, targeting mitochondria 
to induce apoptosis of malignant cells is an important therapeutic strategy. In 
the past several years, extensive research has focused on screening for chemi-
cal compounds, small molecules and peptides that could target the mitochon-
dria. Therapeutic tactics have included strategies that involve the Bcl-2 family 
proteins, activation of PTPs, the respiratory chain, mitochondrial DNA deple-
tion, and selective targeting of ROS-stressed malignant cells, as well as target-
ing inhibitors of apoptosis such as IAPs (Dias and Bailly, 2005). Targeting the 
antiapoptotic members of the Bcl-2 family, namely Bcl-2 and Bcl-X

L
, and tar-

geting the PTP are among the most studied mechanisms (Dias and Bailly, 2005; 
O’Neill et al., 2004; Shangary and Johnson, 2003; Walensky, 2006). Targeting 
of the Bcl-2 family of proteins is discussed in Chapter 8. Here, we will briefly 
describe strategies for targeting and activation of the PTP.

15  Targeting and Activation of the Permeability 
Transition Pore

The induction of proapoptotic protein release through increased PTP formation and 
opening has been explored in the recent years as a possible mechanism for cancer 
treatment. As a chemotherapeutic approach, this method involves perturbation of 
the mitochondrial membrane through direct targeting of the components of the 
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membrane permeability transition pore complex (PTPC) (Brenner et al., 2003; 
Costantini et al., 2000; Debatin et al., 2002; Fantin and Leder, 2006; Galluzzi et al., 
2006; Khosravi-Far and Esposti, 2004; Morisaki and Katano, 2003; Reed, 2004). 
Additionally, alterations in energy metabolism, such as depletions in ADP and 
ATP, can also facilitate formation of the PTPC.

In addition to therapeutic strategies that target Bcl-2 family members, sev-
eral chemotherapeutic agents such as paclitaxel or etopiside have been shown 
to induce opening of the PTPC, albeit at high concentrations. Additionally, 
several experimental anticancer agents act directly on the components of the 
PTPC. For example, the synthetic retinoid CD437, arsenic acid and lonidamine 
are inhibitors of ANT (Debatin et al., 2002; Fantin and Leder, 2006; Galluzzi 
et al., 2006). Arsenic acid also inhibits the VDAC. Hexokinase, which is a 
component of the PTPC and a major player in maintaining the malignant state 
of transformed cells, is also inhibited by lonidamine (Debatin et al., 2002; 
Fantin and Leder, 2006; Galluzzi et al., 2006). Additionally, jasmonates are 
known to act selectively and directly on cancer cell mitochondria in a PTPC-
mediated mechanism, resulting in membrane depolarization, swelling, and the 
release of cytochrome c (Rotem et al., 2005) leading to apoptosis of tumor 
cells. Similarly, lamellarins are another group of anticancer drugs that target 
mitochondria of cancer cells and induce permeability transition effects (Kluza 
et al., 2006).

16 Conclusions and Future Prospects

Mitochondria are the power generators of the cell due to their involvement in glu-
cose metabolism, and they are “gatekeepers” of the cell involved in integrating 
apoptotic signals in majority of cells. Because tumor cells rely on glycolysis and 
since evasion of apoptosis is one of the hallmarks of cancer, mitochondria therefore 
play a central role in cancer cell biology. The intrinsic and extrinsic death pathways 
leading to changes in mitochondrial permeability; the components of the PTPC, 
including members of the Bcl-2 family; apoptogenic factors and their regulators, 
and mutations in mtDNA have been studied extensively in the past for their contri-
butions to cancer progression or resistance to therapy. These constitute an extensive 
list of targets that could induce apoptosis, some with possible specificity for cancer 
cells. Therapeutic agents against many of these targets, including Bcl-2 family 
members and components of the PTP, are currently at various stages in the devel-
opment pipeline. The ultimate goal of these studies is to generate novel mitotoxic 
agents that can selectively induce apoptosis of cancer cells and reduce the possibil-
ity of resistance.
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