
Chapter 15
Cancer Stem Cells and Impaired Apoptosis

Zainab Jagani* and Roya Khosravi-Far

Abstract For more than 100 years scientists have fervently sought the  fundamental 
origins of tumorigenesis, with the ultimate hope of discovering a cure. Indeed, 
these efforts have led to a significant understanding that multiple genetic and 
 molecular aberrations, such as increased proliferation and the inhibition of apop-
tosis,  contribute to the canonical characteristics of cancer. Despite these advances 
in our knowledge, a more thorough understanding, such as the precise cells, which 
are the targets of neoplastic transformation, especially in solid tumors, is currently 
lacking. An emerging hypothesis in the field is that cancer arises and is sustained 
from a rare subpopulation of tumor cells with characteristics that are highly similar 
to stem cells, such as the ability to self-renew and differentiate. In addition, more 
recent studies indicate that stem cell self-renewal pathways that are active prima-
rily during embryonic development and adult tissue repair may be aberrantly acti-
vated in various cancers. This chapter introduces the cancer stem cell hypothesis; 
explores evidence for the presence of cancer stem cells, particularly in leukemia; 
and discusses various classical stem cell self-renewal pathways in relation to can-
cer. Investigating the role of cancer stem cells in the context of the major character-
istics of cancer, especially impaired apoptosis, offers great promise for the design 
of superior tumor-selective and apoptosis-inducing therapies.
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1 Introduction

The inability of conventional chemotherapeutic drugs and even various targeted 
therapies to produce complete remissions demands a more in-depth understanding 
of the key cellular events underlying tumor formation, maintenance, and  progression, 
and the molecular pathways that dictate such processes. It has become increasingly 
apparent that the tumor, rather than consisting of a uniform population of rapidly 
proliferating cells, is actually composed of a heterogeneous population of cells with 
variable cellular and molecular characteristics (Foulds, 1965; Heppner, 1984). 
Therefore, one possible explanation for the failure of chemotherapy is that it cannot 
eliminate this entire mixed composition of tumor cells, thus necessitating multiple 
treatment approaches. Along these lines, it has been proposed that a rare group of 
cells with stem cell-like properties lies within the tumor and gives rise to the hetero-
geneous tumor cell population (Reya et al., 2001). The existence of these cells 
indicates that while our current anticancer therapeutics may be successful in 
debulking a tumor, they remain ineffective in targeting the minute, yet crucial, pop-
ulation of tumor cells that ultimately sustains the tumor. While the “cancer stem 
cell hypothesis” is supported by seminal findings from hematopoietic cancers, 
especially acute myeloid leukemia (AML) (Warner et al., 2004), its importance and 
application in other types of cancers are not clearly understood.

1.1 The Cancer Stem Cell Hypothesis

One intriguing and emerging area of cancer research concerns the striking parallels 
between cancer cells and stem cells. Both of these cell types have the capacity to self-
renew and differentiate. Unlike the highly regulated self-renewal and differentiation 
decisions of normal stem cells, however, it has been proposed that cancer cells 
undergo uncontrolled self-renewal and abnormal differentiation. Coincidently, the 
pathways that regulate stem cell self-renewal and differentiation, such as Notch, 
Hedgehog (Hh), Wnt, and Bmi1 are dysregulated in various cancers (Reya et al., 
2001). In addition, key findings revealing the presence of leukemic stem cells and 
providing evidence for a stem cell origin for AML are in support of the hypothesis 
that cancers arise from a small population of tumor-initiating cells known as cancer 
“stem cells” (Bonnet and Dick, 1997; Buick and Pollak, 1984; Jordan and Guzman, 
2004; Lapidot et al., 1994; Mackillop et al., 1983; Reya et al., 2001). These cancer 
stem cells give rise to the clinically observed, phenotypically diverse tumor popula-
tion consisting of cells displaying varied capacities for abnormal differentiation, 
uncontrolled proliferation, and a reduced rate of apoptosis. While the precise identity 
of a cancer stem cell is difficult to pinpoint, it is possible that cancer stem cells can 
arise either from the malignant transformation of a stem cell, or the abnormal 
re-activation of self-renewal pathways in a more committed progenitor cell (Al-Hajj 
et al., 2004; Burkert et al., 2006; Reya et al., 2001).
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1.1.1 Cancer Stem Cells in Leukemia and Other cancers

Since the cellular and developmental biology of the hematopoietic system is well 
understood, the cancer stem cell hypothesis has been most thoroughly tested in the 
context of hematopoietic malignancies (Fig. 15.1), such as AML (Dick, 2005). 
AML is characterized by the uncontrolled growth and accumulation of abnormally 
differentiated blood cells, or leukemic blasts, which rapidly overwhelm normal 
blood cell function. Initial studies using various in vitro systems, such as the clono-
genic; suspension culture-initiating cells (SC-IC); and long-term culture-initiating 
cells (LTC-IC) quantitative stem cell assays revealed that only a minor fraction of 
AML cells are capable of supporting growth in vitro (Warner et al., 2004). These 
studies were followed by key experiments performed in vivo using the NOD/SCID-
leukemia xenotransplantation model. In this model, transplantation of leukemic 
cells from AML patients into mice can produce leukemic disease resembling 
human AML (Bonnet and Dick, 1997). It was demonstrated that only a minor per-
centage (0.1–1%) of AML cells with primitive CD34 + CD38– surface expression 
was capable of initiating AML in the NOD/SCID mice, thereby providing the first 
evidence for the presence of cancer stem cells (Bonnet and Dick, 1997; Lapidot 
et al., 1994). The discovery of leukemic stem cells thus set the groundwork for an 

Fig. 15.1 Cancer stem cells and leukemia. (a) A simplified demonstration of normal hematopoi-
etic development in which the self-renewing stem cell is highly regulated leading to normal pro-
genitor and mature cell production. In leukemia however, and according to the cancer stem cell 
hypothesis; (b) transformation of a stem cell can lead to uncontrolled self-renewal resulting in an 
abnormal growth and differentiation program; (c) alternatively, transformation of a progenitor cell 
can abnormally reactivate self-renewal resulting in the abnormal growth and differentiation of 
hematopoietic cells
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progenitor cell

mature cells
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investigation of the existence of cancer stem cells in other types of cancers. While 
the origin of cancer stem cells has not been conclusively defined, recent studies 
have also identified a subpopulation of tumor-initiating cells in solid tumors, such 
as breast (Al-Hajj et al., 2003), melanoma (Grichnik et al., 2006), brain (Singh 
et al., 2003), prostate (Xin et al., 2005), and ovarian (Bapat et al., 2005) cancers. 
Together, these studies raise important questions regarding the target cells of our 
current anticancer therapeutics, and the study of cancer signal transduction path-
ways in the appropriate cellular context.

1.1.2 Targeting Cancer Stem Cells

In the case of the CML-causing oncogene BCR-ABL, accumulating evidence suggests 
that the target cell for transformation is a hematopoietic stem cell (HSC) rather than 
a committed progenitor cell (Elrick et al., 2005; Huntly and Gilliland, 2005; Huntly 
et al., 2004). Unfortunately, research has shown that while the Abl kinase inhibitor, 
Gleevec, can eradicate the majority of proliferating CML progenitors and differenti-
ated granulocytes, it is unable to target the minute population of CML progenitor 
stem cells that can sustain the disease (Bhatia et al., 2003; Elrick et al., 2005; Graham 
et al., 2002). In accordance with the cancer stem cell hypothesis, Gleevec treatment 
can be used continuously to manage chronic phase CML, but not to eliminate leuke-
mic disease, since the remaining cancer stem cells are still able to sustain the disease. 
Further research must specifically target this cancer stem cell population.

It remains important to determine whether abnormal survival and antiapoptotic 
signaling, as has been intensively investigated in primary tumor cells, tumor cell lines, 
and mouse tumor models, actually plays a significant role in the transformation and 
maintenance of the tumor-initiating cell, or, more specifically, the cancer stem cell 
population. One goal of such studies is to determine how to selectively induce 
 apoptosis in leukemic stem cells, but not in normal HSCs. Recent studies have shown 
that the prosurvival pathways, such as NF-κB and PI3-K, are highly activated in the 
leukemic stem cell population in AML (Guzman et al., 2001; Xu et al., 2003; Zhao 
et al., 2004). Interestingly, AML leukemic stem cells preferentially undergo apopto-
sis, unlike normal HSCs, upon combined treatment with the chemotherapeutic agent 
idarubicin and the proteasome inhibitor MG-132 (Guzman et al., 2002). Such treat-
ments lead to the inhibition of NF-κB activity, along with other currently unidentified 
mechanisms, and also activate p53, causing the expression of target genes, such as 
GADD45, p21, and the proapoptotic gene Bax (Guzman et al., 2002).

1.2 The Role of Stem Cell Regulation Pathways in Tumorigenesis

As early as 1855, the scientist Rudolph Virchow recognized elements of 
 dysregulated embryonic development in tumors, proposing his embryonal-rest 
hypothesis. In accordance with these earlier findings, there is now evidence for a 
molecular link between the pathways that regulate stem cell self-renewal during 
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development and tumorigenesis (Fig. 15.2) (Burkert et al., 2006; Reya et al., 2001). 
The major  developmental pathways such as Notch, Hh, and Wnt, which intricately 
control the self-renewal of stem cells during both embryonic development and adult 
tissue repair and homeostasis, are found to be upregulated in various cancers. These 
observations have brought forth important questions as to whether these pathways 
critically contribute to tumor formation and maintenance and whether their inhibi-
tion can be utilized in future anticancer therapeutic strategies. Selective inhibition 
of these developmental pathways in tumor cells may also have the potential to 
eliminate the elusive population of tumor-initiating cells that share common char-
acteristics with stem cells. Furthermore, determining the direct impact of inappro-
priate activation of self-renewal pathways on apoptosis in a tumor cell will lead to 
a better understanding of how to combine therapies that attack upstream self-
renewal pathways, with those that unleash downstream apoptotic cascades.

1.2.1 Bmi-1

The Bmi-1 proto-oncogene was first identified as a target of the Moloney murine 
leukemia viral insertion in the Eµ-myc lymphoma mouse model (Haupt et al., 
1991; van Lohuizen et al., 1991), with further studies suggesting a cooperative role 
with c-myc in inducing murine lymphogenesis (Haupt et al., 1993). Bmi-1 is a 
Polycomb-group gene which functions as a transcriptional repressor and plays a 
role in regulating cellular proliferation and senescence through repression of the 
INK4A locus (Jacobs et al., 1999). Recently, the Bmi-1 gene has been shown to 
play a critical role in the generation of self-renewing adult HSCs, as mice deficient 
in Bmi-1 show reduced numbers of HSCs (Park et al., 2003). In addition, the Bmi-1
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Fig. 15.2 Cancer stem cells and signaling pathways. A summary of the signaling pathways impli-
cated in the survival of cancer stem cells. In general, these signaling pathways could either be 
aberrantly activated in a stem cell or a committed progenitor cell. Whereas, the outcomes of acti-
vating such pathways are numerous, key cellular effects include increase in cellular proliferation, 
and the inhibition of apoptosis. This figure outlines only a few of the various downstream genes 
that play important roles in proliferation and apoptosis
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gene has not only been implicated in regulating the proliferative activity of normal 
hematopoietic cells, but also of leukemic stem and progenitor cells, in which lack 
of Bmi-1 leads to proliferation arrest and characteristics of differentiation and 
apoptosis (Lessard and Sauvageau, 2003).

1.2.2 Notch Signaling

Notch signaling functions in a diverse set of cellular processes during embryonic 
and postnatal development, including the maintenance of stem cells, cell fate speci-
fication, differentiation, and proliferation (Artavanis-Tsakonas et al., 1999; Kadesch, 
2004). Interestingly, research points to a role for constitutively active Notch signaling 
under certain cellular contexts, such as in tumorigenesis (Callahan and Egan, 2004; 
Hansson et al., 2004; Radtke and Raj, 2003), yet the precise mechanisms underly-
ing this effect remain to be determined. In mammalian  systems, the Notch signaling 
pathway consists of four receptors (NOTCH1–4) and five ligands, Delta-like 1, 3, 
4 (DLL1, DLL3, and DLL4), Jagged 1 and Jagged 2 (JAG1, JAG2) (reviewed in 
Artavanis-Tsakonas et al., 1999; Hansson et al., 2004; Kadesch, 2004). Notch 
receptors are synthesized as precursors, with Notch receptor activation occurring in 
a series of proteolytic cleavages upon interaction with its ligand. While the first 
cleavage is facilitated by TACE (tumor-necrosis factor α-converting enzyme/met-
alloproteinase) (Brou et al., 2000), the second is mediated by the γ-secretase activ-
ity of presenilins, and results in the release of the  intracellular cytoplasmic portion 
of Notch, which then translocates to the nucleus (De Strooper et al., 1999; Mumm 
et al., 2000; Saxena et al., 2001). The known targets of Notch activation are the 
HES (hairy/enhancer of split) and HERP (Hes-related repressor protein) families of 
transcription factors, which regulate the transcription of various genes through 
development (Bailey and Posakony, 1995; Davis and Turner, 2001). The set of tar-
get genes activated by Notch signaling has not been completely defined, and may 
vary with cellular context. In transformed cells,  transcription of the erbB2 (Chen et 
al., 1997) and cyclin D1 (Ronchini and Capobianco, 2001) genes have been 
reported to be upregulated in response to activated Notch.

The earliest evidence for the involvement of activated Notch in human cancers 
arose from the identification of a translocation involving the Notch1 gene in cases 
of T-cell acute lymphoblastic leukemia (T-ALL) (Ellisen et al., 1991). In particu-
lar, the t(7;9) chromosomal translocation fuses a truncated Notch consisting 
mainly of the intracellular domain (NOTCH1-IC) to the TCRβ promoter/enhancer 
locus. The oncogenic property of NOTCH1-IC was confirmed by a murine bone 
marrow transplant model wherein reconstitution with hematopoietic progenitors 
expressing NOTCH1-IC led to the development of T-cell leukemias (Pear et al., 
1996). The presence of activated Notch is not limited to leukemias, as its overex-
pression or gain-of-function mutations, resulting in expression of a truncated 
active Notch, have also been observed in tumors of epithelial origin such as breast, 
cervical, and colon carcinomas (Callahan and Egan, 2004; Callahan and Raafat, 
2001; Gray et al., 1999; Zagouras et al., 1995). A role for constitutive Notch signaling



15 Cancer Stem Cells and Impaired Apoptosis 337

in the development of mammary tumors was first found with the discovery that the 
Notch4 gene is a common integration site for the mouse mammary tumor virus 
(MMTV) in about 18% of virus-induced mouse mammary tumors (Gallahan and 
Callahan, 1997; Gallahan et al., 1987). MMTV interruption of Notch4 results in 
the expression of a transcript that encodes the transmembrane and intracellular 
regions for Notch4, but that lacks the extracellular regulatory domain. Transgenic 
mouse models expressing the Notch4 intracellular domain develop mammary 
tumors (Jhappan et al., 1992; Smith et al., 1995), and therefore support a causative 
role for activated Notch signaling in mammary tumorigenesis. The relevance of 
Notch activation in human breast cancers has recently been investigated using 
tissue microarrays of breast tumor samples from various clinical stages. In these 
studies, elevated expression of Notch-1 and the Notch ligand, Jag1, was associated 
with poor survival (Reedijk et al., 2005).

Among the primary mechanisms for Notch-induced tumorigenesis, in addition to 
increased proliferation, is the inhibition of apoptosis. Activated Notch-1 renders T 
cells resistant to Fas receptor-mediated signaling, as well as to drugs including 
 dexamethasone and etoposide, via upregulation of antiapoptotic molecules such as 
Bcl-2, FLIP, and IAPs (Sade et al., 2004). Additional mechanisms for Notch-induced 
survival include inhibition of p53 tumor suppressor expression, and activation of the 
RAS, PI3-K, and NF-κB pathways (Leong and Karsan, 2006).

While the precise value of Notch signaling inhibition in cancer therapy remains 
to be determined, preliminary studies have shown the potential for gamma secretase 
inhibitors (GSI) (Lanz et al., 2004; Wong et al., 2004), which can block Notch 
 proteolytic processing, to induce apoptosis in various tumor cell lines (Curry et al., 
2005; Nickoloff et al., 2005). Treatment of chemoresistant melanoma cells with a 
small molecule, GSI, induced the expression of the proapoptotic BH3 family 
 member, NOXA, and caused apoptotic cell death (Nickoloff et al., 2005). Future 
studies will determine which downstream survival or antiapoptotic pathways play 
a role in the context of Notch activation in leukemias, as well as in solid tumors. In 
addition, the precise role of each of the four Notch receptors in tumorigenesis, and 
the development of specific inhibitors and/or antibodies against these receptors, 
will be crucial for an understanding of the overall role of Notch signaling in cancer 
and for investigating the potential of Notch inhibition in anticancer therapy. Finally, 
it will also be important to perform these studies at the cancer stem cell level in 
order to determine the cellular context in which dysregulated Notch signaling can 
potentially exert its oncogenic effects.

1.2.3 Hedgehog Signaling

The Hh pathway, first discovered in Drosophila (Nusslein-Volhard and Wieschaus, 
1980), is highly conserved across vertebrates, with important functions during 
embryonic development, as well as in adult tissue homeostasis, such as in postem-
bryonic tissue repair and stem cell regulation (Lum and Beachy, 2004; Taipale and 
Beachy, 2001; Zhang and Kalderon, 2001). The mammalian Hh pathway includes 
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three secreted Hh ligands (Sonic, Indian, and Desert), their 12-pass transmembrane 
receptors Patched1 (PTCH1) and Patched2 (PTCH2), and the 7-pass  transmembrane 
signal transducer Smoothened (SMO). Hh ligands activate the Hh pathway by 
inducing the activation of SMO, followed by a signal transduction cascade that 
causes the nuclear translocation of the GLI family of transcription factors (GLI1, 2, 
3), and the subsequent induction of a distinct transcriptional regulatory program 
(Cohen, 2003; Hooper and Scott, 2005; Kalderon, 2005). The targets of Hh path-
way activation include various cell cycle, proliferation, and survival-regulating 
genes such as the cyclins (Kenney and Rowitch, 2000), c-myc (Kenney et al., 
2003), and Bcl-2 (Bigelow et al., 2004; Regl et al., 2004), and also Hh pathway 
genes themselves, such as Ptch1, Gli1, and Hip (Hh-interacting protein), which in 
turn regulate pathway activation (Chuang and McMahon, 1999; Goodrich et al., 
1996; Lee et al., 1997).

Notably, gene mutations within the Hh pathway have been linked with several 
human diseases. Mutations resulting in unrestrained Hh pathway activity have been 
found in Gorlin’s syndrome, which is characterized by developmental defects in the 
brain, spinal cord, and skeleton, and a predisposition for skin and brain cancers, 
such as basal cell carcinomas (BCCs) and medulloblastomas, respectively (Hahn 
et al., 1999). Subsequent investigations have substantiated aberrant Hh signaling in 
BCCs and medulloblastomas (Gailani et al., 1996; Xie et al., 1998). Recent studies 
have revealed that the Hh pathway is also active in more common tumors such as 
those of the lung, breast, pancreas, stomach, and prostate (Berman et al., 2003; 
Karhadkar et al., 2004; Kubo et al., 2004; Pasca di Magliano and Hebrok, 2003; 
Sheng et al., 2004; Thayer et al., 2003; Watkins et al., 2003). Cyclopamine is a 
plant-derived steroidal alkaloid that inhibits the Hh pathway by antagonizing SMO 
(Taipale et al., 2000). Various studies have shown the ability of cyclopamine to 
induce apoptosis in a variety of tumor cell lines, and to inhibit tumor progression 
in medulloblastoma, pancreatic, and lung mouse tumor models (Berman et al., 
2002; Thayer et al., 2003; Watkins et al., 2003).

1.2.4 Wnt/b-catenin Signaling

Similar to the Notch and Hh pathways, the Wnt signal transduction pathway also 
plays a critical role during development. Among several functions, Wnt signals 
 regulate the self-renewal of hematopoietic, epidermal, and intestinal stem cells. The 
canonical Wnt pathway involves signaling through the cytoplasmic protein, β-
Catenin. The binding of a Wnt ligand to a complex of a Frizzled receptor and the 
LRP5/6 receptor leads to a series of signaling events resulting in the inhibition of a 
destruction complex that promotes the proteasomal degradation of β-Catenin.
Therefore, Wnt pathway activity causes the accumulation of β-Catenin and its trans-
location to the nucleus where it binds to the Lef/Tcf family of transcription factors. 
This binding elicits the transcriptional activation of various target genes involved in 
the promotion of cellular proliferation and invasion, and the inhibition of apoptosis 
(reviewed in Fuchs et al., 2005; Reguart et al., 2005; Reya and Clevers, 2005).
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Interestingly, the first Wnt gene was identified in mouse mammary tumors 
induced by the integration of the MMTV (Rijsewijk et al., 1987). Since then, there 
have been numerous studies on the aberrant activation of Wnt signaling in various 
cancers, including those of the colon, ovary, prostate, pancreas, breast, and lung, 
along with melanomas, multiple myeloma, and even leukemias (Fuchs et al., 2005; 
Janssens et al., 2006; Reguart et al., 2005; Reya and Clevers, 2005). While 
 mutations in the Wnt ligands and receptors have not been identified in cancers thus 
far, mutations have been identified in downstream effectors of the Wnt pathway, 
especially in colorectal cancers (CRC). Gain-of-function mutations in oncogenic 
β-Catenin, and loss-of-function mutations in adenomatous polyposis coli (APC) 
and Axin, the latter of which are components of the destruction complex, can all 
lead to uncontrolled β-Catenin-mediated Lef/Tcf target gene expression (Fuchs 
et al., 2005; Janssens et al., 2006). Wnt pathway target genes involved in the inhibi-
tion of apoptosis include MDR1/PGP, COX-2, PPAR-d, and Survivin, each of 
which has been found to be upregulated in CRCs (Fuchs et al., 2005). Considering 
the activation of the Wnt pathway in various cancers, inhibition of the Wnt pathway 
may serve as an attractive and promising therapeutic approach. Recent studies have 
demonstrated the potential for small-molecule antagonists of the TCF/β-Catenin
complex to decrease expression of the Wnt target genes, Myc and Cyclin D, and to 
inhibit cellular proliferation in colon carcinoma cell lines (Lepourcelet et al., 2004). 
In another approach, monoclonal antibodies against Wnt-1 and Wnt-2 ligands have 
shown promise in inducing apoptosis in a variety of tumor cell lines overexpressing 
Wnt ligands, both in vitro and in vivo (He et al., 2004; You et al., 2004a–c; ). 
Interestingly, the Wnt-2 antibody was shown to downregulate the expression of 
Survivin and induce apoptosis in various human non-small-cell lung cancer 
(NSCLC) cells, while failing to induce apoptosis in normal human airway cells that 
do not express Wnt-2. In contrast, primary NSCLC tissues showed elevated expres-
sion of Wnt-2 (You et al., 2004c).

2 Conclusion and Perspectives

Even though the cellular heterogeneity of tumors has long been recognized, the 
exact reasons for this feature have not always been clearly understood. The genomic 
instability that is inherent in cancer cells offers one explanation. Interestingly, 
recent studies, especially in leukemia, have revealed that the abnormal behavior of 
a malignant stem cell can give rise to the abnormally differentiated and diverse cel-
lular hierarchy observed in tumors. The cancer stem cell hypothesis proposes that 
the tumor is actually sustained by a minority of cells, the cancer stem cells. The 
identification of cancer stem cells in leukemia and some solid cancers has yielded 
great insight into the cellular underpinnings of cancer, and will greatly affect the 
consideration of which cells to target critically in future anticancer therapeutics. 
Together, the study of signal transduction pathways that govern the survival of can-
cer stem cells, the precise role of cancer stem cells in different cancers, and an 
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analysis of stem cell regulation pathways in cancer offers great promise for the 
development of more effective treatments in the future.
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