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Preface

Discontinuities are an important domain in the mechanics of solids and fluids.
With mechanics focusing on smaller and smaller length scales in order to
understand the physics that underly many phenomena that hitherto were
modelled in a phenomenological manner, the need to properly model dis-
continuities increases rapidly. Classical examples are cracks, shear bands and
rock faults at a macroscopic level. However, the increase in computational
power has made it possible to also analyse phenomena like delamination and
debonding in composites (mesoscopic level) and phase boundaries and dislo-
cation movements at the microscopic and nanoscopic level. While the above
examples all pertain to solid mechanics, albeit at a wide range of scales, tech-
nically important (moving) fluid-solid interfaces appear in welding and casting
processes and in aeroelasticity.

Standard discretization methods such as finite element, finite difference or
boundary element methods have been developed for continuous media and are
less well suited for treating evolving discontinuities. Indeed, they are approx-
imation methods for the solution of the partial differential equations, which are
valid on a domain. Discontinuities divide this domain into two or more parts
and at the interface special solution methods must be employed. This holds a
fortiori for moving discontinuities such as Lüders–Piobert bands, Portevin-le-
Chatelier bands, solid-state phase boundaries, fluid-solid interfaces and dislo-
cations.

In recent years, discretization methods have been proposed, which are
more flexible than standard finite element methods and which have the
potential of capturing (moving) discontinuities in a robust and efficient
manner. For this reason it was timely to organize a IUTAM symposium
that addresses these developments. This book collects 24 contributions at
the symposium written by renowned scientists. Together they constitute the
state-of-the-art in the field.

Alain Combescure René de Borst Ted Belytschko
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Meshless discretisation of nonlocal damage
theories

Harm Askes1, Terry Bennett1 and Sivakumar Kulasegaram2

Summary. In this chapter, meshless discretisation methods are explored in the
implementation of nonlocal continuum damage theories. Integral-type and gradient-
type nonlocality are both considered. The main advantage of using a meshless im-
plementation (compared to more established discretisation methods such as the
finite element method) is that the higher-order continuity requirements imposed
by gradient-type nonlocality can be accomodated straightforwardly. Thus, mesh-
less methods are particularly suited as an implementational framework to test and
compare various nonlocal theories. Here, the element-free Galerkin (EFG) method
is used. In particular, second-order and fourth order gradient damage models are
compared to integral-type damage models whereby the integral nonlocal operator
acts on the equivalent strain or on the displacements. No signficant differences in
response are found, which implies that the inclusion of a fourth-order term in the
gradient-type nonlocality is of lesser importance. Finally, the mathematical non-
locality of EFG interpolation functions is tested to ascertain whether it provides
a mechanical nonlocality to the description. It is shown that this is not the case.
However, despite this lack of intrinsic mechanical nonlocality, the EFG method is
an excellent tool for the numerical implementation of a nonlocal continuum theory.

Key words: nonlocal damage, gradient-enhanced damage, higher-order con-
tinuum, meshless methods, continuity of interpolation

1 Introduction

Fracture of heterogeneous materials is a complicated process that often in-
volves a number of stages. Initially, several micro-cracks are formed, distribu-
tion of which can be dispersed over a zone with significant dimensions. After
the peak load is reached and beyond, the micro-cracks tend to coalesce into
a macroscopically observable crack. At this stage of the loading process, the

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 3–20.
© 2007 Springer. Printed in the Netherlands.



Harm Askes, Terry Bennett and Sivakumar Kulasegaram

deformations concentrate within this macro-crack whereas the rest of the spec-
imen unloads. Whereas a discontinuous (either in terms of displacements or
strains) representation is appropriate in the later loading stages, the inelastic
processes can be modelled adequately within a continuum framework in the
earlier loading stages. A realistic modelling of the entire fracture process could
well involve the transition from a continuum approach to a discontinuous ap-
proach. It is therefore of interest to explore the use of advanced discretisation
methods in the use of continuum material models as well as discontinuous ma-
terial models. The focus of the present chapter is the use of meshless methods
in the simulation of fracture by means of continuum theories.

It has been well documented that the straightforward use of standard con-
tinuum models such as plasticity and damage in the post-peak loading regime
leads to the loss of mathematical well-posedness and a severe dependence
on the applied discretisation in numerical simulations — see for instance the
overview presented by Sluys [38] and references cited therein. Typical mani-
festations of these problems include a zero width of the zone in which failure
takes place and a zero energy consumption, neither of which is realistic. As an
alternative to standard continuum models, nonlocality can be included in the
material model in order to avoid these deficiencies. Nonlocality assumes that
an interaction exists between material particles at finite distance. By means
of these interactions it is guaranteed that the failure zone has a finite width
and that failure can only take place at finite energy dissipation.

Two main formats of nonlocality exist: gradient-type and integral-type
nonlocality. In gradient nonlocal continuum models the field equations are
equipped with additional spatial derivatives of one or more state variables.
Integral nonlocality is invoked by performing spatial averaging on certain state
variables. Robust gradient-enriched plasticity theories have been proposed by
Aifantis [1, 2] and later been extended towards numerical implementations
[14,27,28]. Gradient-enriched damage theories are more recent [12,18,30]. As
regards integral-type nonlocality, nonlocal plasticity theories were explored by
Eringen [16, 17] and a recent overview is provided by Jirásek and Rolshoven
[23]. Nonlocal damage was suggested by Pijaudier-Cabot and Bažant [7, 34]
with many follow-up works in more recent years.

The two types of nonlocality are strongly related — gradient theories can
be derived from integral theories by applying Taylor series expansions as has
been demonstrated on various occasions [19, 27, 30]. An appealing feature of
most nonlocal continuum theories is that the width of the zone in which
further failure takes place normally decreases whilst failure progresses, and
in many cases this width tends to zero. As a result, a gradual transition
from failure within a continuum framework towards discontinuous failure is
obtained. This is a suitable simulation of experimental observations, in which
diffuse microcracking is followed by the formation of a macroscopic crack.
However, the numerical implementation of nonlocal theories is not always
straightforward:
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Meshless discretisation of nonlocal damage theories

• In gradient-type nonlocal theories the maximum order of derivation in the
field equations sets the continuity requirements on the interpolation func-
tions. Whereas the standard continuum theories of mechanics are normally
of second order and hence require C0-continuous shape functions, gradient
theories are often of the order 4 or even higher, by which C1-continuity or
higher is required.

• In integral-type nonlocal theories the spatial averaging is done by means of
computing integrals over the nonlocal interaction domains. For a certain in-
tegration point these domains are not necessarily bounded by the adjacent
nodes, but instead often extend over multiple layers of surrounding inte-
gration points. For numerical implementations this implies that a nonlocal
connectivity array must be set up that is different from the usual element
topology (which contains the connectivity between nodes and elements).
To compute the tangent stiffness matrix the common element-by-element
assembly of finite element packages cannot be used anymore but must be
extended to account for the nonlocal interaction [15,22,35,36].

Meshless methods are a class of discretisation methods that address higher-
order continuity as well as nonlocal connectivity in a natural manner. Mesh-
less methods are straightforwardly formulated with an arbitrary order of
continuity, which has been exploited in various applications of linear and
nonlinear gradient theories requiring C1-continuity [3, 4, 29, 39] or even C2-
continuity [5,6]. Furthermore, the nonlocal connectivity array of integral non-
local has the same structure as the node-to-integration point assembly con-
nectivity of meshless methods, a fact which can also be exploited in numerical
implementations. However, it is emphasized here that the two types of con-
nectivity are of a different origin: the nonlocal connectivity is a mechanical
property that appears in the continuum equations, whereas the meshless as-
sembly connectivity is a mathematical property of the applied discretisation
and interpolation functions. They should not be confused, and terms such
as “the intrinsic nonlocality of meshless methods” are to be understood as
mathematical nonlocality, not as mechanical nonlocality.

In the remainder of this chapter, meshless methods are applied to nonlocal
damage theories. In section 2 the formulation of a particular type of meshless
shape functions is treated, namely those of the element-free Galerkin (EFG)
method. Section 3 deals with nonlocal damage theories of the integral type
and the gradient type. The relation between the various gradient theories is
explained, and the higher-order boundary conditions are discussed as well.
Sections 4 and 5 present examples. In section 4 the various nonlocal formula-
tions are compared, including a recently suggested integral formulation based
on nonlocal displacements [21, 36, 37]. The intrinsic nonlocality of meshless
interpolations is assessed in section 5 in terms of their capacity to objectively
describe failure.
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2 Element-free Galerkin shape functions

As common in meshless methods, element-free Galerkin (EFG) shape func-
tions are formulated in terms of a set of nodes without elements. Instead of
employing elements to set a connectivity between nodes, each node is assigned
a so-called domain of influence. Inside this domain of influence, a weight func-
tion corresponding to the associated node is nonzero, while it is zero outside
the domain of influence [8, 9, 25].

The approximant function uh is assumed to be the inner product of a
monomial base vector p and a vector with coefficients a:

uh = pT (x)a(x) (1)

where for instance a complete quadratic monomial base vector in two dimen-
sions is given by

pT (x) = [1, x1, x2, x
2
1, x1x2, x

2
2] (2)

The (yet unknown) coefficients a are resolved by minimising the moving least
squares sum J given by

J =
n∑

i=1

wi(x)
(
pT (xi)a(x) − ui

)2
(3)

where n is the number of nodes, wi is the weight function of node i, and ui is
the discrete parameter of node i. Minimisation of Equation (3) with respect
to a yields (

PT W(x)P
)
a(x) =

(
PT W(x)

)
u (4)

where u contains ui and

PT = [p(x1),p(x2), . . . ,p(xn)] (5)

W(x) = diag [w1(x), w2(x), . . . , wn(x)] (6)

From Eq. (4) the coefficients a(x) can be obtained, which are then substituted
into Eq. (1). Then, EFG shape functions H can be derived as

uh = pT (x)a(x) = pT (x)
(
PT W(x)P

)−1 (
PT W(x)

)
u = HT (x)u (7)

The two main ingredients of the EFG shape functions are the monomial
base vector p (or, more precisely, the terms that are included in p) and the
weight functions w. The governing parameter in the weight function is the
size of the domain of influence d as compared to the nodal spacing h. In this
study a circular domain of influence with radius d is taken as [9]

w(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
− s2

(αd)2

)
− exp

(
− d2

(αd)2

)

1 − exp
(
− d2

(αd)2

) if s ≤ d

0 if s > d

(8)
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Meshless discretisation of nonlocal damage theories

which carries out an averaging of the (local) equivalent strain εeq. The averag-
ing is weighted by the (decaying) exponential function in which the parameter
� sets the size of the zone over which the averaging takes place. This parameter
is linked to the micro-structural dimensions and is often called the internal
length or intrinsic length.

Note the similarities between the role of the nonlocal internal length � in
Eq. (13) and the role of the domain of influence radius d in Eq. (8): both
set an interaction over finite distance (mathematical interaction in case of
d, mechanical interaction in case of �) and both are based on exponential
functions that decay radially. The neighbour graph that links an integration
point with its neighbouring integration points in Eq. (13) can be determined
with the same algorithm that computes the neighbour graph linking nodes
and integration points for Eq. (8).

Gradient-type nonlocality can be derived independently but it is instruc-
tive to emphasize the relation to the integral-type nonlocality. To this end,
the factor εeq(x + ξ) in Eq. (13) can be expanded in Taylor series around x.
After some straightforward algebra [19,27,30], the gradient-type counterpart
of Eq. (13) is found as

εnl
eq = εeq +

1
2
�2∇2εeq +

1
8
�4∇4εeq + . . . (14)

which sets an explicit dependence of the nonlocal equivalent strain on the
local equivalent strain. Eq. (14) can also be written as [4, 30]

εnl
eq −

1
2
�2∇2εnl

eq +
1
8
�4∇4εnl

eq + . . . = εeq (15)

by which the dependence of εnl
eq on εeq has become implicit. Eq. (15) can be

derived from Eq. (14) as follows:

• Take the Laplacian ∇2 of Eq. (14) and multiply with 1
2�

2. Substract the
result from Eq. (14), by which

εnl
eq −

1
2
�2∇2εnl

eq = εeq − 1
8
�4∇4εeq + . . . (16)

• Take the squared Laplacian ∇4 of Eq. (14) and multiply with 1
8�

4. Add
the result to Eq. (16), by which

εnl
eq −

1
2
�2∇2εnl

eq +
1
8
�4∇4εnl

eq = εeq + . . . (17)

• This process could be repeated for every derivative of εeq that is to be
replaced by a derivative of εnl

eq.

Since Eq. (15) is a differential equation in terms of the nonlocal equivalent
strain, in a boundary value problem it must be accompanied by appropriate

9
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boundary conditions. To illustrate these, the weak form of Eq. (15) is written
as ∫

Ω

δe

(
εnl
eq − 1

2
∇2�2εnl

eq +
1
8
�4∇4εnl

eq − εeq

)
dΩ = 0 (18)

where a truncation after the �4 term is made and δe is a test function. Inte-
gration by parts of the higher-order terms (once for the �2 term, twice for the
�4 term) yields∫

Ω

(
δe εnl

eq +
1
2
�2(∇δe)T · ∇εnl

eq +
1
8
�4∇2δe ∇2εnl

eq − δe εeq

)
dΩ =

∮
Γ

δe nT · ∇
(

1
2
�2εnl

eq −
1
8
�4∇2εnl

eq

)
dΓ +

∮
Γ

nT · ∇δe 1
8
�4∇2εnl

eq dΓ (19)

where n is the normal to the boundary Γ of the domain Ω. Formally, the
test function gradient ∇δe must be decomposed into a normal component
and a tangential component, since it is impossible to independently prescribe
εnl
eq together with its tangental gradient. However, in the examples below all

boundaries are aligned with the Cartesian axes, by which this decomposition
becomes irrelevant. In the numerical implementation, the boundary integrals
have been ignored, which amounts to imposing the following natural boundary
conditions:

nT · ∇
(

1
2
�2εnl

eq − 1
8
�4∇2εnl

eq

)
= 0 on Γ (20)

nT 1
8
�4∇2εnl

eq = 0 on Γ (21)

The boundary conditions of the second-order implicit gradient model (trun-
cated after the �2 term) are fairly well accepted and render good results. The
boundary conditions of the fourth-order implicit gradient model are more dif-
ficult to assess, and a more in-depth study would be needed should this model
become more widely used.

An interesting line of recent research concerns the thermodynamic foun-
dations of nonlocal damage theories. For instance, a thermodynamically con-
sistent variant of the earlier framework of Pijaudier-Cabot and Bažant [34] is
presented by Borino [10] for integral-type nonlocal damage; similarly, Peerlings
et al. [33] give a thermodynamically consistent re-formulation of the gradient-
type nonlocal damage model presented in [30]. Finally, it is noted that the
nonlocality can also be formulated to operate on another variable, such as
for instance the history parameter κ [13] or the damage ω itself [12, 24]. An
excellent in-depth comparison between several approaches and their capacity
to model failure objectively has been presented by Jirásek [20].

10
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4 Comparison between different nonlocal formulations

The correspondence or otherwise between the various nonlocal damage formu-
lations has been studied on various occasions [4,5,31,32]. A general conclusion
is that the implicit series of Eq. (15) are to be preferred over the explicit series
of Eq. (14). Furthermore, good agreement between the integral model and the
second-order (up to order �2) and the fourth-order (up to order �4) truncations
of Eq. (15) was found.

4.1 Wave propagation in a one-dimensional bar

The correspondence between the second-order and fourth-order implicit mod-
els according to Eq. (15) is verified numerically by means of a one-dimensional
wave propagation problem. Whereas the second-order model only requires C0-
continuity of the discretisation, C1-continuity is needed for the fourth-order
model. However, this poses no difficulties within an EFG framework.

Figure 2 shows the boundary conditions and the dimensions set by L = 10
m while the cross-sectional area A = 1 m2. The applied force F increases
linearly from 0 to 0.075 N at time t = 4 s. The material parameters are taken
as Young’s modulus E = 1000 Pa, mass density ρ = 1000 kg/m3 and internal
length � = 1 m. The damage evolution of Eq. (11) is set through κ0 = 10−4

and κu = 10−3. The time integration has been performed with a constant
acceleration Newmark scheme and a time step Δt = 0.2 s. The displacements
have been discretised with EFG shape functions using a quadratic base vector
p and the ratio of domain of influence over nodal spacing d/h = 4. More details
on the EFG discretisation can be found in [4].

In Figures 3 and 4 the results obtained with the second-order and fourth-
order implicit models are shown. The evolution in time of the strain profiles
along the bar, obtained with an EFG discretisation of 41 equally spaced nodes,
is very similar for the two models. The damage profiles at time t = 40 s are
compared for different discretisations (note that only the range −10 ≤ x ≤ −4
is shown). Both models converge upon refinement of the discretisation. The
damage profile of the fourth-order model is slightly wider than that of the
second-order model.

F

L

x

L

Fig. 2. One-dimensional wave propagation — problem statement.
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Fig. 3. One-dimensional wave propagation — stroboscopic strain evolution for
second-order (left) and fourth-order (right) implicit gradient model.
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Fig. 4. One-dimensional wave propagation — convergence of final damage profiles in
left part of the bar for second-order (left) and fourth-order (right) implicit gradient
model; 21 nodes (solid), 41 nodes (dashed) and 81 nodes (dotted).

4.2 Notched specimen tension test

The damage evolution in a two-dimensional strip with symmetric imperfec-
tions is studied next. The test data are based on those of Chen et al. [11], see
also Figure 5 where dimensions are given in m. For the bulk material the ma-
terial parameters are taken as Young’s modulus E = 2×106 Pa and Poisson’s
ratio ν = 0. Damage evolution is governed by κ0 = 10−3 and κu = 0.0625.
Two symmetrically placed imperfections are modelled by reduced values for
E = 1.8 × 106 Pa, κ0 = 9 × 10−4 and κu = 0.056. The bottom edge of the
strip is fully fixed and the strip is loaded by imposing a vertical displacement
at the top edge.

The flexible implementation offered by the EFG method is exploited by
comparing the responses of gradient-type and integral-type nonlocality. Four
different formulations are compared:

• the second-order implicit gradient model according to Eq. (15);

12
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Fig. 6. Notched specimen — load-displacement curves for various nonlocal models.

α = [c0 + ξT c1]
exp
(
−ξT ξ

2�2

)
∫
V

exp
(
−ξT ξ

2�2

)
dV

(23)

The coefficients c0 and c1 follow from solving a small system of linear
equations as explained in detail by Rodŕıguez-Ferran et al. [36, 37]. After
averaging the displacements, a strain field based on the nonlocal displace-
ments is computed and used to determine the equivalent strain. The rest
of the model remains unaltered.

In all cases the internal length that sets the nonlocality is taken as � = 0.53
m. The two gradient models are discretised with a 6 × 16 nodal distribution
as shown in Figure 5, using a cubic base vector p and a ratio d/h = 6 to
discretise the displacements. For the two integral models a 11× 31 nodal grid
with a linear base vector p and d/h = 1.5 was used. The finer nodal grid of the
integral models partly balances the more extended p-vector for the gradient
models.

Figure 6 shows the load-displacement curves of the four formulations. In
general an excellent agreement is found (note that this comparison would have
been a tedious task if finite element implementations had been used, especially
the inclusion of the fourth-order implicit gradient model). The predicted peak
load is virtually the same for all formulations. Some minor differences in duc-
tility occur whilst progressing further down the post-peak branch, but all
models show an increasing downward slope which, together with a linear soft-
ening local stress-strain relation, indicates that the width of the damaging
zone decreases with ongoing damage. Indeed, a one-dimensional dispersion
analysis of the strain-based models demonstrates that the width of the dam-
aging zone vanishes for ω → 1, which implies a smooth transition towards a
discrete crack.
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5 Regularising properties of EFG shape functions

Nonlocality, or interaction at finite distance, can be understood mechanically
or mathematically. The former meaning is the one used in the aforementioned
nonlocal gradient-type and integral-type damage models. The latter inter-
pretation applies when discretising the governing differential equations, i.e.
through replacing the spatial derivatives by a series of nodal values whereby
the nodes are positioned at finite distances from one another. Both kinds of
nonlocality bear similarities, the more so in case of the (mechanical) integral-
type nonlocality of Eq. (13) and EFG weight functions of Eq. (8).

Chen et al. have discussed the intrinsic nonlocality of meshless meth-
ods [11] (although they refer to nonlocality as a finite distance interaction
extending beyond the nearest neighbour nodes, not as finite distance interac-
tion per se). They applied a spatial averaging in the spirit of Eq. (8) to certain
state variables (namely displacements and strains). While these approaches fit
well within the framework of integral-type nonlocality, the chosen terminology
of “intrinsic nonlocality of meshless methods” could indicate that there is an
intrinsic mechanical nonlocality present in meshless methods. The purpose of
this section is to show that this is not the case and that mechanical nonlocality
must not be confused with mathematical nonlocality.

5.1 Tapered bar in tension

A tensile bar of length 10 m is studied for which the cross-sectional area
varies linearly from 10 m2 at either end towards 9 m2 in the centre. The
Young’s modulus E = 20000 Pa and damage growth is set by κ0 = 10−4 and
κu = 0.015. The bar is loaded by prescribing the displacement at the right
end. The EFG shape functions for the displacements are constructed with a
quadratic base vector p. The presence or absence of regularisation is tested
by comparing the response of different nodal distributions.

Firstly, mechanical nonlocality is eliminated by selecting � = 0 m and
instead a fixed parameter d = 4 m for the EFG weight function of Eq. (8) is
taken. The load-displacement curves for 11, 21 and 31 equally spaced nodes
are plotted in Figure 7 (left). It is clearly seen that no convergence upon
discretisation refinement is obtained. Instead, every increase of the number of
nodes leads to a more brittle response. Hence, it must be concluded that fixing
the domain of influence radius d of the EFG shape functions is not sufficient
to obtain a proper regularisation of the post-peak response.

Next, mechanical nonlocality is activated by setting � = 0.35 and the EFG
radius of influence d is set as a fixed multitude of the nodal spacing h, namely
d/h = 4. Figure 7 (right) shows the load-displacement curves for 21, 41, 81
and 161 equally spaced nodes. Although the 21 nodes response diverges some-
what from the other ones in the later loading stages, the agreement between
the other three curves is excellent. This shows yet again that a proper regu-
larisation can be obtained with mechanical nonlocality.
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Fig. 7. Tapered bar in tension — load-displacement curves for formulations without
(left) and with (right) mechanical nonlocality.
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Fig. 8. Tapered bar in tension — damage profiles for 0.0125 m prescribed displace-
ment; local model with 21 nodes (left) and nonlocal model with 41 nodes (right).

A particular observation is the differences in post-peak slope between the
(mechanically) local and nonlocal models. The local models follow the slope
of the local stress-strain relation, i.e. linear softening. In contrast, the nonlo-
cal models show an increased steepness in the post-peak regime. This can be
explained by the width of the zone in which damage grows. In a local model,
this width is fixed by the applied discretisation and it does not change dur-
ing the loading process. In contrast, the width of the damaging zone usually
becomes more narrow upon further loading in a nonlocal model. In Figure 8
typical damage profiles for a local and a nonlocal model are plotted. In the lo-
cal model the damaged zone has a virtually constant width irrespective of the
magnitude of the damage, whereas in the nonlocal model this width dimin-
ishes gradually. Note that the local model exhibits some secondary damage
zones. The strain profile of the local model tends to become discontinuous
which cannot be captured by the highly smooth EFG shape functions. This
causes oscillations that result in spurious secondary damage zones.
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Fig. 9. Notched specimen — load-displacement curves for various local models.

5.2 Notched specimen tension test (revisited)

Finally, the test of section 4.2 is revisited without the inclusion of mechanical
nonlocality, that is � = 0 m. Two different nodal distributions are considered,
consisting of 6× 16 nodes (grid A) and 11× 31 nodes (grid B). A linear base
vector p is used for the EFG shape functions as well as domains of influence
set by d/h = 1.5 and d/h = 3 for both grids. In Figure 9 the corresponding
load-displacement curves are depicted. The following can be observed:

• No convergence upon grid refinement is obtained by keeping d/h constant.
For instance, compare grid A / d = 3 m with grid B / d = 1.5 m, or
compare grid A / d = 1.5 m with grid B / d = 0.75 m.

• No convergence upon grid refinement is obtained by keeping d constant.
For instance, compare grid A / d = 1.5 m with grid B / d = 1.5 m.

Whereas the former observation is in line with earlier observations of finite
element simulations with local models [28, 38], the latter observation adds
the conclusion that there is no intrinsic mechanical nonlocality in meshless
methods.

6 Conclusions

In this chapter nonlocal damage models have been used in order to simulate
the material nonlinearities of fracture processes in the pre-peak as well as post-
peak stage. Damage models are a representation of dispersed micro-cracking
and they often provide a smooth transition towards a discrete crack at the
final stages of loading. The nonlocality is a key ingredient that ensures that
numerical simulations converge upon refimenent of the discretisation.
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Two main types of nonlocality exist: either spatial derivatives or spatial
averages of the relevant state variables are taken, referred to as gradient-
type and integral-type nonlocality, respectively. Both types have been proven
successful in many occasions but systematic comparisons between the two
types of nonlocality in a numerical context are largely lacking. Both types of
models pose their own requirements on the numerical implementation, be it
continuity requirements in case of gradient nonlocal models or the construction
of neighbour graphs in case of integral nonlocal models. Meshless methods
such as the element-free Galerkin (EFG) offer a suitable numerical platform
to implement a range of nonlocal models and thus allow for in-depth analysis
and comparisons.

Two sets of tests have been carried out in this chapter. In the first set,
various gradient nonlocal models and integral nonlocal models have been com-
pared. Relevant conclusions include the following:

• For the so-called implicit gradient series, there is no qualitative difference
and only a marginal quantitative difference between a second-order and a
fourth-order truncation. This has already been observed in statics earlier
[4] and is now confirmed for a dynamic loading case.

• There is no qualitative difference and only a marginal quantitative dif-
ference between integral nonlocality operating on the equivalent strain or
operating on the displacements. This confirms the findings of [36,37].

• The parameters of the gradient-type and integral-type models can be re-
lated to each other. With such a parameter selection, the agreement be-
tween gradient-type and integral-type nonlocal models is excellent.

A second set of tests concerns the issue of absence or presence of intrinsic
regularisation properties in the EFG method. Although the EFG shape func-
tions include a certain long-range interaction that extends beyond the usual
nearest neighbour interaction of finite element shape functions, it is mislead-
ing to refer to this as a mechanical nonlocality. In a series of examples it has
been shown that no convergence upon refinement of discretisation is obtained
if mechanical nonlocality is left out of the formulation. In particular, it has
been demonstrated in a series of numerical examples that the domain of in-
fluence radius of EFG shape functions cannot be used as an intrinsic length
scale. It is, however, possible to use the spatial averaging operator of meshless
shape functions in the smoothing of the relevant state variables, as long as
the domain of influence parameter is clearly distinguished from the internal
length — this is explored in [11,21,36,37].

Although the EFG method does not provide sufficient regularisation in
itself, it is an excellent tool to test, analyse and compare various formats of
nonlocality that do regularise damage simulations.
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14. R. de Borst and H.-B. Mühlhaus. Int. J. Num. Meth. Engng, 35:521–539, 1992.
15. J.H.P. de Vree, W.A.M. Brekelmans, and M.A.J. van Gils. Comp. Struct.,

55:581–588, 1995.
16. A.C. Eringen. Int. J. Engng Sci., 19:1461–1474, 1981.
17. A.C. Eringen. Int. J. Engng Sci., 21:741–751, 1983.
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Three-dimensional non-linear fracture
mechanics by enriched meshfree methods

without asymptotic enrichment

Stéphane Bordas1, Goangseup Zi2, and Timon Rabczuk3

Summary. This paper presents a three-dimensional, extrinsically enriched mesh-
free method for initiation, growth and coalescence of an arbitrary number of cracks
in non-linear solids including large deformations, for statics and dynamics.

The novelty of the methodology fashioned in this work is that only an extrinsic
discontinuous enrichment and no near-tip/asymptotic enrichment is required. In-
stead, a Lagrange multiplier field is added along the crack front to close the crack
along the front. This decreases the computational cost and removes difficulties in-
volved with a branch enrichment.

Numerical examples treated include the pull-out of a reinforcement bar from a
concrete block, and a Taylor bar impact with very large deformation and fragmenta-
tion. The results are compared to experimental results, and other simulations from
the literature, which shows the robustness and accuracy of the method.

Key words: eXtended Element Free Galerkin Method (XEFG); discontin-
uous enrichment; Cohesive cracks; Lagrange multipliers; Dynamic fracture;
large deformations; high velocity impact

1 Introduction

We present a simple enriched meshfree method to model three-dimensional
crack initiation, propagation and coallescence, including branching in non-
linear materials for statics and dynamics. The major advantage of the tech-
nique is that no near-front enrichment is required.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 21–36.
© 2007 Springer. Printed in the Netherlands.



In finite element methods, either cracks lie along element boundaries, as
in Xu and Needleman (1994), Camacho and Ortiz (1996), Ortiz and Pandolfi
(1999), Zhou and Molinari (2004) or the discontinuities are introduced through
the elements. Two classes of techniques have been developed to introduce
this discontinuity inside finite elements: the strong discontinuity approach
such as the extended finite element method (XFEM) Belytschko and Black
(1999), Moës et al. (1999) and the weak discontinuity approach. When cracks
are not aligned with element boundaries, their geometry must be followed
independently of the mesh. The level set method is a possible technique to
track the geometry of the cracks, but for multiple cracks, it is not well adapted.
Alternatively, the cracks can be handled geometrically Duflot (2006). In 3D,
this requires updating triangulations of the cracks as they evolve.

The method we are using is based on the Element-Free Galerkin method
(EFG) introduced by Belytschko et al. (1994). For such methods, no discretiza-
tion mesh is present, but a background mesh used for integration purposes is
usually present. The cracks can be represented by the level set or alternate
vector level set methods Ventura et al. (2002, 2003). It can alternatively be
discretized (triangulated) Duflot (2006). Yet another approach, used here, is
to define the cracks through the background integration mesh Rabczuk et al.
(2007).

Among the strong discontinuity approaches, the extended finite element
method (XFEM) is one of the most versatile and accurate. This method has
been successfully applied to static problems in two and three dimensions,
(see e.g Moës et al. (1999, 2002), Zi and Belytschko (2003), Zi et al. (2004),
Gravouil et al. (2002), Moës et al. (2002)) and to dynamic problems Belytschko
et al. (2003), Zi et al. (2005) in two dimensions and three dimensions including
contact along the crack faces, and small-scale plasticity Rethore et al. (2005).
The extended finite element method has also been utilised in industrial set-
tings to assess damage tolerance of complex structures by Bordas and Moran
(2006), Bordas et al. (2006a) and open source C++ libraries are available,
such as two libraries developed by Bordas et al. (2006b) and Dunant et al.
(2006).

An advantage of meshfree methods is their higher continuity, smoothing
the stress field in the crack tip region. Work such as Belytschko and Tabbara
(1996), Lu et al. (1995), Belytschko and Lu (1995), Belytschko et al. (1995)
and Krysl and Belytschko (1999) handle two and three dimensional fracture
mechanics, and treat discontinuities by the visibility criterion or some mod-
ifications of it. The support of the shape functions is truncated by the line
of discontinuity. Other novel approaches can treat kinked and curved discon-
tinuities Ventura et al. (2002), where the moving least squares (MLS) basis
functions around the crack tip is shown to improve convergence. The major
drawback is the need for an explicit representation of the crack. Alternate
methods enrich the MLS weight functions Duflot (2006) and use the diffrac-
tion criterion to introduce the discontinuity.
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EFG for cracks in non-linear solids

Rabczuk et al. (2007) propose an extended element free Galerkin (XEFG)
method for cohesive crack initiation, growth and junction in three dimensional
statics and dynamics, but the closure of the crack along the front is ensured
through near-tip enrichment vanishing along the front. The polar coordinate
system along a crack front is not well-defined at the kinks along this front,
as made clear in Rabczuk et al. (2007). Another difficulty with near-front
enrichment is that the “correct” fields are neither known for large strain nor
for non-linear materials in general. This makes the selection of these fields
difficult and calls for an alternate method.

In the method we propose, front enrichment is unnecessary, and only dis-
continuous enrichment is used; the crack is closed using a constraint field en-
forced by Lagrange multipliers. Similar accuracy compared to Rabczuk et al.
(2007) is obtained on the examples treated.

The outline of the paper is as follows: we describe the approximation of
the jump in displacement in the meshfree method employed, method which
we then briefly recall. We state the governing equations, their weak and dis-
cretized form, before describing the crack modelling algorithm. The method
is then exercised on a quasi-static and dynamic crack growth problem.

2 Element Free Galerkin (EFG) Approximation

The construction of the moving least squares (MLS) approximation used to
describe the displacement field in the element-free Galerkin method is now
standard and the interested readed is referred to Belytschko and Tabbara
(1996), Belytschko et al. (1994), Fleming et al. (1997). In the whole paper, we
denote by Ω0 the body under interest in the reference configuration, and X =
(X,Y, Z) ∈ Ω0 ⊂ R

3 a point in the reference configuration. The displacement
field is approximated by moving least squares. We use the cubic B-spline,
circular supports and a linear basis p = [1, X, Y, Z]. Denote by II,X the set
of NI,X particles whose domain of influence contain a given point X ∈ Ω0.
For all the NI(X) particles whose domain of influence contains a given point
X ∈ Ω0, the MLS shape function ΦI associated with particle I = XI evaluated
at point X is obtained by the matrix/vector product

ΦI(X)︸ ︷︷ ︸
NI,X×1

= pT︸︷︷︸
NI,X×4

(X) · A(X,XI)−1︸ ︷︷ ︸
4×4

·D(X,XI)︸ ︷︷ ︸
4×1

(1)

A(X,XI) =
∑

I∈II,X

p(XI) pT (XI)W (r̄I(X)) (2)

D(X,XI) =
∑

I∈II,X

p(XI)W (r̄I(X)) (3)
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With these definitions, the standard part (C2-continuous and linear-complete)
of the MLS approximation (denoted by a superscript s) for the displacement
field us at time t can be written as

∀X ∈ Ω0, ∀t > 0, us(X, t) =
∑
I∈W

ΦI(X) us
I(t) (4)

3 Discontinuous enrichment of the displacement Field

We write the displacement approximation is written as the sum of a standard
(us) part as in Eq. (4) and an enriched part (ue), discontinuous through the
crack faces

∀X ∈ Ω0, ∀t > 0, u(X, t) = us(X, t) + ue(X, t) (5)

where us is the continuous displacement field defined by (4) and ue is the
discontinuous (or the enriched) displacement field defined below. Define E
as the set of all the cracks in the domain and ue

α the enriched part of the
approximation due to crack α. The enriched part of the approximation due
to all cracks in E writes

∀X ∈ Ω0, ∀t > 0, ue(X, t) =
∑
α∈E

ue
α(X, t) (6)

Let Wα be the set of particles whose domain of influence is cut by crack
α, and Ψα

I be the enrichment function associated with particle I and crack
α, discontinuous through this crack and defined below. Define by aα

I the ad-
ditional degrees of freedom for the enrichment Ψα

I . The discontinuous part of
the displacement approximation due to crack α ∈ E writes

∀X ∈ Ω0, ∀t > 0, ue
α(X, t) =

∑
I∈Wα

ΦI(X) Ψα
I (X) aα

I (t) (7)

We now define the enrichment functions Ψα
I . If a domain of influence is

cut by a crack, it is enriched with the sign function given by

sign(x) =

⎧⎨⎩
1 for x > 0

−1 for x < 0
(8)

Let n be the crack normal and Γα
c represent the surface of crack α. Let

Xα be a point on the surface Γα
c of crack α ∈ E and X a point in Ω0. The

sign of quantity n · (X − Xα) defines on which side of Γα
c X is located. The

distance from X to Γα
c is minXΓ ∈Γ α

c
‖X− XΓ ‖. The signed distance fα(X)

from X to crack α is
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EFG for cracks in non-linear solids

(a) finite element method (b) meshless method

Fig. 1. The enrichment for the crack tip by using the step function in (a) the finite
element method and (b) meshless methods; solids are enriched nodes and circles
unenriched nodes.

∀X ∈ Ω0, ∀Xα ∈ Γα
c , fα(X) = sign [n · (X − Xα)] min

XΓ ∈Γ α
c

‖X− XΓ ‖ (9)

The enrichment for crack α and particle I writes

∀α ∈ E , ∀I ∈ W, ∀X ∈ Ω0, Ψα
I (X) = sign [fα(X)] − sign [fα(XI)] (10)

3.1 Closing the crack along the front

Crack closure along the front is a natural outcome of near-front enrichment
vanishing along the crack front, as in (Rabczuk et al., 2007). In the context
of the extended finite element method, a methodology was devised to close
the crack without near-front enrichment (Dolbow and Devan, 2003, Zi and
Belytschko, 2003) as long as the crack tip is located on element edges. This
idea does not apply to meshfree methods because of the strong overlapping
of domains of influence. In C0-FEM-based methods, the shape function asso-
ciated with each node is only coupled with those of the nodes contained in
its support. Imagine a crack tip in a two-dimensional finite element mesh; see
Figure 1a, the crack tip is positioned on the edge connecting nodes A and B.
Because the crack must close along the front, nodes A and B should not be
enriched. Figure 1b shows the case of meshless methods. The domain of in-
fluence for a particle in meshless methods overlaps heavily with that of other
particles.

We propose the construction of a Lagrange multiplier field to close the
cracks along their fronts. The idea is an extension of the principle presented
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in Carpinteri et al. (2001). If only the sign function enrichment of Eq. (10)
is used, the discontinuity Γc extends beyond the crack front. To correctly
model the crack, the discontinuity on the front Γc should vanish. Because the
condition should be satisfied along a surface, the Lagrange multiplier field
must be discretized and we use the same shape functions as those for the
domain partially cut by the crack.

4 Description of Cracks

4.1 Geometric description

The cracks are described similarly as in Rabczuk et al. (2007). The crack sur-
faces are non-planar and represented by the union of planar segments obtained
by slicing the tetrahedral background mesh by the failure planes obtained
through material stability analysis (described in Section 4.2). The representa-
tion of crack junction through signed-distance functions is now standard, and
the interested reader is referred to Rabczuk et al. (2007) for details.

4.2 Initiation and propagation of cracks

We employ the loss of hyperbolicity (in dynamics) and loss of ellipticity (in
quasi-statics) criterion for crack initiation and propagation, as proposed by
Belytschko et al. (2003), Rabczuk and Zi (2006), Rabczuk et al. (2007). There-
fore, a crack is initiated or propagated if the minimum eigenvalue of the acous-
tic tensor Q is smaller or equal to zero:

min eig(Q) ≤ 0 with Q = n · A · n (11)

where n = (cosα cosϕ, cosα sinϕ, sinα) is the normal to the crack surface
depending on the angle θ, A = C t + σ ⊗ I, σ is the stress tensor and C t is
the fourth order tangential modulus.

4.3 Tracking the crack path

The algorithmic procedure to track the crack path is detailed in Rabczuk
et al. (2007). We now allow multiple cracks to overlap during initiation (at
the same time step4). Especially for problems with excessive cracking, this
facilitates the implementation and also decreases computational cost.

4 in contrast to our method in Rabczuk et al. (2007) where we did not allow over-
lapping of simultaneously initiated cracks
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Fig. 2. The types of the cohesive laws frequently used in practice; (a) linear (or
triangular), (b) bilinear and (c) exponential cohesive laws.

5 Governing Equations

5.1 The momentum equation and the boundary conditions

Defining Γ c
0 as the union of all the crack surfaces, the strong form of the

momentum equation in the total Lagrangian description is given by

	0 ü = ∇s0 ·P + 	0 b in Ω0 \ Γ
c
0 (12)

with boundary conditions:

u(X, t) = ū(X, t) on Γ u
0 (13)

n0 · P(X, t) = t̄(X, t) on Γ t
0 (14)

n0 ·P− = n0 ·P+ = tc0 on Γ c
0 (15)

tc0 = tc0([[u]]) on Γ c
0 (16)

where 	0 is the initial mass density, ü is the acceleration, P denotes the nom-
inal stress tensor, b designates the body force, ū and t̄ are the prescribed
displacement and traction, respectively, n0 is the outward normal to the do-
main and Γ u

0 ∪Γ t
0 ∪Γ

c
0 = Γ0, (Γ u

0 ∩Γ t
0)∪ (Γ t

0 ∩Γ
c
0 )∪ (Γ c

0 ∩Γ u
0 ) = ∅. Moreover,

we assume that the stresses P are bounded on the crack surface Γ c
0 . Since the

stresses are not well defined along the crack, the crack surface Γ c
0 is excluded

from the domain Ω0 which is considered as an open set.

5.2 Cohesive cracks

We exclusively used initially rigid cohesive models as shown in Figure 2 for
the one-dimensional case. If a potential for the cohesive crack is defined, the
unidirectional relation can be extended to general mixed mode problems, as
in (Bažant and Caner, 2005, Camacho and Ortiz, 1996, Ortiz and Pandolfi,
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1999). Note that if only one-dimensional cohesive models for mode-I fracture
are used, traction continuity is in general violated. We only used cohesive
models that fulfill the traction continuity condition, i.e. the cohesive traction
tc = n · σ at crack initiation is compatible with the stress state at crack
initiation. Difficulties occur at crack initiation due to the infinite slope of the
tangent, especially when unloading occurs at an early stage. We note that
the fulfillment of traction continuity is a complementary problem and cannot
simply be enforced by Lagrange multipliers since the traction cannot exceed
the tensile strength of the material.

6 Discretized Equations

The weak form of the momentum equation is given by

δW = δWint + δWkin − δWext − δWcoh + δWL (17)

in which δWint, δWkin, δWext, δWcoh are the parts composing the virtual work
of the internal stress, the inertia force, the external traction and the cohesive
traction, respectively; δWL is introduced to close the crack at its crack front.
Noting ∇s0 the symmetric gradient operator in the reference configuration,
the four parts of the virtual work write5

δWint =
∫

Ω0 \Γ c
0

(∇s0 ⊗ δu)T : P dΩ0 (18)

δWkin =
∫

Ω0 \Γ c
0

	0 δu · ü dΩ0 (19)

δWext =
∫

Ω0 \Γ c
0

	0 δu · b dΩ0 +
∫

Γ t
0

δu · t̄0 dΓ0 (20)

δWcoh =
∫

Γ c
0

[[δu]] · τ dΓ0 (21)

δWL = δ(Λ · [[u]]) (22)

in which δWL is the general variation with constraint and Λ is the Lagrange
multiplier vector. As the Lagrange multiplier is defined for Γc,ext and dis-
cretized using the shape functions of the meshless method, the discretized
Lagrange multiplier is given by

Λ = Φ0λ (23)

where λ are the coefficients of the discretization of the Lagrange multiplier
Λ. Substituting the continuous and discontinuous displacement fields us and

5 recall that Γ
c

0 is the union of all crack surfaces.
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ue in Eqs. (4) and (6), and the crack opening displacement [[u]] to the weak
form, we obtain6

δWint =
∑
I∈W

δuT
I

∫
Ω0 \Γ c

0

∇s0ΦI(X)T : PdΩ

+
∑
α∈E

∑
K∈Wα

δaα
K

T

∫
Ω0 \Γ cα

0

∇s0 [ΦK(X)Ψα
K(X)]T : PdΩ (24)

δWkin =
∑
I∈W

δuT
I

∑
J∈W

∫
Ω0 \Γ c

0

	0 ΦI(X)T · ΦJ(X) dΩ üJ

+
∑
I∈W

δuT
I

∑
α∈E

∑
K∈Wα

∫
Ω0 \Γ cα

0

	0 ΦI(X)T · ΦK(X)Ψα
K(X) dΩ äalK

+
∑
α∈E

∑
K∈Wα

δaα
K

T
∑
I∈W

∫
Ω0 \Γ cα

0

	0 [ΦK(X)Ψα
K(X)]T · ΦI(X) dΩ üI

+
∑
α∈E

∑
K∈Wα

δaα
K

T
∑
β∈E

∑
M∈Wβ

(25)

∫
Ω0 \(Γ

cβ
0

S
Γ cα

0 )

	0 [ΦK(X)Ψα
K(X)]T · ΦM (X)Ψβ

M (X) dΩ äL
M

δWext =
∑
I∈W

δuT
I

∫
Ω0 \Γ c

0

	0 ΦI(X)T · bdΩ (26)

+
∑
I∈W

δuT
I

∫
Γ t

0

ΦI(X)T · t̄0 dΓ

δWcoh = 2
∑
α∈E

∑
K∈Wα

δaT
K

∫
Γ cα

0

ΦK(X)T · t̄c dΓ (27)

Using the fundamental lemma of calculus, we obtain the discretized equations

M q̈ = fext + fcoh − fint − fcon (28)
G a = 0 (29)

where M is the consistent mass matrix, q is the generalized parameters,
fext, fint, fcoh are the discrete external, internal and cohesive force vectors,
respectively; fcon = λT G in which G = 2 ΦT Φe is the force term due to the
constraint to close the crack at its front. The expressions for M, q, fext, fcoh
and fcoh are given by

6 we denote by Γ
cα

0 the surface of crack α in the reference configuration. The union
of the Γ

cα

0 for α ∈ E forms set Γ
c

0 .
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Stéphane Bordas, Goangseup Zi, and Timon Rabczuk

M =
∫

Ω0 \Γ c
0

	0

⎡⎣ ΦT Φ ΦT Φe

Φe T Φ Φe T Φ

⎤⎦ dΩ (30)

fint =
∫

Ω0 \Γ c
0

BT PdΩ +
∫

Ω0 \Γ c
0

Be T PdΩ (31)

fext =
∫

Ω0 \Γ c
0

	0 ΦT b dΩ +
∫

Γ t
0

ΦT t̄0 dΓ (32)

fcoh = 2
∫

Γ c
0

ΦT tc0 dΓ (33)

q =
{

u
a

}
(34)

u = [us
I ]T ∀ I ∈ W and a = [aα

K ]T ∀ K ∈ Wα, ∀ α ∈ E (35)
Φ = [ΦI ] ∀ I ∈ W and Φe = [ΦαΨα

K ] ∀ K ∈ Wα, ∀ α ∈ E (36)
B = ∇s0Φ and Be = ∇s0Φe (37)

7 Numerical Examples

7.1 Pull-out test

70

600

84

11540

Fig. 3. Test-setup of the Pull out test
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Consider a pull out test of reinforced concrete as shown in Figure 3. This
example was studied previously by Gasser and Holzapfel (2005) and Areias
and Belytschko (2005) by the PUFEM and XFEM, respectively. We also em-
ployed symmetry conditions and modelled only one quarter of the specimen.
A vertical displacement boundary condition is applied to pull the reinforce-
ment bar out of the concrete specimen as illustrated in Figure 3. We adopted
the same constitutive and cohesive model as Gasser and Holzapfel (2005).
The material parameters are κ = 16, 670MPa and ν = 12, 500MPa. For the
cohesive model, we use, according to Gasser and Holzapfel (2005), t0 = 3MPa,
a = 11.323mm−1, b = 0.674 and α = 1.

a) b)

c) c)

Fig. 4. Crack pattern of the pull-out test
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We tested two discretizations starting with 15,000 and 45,000 nodes and
refined adaptively Rabczuk and Belytschko (2005). The crack pattern at dif-
ferent load stages is shown in Figure 4 for the fine discretization and different
view points. Note that the surface of the crack is rippling, and is captured
nicely. The load-deflection curve is shown in Figure 5 and is similar to results
presented in Gasser and Holzapfel (2005) and Areias and Belytschko (2005)
as well as Rabczuk et al. (2007).

Fig. 5. Load deflection curve of the pull-out test

7.2 Taylor bar impact

To test the method for multiple cracks with crack junction, we consider a
Taylor bar impact. There are experimental results available, see Teng et al.
(2005). The Taylor bar has a diameter of 6mm and length 30mm. We con-
sider an impact velocities of 600m/s. The failure mechanism is petalling. We
have performed similar computations in Rabczuk et al. (2007) but for a much
smaller impact velocity where only small strains occur. The material is a 2024-
T351 aluminium alloy. We use the Johnson Cook model Johnson and Cook
(1983) as in the previous section with Young’s modulus E = 74GPa, Poisson
ratio ν = 0.3, density 0.0027g/mm3, a reference strain rate of 3.33 × 10−4,
A = 352MPa, B = 440MPa, C = 0.0083, n = 0.42, m = 1, cv = 875 J/kg C,
Tr = 296K, Tm = 775K and β = 1. We tested two different discretizations,
with approximately 7,000 particles and 22,000 particles, refined adaptively.
The final deformation of the Taylor bar is shown in Figure 6 for both dis-
cretizations. As can be seen, multiple cracking occurs with overlapping cracks
including crack junctions. The failure mode is similar as observed in Teng
et al. (2005). There are basically four major cracks that cause the petalling.
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Our failure mode looks a little bit ductile, which is likely related to difficul-
ties in the discontinuous bifurcation analysis since the Johnson Cook material
does not lose stability easily. The results look almost identical for both dis-
cretizations, and agree well with Teng et al. (2005).

a) 22,000 particles b) 7,000 particles

Fig. 6. Final crack pattern of the Taylor bar problem

8 Conclusions

This paper presented a three-dimensional adaptive meshfree method for frac-
ture in statics and dynamics. The initiation, growth, coallescence and branch-
ing of an arbitrary number of cracks is handled simply and effectively.

The discontinuities are introduced through extrinsic enrichment of the
moving least squares basis, but no near-front enrichment is required. To close
the cracks, a Lagrange multiplier field is instead added along the front of the
cracks.

Geometrically, the cracks are non-planar surfaces composed of triangular
and quadrangular planar sections obtained by cutting the tetrahedral back-
ground integration cells by planes whose normals are provided by a material
stability analysis.

The results show accurate simulation of large deformation failure problems
including fragmentation, where the flexibility of the meshfree method coupled
with the efficient crack interaction procedure is most clear. The simulations
approach experimental results available in the literature.
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Stéphane Bordas, Goangseup Zi, and Timon Rabczuk

J. Rethore, A. Gravouil, and A. Combescure. An energy-conserving scheme
for dynamic crack growth using the extended finite element method. Inter-

national Journal for Numerical Methods in Engineering, 2005.
X. Teng, T. Wierzbicki, S. Hiermaier, and I. Rohr. Numerical prediction of

fracture in the taylor test. International Journal of Solids and Structures,
2005.

G. Ventura, J. Xu, and T. Belytschko. A vector level set method and new
discontinuity approximations for crack growth by efg. International Journal

for Numerical Methods in Engineering, 54(6):923–944, 2002.
G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for description of

propagating cracks in finite elements. International Journal for Numerical

Methods in Engineering, 58:1571–1592, 2003.
X.-P. Xu and A. Needleman. Numerical simulations of fast crack growth in

brittle solids. Journal of the Mechanics and Physics of Solids, 42:1397–1434,
1994.

F. Zhou and J.F. Molinari. Dynamic crack propagation with cohesive ele-
ments: a methodolgy to address mesh dependence. International Journal

for Numerical Methods in Engineering, 59(1):1–24, 2004.
G. Zi and T. Belytschko. New crack-tip elements for xfem and applications

to cohesive cracks. International Journal for Numerical Methods in Engi-

neering, 57(15):2221–2240, 2003.
G. Zi, J.-H. Song, E. Budyn, S.-H. Lee, and T. Belytschko. A method for grow-

ing multiple cracks without remeshing and its application to fatigue crack
growth. Modelling and Simulation in Materials Science and Engineering,
12(1):901–915, 2004.

G. Zi, H. Chen, J. Xu, and T. Belytschko. The extended finite element method
for dynamic fractures. Shock and Vibration, 12(1):9–23, 2005.

36



Accounting for weak discontinuities and
moving boundaries in the context of the
Natural Element Method and model reduction
techniques

Summary. Several thermomechanical models are defined in evolving domains in-
volving fixed and evolving discontinuities. The accurate representation of moving
boundaries and interfaces is, despite the significant progresses achieved in the re-
cent years, an active research domain. This work focusses on the application of
meshless methods for discretizing this kind of models, and in particular the ones
based on the use of natural neighbor interpolations. The questions related to the
description of moving boundaries, evolving weak discontinuities and the possibility
of an eventual model reduction to alleviate the computational simulation cost, will
be some of the topics here analyzed.

Key words: Natural Element Method, Evolving weak discontinuities, Model
reduction, Karhunen-Loève, Proper Orthogonal Decomposition, Functional
enrichment, Interface tracking and capturing.

1 Introduction

For models involving large transformations the use of meshless discretization
techniques seems to be an appealing choice, instead of using the standard
finite element method that requires frequent remeshing in order to satisfy the
accuracy requirements. Moreover, if one proceeds in the context of meshless
methods and all the internal thermomechanical variables are associated to the
nodes, neither remeshing nor fields projections are required through the entire

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 37–55.
© 2007 Springer. Printed in the Netherlands.
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simulation. In some cases, addition or deletion of nodes is required in order
to capture solution singularities, to improve the solution accuracy or simply
to avoid too many nodes in the region where the solution is smooth enough.
In these cases, new nodes can be added without complex geometrical checks,
in the regions pointed by an adequate error indicator or error estimator, as
described for example in [17].

Meshfree methods based on Moving Least Squares (MLS) approximation
have been subject of active research during the last decade. These include
Smooth Particle Hydrodynamics, Element Free Galerkin, Diffuse Elements,
Reproducing Kernel Particle and other Methods (see [1] for a nice review of
those techniques). However, one of the issues is the satisfaction of essential
boundary conditions. This is due to the nature of the approximation itself.
In fact, the MLS nodal domains of influence are the same as those of the
corresponding weighting functions, who generally do not fit the boundary. On
the other hand, the Natural Neighbor (NN) approximation and associated
family of computational methods [12] [3] do not present these drawbacks. The
boundary approximation is obtained naturally due to the fact that NN shape
functions of internal nodes vanish at the boundary where only the boundary
nodes contribute. The list of connected points —the natural neighbors— is
also known in advance. However, the NN do not present all the advantages of
the MLS. In particular, the shape function support is geometrically complex.
Moreover, the NN shape functions have only C0 continuity at the nodes and
only linear consistency is guaranteed. A common difficulty of all these tech-
niques lies in the introduction of discontinuities of the primal variable or of its
normal derivative across fixed or moving interfaces as well as the description
of moving boundaries as encountered in large transformations of solids (as
encountered in forming processes simulation) or in fluid flows.

In what follows, and always in the context of the Natural Element Method,
we will consider different possibilities for (i) accounting for the geometrical
changes, that is, the accurate representation of complex domain boundary
evolutions; and (ii) accounting for fixed or moving weak discontinuities or
interfaces (usually encountered in models involving change of phases, consol-
idation of porous media, ...).

2 The meshfree natural element method

In this section, the utility of both the constrained natural element method
(C- NEM) and the -shape based natural element method (α-NEM) to de-
scribe moving interfaces and discontinuities in a fixed cloud of nodes is dis-
cussed. After a brief review of the Voronoi-based interpolants, we introduce
the constrained Voronoi diagram which is used to compute the shape func-
tions in any domain, as well as the α-shapes based approximations functions.
To avoid duplication with some of our former publications, different references
to our former works will be addressed.
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2.1 Natural neighbor interpolation

The construction of the natural neighbor interpolation has been analyzed in
depth in some of our former works. The interested reader can refer to [3] for
a review on that topic, which we briefly summarize in this section. The NEM
interpolant is constructed on the basis of the Voronoi diagram. The Delaunay
tessellation is the topological dual of the Voronoi diagram. The Voronoi cells
related to neighbor nodes have a common edge.

n1
n2

x
a

b
c

d

e

f
g

h

x
n1

n2

Fig. 1. Construction of the Sibson shape functions.

For the sake of simplicity from now on we focus only on the 2D case, the
3D case being a direct extension. Consider a set of nodes S = {n1, n2, . . . , nN}
in �2. The Voronoi diagram is the partition of �2 into regions Ti (Voronoi
cells) defined by:

Ti = {x ∈ �2 : d(x,xi) < d(x,xj),∀j �= i}, ∀ i (1)

where d( ) denotes a distance.
In order to define the natural neighbour coordinates it is necessary to

introduce the second-order Voronoi diagram of the cloud defined as

Tij = {x ∈ �2 : d(x,xi) < d(x,xj) < d(x,xk)

∀ j �= i �= k}. (2)

Sibson [13] defined the natural neighbor coordinates of a point x with
respect to one of its neighbors ni as the ratio of the cell Ti that is transferred
to Tx when adding x to the initial cloud of points to the total volume of Tx.
In other words, if κ(x) and κi(x) are the Lebesgue measures of Tx and Txi

respectively, the natural neighbor coordinates of x with respect to the node
ni is defined as

φi(x) =
κi(x)
κ(x)

. (3)

Figure 1 illustrates the construction of φ1(x), that in this case is given by:
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φ1(x) =
Area(afghe)
Area(abcde)

(4)

If point x coincides with node ni, i.e. (x = xi), φi(xi) = 1, and all other
shape functions are zero, i.e. φj(xi) = δij (δij being the Kroenecker delta).
The properties of positivity, interpolation, and partition of unity are then
verified [12]: ⎧⎨⎩

0 ≤ φi(x) ≤ 1
φi(xj) = δij∑n

i=1 φi(x) = 1
(5)

The natural neighbor shape functions also satisfy the local coordinate
property [13], namely:

x =
n∑

i=1

φi(x)xi (6)

which combined with Eq. (5), implies that the natural neighbor interpolant
spans the space of linear polynomials (linear completeness).

Sibson natural neighbor shape functions are C1 at any point except at
the nodes, where they are only C0. The C1 continuity in the domain can be
improved by using special classes of natural neighbor shape functions [5], and
some ongoing works of Cueto’s group allow also to improve the continuity at
the nodes by computing B-splines over Voronoi diagrams.

Another important property of this interpolant is its strict linearity over
the boundary of convex domains. The proof can be found in Sukumar et al.

[12]. This result is essential to guarantee strict continuity of the approxima-
tion across material interfaces as well as the imposition of essential boundary
conditions. The lack of this property is an important issue in most meshfree
methods which require special numerical strategies to circumvent this draw-
back. As just indicated, the property of linearity of the NEM interpolant is
only satisfied along convex boundaries [12]. The difficulties related to non-
convex geometries can be circumvented using α-shapes [2] or introducing a
visibility criterion (C-NEM) [15].

Consider an interpolation scheme for a scalar functionA(x) : Ω ⊂ �2 → �,
in the form:

Ah(x) =
n(x)∑
i=1

φi(x) Ai (7)

where Ai are the nodal values of the field A at the n(x) neighbor nodes
of point x, and φi(x) are the shape functions at that point associated with
each neighbor node. It is noted that Eq. (7) defines a local interpolation
scheme. Thus, the trial and test functions used in the discretization of a generic
variational formulation can be approximated by Eq. (7).
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2.2 The constrained natural element method – C-NEM –

In the C-NEM a visibility criterion was introduced in order to restrict influent
nodes among natural neighbors [15]. The computation of the shape functions
is then done on the basis of the so-called constrained (or extended) Voronoi
diagram (CVD) which is the strict dual of the constrained Delaunay triangu-
lation.

The intersection between the constrained Voronoi diagram and the domain
closure is composed of cells TC

i , one for each node ni, such that any point
x inside TC

i is closer to ni than to any other node nj visible from x. The
constrained Voronoi cells are defined formally by:

TC
i = {x ∈ �n : d(x,xi) < d(x,xj),

∀j �= i, Sx→ni
∩ Γ = ∅, Sx→nj

∩ Γ = ∅
}

(8)

where Γ is the domain boundary and Sa→b denotes the segment between the
points a and b.

A generalization of the constrained Delaunay triangulation to 3D does not
exist without adding new nodes. Nevertheless, some techniques for construct-
ing 3D constrained Delaunay tessellations are available and provided in [10]
and [11] by addition of Steiner points.

2.3 The α-shape based natural element method – α-NEM –

One important issue when using meshless methods, and particularly when
one simulates forming processes from an updated Lagrangian formulation, is
free surface tracking. Since, by definition, meshless methods do not need any
explicit connectivity between nodes, and consequently the nodes belonging
to the domain boundary must be identified with the help of an appropriate
technique. In this section we introduce an approach based on the use of the
geometrical concept of α-shapes. The concept of shape had traditionally no
formal meaning, so it is possible to define a complete family of shapes of
a cloud of points by introducing a parameter α that can be considered as a
measure of the level of detail up to which the domain is going to be represented.
α-shapes provide a means so as to eliminate from the triangulation those
triangles or tetrahedra whose size is bigger than the before-mentioned level of
detail. This criterion is very simple: just eliminate those triangles (tetrahedra)
whose circum-radius is bigger than the level of detail, α. For a more in depth
description the reader is referred to [2] [3] and the references therein.

In order to clarify the concepts just introduced, we present in the following
paragraphs an example of α-shapes computed from a cloud of points corre-
sponding to the simulation of an extrusion process. In this section we will
restrict ourselves to geometrical concepts only. The key idea of the method
proposed here is to extract the shape of the domain at each time step by invok-
ing the concept of α-shape of the cloud. The α parameter will be obtained by
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geometrical considerations. In this case the radius at the outlet of the tooling,
for instance, seems to be the smallest level of detail up to which the domain
must be represented. The nodal distance h must be chosen accordingly.

Fig. 2. Some members of the family of α-shapes of the cloud of points used in
the extrusion example. (top-left) α = 0 (the cloud of points) (top-right) α ≈ 0.5h

(bottom-left) α ≈ h and (bottom-right) α = ∞ (the convex hull of the set)

In Fig. 2 some members of the family of α-shapes of the cloud of points
in its final configuration are depicted. In Fig. 2(a) the member for α = 0, i.e.,
the cloud of points itself, is shown. Note how, as α is increased, the number
and size of the simplexes (in this case, triangles) that belong to the shape is
increasing. For α ≈ h we obtain an appropriate shape for the cloud. Note,
however, that this is not an exact value to be determined at each time step.
There exists an interval of acceptable α values for a single shape. Finally, by
increasing the α value, the convex hull of the cloud of points is obtained.

This construction allows to reproduce exactly linear polynomials over the
boundary of any domain. When dealing with piece-wise homogeneous do-
mains, for instance, it is also necessary to ensure the discontinuity of the
derivatives of some field (which is itself continuous across the interface). This
can also be done by avoiding natural neighbourhood between nodes placed at
both sides of the material interface.
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2.4 C-NEM versus α-NEM

The application of the C-NEM requires the definition of the constrained
Voronoi diagram, that itself requires an explicit description of the domain
boundary, which is usually described from a set of nodes defining a polygonal
curve. For this reason this technique seems specially well adapted for treating
problems in which the geometry or interfaces evolve moderately [16], or the
ones involving fixed or moving cracks [15].

On the contrary the α-NEM seems specially well adapted for treating prob-
lems in which the domain geometry evolves significantly, as the ones involving
large transformation or complex fluid flows [7]. However its application in the
context of fracture mechanics deserves particular treatments, due to the oc-
casional high level of detail induced by the crack separation.

Mixed strategies could be imagined: the α-shapes extracting the domain
geometry whereas the interfaces treatment is carried out in the C-NEM frame-
work. This marriage allows to profit the most appealing properties of each one
of these strategies.

3 Representation of evolving interfaces

3.1 Tracking versus capturing

To represent evolving weak discontinuities the most standard procedures are
the ones based on an interface tracking or capturing it by solving the PDE
governing its motion. The first strategy is more simple, but its applicability
is restricted to problems in which the interface evolves moderately, because
for complex evolutions the tracking algorithm becomes too sophisticated to be
efficient. In that follows and for the sake of simplicity we restrict our discussion
to the 2D case, however, extension to the 3D case is straightforward.

On the other hand, the interface can be captured using different strate-
gies. In the volume-of-fluid method the interface defines the discontinuity of
the characteristic function related to one of the regions that the interface de-
fines. The interface can be defined by the interpolated curve or the elements
(when a discontinuous piecewise constant approximation is considered) re-
lated to a value of 1/2 of the characteristic function. This kind of strategies
fail when accurate interface descriptions are desired. Another more accurate
description defines the interface as the zero value of a level-set function. This
level-set function is advected with a certain velocity that on the interface
must coincide with the real interface velocity. During its motion, this level-set
function degenerates and must be updated frequently to preserve accuracy in
the interface description. The most usual correction consists in transforming
the advected level set into a signed distance to the interface. Different efficient
algorithms exist today for performing both the advection and the updating of
that level-set function. The intersection of the curve related to the zero level
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set value (extracted by interpolation) with a background mesh can be used as
the nodes defining the interface. Now, two possibilities exist from the point of
view of the construction of a functional interpolation:

1. To enrich the interpolation to describe the transmission conditions across
the interface using Partition of Unity; enforcing reproduction conditions
during the construction of the interpolation functions; or by enriching
the interpolation in the elements which are intersected by the interface
introducing additional degrees of freedom that can be condensed in the
original ones as in the cohesive elements framework. If one is applying
this last strategy the size of the problem remains constant because no
new degrees of freedom are introduced during the simulation.

2. The intersection points between the zero level-set curve and the back-
ground Delaunay triangulation can be considered as new discretization
nodes. Now, the interpolation can be defined at both interface sides as-
suring the functional continuity but its discontinuous normal derivative.
If the natural element method is been used, the distortion of the Delaunay
triangulation in the neighborhood of the interface does not affect to the
interpolation accuracy as proved in [16]. However, in this technique the
size of the discrete problem is evolving, because the number of intersection
points between the interface and the background Delaunay triangulation
changes during the motion of the interface.
If the interface is described by a constant number of points that are ad-
vected by the interface velocity (tracking technique), then the size of the
discrete problem remains constant, but we can imagine that this possibil-
ity can be only envisaged when the interface evolves moderately, because
in other cases the addition of new nodes to represent the interface geom-
etry is compulsory.

3.2 Interpolation: enrichment versus explicit interface
representation

Interpolation enrichment based on MLS-NEM

There are three main possibilities of enrichment:

1. Partition of unity enrichment. The first one concerns the use of the Par-
tition of Unity paradigm (as usually considered in the framework of the
extended finite element – X-FEM – [8]) that generates a linear system
whose size evolves as the interface evolves (the nodes of the elements that
are intersected by the interface are enriched with new degrees of freedom).
As the interpolation generated by the NEM satisfies the partition of unity,
all the developments proposed in the context of the finite elements can
be extended straightforward to the NEM. This was for example the tech-
nique used in [4] for defining mixed interpolations verifying the stability
LBB conditions.
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2. Element interpolation enrichment. In this case the interpolation in the
elements intersected by the interface is enriched by using a function whose
derivative becomes discontinuous across the interface and that vanishes
at the nodal positions. This new approximation function has associated
a new degree of freedom that does not corresponds to a nodal value. By
imposing the transmission conditions this new degree of freedom can be
written as a function of the nodal values. Thus, this new degrees of freedom
are finally condensed on the initial ones, assuring a constant size of the
discrete problem which corresponds to the original cloud of nodes.

3. Moving Least Squares enrichment. The consideration of this strategy al-
lows to define an hybrid technique (MLS-NEM) in which different consis-
tencies can be enforced (e.g. the required by material interfaces) without
detriment of the appealing NEM properties.

In that follows we focus on the second strategy due to its novelty. Due
to the equivalence between the moving least squares and the reproducing
kernel particle methods, we are considering by the sake of simplicity the last
framework. Let Ω be a 1D domain where the problem is defined (all the results
have a direct 2D or 3D counterpart). The points within this domain will be
noted by x or s.

The approximation uh(x) of u(x) is built from the convolution integral

uh(x) =
∫

Ω

w(x− s, h)u(s)dΩ (9)

where w(x − s, h) is the kernel function and h a parameter defining the size
of the approximation support.

The main idea in the enriched RKPM method [14] is to enforce the repro-
duction of a general function that we can write in the form of a polynomial
plus another function noted by ue(x):

uh(x) = a0 + a1x+ . . .+ anx
n + an+1u

e(x) (10)

In the following paragraphs we analyze the required properties of the kernel
function w(x− s, h) for reproducing a function expressed by (10).

From Eq. (9), the reproduction of a constant function a0 is given by∫
Ω

w(x− s, h)a0dΩ = a0 (11)

which implies ∫
Ω

w(x− s, h)dΩ = 1 (12)

which constitutes the partition of unity.
Now, the required condition to reproduce a linear function ua(x) = a0+a1x

is
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∫
Ω

w(x− s, h)(a0 + a1s)dΩ = a0 + a1x (13)

By using the partition of unity (12), Eq. (13) can be rewritten as{∫
Ω
w(x− s, h)dΩ = 1∫

Ω
w(x− s, h)sdΩ = x

(14)

which implies the linear consistency of the approximation. Repeating this
reasoning results ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω
w(x− s, h)dΩ = 1∫

Ω
w(x− s, h)sdΩ = x

...∫
Ω
w(x− s, h)sndΩ = xn∫

Ω
w(x− s, h)ue(s)dΩ = ue(x)

(15)

We will note by ur(x) the approximation function verifying the conditions
(15). Usually a cubic spline is considered as kernel function, and consequently
the conditions given by Eq. (15) are not satisfied. Liu et al. [6] propose the
introduction of a correction function C(x, x−s) for satisfying the reproduction
conditions. In our case we consider the more general form C(x, s, x−s) whose
pertinence will be discussed later. Thus ur(x) will be expressed by

ur(x) =
∫

Ω

C(x, s, x− s)w(x− s, h)u(s)dΩ (16)

where C(x, s, x− s) is assumed to have the following form

C(x, s, x− s) = HT (x, s, x− s)b(x) (17)

where HT (x, s, x−s) represents the vector containing the functions considered
in the approximation basis, and b(x) is a vector containing unknown functions
that will be determined for satisfying the reproduction conditions. Thus, Eq.
(15) can be rewritten and the vector b(x) evaluated after the introduction of
a quadrature formula.

Thus, the functional approximation can be expressed as (see [14] for addi-
tional details)

ur(x) ∼=
N∑

i=1

ψi(x)ui (18)

where ψi is the enriched RKP approximation shape function, leading to the
so-called enriched reproducing kernel particle approximation (E-RKPA).

To define NN-approximations with discontinuous derivatives we could pro-
ceed in the context of the partition of unity (as in the extended finite element
technique). However, in this work we propose an enrichment that does not
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involve additional degrees of freedom. For this purpose we start introduc-
ing the enriched reproducing kernel particle method, that by introducing the
NN-interpolation as kernel function leads to NN-interpolation functions with
discontinuous derivatives, leading to the so-called enriched natural element
interpolation (E-NEM).

To define NN-approximations with discontinuous derivatives we could pro-
ceed in the context of the partition of unity (as in the extended finite element
technique). However, in this work we propose an enrichment that does not
involve additional degrees of freedom. For this purpose we start introduc-
ing the enriched reproducing kernel particle method, that by introducing the
NN-interpolation as kernel function leads to NN-interpolation functions with
discontinuous derivatives.

We consider a level set description Θ(x) of an interface where the field
normal derivatives (with respect to the interface) are discontinuous. Now, we
can introduce as enrichment function ue(x) the following function:

ue(x) = H0(Θ(x))Θ(x) (19)

where

Θ(x) =

⎧⎨⎩
Θ(x) < 0 if x ∈ Ω1

Θ(x) > 0 if x ∈ Ω2

Θ(x) = 0 if x ∈ Γd

(20)

and {
H0(Θ(x)) = 1 if Θ(x) ≥ 0
H0(Θ(x)) = 0 if Θ(x) < 0 (21)

Now, we consider a linear consistency enriched with the function given by
Eq. (19) and the kernel function w(x − xi, h) = φi(x) (the natural neighbor
shape functions). The resulting approximation shape functions have the lin-
ear consistency but allows also to reproduce discontinuous normal derivatives
across the interface Γd. As the use of the NEM kernel function restricts the
number of neighbor nodes to the natural ones, in order to impose higher order
consistency new degrees of freedom can be associated to the existing nodes,
in a formulation that we called Hermite-NEM, or in other additional nodes,
strategy that we called bubble-NEM [18].

To illustrate the capabilities of the proposed technique we consider the ex-
act solution of the Laplace’s problem (modelling the temperature distribution
in a steady heat transfer problem) defined in a bi-material consisting of two
cylinders with different thermal conductivities. The reproduction tests have
been carried out using the E-RKPM as well as the E-NEM, where the circu-
lar interface was modelled from the distance to that interface that multiplies
the Heaviside’s function related to that distance. Fig. 3 illustrate a detail of
the reconstructed temperature field where we can notice an accurate descrip-
tion of the interface. The discontinuity in the field derivatives is accurately
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accounted, as suggested by the representation of the x-derivative depicted in
figure 3.

Fig. 3. (left) Enriched Natural Neighbor approximation with discontinuous normal
derivatives across a circular interface; (right) x-derivative of the temperature field.

Finally, in order to quantify the accuracy of the results we compare in
figure 4 the error (using the two usual norms) using the E-RKPM and the
E-NEM techniques. In figure 4(right) we can notice that the E-NEM error is
not affected by the slope change across the interface, that increases with the
difference of thermal conductivities (for k1 = 10 the ratio of conductivities is
10 whereas it is of 100 for k1 = 100).
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Fig. 4. (left) Approximation errors using the E-RKPM and the E-NEM; (right)
E-NEM approximation error for different conductivities ratios.

Explicit interface representation

The ability of the C-NEM for treating problems involving cracks has been il-
lustrated in [15] and for moving interfaces in thermal problems in [16]. In the
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present paper, the domain is partitioned in some regions with different mate-
rial properties. Each subdomain is discretized using a cloud of nodes and the
interfaces between the different regions are described by a polygonal curve
defined by a set of nodes. Then, a constrained Voronoi diagram is defined
at each subdomain with respect to the domain boundary and the interfaces.
The attractive feature of the present technique is the possibility to move the
interfaces without special care for the shape of the underlying Delaunay tri-
angles because the interpolation accuracy does not depend on the geometrical
quality of the Delaunay triangles, in contrast to the FEM. In this manner,
the continuity of the approximation is guaranteed by the strict linearity of
the interpolation across the interfaces, that are defined by a set of interface
nodes.

To illustrate this behavior, we consider the situation depicted in Fig. 5,
where the point x moves from Ω1 to Ω2. If x is in Ω1, the interpolated field is
constructed using the visible neighbor nodes from point x, all of them inside
Ω1 (ΓIΓ is assumed opaque). If x is on ΓIΓ , according to the previous discussion,
the interpolated field is strictly linear because it only depends on the two
neighbor nodes located on ΓIΓ . Finally, when x is in Ω2, the interpolated field is
defined using the visible neighbor nodes from point x all of them inside Ω2 (ΓIΓ
being opaque). The continuity of the interpolated field is then guaranteed, but
a discontinuity appears in the normal derivative across the interface, because
of a sudden change in the neighbor nodes across the interface.

Fig. 5. Reproducing discontinuous derivatives using the constrained Voronoi dia-
gram.

4 Model reduction

4.1 Fundamentals: Karhunen-Loève decomposition and reduced
basis enrichment

We assume that the evolution of a certain field T (x, t) is known. In practi-
cal applications, this field is expressed in a discrete form which is known at
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the nodes of a spatial mesh and for some times tm. Thus, we consider that
T (xi, t

m) = Tm(xi) ≡ Tm
i (tm = m × Δt). We can also write Tm for the

vector containing the nodal degrees of freedom at time tm. The main idea
of the Karhunen-Loève (KL) decomposition is to obtain the most typical or
characteristic structure φ(x) among these Tm(x), ∀m. This is equivalent to
obtain a function that maximizes α:

α =

∑m=M

m=1

[∑i=N

i=1 φ(xi)Tm(xi)
]2

∑i=N

i=1 (φ(xi))2
(22)

The maximization leads to:

m=M∑
m=1

[( i=N∑
i=1

φ̃(xi)Tm(xi)
)( j=N∑

j=1

φ(xj)Tm(xj)
)]

= α
i=N∑
i=1

φ̃(xi)φ(xi); ∀φ̃

(23)
which can be rewritten in the form

i=N∑
i=1

{
j=N∑
j=1

[m=M∑
m=1

Tm(xi)Tm(xj)φ(xj)
]
φ̃(xi)

}
= α

i=N∑
i=1

φ̃(xi)φ(xi); ∀φ̃ (24)

Defining the vector φ such that its i-component is φ(xi), Eq. (24) takes
the following matrix form

φ̃
T
c φ = αφ̃

T
φ; ∀φ̃⇒ c φ = αφ (25)

where the two-point correlation matrix is given by

cij =
m=M∑
m=1

Tm(xi)Tm(xj) ⇔ c =
m=M∑
m=1

Tm(Tm)T (26)

which is symmetric and positive definite. If we define the matrix Q containing
the discrete field history:

Q =

⎛⎜⎜⎜⎝
T 1

1 T 2
1 · · · TM

1

T 1
2 T 2

2 · · · TM
2

...
...

. . .
...

T 1
N T 2

N · · · TM
N

⎞⎟⎟⎟⎠ (27)

then it is easy to verify that the matrix c in Eq. (25) results

c = Q QT (28)
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A posteriori reduced modelling

If some direct simulations have been carried out, we can determine Tm
i ,

∀i ∈ [1, · · · , N ] and ∀m ∈ [1, · · · ,M ], and from these solutions the n eigenvec-
tors related to the n-highest eigenvalues that are expected to contain the most
information about the problem solution. For this purpose we solve the eigen-
value problem defined by Eq. (25) retaining all the eigenvalues φ

k
belonging

to the interval defined by the highest eigenvalue and that value divided by a
large enough value (108 in our simulations). In practice n is much lower than
N . Thus, we can try to use these n eigenfunctions φ

k
for approximating the

solution of a problem slightly different to the one that has served to define
Tm

i . For this purpose we need to define the matrix B = [φ
1
· · ·φ

n
]

B =

⎛⎜⎜⎜⎝
φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)
...

...
. . .

...
φ1(xN ) φ2(xN ) · · · φn(xN )

⎞⎟⎟⎟⎠ (29)

Now, if we consider the linear system of equations coming from the dis-
cretization of a generic problem, in the form:

G Tm = Hm−1 (30)

where the superscript refers to the time step, then, assuming that the unknown
vector contains the nodal degrees of freedom, it can be expressed as:

Tm =
i=n∑
i=1

ζm
i φ

i
= B ζm (31)

from which Eq. (30) results

G Tm = Hm−1 ⇒ G B ζm = Hm−1 (32)

and by multiplying both terms by BT we obtain

BTG B ζm = BTHm−1 (33)

which proves that the final system of equations is of low order, i.e. the dimen-
sion of BTG B is n× n, with n� N .

Enriching the approximation basis

Obviously, accurate simulations require an error evaluation as well as the
possibility of adapting the approximation basis by introducing new functions
able to describe the solution features. Ryckelynck proposed in [9] an adaptive
procedure, able to construct or enrich the reduced approximation basis. For
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this purpose, he proposed to add to the reduced approximation basis some
Krylov subspaces generated by the equation residual. Despite the fact that this
enrichment tends to increases the number of approximation function, when it
is combined with a KL decomposition that continuously reduces this number,
the size of the problems is quickly optimized and some times stabilized. This
technique is summarized in the present section.

We assume at present that the evolution problem has been solved in the
entire time interval using the reduced basis defined by matrix B (in reference
to Eq. (31)) solving Eq. (33):

ζm =
(
BTG B

)−1
BTHm−1 (34)

We assume that tmax = M × Δt and consequently the residual at tmax,
RM , can be computed from

RM = G B ζM −HM−1 (35)

If the norm of the residual is small enough ‖RM‖ < ε (being ε a small
enough parameter) the computed solution can be assumed as good, but on
the contrary, if ‖RM‖ ≥ ε, the solution must be improved. For this purpose,
we propose to enrich the reduced approximation basis by introducing the just
computed residual:

B ← [B RM ] (36)

and now, the evolution is recomputed in the entire whole interval using Eq.
(34) with the just updated reduced basis B. Both steps, enrichment and
the evolution updating, must be repeated until verifying the stop condition
‖RM‖ < ε. After reaching this threshold value, the final reduced approxima-
tion basis could be constructed by applying the Karhunen-Loève decomposi-
tion to the last time evolution of the solution.

4.2 Accounting for weak discontinuities

When one considers the application of model reduction techniques in prob-
lems involving weak discontinuities, two questions arise suddenly: (i) Can the
transient solution of problems involving weak discontinuities be expressed as
a linear combination os a reduced number of modes?; and (ii) Can the approx-
imation basis be enriched using the residual? The first question determines
the reducibility of the problem and the second one the possibility to perform
this reduction in a priory approach.

In concluding these two question we consider a one dimensional heat trans-
fer problem defined by:

∂Ti(x, t)
∂t

= ki

∂2Ti(x, t)
∂x2

+ f(x), x ∈ Ωi (37)

52



Accounting for weak discontinuities in the NEM

where Ω1 =] − 1, 0[ and Ω2 =]0, 1[, f(x) = 1, k = 1 and k = 10 (all the units
in the metric system), being the initial, boundary and transmission conditions
given by: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T1(x = −1, t) = 0
T1(x, t = 0) = 0
T2(x = 1, t) = 0
T2(x, t = 0) = 0
T1(x = 0, t) = T2(x = 0, t)
−k1

∂T1
∂x

∣∣
x=0,t

= −k2
∂T2
∂x

∣∣
x=0,t

(38)

Figure 6 depicts the temperature evolution for t < 1s as well as the func-
tions that results from the Karhunen-Loève decomposition and that are asso-
ciated to eigenvalues grater than 10−8 times the highest one. The reducibility
of the model is proved by the existence of only 4 functions from which the en-
tire solution evolution can be expressed. It is easy to prove that the solution of
the transient problem expressed in this reduced basis is in perfect agreement
with the finite element solution in the entire time interval.
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Fig. 6. (left) Time evolution of the temperature profile; (right) functions defining
the reduced approximation basis.

To address the second question we consider the solution of the transient
problem starting from a reduced basis that only contains the function depicted
in figure 7. This reduced basis in enriched by adding the residual computed
at time t = 1, from which the entire evolution is recomputed. Even if the
enrichment increases the size of the discrete problem, the Karhunen-Loève
decomposition performed when the convergence is reached allows to reduced
the size of the approximation basis. Thus, the size of the discrete problem
remains stabilized through the entire simulation.

Figure 7 depicts the function that constitutes the first reduced approxi-
mation basis basis as well as the residual associated to the solution at t = 1
computed in that reduced basis (broken line). The solution obtained at t = 1
when the enrichment algorithm converges is also depicted in this figure, and
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we can notice that it corresponds to the one computed using the global finite
element basis.
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Fig. 7. (left) First approximation function and its associated residual at t = 1;
(right) Computed solution at t = 1 after convergence of the enrichment algorithm.

5 Conclusions

In this paper we have explored some alternatives for treating fixed or evolving
weak discontinuities in the context of the meshless natural element method.
We have illustrated that standard and new strategies can be applied without
detriment of the main appealing properties of this meshless discretization
technique.

We have also presented some preliminary results concerning the reduc-
tion of such models. In the case of fixed interfaces the reduction procedure
works, opening new perspectives in the reduction of models involving evolving
discontinuities. This topic that constitutes a work in progress, combines the
element enrichment (followed by a static condensation of the new introduced
degrees of freedom) and the standard model reduction previously described.
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Modeling Evolving Discontinuities with
Spacetime Discontinuous Galerkin Methods

Reza Abedi1, Shuo-Heng Chung2, Morgan A. Hawker3,
Jayandran Palaniappan1, and Robert B. Haber1

Summary. We review recent progress in applying spacetime discontinuous Galerkin
(SDG) finite element methods to problems whose solutions exhibit various types of
moving discontinuities. SDG models and related solution methods offer a number
of attractive features, including element-wise satisfaction of the governing balance
laws, linear computational complexity in the number of spacetime elements, and a
computational structure that readily supports parallel implementations. We describe
the use of new unstructured spacetime meshing procedures ind discretizing evolving
discontinuities. Specifically, we show how h-adaptive spacetime meshing can be used
to capture weak shocks in linear elastodynamics, how the SDG framework provides a
convenient setting for implementing cohesive models for dynamic fracture, and how
more advanced spacetime meshing procedures can deliver sharp representations of
discontinuous solution features by tracking the trajectories of contact discontinuities
in compressible gas dynamics.

Key words: spacetime, discontinuous Galerkin, adaptive analysis, cohesive
fracture, interface tracking

1 Introduction

1.1 Numerical Representations of Evolving Discontinuities

Discontinuous fields are common in continuum physics, yet their accurate
representation remains one of the most challenging problems in computa-
tional mechanics, especially when the loci of singular surfaces evolve during
the course of a simulation and are unknown a priori. Examples of evolving
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discontinuities include shocks in solid and fluid dynamics, growing cracks and
moving phase boundaries arising in heterogeneous flows or the microstructures
of solid materials.

Standard conforming finite element models do not admit discontinuous
functions. However, even for various nonconforming models that admit dis-
continuities, singular surfaces are generally restricted to discrete, mesh-related
manifolds whose trajectories must be aligned with the discontinuous solution
features to obtain an accurate result. This alignment poses special challenges,
especially in problems where singular surfaces nucleate spontaneously or alter
their connectivity through self-intersection. Beyond simply admitting discon-
tinuous solution features in the discrete model, it is critical to enforce the
correct jump conditions arising from the relevant balance laws and to respect
the relevant interface kinetics to obtain a physically meaningful model.

Discretizing evolving discontinuities remains a ubiquitous and challenging
problem in computational science and engineering and an active area in nu-
merical methods research. We do not attempt a comprehensive review here.
Instead, the following subsections identify some of the primary classes of avail-
able methods for resolving discontinuous fields, particularly those related to
the methods presented in the later sections of this work. Our focus is primarily
on finite element methods that address this issue.

Discontinuity/Shock Capturing with h-Refinement

We refer to methods that attempt to approximate discontinuous solution fields
in continuous solution spaces as capturing methods ; these are by far the most
popular approach. The main advantage of this approach is that no special
meshing procedures are needed to make the grid conform to evolving dis-
continuities, especially when the connectivities of singular surfaces change
over time. The mesh might be Lagrangian or Eulerian and structured or
unstructured, depending on the problem at hand. The solution space must
be sufficiently enriched so that the continuous approximations of jumps are
sufficiently sharp. Satisfying this requirement for problems with evolving dis-
continuities on a static grid can be prohibitively expensive, so some form of
adaptive analysis is desirable, even though the mesh is not required to track
the discontinuity.

Conforming finite element methods based on Bubnov-Galerkin projections
suffer severe numerical artifacts and might even fail, especially for hyperbolic
and hyperbolic-parabolic problems, when applied to problems with discon-
tinuous soltuions. Non-local Gibbs oscillations as well as overshoot and un-
dershoot at shocks are common problems. There is an extensive literature on
stabilized finite element methods and shock-capturing operators to address
these problems. The streamline upwind Petrov-Galerkin (SUPG) method, the
Galerkin/least squares (GLS) method and the use of bubble functions exem-
plify successful finite element techniques for this class of problems (see for
example, [8,9,23,24,26,42]). The formulation of new methods with improved
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shock-capturing properties remains an active research area; recent contribu-
tions include spectral vanishing viscosity methods [27, 44] and sub-cell shock
capturing [39].

Cohesive Damage Models for Fracture

Cohesive damage models, first introduced by Dugdale [15] and Barenblatt [5],
simulate crack initiation and growth by modeling the macroscopic effects of
various nonlinear damage processes in the neighborhood of the crack tip.
A constitutive traction–separation law (TSL) describes the traction acting
on a cohesive interface as a nonlinear, bounded function of the separation
across the interface [20, 34, 35, 45, 49, 51]. The TSL eliminates the crack-tip
stress singularities that arise in classical fracture mechanics and introduces a
microscopic length scale that is essential to the fracture model [19].

Numerical implementations of cohesive damage models present three spe-
cial requirements: the model must admit jumps in the displacement field across
cohesive surfaces, there must be a mechanism for enforcing the traction–
separation law, and there must be sufficient enrichment to capture the evol-
ution of mechanical fields associated with growing cracks. Special cohesive
elements embedded in a mesh of conforming finite elements provide a com-
mon means to address the first two requirements [10,13,49]. The cohesive ele-
ments discretize the cohesive interface and the TSL is incorporated into their
constitutive model. Alternatively, the cohesive law can also be enforced as a
boundary condition on the cohesive interface [34,45]. More recently, partition
of unity, extended finite element or generalized finite element methods have
emerged as alternative means to model cracks and cohesive interfaces within
finite elements (as opposed to exclusively at boundaries) [6, 14, 31–33, 48].
These methods relax the coupling between the mesh geometry and the crack
path.

Sufficient grid refinement is required to capture the detailed response in
the vicinity of the active process zone and to enforce accurately the nonlinear
traction–separation law. Numerical instabilities can arise if a minimum level
of mesh refinement is not realized along the cohesive process zone [20]. The
pattern of refinement must evolve to track the moving process zones as a
crack propagates. Schrefler et al. periodically remesh the structure to model
this phenomenon in quasi-static fracture analysis [41]. In the case of dynamic
fracture, mesh refinement must also track the trajectories of sharp wavefronts
that are either emitted by moving crack tips or generated by shock loading.
Adaptive refinement algorithms can guarantee accuracy and stability, while
avoiding the prohibitive expense of uniform mesh refinement. Pandolfi and
Ortiz adaptively insert cohesive elements to follow arbitrary crack paths in
fragmentation studies [38]. A recent adaptive analysis procedure by Krysl and
Belytschko [28] employs an element-free Galerkin method to simplify adaptive
refinement and track the crack in an arbitrary direction.
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Tracking Methods

We use the term discontinuity tracking to describe methods that attempt to
model solution discontinuities with true jumps in the discrete solution space by
aligning certain mesh features that accommodate jumps with evolving discon-
tinuous features. The most common choice is to associate jumps with element
boundaries, but recent applications of extended finite element methods [53]
and related partition of unity methods [4] allow greater flexibility by allowing
discontinuities to pass through element interiors. However, it is still necessary
to align integration cells with intra-element discontinuities and to respect the
usual geometric quality constraints on the subdivided element domains.

The mesh must track discontinuities continuously through a time step in
dynamics applications, rather than simply update the mesh between time
steps. Thus, some form of moving-grid method is required. The Arbitrary
Lagrangian–Eulerian (ALE) methods were among the first finite element pro-
cedures to implement this strategy [22]; there have been numerous applica-
tions since (see for example, [30]). In contrast to capturing methods, tracking
methods’ support for true jumps in the discrete solution also presents an
opportunity to address the associated jump conditions in the formulation.

On the other hand, continuous tracking methods introduce a number of
complications. Moving meshes distort element geometries and eventually trig-
ger re-meshing operations to (if constraints on minimum element quality are
enforced). Unfortunately, re-meshing itself generates significant errors as the
solution is projected from the old mesh to the new. One can limit the mesh
distortion by moving free nodes in concert with the motions of nodes con-
strained to follow a moving singular surface, but this usually adds cost and
complexity to the algorithm. In Lagrangian formulations, moving mesh meth-
ods generate convective terms that might require special treatment in the
finite element formulation. Finally, tracking methods can become intractable
when the connectivities of singular surfaces evolve during the course of the
simulation. Nonetheless, for problems where they are feasible, their ability to
render true discontinuities without strong mesh refinement while enforcing
the proper jump conditions often make tracking methods the most accurate
and least expensive option for discretizing a discontinuity.

Implicit geometry models, such as level set methods [36], provide a power-
ful approach for modeling evolving interfaces with complex geometry and
varying connectivity (see for example, [17]). These methods combine aspects
of capturing and tracking methods; although the level-set contour tracks the
evolving interface, a capturing method is typically used (often on a fixed Eu-
lerian grid) to model the discontinuous response.

1.2 Spacetime Discontinuous Galerkin Methods

This contribution reviews recent progress in the use of adaptive spacetime
discontinuous Galerkin (SDG) finite element methods for tracking evolving
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discontinuities. See [12] for a survey of discontinuous Galerkin finite element
methods. In this work, our focus is on spacetime discontinuous Galerkin (SDG)
methods that involve direct discretization of spacetime domains and that
use basis functions that are fully discontinuous across all spacetime element
boundaries. When applied to hyperbolic problems and implemented on suit-
ably constructed spacetime grids, SDG methods support efficient element-
by-element or patch-by-patch solution procedures [2, 11, 25, 29, 40, 50]. SDG
solution methods share a number of attractive features:

• element-wise satisfaction of the governing balance/conservation laws
• linear computational complexity in the number of spacetime elements (for

fixed polynomial order)
• support for high-order approximations on a fixed, compact stencil
• support for spacetime adaptive meshing operations with zero projection

error
• a computational structure that lends itself to parallel implementations

The discontinuous nature of the SDG basis functions might appear to ad-
dress directly the problem of discretizing evolving discontinuities. Indeed, we
illustrate the use of this property for discretizing growing cracks and mov-
ing contact discontinuities in Subsections 5.2 and 5.3 below. However, these
techniques require a careful alignment between the spacetime grid and the
trajectories of singular surfaces that might not be easy to achieve. Especially
in cases where the connectivity of the discontinuous features changes over
time, the flexibility of spacetime adaptive meshing and the accuracy delivered
by the element-wise balance properties are of equal or greater importance in
capturing moving discontinuities. We demonstrate both approaches below.

1.3 Organization of This Paper

The remaining content of this paper is organized as follows. Section 2 intro-
duces the special notation based on the exterior calculus and differential forms
used to formulate our spacetime methods. Section 3 presents summaries of the
SDG formulations for linear elastodynamics and for the inviscid Euler equa-
tions for gas dynamics that support the numerical examples in this paper.
Explanations of our spacetime meshing procedures and the patch-by-patch
SDG solution procedure they support appear in Section 4. Section 5 presents
three applications of the SDG method to modeling evolving discontinuities.
These cover capturing weak shocks in elastodynamics via h-adaptive space-
time meshing, implementation of a cohesive damage model for elastodynamic
crack growth within the SDG framework, and a study of the use of interface
tracking in spacetime for modeling a moving contact discontinuity in a shock
tube simulation. Section 6 presents conclusions and prospects for further de-
velopment.
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2 Differential Forms and Notation

This section introduces special notation used in our spacetime formulations
that accesses the mathematical machinery of differential forms and the exter-
ior calculus on manifolds. See [7, 18, 43] for a more complete development of
these subjects and [2] for more detail on our particular usage. While this nota-
tion is non-standard in mechanics it provides a direct coordinate-free notation
for the spacetime setting that delivers similar advantages to those offered by
direct tensor notation in the purely spatial setting. In particular, we obtain a
simple and intuitive means for expressing balance and conservation laws over
arbitrary spacetime subdomains that automatically include the relevant jump
conditions on the spacetime trajectories of singular surfaces.

Let d be the spatial dimension, and let the reference spacetime analysis
domain D be an open (d + 1)-manifold in E

d × R with a regular boundary.
The spacetime coordinates

(
x1, . . . , xd, t

)
are the spatial coordinates followed

by the time coordinate and are defined with respect to the ordered basis
(e1, . . . , ed, et). The dual basis is

(
e1, . . . , ed, et

)
. We follow the standard sum-

mation convention; latin indices range from 1 through d, except the index ‘t’
which denotes time and does not imply summation when repeated.

The top form on D is Ω := dx1 ∧ . . .∧dxd ∧dt, where we make use of the
standard ordered basis for 1-forms:

(
dx1, . . . ,dxd,dt

)
. The standard ordered

basis for d-forms is (dx̂1, . . . ,dx̂d, dt), in which dx̂j := dxj where  is the
Hodge star operator. Thus, dxj∧dx̂k = δj

kΩ;dt∧dx̂k = 0; dt∧dt = Ω; and
dxj ∧ dt = 0. We identify dx̂j and dt with, respectively, the differential
spacetime volume element that is the geometric dual of ej and the purely
spatial differential volume element. We use i := iet to denote the temporal
insertion operator.

We use forms with scalar and tensor coefficients to develop our theory. Bold
Italic symbols denote forms (with either scalar or tensor coefficients), while
bold non-Italic symbols denote vector and tensor fields on D. We introduce a
special 1-form with vector coefficients, dx := eidx

i, and a special d-form with
vector coefficients, dx := eidx̂i. We define the exterior product of two forms
with tensor coefficients as

aψ ∧ bω := a(b)(ψ ∧ ω) (1)

in which a and b are tensor fields onD of ordersm and n respectively (m ≥ n),
and ψ and ω are p and q-forms on D such that p+ q ≤ d+ 1.

3 Formulations

This section presents brief reviews of the SDG formulations for linearized
elastodynamics and the Euler equations for inviscid gas dynamics. Component
expansions are provided to illuminate the relationship between the differential
forms expression. More detailed formulations can be found in the references
cited below.
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3.1 Elastodynamics

This subsection presents a summary of a single-field SDG formulation of lin-
earized elastodynamics [2]. The displacement field u = uiei, the primary
solution variable on D, is related to the strain and velocity 1-forms according
to

E = E ∧ dx = Eijei ⊗ ej ∧ ekdxk = Eijeidxj (2)
v = u̇dt = u̇ieidt (3)

where E = sym ∇u. These two kinematic quantities sum to form a single
spacetime 1-form ε called the strain-velocity:

ε := E + v (4)

The fundamental force-like quantities are the stress and linear momentum
density d-forms given by

σ := σ̄ ∧ dx = σijei ⊗ ej ∧ ekdx̂k = σijeidx̂j (5)
p := pdt = ρu̇ieidt (6)

where σ̄ is the symmetric Cauchy stress tensor, p is the linear momentum
density vector and ρ is the mass density. The standard relationship of linear
elasticity between ε and σ̄ is strongly enforced. The restriction of σ to a
spacetime d-manifold Γ with arbitrary orientation delivers the surface traction
tΓ acting on Γ : σ|Γ = tΓ .

The spacetime momentum flux M is defined as

M := σ − p (7)

such that the restriction of M to Γ delivers the flux of linear momentum across
Γ . The exterior derivative of M is the (d + 1)-form whose vector coefficient
is the residual of the homogeneous Equation of Motion:

dM = (∇ · σ̄ − ṗ) Ω =
(
σ̄ij

,j − ρüi
)

eiΩ (8)

The body force is given by the (d+ 1)-form, b = bΩ = bieiΩ, where b is the
body force vector per unit mass. Thus, the vector coefficient of the (d+1)-form
dM + ρb is the residual of the Equation of Motion.

Consider the integral form of Balance of Linear Momentum,∫
∂Q

M +
∫

Q

ρb = 0 ∀Q ⊂ D ⇒
∫

Q

(dM + ρb) = 0 ∀Q ⊂ D (9)

in which subdomains Q are assumed to have regular boundaries, and we use
the Stokes Theorem to eliminate the boundary flux integral. Let Γ J be the
union of jump manifolds on D where M and ε are possibly discontinuous.
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Apply the Localization Theorem to (9) to obtain the Equation of Motion,
including the jump part of dM , denoted [M ], on Γ J ∪ ∂D:

(dM + ρb)|D\Γ J = 0 (10a)

[M ]|Γ J∪∂D = 0 (10b)

We replace (10b) with a stronger condition,

(M∗ − M)|Γ J∪∂D = 0 (11)

in which M∗ is either a Godunov or prescribed value of the momentum flux.
In the SDG setting, we introduce a mesh partition P of D into finite ele-

ments, and introduce a discrete bases so that M and ε are continuous within
each element but are possibly discontinuous across element boundaries. Then
the strong form of balance of linear momentum augmented by a kinematic
compatibility condition can be expressed as follows. Let V Q be the solution
space for the displacement field on element Q ∈ P . We then have the following
strong form and weighted residual statement:

Problem 1 (Strong Form). For each Q ∈ P , find u ∈ V Q such that

dM + ρb = 0 in Q (12a)
(M∗ − M)|∂Q = 0 (12b)

(ε∗ − ε)|∂Q = 0 (12c)
(u∗

0 − u0)dt|∂Qti = 0 (12d)

in which u0 is a projection of the displacement solution u into a subspace
with vanishing total energy, ∂Qti is the time-inflow boundary of Q and the
values M∗, ε∗ and u∗

0 are either Godunov or prescribed values, as described
below. The jump conditions (12c,d) enforce kinematic boundary conditions
and compatibility across element boundaries.

Problem 2 (Weighted Residual Statement). For each Q ∈ P , find u ∈
V Q such that ∀û ∈ V Q,∫

Q

˙̂u ∧ (dM + ρb) +
∫

∂Q

{
˙̂u ∧ (M∗ − M) + (ε∗ − ε) ∧ iσ̂

}
+
∫

∂Qti
kû ∧ (u∗

0 − u0)dt = 0 (13)

in which û is the weighting function, and k is a constant introduced for di-
mensional consistency.

An application of the Stokes Theorem leads to the weak problem statement:

Problem 3 (Weak Form). For each Q ∈ P , find u ∈ V Q such that ∀û ∈
V Q,
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Q

(−d ˙̂u ∧ M + ˙̂u ∧ ρb) +
∫

∂Q

{
˙̂u ∧ M∗ + (ε∗ − ε) ∧ iσ̂

}
+
∫

∂Qti
kû ∧ (u∗

0 − u0)dt = 0 (14)

Replacing V Q in Problem 3 with a discrete subspace, V Q
h ⊂ VQ, generates the

SDG finite element formulation. It is easy to show that the discrete form of
Problem 3 balances both linear and angular momentum over every spacetime
element [2].

We define the target boundary values of M and ε for each Q ⊂ D:

M∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M on ∂Qco ∪ (∂Q ∩ ∂Dε)
M+ on ∂Qci \ ∂Dci

MG(M ,M+,a∂Q) on ∂Qnc \ ∂Dnc

M on ∂Q ∩
(
∂Dci ∪ ∂DM

) (15a)

ε∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε on ∂Qco ∪

(
∂Q ∩ ∂DM

)
ε+ on ∂Qci \ ∂Dci

εG(ε, ε+, a∂Q) on ∂Qnc \ ∂Dnc

ε on ∂Q ∩
(
∂Dci ∪ ∂Dε

) (15b)

in which M and ε are traces of interior fields on Q, M+ and ε+ are traces
of exterior fields on Q, ∂Qco is the causal (space-like) outflow boundary of Q,
∂Qci (∂Dci) is the causal inflow boundary of Q (D), and ∂Qnc (∂Dnc) is the
non-causal (time-like) boundary of Q (D). The non-causal domain boundary
∂Dnc is partitioned into disjoint parts, ∂DM and ∂Dε, where M and ε are
determined by the prescribed functions M and ε. The Godunov values, MG

and εG, are obtained from the solutions to local Riemann problems [2].

3.2 Euler Equations

We define the conservation fields: mass density ρ, linear momentum density
p = ρv, and total energy denstiy E = e+ 1

2 |v|2 where e is the specific internal
energy. Let p = ρe

γ−1 be the pressure with adiabatic index γ and σ̄ = pδijei⊗ej

be the stress. The spacetime conservation fluxes and their exterior derivatives
are

Fρ = ρdt+ ρv ∧ dx dFρ = (ρ̇+ ∇ · ρv) Ω (16a)
Fp = pdt+ (p ⊗ v − σ̄) ∧ dx dFp = [ṗ + ∇ · (p⊗ v − σ̄)] Ω (16b)

FE = Edt+ [Ev + σ̄(v)] ∧ dx dFE =
{
Ė + ∇ · [Ev + σ̄(v)]

}
Ω(16c)

Note that the exterior derivatives render local residual forms of conservation
of mass, linear momentum and energy. We rewrite the fluxes in (16) in vector
format as
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F :=

⎧⎨⎩
Fρ(q)
Fp(q)
FE(q)

⎫⎬⎭ q :=

⎧⎨⎩
ρ
p
E

⎫⎬⎭ . (17)

Following arguments similar to those in the previous subsection, we write the
integral and local forms of the system conservation statement ∀Q ⊂ D:∫

∂Q

F = 0 ⇔
{

dF |Q = 0
[F ]|∂Q = (F ∗ − F )|∂Q = 0. (18)

We use Godunov values for the fluxes F ∗; this ensures satisfaction of the
entropy inequality over each subdomain Q.4 The jump conditions in (18) are
the Rankine-Hugoniot conditions that govern the motions of shocks.

We introduce a discrete subspace V Q
h and apply a simple Bubnov-Galerkin

projection to develop the SDG weighted residual statement and the weak form
used for numerical implementation.

Problem 4 (SDG Weighted Residual Statement). For each Q ∈ P(D),
find q ∈ V Q

h such that∫
Q

q̂ ∧ dF +
∫

∂Q

q̂ ∧ (F ∗ − F ) = 0 ∀q̂ ∈ V Q
h . (19)

Problem 5 (SDG Weak Statement). For each Q ∈ P(D), find q ∈ V Q
h

such that
−
∫

Q

dq̂ ∧ F +
∫

∂Q

q̂ ∧ F ∗ = 0 ∀q̂ ∈ V Q
h (20)

A piece-wise constant choice for q̂ in (20) proves element-wise conservation:∫
∂Q

F ∗ = 0 ∀Q ∈ P(D) (21)

In general, stabilization is required to control local overshoot and to ensure
a robust numerical method. However, in problems with convex flux functions
and where a limited amount of overshoot is acceptable, the basic method
presented here can be applied.

4 Causal Spacetime Meshing and Patch-wise Solution
Procedure

The construction of causal spacetime meshes and a patch-by-patch solution
procedure with linear computational complexity in the number of patches,
as described in [1, 2, 37], are key aspects of our implementation of the SDG

4 This has been proven only for scalar case in [37].
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method. We briefly summarize these concepts here; the reader is referred
to [1, 2, 37] for a more detailed treatment.

We use an advancing-front mesh generation procedure called Tent Pitcher
[16,46] to construct spacetime meshes in 2D × time that satisfy a patch-wise
causality condition. A patch is a collection of contiguous tetrahedral spacetime
elements whose boundary is, therefore, a collection of spacetime triangles. A
triangle is causal if all the characteristics of the governing hyperbolic equations
have the same orientation relative to the triangle at all points on the triangle.
A patch is causal if all its boundary faces are either causal or part of the
domain boundary. This implies that each boundary face of a causal patch can
be classified as either an inflow, outflow or boundary face depending on the
face’s location and whether the characteristic flow across the face is inward or
outward relative to the patch. Since no information can enter a patch through
its outflow faces, the solution in each patch depends only on characteristic
data flowing through its inflow and boundary faces. This implies a dependency
graph that defines a partial ordering of patches wherein the solution on each
patch depends only on boundary data and solutions on earlier patches in the
partial ordering. Thus, patches can be solved locally, without approximation,
using only boundary data and outflow data from previously-solved patches.
Inter-element boundaries within a patch can be noncausal, so the elements
within a patch must, in general, be solved simultaneously.

Tent Pitcher begins with a constant-time triangulation of the spatial do-
main at the initial time of the analysis interval. It then visits each vertex in
the triangulation in turn to construct a new patch. The basic tent pitching
procedure involves advancing a vertex in time to construct a new “tent pole”
and then constructing a set of tetrahedra surrounding the tent pole to form a
new patch. The height (duration) of the tent pole is limited to ensure that the
outflow faces of the new patch are all causal. The tent-pole height might be
further limited by a progress constraint to ensures that it is always possible
to continue to pitch new patches. The product of the tent-pitching algorithm
is an unstructured, patch-wise causal spacetime mesh. The local nature of the
causality condition only enforces a local restriction on the duration of indi-
vidual patches, similar to a CFL condition; there is no global restriction on
the time step size, as in conventional explicit time-marching schemes. Thus,
patches containing elements with larger spatial diameters and slower wave
speeds can have longer durations than patches with smaller spatial diameters
and higher wave speeds.

Our solution procedure interleaves mesh generation with the finite element
solution; we compute the finite element solution on each patch as soon as it is
generated by Tent Pitcher. Since the number of tetrahedral elements within
a patch is limited by the highest vertex degree in the space triangulation,
and because the highest polynomial order in each element is bounded, we can
show that this patch-by-patch solution procedure has linear complexity in the
number of spacetime patches. There is no need to assemble and store a global
system of equations; the finite element routines are written to solve a single
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patch at a time in a serial implementation. In a parallel computation, on the
other hand, multiple tents can be pitched and solved simultaneously on sep-
arate processors, subject only to the partial ordering constraint for patches.
The local character of the algorithm reduces the need for interprocessor com-
munication.

5 Applications

This section presents three example applications that demonstrate different
ways SDG finite element models can be used to model solutions with evolving
discontinuities.

5.1 Discontinuity Capturing Using Adaptive Spacetime Meshing

We next present a brief review of how h-adaptive spacetime meshing can be
used to capture weak shocks in elastodynamics, as reported in [3].5 We seek
local refinement along the trajectories of shocks, so that refinement in one
location does not impose a global restriction on the durations of elements
elsewhere in the spacetime analysis domain. Although the SDG formulation
for elastodynamics presented in Subsection 3.1 balances linear and angular
momentum over every spacetime element to within machine precision, the
method is dissipative, and energy is generally not balanced. Experience shows
that an error measure based on element-wise dissipation is an effective indic-
ator for adaptive refinement, both for controlling the overall solution accuracy
and for concentrating refinement along the trajectories of shocks. To achieve
an efficient solution, we attempt to distribute a limited amount of numerical
dissipation evenly over the spacetime elements.

Error Indicator for Element-wise Numerical Dissipation

The numerical energy dissipation for spacetime element Q is given by:

ϕQ =
1
2

∫
∂Q

(u̇∗ ∧ M∗ + ε∗ ∧ iσ∗) +
∫

Q

u̇ ∧ ρb. (22)

Let ϕ∗ be the user-specified target dissipation per element. The dissipation on
element Q is considered acceptable when ϕ ≤ ϕQ ≤ ϕ, where ϕ = (1 − η)ϕ∗

and ϕ = (1 + η)ϕ∗ in which η is a user-specified parameter subject to 0 <
η < 1. Element Q is marked for refinement when ϕQ > ϕ, and element Q
is coarsenable when ϕQ < ϕ. Otherwise, element Q is marked acceptable.
The parameter η must be chosen sufficiently large to minimize undesirable
cycling between coarsening and refinement. We use η = 0.2 in our current
implementation.
5 More precisely, the features in this example are sharp wavefronts that approximate

weak shocks. In the interest of conciseness, we nonetheless refer to these solution
features as shocks.
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Adaptive Tent Pitcher Algorithm

We use an adaptive extension of the Tent Pitcher algorithm to implement
adaptive refinement and coarsening within our patch-by-patch, advancing-
front solution algorithm. Rather than adapting patches of spacetime elements
directly, Tent Pitcher implements adaptive refinement by managing the tri-
angulation of the current front. Each time a patch is solved, the solver checks
whether any elements in the patch have been marked for refinement. If the
result is positive, then the dissipation error is deemed unacceptable, and the
solver rejects the patch when it is returned to Tent Pitcher. Tent Pitcher,
in turn, discards the rejected patch and, using a newest-vertex-bisection al-
gorithm [1], refines the triangles on the current mesh front that correspond
to the elements marked for refinement. This effectively refines the subsequent
spacetime mesh in both space and time when tent pitching is resumed, because
the causality constraint dictates shorter tent-pole heights (local time steps)
at vertices associated with refined triangles. Note that Tent Pitcher discards
only the solution on the rejected patch. The solutions on all previously-solved
patches are unaffected due to the patch-wise causal structure of the spacetime
grid, so the amount of redundant calculation due to refinement is small.

Tent Pitcher accepts the solution on the current patch if all elements in the
patch are either acceptable or coarsenable. In this case, Tent Pitcher stores
the patch solution, advances the mesh front, and copies the status (accept-
able or coarsenable) from the patch elements to the corresponding facets of
the new mesh front. Requests for coarsening need not be acted on immedi-
ately, since they do not involve unacceptable error. Tent Pitcher’s coarsening
operation involves deleting a degree-4 vertex so as to merge two pairs of ad-
jacent, coarsenable triangles into two two triangles in the active mesh front.
A vertex can be deleted when all of the triangles surrounding it are marked
coarsenable. In order to maintain the integrity of the spacetime grid, each pair
of triangles must be coplanar before the coarsening operation can be executed.
Typically, this requirement is not satisfied immediately, so Tent Pitcher post-
pones coarsening until it has pitched new tent poles with heights adjusted to
meet the coplanarity constraint.

Numerical Example: Crack-Tip Wave Scattering

We next review results reported in greater detail in [2] that demonstrate the
ability of the SDG formulation with adaptive spacetime meshing to capture
shock-like features in elastodynamics. Figure 1 shows a center-cracked plate
that we model using plane-stress assumptions, Young’s modulus E = 10,
Poisson ratio ν = 0.3, and density ρ = 2. A spatially uniform tensile traction of
magnitude T acts along the top and bottom edges of the plate. The magnitude
T ramps rapidly from zero at time t = 0.0 to a maximum value of 10 at
time t = 0.002 to approximate a weak stress-velocity shock; T holds constant
at the maximum value until the simulation interval terminates at time t =
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Fig. 1. Spatial domain and boundary conditions for the crack scattering problem

Fig. 2. Adaptive spacetime mesh for crack-tip wave scattering problem with 11
million tetrahedra (intermediate stage, front is at roughly t = 0.100)

0.300. We enforce symmetry boundary conditions to model only the shaded
region shown in the figure, and we use complete cubic polynomials to model
the displacement field within each spacetime tetrahedron. A uniform 2 × 4
rectangular grid defines the initial space mesh, with each rectangle subdivided
into two triangles.
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Fig. 3. Visualization of elastic wave scattering by a stationary crack-tip at t = 0.105)

Fig. 2 shows the state of the spacetime mesh constructed by the adaptive
Tent Pitcher algorithm at an intermediate stage of the simulation. The spatial
directions are aligned with the horizontal axes, and time increases upward in
the vertical direction. The fine details of the elastodynamic solution are clearly
evident in the pattern of mesh refinement. The dark diagonal bands along the
right face of the spacetime volume are traces of plane-wave shocks generated
by the sudden traction loading, while the lighter diagonal band ascending at
a steeper angle traces the trajectory of a Rayleigh wave moving along the free
edge of the plate. The spacetime trajectory of the crack tip runs along the
vertical center-line of the left face of the spacetime volume. The apex of the
cone-shaped region of mesh refinement indicates the initial scattering event.
The separation of the scattered wave into dilatational and shear components
can be seen in the pattern of refinement. The outer perimeter of the cone
(tangent to the dark band on the top surface due to the plane wave) indicates
the progress of the faster-moving dilatational wave, while the dark circular
band within the cone traces the trajectory of the slower shear wave. In this
example, the ratio of the largest to smallest element diameter is 1024. The
ability of the adaptive SDG method to limit refinement to the trajectories
of moving shocks and the absence of global time-step size constraints yield
significant computational savings.

Fig. 3 shows a visualization of the adaptive solution at roughly the same
time as the top of the spacetime volume in Fig. 2. The images were generated
by a pixel-exact visualization system [52]. The strain energy density field
is mapped to color (rendered as gray scale here); the velocity magnitude is
mapped to the height field, which is then shaded by a lighting model to
reveal its form. The visualization reveals fine features of the solution such
as a Rayleigh wave moving along the crack surface and the scattered shear
and pressure waves emanating from the crack-tip. Small-scale features, such as
the shock fronts, are well resolved. The solution is free of spurious oscillations,
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although no extra stabilization was added to the SDG formulation for this
linear problem.

5.2 Cohesive Fracture Model

Cohesive damage models are a popular means for modeling discontinuous de-
formation fields in computational solid mechanics. First introduced by Dug-
dale [15] and Barenblatt [5], these relatively simple models describe fracture
and delamination processes, including an initiation criterion and a means to
calculate the rate of crack extension. They require supplementary criteria
to determine the direction of crack growth. The works of Needleman and
Xu [34,49] led to a strong resurgence of interest in cohesive damage models; the
recent literature is extensive (see for example, [6, 10, 13, 14, 28, 31–33,35, 48]).
We do not attempt a comprehensive literature review here. Rather, we de-
scribe an implementation of the Xu and Needleman traction separation law
for elastodynamic fracture [49] within the adaptive SDG framework described
in the previous subsection. In this context, we note the related work of Huang
and Costanzo [21].

By using cohesive damage models, one attempts to simulate crack initi-
ation and extension by modeling the macroscopic effects of various nonlin-
ear damage processes in the neighborhood of the crack tip. Specifically, a
constitutive traction–separation law (TSL) describes the tractions acting on
a cohesive interface as a nonlinear, bounded function of the interface sep-
aration. The TSL eliminates the crack-tip stress singularities that arise in
classical fracture mechanics and introduces a microscopic length scale that is
essential to the fracture model [19]. We restrict our attention to two spatial
dimensions (d = 2) and to the history-independent, exponential relationship
developed by Xu and Needleman [49], although the computational framework
we describe could be adapted to most other TSLs.

Incorporation of Cohesive Damage Model in SDG Framework

In general, numerical implementations of cohesive damage models present
three special requirements: the numerical model must admit jumps in the
displacement field across cohesive interfaces; there must be a mechanism for
enforcing the traction–separation law; and there must be some form of adapt-
ive enrichment to resolve the active cohesive process zone and to capture the
evolution of mechanical fields associated with growing cracks, including the
sharp wavefronts generated by shock loads and by sudden crack initiation or
arrest. Recalling the discontinuous format of the SDG basis, we address the
first requirement by aligning element boundaries with cohesive interfaces. We
weakly enforce the traction–separation law by introducing a special definition
of the target momentum flux M∗ on cohesive interfaces, as described below.
The adaptive refinement strategy described in the preceding subsection ef-
fectively addresses the third requirement. However, we describe below the use
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of an additional error indicator to ensure that the SDG solution renders the
TSL accurately.

Let ΓC denote the union of all the cohesive-interface trajectories in D,
and modify the partition of the non-causal domain boundary according to
∂Dnc = ∂DM ∪ ∂Dε ∪ ∂DC, where ∂DC = ∂D ∩ ΓC. The only modification
to the elastodynamic formulation required to implement the cohesive model
is to replace (15) with

M∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M on ∂Qco ∪ (∂Q ∩ ∂Dε)
M+ on ∂Qci \ ∂Dci

MG(M ,M+,a∂Q) on ∂Qnc \
(
∂Dnc ∪ ΓC

)
M on ∂Q ∩

(
∂Dci ∪ ∂DM

)
MC on ∂Q ∩ ΓC

(23a)

ε∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε on ∂Qco ∪

[
∂Q ∩

(
∂DM ∪ ΓC

)]
ε+ on ∂Qci \ ∂Dci

εG(ε, ε+, a∂Q) on ∂Qnc \
(
∂Dnc ∪ ΓC

)
ε on ∂Q ∩

(
∂Dci ∪ ∂Dε

) (23b)

in which MC := s̃dxC, where dxC is the spacetime d-volume element on
ΓC and s̃ is the cohesive traction vector generated by the traction–separation
relation.

We use two adaptive error indicators to ensure accurate solutions for both
the bulk and cohesive responses. The first error indicator is the element-wise
numerical dissipation, as described above. The second indicator uses the L-2
norm of the traction error along the cohesive interface. We use this indicator to
ensure that the finite element tractions match the cohesive traction-separation
law to within one percent. The combination of these adaptive criteria captures
sharp wave-fronts in the bulk and strong gradients in the crack-tip fields.

Adaptive Enforcement of the Traction–Separation Relation

Cohesive models can produce numerical instability when too few elements are
included in the active cohesive process zone [20]. Beyond stability problems,
under-resolved finite element grids can generate significant errors in the work
of separation and the history of crack-tip motion. Adaptive control of the nu-
merical dissipation does not directly address these problems, so we introduce
a second adaptive error indicator to limit the mismatch between the trac-
tions generated by the finite element stress solution and the target cohesive
tractions.

The cohesive traction error on ΓC is given by s̃ − s, where s is the vector
traction coefficient of σ|ΓC . We define the cohesive traction error indicator
on element Q as

τQ :=
‖|s̃ − s|‖L2(∂Q∩ΓC)

‖s̄‖L2(∂Q∩ΓC)

(24)

75



R. Abedi et al.

Fig. 4. Model for middle-crack tension specimen.

in which s̄ is the cohesive strength parameter in the Xu and Needleman model.
Let τ∗ be the target value of the cohesive traction error indicator. The cohesive
traction error on element Q is acceptable when τ ≤ τQ ≤ τ , where τ =
(1− η)τ∗ and τ = (1 + η)τ∗ in which 0 < η < 1. Refinement is required when
τQ > τ , and element Q might be coarsenable (depending on whether it is also
coarsenable with respect to the dissipation error) when τQ < τ .

Numerical Example: Cohesive Fracture Under Shock Loading
Conditions

We consider cohesive crack growth in a middle-crack tension specimen loaded
by a uniform, prescribed velocity along two opposite edges. We use symmetry
conditions to model a single quadrant with dimensions, L = 10 mm by W =
3 mm, and an initial crack length, a0 = 4.25 mm, as shown in Figure 4. The
bulk material properties and the parameters for the traction–separation law
are identical to those used in [49]. A uniform, prescribed velocity, applied
along the top edge of the specimen, ramps from zero to a sustained velocity
of 15 m/s over an interval of 0.1 μs. This approximates an elastodynamic
shock that reaches the crack tip at t = 1.44 μs. We use tetrahedral spacetime
elements with complete cubic polynomial bases.

The adaptive SDG model’s ability to resolve shocks accurately and to
maintain the fidelity of the numerical approximation of the TSL is key to
the integrity of this study. Figure 5a shows the spatial discretization that
initiates the adaptive solution process. Both adaptive error indicators are
active; the target per-element energy dissipation is ϕ∗ = 5 × 10−17 J, and
the target normalized cohesive traction error is τ∗ = 1%. Figure 5b shows
the pattern of adaptive mesh refinement at roughly t = 3.5 μs, well after
the initial, stationary tip scatters the main shock wave and the crack begins
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Fig. 5. Progression of mesh refinement during solution.

Fig. 6. Detail of spacetime mesh in vicinity of crack-growth-initiation event

to propagate. The pattern of mesh refinement reflects the pattern of shock
fronts in the bulk material. The apparent distortion of the wavefronts is due
to the fact that the spacetime mesh does not advance uniformly in time; it is
not due to solution error. There is a region of refinement along the cohesive
interface near the initial tip position where the adaptive solution tracks the
moving cohesive process zone. There are strong gradients in the stress field
surrounding the crack tip, but the TSL ensures that the cohesive tractions
remain bounded.
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Figure 6 shows a detail of the portion of the spacetime mesh (the ver-
tical axis represents time) that captures the transtion from a stationary to a
running crack. The diagonal bands visible on the front face of the mesh are
associated with, from left to right, the dilatational and shear waves scattered
by the stationary tip followed by a series of waves emitted by the moving
cohesive process zone as it accelerates to the right.

Figure 7 presents three still images from an animation of the SDG solu-
tion generated by the per-pixel-accurate spacetime rendering procedure de-
scribed in [52]; the sequence depicts the transition from a stationary crack to
a propagating cohesive failure. The color field (rendered in gray scale here)
represents the log of the strain-energy density; the height field depicts the
modulus of the material velocity.

Figure 7a shows wave scattering shortly after the shock reaches the crack
plane; a sharp gradient in the energy density is evident at the crack tip. The
cohesive process zone is stationary, and the response is similar to that of a
stationary, mathematically sharp crack. However, as expected, the cohesive
model eliminates the singular stress field at the tip. Figure 7b shows the
transition to crack propagation. A spike begins to develop in the velocity field
near the initial crack-tip position. Post-simulation analysis shows that the
velocity field eventually develops the same r−

1
2 singular structure predicted

by linear elastodynamic solutions for running cracks [19], where r is the radial
distance to the core of the singularity. The singularity grows in strength and
moves with the accelerating crack tip, as shown in Figure 7c. The emergence
of the velocity singularity was unexpected, and to our knowledge, has not been
predicted by other numerical models for this problem. Our solutions show that
the velocity singularity persists through two decades of the radius r. However,
in view of the discrete nature of our solutions, it is not clear whether the
singular structure persists to arbitrarily small radii. A future publication will
present a more detailed investigation of the velocity singularity for running
cracks.

There are also qualitative differences in the crack-growth kinetics predicted
by the SDG solution and the Xu and Needleman model. Initiation at 1.6 μs
is nearly instantaneous upon the arrival of the primary shock front in [49],
and the crack-tip undergoes rapid acceleration to approach the Rayleigh wave
speed. The SDG solution, on the other hand, shows a lag of roughly 1 μs
between the arrival of the primary shock front and crack-growth initiation,
and the subsequent crack-tip acceleration is more gradual. The slower response
in the SDG model might be explained by the finite time required to transition
from the non-singular velocity field surrounding the stationary crack to the
singular form generated by the running crack.

5.3 Front Tracking and Combined Tracking/Capturing Methods

This section presents an example in which we combine two distinct methods
for resolving discontinuities. After introducing an expanded set of adaptive
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Fig. 7. Visualization of crack propagation over time.

meshing operations, we describe a shock-capturing technique for nonlinear
conservation laws as well as an interface tracking method that delivers sharp
resolution of a moving contact discontinuity by aligning the spacetime mesh
with the trajectory of the singular surface.
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Fig. 8. Edge-flip operation implemented in spacetime (top) vs. instantaneously
(bottom)

New Adaptive Meshing Operations

The adaptive meshing procedures used in the preceding examples, although
effective, relied on a limited number of meshing operations. We performed
mesh refinement instantaneously by subdividing triangles in the space-like
mesh front according to a newest vertex scheme. Mesh coarsening required
a preliminary step wherein a patch of triangles to be coarsened must first
be pitched to a coplanar spacetime configuration prior to each vertex dele-
tion. No provision was made for the spacetime analogues of edge-flips and
vertex smoothing — operations that maintain and improve mesh quality in
conventional adaptive algorithms. An expanded, more robust set of spacetime
adaptive meshing procedures in the current implementation of Tent Pitcher
improves solution accuracy and provides new capabilities for tracking discon-
tinuous and non-smooth solution features.

In the previous implementation, the “tent poles” generated by advancing
a vertex in time were constrained to strictly vertical orientations (parallel to
the time coordinate axis). The current implementation accommodates inclined
tent poles, such that the spatial position of a vertex can vary continuously as
it advances in time, while ensuring that all patches satisfy the causality and
progress contraints required by our O(N) solution scheme. We use this new
capability to carry out smoothing operations on the spatial projection of the
mesh front to improve and maintain element quality. That is, we compute a
smoothed spatial position for each unconstrained vertex in the space mesh
as an area-weighted average of the centroids of the surrounding triangles.
An inclined tent pole then moves the vertex from its previous position to the
smoothed location. Smoothing is applied every time an unconstrained vertex is
pitched, so good mesh quality is maintained throughout the spacetime mesh-
ing process. Inclined tent poles are also important in the interface-tracking
method described below.
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All adaptive operations other than mesh refinement,6 including edge flips,
smoothing and vertex deletions, are now implemented over spacetime patches
in a manner that eliminates projection errors associated with remeshing. For
example, we use the spacetime edge-flip operation, depicted in Fig. 8, to main-
tain the Delaunay property in the spatial projection of the mesh front. In
the spacetime version, the dark gray inflow triangles, PQR and PRS, of the
spacetime tetrahedron PQRS coincide with outflow faces of previously solved
elements, so no projection error is incurred. Thus, the edge flip from PR to
QS, can be executed with zero projection error. If this operation is carried out
instantaneously, as in conventional remeshing procedures, there is unavoidable
projection error incurred by switching from piecewise polynomials defined over
triangles pqr and prs to polynomials defined on triangles qsp and qrs. Overall,
the new set of spacetime meshing operations increases solution accuracy while
reducing the number of elements in an adapted spacetime mesh.

Tracking Moving Interfaces

Discontinuous Galerkin methods in which the mesh explicitly tracks evolving
discontinuities present an attractive alternative,where feasible, to discontinuity-
capturing methods. If element boundaries are aligned with the trajectories of
singular surfaces, then the SDG basis functions can model discontinuous solu-
tions directly, including explicit treatment of the relevant jump conditions,
without the expensive mesh refinement required in capturing methods. Fur-
ther, the need for extra stabilization in the vicinity of a discontinuity can
be reduced or eliminated. The expanded set of spacetime meshing operations
provides a framework for a new approach to interface tracking. We use in-
clined tent poles to generate patches with internal element boundaries that
track the singular surface. For example, we can use a zero-mass-flux condition
to determine the proper tent-pole inclination to track a material interface in a
heterogeneous flow, or we can use a constutive kinetics equation to track the
motion of a phase boundary in a solid. Adaptive smoothing, edge-flip, refine-
ment and vertex-deletion operations maintain the integrity and resolution of
the mesh surrounding the moving interface. All these operations are local and
are carried out continuously as the simulation proceeds. We thus avoid the
mesh distortion and the projection errors associated with global remeshing
operations in many other interface tracking methods.

Numerical Example: Combined Interface Tracking and Shock
Capturing

Figs. 9 and 10 illustrate a shock-tube simulation based on the inviscid Euler
equations (cf. Subsection 3.2) in which we use a combination of techniques
6 Mesh refinement is still carried out instantaneously on the mesh front. However,

this is not problematic because refinement does not induce any projection error
and does not require a preliminary synchronization step.
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Fig. 9. Shock tube example. Adaptive spacetime mesh tracks trajectory of contact
discontinuity moving to right at half the shock speed

to model the discontinuous solution features. Although the basic SDG for-
mulation features some intrinsic upwinding, the nonlinear structure of this
problem requires some additional stabilization to control overshoot and un-
dershoot. We use uniform artificial viscosity and piecewise linear polynomials
in this preliminary study. Better resolution of the shocks would be possible
using a shock-capturing scheme and higher-order polynomials. However, since
testing the SDG approach to interface tracking is the main objective of this
study, we defer these improvements to future work. We use adaptive space-
time refinement to capture a shock moving from the domain center to the
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Fig. 10. SDG solution for shock tube example; height and color fields (rendered
in gray scale here) indicate density and pressure. Interface tracking delivers sharp
resolution of contact discontinuity.

right and an expansion wave opening to the left. Regions of higher density in
the spacetime meshes shown in Fig. 9 identify each feature.

Three residual-based error indicators (one for each conservation equation)
in each spacetime element Q drive this adaptive simulation. The error indic-
ators share a common form, given by

ei =
‖dFi‖L1(Q) + ‖Fi − F∗

i ‖L1(∂Q)

‖ρ0
i ‖L1(Ω0)

; i = 1, 2, 3 (25)

where Ω0 is the spatial analysis domain at the initial time and

F1 := Fρ ρ0
1 = ρ0 (26a)

F2 := Fp ρ0
2 =

√
ρ0E0 (26b)

F3 := FE ρ0
3 = E0 (26c)

in which ρ0 and E0 are the mass density and total energy density fields on Ω0.
Adaptive refinement is triggered when any of the three error indicators exceeds
its maximum allowable value in any element in a patch; adaptive coarsening
is triggered when all three error indicators fall below a minimum threshold in
all the elements in a patch. As seen in Fig. 9, this approach effectively limits
spacetime mesh refinement to the trajectories of the shock and the expansion
wave. However, as with any capturing method and especially due to the crude
form of the stabilization used here, the shock appears smeared out in Fig. 10.
Nonetheless, the conservation properties of the SDG model ensures that the
shock moves at the correct velocity.

We use a different approach, interface tracking, to resolve the contact dis-
continuity in the density field. This feature appears as a coherent surface
in the spacetime mesh midway between the center of the domain and the
right-traveling shock; it is identified by a set of spacetime element faces that
precisely cover the trajectory of the contact discontinuity, rather than by mesh
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refinement. We used the new capability to mesh with inclined tent poles to
align the spacetime mesh with the motion of the discontinuity. Since the sin-
gular surface aligns with element boundaries in the spacetime mesh, the SDG
formulation weakly enforces the correct set of jump conditions at the contact
discontinuity. Notably, the contact discontinuity is captured as a true jump
in the SDG solution (Fig. 10) — without mesh refinement and with no ex-
tra stabilization active beyond the inherent stability of the SDG formulation.
Thus, we obtain a more accurate resolution of the contact discontinuity at
substantially lower cost than would be required if a capturing technique were
applied to this feature.

We used a priori knowledge of the motion of the contact discontinuity to
construct the spacetime mesh in this proof-of-concept study. However, the mo-
tion of discontinuities is often solution-dependent, so a more robust approach
is generally required. We are currently testing a more robust approach, in
which the inclination of the tent pole in each patch is iteratively adjusted to
satisfy the zero-mass-flux condition that governs the motion of the contact
discontinuity. We plan to use this method and related techniques in continu-
ing work to track moving interfaces in materials microstructures and to follow
crack growth along solution-dependent paths.

6 Conclusions

We have demonstrated three distinct approaches to discretizing evolving dis-
continuous solution features using SDG solution methods. The first option,
h-adaptive procedures for capturing discontinuities, mitigates the cost of the
necessary grid refinement by adapting the mesh simultaneously in space and
time, thereby avoiding the expense imposed by a global uniform time step
dictated by the smallest elements in a spatially adapted discretization. The
second approach, the incorporation of a cohesive damage model in the SDG
framework, is facilitated by the discontinuous SDG solution spaces and the
treatment of jump conditions that naturally accommodate the enforcement
of the traction–separation law. We included an adaptive error indicator that
directly ensures the accuracy of the finite element approximation of the TSL.
The high resolution obtained with this model led to the discovery that the
material velocity exhibits a strong singular response for running cracks with
the same r−

1
2 structure observed in classical elastodynamic fracture. We also

presented a preliminary study of how the use of inclined tent poles and a
more robust set of adaptive meshing procedures can be used to track moving
discontinuities. This approach uses the discontinuous nature of SDG solution
spaces to eliminate the need for strong mesh refinement near the discontinu-
ity, to enforce the correct jump conditions dictated by the governing balance
laws, and to render a sharp resolution of the discontinuity. It’s worth noting
that our software framework allows us to combine more than one of these
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techniques to address different classes of evolving discontinuities in a single
computation.

Execution times for the numerical examples reported here ranged from
several hours to several days of serial processing on desk-top processors; the
longest were for the highly refined multi-scale model that resolves the singular
velocity field at a moving cohesive crack tip. These relatively long execution
times are for a non-optimized C++ research code and are not representative
of the true cost of the SDG method. Recent improvements to our serial code
yielded substantial speed-ups in the range of 30 − 40 times faster. The op-
timizations included use of the Blitz++ library [47] to mitigate some of the
inefficiencies of array storage in C++, more effective use of standard math
libraries, use of more aggressive compiler optimizations, and straightforward
eliminations of redundant calculations. Additional serial speed-ups are expec-
ted as we continue to optimize the code. Parallel implementation is another
promising direction to improve performance. We obtain high efficiency and
nearly linear speed-ups in the number of parallel processors for non-adaptive
computations. The main challenge for an effective adaptive parallel imple-
mentation is maintaining load balance in the face of intense and evolving
adaptive refinement. We believe that the local nature of our patch-by-patch
solution scheme will prove useful in on-going research that addresses load
balancing in parallel–adaptive SDG computations.

We continue to develop the underlying SDG formulation and to extend the
technologies for discontinuity capturing reported in this work. One area of con-
tinuing effort involves improved methods for SDG shock capturing to control
overshoot in nonlinear conservation laws. We seek methods that are suitable
for spacetime implementation, that do not interfere with the element-wise
conservation property, that preserve the compact form of the SDG stencil,
and that introduce as little artificial viscosity as possible. SDG variants of
sub-cell shock capturing strategies [39] appear particularly promising at this
time. We continue to develop the SDG technology for tracking moving inter-
faces and discontinuities. One such improvement involves the use of interface
kinetics models to track solution-dependent motions of interfaces and discon-
tinuities. Another application is the use of the interface tracking technology
to track cohesive crack growth along arbitrary, solution-dependent paths (vs.
the predetermined paths in our current studies). Extending our h-adaptive
technology to hp enrichments is another promising direction for development.
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Analysis of a finite element formulation for
modelling phase separation

Garth N. Wells1 and Krishna Garikipati2

Summary. The Cahn-Hilliard equation is of importance in materials science and
a range of other fields. It represents a diffuse interface model for simulating the
evolution of phase separation in solids and fluids, and is a nonlinear fourth-order
parabolic equation, which makes its numerical solution particularly challenging. To
this end, a finite element formulation has been developed which can solve the Cahn-
Hilliard equation in its primal form using C0 basis functions. Here, analysis of a
fully discrete version of this method is presented in the form of a priori uniqueness,
stability and error analysis.

Key words: Cahn-Hilliard equation, discontinuous Galerkin method, phase
separation.

1 Introduction

The Cahn-Hilliard [1] equation models the separation of phases in binary
mixtures. It is particularly relevant in material science, where it describes
microstructure evolution in alloys. As a diffuse interface model, it represents
the boundaries between pure phases as a small region across which the relative
concentration varies rapidly. This is an advantage in that discontinuities at
phase boundaries do not have to be modelled explicitly, but comes at the cost
of needing to resolve gradients at phase boundaries well and a high degree of
mathematical complexity.

The numerical solution of the Cahn-Hilliard equation is particularly chal-
lenging on a number of fronts. Foremost in the difficulties is the presence
of fourth-order spatial derivatives. A fourth-order term is necessary to bal-
ance the presence of a chemical potential in the Cahn-Hilliard equation which
is derived from a non-convex free energy function. The non-convex nature
of the chemical free energy further complicates both the numerical solution
strategy and the analysis of numerical methods. Extensive research has been

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 89–102.
© 2007 Springer. Printed in the Netherlands.
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performed over the past 20 years into the mathematical analysis of finite ele-
ment formulations for the Cahn-Hilliard equation. Initial efforts focused upon
C1 [2, 3] and non-conforming methods [4]. The majority of later efforts fo-
cused upon a mixed finite element formulation based on an operator split (see
Refs. [5, 6, 7, 8] for a selection of works).

We present here analysis of the finite element formulation for the Cahn-
Hilliard equation presented by Wells et al. [9]. The formulation allows the solu-
tion of the Cahn-Hilliard equation using standard C0 basis functions in the pri-
mal form, with continuity of the normal derivative across element boundaries
enforced weakly. In Wells et al. [9], stability and convergence in an energy-like
norm was demonstrated for the time-continuous case. Here, a fully discrete
formulation is analysed and an error estimate in the L2 norm is presented.

The rest of this work is organised as follows: the Cahn-Hilliard equation
is presented in its strong form, after which the semi-discrete Galerkin formu-
lation is presented and some key results are summarised. The fully discrete
formulation is then presented, followed by a priori analysis of uniqueness,
stability and error in the L2 norm. A numerical example is presented, sim-
ulating phase separation in a uniform mixture which is randomly-perturbed.
Following the numerical example, conclusions are drawn.

2 Cahn-Hilliard equation

Consider a binary mixture and let the concentration of one of its constituents,
say A, be denoted by c satisfying 0 < c < 1. The concentration of the other
constituent, B, is 1− c. Pure phases are obtained for c = 0 and c = 1. Let the
mixture occupy an open, simply connected region in space, Ω ⊂ R

d, where
d = 1, 2 or 3. The boundary of Ω is supposed to be sufficiently smooth, and
is denoted by Γ = ∂Ω, with outward unit normal n. In strong form we have
the following problem: find c : Ω × [0, T ] → R such that

c,t = ∇ ·
(
M∇

(
μ− λ∇2c

))
in Ω × (0, T ), (1)

∇c · n = 0 on Γ × (0, T ), (2)

∇
(
μ− λ∇2c

)
· n = s on Γ × (0, T ), (3)

c(x, 0) = c0(x) in Ω, (4)

where M ≥ 0 is the mobility, μ is the chemical potential, λ > 0 is a con-
stant related to the interfacial energy and c0 (x) are the initial conditions.
The boundary conditions of zero normal derivative for the concentration and
zero mass flux on the entire boundary are typical for the Cahn-Hilliard equa-
tion. The Cahn-Hilliard equation is a fourth-order diffusion equation, and the
presence of fourth-order spatial derivatives is due to the introduction of an
expression for the surface free-energy Ψs,

Ψs − λ

2
∇c · ∇c. (5)
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The mobility M can be either constant or concentration-dependent. If
made concentration-dependent, a common choice is

M = c (1 − c) , (6)

which largely restricts diffusion processes to phase interface zones. The chemi-
cal potential in the case of phase separation problems comes from a non-convex
chemical free-energy Ψ c. It is the non-convex nature of the free-energy which
drives phase separation. A typical chemical free-energy of a solution is given
by [1]

Ψ c = NkT (c ln c+ (1 − c) ln (1 − c)) +Nωc (1 − c) , (7)

where N is the number of molecules per unit volume, k is Boltzmann’s con-
stant, T is the absolute temperature and ω is a parameter related to the
mixing enthalpy that determines the shape of Ψ c. For ω > 2kT , the chemical
free energy is non-convex, with two wells close to c = 0 and c = 1 which
drives phase segregation into the two binodal points. The potential μ is given
by the functional derivative of the chemical free-energy with respect to the
concentration, DcΨ

c. Another possibility is the use of a quartic polynomial
for the chemical free energy,

Ψ c =
1
4
c2 (1 − c)2 , (8)

which has the advantage of being continuous on the real line. This simplifies
the analysis of formulations and leads to more robust numerical procedures. It
does however allow for solutions outside of the range [0, 1]. The term λ governs
the magnitude of the free-energy related the interfaces in the presence of a
given concentration gradient.

3 Semi-discrete Galerkin formulation

3.1 Definitions

Consider a partition of Ω into nel polygonal open sets, Ωe, each with boundary
Γe = ∂Ωe:

Ω =
nel⋃
e=1

Ωe, such that
nel⋂
e=1

Ωe = ∅. (9)

It is assumed that Ω is a polygon and hence can be partitioned exactly. The
union of inter-element boundaries and the boundary Γ is denoted by

Γ̃ =
nel⋃
e=1

Γe, (10)

where Γe = ∂Ωe, and the union of element interiors is denoted by
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Ω̃ =
nel⋃
e=1

Ωe. (11)

The jump operator for a vector is denoted by

�a� = a1 · n1 + a2 · n2, on Γ̃\Γ, (12)
�a� = a · n on Γ, (13)

where the subscripts refer to the face of the element on either side of each
inter-element boundary, and n is the unit outward normal to an element
boundary. The average operator is denoted by

〈a〉 =
1
2

(a1 + a2) Γ̃\Γ, (14)

〈a〉 = a on Γ, (15)

where again the subscripts refer to the face of the element on either side of
each inter-element boundary.

3.2 Semi-discrete formulation

Classical Galerkin methods for the Cahn-Hilliard equation with the considered
boundary conditions seek approximate solutions in a subspace of H2

E (Ω),
which is defined as

H2
E (Ω) =

{
ch| ch ∈ H2 (Ω) , ∇ch · n on Γ

}
. (16)

The space satisfies the considered Dirichlet boundary condition by construc-
tion. However, in a finite element context, such functions are difficult to con-
struct. Here, a Galerkin formulation for the Cahn-Hilliard equation is exam-
ined which looks for solutions in a subspace of H1 (Ω), thereby allowing the
use of standard C0 Lagrange shape functions. Consider therefore the function
space

Wh =
{
ch| ch ∈ H1 (Ω) , ch ∈ P k (Ωe) ∀e

}
, (17)

where P k (Ωe) is the space of the standard polynomial finite element shape
functions on element Ωe and k is the polynomial order. Note that ch ∈
H2
(
Ω̃
)
. A finite element problem for the Cahn-Hilliard equation then in-

volves [9]: find ch (t) ∈Wh, t ∈ [0, T ] such that(
wh, ċh

)
Ω

+ a
(
wh, ch

)
= 0 ∀ wh ∈Wh, (18)

where

a
(
wh, ch

)
Ω

=
(
∇wh,Mh∇μh

)
Ω

+
(
∇2wh,Mhλ∇2ch

)
eΩ

+
(
∇wh,

(
∇Mh

)
λ∇2ch

)
eΩ
−
(�
∇wh

�
,
〈
Mhλ∇2ch

〉)
eΓ

−
(〈
Mhλ∇2wh

〉
,
�
∇ch

�)
eΓ

+
α

h

(�
∇wh

�
,Mhλ

�
∇ch

�)
) eΓ , (19)
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and α is a dimensionless penalty term and h is a measure of the element size.
The notation

(a, b)X =
∫

X

ab dX (20)

for inner products has been adopted. In effect, the formulation imposes con-
tinuity of (a) the normal derivative of the concentration, (b) the normal flux
and (c) the Laplacian of the concentration across element boundaries in a
weak sense. For simplicity of notation, it has been assumed that α and h are
constant for all elements.

The formulation can be shown to be consistent with the Cahn-Hilliard
equation, and is stable if the penalty term is chosen to be sufficiently large [9].
How large it must be is dependent on constants in various inequalities which
are related to the order of elements and the element geometry. Stability esti-
mates and a priori error estimates in an energy-like norm for the semi-discrete
problem can be found in Wells et al. [9]. The focus in the rest of this work is
on estimates for the fully discrete problem.

4 Fully discrete formulation

We consider now the stability of a time-discrete problem whose numerical
scheme is parametrised by θ ∈ [0, 1]. The time continuous problem in equa-
tion (18) is replaced by a sequence of discrete steps at t1, t2, · · · , tn, tn+1,
where Δt = tn+1 − tn. The problem at tn+1 then becomes: find ch,n+1 ∈Wh

such that (
wh,

ch,n+1 − ch,n

Δt

)
+ a
(
wh, ch,n+θ

)
= 0 ∀ ch ∈Wh, (21)

where
ch,n+θ = (1 − θ) ch,n + θ ch,n+1. (22)

As usual, θ = 0 leads to the forward Euler scheme, θ = 1 leads to the backward
Euler scheme and θ = 1/2 leads to the Crank-Nicolson method.

In the following analysis, we restrict ourselves to the case of constant
mobility (M = 1) and a continuously differentiable chemical potential with
the property

dμ

dc
≥ −b0, (23)

where b0 ≥ 0. This condition holds for all commonly adopted chemical poten-
tials.

4.1 Uniqueness

Consider the function β = ch,n+1
1 − ch,n+1

2 , where ch,n+1
1 and ch,n+1

2 are so-
lutions to the fully discrete problem. Inserting β into the right-hand slot of
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the forms in equation (21), and noting the wh = β is an admissible weighting
function,

‖β‖2
Ω +Δtθλ

∥∥∇2β
∥∥2

eΩ
− 2Δtθ

(�∇β� , 〈∇2β
〉)

eΓ
+Δtθ

αλ

h
‖�∇β�‖2

eΓ

= −Δt
(
∇β,∇

(
μ
(
ch,n+θ
1

)
− μ

(
ch,n+θ
2

)))
Ω
, (24)

where ‖a‖X indicates the L2 norm on the domain X. From integration by
parts,∣∣∣(∇β,∇(μ(ch,n+θ

1

)
− μ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤
∣∣∣(∇2β, μ

(
ch,n+θ
1

)
− μ

(
h,n+θc2

))
eΩ

∣∣∣
+
∣∣∣(�∇β� , μ

(
ch,n+θ
1

)
− μ

(
ch,n+θ
2

))
eΓ

∣∣∣ , (25)

together with Lipschitz continuity of the chemical potential,∣∣∣μ(ch,n+θ
1

)
− μ

(
ch,n+θ
2

)∣∣∣ ≤ L
∣∣∣ch,n+θ

1 − ch,n+θ
2

∣∣∣
= Lθ |β| ,

(26)

where L > 0, and the Cauchy-Schwartz inequality, it follows that:∣∣∣(∇β,∇(μ(ch,n+θ
1

)
− μ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤ θL

∥∥∇2β
∥∥

eΩ
‖β‖Ω + θL ‖�∇β�‖eΓ ‖β‖eΓ . (27)

Application of Young’s inequality then leads to:∣∣∣(∇β,∇(μ(ch,n+θ
1

)
− μ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤ θL

2ε0

∥∥∇2β
∥∥2

eΩ
+
θLε0

2
‖β‖Ω +

θL

2ε1
‖�∇β�‖2

eΓ +
θLε1

2
‖β‖2

eΓ , (28)

where ε0, ε1 > 0. Turning attention now to the first inter-element term in
equation (24),

2
∣∣(�∇β� , 〈∇β〉) eΓ

∣∣ ≤ ε2C
∥∥∇2β

∥∥2
eΩ

+
1
hε2

‖�∇β�‖2
eΓ . (29)

For the derivation of this expression, we refer the reader to Wells et al. [9].
Also from Wells et al. [9], there exists C > 0 such that

‖β‖2
eΓ ≤ C

h
‖β‖2

Ω . (30)

Using these results in equation (24), it follows that
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‖β‖2
Ω +Δtθλ

∥∥∇2β
∥∥2

eΩ
+Δtθ

αλ

h
‖�∇β�‖2

eΓ

≤ ΔtθL

2ε0

∥∥∇2β
∥∥2

eΩ
+
ΔtθLε0

2
‖β‖2

Ω +
ΔtθL

2ε1
‖�∇β�‖2

eΓ

+
ΔtθLε1C

2h
‖β‖2

Ω +Δtθλε2C
∥∥∇2β

∥∥2
eΩ

+
Δtθλ

hε2
‖�∇β�‖2

eΓ . (31)

Grouping related terms together,

‖β‖2
Ω +

(
Δtθλ− ΔtθL

2ε0
− λΔtθCε2

)∥∥∇2β
∥∥2

eΩ

+
(
Δtθαλ

h
− ΔtθL

2ε1
− Δtθλ

hε2

)
‖�∇β�‖2

eΓ

≤
(
ΔtθLε0

2
+
ΔtθLε1C

2h

)
‖β‖2

Ω . (32)

The goal now is to select εi such that the RHS is greater than ‖β‖2
Ω and

all terms on the LHS are positive. Setting ε0 = 1/ΔtθL, ε1 = h/ΔtθLC and
ε2 = ε′2/C

‖β‖2
Ω + θ

(
Δtλ− Δt2θL2

2
− λΔtε′2

)∥∥∇2β
∥∥2

eΩ

+ θ

(
Δtαλ

h
− Δt2θL2C

2h
− ΔtλC

hε′2

)
‖�∇β�‖2

eΓ ≤ ‖β‖2
Ω . (33)

To demonstrate uniqueness, Δt and α must be chosen such that all terms on
the LHS are greater than or equal to zero. Consider therefore the restriction
on the time step

Δt <
2λ (1 − ε′2)

θL2
, (34)

where 0 < ε′2 < 1. Subject to this time step restriction and if

α > (1 − ε′2)C +
C

ε′2
(35)

it follows that

‖β‖2
Ω + a1

∥∥∇2β
∥∥2

eΩ
+ a2 ‖�∇β�‖2

eΓ ≤ ‖β‖2
Ω , (36)

where a1, a2 > 0, which can hold only if β = 0. Therefore, under the time
step restriction, and for a sufficiently large penalty, the fully discrete scheme
has a unique solution. The analysis indicates that a larger penalty allows for
a larger time step since a large α allows for a small ε′2. Note that the time step
restriction is not dependent on the element size h. It is a function of model
and time stepping parameters only, whereas α is dependent only on element
shape parameters and not model parameters.

The time step restriction for uniqueness is due to the non-convex nature
of Ψ c. It is possible that a more subtle analysis of the problem may lead to a
tighter bound for the maximum allowable time step.
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4.2 Stability

Stability of the time discrete formulation is now considered by setting wh =
ch,n+θ in equation (21),(

ch,n+θ,
ch,n+1 − ch,n+1

Δt

)
Ω

+ a
(
ch,n+θ, ch,n+θ

)
= 0. (37)

Noting that

ch,n+θ =
(
θ − 1

2

)(
ch,n+1 − ch,n

)
+
ch,n+1 + ch,n

2
, (38)

equation (37) can be expressed as:(
θ − 1

2

)∥∥ch,n+1 − ch,n
∥∥2

Ω
+

∥∥ch,n+1
∥∥2

Ω
−
∥∥ch,n

∥∥2

Ω

2Δt

+ a
(
ch,n+θ, ch,n+θ

)
= 0. (39)

For the case θ ∈ [1/2, 1],∥∥ch,n+1
∥∥2

Ω
−
∥∥ch,n

∥∥2

Ω

2Δt
+ a
(
ch,n+θ, ch,n+θ

)
≤ 0. (40)

For standard parabolic differential equations, a
(
ch,n+θ, ch,n+θ

)
≥ 0, leading

trivially to
∥∥ch,n+1

∥∥2 ≤
∥∥ch,n

∥∥2 which implies stability. However, this is not
the case for the Cahn-Hilliard equation as the term a

(
ch,n+θ, ch,n+θ

)
may be

negative. Demonstrating stability requires a more subtle approach.
Expanding the term a

(
ch,n+θ, ch,n+θ

)
and rearranging equation (40),

1
2Δt

∥∥ch,n+1
∥∥2

Ω
+ λ
∥∥∇2ch,n+θ

∥∥2
eΩ

+
αλ

h

∥∥�∇ch,n+θ
�∥∥2

eΓ

≤ b0
2ε0

∥∥∇2ch,n+θ
∥∥2

eΩ
+

b0
2ε1

∥∥�∇ch,n+θ
�∥∥2

eΓ
+
b0ε0
2

∥∥ch,n+θ
∥∥2

Ω

+
b0Cε1

2h

∥∥ch,n+θ
∥∥2

Ω
+ λε2C

∥∥∇2ch,n+θ
∥∥2

eΩ

+
λ

hε2

∥∥�∇ch,n+θ
�∥∥2

eΓ
+

1
2Δt

∥∥ch,n
∥∥2

Ω
, (41)

where εi > 0. Setting now ε0 = b0/2λε′0, ε1 = b0h/2Cλε′1, and ε2 = ε′2/C, it
follows that

1
2Δt

∥∥ch,n+1
∥∥2

Ω
+ λ (1 − ε′0 − ε′1)

∥∥∇2ch,n+θ
∥∥2

eΩ

+
λ

h

(
α− Cε′1 −

C

ε′2

)∥∥�∇ch,n+θ
�∥∥2

eΓ

≤
(

b2

4λε′0
+

b2

4λε′1

)∥∥ch,n+θ
∥∥2

Ω
+

1
2Δt

∥∥ch,n
∥∥2

Ω
. (42)
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Setting ε′0 = ε′1 = 1 − ε′2, the term λ (1 − ε′0 − ε′1)
∥∥∇2ch,n+θ

∥∥2
eΩ

vanishes, and
if

α > (1 − ε′2)C +
C

ε′2
, (43)

then (λ/h) (α− Cε′1 − C/ε′2)
∥∥�∇ch,n+θ

�∥∥2
eΓ
> 0. It follows then from equa-

tion (42) that

∥∥ch,n+1
∥∥2

Ω
≤ Δtb2

λ (1 − ε′2)

∥∥ch,n+θ
∥∥2

Ω
+
∥∥ch,n

∥∥2

Ω
. (44)

For the case θ = 1, this implies that if

Δt <
λ (1 − ε′2)

b2
(45)

then the method is stable as the solution at time step n + 1 is bounded in
terms of the solution at time step n, although it does not imply

∥∥ch,n+1
∥∥

Ω
≤∥∥ch,n

∥∥
Ω

. For other cases,∥∥ch,n+θ
∥∥2

Ω
≤ 2
(∥∥(1 − θ) ch,n

∥∥2

Ω
+
∥∥θch,n+1

∥∥2

Ω

)
. (46)

Therefore, for θ = 1/2 the critical time step is the same as for the θ = 1 case.
Stability is assured if the critical time step is met since when summing over
all time steps, the solution remains bounded in terms of the initial conditions.

Due to the presence of second-order derivatives in the weak form, for the
case θ ∈ [0, 1/2) the allowable time step Δt ∝ h4. This makes the usefulness
of such schemes extremely limited. Hence, the analysis of such schemes is not
pursued here.

4.3 Accuracy

Consider the elliptic projection Phu : H2
E (Ω) → Wh defined by: given u ∈

H2
E (Ω), find Phu ∈Wh such that(
∇2wh,∇2

(
Phu− u

))
eΩ
−
(�
∇wh

�
,
〈
∇2
(
Phu− u

)〉)
eΓ

−
(〈
∇2wh

〉
,
�
∇2
(
Phu− u

)�)
eΓ

+
α

h

(�
∇wh

�
,
�
∇Phu

�)
eΓ

= 0 ∀wh ∈Wh, (47)

where (
wh, 1

)
Ω

= 0,
(
1, Phu

)
Ω

= (1, u)Ω . (48)

It is assumed under these conditions and subject to a suitably large penalty
that the solution of equation (47) is unique (see Elliott and French [3] for
details). The problem in equation (47) is in essence the same as the problem
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presented in Engel et al. [10], for which error estimates were presented. From
these estimates, for k = 2,∥∥Phu− u

∥∥
Ω
≤ Ch2 ‖u‖3,Ω , (49)

and for k > 2 ∥∥Phu− u
∥∥

Ω
≤ Chk+1 ‖u‖k+1,Ω . (50)

The error in the solution at time tn is given by

ch,n − c (tn) = ch,n − Phc (tn)︸ ︷︷ ︸
eh,n

+Phc (tn) − c (tn)︸ ︷︷ ︸
ρn

, (51)

where we have an estimate for ρn, therefore we seek to estimate eh,n in order
to bound the error.

From equation (21) and consistency of the formulation,(
w,
eh,n+1 − eh,n

Δt

)
Ω

+ λ
(
∇2w,∇2eh,n+θ

)
eΩ

+
αλ

h

(�∇w� , �∇eh,n+θ
�)

eΓ

= −
(
∇wh,∇μ

(
ch,n+θ

)
−∇μ

(
c
(
tn+θ

)))
Ω

−
(
w,
Phc

(
tn+1

)
− Phc (tn)

Δt
− c,t

(
tn+θ

))
Ω

− λ
(
∇2wh,∇2

(
(1 − θ) c (tn) + θc

(
tn+1

)
− c
(
tn+θ

)))
eΩ

+ λ
(�
∇wh

�
,
〈
∇2eh,n+θ

〉)
eΓ

+ λ
(〈
∇2wh

〉
,
�
∇eh,n+θ

�)
eΓ

+ λ
(�
∇wh

�
,
〈
∇2
(
(1 − θ) c (tn) + θc

(
tn+1

)
− c
(
tn+θ

))〉)
eΓ
. (52)

We set wh = eh,n+θ in this relation, and consider α sufficiently large such that
∃ C	 > 0 such that ∀ wh ∈Wh(

∇2wh,∇2wh
)

eΩ
− 2
(�
∇wh

�
,
〈
∇2wh

〉)
eΓ

+
α

h

(�
∇wh

�
,
�
∇wh

�)
eΓ

≥ C	
(∥∥∇2wh

∥∥2

eΩ
+
α

h

∥∥�∇wh
�∥∥2

eΓ

)
(53)

(which is effectively stability of the formulation). This leads to(
eh,n+θ,

eh,n+1 − eh,n

Δt

)
Ω

+ C	λ
∥∥∇2eh,n+θ

∥∥2

eΩ
+ C	αλ

h

∥∥�∇eh,n+θ
�∥∥2

eΓ

≤
∥∥μ (ch,n+θ

)
− μ

(
c
(
tn+θ

))∥∥
Ω

∥∥∇2eh,n+θ
∥∥

eΩ

+
C

h

∥∥μ (ch,n+θ
)
− μ

(
c
(
tn+θ

))∥∥
Ω

∥∥�∇eh,n+θ
�∥∥

eΓ

+

∥∥∥∥∥Phc
(
tn+1

)
− Phc (tn)

Δt
− c,t

(
tn+θ

)∥∥∥∥∥
Ω

∥∥eh,n+θ
∥∥

Ω

+ λ
∥∥∇2

(
(1 − θ) c (tn) + θc

(
tn+1

)
− c
(
tn+θ

))∥∥ ∥∥∇2eh,n+θ
∥∥

eΩ

+ λ
∥∥�∇eh,n+θ

�∥∥
eΓ

∥∥〈∇2
(
(1 − θ) c (tn) + θc

(
tn+1

)
− c
(
tn+θ

))〉∥∥
eΓ
. (54)
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Using equation (30), the above can be rearranged such that(
eh,n+θ,

eh,n+1 − eh,n

Δt

)
Ω

+ C	λ
∥∥∇2eh,n+θ

∥∥2
eΩ

+ C	αλ

h

∥∥�∇eh,n+θ
�∥∥2

eΓ

≤
[
C
∥∥μ (ch,n+θ

)
− μ

(
c
(
tn+θ

))∥∥
Ω

+

∥∥∥∥∥Phc
(
tn+1

)
− Phc (tn)

Δt
− c,t

(
tn+θ

)∥∥∥∥∥
Ω

+ (1 + C)λ
∥∥∇2

(
(1 − θ) c (tn) + θc

(
tn+1

)
− c
(
tn+θ

))∥∥
Ω

](∥∥∇2eh,n+θ
∥∥

eΩ
+

1
h

∥∥�∇eh,n+θ
�∥∥

eΓ

)
. (55)

In this form, together with the results in equations (49) and (50), the analysis
of Elliott and French [3, Theorem 3.1] can be applied directly, yielding the
estimate ∥∥ch,n − c(tn)

∥∥
Ω
≤ C (hp +Δtq) , (56)

where C is dependent on the exact solution. For k = 2 gives p = 2, and k > 2
gives p = k + 1. For θ ∈ (1/2, 1] leads to q = 1 and θ = 1/2 leads to q = 2.

5 Numerical example of phase separation

The numerical example presented in this section illustrates a response which
is typical for the Cahn-Hilliard equation. Phase separation is modelled on
a unit square from an initially uniform state which is randomly perturbed.
The parameters for the example are given in non-dimensional form. Consider
therefore a length scale L0, which is representative of the size of the domain
Ω, and time scale T0 = L4

0/Dλ. Relevant dimensionless quantities, denoted
with an asterisk, are given by:

t	 = t/T0, x	 = x/L0, μ	
c = μcL

2
0/λ. (57)

Using these, the dimensionless counterpart of equation (1) is given by:

c,t� = ∇	 · β∇	
(
μ	

c −∇	2c
)
, (58)

where β is a dimensionless term reflecting the nature of the mobility. In the
case of constant mobility β = 1, and in case of degenerate mobility β =
c (1 − c).

For this test, the following parameters have been adopted: ω/kT = 3,
NkTL2

0/λ = 3000, β = c (1 − c) (degenerate mobility), α = 5 and Δt∗ =
2×10−8. For the initial conditions, the average concentration is equal to 0.63,
with random fluctuations of zero mean and no fluctuation greater than 0.05.
Triangular elements with quadratic basis functions (k = 2) have been used
and the problem has been stepped in time using the Crank-Nicolson method
and a full Newton procedure.
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t� = 0 t� = 2 × 10−6 t� = 4 × 10−6

t� = 8 × 10−6 t� = 1.6 × 10−5 t� = 3.2 × 10−5

t� = 6.4 × 10−5 t� = 1.28 × 10−4 t� = 2.56 × 10−4

Fig. 1. Evolution of concentration contours from a randomly perturbed initial con-
dition.

Using a random triangulation with h ≈ 1/100, the evolution of the concen-
tration field is depicted in Figure 1. The concentration evolution can basically
be categorised in two phases: the first phase, which is predominantly gov-
erned by spinodal decomposition and phase separation, and a second phase
which is characterised by grain coarsening. During the first phase, changes in
concentration are driven primarily by the minimisation of the local chemical
energy Ψ c. This period is basically terminated as soon as the local concentra-
tion is driven to either value of the two binodal points. Approximately from
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t	 = 8×10−6 onwards, local changes in concentrations are primarily governed
by the surface free energy Ψs. In order to minimise its contribution, the gener-
ated patterns cluster and grains tend to coarsen. This Ostwald ripening takes
place at a much longer time scale.

6 Conclusions

A fully discrete finite element formulation for the Cahn-Hilliard equation has
been analysed. The formulation requires consideration of the concentration
field only and exploits simple Lagrange finite element basis functions. The
necessary continuity of derivatives across element boundaries is enforced in
a weak sense and a penalty term acting on jumps in the normal derivative
across element boundaries is added to maintain stability.

It is shown for Crank-Nicolson and backward Euler time stepping schemes
that critical time steps for both uniqueness and stability exist, but are inde-
pendent on the element size h. Interestingly, the allowable time step is related
to the penalty term. A larger penalty term enhances stability and allows for a
larger time step. It is possible that the presented time step restrictions could
be tightened and the time step restriction for uniqueness quantified. For the
explicit forward Euler scheme, the critical time step scales with h4, making the
scheme impractical. Finally, the fully discrete problem has been posed in such
a form that an existing a priori error estimate for the Cahn-Hilliard equation
in the L2 norm can be applied directly, proving optimal rates of convergence
for the proposed scheme.
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Summary. This paper presents new finite elements with embedded strong discon-
tinuities for the modeling of failure in solids. The new elements consider linear inter-
polations of the displacement jumps, leading to approximations free of stress locking
in general displacement, mixed, assumed and enhanced strain quadrilateral elements.
The new interpolations allow also the formulation of globally continuous interpola-
tions along the discontinuity path as developed in this paper too. Several numerical
examples are presented to illustrate the performance of the new formulations.

Key words: Strong discontinuities, finite elements, failure of solids.

1 Introduction

The finite element modeling of propagating discontinuities has received a great
deal of attention recently, especially for the modeling of the failure of solids
in the form of cracks or similar. A main challenge has been the modeling of
strong discontinuities (or discontinuities in the displacements) independently
of the mesh, thus avoiding any remeshing. Two main approaches have been
proposed in this respect: the earlier approach based on the local enhancement
of the finite elements [20; 5; 6; 17; 9; 14] and the nodally based enrichment in
partition of unity methods [7; 15; 23; 24], among others.

The consideration of enhanced elements has the advantage of allowing the
static condensation of the local parameters modeling the strong discontinuities
at the element level. Their foundation can be traced to a multi-scale character-
ization of these solutions by which the standard mechanical boundary-value
problem with standard regularity conditions defines the large-scale problem,
incorporating the localized dissipative effects of the discontinuities locally
through the consideration of vanishing small scales; see [2; 3] for details. This
� Corresponding author (armero@ce.berkeley.edu).
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framework allowed us the formulation of finite elements with embedded strong
discontinuities for infinitesimal [5] and finite deformation continuum problems
[6; 2], coupled poroplasticity [10] and beam/plate problems [11; 4]. Alternat-
ive treatments include the regularized discontinuity approach considered in
[17; 12] and the enhanced finite elements presented in [22; 9; 16], among oth-
ers.

Many of these works consider triangular finite elements with piece-wise
constant interpolations of the discontinuity jumps. Quadrilateral elements
with constant jumps have been considered in [9; 16]. Constant jumps, however,
proved to be inappropriate for the kinematics of beam and plates [11; 4], as
the so-called stress locking appears. This situation can be defined as the over-
stiff response of the elements due to a spurious transfer of stresses through
the discontinuity, leading in particular to the impossibility to reproduce a
fully open discontinuity with no associated stresses (i.e. in combination with
rigid body modes of the separating parts of the element). It was observed
in [11; 4] that the consideration of this precise modes allowed the design of
locking-free enhancements, including linear interpolations of the deflections
in that context. A similar approach has been recently followed in [14] for the
formulation of quadrilateral elements with regularized discontinuities in the
continuum, since these elements exhibit a similar spurious transfer of stresses
when trying to model non-constant separation modes.

We develop in this paper elements with linear interpolations of the jumps,
exploiting again the approach of identifying the strain modes to be captured
exactly. This approach contrasts to a direct description of the discontinuous
jumps over the element as followed in [1; 8]. We consider general quadrilat-
eral elements, displacement-based as well as mixed, assumed and enhanced
strain elements. In contrast with the elements presented in [14], we consider
exact non-regularized discontinuities and with linear interpolations of not only
the normal jump but also the tangential component. The later requires not
only the capture of the rigid body modes of the splitting element, but also a
discontinuous relative stretching of the different parts.

Furthermore, the availability of fully linear jumps allows the enforcement
of the continuity of these interpolations along the global discontinuity path, a
second new outcome of this paper, with a vanishing opening displacement at
the discontinuity tip. Remarkably, this continuous interpolation can be accom-
plished while still maintaining the aforementioned local implementation by
which the enhanced parameters modeling the jumps are statically condensed
at the element level, and hence implying minimal changes to a standard finite
element code. This situation is to be contrasted with available approaches like
in [1; 8] based on the addition of nodes along the discontinuity path leading
to global enrichments.

An outline of the rest of the paper is as follows. Section 2 presents a
summary of the theoretical modeling of strong discontinuities, and its ap-
proximation through enhanced finite elements. The new elements with linear
jumps are developed in Section 3, with the variation imposing their global
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continuity presented in Section 4. The performance of these new formulations
is evaluated in Section 5 with several representative numerical simulations.
The paper concludes with several final remarks in Section 6.

2 Strong discontinuities and their finite element
approximation

After presenting the equations defining the problem of interest in this paper in
Section 2.1 (namely, a multi-scale framework of strong discontinuities for the
modeling of failure in solids), we present in Section 2.2 the general finite ele-
ment framework considered in the development of the new elements proposed
in this work.

2.1 Problem definition

We are interested in analyzing the failure of a solid Ω ⊂ R
ndim whose deform-

ation can be characterized in the infinitesimal range of interest by a displace-
ment field u : Ω → R

ndim in the large scale. By this we consider that this
field exhibits the standard regularity conditions (e.g. H1(Ω) typical of elastic
problems), defining the static equilibrium in the large scale by the standard
weak relation∫

Ω

σ : ∇sω dΩ =
∫

Ω

ρb · ω dΩ +
∫

∂T Ω

T̄ ·ω dS , (1)

for all admissible variations ω of u (that is, vanishing on the part of the
boundary ∂uΩ where the displacement field u is imposed), and for the given
applied volumetric loading ρb and tractions T̄ on part of the boundary ∂TΩ.

The stresses σ in (1) are given in terms of the strains ε(u) = ∇su and
other effects characteristic of the solid’s response. Here we are interested in
the modeling of the failures that can be characterized by a cohesive law along
surfaces of discontinuity of the displacements, the so-called strong discon-
tinuities. In the multi-scale framework outlined here, these discontinuities are
considered locally, as a surface Γx with normal n defined locally in a neigh-
borhood Ωx ⊂ Ω of the points where its appearance has been detected (e.g.
acoustic tensor condition on the bulk response). The local displacements are
then written in the form

uμ = u + ũ([[uμ]]) in Ωx , (2)

that is, through a discontinuous displacement field ũ added to the original
(regular) large-scale displacement u and defined in terms of the associated
displacement jumps [[uμ]] : Γx → R

ndim across Γx. Assuming for example a
linear elastic response of the bulk Ωx\Γx, the stresses are given by
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Fig. 1. Typical finite element mesh with a strong discontinuity propagating through
it enhancing the elements along its path.

σ = Cεμ for εμ = ε(u) + ε̃([[uμ]]) in Ωx\Γx , (3)

depending, in addition to the large-scale strains ε(u), on the enhanced strains
ε̃([[uμ]]) giving the effects of the jumps [[uμ]] along Γx to the rest of Ωx.

The newly introduced local fields [[uμ]] on Γx are determined through the
local equilibrium relation across Γx∫

Γx

[[ωμ]] · (σn − TΓ ) dS = 0 , (4)

for all variations [[ωμ]] of the jumps [[uμ]] and for the driving traction TΓ

defining the aforementioned cohesive law TΓ ([[uμ]]) (i.e. a softening law) that
introduces the localized dissipative mechanism to be captured (e.g. a crack).
We refer to [2; 3] for details on all these considerations and, in particular,
the analysis of the existence of solutions in the so-called “large-scale limit”
hx := measure(Ωx)/measure(Γx) → 0 of vanishing small scales Ωx, the case
of interest here.

2.2 The finite element approximation

The most attractive feature of the formulation outlined above for the treat-
ment of strong discontinuities is its local character. It directly translates to
the numerical setting by identifying the neighborhood Ωx with a finite ele-
ment Ωh

e (note also the consistency of these considerations with the notion
of the limit hx → 0 above). We then consider the discontinuities propagating
through a general mesh, defined by straight segments Γ h

e over each active ele-
ment for the plane problems considered here. See Figure 1 for an illustration.
It remains then to define the discrete counterparts of the local fields identified
in the previous section, for a single finite element once its local geometry with
Γ h

e is known.
We start by considering a local interpolation of the displacement jumps

along the segment Γ h
e of the form
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[[uh
μ]](s) = J(s) ξ , (5)

for a set of local element parameters ξ and associated interpolation functions
J(s) defined in terms of a local coordinate s in Γ h

e . The main aspect of the
formulation developed in the previous section for the continuum problem is
the effect of the jumps (5) on the strains in the bulk Ωh

e \Γ h
e as considered in

(3). In the (infinitesimal) discrete setting of interest here, we have

εh
μ = B̄d + G(c)ξ in Ωh

e \Γ h
e , (6)

for an enhanced strain operator G(c) to be defined over the element Ωh
e ,

identifying the contributions of the discontinuity to the discrete kinematics of
the underlying element. This kinematics is defined in (6), as usual, through a
set of nodal displacements d, interpolating the large-scale displacement uh =
Nd for a set of shape functions N , but with a general discrete strain operator
B̄ for the large-scale strains εh = B̄d to accommodate general finite element
methods like assumed strain, mixed or enhanced strain formulations.

In this discrete setting, the governing equations read

R = fext −
nelem

A
e=1

(∫
Ωh

e

B̄Tσ dΩ

)
= 0 , (7)

re
enh = −

∫
Ωh

e

GT
(e)σ dΩ −

∫
Γ h

e

JT TΓ dΓ = 0 , (8)

where the second equation applies only and separately to the elements Ωh
e

where a discontinuity segment Γ h
e has been activated. Equation (7) is the dis-

crete counterpart of the global equilibrium equation (1), involving the stand-
ard assembly operator A over the nelem elements for the problem at hand.
Similarly, the actual numerical implementation involves the standard Voigt’s
vector notation, but no explicit distinction in the symbols is made here.

Equation (8) is the discretization of the local equilibrium equation (4).
However, in contrast with this last equation, the stress term has been defined
with an integral over the element Ωh

e through the “equilibrium” operator G(e),
since the stresses σ are naturally defined there. In fact, they are evaluated at
the quadrature points employed in the evaluation of all the integrals over the
element Ωh

e , as usual. Similarly, the integral over the discontinuity segment
Γ h

e in equation (8) involves quantities defined naturally there (e.g. the driving
traction TΓ in terms of the local jump [[uh

μ]] and the interpolation functions
J), being then easily evaluated through a local quadrature rule along Γ h

e .
The implementation developed here considers standard Gauss quadratures
for both. See Figure 1 for an illustration of these considerations.

Comparing equations (8) and (4), we see that the equilibrium operator
G(e) can be understood as a projection of the stresses defined at the quadrat-
ure points in Ωh

e to the tractions on Γ h
e for the different components of the

assumed interpolations J . In this way, we request
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Ωh

e

GT
(e)σ dΩ = −

∫
Γ h

e

JT σn dΓ h
e + lΓ h

e
o(hp+1

e ) , (9)

for he = AΩh
e
/lΓ h

e
as in hx above and for p ≥ 0 (numerical consistency). As de-

veloped in [4] in the context of plate problems, the different components of this
operator can be constructed with polynomials by noting that the stresses σ
in the underlying element can also be considered as polynomials up to higher
order terms in he. As the local interpolation functions J involve also polyno-
mials in the local coordinate s, we can write for the different components sk

(k = 0, 1 in the linear elements considered below)

G(e)k
η = − 1

he
gek(x, y) (n ⊗ η)s ∀η ∈ R

ndim for k = 0, 1 , (10)

for a set of linear functions in a local Cartesian system {x, y} associated with
the element of the form

gek = ak + bk x+ ck y , (11)

for the constants ⎡⎣ak

bk
ck

⎤⎦ = H−1

⎛⎝ 1
lΓ h

e

∫
Γ h

e

⎡⎣ sk

sk x
sky

⎤⎦ dΓ

⎞⎠ , (12)

all with k = 0, 1, and the matrix

H :=
1

AΩh
e

∫
Ωh

e

⎡⎣1 x y
x x2 xy
y xy y2

⎤⎦ dΩ , (13)

with AΩh
e

=
∫

Ωh
e
dΩ and lΓ h

e
=
∫

Γ h
e
dΓ . The integrals in (12) and (13) are

evaluated with the same quadrature rules as described before. They only need
to be evaluated once, after the particular geometry of the element crossed by
the discontinuity segment Γ h

e is known.
To complete the finite element formulation, it remains to define the en-

hanced strain operator G(c) for the particular assumed interpolations J of the
displacement jumps. We develop elements enhanced with linear jumps next.

Remark 1. A very important feature of equations (7)-(8) is again that the
equations (8) are satisfied at the element level. This fact allows the local
elimination of the enhanced parameters ξ, thus resulting in the global system
of equations

K∗Δd = R∗ , (14)

for the increments Δd of the nodal displacements after the linearization used
in the iterative solution of equations (7)-(8). The statically condensed matrix
K∗ and residual R∗ are defined by the relations
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K∗ =
nelem

A
e=1

[
Ke

dd − Ke
dξK

e−1

ξξ Ke
ξd

]
, R∗ =

nelem

A
e=1

[
Re − Ke

dξK
e−1

ξξ re
enh

]
, (15)

for the element matrices

Ke
dd =

∫
Ωh

e

B̄T
C B̄dΩ , Ke

dξ =
∫

Ωh
e

B̄T
C G(c)dΩ , (16)

Ke
ξd =

∫
Ωh

e

GT
(e)C B̄dΩ , Ke

ξξ =
∫

Ωh
e

GT
(e)C G(c)dΩ +

∫
Γ h

e

JT
C̃Γ JdΓ , (17)

for the bulk and localized tangents C and C̃Γ , respectively (i.e. Δσ = CΔεh
μ

and ΔTΓ = C̃ΓΔ[[uh
μ]]). For future developments, we observe the need to

invert Ke
ξξ, a small 4× 4 square matrix for the elements developed next with

four enhanced parameters ξ per element. We also note the non-symmetric
character of the formulation for a general choice G(e) �= G(c).

3 Finite elements with linear jumps

As discussed in Section 1, most of the finite elements with embedded strong
discontinuities developed to date involve constant interpolations of the dis-
placement jumps. This choice, however, may lead to stress locking when com-
bined with quadrilateral and higher-order finite elements, in the sense that
spurious stresses are transferred through the discontinuity, even if it is fully
softened and no stiffness should arise from it; see [4; 14]. Here we develop
elements with linear interpolations of the discontinuity jumps that improve
on this problem, especially for general bilinear-based quadrilateral elements.

As developed in [11; 4] for beams and plates respectively, the design of
locking-free interpolations can be easily and efficiently accomplished by identi-
fying first the strain modes, say ε̂μ(ξ), to be reproduced exactly by an associ-
ated set of nodal displacements d̂(ξ), both in terms of the parameters ξ, given
the discrete kinematics of the underlying element. That is, in the infinitesimal
range of interest here, we impose

ε̂μ(ξ) = B̄d̂(ξ) + G(c)ξ ∀ξ , (18)

identifying the enhanced operator G(c) in the process.
Figure 2 sketches the four modes to be reproduced exactly for the linear

interpolations of interest, in the plane setting considered here. In particular,
we can find constant and linear separation modes for both the normal and
tangential jumps, denoted by ξ = [ξ0n ξ0m ξ1n ξ1m ]T , in the local reference
system {n,m}. All these separation modes, with the exception of the fourth
one corresponding to the linear tangential separation mode, must be accom-
panied with no strains in the bulk of the element in order to be able to avoid
the stress locking described above. The fourth mode is accompanied with an
axial stretching in the direction m on one side of the discontinuity.
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Fig. 2. Strain modes used in the design of the enhanced operator G(c): (a) con-
stant normal, (b) constant tangential, (c) linear normal, and (d) linear tangential,

separation modes. In all cases, J+ = {2, 3} for the nodes on the Ωh
e

+
side.

Proceeding systematically with equation(18) for each mode, we have for
the constant modes the nodal displacements

d̂
〈0n〉
A (ξ0) =

{
ξ0n n for A ∈ J+

0 otherwise
and d̂

〈0m〉
A (ξ0) =

{
ξ0m m for A ∈ J+

0 otherwise

(19)
respectively, where J + denotes the set of nodes of the part of the element
Ωh

e
+ separated by the discontinuity Γ h

e ; see Figure 1. The choice of one side
or the other can be easily proven to be irrelevant in the final formulation.

Using equation (18) for the nodal displacements (19) and ε̂
〈0n〉

μ = ε̂
〈0m〉

μ = 0,
we obtain

G
〈0n〉
(c) = −

∑
A∈J+

B̄An and G
〈0m〉
(c) = −

∑
A∈J+

B̄Am (20)

for the enhanced strain operators associated to the constant modes.

The linear normal separation mode follows similarly for ε̂
〈1n〉

μ = 0 and the
nodal displacements
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d̂
〈1n〉
A (ξ1n) =

{
ξ1n (n ⊗ m)a

x̄A for A ∈ J+

0 otherwise
(21)

corresponding to an infinitesimal rotation of the side Ωh
e

+ for the scalar en-
hanced parameter ξ1n, with

(n ⊗ m)a := n ⊗ m − m ⊗ n , and x̄A = xA − xΓ h
e
, (22)

for the coordinates xA of nodes A ∈ J + and the center xΓ h
e

of the discon-
tinuity segment Γ h

e , as depicted in Figure 1. Imposing again (18), we obtain

G
〈1n〉
(c) = −

∑
A∈J+

B̄A (n ⊗ m)a
x̄A (23)

for the enhanced strain operator corresponding to this mode.
Finally, the linear tangential mode is characterized, as discussed above, by

the bulk strain
ε̂

〈1m〉

μ = ξ1m (m ⊗ m) HΓ h
e
, (24)

and the nodal displacements

d̂
〈1m〉
A (ξ1m) =

{
ξ1n (m ⊗ m) x̄A for A ∈ J +

0 otherwise
(25)

with x̄A defined in (23) and the Heaviside function

HΓ h
e
(x) =

{
1 for x ∈ Ωh

e
+

0 otherwise
(26)

associated to the discontinuity segment Γ h
e in element Ωh

e . Imposing the strain
relation (18) for all ξ1m, we obtain

G
〈1m〉
(c) = (m ⊗ m) HΓ h

e
−
∑

A∈J+

B̄A (m ⊗ m) x̄A (27)

for the enhanced strain operator associated to the linear tangential jumps.
The final enhanced strain operator is then given by

G(c) =
[
G

〈0n〉
(c) G

〈0m〉
(c) G

〈1n〉
(c) G

〈1m〉
(c)

]
, (28)

or for as many components of the discontinuity jumps activated for the prob-
lem at hand. For example, a particular model of ductile materials may require
only tangential slipping but no normal opening.

Remark 2. We observe that for a single node separating on one side (i.e.
card(J +) = 1, as depicted in Figure 1) the linear normal mode (23) can
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be written as a linear combination of the enhanced strain operators (20) for
the constant modes. This is also the case for the linear tangential mode (27)
up to the discontinuous term depending on the Heaviside function HΓ h

e
. A dir-

ect consequence of this situation is that the first term in the expression (17)
for the matrix Ke

ξξ becomes singular, leading necessarily to the singularity of
this matrix for the common case of a fully softened discontinuity (i.e. C̃Γ = 0)
and prone to become singular in general. We note the need to invert this mat-
rix during the static condensation process (15). Since this situation is easily
detected during the propagation of the discontinuity (i.e. one node separates),
this instability can be avoided by activating only the constant modes for that
particular element since no stress locking occurs in this particular case; see
Section 5.1. However, this option does not lead to an improved performance
of the element, nor allows the continuous jumps interpolations developed in
Section 4 below. For this reason, we consider for this particular case of a single
node separating the alternative (stabilized) residual

r
〈1〉
enh = −

∫
Ωh

e

G
〈1〉T

(e) σ dΩ −
∫

Γ h
e

J
〈1〉T

TΓ dΓ − κ ξ1 = 0 , (29)

for the linear separation modes ξ1 = [ξ1n ξ1m]T and a stabilization parameter
κ > 0. Equation (29) can be understood as a relaxation of a Lagrange multi-
plier formulation imposing constant separation jumps, recovering this case in
the limit κ → ∞. However, here we consider the choice of a finite value for
this parameter being controlled only by the stabilization of the corresponding
tangent matrix (i.e. Ke

ξξ + κ12), since any value 0 < κ < ∞ provides a more
accurate solution than the original element with constant jumps, as illustrated
in Section 5.1. We note the consistency of this approach since the constant
separation modes are not affected. We refer to [13] for complete details of these
considerations and to [18] for a discussion on the stability of finite elements
with embedded discontinuities.

4 Continuous interpolations of the discontinuity jumps

A big advantage of the new finite elements with linear jumps presented in
the previous section over the more standard elements with constant jumps is,
besides the added accuracy and locking-free response, the availability now to
consider continuous interpolations of the discontinuous jumps along the whole
discontinuity Γ h. As a first approach, this can be easily accomplished by a
direct enforcement of the continuity of the jumps at the element edges while
still using the finite elements developed in the previous section.

To this purpose, we can write the constraints to be enforced as

g(I) := [[uh
μ]](I)

e+1 − [[uh
μ]](I)

e = 0 , (30)

for the edge (I) between consecutive elements Ωh
e and Ωh

e+1 along Γ h, and by
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g(Ilast) := −[[uh
μ]](Ilast)

e = 0 , (31)

for the last edge (Ilast) enforcing the zero opening at the discontinuity tip. See
Figure 1 for an illustration. For the linear elements considered in the previous
section, we can write in terms of the jump parameters ξe for element Ωh

e

[[uh
μ]](I)

e =
(
ξe
0n + s(I)

e ξe
1n

)
ne +

(
ξe
0m + s(I)

e ξe
1m

)
me , (32)

in the (common) global Cartesian system and the local coordinate s(I)
e of

edge (I) with the local vectors {ne,me} for the discontinuity segment Γ h
e of

element Ωh
e . The final system of equations reads

R := fext −
nelem

A
e=1

(∫
Ωh

e

B̄Tσ dΩ

)
= 0 , (33)

re
enh := −

∫
Ωh

e

GT
(e)σ dΩ −

∫
Γ h

e

JT TΓ dΓ − QT
e λ = 0 , (34)

Qξ = 0 , (35)

for the Lagrange multipliers λ = [λ(I)] (with I = 1, Ilast) enforcing the con-
straints (35) on all the enhanced parameters ξ. Equation (35) corresponds to
the original constraints (30)-(31) written as the operators Qe and assembled
in Q over the different elements with an active discontinuity segment.

Equation (34) is still written at the element level Ωh
e but depends now

on the Lagrange multipliers λ(I) for the element edges crossed by the local
discontinuity segment Γ h

e and, hence, common to the elements across those
edges. Similarly, equation (35) requires the assembly of the enhanced para-
meters ξ on all these elements thus destroying, in principle, the local structure
exploited in Remark 1 in the static condensation of these parameters.

However, this situation can be avoided by the proper relaxation of the
constraints (35) and their enforcement through an iterative procedure, that is,
an Uzawa-type scheme. In this way, we approach the solution of the equations
(33)-(34) in a given time step of the global problem by the solution first of

R(dl+1,ξl+1) = 0 , (36)

re
enh(dl+1,ξl+1

,λl) = 0 , (37)

for a fixed value of the Lagrange multipliers λl (with, say, λ0 = value for last
step or zero), followed by the local update

λl+1 = λl + � Qξl+1
, (38)

for a relaxation parameter � > 0.
The system of equations (36)-(37) has the same form as the original system

of equations (7)-(8) except for the added term in (34) depending on the fixed
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values λl readily available at the element level. Hence, its solution can still be
accomplished with the very same static condensation procedure outlined in
Remark 1, involving only local (element) modifications before the assembly of
the global system of equations (14). Furthermore, the explicit character of the
update (38) makes it very simple to evaluate as the iteration in l proceeds.

Therefore, we have accomplished the enforcement of the continuity con-
straints with very minor modifications of the code used in the original element
with discontinuous interpolations, already a simple modification of a general
finite element code given the local nature of the enhancements. Clearly, this
very efficient structure of the numerical implementation has been obtained at
the price of the stability of the iterative procedure (36)-(38) for large values
of the relaxation parameter �. Nevertheless, these simple modifications allow
a first and preliminary evaluation of the performance of this type of con-
tinuous jump interpolations along the discontinuity path, as we investigate
numerically in Section 5.4 below.

5 Representative numerical simulations

We present in this section several numerical simulations to illustrate the per-
formance of the newly proposed elements. Of the main interest is the confirm-
ation of their locking-free character.

5.1 Element bending test

We first consider the bending test [14] consisting of a 200 × 200 × 1 mm3

block first pulled uniformly across the height (so a discontinuity opens in
Mode I through the whole block upon reaching the tensile strength), followed
by a double rate of pulling at the bottom with respect to the top (so the
discontinuity opens with a linear distribution of the normal jump); see the
insets in Figure 3. The bulk is linear elastic with Young modulus 30 GPa and
Poisson ratio 0.2, and with a tensile strength of 3 MPa. A linear softening
law with modulus −45 MPa/mm is assumed between the normal opening
and traction across the discontinuity until the later softens completely to zero.
We refer to [13] for the analytical exact solution for this case, including the
nonlinear part as the fully softened zone propagates along the discontinuity.

Figure 3 depicts the solution obtained with a single square element for the
whole block. We consider the enhanced Q1/E4 element of [21] through the
proper B̄ operator as the underlying element (an element able to reproduce
exactly a pure bending state of stress in the considered regular configuration).
As shown in the load-displacement curve of Figure 3, the new finite elements
with linear jumps are able to capture the exact solution (it is actually exact
during the linear softening part). This situation is to be contrasted with the
solution obtained with the original elements with constant jumps. The solution
is not only less accurate during the softening solution in this case, but also
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Fig. 3. Element bending test. (Left) Single element under bending with a linearly
opening discontinuity showing the stress locking of the elements with constant jumps
while the new elements resolve the analytical solution. (Right) Same solution re-
solved with two distorted elements with a single node separating: the new elements
with linear jumps show an improved performance for any finite stabilization para-
meter κ, recovering in the limit κ → ∞ the response of the elements with constant
jumps not locking in this case. The underlying continuum element is the enhanced
Q1/E4 element in both cases.
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Fig. 4. Partial tension element test. Solutions obtained by the new enhanced ele-
ments with linear jumps and the original elements with constant jumps for the
4-node bilinear (Q1) and 9-node quadratic (Q2) quads. The stress on both sides of
the fully open discontinuity is shown for the applied displacements, illustrating the
spurious transfer of stress through the discontinuity for the elements with constant
jumps, while no stresses are transferred for the new elements with linear jumps.
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the discontinuity cannot be fully softened, showing a stiff hardening branch
due to the spurious transfer of stress across the discontinuity.

Figure 3 includes also the solution obtained with two Q1/E4 distorted
elements in such a way that a single node separates for each element. We
observe that the elements with constant jumps do not lock in this particular
case, but still show a poor solution in the softening branch. The elements with
linear jumps show the singularity described in Remark 2 for this particular
configuration. We observe that the stabilization procedure (29) is able to
obtain a good solution for a small value of the stabilization parameter κ to
avoid the singularity, recovering effectively the response of the elements with
constant jumps for large values. As noted in that remark, the choice for this
parameter is simply dictated by the avoidance of the singularity, obtaining a
better performance than the original elements for any finite value.

5.2 Element partial tension test

To evaluate the performance of the elements in the presence of linear tangen-
tial jumps, we consider the test sketched in the insets of Figure 4. A straight
fully softened discontinuity with no jumps, is set initially through the same
square block considered in the previous section. The nodes on one side of the
discontinuity are then pulled in the direction of the discontinuity, as shown
in Figure 4, creating an axial stretch on that side while no strain (or stress)
should be transferred to the other side of the fully softened discontinuity.

Figure 4 shows the solutions obtained for a bilinear 4-node Q1 and a quad-
ratic 9-node Q2 element with constant and linear jumps for the discontinuity.
The elements with linear jumps are able to avoid any transfer of stresses
through the discontinuity thanks to the new linear tangential mode, in con-
trast with the original elements with constant jumps.

5.3 Three-point bending test

We consider this classical benchmark problem for a 2000 × 200 × 50 mm3

simply supported beam with a 20×100× 50mm3 notch at its bottom center,
while loaded by an imposed displacement at the top center; see Figure 5. The
Young modulus is 30 GPa, the Poisson ratio 0.2, and the tensile strength
3.33 MPa. A crack propagates from the notch in Mode I. We consider the
power law in [19] with a fracture energy 0.124 N/mm for the cohesive law in
the normal opening, and a retention factor of 10−3 for the tangential direction.

Figure 5 depicts the solution obtained by the new finite elements with
linear jumps based on the bilinear Q1 quad, showing a zoom of the notch
with the elements having active enhanced parameters. The computed load-
displacement curves are presented in Figure 6, comparing several cases. The
left plot in this figure compares the performance of this enhanced Q1 element
with the similar Q1 element but with constant jumps only, and for two differ-
ent meshes. A good agreement with the experimental envelope can be observed
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Fig. 5. Three-point bending test. Solution obtained by the new elements with linear
jumps and a mesh with 1,105 quadrilateral Q1 enhanced elements, with a zoom of
the elements with an active discontinuity shown in red (deformations scaled by 100).
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Fig. 6. Three-point bending test. Computed load-displacement curves for elements
enhanced with linear and constant jumps. (a) Comparison for two different meshes,
the mesh above with 1,105 quadrilateral elements and a finer mesh with 2,546 ele-
ments. (b) Comparison of the solutions obtained with enhanced Q1 and Q1/P0
elements for the coarser mesh above.

in all cases, with the elements with linear jumps showing systematically an
improved softer performance, especially in the later stages of deformation.

Figure 6 includes also the load-displacement curves obtained with mixed B-
bar Q1/P0 elements enhanced with constant and linear jumps. This illustrates
the flexibility of the proposed formulation when considering any particular
element and mesh for the resolution of the large-scale problem. Again, the
elements with linear jumps show a systematic softer performance, as desired.

5.4 Continuous interpolations

We conclude with an evaluation of the continuous interpolations developed
in Section 4. To this purpose we consider a convergence test based on a 10×
20 mm2 specimen in plane strain with a pre-existing fully softened crack at its
center and for half the width; see Figure 7. The Young modulus is 206.9 GPa
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Fig. 7. Convergence test. Contours of the vertical stress with deformed meshes
(scaled by 100) for the solutions with the discontinuous and the continuous inter-
polations of the jumps. The continuous interpolation also enforces a zero opening
displacement at the crack tip, leading to a sharper stress concentration.
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Fig. 8. Convergence test. Computed total reaction versus the number of segments
resolving the crack for the different meshes considered.
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and the Poisson ratio is 0.29. We compute the reaction obtained by imposing
1 mm displacement at the top for different structured meshes, and for that
fixed length of the crack (i.e. the discontinuity does not propagate). Figure
7 depicts the solution for the mesh with a discontinuity resolved with 30
segments, showing the contours of the vertical stress for both discontinuous
(piece-wise linear) and continuous interpolations of the jumps.

Figure 8 shows the convergence in the computed reaction versus the num-
ber of segments along the discontinuity for these two interpolations. A slightly
better convergence (flatter curve) can be observed for the continuous inter-
polations. The stress contours in Figure 7 show also the sharper stress con-
centration for the continuous interpolations, noting that in this case we also
impose the zero jump condition (31) at the crack tip. No special treatment
of the tip element has been considered for capturing the stress concentration,
in either case. Still, this sharper resolution indicates a promising performance
for the continuous interpolation, especially as it is obtained again with very
simple modifications of the original implementation.

6 Concluding remarks

The results presented here show the improvement gained by the consideration
of linear displacement jumps combined with general quadrilateral elements,
including basic displacement-based, mixed and enhanced elements. We ob-
tain the lack of stress locking for a linearly separating discontinuity, and the
generality gained by a fully linear separation (i.e. in both the normal and
tangential components), allowing the representation of a number of modes
without a spurious transfer of stresses. Furthermore, this generality allows the
development of globally continuous interpolations of the jumps along the dis-
continuity. Remarkably, a continuous interpolation has been obtained without
upsetting the very efficient local structure of the original elements, in which
the enhanced parameters are condensed out at the element level.
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Evolving Material Discontinuities: Numerical
Modeling by the Continuum Strong

Discontinuity Approach (CSDA)

J. Oliver1, A.E. Huespe2, S. Blanco1 and D.L. Linero3

Summary. The CSDA, as a numerical tool for modeling evolving displacement dis-
continuities in material failure problems, is addressed. Its specific features are: a) the
explicit use of a (regularized) strong discontinuity kinematics, b) the introduction
of the material failure constitutive model in a continuum (stress-strain) format, and
c) the determination of the onset and propagation of the discontinuity by means of
constitutive model material bifurcation analysis. Numerical applications to concrete
failure and soil collapse problems are presented.

Key words: Continuum Strong Discontinuity Approach, material failure simula-
tion, IMPL-EX algorithm.

1 Introduction

Displacement discontinuities are observed, at macroscopic scales, associated
to material failure in solids, as cracks, fractures, shear bands, etc. Therefore,
modeling its formation, evolution and propagation is a specific goal of Com-
putational Material Failure Mechanics.

In material science, numerical simulation of problems involving quasi-
brittle or ductile fracture, dynamic fracture propagation, fragmentation or
spalling, does not only serves as a way of obtaining the response of a given
model, but also as a tool for a better understanding of theoretical, and not suf-
ficiently well known, aspects of those phenomena. This is, typically, the case of
dynamic fracture problems, where new analytical developments are extremely
difficult to develop, and experimental results can be then approached by nu-
merical procedures so that the interaction between different mechanisms can
be better understood and explained.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 123–138.
© 2007 Springer. Printed in the Netherlands.
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At the beginning of 90s the cohesive model approach showed fairly good
performance for reaching that objective [1]. It is now well established that the
adoption of cohesive models requires, in addition to the standard continuum
model for the bulk, three fundamental ingredients:

1. a traction-separation law for describing the loss of cohesion in the fracture
process zone;

2. a crack growth criteria for determining the inception time of the discrete
law and the propagation trajectory of the discontinuity across the solid.

To reproduce the fracture formation and its subsequent evolution, both in-
gredients must interact with an enriched kinematics model allowing jumps
in the velocity field, from now on termed strong discontinuities [18]. Thus, a
third ingredient is necessary:

3. an enhanced kinematics including strong discontinuity modes.

In recent years an alternative setting for displacement discontinuity modeling,
involving similar mechanical and numerical ingredients, has appeared. This
approach, which is closely related to the cohesive one, and termed strong
discontinuity approach (SDA), exhibits two specific branches:

(i) the Discrete Strong Discontinuity Approach (DSDA), which is similar
to the cohesive model in terms of the given treatment of the traction-
separation law and the crack growth criteria [1, 2, 5, 17].

(ii) the Continuum Strong Discontinuity Approach (CSDA) where continuum
(stress-strain) constitutive models, equipped with strain softening, are
used to model the material response in the fracture interface.

In this work, the last approach is addressed. Its main ingredients are presented
and analyzed and its capability evaluated through two typical problems of
material failure simulation.

The remaining of the work is organized as follows: in Section 2, the strong
discontinuity kinematics is presented. Section 3 describes the fundamental
topic of the CSDA i.e. the treatment given to the cohesive forces in the sense
of the above mentioned ingredients. This aspect is what confers to the CSDA
a specific character, making it essentially different from the classical cohesive
and DSDA models.

The variational formulation of the problem is presented in Section 4, in a
general way such that different available finite element techniques, like EFEM
or XFEM methods, can be straightforwardly inserted. Then, in Section 5,
a specific procedure for integration of the softening constitutive model, the
IMPL-EX method, which provides high robustness and stability to the nu-
merical simulations, is tackled. In Section 6 some representative examples are
presented and, finally, in Section 7 conclusions about the work are supplied.
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2 Strong Discontinuity Kinematics

Let Ω be an open body. The strong discontinuity kinematics is defined in Ω
by considering the existence of displacement jumps, β, in the displacement
field u, across a surface S, as follows:

u(x) = ū(x) + HSβ(x); HS =
{

1 ∀x ∈ Ω+

0 ∀x ∈ Ω− (1)

where ū represents a smooth displacement field in Ω and HS the Heaviside’s
step function. The discontinuity surface S divides Ω in two disjoint parts Ω+

and Ω−, see Figure 1.

Fig. 1. Strong discontinuity in a body.

In [19], a slightly different functional representation of the discontinuous
displacement u, more adapted to a finite element approach, has been defined
as follows: let us define a region Ωh ⊂ Ω enclosing S, (S ⊂ Ωh), and a smooth
function ϕs, such that: ϕs = 1 ∀x ∈ Ω+/Ωh and ϕs = 0 ∀x ∈ Ω−/Ωh. Then,
the discontinuous displacement field u can be alternatively written as:

u(x) = ū(x) + MSβ(x); MS = HS − ϕs, (2)

where MS is the so called unit jump function with support Ωh (see Figure 1).
This allows that, if Ωh is a small region not including the body boundary
where Dirichlet’s conditions are imposed, the displacement on that boundary
is imposed on both u and ū fields.

A key aspect of the CSDA is to assume a generalization of those kinemat-
ical concepts on S, like strains and derived magnitudes, which in the classical
continuum approach lose their bounded character due to the displacement
jump, by introducing the generalized gradient concept. Then, the strains be-
ing compatible with the displacement jump (2), are defined as:

ε(x) = ∇symu(x) = ε̄(x)︸ ︷︷ ︸
regular

(bounded)

+ δS(β ⊗ n)sym︸ ︷︷ ︸
singular

(unbounded)

, (3)
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where a singular term appears, affected by the Delta’s function δS coming
from the displacement strong discontinuity mode. The structure of the singular
term in (3) deserves a special attention. It is the tensorial product between the
jump displacement vector β and the unit normal vector n to the discontinuity
surface S and pointing to Ω+.

3 Continuum Constitutive Models and
Traction-Separation Laws

In the context of the classical cohesive models, the continuum behavior is de-
scribed by means of a constitutive model that is completely independent from
the traction-separation law acting at the fracture process zone. In support
of this methodology, it could be argued that the physical phenomena taking
place in the material at the fracture process zone, are essentially different
from those governing the continuum deformation mechanisms. However, for
numerical simulation purposes, two key aspects of this methodology should
be questioned:

1. it requires the definition of a specific constitutive law for the cohesive forces
as a new ingredient with respect to the continuum constitutive model
at the bulk. Therefore, its characterization requires additional laboratory
tests;

2. The transition from the continuum to the discrete constitutive law, in a
given material point, cannot be arbitrarily done. Requirements as the so
called time continuity [8] impose specific constraints not always fulfilled in
existing cohesive models.

Actually, for numerical simulation purposes it is very common to use ad-hoc
cohesive laws, similar to damage or plastic models, in the reduced space of
tractions versus displacement jumps. These cohesive laws are not necessarily
derived from a micromechanical models and, therefore, they can not capture
or predict the basic phenomenology arising in the fracture process zone (see
for instance [8, 9, 16]).

As an alternative to this approach, the CSDA proposes to obtain the co-
hesive law consistently from a continuum constitutive model, by means of its
projection onto the discontinuity interface S (see Figure 1). For this purpose,
a continuum constitutive law, equipped with strain softening, is assigned to
the material in any point, in such a way that a material bifurcation process
and the strong discontinuity kinematics impose the natural fulfillment of that
projected traction-separation law, at the discontinuity interface, as the discon-
tinuity onsets. In this way the passage from the continuum to the discrete law
is a smooth mapping in time. Of course, this procedure requires a continuum
constitutive law, rich enough for capturing the physical phenomena appearing
in the strain localized zone. Then, once defined the continuum model, the co-
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hesive force is derived automatically as its projection into the failure interface
[10]. More details can be found in [11] and [12].

3.1 Damage and Plasticity Continuum Models

Let us consider the two classical continuum material models of Table 1: (i) a
continuum isotropic damage model and (ii) a J2 elasto-plastic model.

The notation used in Table 1 is the following: for the plastic model, the
total strain ε is partitioned in the elastic part εe, and the plastic counterpart
εp. The stress tensor is denoted by σ and its deviatoric part by σdev, Ce is the
Hooke’s elastic tensor, r and q represent, respectively, the strain and stress-
like internal variables of the model, and φε and εσ define the elastic domain in
each case. Identical notation, σu, has been used for the ultimate stress in the
damage model and the yield stress in the plastic one. The Young’s modulus
is denoted by E and H is the softening modulus. In the damage model σ̄+ is
the positive part of the effective stress tensor σ̄, defined as

σ̄+ =
3∑
1

〈σ̄i〉pi ⊗ pi,

where 〈σ̄i〉 is the McAulay bracket of the ith principal stress, σ̄i, and pi stands
for the ith eigenvector of σ̄.

Table 1. Continuum damage and plastic material models.

Isotropic continuum damage J2 elasto-plastic model with

model with strain softening isotropic strain softening

σ =
q

r
Ce : ε︸ ︷︷ ︸

σ̄

=
q

r
σ̄

σ = Ce : εe = Ce : (ε − εp)

ε = εe + εp
(4)

ṙ = λ̇; r|t=0 = r0 = σu/
√

E
ṙ = λ̇; r|t=0 = 0

ε̇p = λ̇ξ; ξ = ∂σφσ

(5)

φε(ε, r) ≡ τε(ε) − r

τε(ε) ≡
√

σ̄+ · Ce−1 · σ̄
φσ(σ, q) = J2(σ) − (σu − q)

J2(σ) =
√

3/2‖σdev‖
(6)

λ̇ ≥ 0; φε ≤ 0; λ̇φε = 0 λ̇ ≥ 0; φσ ≤ 0; λ̇φσ = 0 (7)

q̇ = Hṙ; q ≥ 0

q|t=0 = r0 = σu/
√

E; q|t=∞ = 0

q̇ = −Hṙ; q ≥ 0

q|t=0; q|t=∞ = σu

(8)
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Projected damage and plasticity models

The projection of both models onto the discontinuity surface has been presen-
ted in [10]. There, it has been shown that imposing the traction continuity
condition across S, it is possible to derive the functional relation between
tS = σS · n, the traction vector on S, and the displacement jump vector β.
This becomes the discrete traction-separation law of the associated (projec-
ted) cohesive model. Applying this procedure to the classical models (4)–(8),
it determines the traction-separation laws described in Table 2. In this table, λ
and μ denote the Lame’s parameters, q and α internal variables, while the (in-
trinsic) softening modulus H̄S comes from the regularization of the continuum
softening modulus H .

Table 2. Discrete damage and plastic models.

Isotropic continuum damage J2 elasto-plastic model with

model with strain softening isotropic strain softening

tS = (1 − ω)Qe · β; ω =
q

α

Qe = n · Ce · n = (λ + μ)n ⊗ n + μ1

β̇ = γ̂mS; β̇ · n = 0

mS =

√
3

2

tdev
S

‖tdev
S ‖ ; tdev

S = σdev
S · n

(9)

q̇ = H̄Sα̇; α̇ = γ̂; α(t)|t=td = 0

q(t)|t=td = qd =
σu√
E

> 0

q̇ = H̄Sα̇; α̇ = γ̂

q(0) = 0
(10)

Ft(t, q) = τt − q

τt =
√

tS · (Qe)−1 · tS︸ ︷︷ ︸
effective traction

φS(tdev
S , qs) =

=
√

3(tdev
S · tdev

S ) − (σu − q)
(11)

γ̂ ≥ 0; Ft(t, q) ≤ 0; γ̂Ft = 0 γ̂ ≥ 0; φS ≤ 0; γ̂φS = 0 (12)

In a loading process leading to the complete material exhaustion, it is
possible to characterize H̄S by requiring that the dissipated energy in the
traction-separation law be equal to the fracture energy Gf (see [11]).

Strong discontinuity activation criteria

This ingredient is introduced into the CSDA by resorting to the material
instability condition, derived from an analytical analysis of the bifurcation
condition in the loading process. From the theoretical point of view, a ma-
terial exhibiting strain softening is prone to bifurcate exhibiting a subsequent
unstable regime. In a loading process this determines the possibility of devel-
oping an alternative mode of deformation, at the material point x and t at
the bifurcation time tB , as the following condition is fulfilled:
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det(Qloc(x,n, tB)) = 0,

Qloc(x,n, tB) = n ·Cload · n, (13)

where Cload is the continuum constitutive tangent tensor in loading stage.
Criterion (13) indicates that a bifurcation state is reached, the first time,
tB, that the acoustic tensor Qloc becomes singular for some direction n. This
condition, which is necessary but not sufficient to induce a strong discontinuity
deformation mode, depends on the material stress-strain state.

4 Variational Formulation and Finite Element Approach

A straightforward way to capture strong discontinuities across the element
boundaries, in a finite element mesh, consists of adding, for every regular node
of the mesh, additional degrees of freedom, which are freed when the criteria of
fracture propagation is reached in any of the neighbor elements. The traction
forces are implemented via interface finite elements. This methodology, which
enforces the discontinuity path to follow the element boundaries, has been
widely used in the context of cohesive model approaches [16].

An alternative approach consists of embedding the strong discontinuities
into the finite elements, as proposed in the so called finite elements with em-
bedded discontinuities (EFEM) or in the extended finite element techniques
(XFEM). Both of them can be identically formulated, into the same vari-
ational setting, by choosing adequate test function spaces.

Let the problem governing equations be written as a classical variational
(Virtual Work) principle:

Find: uh ∈ Vh; such that∫
Ωh

∇symδuh · σdΩ =
∫

Γ h
σ

δuh · t̄dΓσ; ∀δuh ∈ Vh
0 , (14)

where, for the XFEM technology, the discrete functional space Vh is given by
a discontinuous displacement field, see also Belytschko et al. [4]:

Vh
XFEM =

{
uh(x) | uh(x) =

nnode∑
i=1

(Ni(x)di + HSNi(x)βi)

}
, (15)

Ni being the standard shape function of the basic finite element, triangle,
quadrilateral, etc.; di the interpolation parameters corresponding to the
smooth displacement field and βi the nodal parameters of the strong dis-
continuity field (actually βi represent displacement jumps at node i). Alter-
natively, for the EFEM technology, the discrete functional space is defined
by:
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Vh
EFEM =

{
uh(x) | uh(x) =

nnode∑
i=1

(Ni(x)di) +
nelem∑
e=1

M(e)
S βe

}
,

M(e)
S = HS − ϕ(e); ϕ(e) =

n
(e)
node+∑
i=1

N
(e)
i , (16)

with M(e)
S being a discontinuous enriching function, the discrete unit jump

function, with support on element e, βe are the parameters corresponding
to the elemental displacement jump and ne

n+
node

are those elemental nodes

belonging to Ω+.
For this second case, the variations respect to each parameter (di,βe)

results in the following set of equations:

δdi ·
(∫

Ωh

∇Ni · σdΩ −
∫

Ωh
σ

Ni · t̄dΓ
)

= 0 ∀δdi; i = 1, nnode,

δβe ·
(∫

Ω(e)
∇ϕ(e) · σdΩ +

∫
S(e)

(σS · n)dS
)

= 0 ∀δβe; e = 1, nelem. (17)

This is the EFEM discrete weak form of the problem governing equations.
The variational problem (14), using either the spaces (15) or (16) determines
a symmetric finite element approach.

A comparative analysis between both techniques EFEM vs. XFEM has
been presented in Oliver et al. [14].

4.1 Strong Discontinuity Tracking Algorithm

Both the EFEM and XFEM technologies, require an additional ingredient: the
determination of the discontinuity path and its intersection with the mesh
elements. Different algorithms have been developed to reach this objective:
(i) global tracking algorithms, where the discontinuity paths are determined
globally (for the complete mesh at once) as presented in Oliver et al. [13], or
the level set method of Gravouil et al. [7], Feist and Hofstetter [6], etc; and
(ii) local tracking algorithms, where the path is determined in an element to
element way.

From the authors’ experience, global tracking algorithms are more suitable
for 3D analyzes. This type of algorithm can be described as follows:

Let us assume that a vector field n(x), orthogonal to the discontinuity
path, is defined at every point (Gauss Point in the finite element mesh) of
the solid by means of the criterion of Section 3.1.2. In that part of the body
where an elastic response is observed, an admissible direction n is obtained
by assuming an, artificially reduced, value for the yield stress σu such that
the stress-strain state just corresponds with the loading case for the chosen
non-linear model.
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Fig. 2. Thermal-like tracking algorithm.

In the plane orthogonal to n, two, again orthogonal, unit vectors, t(x)
s(x), are considered so that they define, at point x, the tangent plane of
propagation of the discontinuity (see Figure 2). Then, the scalar field θ(x) is
the solution of the following problem:

Find: θ such that

∇ · Kθ∇θ = 0; Kθ(x) = t⊗ t + s ⊗ s (18)

defines the family of level sets Sc ≡ {x | θ(x) = c;x ∈ Ω} ∀c ∈ R, which are
the envelopes of the vector fields t(x) and s(x) (see [13] for additional details).

From the numerical point of view, the accompanying problem (18), equi-
valent to a linear adiabatic thermal one with a non-homogenous anisotropic
conductivity Kθ, can be solved when every, or once several, time step has
converged. Once obtained the field θ, managing the discontinuity evolution
across the body is rather straightforward, considering the following aspects:

(i) Once the first element in the mesh reach the critical condition (13), the
iso-level surface crossing that element determines the first crack propaga-
tion path “θ1”;

(ii) Elements subsequently reaching the critical condition, which are not
crossed by the previously defined iso-level surfaces θj (j = 1, 2, . . . , i),
define new crack pathes θi+1, θi+2, . . .

(iii) Once an element has reached the critical condition, the normal vector n
and the θ field’s d.o.f. in that element are frozen. While the element that
is intersected by the θi path does not reach the critical condition, the θ
field could be modified in that point.

(iv) In the finite element mesh, is possible to define a shield zone where some
elements are precluded to reach the critical condition.

When using an implicit procedure, the item (iv) becomes a very important
issue to get an adequate algorithmic robustness. Nevertheless, the use of the
IMPL-EX algorithm, to be described in the next section, has relaxed this
restriction.

It is worth mentioning here that some new methods of embedded strong
discontinuities do not require a tracking algorithm [17].
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5 Constitutive Equation Integration. IMPL-EX Scheme

In computational material failure mechanics, the constitutive equation
integration scheme deserves an important attention considering the large com-
putational time savings that can be obtained with a correct choice. Histor-
ically, two widely acknowledged algorithms have been used: (i) explicit and
(ii) implicit algorithms. Explicit algorithms, do not require neither evaluat-
ing the stiffness matrix nor inverting it, but demand a much larger number
of time increments in comparison with the implicit ones (one or two orders
larger). On the other hand, when using implicit algorithms in computational
material failure mechanics, numerical simulations exhibit a dramatic loss of
robustness, so that their most important advantage (larger time steps), gets
reduced and, many times, they become not competitive.

The authors have obtained remarkable good results by using a new
implicit-explicit (IMPL-EX) integration technique (see [15]). It consists of
a double integration of the constitutive model at every time step n. The
stresses and internal variables are determined by: (i) a standard implicit
Euler-Backward scheme, resulting in implicit values of the stresses σ∗

n and
the internal variables set r∗n, and (ii) an explicit extrapolation of the internal
variable set, r̃n, in terms of the implicit values at previous time steps, from
which the corresponding stresses, σ̃n = σ(r̃n, εn) are computed and used for
determining the corresponding internal forces. Then, it can be proven that the
corresponding consistent tangent algorithm Ceff

n = ∂σ̃n/∂εn becomes strictly
positive definite, which has striking effects on the robustness of the numerical
response. Moreover, for a larger number of the, most commonly used, con-
stitutive models, Ceff becomes constant and, therefore, the linearized system
of equations takes just one iteration to converge at every time step. The res-
ult is a dramatic reduction of the resulting computational effort at the cost
of introducing an additional (time step length dependent) error.

We present an overview of this procedure, by assuming a J2 plasticity
model. Let the implicit stresses, σ∗ and internal variables r∗, q∗, at previ-
ous time steps, be known. The IMPL-EX values of the stresses, and internal
variables, at step n are determined by the following algorithm:

Δr̃n = Δγ̃n =
Δr∗n−1

Δtn−1
Δtn = (r∗n−1 − r∗n−2)

Δtn
Δtn−1

; q̃n = q∗n−1 +HΔr̃n,

σ̃n = σ∗
n + Ce : (Δεn −Δε̃p); Δε̃p = Δγ̃n

s̃n

‖ŝn‖
,

s̃n = σ̃dev
n = Idev : σ̃n; ‖ŝn‖ −

√
2
3
(σY − q̃n) = 0, (19)

where Idev is the fourth-order identity deviatoric tensor. It is straightforward
to compute the corresponding algorithmic tangent tensor as:
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Fig. 3. Notched cylindrical bar. Finite element mesh.

Ceff
n =

[
Ce−1

+

√
3
2

Δγ̃n

(σY − q̃n)
Idev

]−1

, (20)

which is positive definite and constant (during the time step n) since Δγ̃n and
q̃n are known at the beginning of the time step.

6 Numerical Applications

In this section two problems are presented, which show the ability of the CSDA
for capturing typical material failure mechanisms. The first one corresponds
to a concrete specimen undergoing a cracking process, what produces the
complete loss of its structural strength. The second application refers to the
formation of a slip surface. In this case, the continuum material constitutive
law follows a J2 plasticity model.

Both solutions have been obtained by means of 3D finite element simu-
lations and the discontinuity surfaces were determined by using the tracking
algorithm described in Section 4.1.

6.1 Notched Cylindrical Bar in Tensile State

This test has been reported by Barragan [3], from where the experimental
results, to validate the present numerical model, have been taken. It consists
of a notched cylindrical bar under uniaxial loading. The top of the bar, where
the force is imposed, is free to rotate.

The specimen geometrical dimensions are displayed in Figure 3. The para-
meters of the material, simulated by means of the damage model of Sec-
tion 3.1, are: Young’s modulus E = 30.5 GPa, Poisson’s ratio: ν = 0.2,
ultimate stress σu = 1.79 MPa and fracture energy Gf = 100 N/m.
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Fig. 4. Notched cylindrical bar. Deformation.

Fig. 5. Notched cylindrical bar. Results.

The finite element mesh consists of 8543 tetrahedra, as displayed in the
same figure. It is important to remark that the elements in the neighborhood
of the notched zone have been arbitrarily generated so that they are not
constrained to lying between the two horizontal planes defining the horizontal
notch sides. It is expected that the fracture surfaces define a quasi-planar
surface crossing the notched section. In consequence, this mesh design is a
challenge for the correct capturing of the strong discontinuity surface when
tetrahedral finite elements are used.

Figure 4 displays the discontinuity interface determined by the tracking
algorithm, the deformed mesh and the surfaces of iso-displacement at the end
of analysis. It can be observed the rotation of the upper section. This rotation
determines a non-uniform circumferential CMOD. Therefore, to evaluate this
magnitude, three extensometers, distributed as shown in Figure 3b, were used
in the test.
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Fig. 6. Notched cylindrical bar: damage evolution of the notched section.

Figure 5a plots the nominal strength vs. the CMOD curve which is ob-
tained as the mean value of the three extensometers. The nominal strength
σn is defined as:

σn =
4Pu

πD2
, (21)

where Pu is the collapse load and D = 130 mm the notched section diameter.
The same figure displays the experimental results. It can be observed the god
fitting of the numerical solution mainly in the post critical regime.

The load increase determines a strain localization process in the notch
zone, whose evolution is shown in Figure 5b. The finite elements whose dis-
continuity mode is active are represented in black. Due to the rotation of the
specimen half upper part, with respect to the lower part, the progress of the
discontinuity surface does not shown axi-symmetry. This result is checked in
Figure 6, where the damage evolution is shown in the same bar section.

6.2 Embankment Stability Analysis

The stability analysis of a 3D embankment, constituted by a deformable soil
lying over almost rigid bedrock, is performed. Its geometry, boundary condi-
tions and finite element mesh are displayed in Figure 7. Notice the bedrock
step influencing the structural collapse mechanism.

The material model assumed for the soil is a J2 plasticity one, whereas the
rock is assumed elastic. Their material parameters are: (i) deformable soil :
Young’s modulus E = 10 MPa, Poisson’s ratio: ν = 0.4; yield stress σy =
0.1 MPa and fracture energy Gf = 10 kN/m, density ρ = 1800 kg/m3; (ii) ri-
gid bedrock : E = 100 MPa, Poisson’s ratio: ν = 0.4, density ρ = 1800 kg/m3.

The external action is the self weight, and the load factor is applied on the
material density. For the numerical solution strategy an arc-length method,
controlling the vertical displacement at point P, is used.

The finite element mesh consists of 5250 bricks using the BBAR technology
to avoid the kinematics locking induced by the isochoric plastic deformation.

Figure 8 displays the slip surface captured by the numerical simulation. It
is observed the two curved segments resulting from the bedrock step.

Figure 9a shows the structural response by means of the load factor vs. the
vertical displacement at point P. The critical load corresponds to a density
ρ = 4896 kg/m3 (load factor 2.72).

135



J. Oliver et al.

Fig. 7. Embankment stability analysis: geometry and finite element model.

Fig. 8. Embankment stability analysis: slip surface, deformed mesh and isosurfaces
of displacements.

In correspondence, Figure 9b shows, in black, the sequence of the strong
discontinuity activation along the captured slip surface.

7 Conclusions

The CSDA, in conjunction with embedded finite element (EFEM) techniques
and the implicit-explicit (IMPL-EX) time integration scheme, constitutes a
robust approach to the numerical simulation of material failure. It allows gen-
eral 3D material failure simulations in those problems where evolving displace-
ment discontinuities characterize the collapse mechanism. The most specific
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Fig. 9. Embankment stability analysis: load factor vs. vertical displacement at point
P; evolution along the time of the sliding surface.

features of the CSDA in front of alternative procedures are: (a) the (regu-
larized) strong discontinuity kinematics is explicitly introduced in the strain
description, (b) specific traction-separation laws are not required and the fail-
ure constitutive model is introduced in a continuum (stress-strain) format and
(c) the onset and propagation of the discontinuity is determined via a material
bifurcation analysis of the continuum tangent constitutive operator.

In this work, an overview of those ingredients has been provided, and the
method performance has been illustrated by its application to representative
examples.
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A 3D Cohesive Investigation on Branching for
Brittle Materials

Summary. Recently, Fineberg and Sharon conducted dynamic crack propagation

experiments in PMMA and soda lime glass [1, 2, 3, 4, 5, 6, 7]. They pointed out

some notable features of micro-branching instabilities in brittle materials, and their

experiments raised a considerable interest for the brittle fracture dynamics. In this

paper we present some numerical results on brittle fracture obtained by using cohe-

sive theories of fracture. In the numerical calculations, the branching instability is a

natural outcome of the explicit formulation. The cohesive model captures the basic

features of experiments, such as the transition of the crack surface from smooth to

hackled with increasing energy flux, and the power-law functional form of the profile

of the crack branches.

Key words: branching instabilities, cohesive models, brittle fracture, finite
elements.

1 Introduction

During the last fifteen years, Fineberg and Sharon [1, 2, 3, 4, 5, 6, 7] conducted
several experiments in brittle amorphous materials to study the propagation
of cracks under dynamic loading. They observed that: (i) there exists a critical
crack velocity, vc, beyond which the dynamics of crack changes dramatically;
(ii) for crack velocities v < vc, a single main crack propagates straightfor-
ward, leaving a smooth fracture surface; (iii) for crack velocities v > vc, small
side branches sprout from the main crack, and a clear transition from a sin-
gle crack to multiple cracks –branching instability– is observed. Usually, vc

is only a fraction of the Rayleigh wave speed vR, the theoretical asymptotic
crack speed for a single crack [8, 9]; for example, vc is about 0.4vR for PMMA.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 139–151.
© 2007 Springer. Printed in the Netherlands.
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Additionally, in their experiments Fineberg and Sharon showed that the criti-
cal velocity value vc is independent of the specimen geometry and the loading
rate; the branching trajectory is independent of the crack velocity and exhibits
scaling behavior; and the branch length and the distance between branches
are well modelled by a log-normal distribution.
The interest of the scientific community for dynamic fracture in brittle mate-
rials is testified by analytical works [10, 11] and numerical simulations with
lattice models [17], molecular dynamics [12, 13] and finite element models
[14, 15, 16].
We present here three dimensional finite element simulations of branching in-
stability in brittle amorphous materials [18], obtained by combining cohesive
theories of fracture [21] with the explicit simulation of fracture propagation
[19, 20]. The cohesive theory of fracture is summarized in Sect. 2; the nu-
merical simulations are described in Sect. 3, and finally some conclusions are
drawn in Sect. 4.

2 Cohesive theory of fracture

Cohesive theories regard fracture as a progressive separation between two
surfaces resisted by surface tractions. The relationship between the opening
displacement δ = [[u]] (strong displacement discontinuity between the two sur-
faces) and the resisting traction is defined by a cohesive law. In the simplest
case, the cohesive law can be expressed as a function of two fracture param-
eters, for example the critical energy release rate Gc –the energy spent for a
unit increase of the extension of the crack surface– and the tensile strength of
the material σc:

t = f(δ, Gc, σc) (1)

By introducing a cohesive energy density per unit of undeformed surface, φ,
function of (δ, Gc, σc), the cohesive law is obtained by differentiating φ with
respect to δ:

t =
∂φ(δ, Gc, σc)

∂δ
(2)

Denoting with n the normal to the cohesive surface in the current configura-
tion, we consider [22, 21] a simple class of mixed-mode cohesive laws account-
ing for tension-shear coupling, obtained by the introduction of an effective
opening displacement:

δ =
√
β2δ2S + δ2n (3)

where
δn = δ · n (4)

is the normal opening displacement and

δS = |δS | = |δ − δnn| (5)
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is the magnitude of the sliding displacement. The parameter β assigns different
weights to the sliding and normal opening displacements. The cohesive law
(1) reduces to

t =
t

δ
(β2δS + δnn) (6)

where t is a scalar effective traction. The expression of t follows from (3) and
(6) as

t =
√
β−2|tS |2 + t2n (7)

where tS and tn are the shear and the normal traction respectively. From this
relation, we observe that β defines the ratio between the shear and the normal
critical tractions and roughly defines the ratio of KIIc to KIc of the material.
The simple cohesive law adopted in the subsequent calculations is depicted in
Fig. 1. Cohesive theories of fracture introduce into the material description

σ δ /2G  = c ccσc

δmax δc

t

δ
Fig. 1. Irreversible cohesive law adopted in the calculations, characterized by a
linearly decreasing first loading envelop.

characteristic length and time scales [22, 23, 24]. The characteristic length �c
is defined as:

�c =
EGc

σ2
c

(8)

where E is the elastic modulus of the material. The intrinsic length �c roughly
estimates the size of the process zone, where the crack opening takes place. To
avoid spurious mesh effects, the finite element size must resolve the process
zone extension.
The characteristic time tc is described as follows:

tc =
ρcLδc
2σc

(9)

where ρ is the mass density, cL =
√
E/ρ is the longitudinal wave speed and

δc the critical cohesive length. The intrinsic time tc arises from the interplay
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between material inertia and cohesive properties under dynamic conditions.
Owing to the intrinsic time scale, cohesive models have been proved able to
reproduce rate effects, although their definition requires only static material
properties. The characteristic time provides a theoretical basis for the esti-
mate of a critical strain rate for branching [18, 23, 24].
Cohesive approaches to evaluate branching instabilities have been previously
presented by Xu and Needleman [15], and more recently by Falk, Needle-
man and Rice [16]. In their analysis, though, cohesive surfaces are initially
embedded into the discretized continuum. In our simulations we use an auto-
matic mesh adaption procedure, and explicitly simulated the nucleation and
growth of cracks by inserting cohesive surfaces into the finite element model
as requested by the numerical calculations [19, 20]. The adaptive insertion is
driven by the attainment of a threshold value of the effective traction on the
inter-element surfaces.

3 Simulation of dynamic branching

As aforementioned, we apply the cohesive theory of fracture accompanied with
an insertion algorithm to model the branching instability in brittle materials.
We adopted the experimental configuration by Fineberg and Sharon [1, 2,
3, 4, 5] and compare our numerical results with the experiments in PMMA
specimens. We then repeat the same calculations for Homalite-100, another
brittle material which shows dynamic branching instabilities. The mechanical
properties for both materials are collected in Table 1.

Table 1. Mechanical parameters for PMMA and Homalite-100.

3.1 Experimental set-up and numerical treatment

The specimens used by Fineberg and Sharon [1, 3] were one edge pre-notched
thin square plates, 50-100 mm wide, 200-400 mm long and 0.8-3.0 mm thick,
made on cast PMMA. During the experiments, the crack tip position and
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velocity were determined measuring the variation in the electrical resistance
of a thin uniform aluminum layer evaporated onto a face of the specimen, see
Fig. 2. The samples were quasi-statically loaded in mode-I applying a tensile

σ

σ

Conductive layer

Fig. 2. Experimental setup of Fineberg and Sharon tests.

stress about half of the critical value to initiate the fracture. From that point
the strain was increased by imposing a uniform displacement with a constant
loading rate along the horizontal edges. Several loading rates were applied
during the experimental program. It was observed that the transition from
smooth to branching precedes the arrival at the crack tip of the transverse and
longitudinal elastic waves generated at the onset of the fracture and reflected
from the boundaries.
For simulations in PMMA, we need to accommodate the resolution of the

Fig. 3. Geometry of the simulated plate and distribution of the initial strain in the
vertical direction.

process zone with the computational effort requested by a three dimensional
model. The characteristic length of PMMA is particularly small, about 20 μm;
therefore we maintain the geometry and loading conditions of the experimental
program in a reduced scale. We modelled a thin plate 3 × 3 × 0.03 mm with
a 0.25 mm pre-notch, Fig. 3. To reproduce the experimental conditions, we
apply an initial uniform strain rate γ (i.e. velocity vyo(y) = γ y in the vertical
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direction. The dynamic loading is given by a constant velocity v±y = ±Lγ/2
(where L= 1.5 mm), imposed along the top and bottom edges of the specimen.
We discretized the specimen with 10-node quadratic tetrahedral elements and

Fig. 4. Computational mesh adopted in the calculations, comprising 36,769 nodes
and 18,162 10-node tetrahedra.

explicitly modelled the mid surface along the x-axis, where the main smooth
crack develops under Mode I loading condition. In the zone surrounding the
crack path the element size hmin has been taken equal to the characteristic
length. The mesh progressively coarsens from the midsection to the edges. The
initial computational mesh, see Fig. 4, consists of 36,769 nodes and 18,162
tetrahedrons.
As Sharon et al. observed [3], plasticity and rate effects do not affect the onset
of branching instability, therefore we assume for the bulk an elastic behavior
(Neo-Hookean finite elasticity model). In the calculations, the second-order
accurate central difference algorithm is adopted to discretize the equation of
motion in time.

3.2 The macro crack patterns

One of the most important findings in Fineberg and Sharon’s experiments
was that the crack speed and the crack structure change with the strain rate.
In particular, at low strain rates, the crack speed remains below the critical
velocity vc and the crack surface appear prevalently smooth, Fig. 5(a). When
the strain rate is increased and the mean crack speed reaches vc, single short
lateral branches develop and arrest immediately, Fig. 5(b). For higher loading
rates, the mean crack speed remains beyond vc and begins to oscillate in time;
lateral branches proliferate and grow in longer paths, defining a precise side
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crack profile, Figs. 5(c)-(d). In Fig. 6 we show the results of our numerical

Fig. 5. Crack patterns observed by Fineberg and Sharon for different mean crack
velocities (a) v < 330 m/s, (b) v = 340 m/s, (c) v =400 m/s and (d) v =480 m/s
[1, 3].

simulations for three different strain rates: 500 s−1, 1000 s−1 and 5000 s−1. We
were able to estimate the average velocity of the main crack by dividing the ad-
vance of the crack tip by the propagation time. The numerical crack velocities
for the three loading rates were 214, 291 and 492 m/s respectively. Note that
the third velocity was greater than the experimentally observed critical veloc-
ity for branching, i.e. 340 m/s. In Fig. 6, we plot the deformed configuration
at the end of the analysis and the contour levels of the damage variable on the
fracture surfaces. The damage D is a field variable, ranging from the values 0
and 1, defined a posteriori as the ratio between the consumed cohesive energy
and the fracture energy Gc. For a low strain rate (500 s−1) a single smooth
and straight crack appears behind the wake, Fig. 6(a). When the strain rate
increases up to 1000 s−1, the crack develops in a smooth path only at the ear-
lier stages of its growth, Fig. 6(b). Successively, the main crack attempts to
branch out developing short lateral cracks. Most of the side branches only live
up to one element and then arrest; only one side branch propagates parallel
to the main crack for a short time interval (0.3 μs) and successively it merges
again into the main crack. The main crack continues to grow as a single crack
for a while. When a suitable amount of energy is stored, the crack branches
out again. This sequence is repeated several times. For a higher strain rate
(5000 s−1), the single smooth crack develops for a shorter distance. In the
initial stages of the crack propagation, small short-lived side branches form

145



Rena C. Yu, Anna Pandolfi, and Michael Ortiz

(b)

(a)

(c)

and die, and the crack seems to be periodically hackled, Fig. 6(c). Finally, the
main crack sprouts out into two long-lived branches, almost symmetric with
respect to the main crack.

3.3 The micro branch profile

Fig. 7. Comparison between the experiments by Fineberg and Sharon [1, 3] (top)
and detail of the present calculation (bottom) for high loading rate (5000 s−1 ).
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A close correspondence between experiments and simulations is also found
in the branch pattern for higher loading rate, see Fig. 7. Note that in our
numerical simulation the lateral branches develop from the main crack with a
similar angle, and propagate following similar parabolic trajectories. Fineberg
and Sharon [1, 2, 3, 4, 5, 6, 7] examined the shape and the structure of
the micro branches, and described the mean profile y(x) of the distributed
branches with a power law equation:

y(x) = 0.2x0.7 (10)

where x is the coordinate along the direction of the main crack. The experi-
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Fig. 8. Crack profiles: comparison between experiments [1, 3] and numerical simu-
lations.

ments proved that the initial slope of the branch trajectory is independent of
the crack velocity; anyway the crack profiles diverge in later times, accordingly
to the crack speed. In particular, the power law relation holds for velocities
within 10 percent of vc, but the coefficient 0.2 requires a slight adjustment
for higher velocities. In Fig. 8 we compare the branch profile obtained in
the simulations (for strain rates equal to 1000 s−1 and 5000 s−1) with the
experiments. The best fitting power interpolation for the two sets of numer-
ical data matches the exponent 0.7 of the profile power law; the coefficient
ranges between 0.17 and 0.2, testifying to a very good agreement between our
simulation and experiments.

3.4 The energy dissipation mechanism

Sharon et al. [3, 4] pointed out that beyond the onset of instability, any
amount of energy supplied to the crack that exceeds the amount required
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for the smooth crack propagation is not used to increase the crack tip speed,
but in creating new fracture surfaces. As a consequence, the total fracture
area of micro-branches is nearly an order of magnitude larger than the one
of a single smooth crack; thus the formation of such surfaces absorbs a much
larger amount of energy. This explains why the theoretical limiting velocity
vc cannot be experimentally realized in brittle materials: a crack prefers to
dissipate energy by creating new surfaces via multiple parallel cracks rather
than by accelerating. In order to have a better evaluation of the energy dissi-
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Fig. 9. Top: Energy dissipation and fracture area history. Bottom: Cohesive energy
and kinetic energy rate plotted against the strain/deformation energy history.

pation mechanism, in Fig. 9, we plot the energy history and the fracture area
history obtained numerically for PMMA loaded at 5000/s strain rate. The
strain energy is computed by integrating the strain energy density of each
finite element of the mesh. The kinetic energy is computed by summing the
contribution of the kinetic energy of all the nodes of the mesh. The fracture
energy is computed by integrating the cohesive energy density on all the cohe-
sive surfaces surfaces. Finally, the sum of the area of the completely fractured
cracks defines the fracture area. The strain energy globally increases in the
initial stages of the loading process. As more energy is supplied the system,
new surfaces are created: the cohesive energy and the total fracture area start
to increase. A steep increase of the fracture area and the cohesive energy de-
notes the onset of branching. At this point, the deformation energy starts to
decrease.
Fig. 10 combines the strain energy history with the cohesive energy rate his-
tory and kinetic energy rate history. The rate plots are obtained by numerical
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differentiation of the plots in Fig. 9. Both the kinetic energy and the cohesive
energy rate curves show a peak shortly after the peak in the deformation en-
ergy. This indicates that, through the branching mechanism, the accumulated
deformation energy is partially dissipated into cohesive energy and partially
transformed into kinetic energy. This observation is in keeping with the hy-
pothesis that the formation of side branches does dissipate more energy than
the propagation of a single smooth crack.

3.5 Another example of branching instability

In order to verify the ability of the method to capture branching instability in
different brittle materials, we repeated the same numerical calculation (using
the same mesh) for Homalite-100, whose characteristic length is 682 μm. We
observed that the numerical results for a loading rate of 1000 s−1 were similar
to the ones obtained for the PMMA case at 5000 s−1, although the length of
the hackled region was smaller and the long-lived branches appeared earlier,
Fig. 11. Due to the wave reflection, spurious cracks develop close to the loaded
boundaries and far from main trajectory of the crack; a straight crack also
starts in the mid-plane form the side opposite to the original pre-notch. One of
the two branches tries to coalesce with the main crack during the final stages
of the process.
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Fig. 11. Crack pattern obtained with the numerical simulation in Homalite-100
plate.

4 Conclusions

We presented numerical simulations of branching instability in brittle mate-
rials. We used a three dimensional finite element model and cohesive theories
of fracture. The results for PMMA specimens are compared with the main
features of branching observed in the experiments by Fineberg and Sharon.
The branching instability is a natural outcome of the explicit formulation of
crack propagation. Our model captures the transition of the crack surface from
smooth to hackled with increasing energy flux and the power-law functional
form of the crack branch profile. The analysis of the energy history confirms
that brittle materials prefer to dissipate energy through the formation of side
branches rather than increasing the propagation speed of a single main crack.
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On Applications of XFEM to Dynamic
Fracture and Dislocations

Ted Belytschko1, Jeong-Hoon Song2, Hongwu Wang3, and Robert Gracie4

Summary. The application of the extended finite element method, which can
model arbitrary discontinuities in finite elements to dynamic fracture and dislo-
cations, is described. The dynamic fracture methodology is applied to a problem of
crack branching and compared to element deletion and interelement crack methods.
The dislocation method directly models the dislocation as a tangential discontinuity.
This makes the method readily applicable to problems with interfaces and aniso-
tropy.

Key words: extended finite element method; dynamic fracture; dislocations

We describe some recent studies in the extended finite element method
(XFEM) and related methods for the treatment of dynamic crack propagation
and a new approach for treating dislocations by XFEM. The extended finite
element method is a methodology for modeling cracks of arbitrary geometry
in a finite element method without remeshing. It originated in Belytschko and
Black [1] and Moës et al. [2], and was combined with level sets in Stolarska
et al. [3] and Belytschko et al. [4]. The method can be viewed as a partition
of unity method [5], but in fact, in the treatment of discontinuities by this
method, a partition of unity is never constructed. Instead, a discontinuous
function that only spans one element and vanishes at the edges is construc-
ted. In the new approach to dislocations, this contrast with a partition of
unity is even more apparent, for the enrichment is a single function which
introduces a discontinuity along the glide line.

Dynamic crack propagation is an application domain for which XFEM is
particularly suitable because the most prevalent method for treating crack
growth, remeshing, is very awkward for these problems. In most dynamic
crack propagation problems, the crack advances over a large part of the mesh,

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 155–170.
© 2007 Springer. Printed in the Netherlands.
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so that remeshing would need to be performed many times. Remeshing is es-
pecially daunting for fragmentation simulations, since such simulations would
entail very extensive remeshing. Furthermore, the continuity of the solution is
quite important in any numerical model, and even with excellent projection
schemes, significant discontinuities can be introduced in the velocities, stresses
and displacements by remeshing.

XFEM was first applied to dynamic crack propagation in Belytschko et
al. [6]. Subsequently, Song et al. [7] used the Hansbo and Hansbo [8] approach
which uses the same basis functions; see Areias and Belytschko [9]. Réthoré
et al. [10, 11] improved the stability of the explicit time integration scheme
and developed an energy conserving dynamic crack propagation algorithm
with XFEM. Remmers et al. [12] have introduced an interesting variant of
XFEM where they initiate a crack by injecting discontinuities that span three
elements at a time.

Here, we will compare three methods for dynamic crack propagation:
1. the extended finite element method
2. the interelement crack method
3. the element deletion method
Dynamic crack propagation is a difficult area in which to benchmark dif-

ferent methods because there are no analytical solutions which can readily be
compared to numerical results. Therefore we will make comparisons to exper-
imental results and examine how well the three methods reproduce various
aspects of a selected experiment.

Section 3 describes a new method for modelling dislocations that was re-
cently reported by Gracie et al. [13]. In contrast to most previous methods,
in the XFEM approach to dislocations, superposition is not used. Instead,
an interior dislocation is introduced. This is closely related to the Volterra
concept of a dislocation, in which a glide dislocation is modelled by cutting a
solid along the glide plane, sliding it by the Burgers vector, reattaching the
solid along the glide plane and then determining the stresses in the solid. In
our approach, the process is modelled by introducing an interior discontinu-
ity whose magnitude is given by the Burgers vector and then computing the
displacements in the rest of the body.

This XFEM method for dislocations can readily be implemented in stand-
ard finite element programs, since it only involves the computation of ex-
ternal forces that result from the interior discontinuities. More important,
the method is applicable to many highly relevant problems that could not
be tackled by superposition based methods: problems with interfaces, grain
boundaries, and material anisotropy.
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1 Dynamic Crack Propagation

We first briefly describe the extended finite element method, the interelement
crack method, and the element deletion method, which is also often called
element killing and element erosion methods.

The implementation of XFEM used in this study is based on Song et al. [7],
which differs in performance from Belytschko et al. [6] only in its omission of
partially cracked elements. The key idea in the formulation of this method is
that the displacement field incorporates the discontinuity as additional terms
in the displacement approximation.

Let the crack surface be defined by f(X) = 0 and g(X, t) > 0 where X are
the reference coordinates; these implicit function f(X) and g(X, t) are often
called level sets. Then the FE displacement field approximation is

uh(X, t) =
∑

I

NI(X){uI(t) +H(f(X))H(g(X, t))qI(t)} (1)

where NI(X) are the standard finite element shape functions, uI(t) are the
nodal displacements and qI(t) are additional nodal parameters that govern
the strength of the discontinuity.

In XFEM, the enrichment is injected when a criterion for crack nucleation
or crack growth is met. In the solutions reported here, we used loss of mater-
ial stability criterion (i.e. loss of hyperbolicity), as in [6, 7]. This conditional
injection is one of the major drawbacks of the method which is discussed in
more details later. The derivation of the equations of motion for the finite
element model then follows the usual procedure and yields

MI üI + f int
I = fext

I (2)

See Belytschko et al. [6] and Song et al. [7] for details.
In the interelement crack method, the crack is modeled by separating

along the element edges. This involves adding extra nodes, see Figure 1. Two
approaches are used. In the original formulation of Xu and Needleman [14],
all elements are separated from the beginning of the simulation. The edges
are mechanically joined by cohesive laws of the form

Tn = − φn

Δn
e(−δn/Δn){ δn

Δn
e(−δ2

n/Δ2
n) +

1 − q

r − 1
[1 − e(−δ2

n/Δ2
n)](r − δn

Δn
)}

Tt = − φn

Δn
(2
Δn

Δt
)
δt
Δt

{q +
r − q

r − 1
δn
Δn

}e(−δn/Δn)e(−δ2
t /Δ2

t ) (3)

where T is the traction across the interelement surface, n and t denote the
normal and tangential components respectively, δ is the displacement jump
across the cohesive surface interface, φ is the cohesive potential function, and
Δ is a characteristic length; for details, see [14]. In the Ortiz and Camacho
approach [15], elements are allowed to separate along edges only when a cri-
terion is met or the element edges are contiguous to a crack tip. The cohesive
law used in Camacho and Ortiz is
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(a) (b)

Element

Cohesive

zone

Crack

Fig. 1. Schematic showing of the Xu-Needleman method [14] and (b) the Camacho
and Ortiz method [15].

0 1

Fig. 2. Schematic showing of a stress-strain curve.

Tn = e
σc

δc
β2δse

−δ/δc

Tt = e
σc

δc
δne

−δ/δc (4)

where σc and δc are the maximum cohesive traction and critical opening
displacement, respectively; for details, refer [15]. Similar laws are used in Ortiz
and Pandolfi [16]. Once separation occurs, a cohesive law such as Eq. 3 or Eq. 4
is applied between the opposing edges, and the crack automatically chooses its
path by solving the momentum equation that takes into account the traction
forces on the cohesive edges.

The underlying concept in the so-called element deletion method is to
employ a stress-strain law in which the stress goes to zero for sufficiently
large strains, an example of such a stress-strain law for one dimension is
shown in Figure 2. The dissipation in an element that is associated with this
algorithm is then equated to the surface energy of a crack passing through the
element by modifying the stress strain law. This energy consistency renders
solutions relatively mesh size independent. Generally, no information about
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the orientation of the crack surface is included, so it is best to use square or
nearly square elements.

To illustrate the energy equivalence in two dimensional problems for the
stress-strain law shown in Figure 2, the upper strain limit ε1 is scaled so that

Gfh
e =

1
2
Eε0ε1A

e (5)

where Gf is the fracture energy, he is a characteristic dimension (the length of
a side for a square element), and Ae is the area of the element, unit thickness is
assumed. While the method is called an element deletion method, the element
is not deleted, but instead the stress in the element is set to zero. Some
programs, such as LS-DYNA [17], remove the mass of the element from the
global mass matrix to eliminate the inertia effects for these elements, but this
seems unwarranted, since the mass does not disappear. We have retained the
mass, but for the problems considered here, it makes little difference.

In the calculations reported here, we used the continuum damage model
proposed by Lemaitre [18]. The damage evolution law is given by

D(ε̄) = 1 − (1 −A)ε0ε̄−1 −Ae−B〈ε̄−ε0〉 (6)

where D is the damage parameter which can have values 0 to 1, ε̄ is the
effective strain, A and B are material parameters, ε0 is the strain threshold,
and 〈·〉 is the MacCaulay bracket. The constitutive relation is given by:

σij = (1 −D)Cijklεkl (7)

where Cijkl is the elastic modulus of the undamaged material, and σij and
εkl are stress and strain components, respectively.

All calculations were performed with 3 node triangular elements or 4 node
quadrilateral elements in which one point integration rule is used. Both struc-
tured and unstructured meshes were used as noted; all calculations were made
with explicit time integration. The time step was usually a very small fraction
of the stable time step. This appears to be unavoidable in crack propagation
problems at this time.

2 Benchmark Problem

We have chosen as a benchmark problem crack growth in a prenotched glass
sheet. The setup of the problem is shown in Figure 3. As can be seen, a tensile
stress σy = 1 MPa is applied at the top and bottom surfaces; the time history
of the load is a step function. Experiment on specimens of similar dimensions
have been reported by [19–23].

In these experiments, a crack starts growing at the notch and propagates
to the right, generally with increasing speed. At a certain point, the crack
branches into at least two cracks (some experiments show more branches). It
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Fig. 3. Setup of a dynamic crack branching problem.

(a) (b)

(c) (d)

Fig. 4. Comparison of the XFEM result with the experiment:(a) a sketch of the
experiment crack paths reported by Ramulu and Kobayashi [19]; XFEM plots of
crack branching and damage evolution at (b) t=39.29 μs (c) t=46.14 μs and (d)
t=55.93 μs.

is also noteworthy that as shown in Figure 4(a), prior to the major branching,
minor branches appear to start from the major crack but only grow to small
lengths.

Figures 4(b)-(d) show the evolution of the crack for a structured mesh at
three different time steps as computed by XFEM. It can be seen that the
major features of the crack path observed in the experiment are reproduced
quite well. One phenomenon observed in the experiments that is missing in
the XFEM calculations are the tentative branches before the major branch
emerges, but the general shape of the crack branching paths agree. The results
for an unstructured mesh are almost identical.

160



On Applications of XFEM to Dynamic Fracture and Dislocations

(a) (b)

Fig. 5. Final crack path of the element deletion method with a 200×81 quadrilateral
mesh at different time steps: (a) t = 30.56 μs and (b) t = 65.62 μs

Figure 5 shows the results for the element deletion method at two different
times. It can be seen that the crack continues in a straight path without
branching. The calculation shown was made with a 200 × 81 mesh, but we
have also used 50 × 21 and 100 × 41 meshes and obtained a straight crack
with these meshes. One would expect the finite element solution to exhibit an
increase in the tensile strain adjacent to the crack as the velocity increases,
which would trigger crack branching. In the simulation by the element deletion
method, the stress adjacent to the crack tip does increase, but it never becomes
large enough to initiate crack propagation in the lateral direction.

Figures 6(a)-(b) and (c)-(d) show the final paths obtained by the in-
terelement crack method [15] for 76 × 30 and 152 × 60 structured cross-
triangular meshes, respectively. In these calculations, σc = 2.8 MPa and
δc = 3.9 × 10−7 m were used for Eq. 4. The interelement method predicts
crack branching but the branching point depends somewhat on mesh refine-
ment.

We should make some remarks about the criteria in the interlement
method and in XFEM. In the interelement method, the crack propagation
was modeled strictly by separation of the element edges. The only aspects of
the algorithm that limits the evolution of the crack is the transition from edges
that share nodes (and thus can not separate) to edges that have duplicated
nodes (and thus can separate). In XFEM, the crack growth was governed by
the material stability criterion, which is a property of the constitutive equa-
tion used (in these computations, Eqs. 6 and 7). Crack branching was initiated
when the two polarization angles from the material stability analysis differed
from that of the previous crack direction. When this occurred, the crack was
also injected into the adjacent elements. Unless the latter step was taken,
crack branching could not be modeled accurately with XFEM with low order
elements.
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(a) (b)

(c) (d)

Fig. 6. Crack path of the Camacho and Ortiz’s method [15] with two structured
cross-triangular meshes: the crack path of a 76×30 structured cross-triangular mesh
at (a) t = 48.38 μs ; (b) t = 100.00 μs and the crack path of a 152 × 60 structured
cross-triangular mesh at (c) t = 48.09 μs; (d) t = 100.0 μs. The deformed shapes
are magnified by 90 times.

(a) (b)

Fig. 7. Final crack path for unstructured mesh(he
avg = 1.0 mm): (a) the result of

the element deletion and (b) the results of the Camacho and Ortiz’s method [15].
The deformed shapes are magnified by 90 times.

3 Dislocation Modeling by XFEM

We consider an edge dislocation, as illustrated in Figure 8. The geometry is
described by an affine function of the coordinates, where

fα (x) = α0 + αjxj = 0 (8)

and repeated indices denote summation. The active slip plane is described by
gα (x) > 0.

162



On Applications of XFEM to Dynamic Fracture and Dislocations

e t

e2

e1

en

||b||

f=0

g > 0
g < 0

Fig. 8. Description of an edge dislocation by functions f (x) and g (x). Dashed line
represents the glide plane, b is Burgers vector.

The displacement approximation with tangential enrichment for an edge
dislocation with Burgers vector bαeα

t has the form

u (x) =
∑
I∈S

NI (x)uI +
nD∑
α=1

bαeα
t

∑
J∈Sα

NJ (x) (H (fα (x)) −HJ) H̄ (gα (x))

(9)
where HJ = H (fα (xJ)), S is the set of all nodes, Sα is the set of enriched
nodes to be defined later, nD is the number of dislocations, NI are the stand-
ard finite element shape functions, uI are the nodal displacements, eα

t is a
unit tangent along the glide plane α, H̄ (z) = H (z) + 1/2 and H (z) is the
symmetrized Heaviside function given by

H (z) =
{
−1/2, z < 0
1/2, z > 0 (10)

We call the second term in Eq. 9 an enrichment. The nodes that are enriched
by the tangential step function, i.e. those in the set Sα, are shown in Figure
9. It can be seen that Sα consists of all nodes of elements with at least two
edges cut by glide plane α.

From the principle of virtual work or minimum potential energy, the fol-
lowing discrete equations are obtained

Kuuu + Kubβ = fext (11)

where u = [u1,u2, . . . ,un]T and the vector β = [b1,b2, . . . ,bnd ]T consists of
the slips along the glide planes. The stiffness matrix partitions are given by

Kuu
IJ =

∫
Ω/Γd

BT
ICBJdΩ (12)
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Fig. 9. Illustration of the tangential enrichment scheme. Dashed line represents the
glide plane and black circles represent nodes of the set Sα that are enriched.

Kub
Iα =

∫
Ω/Γd

BT
ICDαdΩ (13)

where

BI =

⎡⎣NI (x),x 0
0 NI (x),y

NI (x),y NI (x),x

⎤⎦ (14)

and

Dα =
∑

I∈Sα

⎡⎣ (H (fα (x)) −Hα
I )NI,x (eα

t · ex)
(H (fα (x)) −Hα

I )NI,y (eα
t · ey)

(H (fα (x)) −Hα
I )NI,y (eα

t · ex) + (H (fα (x)) −Hα
I )NI,x (eα

t · ey)

⎤⎦
(15)

where Hα
I = H (fα (xI)). The nodal displacements are given by

u = K−1
uu

(
fext − Kubβ

)
(16)

Since Kuu is independent of the location, number and geometry of the dislo-
cations, it does not change for a given mesh as the dislocations move or as new
dislocations are nucleated. In a dislocation dynamics simulation, Kuu needs
only to be inverted once for the entire simulation. The Burgers vectors are
given in dislocation dynamics simulations at any given time, so β is known
and the effect of the dislocations is entirely on the right hand side of Eq. 16.
Therefore standard commercial software can easily be adapted to implement
this approach.

To illustrate the capabilities of the method we consider a 10−4 cm ×
10−4 cm domain containing a dislocation core with a horizontal glide plane,
see Figure 10. Along the boundary ABCD we apply displacement boundary
conditions corresponding to the exact solution for the infinite domain. The
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Fig. 10. Illustration of the sub-domain ABCD of an infinite body used to simulate
a dislocations in an infinite domain.
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Fig. 11. Displacement in the y-direction in cm. On the right is the exact field; on
the left are the results from XFEM.

elastic modulus, Poisson’s ratio and the magnitude of the Burgers vector are
121.41 GPa, 0.34, and 8.551 × 10−8 cm, respectively. An unstructured trian-
gular mesh with about 3600 elements is used. This corresponds to an element
edge length of about 100 ‖b‖. The numerical solution is compared to the ana-
lytical solution for an edge dislocation in an infinite domain, given by Hirth
and Lothe [24], in Figure 11.

Next we consider an edge dislocation in a semi-infinite domain near a free
surface, as shown in Figure 12. The free surface is located at x = 0 and
the domain is assumed to be semi-infinite and to occupy the domain x > 0.
The dislocation is located a distance of L = 0.5 × 10−4 cm from the free
surface and it is assumed that the glide plane is perpendicular to the free
surface, along y = 0. The analytical solution to this problem is given by
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Fig. 12. Left, edge dislocation in a semi-infinite domain, near a free surface. Subdo-
main ABCD is the numerical simulation domain. Right, convergence of the relative
energy error norm with decreasing element size, he. The convergence rate is 1.0
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Fig. 13. Stress σxx in dynes/cm2 for a dislocation in a semi-infinite domain. On
the right is the exact field; on the left are the results from XFEM.

Head, [25]. We solve the problem on a subdomain ABCD, as in Figure 12,
with dimensions 10−4 cm × 10−4 cm. The subdomain ABCD is discretized
with a 40 × 40 cross-triangular element mesh, like the one shown in Figure
10. Traction boundary conditions corresponding to the analytical solution are
applied on all boundaries other than the free surface. The stress fields σxx and
σxy are compared to the exact solution in Figures 13 and 14, respectively.
The convergence of the relative energy error norm is shown in Figure 12. Since
the strain energy in the vicinity of the core diverges with mesh refinement,
the energy within a distance of 0.05μm from the core was neglected. The
convergence rate of the method is 1.0 which is the optimum rate for linear
finite elements.
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Fig. 14. Shear stress σxy in dynes/cm2 for a dislocation in a semi-infinite domain.
On the right is the exact field; on the left are the results from XFEM.
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Fig. 15. (a) Nomenclature for an edge dislocation near a bimaterial interface
between two semi-infinite domains. (b) comparison of the glide component of the
Peach–Koehler force obtained by the proposed method with the exact result.

We consider an edge dislocation near a bimaterial interface between two
semi-infinite domains, as shown in Figure 15. The bimaterial interface is
located along the plane x = 0. An edge dislocation with Burgers vector
b = 8.5510 × 10−4 μm with a glide plane along the plane y = 0 is located
at x = h. In the subdomain x > 0 the elastic modulus E1 = 1.2141× 1011 Pa
and Poisson’s ratio ν1 = 0.34; in the subdomain x < 0 E2 = 1.2141× 1010 Pa
and ν2 = 0.3.

The solution to this problem was first given by Head [25], and later used
to study the Peach–Koehler force on a dislocation near a bimetallic interface
by Dundurs et al. [26]. Further clarification of the solution was provided by
Lubarda [27] in the context of dislocation arrays near bimaterial interfaces.
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Fig. 16. Comparison of the shear stress, σxy , contours from the proposed method
(right) with those of the exact solution (left) for an edge dislocation near a bimaterial
interface.

For the purpose of comparison with the exact solution, we consider a square
1μm × 1μm domain, centered at the origin. Along the edges of the domain,
traction boundary conditions corresponding to the exact solution are applied;
the expressions for the stress fields are given in [27]. We discretize the domain
with an unstructured mesh of 13320 three-node triangular elements. In Figure
15, the glide component of the Peach–Koehler force obtained by a J-integral
around core is compared to that from Dundurs et al. [26] for various distances,
h, from the material interface.

The glide force calculated with the domain form of the J-integral com-
pares well with the exact result. The accuracy of calculated glide force can
be improved by increasing the size of the domain over which the J-integral is
computed.

Contour plots of the shear stress, σxy, are shown in Figures 16 in com-
parison with the exact solution for h = 0.2 μm. The stress contours show
good agreement with the exact solution fields. We see that σxy is continuous
across the material interface, as expected. The far field values are especially
accurate when compared to the exact solution. Further mesh refinement near
the dislocation core would improve the accuracy of the stresses in the vicinity
of the core.

We next illustrate the proposed method for problems with a large number
of dislocations. We will consider a rectangular domain with dimensions 2 ×
10−4 × 10−4 cm, elastic modulus 1.2141× 1012 dyne/cm2 and Poisson’s ratio
0.34. A system of 200 edge dislocations with Burgers vectors ‖bα‖ = 8.551 ·
10−8 cm, α = 1, 2, ..., 200, are considered on 14 parallel slip planes spaced
400 ‖b‖ apart with a slope of 3/2, see Figure 17. A tensial load of 1 dyne/cm2

is applied to the right boundary. The left edge of the domain is fixed in the x-
direction. Rigid body motion is constrained by fixing the node in the bottom
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Fig. 17. Rectangular domain under uniaxial tension. Dashed lines represent glide
planes.
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Fig. 18. Contour plots of a uniaxial tension specimen with 200 dislocations. Left
is the displacement field; right is the shear stress σxy contours. Squares represent
dislocation cores with positive Burgers vectors and diamonds represent dislocations
with negation Burgers vectors.

left corner of the domain. The displacement and shear stress σxy contours for
a uniform 80× 40 element mesh are shown in Figure 18. To give a qualitative
measure of the efficiency of the proposed method, the execution time for the
assembly and solution of the Matlab code on a single CPU PC was about 20
seconds.
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Some improvements of Xfem for cracked

domains

E. Chahine 1, P. Laborde2, J. Pommier1, Y. Renard3 and M. Salaün4

Summary. The XFEM method for fracture mechanics is revisited. A first improve-
ment is considered using an enlarged fixed enriched subdomain around the crack tip
and a bonding condition for the corresponding degrees of freedom. An efficient nu-
merical integration rule is introduced for the nonsmooth enrichment functions. The
lack of accuracy due to the transition layer between the enrichment area and the
rest of the domain leads to consider a pointwise matching condition at the boundary
of the subdomain. An optimal rate of convergence is then obtained, numerically and
theoretically, even for high degree polynomial approximation.

Key words: Fracture, finite elements, XFEM, optimal rate of convergence.

1 Introduction

In many industrial situations, it is of great interest to compute the advance of a
crack for a two-dimensional domain (plate, shell) or a three-dimensional body.
In 1999, Moës, Dolbow and Belytschko introduced in [9] a new methodology,
the so-called Xfem method, which allows to make computations in a cracked
domain, the crack growth being described independently of the mesh. This is
an important advantage compared to existing methods where a remeshing step
and an interpolation step are necessary each time an extension of the crack
is computed, which can be sources of instabilities. Our goal is to evaluate the
Xfem method in terms of efficiency and quality of approximation and, as far
as it is possible, to give mathematical justifications to its efficiency. We also
propose some improvements for some limitations of the method.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 171–184.
© 2007 Springer. Printed in the Netherlands.
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2 Model Problem

A linear elastic two-dimensional problem is considered on a cracked domain Ω

(see Fig. 1), with an isotropic homogeneous material. On the boundary of the
non-cracked domain Ω, a Dirichlet condition is applied on ΓD and a Neumann
condition is prescribed on ΓN . The crack is denoted by ΓC such that ΓD, ΓN

and ΓC form a partition of ∂Ω.
The space of admissible displacements is

V = {v ∈ H1(Ω; R2); v = 0 on ΓD},
and the equilibrium problem is written as follows:

find u ∈ V s.t. a(u, v) = l(v) ∀v ∈ V ,

where

a(u, v) =

∫
Ω

σ(u) : ε(v) dx, l(v) =

∫
Ω

f.v dx +

∫
ΓN

g.v dΓ,

and σ(u) = λtr ε(u)I + 2με(u) is the stress tensor, ε(u) the linearized strain
tensor, λ > 0 and μ > 0 the Lamé coefficients, f and g some given force
densities on Ω and ΓN respectively. A traction free condition on the crack is
assumed.

Ω = cracked domain

∂Ω = ΓN ∪ ΓD ∪ ΓC

Fig. 1. A cracked domain.

The asymptotic displacement at the crack tip for the two opening modes
uI , uII are given in polar coordinates (see Fig. 2) relatively to the crack tip
by

uI =
KI

E

√
r

2π

(
cosθ

2

sin θ
2

)
(a + b cos θ)

uII =
KII

E

√
r

2π
(1 + ν)

(
sinθ

2 (c + 2 + cos θ)

cosθ
2 (2 − c − cos θ)

)
,
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.

θ ∈ ] − π, π[

r

crack tip

ΓC

.

Fig. 2. Polar coordinates relatively to the crack tip.

where KI and KII are the stress intensity factors (see [8] for instance), and

a = 2 +
2μ

λ + 2μ
, b = −2

λ + μ

λ + 2μ
, c =

λ + 3μ

λ + μ
.

The functions uI and uII belong to H3/2−ε(Ω; R2) for any ε > 0 (see [6],
chapter 4).

3 The classical Xfem

Let Xh be a scalar finite element space on a triangular mesh of the uncracked
domain Ω. For instance, Xh will represent a Pk finite element method. Let
also Y h be a P1 finite element space on the same mesh. We will denote by ϕi

the basis functions (shape functions) of Xh and by ψi the ones of Y h. The
classical Xfem method is then characterized by the three following techniques.

• A representation of the discontinuity of the displacement across the crack
with the enrichment ∑

i∈I
H

biHϕi,

(in fact
∑
i∈I

H

biHψi was proposed in original Xfem), where H(x) is the

step function being equal to +1 on one side of the crack and −1 on the
other side. The set IH corresponds to the basis functions whose support is
completely cut by the crack (see [9]). One remarks that the discontinuity
is not represented on the element containing the crack tip.

• The enrichment with the asymptotic displacement at the crack tip

∑
i∈I

F

4∑
j=1

cijFjψi,

where

F1 =
√

r sin
θ

2
, F2 =

√
r cos

θ

2
, F3 =

√
r sin

θ

2
cos θ, F4 =

√
r cos

θ

2
cos θ,
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and IF is the set of basis functions whose support contains the crack tip
(see [9] and Fig. 3). The singular function F1 represents also the disconti-
nuity on the element containing the crack tip.

• The approximation of the geometry of the crack by two level sets of func-
tions ξh, ζh defined on a scalar fem (classically Y h) allowing to define:
H(x) = sign(ξh(x)), r =

√
ξ2
h + ζ2

h, and θ = arctan ξ
h

ζ
h

(see [14]).

Consequently, the finite element space approximating the displacement on the
cracked domain is defined as follows:

Vh =

⎧⎨
⎩vh =

∑
i

aiϕi +
∑
i∈I

H

biHϕi +
∑
i∈I

F

4∑
j=1

cijFjψi : ai, bi, cij ∈ R
2

⎫⎬
⎭ (1)

Fig. 3. Classical enrichment strategy and subdivision of the mesh for the purpose
of numerical integration.

4 Representation of the discontinuity

As described in the previous section, the discontinuity of the displacement
across the crack is taken into account in Xfem by the mean of an enrichment
of the classical finite element space (defined on the uncracked domain) with
a term of the form
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i∈I

H

biHϕi,

where H is the step function, possibly defined via a function whose zero level
set represents the geometry of the crack. It seems that this technique is the
most optimal in Xfem. In [2] and [3], it is proven that the displacement is
optimally approximated on each side of the crack. In our opinion, it is also
one of the most original traits of Xfem. This technique can be extended to
more complicated situations, for instance a situation where three zones instead
of two are present, as it is illustrated in Fig. 4. This is already implemented
and available in the Getfem library [11].

.

2

3

1
crack

.

Fig. 4. A more complicated situation with three zones.

This technique can also be extended to take into account more compli-
cated boundary conditions (for instance contact and friction condition, already
treated in [5]). An important aspect to have an optimal approximation of the
discontinuous part of the displacement is to use the same basis function in
the enrichment as in the approximation of the displacement itself. Even when
these basis functions does not represent a partition of unity (as it is the case
for Hermite elements for instance). The fact that the Lagrange basis functions
form a partition of unity is not the key point in that part of the enrichment.

5 Asymptotic displacement at the crack tip

In order to make a better approximation of the asymptotic displacement (and
also the discontinuity) near the crack tip, a second enrichment of the form

∑
i∈I

F

4∑
j=1

cijFjψi,

is considered, where IF is the set of basis function whose support contains the
crack tip. Using this strategy, the convergence curve on Fig. 5 were obtained
using the first opening mode uI as the exact solution.

Some similar results can be found in [12]. The observed rate of convergence
is limited to one half, even for high order methods like P2 and P3. In the
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following, we analyze this lack of accuracy and give some improvements for
two-dimensional problems in order to recover a better convergence rate.
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Fig. 5. Convergence curves for the classical Xfem and the first opening mode.

5.1 Adapted cubature formula for the asymptotic displacement

τ :

(
x1

x2

)
→

(
x1x2

x2

)

New integration points: ξ = τ(ξ), new weights: η = ηdet(∇τ).

Fig. 6. The construction of adapted cubature formulas.

One of the difficulties which may degrade the quality of approximation is
the fact that the gradients of the functions Fi, i = 1..4, are singular at the
crack tip and the elementary integrals are not well approximated by classi-
cal cubature formulas. A remarkable aspect is that the singular part of the
elementary integrals disappear when the computation is done in polar coordi-
nates. Thus, we proposed in [7] the use of a simple adapted cubature formula
on the sub-triangles having the crack tip as a vertex (see Fig. 3).

This adapted cubature formula is obtained from a classical Gauss formula
on a square and using the transformation presented on Fig. 6. A convergence
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test on the computation of an elementary matrix is presented on Fig. 7. Prac-
tically, with this method, 25 integration points were enough for the more
accurate tests we done.

Fig. 7. Relative error on the computation of an elementary matrix with a refined or-
der 3 Gauss method, a refined order 10 Gauss method and the almost polar method.

5.2 Fixed enriched area

Fig. 8. Fixed enriched area method.

The second, and most important aspect which limits the convergence rate
is the fact that the area enriched with the asymptotic displacement decreases
with the mesh parameter h. A natural idea (independently proposed in [1]) is
to have an enriched area independent of the mesh parameter. For instance, as
it is presented on Fig. 8, all the nodes which are closer than a certain distance
R (independant of h) will be enriched.
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This gives the following enriched finite element space:

Vh
R

=

⎧⎨
⎩vh =

∑
i

aiϕi +
∑
i∈IH

biHϕi +
∑

i∈IF (R)

4∑
j=1

cijFjψi : ai, bi, cij ∈ R
2

⎫⎬
⎭ ,

where IF (R) is the set of finite element nodes contained in the disk of radius
R centered on the crack-tip. The convergence curves corresponding to this
method are presented on Fig. 9. The convergence rates are close to be optimal.
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Fig. 9. Convergence curves of Xfem with a fixed enriched area.
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Fig. 10. Condition number of the linear system for Xfem with a fixed enriched area.
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Unfortunately, as given on Fig. 10, the condition number of the linear
system increases very rapidly when the mesh parameter decreases.

This is probably due to the fact that the basis functions of the enrichment
are linearly dependent on an element (see [7]) and also to the fact that the
functions Fi, i = 1..4 are somewhat flat far for the crack tip, and thus well
approximated by the classical Fem.

6 Improvements for two-dimensional problems

In order to fix this difficulty, we present three techniques for two-dimensional
problems:

• The dof gathering technique.
• Enrichment with the use of a cut-off function.
• Nonconforming method with a bonding condition.

All these methods are cheaper than Xfem with a fixed enriched area because
the number of dof for the enrichment is very small. However, these techniques
cannot be easily extended to three-dimensional problems.

6.1 The dof gathering technique

The dof gathering technique corresponds to prescribe the constraint

cij = ckj for all i, k ∈ IF (R),

in the fixed enriched area method. This is equivalent to introducing
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Fig. 11. Convergence curves for the dof gathering method.
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TR =
∑

i∈IF (R)

ψi,

and to considering the enrichment

4∑
j=1

cjFjTR.

This reduces the number of enrichment dofs to only eight (four for each of the
two components, see [7]). The convergence curves of this method are presented
on Fig. 11.

One can see that half an order of convergence rate is lost. After analysis,
this problem is due to the transition layer between the enriched area and the
rest of the domain. However, the condition number of the linear system is
greatly improved by this method (see Fig. 12).
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Fig. 12. Condition number of the linear system for the dof gathering method.

6.2 Enrichment with a cut-off function

Actually, the function TR =
∑

i∈IF (R)

ψi is a cut-off function which depends on

the mesh parameter h and which is not regular. Instead of this function, the
idea is to use a regular (C1 or C2) cut-off function γ which satisfies⎧⎨

⎩
γ(r) = 1 if r ≤ r0,

0 < γ(r) < 1 if r0 < r < R,

γ(r) = 0 if R ≤ r.
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where 0 < r0 < R. The enrichment is then defined by

4∑
j=1

cjFjγ.

The enrichment of a finite element space by the mean of a cut-off function
was already presented in [13]. The complete numerical analysis of this method
in the framework of Xfem is presented in [2] and [3]. The optimal convergence
rate is obtained.

Fig. 13. Convergence curves for the cut-off method.

Fig. 14. Condition number of the linear system for the cut-off method.
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This is illustrated on Fig. 13, where the enrichment with a cut-off function
is compared to Xfem with a fixed enriched area. The optimal slope is close
to be obtained. The fact that Xfem with a fixed enriched area gives a better
approximation can be interpreted by the fact that the approximation is per-
turbated by the stiff part of the cut-off function in the present method. But,
as presented on Fig. 14, the condition number is also greatly improved and
the number of additional dofs is still only eight.

6.3 Enrichment with a bonding condition

Another technique, also presented in [7], is to simply enrich the finite element
space by

4∑
j=1

cjFj .

but only on the elements contained in the enriched area. A pointwise bonding
condition is then applied on the interface ΓI between the enriched area and
the rest of the domain on each finite element node (see Fig. 15).

Fig. 15. Bonding condition method.

Numerically, this is the method the simplest to implement and one can see
on Fig. 16 that this is also the most efficient. Fig. 17 represents a computation
on a coarse mesh for the two opening modes with this technique and a P3

method. The accuracy of the Von Mises stress is remarkable. In particular,
the transition between the enriched area and the rest of the domain is not
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visible.
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Fig. 16. Convergence curves for the enrichment with a bonding condition.

Fig. 17. P3 XFEM solutions for the mode I and mode II problems with a pointwise
bonding condition and a coarse mesh (contour levels of Von Mises stress).

Concluding remarks

In section 6 we propose three new techniques to improve Xfem method for
two-dimensional domains. The extension of this work to three-dimensional
problems is an open question, since the singularities are difficult to take into
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account. Nevertheless the extension to plates and shells is more straightfor-
ward and is a work in progress.
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10. N. Moës, A. Gravouil and T. Belytschko. Non-planar 3D crack growth by the
extended finite element and level sets, Part I: Mechanical model. Int. J. Numer.

Meth. Engng., 53(11):2549–2568, 2002.
11. J. Pommier, Y. Renard Getfem++. An open source generic C++ library for

finite element methods, http://www-gmm.insa-toulouse.fr/getfem.
12. F.L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. An extended finite element

method with higher-order elements for curved cracks. Computational Mechanics,
31:38–48, 2003.

13. G. Strang, G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs, 1973.

14. M. Stolarska, D.L. Chopp, N. Moës, T. Belytschko. Modelling crack growth by
level sets in the extended finite element method. Int. J. Numer. Meth. Engng.,
51:943–960, 2001.

184



2D X-FEM Simulation of Dynamic Brittle
Crack Propagation
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Summary. The application of X-FEM technique to the prediction of two dimen-
sional dynamic brittle crack growth is presented in this paper. The method is known
to guarantee exact energy conservation in case of crack propagation and it is ap-
plied to the simulation of one dynamic crack propagation experiment submitted to
a mixed mode loading and showing stop and restart of a crack.

Key words: X-FEM, brittle fracture, dynamic crack propagation, crack arrest,
interaction integrals, cracks blunting.

1 Introduction

Modeling and predicting dynamic crack propagation remain difficult chal-
lenges. There are at least five different methods to simulate dynamic crack
propagations with a finite element technology.

The first one is the element deletion strategy which consists in removing
the elements which have no remaining stresses or which are fully damaged.
This method, currently used in explicit codes, is very simple to implement
but it has two drawbacks: very fine meshes are needed and the results exhibit
mesh dependencies.

The second one is the remeshing strategy: this type of method cannot
preserve energy conservation both on the whole structure and in the crack tip
region.

The third one is based on “element edge” cohesive segments: this method
is not robust and leads to crack paths which are mesh dependent [1] because
the crack paths are forced to follow the edges of the elements.

The fourth is often named the embedded discontinuity method [2]. It allows
a discontinuity of the displacement field at the element level to represent the
presence of a crack. The discontinuity amplitude is typically governed by a
cohesive law.

The fifth is based on X-FEM method [3]. This method may be coupled
or not to a level set technique which is used to represent the geometry of the

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 185–198.
© 2007 Springer. Printed in the Netherlands.



crack [4]. We shall suppose here that the crack geometry is meshed with a set
of 2 nodes geometrical segments. Those segments are totally independent on
the structural finite element mesh. The crack growth can be either driven by
a LEFM law (which can be used only for brittle fracture mechanics) or by
a cohesive law approach which can rather easily be coupled with non linear
behavior of the bulk material [5].

One of the main difficulties of dynamic fracture mechanics is the uncer-
tainty upon the appropriate choice for models to be applied for dynamic crack
propagation simulations and the method to obtain the corresponding material
parameters. Some experiments are already available and used extensively for
the validation of numerical predictions: the Kalthoff plate experiments [6] and
the Rittel–Maigre ones [7, 8]. These experiments show complex crack paths
but no arrest and restart. The object of this paper is first to explain a new nu-
merical scheme based on extended finite element method and second to apply
it to the simulation of a very carefully designed experiment which provides
precise and reliable data on dynamic brittle crack propagations. The paper
is limited to bi-dimensional experiments and analysis. The numerical simu-
lation of dynamic crack growth is a useful tool to understand the physics of
the dynamic crack propagation. For instance it is difficult to explain from the
measures alone the reasons why the crack changes direction or stops during
the propagation. The numerical simulation helps to understand such complex
questions: for instance the stop and direction changes can be explained by
stresses wave reflections during the transient event, which are very difficult to
obtain experimentally. The paper is organized as follows:

The concepts used for brittle fracture mechanics numerical simulation are
first presented.

The use of the X-FEM tool for dynamically evolving cracks is presented
in a second section.

The experiment and its numerical simulation are then presented.

2 Dynamic brittle fracture mechanics

The dynamic crack propagation is a rather difficult subject because the exper-
imental check of the theoretical models is difficult. We shall limit the thermo-
dynamical presentation to a bi-dimensional case and only one crack of length
a.

2.1 Theoretical background

Let us suppose that the crack propagates at a velocity ȧ, the total energy
variation writes:

dW

dt
=
(
∂W

∂t

)
a

+
(
∂W

∂a

)
t

ȧ. (1)
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In equation (1) W is the total energy which includes kinetic and external
loads energy. The second term of equation (1) has a dissipative nature and
represents the energy necessary to advance the crack. A detailed and precise
theory can be found in [9, 10]. The definition of energy release rate G is the
following in case of a load which is not applied on the crack lips:

G = lim
Γ→0

F

ȧ
=

1
ȧ

lim
Γ→0

[∫
Γ

((w + τ)ȧn1 + σn · u̇)dΓ
]
. (2)

In equation (2) Γ is a closed contour surrounding the crack tip, w (resp.
τ) the strain (resp. kinetic) energy density, n1 the normal to the contour Γ ,
σn the traction vector normal to the contour Γ and u̇ the velocity field. This
definition can be used for any type of dynamic crack advance and any type
of material. Under the hypothesis of linear material behavior and stationary
crack tip fields the G integral can be proved to be independent of Γ [9, 10]
and its expression is:

G =
∫

Γ

((w + τ)δ1j + σijui,1)njdΓ. (3)

In equation (3) the convention of summation on repeated indices is sup-
posed, δ1j is the Kronecker symbol, 1 is the direction of the crack tip and nj

the outward jth component of the normal to Γ contour. Let us now define
the following stress intensity factors:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Kkin
I = lim

r→0

μ

4(1 − ν)

√
2π
r

[u2(θ = π)], Kdyn
I = lim

r→0

√
2πr σ22(θ = 0),

Kkin
II = lim

r→0

μ

4(1 − ν)

√
2π
r

[u1(θ = π)], Kdyn
II = lim

r→0

√
2πr σ12(θ = 0).

(4)

In equation (4), 1 denotes the direction of the tangent direction of the crack
at the crack tip, ν the Poisson’s ratio and μ the second Lame coefficient. The
intensity factors are related through the following relations:

Kkin
i = fi(ȧ)K

dyn
i i ∈ {I, II}, (5)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fi(ȧ) =
4αi(1 − α2

II)
(κ+ 1)D(ȧ)

,

αi =

√
1 −
(
ȧ

ci

)2

D(ȧ) = 4αIαII − (1 + α2
II)

2.

(6)

In equation (6), the indices i are I or II, κ is the Kolosov constant (1 for
plane stress state and 3–4ν for plane strain case), cI is the compression elastic
wave velocity and cII the shear wave one. The zero of D function gives the
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Rayleigh wave velocity which will be denoted cR. The two fi functions have a
value of 1 for a null crack speed. Injecting equations (4), (5), (6) in equation
(3) one gets:

G =
1
E∗ (Kkin

I Kdyn
I +Kkin

II K
dyn
II ), (7)

E∗ =

⎧⎪⎨⎪⎩
E plane stress,

E

1 − ν2
plane strain.

(8)

These equations are the extension of Irwin’s equation [11] to the dynamic
case. If we now want to predict dynamic crack propagation, we have to answer
three questions:

1. In which direction will the crack propagate?
2. At what speed will it run?
3. Will the crack propagate?

We shall now limit the presentation to the case where the crack propaga-
tion direction is driven by the maximum principal hoop stress. The direction
is then given by the following equation:

θc = 2 arctan

⎡⎢⎣1
4

⎛⎜⎝Kdyn
I

Kdyn
II

− sign(Kdyn
II )

√√√√8 +

(
Kdyn

I

Kdyn
II

)2
⎞⎟⎠
⎤⎥⎦ . (9)

Knowing the possible critical direction θc, one defines an equivalent stress
intensity factor K∗

I by the following equation:

K∗
I = cos3

(
θc

2

)
Kdyn

I − 3
2

cos
(
θc

2

)
sin(θc)K

dyn
II . (10)

The crack is supposed to propagate at the speed which is such that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ȧ > 0 with K∗
I = KID (ȧ),

ȧ = 0 if K∗
I < KIC ,

KID (ȧ) =
KIC

1 − ȧ
cR

.

(11)

In equation (11) KIC is the static fracture toughness. Equation (11) is
a nonlinear equation when the crack speed is not zero. These equations are
sufficient to define brittle fracture crack propagation.
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2.2 Numerical evaluation of fracture parameters

The precise numerical evaluation of the stress intensity factors is a rather dif-
ficult task. The line integral evaluation given in equation (3) is not easy to
compute with finite elements because the best values of stresses are obtained
on gauss points within the elements. The best numerical method consists to
replace the line integral by a surface integral using the divergence theorem.
The evaluation of dynamic stress intensity factors rely on the interaction in-
tegral presented in the book of Freund [10] and denoted M integral by Attigui
[12]. This integral writes:

I int = −
∫

S

qi,j [(σaux
kl uk,l − ρu̇ku̇

aux
k )δij − (σaux

kj uk,i + σkju
aux
k,i ]dS

+
∫

S

qi[(σaux
kj,juk,i + ρüku

aux
k,i ) + ρ(u̇ku̇

aux
k,i + u̇aux

k u̇k,i)]dS. (12)

In this equation S is the surface surrounded by the contour Γ , q is a virtual
extension field which must be continuous and tangent to the crack lips and
zero out of the Γ contour, (uaux, u̇aux, σaux) are auxiliary displacement velocity
and stress fields which are arbitrary but must be statically and kinematically
admissible. Figure 1 shows a typical virtual extension field q and also displays
the integration box around the crack tip.

If one chooses the q field module to be 1 at crack tip one has:

I int =
2
E∗ (fI(ȧ)K

dyn
I Kaux

I + fII(ȧ)K
dyn
II Kaux

II ). (13)

It is now clear that if one chooses the auxiliary fields to be such that
Kaux

I = 1, Kaux
II = 0 one will get directly Kdyn

I from the interaction integral.
The same holds for the computation ofKdyn

II . Let us now compute the dynamic
stress intensity factors: the simplest solution is to choose the analytical mode
I and mode II solutions as auxiliary stress fields. The computation of these
quantities implies the evaluation of integrals which are performed numerically
using a domain S defined by a rectangular box filled with a large number of
sub-elements using standard Gauss integration schemes. The auxiliary fields
are computed using the analytical expressions and the other field values within
the sub-element are calculated using the original mesh with its associated
shape functions.

2.3 Remarks on extension to other cases like different brittle
failure mechanism or ductile dynamic fracture

The preceding formulation is only valid for brittle fracture mechanics because
of the use of energy release rate G concept. If one would like to use this type
of approach for a different critical direction one has to replace equations (9)
and (10) by different ones. For ductile fracture one has to come back to the
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Fig. 1. Virtual crack extension field q and associated integration box.

basic definition given by equation (2) and hence to use the stress state close
to the crack tip to define the properties of the propagation as it is often used
in the cohesive zone approach of the simulation [13]. One may nevertheless
observe that in existing cohesive zone models the velocity of the crack tip is
governed by the de-cohesion rate.

3 X-FEM method for dynamically propagating cracks

3.1 X-FEM strategy: description and energy conservation
properties

We shall describe in this section the special features associated with X-
FEM simulation of dynamically evolving brittle cracks. The standard X-FEM
method is used here [3] with the usual jump function added into the elements
fully cut by the crack and the singular functions for the element partially
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cut. The following representation of displacement field within the elements is
chosen:

u(ξ, n) =
nodes∑
i=1

Ni(ξ, η)[ui +Hi(ξ, η)ai] for cut elements,

u(ξ, n) =
nodes∑
i=1

Ni(ξ, η)

⎡⎣ui +
4∑

j=1

ψij(ξ, η)bij

⎤⎦ crack tip element. (14)

In equation (14) Ni(ξ, η) are the standard shape functions, ai represent
the amplitude of the degrees of freedom associated with the jump function H
and bij represent the amplitude of the jth singular functions at node i of the
element containing the crack tip. Let us recall that the following 4 singular
ψij functions are chosen:

√
r

{
sin
(
θ

2

)
, cos

(
θ

2

)
, sin

(
θ

2

)
sin(θ), cos

(
θ

2

)
sin(θ)

}
. (15)

It must be observed that these extended functions are implicitly linked to
the crack tip position (r is the distance to the crack tip and θ the angle with
the tangent to the crack tip direction). When the crack propagates statically
in an elastic medium, one can forget the previous singular function for the
new position of the crack. This is not possible in time dependent problems,
such as dynamic crack propagations or elasto-viscoplastic material behavior.
For dynamic crack propagation it has been shown [14] that if one simply
adds new extended degree of freedom associated with the new crack position
and that these new extended displacements and velocities are initialized to
0. Consequently the energy is perfectly kept and the new crack segment is
closed at the beginning of the time step. Within the next time step the crack
opens and the opening work is exactly equal to the fracture energy necessary
to propagate the crack. This is a very important result because it ensures that
the change of geometry of the body (crack length change) does not affect the
numerical results. The local energy is not altered by the geometry changes.

3.2 Time integration

The simplest implementation is to use a standard Newmark scheme to in-
tegrate the transient equations. The implicit integration is straight forward.
One could prefer to use an explicit integrator because the crack propagation
is generally very fast. But the method has to be adapted because the time
step tends to zero when the crack passes very close to a node. This is simply
due to the fact that the mass of the jump degree of freedom of the node very
close to the interface is close to zero. A simple approximation has been pro-
posed in [15] to overcome this difficulty: one replaces the added mass on the
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jump degrees of freedom (ai) by the standard translational mass for the dis-
continuous enrichment. The mass matrix is diagonal and the time step of the
explicit extended finite element constructed by this method has been shown
analytically to be greater than one half of the standard time step of the non
enriched element: this is valid for linear finite elements.

3.3 Specific crack propagation strategy

The crack propagation evaluation is a complex task because the equations
defining the direction, the equivalent stress intensity and the crack speed are
coupled and non linear (equations (9), (10), (11), (13)). The simplest way
to proceed is to use an explicit time integration of crack advance with the
known quantities at the beginning of the time step. In case of propagation
the time step is generally chosen to be such that the crack does not progress
of more than one element. Nevertheless the time step has to be large enough
for the crack tip not to stay more than two time steps within a single element
(because of the enrichment strategy choice that keeps the enriched functions
corresponding to the old position of the tip). In case of dynamic explicit
computation this leads to a constraint for the time steps which may not be
compatible with the CFL condition. This explicit procedure works but some-
times induces instabilities in the crack propagation simulation. It needs to be
improved in order to permit robust computations: a possible improvement is
the implicitation of the prediction of crack increment.

4 Numerical interpretation of experimental test

This section describes a specific experiment for dynamic crack propagation.
It uses a Hopkinson’s bar system, and can be considered as a reference case.
This experiment shows very interesting features as complex crack paths and
crack arrest and restart.

4.1 Experimental set up

The experimental loading system is displayed in Figure 2.

Fig. 2. Hopkinson’s bar characteristics.
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Table 1. Material data for the specimen (PMMA) and bars (Nylon).

Property name Unit PMMA Nylon

Young’s Modulus GPa 3.3 3.6
Poisson’s ratio – 0.42 0.41
Density Kg/m3 1180 1145
Rayleigh wave speed m/s 938 996

Fig. 3. Detailed geometry of the test specimen.

The specimen is a simple rectangular PMMA plate with a wave concen-
trator (the circular hole) and an initial non symmetric crack. It is placed
between two nylon bars with appropriate sections. The sections are close to
that of the PMMA specimen (1050 mm2). This permits to avoid the wave
reflection on the interface. The thickness of the plates is 15 mm. Careful ex-
periments are performed: they are found to be very repetitive, which proves
the good quality of the loading system. The input and output velocities as
well as the input and output stress waves have been measured and treated in
order to have usable data for the numerical analysis.

4.2 Material data

Table 1 describes the basic material data. The determination of Young’s mod-
ulus for a PMMA under dynamic load is a difficult task because the elastic
properties of this material are strain rate depend- ant. A mean value is pro-
posed here. This value is chosen in order to get the best possible fit between
experimental results and simple one dimensional wave propagation model of
the experiment.
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Fig. 4. Mesh of the specimen.

Fig. 5. Input velocity time history.

4.3 One hole specimen

The precise geometry is displayed in Figure 3.
The first modeling difficulty is the specification of appropriate boundary

conditions. One could mesh the two nylon bars, but these bars are axisymetric
and very long to avoid wave reflection. The resulting model would lead to
axisymetric plane strain coupling, as well as a large model which would lead
to heavy computations. A plane strain model of the specimen alone was used.
The right hand side (output) bar is modeled by an impedance condition. This
condition is applied on all nodes on a width of 40 mm. The impedance is a
linear relationship between the velocity of the interface and the applied force
on the interface. The following equation gives the impedance relationship:

Fx(t) = −
√
Enylonρnylon u̇x. (16)

The second difficulty is the modeling of the moving crack path. Had the crack’s
path been known, an “element edge” cohesive zone approach could have been
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Fig. 6. Comparison of measured (dotted line) and experimental (continuous line)
crack paths (KIC = 133 MPa

√
m).

Fig. 7. Comparison of computed and experimental horizontal crack speed (KIC =
1.33 MPa

√
m).

successful, but it cannot be used in order to predict the crack’s path prior to
the experiment. The mesh, consisting of 1,500 4-node elements, is shown in
Figure 4. The number of enriched X-FEM element is changing with time. The
loading of the left impacting bar is simulated by an imposed speed on the left
of the model.

The measured velocity V (t) is applied to the left part of the specimen, on
a 40 mm width. The input velocity time history is given by Figure 5.

The computation has been performed with a constant value of KIC

(1.33 MPa
√

m). The comparison of computed and experimental crack path is
displayed in Figure 6. The comparison of crack velocity is given in Figure 7.
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Fig. 8. Comparison of computed and experimental crack path at initiation of crack
propagation (KIC = 1.33 MPa

√
m).

The agreement is rather good except at the very beginning of the propaga-
tion: the crack path is slightly different from the measured one (Figure 8). An
explanation of this difference could be the radius of curvature of the notch,
which is really smaller when the crack propagates.

Figure 9 shows a photograph of the crack tip just after propagation. It
is clear that the COD of the moving crack is much smaller of that of the
arrested one. The computation has then been rerun with two different values
of KIC . When the crack is at arrest (ȧ = 0) the value is taken as the static
value of 1.42 MPa

√
m whereas the previous value is kept for running cracks

(1.33 MPa
√

m). With these values the trajectories as well as crack velocities
perfectly coincide with experimental data.

5 Conclusion

This paper has shown the interest of X-FEM to model dynamic brittle crack
propagation. Simple macroscopic models seem to be sufficient to explain the
crack complex propagations. Indeed, the results of an experimental dynamic
brittle crack growth are compared successfully with numerical X-FEM simu-
lation.
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Fig. 9. Photograph of propagating crack tip.
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A numerical framework to model 3-D fracture
in bone tissue with application to failure of the

proximal femur

T. Christian Gasser1 and Gerhard A. Holzapfel1,2

Summary. Bone can be regarded as a quasi-brittle material. Under excessive load-

ing nonlinear fracture zones may occur ahead the crack tips, where, typically, co-

hesive mechanisms are activated. The finite element method provides a powerful

tool to analyze fracture formations on a numerical basis, and to better understand

failure mechanisms within complex structures. The present work aims to introduce

a particular numerical framework to investigate bone failure. We combine the parti-

tion of unity finite element method with the cohesive crack concept, and a two-step

predictor-corrector algorithm for tracking 3-D non-interacting crack paths. This ap-

proach renders a numerically efficient tool that is able to capture the strong discon-

tinuity kinematics in an accurate way. The prediction of failure propagation in the

proximal part of the femur under compressive load demonstrates the suitability of

the proposed concept. A 3-D finite element model, which accounts for inhomoge-

neous fracture properties, was used for the prediction of the 3-D crack surface. The

achieved computational results were compared with experimental data available in

the literature.

Key words: Bone, Cohesive zone model, Crack Initialization, Crack track-
ing algorithm, Partition of unity finite element method, Strong discontinuity,
Variational formulation.

1 Introduction

Proximal femur fracture represents an important public health-care problem.
Fracture of the proximal part of the femur is frequently observed in the el-
derly population, and it most commonly arises from accidental fall. Because
of its surgical complexity and its socio-economical importance this type of
bone failure is under extensive scientific investigation, and a large number

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 199–211.
© 2007 Springer. Printed in the Netherlands.
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of 3-D finite element computations have been conducted in the past, see, for
example, [14, 15, 6, 22, 13, 11]. One main focus in bone mechanics is the uti-
lization of different fracture criteria within the finite element method. Hence,
several researchers focus attention on the failure initialization, and not on the
prediction of failure propagation. To the authors’ knowledge, solely the work
by Ota et al. [21] deals with a finite element fracture analysis of the proximal
part of the femoral bone with the goal to estimate the onset and the progress
of fracture in a patient-specific 3-D model. Although it can be seen as a pi-
oneering study, it does, however, not say much about the numerical concept
applied, and the underlying fracture mechanical assumptions.

Bone tissue consists mostly of collagen and mineral in the form of hydrox-
yapatite crystals [4]. The heterogeneous structure of bone tissue (over sev-
eral length scales) causes nonlinear fracture zones ahead the tip, where, typi-
cally, cohesive mechanisms are activated. In particular, collagen fiber bridging
causes nonlinear cohesive zones which are in the millimeter range, and hence
linear elastic fracture mechanics does not apply anymore [29], [30].

The present work aims to model the onset and the progress of fracture
in the proximal femur under compressive loading. We pursue here the strong
discontinuity approach, and the existence of a fracture process zone is pos-
tulated. Hence, bone fracture is regarded as a gradual process in which sep-
aration between incipient material surfaces is resisted by cohesive traction.
We assume mode-I failure properties are applicable to characterize the mixed
mode situation present, and employ an isotropic (discrete) constitutive de-
scription of the cohesive zone introduced in [8]. The proposed numerical fail-
ure model combines the cohesive crack concept with the Partition of Unity
Finite Element Method (PUFEM), which has been shown to be an effective
and robust numerical method to study crack propagation in concrete [28],
[8], and in arterial tissue [10]. Most important for the application of this con-
cept to patient-specific bone models is a 3-D crack tracking algorithm. Within
this study we used the (partially local two-step) predictor-corrector algorithm
[9], which provides the required geometrical information to handle multiple
non-interacting cracks.

In Section 2 the applied modeling assumption, i.e. the underlying contin-
uum mechanical basis (kinematics, variational formulation and constitutive
models), the applied finite element implementation (PUFEM, crack initial-
ization criteria and the crack tracking algorithm) are briefly discussed. The
proposed femoral fracture model and its predictions are discussed in detail in
Section 3, while in Section 4 conclusions are drawn and the work’s limitations
are discussed.

2 Modeling assumptions

In this section we introduce the applied modeling assumptions. In particular,
the continuum mechanical basis and the proposed finite element implementa-
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Fig. 1. Strong discontinuity kinematics capturing bone fracture.

tion are addressed. A more comprehensive description and derivation of the
underlying numerical concept is given in [8], [9], and references therein.

2.1 Continuum mechanical basis

Strong discontinuity kinematics

We pursue the strong discontinuity approach and assume a discontinuity in the
displacement field that characterizes bone failure. In particular, it is assumed
that a discontinuity ∂Ω0 d separates the body ∂Ω0 into two sub-bodies3, which
themselves occupy the referential sub-domains Ω0+ and Ω0−, so that ∂Ω0 d ∩
Ω0+ ∩Ω0− = ∅ and Ω0+ ∪∂Ω0 d ∪Ω0− = Ω0. A deformation χ(X) maps Ω0+

and Ω0− into their (related) current configurationsΩ+ and Ω−. Consequently,
a displacement at a material point X is assumed to be u(X) = uc(X) +
H(X)ue(X), where uc and ue are regular and enhanced displacement fields,
respectively [18], [2]. Here H(X) denotes the Heaviside function, with the
values 0 and 1 for X ∈ Ω0− and X ∈ Ω0+, respectively. In addition, we
introduce the unit normal vector N(X), which defines the orientation of ∂Ω0 d

in X, see Fig. 1.
Standard derivation [17], [12] and the use of GradH(X) = δdN(Xd) de-

fines the corresponding deformation gradient

F(X) = I + Gradu(X)
= I + Graduc(X) + HGradue(X) + δd(X)ue(X) ⊗ N(Xd), (1)

which serves as the basis for the right Cauchy-Green tensor C = FTF, the
modified right Cauchy-Green tensor C = J−2/3C and the volume ratio J =
detF. Here I denotes the identity tensor and the material gradient operator

3 For simplicity a single discontinuity is assumed to demonstrate the underlying
kinematics. However, according to the numerical schema described below, we can
handle multiple non-interacting discontinuities.
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is defined by Grad (•) = ∂(•)/∂X. In addition, δd denotes the Dirac-delta

functional with δd = 0 and δd = ∞ for X �∈ ∂Ω0 d and X ∈ ∂Ω0 d, respectively.
In order to provide a discrete constitutive description of the cohesive trac-

tion acting on the displacement discontinuity, we introduce the gap displace-
ment û(X) and the average displacement u(X) connected to a point x on the
fictitious spatial discontinuity ∂Ωd, see Fig. 1. The spatial orientation of ∂Ωd

in x is defined by the unit normal vector n, i.e. the weighted push-forward
of N. The fictitious spatial discontinuity ∂Ωd is assumed to be in the middle
between the two physical surfaces ∂Ωd+ and ∂Ωd−.

According to the introduced kinematics, a referential point X maps into
the two spatial points x+ and x−, which uniquely defines the gap and average
displacements of the discontinuity, i.e. û = x+ − x− and u = (x+ + x−)/2,
respectively (see Fig. 1).

Variational formulation

The variational formulation for a quasi-static finite element model is based on
a single-field variational principle [17], [12], i.e.∫

Ω0

Grad δu : P(F)dV − δΠext(δu) = 0, (2)

where P(F) and δu denote the first Piola-Kirchhoff stress tensor and the
admissible variation of the displacement field u, respectively. According to the
introduced displacement field its admissible variation reads δu = δuc +Hδue,
and after some algebraic manipulations, we get the two spatial variational
statements∫

Ω
−

sym(grad cδuc) : σcdv +
∫

Ω+

sym(grad eδuc) : σedv−δΠext
c (δuc) = 0,

∫
Ω+

sym(grad eδue) : σedv +
∫

∂Ωd

t · δueds−δΠext
e (δue) = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

where dv and ds are the spatial volume and surface elements, and δΠext
c and

δΠext
e are external contributions (virtual external potential energy) which re-

fer to the domains Ω0− and Ω0+, respectively. Here, σc = J−1
c P(Fc)FT

c and
σe = J−1

e P(Fe)FT
e denote the Cauchy stress tensors and t = TdS/ds is

the Cauchy traction vector associated with a fictitious discontinuity ∂Ωd,
and T is the first Piola-Kirchhoff traction vector associated with the re-
lated fictitious discontinuity ∂Ω0 d. The spatial gradients in (3) are de-
fined according to grad c(•) = Grad (•)Fc

−1, grad e(•) = Grad (•)Fe
−1 and

sym(•) = ((•) + (•)T)/2 furnishes the symmetric part of (•). For a consistent
linearization of the statements (3), we refer to [8] and references therein.
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Constitutive formulations

In order to apply the above introduced variational statements, we have to
provide continuous and discontinuous constitutive formulations, i.e. the de-
scriptions of the bone tissue as a bulk material, and the fracture. Note that
we assume both constitutive formulations to be independent from each other,
although some relationship can be provided [19].

Bulk constitutive model. Bone tissue is anisotropic, inhomogeneous and
shows time-dependent effects [4]. However, in the present work, we assume
isotropic and hyperelastic mechanical properties of bone tissue, and use a
simple neo-Hookean model to capture its main mechanical behavior. In par-
ticular, the strain-energy function Ψ = κ(lnJ)2/2+μ(I : C−3)/2 is proposed,
where κ and μ characterize the referential bulk and shear moduli of the bone,
respectively.

Cohesive constitutive model. The complex irreversible changes in the mi-
crostructure due to bone fracture are lumped into a (discrete) cohesive zone,
which is mechanically defined by the cohesive potential ψ. The justification
for the application of the theory of cohesive zones rather than assuming sharp
crack tips, is motivated by pronounced nonlinear zones, as recently discussed
in [29], [30].

Within this work we employ an isotropic cohesive model of the type [10]

ψ(û · û, δ) =
T0

2δ
exp(−aδ)i1, (4)

where i1 = û · û is the first invariant of the symmetric tensor û ⊗ û. Here T0

denotes the cohesive strength of bone tissue, and the non-negative parameters
a and δ characterize the softening properties of the cohesive zone. In partic-
ular, δ ∈ [0,∞[ denotes an internal damage variable recording the history of
the failure process. According to the procedure by Coleman and Noll [3], the
first Piola-Kirchhoff traction is defined by

T =
∂ψ

∂û
=
T0

δ
exp(−aδ)û. (5)

Moreover, the introduction of the mode I fracture energy GI =
∫∞

0
T · dû =∫∞

0 T0δ
−1 exp(−aδ)ûdû = T0/a of model (4) gives the relation

a =
T0

GI

(6)

for the introduced material parameter a.
In order to complete the proposed cohesive description, a damage surface

φ(û, δ) = |û| − δ = 0 in the 3-D gap displacement space is introduced, and
it is assumed that δ̇ = | ˙̂u| captures the evolution of the internal (damage)
variable δ.
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The proposed model has the advantage that the initial elastic stiffness is
infinite. Therefore, the model falls within the regime of ‘initially rigid’ damage
models in which an interface is inactive until the traction across it reaches a
critical level, basically the the cohesive strength T0. However, by implementing
the model, one has to circumvent the unbounded initial stiffness, and hence a
‘quasi-initially rigid’ damage model is implemented [8].

Finally it needs to be emphasized that the proposed cohesive formulation
includes only objective quantities, and hence it is objective itself. In particular,
i1 = û·û = Qû·Qû = i+1 and δ̇ = ˙̂u· ˙̂u = Q ˙̂u·Q ˙̂u = δ̇+ hold, where Q denotes
a proper orthogonal tensor superimposed on the current configuration, and
(•)+ denotes the related quantity (•) in the rotated frame.

2.2 Finite element implementation

In this section we sketch the numerical implementation of the introduced con-
tinuum mechanical framework, which allows a mesh-independent propagation
of bone fracture without any re-meshing of the considered domain. In partic-
ular, the underlying PUFEM, the crack initialization criterion and the crack
tracking algorithm are briefly discussed.

Partition of unity finite element method (PUFEM)

According to PUFEM, the displacement field u can be interpolated as4

u =
nelem∑
i=1

N IuI c + H
nelem∑
i=1

N IuI e, (7)

where N I are the standard (polynomial) finite element shape functions and
nelem denotes the number of nodes of the considered finite element. In (7),
regular and enhanced nodal displacements are denoted by uI c and uI e.

Interpolation (7) in conjunction with the variational statements (3) render
the following linearized algebraic set of equations for a particular finite element
node I, i.e.[

K
uc uc

K
uc ue

K
ue uc

K
ue ue

]I

i−1

[
Δuc

Δue

]I

i

=

[
f ext
uc

f ext
ue

]I

i−1

−

[
f int
uc

f int
ue

]I

i−1

, (8)

where i, i − 1 denote the iteration steps associated with a global Newton
iteration, and Δuc and Δue denote the increments of the regular and the
enhanced nodal displacements, respectively.

In (8) the vectors f ext
uc

, f ext
ue

and f int
uc

, f int
ue

denote external and internal
nodal force vectors, respectively. For a detailed derivation of the contributions

4 Characters indicated by underlines denote the matrix notation of the associated
tensor or vector. For example, u is the matrix representation of vector u.

204



A numerical framework to model 3-D fracture in bone tissue

K(••) (with the abbreviation (••) for ucuc, ucue, ueuc, ueue) to the nodal
stiffness tensor, as introduced in (8), see [10] and references therein. Finally,
we emphasize that the cohesive traction T causes an off-diagonal contribution
K

ue uc
and a diagonal contribution K

ue ue
to the element stiffness matrix, see

[7], [8]. The proposed PUFEM with linear and quadratic tetrahedral elements
have been implemented into the multi-purpose finite element analysis program
FEAP, [25].

Finally, it is important to note that PUFEM has a proper variational
basis, and it is able to accurately capture strong discontinuity kinematics,
which strengthen the numerical reliability. This is not the case for the class
of finite element implementations based on the Enhanced Assumed Strain
(EAS) method, which can either capture strong discontinuity kinematics or be
derived from a variational formulation but none of the EAS-formulations can
combine both requirements, see the comparative study in [7], and references
therein. This might be the reason that even the non-symmetric version of the
EAS-formulation shows ambiguous results for finite strain 3-D problems [7].

Crack initialization criterion

Bone can be regarded as a quasi-brittle material, and hence we assume that
the fracture is driven by a (non-local) Rankine criterion. The Rankine criterion
in a material point is based on an averaged stress, which is computed over
all elements with their center in a sphere with a characteristic radius R [9]; a
user-specified parameter. It is known that non-local failure criteria can lead to
non-physical crack initialization, in particular at stress (strain) singularities
[24], however, based on our numerical experience, this limitation turns out to
be of minor importance from a practical point of view. Note that the crack
initialization criterion defines only the geometry of the discontinuity, while the
mechanics of the failure process is characterized by the underlying cohesive
law, which is non-local anyway.

Finally we would like to emphasize that the (non-local) Rankine criterion
is the simplest approach, and more complex and anisotropic failure criteria
for bone tissue have been proposed in the literature as well, see, for example,
the Tsai-Wu criterion, as discussed in [4] and references therein.

Crack tracking algorithm

A crucial task in taking advantage of PUFEM is the geometrical representa-
tion of the crack surface and the tracking of its evolution. Especially for 3-D
problems, the development of crack tracking algorithms is an active research
area in computational mechanics, and local [16] and global [20] crack tracking
schemes have been recently proposed in the literature.

In contrast to those propositions, we use here the recently proposed (par-
tially local) two-step predictor-corrector algorithm for tracking 3-D crack
paths [8], which is summarized in the following. We assume now that the
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failure criterion of the k-th finite element (located at the crack tip) is met.
Hence, the related discontinuity needs to be appended to the existing crack.
The orientation of the discontinuity is defined by the failure criterion, and
the existing crack defines the location in space so that from a geometrical
point of view the problem is of Runge-Kutta type. However, the straightfor-
ward application of the non-local Rankine criterion in a 3-D geometric setting
may cause the development of a geometrically incompatible (‘bumpy’) crack
surface, which may lead to (non-physical) crack bifurcations. In order to cir-
cumvent these topological difficulties, we have recently proposed a two-step
predictor-corrector algorithm, where the predictor step defines discontinuities
according to the (non-local) Rankine criterion, and the corrector step is based
on a surface smoothing strategy [9]. In particular, the corrector step draws
in non-local information of the existing discontinuities in order to predict a
‘smooth’5 3-D crack surface. This is realized by fitting a polynomial surface
Z(X,Y ) locally to the predicted crack surface, i.e. the crack surface defined
by the predictor step. To this end nR� points on the crack surface (located in
the vicinity Ω�

0 of the k-th finite element) are considered, and the coefficients
of the polynomial surface are defined by minimizing the least-square problem

Φ =
nR�∑
i=1

(Zi − Z(Xi, Yi))2 → MIN, (9)

where Xi, Yi, Zi denote the components of the considered points on the crack
surface. In the present analysis Ω�

0 is assumed to be a sphere of radius R�.
Subsequently, according to [9], the orientation of the discontinuity N in the

k-th finite element is adapted (corrected) to the normal onto the polynomial
surface Z(X,Y ). This leads to a ‘smooth’ prediction of the crack surface and
avoids topological problems, which are inherent in the predictor step.

The proposed two-step tracking algorithm has been implemented in a sep-
arate user macro and linked to FEAP [25]. The macro is executed after each
mechanical loading step, and the user has to specify R� and the degree of the
polynomial surface; the current implementation supports linear and quadratic
surfaces.

3 Numerical example

The numerical example described in this section follows closely the experimen-
tal investigation documented in [21]. Therein, the proximal part of a femur
with an approximate length of 20 cm was subjected to loading with 0.5mm/s
until failure occurred. The distal part of the femoral bone was fixed in a device,
and a compressive load was applied on the femoral head.

5 Note that the proposed geometrical representation of the crack leads to a C
1

continuous surface, and the word ‘smooth’ has no mathematical meaning here.
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For the present numerical study, we used the geometry of the proximal
part of a ‘standardized femur’ [26]. The geometry was discretized using tetra-
hedral finite elements and the mesh was generated with the software-package
NETGEN, [23]. The finite element model consists of 5212 nodes. The mesh
was slightly refined at those regions where failure was expected; known from
experimental studies.

We assume a homogeneous elastic stiffness, defined by the referential
Young’s modulus of 10.0 GPa and the referential Poisson’s ratio of 0.35, which
falls within the range of reported mechanical properties of femoral bone [1], [4].
These values correspond to referential bulk and shear moduli of κ = 11.1 GPa
and μ = 3.7 GPa, respectively. In order to account for the different cohesive
strength T0 in the bone we assume a value of 7.0 MPa for the epiphysis and
metaphysis and 70.0 MPa for the diaphysis. In addition, we assume that T0

varies linearly between these two values within a 3.0 cm transition zone. Ac-
cording to the values provided in [27], [29] the mode I fracture energy was
approximated to be a constant with value GI = 2.0 kJ/m2. With this value
the cohesive parameter a may be computed. The parameter a varies from
3.5 mm−1 in the epiphysis to 35.0 mm−1 in the diaphysis.

In order to use the proposed crack initialization criterion, the introduced
parameter R was set to 3.0 3

√
Ve, where Ve denotes the referential volume of the

finite element under consideration. In addition, the crack tracking algorithm
was used by a linear polynomial surface and R� was taken to be 3.0 3

√
Ve in

the present analysis.
In the finite element model all nodes of the cross-section at the bottom,

where the shaft is mounted to the testing machine [21], were fixed. At the
very top of the femoral head a dead load was applied at 9 nodal points. The
magnitude of the load at the different nodal points is the same and the related
load direction passes through the center of fixed cross-section at the bottom.

A displacement controlled arc-length method was applied to solve the non-
linear problem [5], where the axial displacement increment of the very top
point of the femoral head controls the load-level parameter of the continua-
tion method. In the present computation we considered 215 load steps, which
took about 4 hours CPU on a PC with 1.8 GHz, 1.0 Gb RAM and one Pen-
tium V processor.

The computed load-displacement curve is provided in Fig. 2, where, in
particular, the magnitude of the applied compressive load is plotted against
the axial displacement which occurs at the very top nodal point of the femoral
head. At point (a) bone failure starts do develop, however, the structure re-
mains stable until point (b), where the limit load of 8.88 kN is reached. Ex-
ceeding this point a sudden drop of the load is observed until the structure
recovers at point (c) where it can withstand slightly increasing load again.
It needs to be emphasized that the predicted limit load of 8.88 kN coincides
nicely with the experimental value of 8.4 kN, documented in [21]. However,
this agreement should be seen with caution, because neither the specific geom-
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Fig. 2. Predicted load-displacement response of the proximal part of the femur
under compressive load: states (a), (b) and (c) denote onset of failure, limit load
and recovery of the structure, respectively.

etry of the femur nor the information about the morphology of the bone were
available.

The computed maximum principal Cauchy stress distribution at the three
states (a)–(c) are illustrated in Fig. 3. Apart from the stress concentration
at the crack tip, high tensile stresses appear due to bending of the shaft of
the femur. However, the high strength of the cortical bone prevents crack
formation in that region.

The predicted crack formation is summarized in Fig. 4, where Fig. 4(a)
shows the fully developed slightly curved 3-D crack surface, and Fig. 4(b)
illustrates the good agreement with the experimental results taken from [21].

4 Summary and Conclusion

Fracture of the proximal part of the femur is frequently observed in the elderly
population, and a better understanding of this type of bone failure can help to
improve preventive treatments. In particular, numerical fracture simulations
can provide further insight into the onset and progress of femoral fracture
under varying loading conditions. Bone fracture is known to develop significant
nonlinear zones ahead the crack tip and cannot be described by linear fracture
mechanics [29], [30].

In view of its proper variational basis and the capability to capture strong
discontinuity kinematics, we applied PUFEM and combined the method with
the cohesive crack concept [28], [8]. An important task to be processed when
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Fig. 3. Distribution of the maximum principal Cauchy stresses at states (a), (b) (c),
which denote onset of failure, limit load and recovery of the structure, respectively
(compare also with Fig. 2).

using this combined approach, in particular within a 3-D geometric setting, is
the implementation of an appropriate crack tracking algorithm. We used the
(partially local) two-step predictor-corrector algorithm, as proposed in [9].

The combination of PUFEM with the cohesive crack concept and the al-
gorithm developed for tracking 3-D crack paths turns out to be a very efficient
and powerful approach to investigate bone fracture. In the present work we
studied the failure mechanism of the proximal part of a ‘standardized femur’
under compressive load, as experimentally studied in [21]. We used a 3-D fi-
nite element model which was generated by means of tetrahedral elements and
slightly refined at those regions where failure was expected. For the homoge-
neous bulk material we assumed linear elasticity, while the fracture properties
were assumed to vary between the epiphysis and the diaphysis. We used a
constant value of the mode I fracture energy, from which the cohesive pa-
rameter a was computed using eq. (6). A displacement controlled arc-length
continuation method was used to predict the crack pattern and limit load,
which coincide very well with the experimental observations documented in
[21].
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Fig. 4. Predicted crack formation: (a) fully developed slightly curved 3-D crack
surface; (b) crack paths on the bone surface and comparison with experimental
results taken from [21].

The presented constitutive models of the proximal part of the femur do
not account for the complex regional variations of the mechanical properties,
as it is indicated by the related changes in bone density. In addition, the
application of an isotropic bulk material model, and the assumptions made
regarding the crack initialization criterion and the cohesive zone model might
limit the predictability of the proposed framework. However, note that the
presented framework is general enough to allow for several refinements of the
constitutive formulations.
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Biol. 235:105–119
12. Holzapfel GA (2000) Nonlinear Solid Mechanics. A Continuum Approach for

Engineering. John Wiley & Sons
13. Keyak JH, Rossi SA (2000) J. Biomech. 33:209–214
14. Lotz JC, Cheal EJ, Hayes WC (1991) J. Biomech. Eng. 113:353–360
15. Lotz JC, Cheal EJ, Hayes WC (1991) J. Biomech. Eng. 113:361–365
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Application of X-FEM to 3D Real Cracks and
Elastic-Plastic Fatigue Crack Growth

A. Gravouil1, A. Combescure1, T. Elguedj1, E. Ferrié2, J.-Y. Buffière2 and
W. Ludwig2

Summary. In a general point of view, X-FEM plus level set representation of the
interfaces reveals to be of great interest in the aim to couple experimental data
with numerical simulations. This can be highly illustrated in the case of 3D fatigue
crack growth simulations where the initial 3D “real crack” is extracted from tomo-
graphic images. The experimentally observed fatigue crack propagation is compared
to numerical simulations. Good agreement is found when a linear variation of clos-
ure stress along the crack front is taken into account in the “3D crack propagation
law” used for the simulation. Furthermore, in order to take into account plasticity
during fatigue crack growth, one develops an augmented Lagrangian formulation in
the X-FEM framework that is able to deal with elastic-plastic crack growth with
treatment of contact and friction. Numerical issues such as contact treatment and
numerical integration are addressed, and finally numerical examples are shown to
validate the method.

Key words: X-FEM, level sets, X-ray microtomography, fatigue crack growth, plas-
ticity, contact.

1 Introduction

It is now well established that the eXtended Finite Element Method is of great
interest for evolving discontinuities, in particular for industrial applications
[13, 14]. Indeed, no initial mesh and remeshing techniques are needed dur-
ing the evolution of the interfaces [2, 3, 12]. Furthermore, in a more general
point of view, X-FEM plus level set representation of the interfaces reveals
to be of great interest in the aim to couple experimental data with numerical
simulations [1, 2, 12]. This can be highly illustrated in the case of 3D fatigue
crack growth simulations where the initial 3D “real crack” is extracted from
tomographic images with a spatial resolution of the order of 1 μm [4]. In such
a case, X-FEM is coupled with a level set representation of the crack and a

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 213–231.
© 2007 Springer. Printed in the Netherlands.



specific algorithm is developed in the aim to define the initial level sets from
tomographic images. One can also notice that it is not necessary to impose the
compatibility between the meshes of the structure and the support of the level
sets. Furthermore, a robust and accurate technique is proposed to compute
the stress intensity factors [1]. Based on experimental observations and quant-
itative analysis of crack propagation in the bulk, a “3D” crack growth law can
be established to predict the crack front shape evolution in the bulk of the
material. From a more general point of view, this study shows that coupling
X-ray microtomography to X-FEM provides a promising tool to assess the
3D behaviour of arbitrary shaped cracks and to perform direct comparisons
of “experimental” and “simulated” crack shapes during propagation.

In a second example, it is shown that even with elastic-plastic behaviour
coupled with contact and friction, non-remeshing property can be preserved
for instance for 2D mixed-mode plastic fatigue crack growth [4, 5]. For that
purpose, an augmented Lagrangian formulation in the X-FEM framework for
the treatment of contact and friction with elastic-plastic behaviour is pro-
posed. On the one hand, the numerical integration is adapted in order to
properly integrate the high order terms in the enrichment basis, and to have
a fine knowledge of the stress state around the tip to precisely model plas-
ticity. On the other hand, the strategy of enrichment used for linear elastic
X-FEM fatigue simulation has to be modified [5]. In this respect, the integ-
ration strategy is designed in order to avoid the projection of stresses and
internal variables as the crack evolves to ensure the reliability of the method.
Numerical issues are addressed. In particular, one shows the ability of the
method to model the phenomenon of crack closure under cyclic tension [6, 9].
Indeed, this can have a great influence on the propagation of the crack with
fatigue loading.

2 Application of X-FEM to 3D Real Cracks

2.1 Experimental Observations

The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained
Al–Li alloy has been investigated using synchrotron radiation X-ray micro-
tomography. In this material, the studied crack, despite its small dimension,
can be considered as a “microstructurally long” and described in the frame
of the linear elastic fracture mechanics. The main advantage of using this
alloy for the present study is that it exhibits an exceptionally linear crack
path compared to ingot metallurgy Al alloys. The ultrafine grains promote
homogeneous deformation and prevent crystallographic cracking so that the
crack shape is not disturbed by microstuctural features, at least not at the
level of the spatial resolution employed in this study. In situ fatigue tests
monitored by X-ray microtomography were carried out on beamline ID 191
of the European synchrotron radiation facility (ESRF) in Grenoble, France.
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Fig. 1. Geometry of the sample used for the in situ fatigue test monitored by X-ray
microtomography

This experimental station is dedicated to high-resolution X-ray imaging and
features a highly coherent X-ray beam, a precision mechanics sample stage
and a high-resolution detector system. During a 3D tomographic scan, the
sample is rotated over 180 in order to acquire 1500 two-dimensional (2D) pro-
jection radiographs. From this set of projections, a quantitative 3D map of the
attenuation coefficient distribution within the sample is produced by means
of a standard filtered backprojection tomographic reconstruction algorithm.
The spatial resolution obtained in the reconstructed images is of the order of
1 μm, a value comparable to the resolution of an optical microscope. One can
also notice that the 3D scans are done with the maximal load: it ensures that
the crack is open. However, even with a locally closed crack, diffraction effect
allows to measure a crack opening until 100 nm. The sample was imaged in a
dedicated fatigue machine designed at INSA Lyon to perform in situ fatigue
test at the ESRF. The mechanical design of the cyclic tension loading mech-
anism enables operation at cycling frequencies of up to 80 Hz, minimising
thereby the cycling time required for a fatigue test.

The geometry of the sample used is represented in Figure 1. A thin (2 μm)
rectangular notch, 100 μm wide and 20 μm deep, was produced in the sample
using focused ion beam machining. This notch is located at the centre of one
of the specimen faces and acts as a crack initiation site.

The in situ fatigue test was performed in air, at constant stress amplitude
with σmax = 220 MPa, a stress ratio R = 0.1, a frequency of 40 Hz and at
room temperature. In the fine-grained alloy studied here, the crack size (which
is in the range 100–500 μm) is at least 100 times the grain size, and can hence
be considered as microstructurally long.
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Fig. 2. From X-ray microtomography to X-FEM

2.2 Implicit Representation of the Crack Using the Level Set
Method

From the previous experiments, 3D images are obtained and exploited in
order to proceed to a simulation of the crack propagation. In this respect, one
represents the crack by the use of two level sets.

Indeed, an implicit representation of the crack using the level sets method
is very well suited to the eXtended Finite Element Method [1, 2].

The crack front is defined as the intersection between a surface Ccrack that
defines the crack surface and a surface Cfront that defines the crack front. These
two surfaces, defined for a semi-elliptical crack, are displayed in Figure 4. In
the general case, these surfaces can have arbitrary 3D shape, and are defined
by means of level sets functions. In order to couple the level set representation
of the crack with the 3D images which come from X-ray microtomography, a
specific strategy is proposed and is summarized in Figures 2 and 3.

The first step consists in a segmentation of the 3D image in order to extract
the crack. The result is a set of voxels which defines a volume linked to the
crack. The second step consists in the definition of a Boolean field calculated
from the segmentation: a voxel outside the crack is initialized to 0 and a voxel
inside the crack is initialized to 1. The main difficulty is now to be able to
define a surface from this crack volume. In this respect, for the third step, it is
needed first to “model” the crack as a surface with a predefined length scale.
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Fig. 3. Initialization of crack and front level sets

As a consequence, a length parameter is defined, and an intermediate
triangulation step is done according to this length scale (in practice greater
than the thickness of the crack).

Indeed, it seems essential in practice to model the crack as an explicit
non-planar surface before to define the level sets. From the set of triangles,
the 1D elements of the front are extracted with the local basis along the crack
front. The fourth and the fifth steps consist then in defining the crack and the
front level sets from the set of triangles and the set of 1D elements with their
respective local basis.

In this respect, reinitialization equations (to the sign distance function)
and orthogonalization equations proposed in [2] are used according to Figure 3
in order to compute the two initial 3D scalar fields linked to the crack and
the front (see Figure 4). In particular, this approach can be done in a narrow
band close to the crack.

2.3 Strategy of Enrichment and SIFS Calculation

In FE methods, the presence of cracks in a structure must be taken into
account in mesh generation: the mesh must adequately define the crack geo-
metry. Special elements and considerable mesh refinement near the crack tip
are necessary to capture accurately the asymptotic displacement fields. The X-
FEM alleviates the shortcomings associated with meshing the crack surface by
representing the crack geometry using additional functions called enrichment
functions. The enrichment method, as described in [1], can be summarised as
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Fig. 4. Representation of the 3D scalar fields linked to the crack and front level sets

follows. The displacement field calculated in the structure “without crack” is
locally modified by adding, at specific nodes, the nodal values of the enrich-
ment functions. These functions define the crack geometry by “modelling”
the discontinuity introduced by the crack in the displacement field. As the
discontinuities at the crack front and along the crack surface are different,
two enrichment functions are necessary to model the entire crack [1].

H(x) =
{

1 for φ > 0,
−1 for φ < 0,

(1)

{FJ(x)} ≡
√
r

{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}
. (2)

The function H , defined as a generalised Heaviside function, models the
displacement field along the crack surface. It is used to enrich the nodes of
the element that are cut by the crack surface.

The enrichment FJ is used to enrich the nodes of the elements that contain
the crack front. FJ consists of a span of functions which incorporate the
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Fig. 5. Set of elements completely cut by the crack; set of elements cut by the front;
2D representation of the crack extracted from the crack level set

Fig. 6. Representation of the non-deformed and deformed mesh of the specimen
submitted to fatigue loading

radial and angular behaviour of the asymptotic crack-tip displacement fields,
where the local coordinate system can be extracted from the level sets [2].
Furthermore, the nodal values of the crack level set and the front level set
give the precise location of the crack and control whether a node has to be
enriched or not (see Figure 5).
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Concerning the calculation of the local stress intensity factor values (KI,
KII and KIII) along the crack front, the interaction integral is used on a J-
domain defined in the local basis of the crack front [1, 2]. The J-domain is
completely independent of the mesh of the structure and its size depends on
the curvature of the crack front and the size of the finite elements cut by the
front. On the boundary, due to plane stress effect, the interaction integral is
not used and stress intensity factors in the bulk are extrapolated from the
bulk to the boundary [4]. In Figure 6, we illustrate the non-deformed mesh
and the deformed mesh of the specimen submitted to a fatigue load after
14000 cycles.

3 Development of a 3D Local Paris Law

After 14,000 fatigue cycles, a crack initiated at the notch was detected on a
2D radiograph. The in situ fatigue test was performed at constant stress amp-
litude with σmax = 220 MPa, a stress ratio R = 0.1, and a frequency of 40 Hz.
A tomographic scan of the part of the specimen containing the crack was
acquired and corresponds to the “first scan”. During crack propagation, nine
scans were recorded, reconstructed and segmented to obtain 3D renditions of
the crack at different stages of its evolution. Projections in the (X–Y ) plane of
seven 3D renditions (chosen among the nine) are displayed in Figure 7. The
dotted lines on the 3D crack renditions represent the location of the crack
front at the previous step. The position along the crack front is defined by the
angle x as shown in Figure 7(a). Qualitative and quantitative information on
the evolution of the 3D crack geometry can be obtained.

The crack size at the surface (2c), for ω = 0◦, and in the bulk (a), for
ω = 90◦, are measured on the 3D renditions of the crack. The fatigue crack
growth rates at the surface, dc/dN , and in the bulk, da/dN , as a function of
the stress intensity factor range ΔK = (Kmax −Kmin) are shown in Figure 9.
The values of Kmax and Kmin are calculated for ω = 0◦ and for ω = 90◦ using
domain integral techniques [1].

Thus for the same ΔK, the crack propagates faster in the bulk than at
the surface implying that, at least for the specimen geometry used here, the
crack growth behaviour is anisotropic. Thus, a fatigue crack growth law de-
termined at the surface does not account for the crack behaviour in the bulk.
Furthermore, if used for fatigue life calculation, the surface experimental law
would lead to a non-conservative prediction.

One possible reason for the observed crack growth anisotropy between the
surface and the bulk is variation of the closure stress along the crack front:
the crack will then propagate faster in the bulk because the closure stress in
this region of the crack front is smaller and hence the effective driving force
is higher than at the surface.

Elber [6] proposed a modified Paris equation to account for the effect
of closure on the crack growth rate: da/dN = C(ΔKeff)m where ΔKeff =
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Fig. 7. 3D segmentation operation of the crack from the 3D tomographic image
during propagation

Fig. 8. Comparisons between experimental, numerical and analytical solutions from
14000 to 16000 cycles

(Kmax−Kop) is the effective stress intensity factor range and Kop is the stress
intensity factor at which the crack opens. To account for the variation of the
closure stress along the crack, we will modify Elber’s equation by introducing
a new variable ω such that da/dN and ΔKeff vary along the crack front:
da(ω)/dN = C(Kmax −Kop(ω))m.
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Fig. 9. Comparisons between experimental, numerical and analytical solutions from
20000 to 22000 cycles

As a first approach, the variation of Kop(ω) is taken to be linear with the
angle ω and is therefore given by Kop(ω) = aω+ b. The value of the constants
a and b are determined from the values of Kop at the surface Kop(0◦) and at
the deepest point Kop(90◦). Data from the literature are used to determine
Kop(0◦): the closure response of an Al–Li powder metallurgy alloy, very similar
to the alloy studied here, was investigated in [7]. The value of Kop measured
at the surface of CT specimens, for R = Kmax/Kmin = 0.1, is found to be
equal to 0.4Kmax. We assume here that the ratio Kop(ω = 0◦)/Kmax remains
constant during the fatigue test and that there is no closure at the deepest
point for ω = 90◦, which gives Kop(90◦) = 0.1Kmax(90◦). The evolution of
the closure stress along the crack front is given by the linear relation:

Kop = −0.3Kmax

90◦
ω + 0.4Kmax. (3)

The 3D crack growth law taking into account the variation of the closure
stress along the crack front is given by

da

dN
(θ) = C

((
0.3
90◦

ω + 0.6
)
Kmax

)m

(4)

with C = 10−9.2 mm.cycle−1.(MPa.m0.5)−m and m = 3.51 for the previous
aluminium alloy. In Equations (3) and (4), the angle ω, expressed in degrees,
is defined for 0◦ < ω < 90◦ and Kmax(ω) is obtained from a polynomial
interpolation of the values calculated by the X-FEM as described in the pre-
vious section. This means that, for the sample geometry investigated here, a
single Paris law can be used to predict the observed crack growth anisotropy
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Fig. 10. Three-dimensional effect (difference between surface and bulk)

provided the variation of the closure stress along the crack front is taken into
account.

From a more general point of view, this study has shown that coupling
X-ray microtomography to X-FEM provides a promising tool to assess the 3D
behaviour of arbitrary shaped cracks and to perform direct comparisons of
“experimental” and “simulated” crack shapes during propagation. Such data,
to the best of the authors’ knowledge, are currently lacking in the literature.

In this study, closure effect is taken into account empirically in the Paris
law. An extension of this work consists in using explicitly a elastic-plastic
behaviour with contact and friction in the simulation. This is the aim of the
next section.

4 Extension of X-FEM to Elastic-Plastic Crack Growth

4.1 Strategy of Enrichment

The main purpose of this paragraph is to treat the case of bulk and interface
non-linearities in the framework of the eXtended Finite Element Method. The
presented method will focus on the case of plasticity combined with frictional
contact and is applied to fatigue crack growth analysis. The aim of the method
is to use the X-FEM to model the well known fatigue crack closure under cyclic
tension phenomenon first observed by Elber [8].

In the case of material non-linearities, several issues have to be addressed.
In a previous paper [5] an appropriate elastic-plastic enrichment basis was de-
veloped to allow the X-FEM to deal with plasticity. In the present paper this
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Fig. 11. Geometrical subdividing zone with an estimation of the plastic zone

approach is coupled with the treatment of frictional contact, and the prob-
lems associated with plastic crack propagation are explored. The aim of the
study is to develop a general strategy for a wide family of elastic-plastic beha-
viour (kinematics and/or isotropic hardening, etc.). In this approach, neither
remeshing nor thermodynamic field interpolation during propagation of the
crack are needed. Furthermore, the crack front is enriched with specific basis
in order to use sufficiently coarse mesh compared to FEM. In fact, the aim is to
be able to take into account closure effect and confined plasticity with a good
accuracy during propagation of the crack: indeed, this can have a great influ-
ence on the fatigue crack growth. In order to accurately model the confined
plasticity, a geometrical subdividing zone is defined with an estimation of the
plastic zone which can be smaller than the spatial discretization assumed to
be fixed (see Figure 11). In the same way, during the propagation of the crack,
one defines new sub-elements between the two configurations according to the
estimation of the new plastic zone (see Figure 12): only the Gauss points of
the new sub-elements are needed (which allows a good accuracy of the plastic
behaviour during the crack growth with no remeshing and no interpolation
field) [3]. Concerning the strategy of enrichment of the element containing the
crack tip, an appropriate enrichment basis for fatigue crack growth simulation
with confined plasticity is used [5]:

r1/(n+1)

{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ, sin

θ

2
sin 3θ, cos

θ

2
sin 3θ

}
, (5)

where n is linked to the hardening of the elastic-plastic model. Indeed, the
plastic asymptotic HRR fields can be well represented by the following basis
(non-linear elasticity). In this respect, such enrichment can be well suited
for elasto-plasticity when the load is increasing. Furthermore, numerical sim-
ulations show that the following basis gives accurate results for specimens
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Fig. 12. Evolution of the sub-elements between the two configurations

submitted to loading and unloading even with coarse mesh for a wide range
of elastic-plastic hardening [5].

In order to take into account contact and friction between the crack faces,
interface elements are implemented along the crack with their own displace-
ment and traction fields (t and w). In this respect, a three fields Augmented
Lagrangian formulation is introduced which allows to couple the interface
elements with the displacement and the Cauchy stress fields (u and σ) [3]:∫

Ω

σ(i)
n : ε(u∗)dΩ =

∫
∂2 Ω

Fd.u
∗dS +

∫
Γ

Λ(i)
n .u∗|ΓdS +

∫
Γ

Λ∗.(u(i)
n |Γ − w(i)

n )dS

+
∫

Γ

(t(i−1)
n + αw(i−1)

n ).w∗dS −
∫

Γ

(Λ(i)
n + αw(i)

n ).w∗dS

∀(u∗, w∗) ∈ U0, ∀Λ∗ ∈ L0, (6)

where σ and ε are respectively the Cauchy stress and the strain fields; t and
w respectively the load and displacement fields along the crack faces; Fd the
prescribed load; u∗, w∗ and Λ∗ respectively the virtual displacement field in
the bulk, the virtual displacement field on the crack faces and the virtual Lag-
range multiplier field; α the penalty term (for the normal and the tangential
problem) and Λ the Lagrange multiplier of the Augmented Lagrangian formu-
lation. Finally, concerning the update of the local enrichment during propaga-
tion the following strategy is retained: in the aim to preserve the history of the
thermodynamics variables, all enrichments are retained during crack growth
[15]. As a consequence, the change of discretization is performed by imposing
the new crack segment to be closed (new enrichments are initialized to zero;
the new t and w must be compatible with u and σ). Furthermore, the new
stress and internal variables are initialized with elastic conditions thanks to
the moving subdividing zone (see Figure 13).
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Fig. 13. Local enrichment and initialization strategy

Fig. 14. Geometry and boundary conditions for the CTS specimen

4.2 Application to Fatigue Crack Growth with Confined Plasticity

One considers as a first example a Compact Tension Shear (CTS) specimen,
submitted to mode I fatigue crack growth with interspersed overload. A nu-
merical and experimental investigation of that specimen is fully presented in
[9]. In this example, one wants to compare the results obtained by a classical
FE calculation presented in [9] with the proposed method. In Figure 14, the
geometry and boundary conditions are presented, and one also illustrates the
mesh of the specimen with a zoom around the crack tip for the FE simulations
and the X-FEM simulations.

The material is chosen similar to the one in [9]: 2.1011 Pa for the
Young’s modulus, 0.3 for the Poisson’s ratio, 200 MPa for the yield strength,
534 MPa for the hardening coefficient, 0.27 for the hardening exponent n, and
90 MPa.m1/2 for the critical mode I SIF.
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Fig. 15. Mesh of the CTS specimen with zoom around the crack tip

Fig. 16. Comparison of the vertical displacement on the crack faces between FEM
and X-FEM before and after the propagation

In this comparison, the X-FEM mesh as been chosen 10 times coarser than
the FEM mesh. Furthermore, a standard von Mises plasticity with isotropic
hardening (Newton+radial return scheme) has been considered here [3]. The
specimen is submitted to a total crack growth of Δa = 0.5 mm (20 steps in
FEM, 2 steps in X-FEM), then submitted to an overload with a ratio of 2.5
and then a total growth of delta = 0.5 mm. One can conclude on this example
that, even with a 10 time coarser element length and a 10 time coarser time
discretization, very good agreements can be obtained between FEM and X-
FEM on the vertical displacement close to the crack tip before and after the
propagation of the crack. One can also notice the closure of the crack due to
the overload and the confined plasticity (after the propagation).

As a second example, one considers a mode I Compact Tension (CT)
specimen with a loading ratio of 0.1. The geometry and dimensions of the
specimen are given in Figure 17. The material is chosen to be similar to
the previous example. The specimen is submitted to a tension cyclic loading
in order to have a stabilized stress state around the tip, then a growth of
Δa = 0.05 mm is imposed at maximum load, and so on.
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Fig. 17. Geometry and X-FEM mesh for the mode I CT specimen

Fig. 18. Stress and interface results at minimum loads

In Figure 18, one illustrates the ability of the method to simulate closure
effect close to the crack tip. In Figure 19, one illustrates stress-strain curves
obtained on a Gauss point close to the crack tip during the propagation and
the cycles of stabilization. One can notice that, due to the fact that no remesh-
ing is done during the propagation of the crack, it is very easy to follow the
stress-strain evolution of the material in a fixed point, which can not be pos-
sible with the same accuracy if you proceed to remeshing and interpolations.

Concerning the time dependence of the problem, this case can be con-
sidered as a two scale approach: a fixed “coarse” scale linked to the geometry
(structure and crack) and a “fine” scale linked to the non-linear properties
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Fig. 19. Stress-strain evolution during crack growth

of the material (confined plasticity, contact and friction between the crack
faces) which follows the crack tip during the propagation. In this respect, no
remeshing is needed; however, new integration points are needed (it consists
to initialize the new internal variables to zero according to the linear elastic
behaviour outside the crack tip plastic zone), and new interface elements are
needed.

Numerical simulations show that the proposed basis of enrichment can give
accurate results for specimens submitted to loading and unloading even with
coarse meshes for a wide range of hardening. However, because of conditioning
issues, the crack extension can not be small compared to the element size
(discrete successive plastic zone). For cyclic loadings with elastic-plastic crack
growth, the question of the optimal enrichment basis is still open. One can
also notice that the effects of non-singular terms of the asymptotic fields like
T-stress are not taken into account. Furthermore, numerical issues suck as
locking, plastic incompressibility and convergence rate need specific studies.

5 Conclusions

The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained
Al–Li alloy has been investigated using synchrotron radiation X-ray micro-
tomography. In this material, the studied crack, despite its small dimension,
can be considered as a “microstructurally long” and described in the frame
of the linear elastic fracture mechanics. The extended finite element method
was used to calculate the stress intensity factors along the crack front taking
into account the three-dimensional geometry extracted from the tomographic
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images. For the same nominal value of the stress intensity factor range, crack
propagation was faster in the bulk than at the surface. The observed aniso-
tropy is attributed to the variation of the closure stress along the crack front
between surface and bulk. The experimentally observed fatigue crack propaga-
tion is compared to numerical simulations. Good agreement is found when a
linear variation of closure stress along the crack front is taken into account in
the “3D crack propagation law” used for the simulation. In a second example,
it is shown that even with elastic-plastic behaviour coupled with contact and
friction, non-remeshing property can be preserved for instance for 2D mixed-
mode plastic fatigue crack growth. The main idea consists in using a specific
nonlinear enrichment basis which allows to take into account the asymptotic
behaviour around the crack tip. Because of the treatment of multiple nonlin-
earities (plasticity, contact), the numerical integration is adapted in order to
properly integrate the enrichment basis and to have a fine knowledge of the
stress state around the crack tip. Second, the propagation strategy consists in
keeping the history of the variables such as stresses and plastic strains. Finally,
an original strategy was designed in order to avoid projection of stresses and
internal variables as the crack evolves to ensure the reliability of the method.
In the presented examples, the method shows its ability to model the physical
phenomena that are present in fatigue crack growth.
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15. Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for
dynamic crack growth using the extended finite element method, International
Journal for Numerical Methods in Engineering 63:631-659.

231



Accurate Simulation of Frictionless and
Frictional Cohesive Crack Growth in

Quasi-Brittle Materials Using XFEM

B.L. Karihaloo and Q.Z. Xiao

School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Newport
Road, Cardiff CF24 3AA, UK; karihaloob@cardiff.ac.uk, qizhi.xiao@lusas.com

Summary. This paper discusses the crack tip asymptotic fields of frictionless and
frictional cohesive cracks in quasi-brittle materials. This has been made possible after
reformatting the cohesive-law into a special but universal polynomial. For accurate
simulation of crack growth in quasi-brittle materials using the extended/generalized
finite element method (XFEM), the leading term of the true displacement asymp-
totic field is used as the enrichment function at the tip of a cohesive crack. The
opening component of the same field is also used as the initial guess opening profile
of a newly extended cohesive segment. A statically admissible stress recovery (SAR)
technique is used to recover the stresses at the crack tip. Finally, a pure mode I
cohesive crack problem is analysed to demonstrate the characteristics of global re-
sponses and local fields obtained numerically by the XFEM.

Key words: Asymptotic expansion, cohesive crack, extended/generalized finite ele-
ment method (XFEM), stress recovery.

1 Introduction

The cohesive zone (or crack) model of Hillerborg et al. [1] has been extensively
used in the study of localisation and failure in quasi-brittle materials and
structures. Elices et al. [2] have discussed its advantages and limitations. In
the most widely used standard formulation of the model (see Figure 1), it is
assumed that the stress–strain behaviour is isotropic linear elastic, and that
the crack is initiated at a point where the maximum tensile principal stress σ1

reaches the tensile strength ft of the uncracked material, and that the crack is
oriented normal to the direction of σ1. An evolution law is also postulated for
the monotonic mode I loading so that the cohesive stress is a unique function
of the crack opening which, for concrete, decreases monotonically along the
cohesive zone. The cohesive crack propagates when σ1 at its tip reaches ft.
Although this standard formulation of the cohesive crack model is highly
simplified, it is able to capture the essence of the fracture process in concrete
specimens and structures [3].

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 233–254.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. A real traction-free crack terminating in a fracture process (cohesive) zone
(FPZ) with residual stress transfer capacity σy(w) whose faces close smoothly near
its tip (KI = 0). The material outside the FPZ is linear elastic, but within the FPZ
is softening.

De Borst et al. [4] have given a concise overview of the various ways to nu-
merically implement the cohesive zone methodology. They concluded that the
extended/generalized finite element method (XFEM) [5–8] provides a proper
representation of the discrete character of cohesive zone formulations avoid-
ing any mesh bias. The XFEM enriches the standard local FE approximations
with known information about the problem, such as a displacement discon-
tinuity across a crack, the asymptotic solution at a crack tip, or a strain
discontinuity across an interface, with the use of the partition of unity (PU).
In contrast with the FEM, it avoids the use of meshes conforming with the
discontinuity and adaptive remeshing as the discontinuity grows.

In the XFEM formulation of the cohesive zone model, Wells and Sluys
[9] used the jump function as an enrichment function for the whole cohesive
crack, hence the cohesive crack tip touches the element boundary. Moës and
Belytschko [10] used the jump function for the part of the cohesive crack not
adjacent to its tip, and a branch function adjacent to the tip. This approach
can handle cases in which the cohesive crack tip does not touch the element
boundary. However, the adopted branch function does not represent the true
asymptotic nature of the displacement/stress field adjacent to the cohesive
crack tip. Hansbo and Hansbo [11] modelled strong and weak discontinuit-
ies in solid mechanics by considering an element traversed by a discontinuity
as a double element each half of which is used for the interpolation of one
side of the discontinuity. This approach is difficult to use when the discon-
tinuity ends within an element. Zi and Belytschko [12] enriched all cracked
linear 3-node or quadratic 6-node triangular elements including the elements
containing the crack tip by the sign function. Alfaiate et al. [13] embedded
displacement jumps which do not need to be homogeneous within each FE.
Mariani and Perego [14] introduced in a standard FE model a cubic displace-
ment discontinuity, in order to reproduce the typical cusp-like shape of the
process zone at the tip of a cohesive crack. However, this cubic function does
not represent the true angular distribution of the displacement adjacent to
the tip.
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The lack of any work on the asymptotic fields at the tip of a cohesive
crack is surprising considering the widespread use of cohesive crack models.
This blank has been recently filled by Xiao and Karihaloo [15] who obtained
universal asymptotic expansions at a cohesive crack tip, analogous to Williams
expansions at a traction-free crack tip. Coulomb friction on the cohesive crack
faces is also considered. The coefficients of the expansions of course depend
nonlinearly on the softening-law and the boundary conditions. These universal
expansions are valid for any normal cohesion-separation law (i.e. softening
law) that can be expressed in a special polynomial form. They demonstrated
that many commonly-used cohesion-separation laws, e.g. rectangular, linear,
bilinear and exponentional, can be expressed in this special form.

In this paper, we will summarize the reformulated polynomial softening-
law and the crack tip asymptotic fields of frictionless and frictional cohesive
cracks in quasi-brittle materials given in [15]. We will use the leading term of
the true displacement asymptotic field at the tip of a cohesive crack as the
enrichment function in the XFEM. The opening component of the same field
is also used as the initial guess opening profile of a newly extended cohesive
segment. The tip of the growing cohesive crack does not have to terminate on
an element boundary.

Rubinstein [16] has shown that relatively small errors in the determination
of the crack path deflection angle can lead to a significant cumulative deviation
of the crack path over a finite crack length. Therefore a reliable analysis of
cohesive crack propagation requires an accurate knowledge of the crack tip
field. In order to obtain accurate angular distribution of the stress adjacent to
the crack tip, a statically admissible stress recovery (SAR) scheme [17–19] will
be adopted. SAR uses basis functions, which meet the equilibrium equations
within the domain and the local traction conditions on the boundary, and
moving least squares (MLS) to fit the stresses at sampling (e.g., quadrature)
points obtained by the XFEM. The most widely used stress recovery scheme
(denoted as AVG) will also be used for comparison. AVG simply averages
the stress values at each node evaluated from adjacent elements by bi-linear
extrapolation from the Gauss points, and interpolates the averaged stresses
using shape functions.

We will analyse a notched flexural specimen made of quasi-brittle materials
with a bilinear law and show that the growth of a cohesive crack in a quasi-
brittle material can be accurately predicted with a very coarse mesh which is
not possible with the FEM. We will also demonstrate the characteristics of
global responses and local fields obtained numerically by the XFEM.

2 Polynomial cohesive law for quasi-brittle materials

In order to obtain the separable asymptotic field at a cohesive crack tip (in
terms of r and θ functions, r and θ are local polar coordinates centered at the
tip, see Figure 1) in quasi-brittle materials like concrete, Xiao and Karihaloo
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[15] reformulated the softening law into the following polynomial
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where σ and ft are the stress normal to the cohesive crack face and the uniaxial
tensile strength, respectively; w and wc are the opening displacement of the
cohesive crack faces, and the critical opening displacement of the pre-existing
macrocrack tip when it begins to grow; αi, i = 1 . . . 5, are fitting parameters.
Relation (1) or (2) can represent a wide variety of softening laws.

For example, the widely used linear softening law

σ

ft
= 1 − w

wc
(3)

can be represented by (1) with the only non-vanishing coefficients α1 =
−0.2612, α2 = −1.0215, i.e.

σ̂y = 1 + α1ŵ
(2/3)i + α2ŵ

4/3 − (1 − α1 + α2)ŵ2. (4)

The correlation coefficient is 1. In this study, the correlation coefficient is the
Pearson’s coefficient adopted by Mathcad. The linear law (3) is compared
with (1) or (4) in Figure 2; they cannot be distinguished on the scale of the
figure.

Similarly, for the widely used bilinear tension-softening law (Figure 3)

σ̂ =

⎧⎪⎪⎨⎪⎪⎩
1 − (1 − f̂1)

ŵ

ŵ1
, 0 ≤ σ̂ ≤ f̂1,

f̂1
1 − ŵ1

(1 − ŵ), f̂1 < σ̂ ≤ 1.
(5)

(f̂1 = f1/ft, ŵ1 = w1/wc), its two linear parts can be rewritten into two linear
laws as shown in Figure 3. The first part can be written into (4) using a new
definition of wc as

wc =
w1

1 − f̂1
. (6)

The second part can be written into (4) using a new definition of ft as

ft =
f1

1 − ŵ1
. (7)

Cornelissen et al. [20] introduced the following exponential relation
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Fig. 2. Linear tension-softening law.

Fig. 3. Bilinear tension-softening law.

σ

ft
= f

(
w

wc

)
− w

wc
f(1), f

(
w

wc

)
=

[
1 +
(
C1

w

wc

)3
]
e−C2 (w/wc). (8)

C1 and C2 are fitting parameters. For a normal concrete (NC) with density
2370 kg/m3, compressive strength fc = 47 MPa, Young modulus E = 39 GPa,
ft = 3.2 MPa, wc = 160 μm, specific fracture energy GF = 100 J/m2 (area
under the tension-softening curve), C1 = 3 and C2 = 6.93. This diagram
can also be fitted by (1) with α1 = −0.872, α2 = −16.729, α3 = 67.818,
α4 = −110.462, and α5 = 83.158. The correlation coefficient is 1. They are
compared in Figure 4, and cannot be distinguished on the scale of the figure.

Wecharatana [21] introduced the following softening relationship

σ̂m + ŵ2m = 1, (9)

m = 0.27 for concrete with compressive strength fc = 24 MPa. In the range
of 0 ≤ ŵ ≤ 0.6, we can fit (9) using (1) with α1 = −6.9495, α2 = 29.9794,
α3 = −87.2663, α4 = 148.3647, and α5 = −128.84. The correlation coefficient
is 1. When ŵ = 0.6, σ̂ = 0.005148; when ŵ > 0.6, σ̂ is negligibly small. As
compared in Figure 5, they cannot be distinguished on the scale of the figure.
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Fig. 4. Cohesive law (8).

Fig. 5. Cohesive law (9).

3 Crack tip asymptotic fields of frictionless and
frictional cohesive cracks in quasi-brittle materials

Muskhelishvili [22] showed that, for plane problems, the stresses and displace-
ments in the Cartesian coordinate system (see Figure 1) can be expressed in
terms of two analytic functions φ(z) and χ(z) of the complex variable z = reiθ

σ+ + σy = 2[φ′(z) + φ′(z)],

σy − σ+ + 2iτxy = 2[z̄φ′′(z) + χ′′(z)], (10)

2μ(u+ iν) = κφ(z) − zφ′(z) − χ′(z),

where a prime denotes differentiation with respect to z and an overbar complex
conjugate. In (10), μ = E/[2(1+ν)] is the shear modulus; the Kolosov constant
is κ = 3 − 4ν for plane strain or κ = (3 − ν)/(1 + ν) for plane stress.

For a general plane mixed mode I + II problem, the complex functions φ(z)
and χ(z) can be chosen as series of complex eigenvalue Goursat functions [23,
24]

φ(z) =
∑
n=0

Anz
λn =

∑
n=0

Anr
λneiλnθ,
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χ(z) =
∑
n=0

Bnz
λn+1 =

∑
n=0

Bnr
λn+1ei(λn+1)θ, (11)

where the complex coefficients are An = a1n + ia2n and Bn = b1n + ib2n. The
eigenvalues λn and coefficients a1n, a2n, b1n and b2n are real.

The asymptotic analysis of the crack tip fields needs to satisfy the proper
symmetry conditions along the line of extension of the cohesive crack, and
boundary conditions on the cohesive crack faces.

If normal cohesive separation applies to the crack faces, relationship (1)
needs to be satisfied over the cohesive zone. The stresses at the cohesive crack
tip are non-singular (because the stress intensity factor KI = 0). Moreover,
the following conditions need to be satisfied:

(a) if the Coulomb friction on the crack face is considered

σy|θ=π = σy |θ=−π �= 0, τxy|θ=π = τxy|θ=−π = −μfσy|θ=±π �= 0, (12)

where μf equals the positive or negative value of the coefficient of kinetic
friction, which is assumed to be constant, depending on the relative sliding
direction of the two crack faces: μf > 0 when δ > 0 and μf < 0 when δ < 0.
When μf = 0, the cohesive crack faces are frictionless.

(b) if the cohesive crack faces are in pure mode I condition

σy|θ=π = σy |θ=−π �= 0, τxy|θ=π = τxy|θ=−π = 0,

τxy|θ=0 = 0, and ν|θ=0 = 0. (13)

The length of the process (cohesive) zone is determined by the condition
w ≤ wc in the normally opened part of the crack.

For a Coulomb frictional cohesive crack with normal cohesive separation
(1), the complete asymptotic solutions are composed of two parts. The first
part corresponds to integer eigenvalues

λn = n+ 1, b2n = − n

n+ 2
a2n − μf (a1n + b1n), n = 0, 1, 2, . . . , (14)

or

σy|θ=±π =
∑
n=0

(n+ 2)(n+ 1)rn(a1n + b1n) cosnπ or

σ̂y =
σy|θ=±π

ft
=
∑
n=0

cnr
n = 1 +

∑
n=1

cnr
n, (15)

where

cn =
(n+ 2)(n+ 1)(a1n + b1n) cosnπ

ft
, c0 =

2(a10 + b10)
ft

= 1 (16)

since σy|θ=±π = ft when r → 0. These solutions have non-zero σy and τxy

along the cohesive crack faces, but zero crack opening w and sliding δ. The
second part of the asymptotic solutions corresponds to non-integer eigenvalues
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λn =
2n+ 3

2
, b1n = −2n+ 1

2n+ 5
a1n, b2n = −a2n, n = 0, 1, 2, . . . ,

w =
∑
n=0

r(2n+3)/2

μ

[(
κ+

2n+ 3
2

)
a1n +

2n+ 5
2

b1n

]
sin

2n+ 3
2

π (17)

or

ŵ =
w

wc
=
∑
n=0

d̄nr
(2n+3)/2, d̄n =

[(
κ+ 2n+3

2

)
a1n + 2n+5

2 b1n

]
sin 2n+3

2 π

μwc
.

(18)
Consider the truncated N + 1 terms of ŵ (18), and denote d0 = d̄0, dn =

d̄n/d0 (n > 1)

ŵ = d0r
3/2

(
1 +

N∑
n=1

dnr
n

)
. (19)

The expansion of ŵ (19) raised to the power 2i/3 is also truncated to N+1
terms, since these terms include only the truncated N + 1 terms of ŵ. Hence

ŵ(2/3)i = d
(2/3)i
0 ri

(
1 +

N∑
n=1

βinr
n

)
, (20)

where

βin =
f

(n)
i (0)
n!

, fi(r) =

(
1 +

N∑
n=1

dnr
n

)(2/3)i

(21)

and f (n)
i (0) denotes the nth derivative at r = 0. The first five coefficients βin

are

βi1 =
2
3
id1,

βi2 =
1
3
i

(
2
3
i− 1

)
d2
1 +

2
3
id2,

βi3 =
1
9
i

(
2
3
i− 1

)(
2
3
i− 2

)
d3
1 +

2
3
i

(
2
3
i− 1

)
d1d2 +

2
3
id3,

βi4 =
1
36
i

(
2
3
i− 1

)(
2
3
i− 2

)(
2
3
i− 3

)
d4
1 +

1
3
i

(
2
3
i− 1

)(
2
3
i− 2

)
d2
1d2

+
1
3
i

(
2
3
i− 1

)
d2
2 +

2
3
i

(
2
3
i− 1

)
d1d3 +

2
3
id4.

βi5 =
1

180
i

(
2
3
i− 1

)(
2
3
i− 2

)(
2
3
i− 3

)(
2
3
i− 4

)
d5
1

+
1
9
i

(
2
3
i− 1

)(
2
3
i− 2

)
d3
1d2 +

1
3
i

(
2
3
i− 1

)(
2
3
i− 2

)
d1d

2
2
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+
1
3
i

(
2
3
i− 1

)(
2
3
i− 2

)
d2
1d3 +

2
3

(
2
3
i− 1

)
d2d3

+
2
3
i

(
2
3
i− 1

)
d1d4 +

2
3
id5. (22)

If we choose N = 5, then after satisfying the cohesive relationship (1) we
have the following expressions for coefficients cn in (16)

c1 = α1d
2/3
0 ,

c2 = α2d
4/3
0 + α1d

2/3
0 β11,

c3 = α3d
2
0 + α1d

2/3
0 β12 + α2d

4/3
0 β21,

c4 = α4d
8/3
0 + α1d

2/3
0 β13 + α2d

4/3
0 β22 + α3d

2
0β31,

c5 = α5d
10/3
0 + α1d

2/3
0 β14 + α2d

4/3
0 β23 + α3d

2
0β32 + α4d

8/3
0 β41,

c6 = α1d
2/3
0 β15 + α2d

4/3
0 β24 + α3d

2
0β33 + α4d

8/3
0 β42

+ α5d
10/3
0 β51 −

(
1 +

5∑
i=1

αi

)
d4
0,

c7 = α2d
4/3
0 β25 + α3d

2
0β34 + α4d

8/3
0 β43 + α5d

10/3
0 β52

−
(

1 +
5∑

i=1

αi

)
d4
0β61,

c8 = α3d
2
0β35 + α4d

8/3
0 β44 + α5d

10/3
0 β53 −

(
1 +

5∑
i=1

αi

)
d4
0β62,

c9 = α4d
8/3
0 β45 + α5d

10/3
0 β54 −

(
1 +

5∑
i=1

αi

)
d4
0β63,

c10 = α5d
10/3
0 β55 −

(
1 +

5∑
i=1

αi

)
d4
0β64,

c11 = −
(

1 +
5∑

i=1

αi

)
d4
0β65. (23)

For non-integer eigenvalues (17), the coefficients a1n and a2n may be re-
garded as independent, so that coefficients b1n are linearly dependent on a1n

and b2n on a2n. For integer eigenvalues (14), coefficients a1n and a2n may
also be regarded as independent, so that coefficients b2n now depend linearly
on a1n, a2n and b1n. However, the coefficients b1n for integer eigenvalues will
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depend both linearly on a1n for integer eigenvalues and nonlinearly on a1n

for non-integer eigenvalues via (16), (18), (19), (21) and (23). The inherent
nonlinear nature of the problem is reflected in these nonlinear relationships
between the coefficients of the asymptotic fields.

Note that the above asymptotic solution cannot be reduced to a pure mode
I cohesive crack (compare (12) and (13)), since along the line of extension of
the crack, θ = 0, the shear stress does not vanish (τxy �= 0). However, the
procedures are similar; and the complete asymptotic fields have been given
in [15]. The first term corresponding to a non-integer eigenvalue that gives a
normal displacement dis- continuity over the cohesive crack faces is

u =
r3/2

2μ
a1

[(
κ+

1
2

)
cos

3
2
θ − 3

2
cos

1
2
θ

]
,

v =
r3/2

2μ
a1

[(
κ− 1

2

)
sin

3
2
θ − 3

2
sin

1
2
θ

]
. (24)

4 Simulation of cohesive crack growth in quasi-brittle
materials using XFEM

To model the cohesive cracks in the XFEM, a standard local FE displacement
approximation around the crack is enriched with discontinuous Heaviside func-
tions along the crack faces behind the crack tip including the open traction-free
part, and the crack tip asymptotic displacement fields at nodes surrounding
the cohesive crack tip using the PU. The approximation of displacements for
an element can be expressed in the following form{

uh(x)
vh(x)

}
=
∑
i∈I

φi(x)
{
u0i

v0i

}
+
∑

j∈J∩I

φj(x)H(x)
{
b1j

b2j

}

+
∑

m∈Mk∩I

φm(x)
{
utip k

m

vtip k
m

}
, (25)

where I is the set of all nodes in the element, (u0i, v0i) are the regular degrees
of freedom at node i, φi is the FE shape function associated with node i, J is
the subset of nodes whose support is intersected by the crack but do not cover
any cohesive crack tips, the functionH(x) is the Heaviside function centred on
the crack discontinuity, and (b1j , b2j) are the corresponding additional degrees
of freedom. Mk is the subset of nodes that are enriched around the cohesive
crack tip k with the asymptotic displacements utip k and vtip k. utip k

m and
vtip k

m are enrichment functions adopted at node m with corresponding nodal
parameters independent of other nodes.

Consider a domain Ω containing a crack Γc, as shown in Figure 6. The
boundary Γ is composed of the segments Γu, Γt, and Γc. The part of the crack
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Fig. 6. Body with a crack Γc involving a cohesive zone Γcoh subjected to prescribed
boundary tractions F on Γt and displacements ū on Γu.

on which a softening law is active, i.e. the FPZ, is denoted by Γcoh. Prescribed
displacements ū are imposed on Γu, while tractions F are imposed on Γt. The
crack surface Γc excluding Γcoh is assumed to be traction-free. The cohesive
tractions t+, t− are imposed on the upper and lower surfaces of Γcoh.

The virtual work equation without body forces is given by [9, 10]∫
Ω

σ(u) : ∇svdΩ +
∫

Γcoh

t ·w(v)dΓ =
∫

Γt

F · vdΓ, (26)

where σ is the Cauchy stress, and ∇s denotes the symmetric part of the gradi-
ent operator. The displacements u must belong to the space U of kinematically
admissible displacement fields

u ∈ U = {u : u = ū on Γu,u discontinuous on Γc}, (27)

where the space U is related to the regularity of the solution. The test function
v must belong to the space V defined by

v ∈ V = {v : v = v̄ on Γu,v discontinuous on Γc}. (28)

The cohesive tractions t = t+ = −t− and the separation w(v) = v− − v+

are related by a softening law on Γcoh.
For a softening law composed of linear segments, equation (26) can be

solved using a secant modulus iteration scheme when the length of the cohesive
zone and external loads are given. The term secant modulus here refers to the
fact that the stiffness matrix of XFEM obtained from (26) relates directly
the total displacements to loads. Displacements (24) are used as the crack
tip enrichment function in (25) for a mode I cohesive crack. The unknown
coefficient a1 depends on the softening law, and boundary and load conditions.
It is considered as additional degrees of freedom at relevant enrichment nodes
in XFEM. Details of the implementation of XFEM, SAR, and simulation of
cohesive crack growth can be found in [19]. The flowchart is as follows:
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Prescribe information on mesh and any traction-free crack, if it exists.
Carry out initial linear analysis to judge at which point σ1 (recovered by, e.g.
SAR) first reaches ft. The corresponding load is used as the initial load for the
next iteration.
Loop over cohesive zone increments

A cohesive segment of given length (user defined) is added at the location
(i.e. at the front of a pre-existing traction-free or cohesive crack) where σ1

(recovered by, e.g. SAR) reaches ft. The initial guess opening for the first
increment is set to be zero. Otherwise, the guess opening profile of the newly
added cohesive segment is assumed to be of cr3/2 type, where coefficient c is
determined by the opening displacement at the closest integration point of
the previous cohesive crack seg- ment.
The assumed load factor λ1 for first load iteration is the converged value of
the previous increment.
Iteration for balance load

Secant modulus iteration for solving the displacement field using (26);
for a given external load and cohesive zone

If a linear softening law is used, the problem is linear and it is not
necessary to check the convergence, exit iteration.
When a nonlinear softening law is used, if the ratio of the increment
of the crack opening displacement in the current iteration to the total
opening dis- placement (we just consider the part whose opening is
larger than 0.1 of the maximum opening) ≤ 10−4, the solution is
deemed to have converged and exit secant modulus iteration.

End secant modulus iteration
The stresses at the tip of the cohesive crack are calculated using AVG or
SAR. If σ1 at the cohesive crack tip satisfies |f (k−1)/ft| = |(σ1−ft)/ft| <
10−3, exit iteration for balance load.
If |f (k−1)/ft| ≥ 10−3, compute the load factor of the next iteration step
(k) using a secant method:

k = 2: λ(2) = λ(1)(1.1 − 0.1σ1/ft), f (1) = σ1 − ft;
k > 2: f (k−1) = σ1 − ft

λ(k) = λ(k−1) − (λ(k−1) − λ(k−2))f (k−1)/(f (k−1) − f (k−2))

If
∣∣∣λ(k)−λ(k−1)

λ(k−1)

∣∣∣ > 0.1, λ(k) = λ(k−1)
(
1 + 0.05 λ(k)−λ(k−1)

|λ(k)−λ(k−1)|

)
End iteration for balance load
If the last cohesive segment away from the tip has an opening at its
central point w > wc, it is removed from the cohesive zone and treated
as a traction-free segment. The opening profile of the remaining part
of the cohesive zone is used as the initial guess opening profile and the
iterations for the new balance load are started for the modified cohesive
zone.
If w < wc, the balance load has been found for the current cohesive
increment.
Output converged results.
If stop criterion has met, exit cohesive zone increment.

End loop over cohesive zone increments
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Fig. 7. Illustration of the cohesive crack problem.

Fig. 8. Opening profile of the cohesive crack.

5 Illustration of the mode I cohesive crack tip fields

In order to visualise the cohesive crack tip fields derived in Section 3, it is
necessary to determine the unknown coefficients by fitting the numerically
computed crack tip fields with the theoretically obtained fields. This requires
a sophisticated optimization scheme. For the present purpose of illustration,
we will solve a mode I cohesive crack problem shown in Figure 7 using the
obtained asymptotic fields and the numerically computed opening profile of
the cohesive crack.

We consider the subdomain bounded by broken lines in Figure 7, and
assume the length of the cohesive crack is 10.5 mm. The opening profile of
the cohesive crack (Figure 8) adopts the computed results of a three point
bend beam with a very small initial crack of length 0.1 mm at the bottom
midpoint of the beam (Figure 9) at the loading stage with total cohesive
crack = 31.5 mm and load/(ftbt) = 0.228 [15]. The geometrical parameters
are b = 150 mm, l = 4b, t = b (t is the specimen thickness in the out-of-
plane direction). A linear softening law and a state of plane strain condition
are considered. The material properties are E = 36.5 GPa, ν = 0.1, ft =
3.19 MPa, GF = 50 Nm/m2. The dimensions for force and length are N and
mm, respectively.

The displacements and stresses along the circle with radius r = 0.5 mm
surrounding the crack tip and the line of extension of the cohesive crack are
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Fig. 9. An three-point bend beam (TPB).

Fig. 10. Displacements and stresses along the circle r = 0.5.

plotted in Figures 10 and 11. As expected, the stress σy at the cohesive crack
tip is equal to ft, and no stress at any other locations reaches ft.
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Fig. 11. Non-vanishing displacements and stresses along the line of extension of the
cohesive crack (θ = 0).

Fig. 12. An edge-cracked plate under uniaxial tension.

6 Numerical example

In this section, we will analyse an edge cracked plate under uniaxial tension
(Figure 12). The geometrical parameters are b = 150 mm, l = 4b, t = b.
A state of plane strain condition is considered. The initial edge crack has a
length of a0 = 15.1 mm. The properties E = 36.9 GPa, ν = 0.2, and a bilinear
softening law (5) with ft = 3.14 MPa, f1 = 0.455 MPa, wc = 0.279 mm,
w1 = 0.0373 mm, GF = 122 Nm/m2 obtained by Abdalla and Karihaloo [25]
for a real normal strength concrete are used.

Two meshes, as shown in Figure 13, are used in the analysis. The coarser
mesh consists of 50× 100 = 5000 rectangular elements, giving a total of 5151
nodes. The finer mesh consists of 150×120 = 18000 rectangular elements, giv-
ing a total of 18271 nodes. Both meshes are uniformly divided in x-direction.
For the coarser mesh, the central 50 layers of elements have an identical height
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Fig. 13. Coarse (a) and fine (b) mesh for the left half of the specimen.

(y-direction) of 3mm; the remaining elements have an identical height of 9 mm.
Therefore, elements in the central zone are 3 × 3 mm2 squares. For the finer
mesh, the central 60 layers of elements have an identical height of 1 mm; the
remaining elements have an identical height of 9 mm. Therefore elements in
the central zone are 1×1 mm2 squares. We will study global responses includ-
ing the load–deformation behaviour and the evolution of the cohesive zone,
as well as local properties including the opening profile and distribution of
the cohesive stress in the cohesive zone, and displacements and stresses along
the circle r = 3.5 mm (the second layer of elements in the coarser mesh, or
the fourth layer of elements in the finer mesh) around the crack tip and along
the line of extension of the crack. The intention of using two meshes is to
study the mesh size sensitivity of the global responses as well as of the crack
tip fields. Furthermore, the results from the finer mesh will be used as a ref-
erence solution, since no analytical solutions are available. The conventional
4-node bilinear isoparametric Q4 elements are used as background elements.
The potential fracture locus coincides with the specimen’s axis of symmetry.
The crack is modelled by enriching the nodes on the crack faces with jump
without the double nodes that are used in the traditional FEM.

The first layer of nodes surrounding the cohesive crack tip are enriched
with (24). The opening component of the same field is also used as the initial
opening profile of a newly extended cohesive segment in the simulation of
cohesive crack propagation.
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Fig. 14. The non-dimensional tensile stress-central extension curves of the uni-axial
single-edge notched tension plate.

Similar to Moës and Belytschko [10], x-direction of nodes with coordinates
(0, 0) and (0, 600 mm) and y-direction of the node with coordinates (150 mm,
300 mm) are constrained; the load is distributed over a length of 6 mm for
the coarse mesh and 2 mm for the fine mesh (two elements).

In the simulation, the first increment of the cohesive crack is 4.4 mm, then
the cohesive crack propagates by a segment of length 3 mm after each step
in the coarser mesh, and by three segments of length 1 mm each in the finer
mesh.

The stresses at the tip of the cohesive crack recovered by SAR are used to
judge whether or not the tip will propagate.

The stresses for the finer mesh recovered by AVG and SAR are identical
along the circle r = 3.5 mm and the line of extension of the crack. Therefore,
all stress results presented below are for the coarser mesh, unless otherwise
mentioned.

The dimensions of the displacement and length parameters are in mm, and
those of the stresses in MPa.

Our main concern is the accuracy of the angular distribution of crack tip
displacements and stresses. However, it cannot be adequately measured by the
widely used norms. It is also not suitable to use errors at particular locations.
For instance, if the relative error of the maximum value of the displacement or
stress is used, the error may be small but the overall angular distribution can
still be very poor. On the other hand, if the maximum error in the angular
direction for a given r is used, the relative error at locations where the exact
values are very small can still be very large although the angular distribution is
very accurate. Hence, we do not use any error measures. Instead, we compare
the results directly on properly scaled plots.

The variation of the tensile stress σy and displacement v in y-direction
at the central point of the loading edge is shown in Figure 14. Obviously, it
shows no mesh dependency. The evolution of the size of the cohesive zone
corresponding to the two branches of the bilinear softening law (5) is shown
in Figure 15. It also reveals very weak mesh dependence. The opening profile
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Fig. 15. Evolution of the cohesive zone size as the cohesive tip travels through
the plate. (1) and (2) correspond to the first and second branches of the bilinear
softening diagram (Figure 3).

Fig. 16. Opening profile and distribution of cohesive stresses in the FPZ at typical
loading stages (Figure 14).

and distribution of cohesive stresses in the cohesive zone are shown in Fig-
ure 16, and show some weak mesh dependence. Non-vanishing displacements
and stresses along the circle r = 3.5 mm, and the line of extension of the crack
at loading stages A are plotted in Figure 17. The displacements on r = 3.5 mm
from the coarser mesh agree quite well with the finer mesh. The stresses for
the coarser mesh obtained by SAR are more accurate than the direct differen-
tiation and AVG, and agree quite well with the finer mesh. Along the line of
extension of the crack, the displacement u in x-direction is very sensitive to
the mesh size, however the remaining non-vanishing displacement and stress
components are not. The agreement between AVG, SAR and the finer mesh is
generally very good, however, SAR is better than AVG close to the cohesive
crack tip.

Note that close to the cohesive crack tip, the maximum values of the main
stresses σx and σy occur on the cohesive crack face. This feature of the stress
distribution has also been noticed by Planas et al. [26].
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Fig. 17. Non-vanishing displacements and stresses along the circle r = 3.5 mm, and
the line of extension of the crack at loading stage A (Figure 14).
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The use of the enrichment function in the XFEM has been noticed to
deteriorate the condition of the discrete system [6]. This issue can be alleviated
by methods introduced in [6] and [27], or by using high performance solvers
with partial pivoting such as routines MA27 and MA47 in Harwell Subroutine
Library [28], and does not affect global responses or the stresses and the strain
energy. However, it may affect significantly the displacements adjacent to the
tip of the cohesive crack even alleviating methods are adopted, so that a direct
comparison of the coarse and fine mesh patterns (Figure 13) adopted in the
analysis is not possible. Hence, we compare instead the displacements relative
to the tip of the cohesive crack.

7 Discussion and conclusions

The complete asymptotic expansions for frictionless and frictional cohesive
cracks are analogous to the Williams expansions in brittle solids. They are
valid for many commonly used separation laws, e.g. rectangular, linear, bi-
linear, exponential, etc with or without Coulomb friction on crack faces. In
numerical simulation of cohesive crack propagation, the asymptotic expan-
sions can be used together with these separation laws. If relation (1) is used
directly with the Newton–Raphson method, the tangential stiffness on the in-
terface is infinite when w = 0. However, a large number may be used in stead
as in the penalty function method.

Global responses like load–deformation curves, and evolution of the cohes-
ive zone, are not sensitive to the size of the adopted mesh in the XFEM. Local
properties like the opening profile and distribution of the cohesive stresses in
the cohesive zone, especially crack tip displacements and stresses are more
sensitive to the mesh size.

Although no singularity exists at the tip of a cohesive crack, the stresses
obtained by direct differentiation of the displacements are not accurate, and
cannot be used to predict accurately the growth of the tip. The SAR, which
satisfies exactly the non-homogeneous cohesive tractions, gives more accurate
results than the widely used AVG adjacent to the crack tip. If high accuracy
of the local fields is required (e.g. these fields are use to judge the growth of
the tip), a relatively fine mesh needs to be used together with accurate stress
recovery methods, such as SAR.

For mode I cohesive cracks, the stresses recovered by SAR are highly accur-
ate along the line of extension of the cohesive crack, and can be used directly
to predict the growth of the crack. For general mixed-mode cracks, further
studies are required on whether the SAR stresses at the tip, or on a small
circle enclosing a few (e.g. one or two) layers elements around the tip should
be used to predict the growth of the crack.
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On the Application of Hansbo’s Method for
Interface Problems
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Summary. A geometrically nonlinear finite element framework for the modeling
of strong discontinuities in three dimensional continua is presented. By doubling
the degrees of freedom in the discontinuous elements, the algorithm allows for arbit-
rary discontinuities which are not a priori restricted to inter-element boundaries. On
both sides of the discontinuity we apply an independent interpolation of the deform-
ation field. Accordingly, the suggested approach relies exclusively on displacement
degrees of freedom. On the discontinuity surface itself, we make use of the cohesive
zone concept to account for a smooth crack opening. A three dimensional bending
problem and the classical symmetric and non-symmetric peel test demonstrate the
performance of the suggested method.

Key words: FE technology, failure, strong discontinuities, cohesive surfaces

1 Motivation

The modeling of strong discontinuities within the finite element setting has
gained increasing attention ever since the pioneering work on extended finite
elements by Belytschko and co-workers [1–6], see also Wells et al. [7–9]. The
extended finite element method is extremely powerful and the underlying
concept is remarkably simple: Enrichment functions are applied to interpolate
a part of the deformation field which is decomposed in the standard continuous
part and an additional discontinuous part. Rather then following the classical
X-FEM approach and introducing jumps in the deformation field as additional
unknowns, we suggest a slightly modified approach based on the recent ideas
by Hansbo and Hansbo [10–12]. Their celebrated concept which essentially
generalizes the ideas of Nitsche [13] was adopted by Mergheim et al. [14] and
has recently been extended to finite deformations in a fully three dimensional
setting, see [15].

In line with the Hansbo method, a discontinuous approximation is accom-
plished by doubling the degrees of freedom in the discontinuous elements.
The deformation field is then interpolated independently on both sides of

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 255–265.
© 2007 Springer. Printed in the Netherlands.



E. Kuhl et al.

Bd

B1
d

B2
d

Γe

Γe

Γe

Γe
i

i i

i j

jj

j

k

k

k

k

i∗i∗

j∗j∗

k∗ k∗

Fig. 1. Finite element discretization of strong discontinuities – Hansbo’s method

the discontinuity, see figure 1. In contrast to the X-FEM, the suggested ap-
proach thus relies exclusively on deformation degrees of freedom. As such,
the Hansbo method proofs particularly advantageous when treating degrees
of freedom that are not additive such as directors in shell analysis as pointed
out by Areias and Belytschko [6]. In contrast to the classical X-FEM, the
Hansbo method is strictly local. Modifications affect only the discontinuous
element itself and no additional transition elements are needed around the
crack tip, as illustrated in figure 2 for the one dimensional case. Partially
cracked elements, however, are more easily handled with the classical X-FEM
approach by Belytschko and Black [1] and Möes et al. [2].

Once the discontinuity has been introduced, we apply the concept of cohes-
ive surfaces which essentically dates back to the early work of Dugdale [16] and
Barrenblatt [17]. Accordingly, we introduce cohesive tractions on the discon-
tinuity surface which are constitutively related to the jump in the deformation
field. This concept has been proven extremely powerful since it allows for a
smooth crack opening.

Hansbo’s method X-FEM

Γ̄
Γ̄

ϕh ϕh
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ϕkϕk
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ϕi+[[ϕ]]i ϕj+[[ϕ]]j

Fig. 2. Strong discontinuitites – Hansbo’s method vs. classical X-FEM
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Within this contribution we will focus in particular on the three dimen-
sional treatment of strong discontinuities at large deformations. To this end,
we begin by briefly summarizing the governing equations in section 2. We
then address the finite element discretization in section 3. The potential of
the presented scheme will be demonstrated in section 4 by means of selec-
ted examples including three point bending and the classical symmetric and
non-symmetric peel test.

2 Governing Equations of Strong Discontinuities

Let B0 denote the material configuration occupied by of the body of interest
with material placements X. The corresponding spatial configuration with
placements x is denoted by B. Its boundary ∂B consists of disjoint parts
∂B = ∂Bϕ ∪ ∂Bt with ∂Bϕ ∩ ∂Bt = ∅ where either Dirichlet or Neumann
boundary conditions are prescribed.

Let B0 be divided by a strong discontinuity Γ0 with normal vector N
introducing the two subdomains B1

0 and B2
0. By ϕ we shall denote the de-

formation mapping placements from the material to the spatial configuration
x = ϕ(X). Obviously, ϕ is continuous in either subdomain but exhibits a
jump [[ϕ]] across the discontinuity surface Γ̄.

ϕ =
{

ϕ1 in B1

ϕ2 in B2 [[ϕ]] = ϕ1 − ϕ2 on Γ̄ (1)

Elements of the corresponding tangent spaces are mapped by the deformation
gradient F = ∇Xϕ as dx = F ·dX. Due to the discontinuity in the deforma-
tion map ϕ, the unique discontinuity surface Γ0 is mapped onto the surfaces
Γ1 and Γ2, see figure 3. We thus define a fictitious discontinuity surface Γ̄ in
the current configuration. It can be identified through the average deforma-
tion map ϕ̄ = κ1ϕ1 + κ2ϕ2 and its deformation gradient F̄ in terms of the
weighting factors κα which obviously have to sum up to one.

F =
{

F 1 =∇Xϕ1 in B1

F 2 =∇Xϕ2 in B2 F̄ = κ1F 1 + κ2F 2 on Γ̄ (2)

B1

B2

B1
0

B2
0

N n̄

F̄

ϕ̄Γ0

Γ1

Γ̄

Γ2

X̄

x̄

Fig. 3. Kinematics of strong discontinuities – Concept of ficititious discontinuity
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For each continuous subdomain Bα
0 we thus introduce an independent field of

Jacobians Jα = det(F α) and of characteristic strain measures, e.g. the field of
left Cauchy Green tensors bα = F α · F αt with α = 1, 2. On the discontinuity
surface Γ̄, the Jacobian is introduced as J̄ = det (F̄ ). The set of governing
equations is finally closed by setting up appropriate constitutive equations for
the bulk stress σ and for the cohesive tractions t̄.

σ(F ) =
{

σ1(F 1) in B1

σ2(F 2) in B2 t̄ = t̄n([[ϕn]]) + t̄m([[ϕm]]) on Γ̄ (3)

In what follows, we shall assume that the Cauchy stress in the bulk obeys a
Neo-Hooke type constitutive law with σα = [λ ln (Jα) I −μ I +μ bα ] / Jα on
either side Bα of the discontinuity. The inelastic behavior is thus attributed
exclusively to the discontinuity surface through the cohesive crack concept.
For the sake of simplicity, we adopt an uncoupled traction separation law
for which the normal traction vector t̄n is expressed only in terms of normal
jump vector [[ϕn]] = [[[ϕ]] · n] n, e.g. as t̄n = ft exp (−ft /Gf [[ϕ]] · n)n. Here,
ft denotes the tensile strength and Gf is the fracture energy. Similarly, the in
plane traction vector t̄m is assumed to be a function of the tangential jump
[[ϕm]] = [[ϕ]] − [[ϕn]] alone, e.g. in its most simple linear form as t̄m = d [[ϕm]]
in terms of the shear stiffness d.

The weak formulation of the governing equations, i.e. the equilibrium equa-
tion in B0, the Neumann boundary conditions on ∂B0t and the traction con-
tinuity equation along Γ0, follows straightforwardly from the multiplication
with the vector valued test function δϕ, the integration over the corresponding
domains, the standard integration by parts and the application of the Gauss
theorem. Its push forward to the spatial configuration renders the following
expression ∫

B1∪B2

∇xδϕ : σ dv +
∫
Γ̄

[[δϕ]] · t̄dā−
∫

∂Bt

δϕ · tp da = 0 (4)

in terms of the true stresses σ, the true cohesive tractions t̄ and the push
forward of the prescribed surface tractions tp, see e.g. Mergheim et al. [14,15]
for further details.

3 Discretization of Strong Discontinuities

In line with the Hansbo method, a discontinuous approximation is accom-
plished by doubling the degrees of freedom in the discontinuous elements.
Each of these two independent sets of unknowns accounts for the interpola-
tion of the deformation field on either side of the discontinuity surface. Two
sets of the standard basis functions are used, one is put to zero on one side of
the discontinuity while it takes its standard values on the other side and vice
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versa. This leads to a formulation which allows for an arbitrarily oriented dis-
continuity within an element by using only displacement degrees of freedom
and the standard basis functions. In the spirit of the finite element method,
the domain of interest B is divided into nel elements. For the computational
tretament it proves convenient to distinguish between the standard continu-
ous elements Bc, the discontinuous elements Bd which are intersected by the
discontinuity surface and the discontinuitiy surface Γ̄ itself. In the continuous
elements, the deformation map ϕ takes its classical elementwise representa-
tion. In the discontinuous elements, ϕ1 and ϕ2 are defined independently in
B1

d and B2
d, respectively. On the ficititious discontinuity Γ̄, the jump in the

deformation map [[ϕ]] is described as the difference of the two continuous fields
ϕ1 and ϕ2.

ϕ|Bc =
nen∑
i=1

N iϕi ϕα|Bα
d

=
nen∑
i=1

Nαiϕα
i [[ϕ]]|Γ̄ =

nen+n∗
en∑

i=1

N̄ iϕi (5)

Herein, N i denotes the standard shape functions for tetrahedral elements, nen

is the number of element nodes and n∗en are the nodes of the discontinuous
elements which have been doubled. With α = 1, 2 for either side of the discon-
tinuity, ϕα

i are the nodal values of the deformation map belonging to Bα
d . We

thus apply two copies of the standard basis functions. On the corresponding
side Bα

d of the discontinuity, each set takes its usual values Nαi = N i while
it is set to zero as Nαi = 0 on the other side. The newly introduced set N̄
comprises the standard shape functions Nα, evaluated at Γ̄ equipped with the
corresponding plus or minus sign in order to represent the jump terms. The
corresponding deformation gradients F , F α and F̄ then follow naturally

F |Bc =
nen∑
i=1

ϕi ⊗∇XN
i F α|Bα

d
=

nen∑
i=1

ϕα
i ⊗∇XN

αi F̄ |Γ̄ =
nen+n∗

en∑
i=1

ϕi ⊗ κi∇XN̄
i

(6)
whereby the weighting factors κi can either be set to one half or be related to
the corresponding element volume fractions. With these definitions at hand,
the finite element discretization of equation (4) is rather straightforward. More
details about the algorithmic treatment, the discrete residual equation and its
consistent linearization can be found in [14, 15].

It should be pointed out that the extension from two dimensional to three
dimensional crack propagation algorithms is anything but straightforward and
a number of additional difficulties have to be faced when real three dimen-
sional problems are being solved. Some of them have been addressed recently
by Gasser and Holzapfel [18–20]. For example, a more cumbersome computa-
tional treatment is related to the fact that unlike two dimensional triangular
elements, three dimensional tetrahedra can be intersected by the discontinu-
ity in two different ways. If the discontinuity surface cuts three edges of the
element such that the element interface becomes triangular, one tetrahedral
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triangular intersection quadrangular intersection

Fig. 4. Finite element discretization of strong discontinuities – Linear tetraeder

1140 elements 8400 elements

Fig. 5. Strong discontinuities – Three point bending

element and one wedge are generated, see figure 4, left. Alternatively, the
discontinuity surface could intersect four edges of the element generating a
quadrilateral interface as illustrated in figure 4, right. In this case, the result-
ing subelements are both polyhedral wedge elements.

Another yet not satisfactorily solved problem is the tracking or rather
propagation of the discontinuity surface in three dimensions. Standard max-
imum principal stress criteria which have been applied successfully in two
dimensional simulations result in non-unique crack propagation criteria in
three dimensional problems. A complex global characterization of the failure
surface seems to be become necessary to allow for a smooth and not yet too
stiff discontinuity description, see e.g. Gasser and Holzapfel [20].
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Fig. 6. Strong discontinuities – Symmetric peel test

4 Simulations of Strong Discontinuities – 3D Examples

In what follows, the potential of the suggested crack propagation algorithm
is illustrated for three characteristic benchmark problems in the three di-
mensional setting. Figure 5 shows the simulation of the classical three point
bending problem based on a finite element discretization with 1140 and 8400
linear tetrahedral elements, respectively. The beam is fixed on its two lower
edges and loaded vertically on the upper mid nodes. A crack has been initi-
ated opposite the loading. Upon a progressive increase of the load, the crack
propagates smoothly from the bottom to the top as documented by the series
of deformation stages depicted in figure 5. At the final stages of the loading
history a clear crack opening can be observed in the tensile regime. The com-
parison of both crack propagation series indicates that the numerical solution
is clearly mesh independent.

Next, we analyse the classical peel test which has been studied extensively
in the related literature for two dimensional crack propagation problems, see
e.g. Wells et al. [7]. The specimen is discretized with 2250, 3750 and 6250
linear tetrahedral elements, respectively. Figure 6 illustrates a sequence of the
crack propagation history for the finest discretization. The smooth peeling of
the two layers is clearly visible as the discontinuity progresses through the
specimen.

Finally, we elaborate the non-symmetric peel test for which we peel off
the top layer of the specimen while its bottom layer is fixed. Apart from
the boundary conditions, the three analyzed discretizations are similar to the
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Fig. 7. Strong discontinuities – Non-symmetric peel test

previous example. The non-symmetric peel test is particularly challenging
since the fictitious discontinuity surface obviously undergoes severe rotations.
This benchmark problem can thus be used to elaborate the correctness of the
consistent linearization of the cohesive traction term. Figure 7 shows selected
stages of the simulation with the finest mesh of 6250 tetrahedral elements.
Similar to the previous example, the crack opens progressively and a smooth
peeling process can be observed.

Figure 8 shows the load displacement curves for both the symmetric and
the non-symmetric peel test. While the 2250 element meshes seem to be too
coarse to capture the failure process appropriately, the finer meshes of 3750
and 6250 elements render almost identical results. The ability to produce
mesh independent results is thus a distinguishing feature or the suggested
algorithm. For detailed mesh independency studies the reader is referred to
Mergheim et al. [14, 15].

5 Discussion

Motivated by Hansbo’s method, we presented a computational strategy for
the simulation of propagating discontinuities in three dimensional continua
undergoing large deformations. It is essentially characterized through discon-
tinuous finite elements in which the deformation field is continuous on either
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Fig. 8. Load displacement curves – Symmetric and non-symmetric peel test

side of the discontinuity surface but exhibits a jump across it. The number
of degrees of freedom in these elements is doubled and the deformation is
interpolated independently on both sides of the discontinuity. Smooth crack
opening is allowed for through the cohesive crack concept introducing cohesive
tractions which decrease exponentially upon increased crack opening.

A three point bending problem and the classical symmetric and non-
symmetric peel test have been analyzed to illustrate the basic features of the
suggested approach. Similar to the celebrated extended finite element method,
the crack path is independent of the underlying finite element mesh. While the
X-FEM requires additional transition elements, our modifications are strictly
local and only affect the discontinuous elements themselves. The suggested
method is thus believed to be extremely powerful in simulating propagating
discontinuities not only in two but also in three dimensional continua.

Unlike for two dimensional simulations, the question of crack propaga-
tion is not yet satisfactorily solved for three dimensional problems. While
nonlocal principal stress criteria are usually a good choice for two dimen-
sional problems, these typically result in non-unique definitions for the crack
propagation criterion in three dimensions. The comparison of different local
and global techniques to track three dimensional crack paths appropriately is
part of ongoing research.
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An optimal explicit time stepping scheme for
cracks modeled with X-FEM

T. Menouillard1,2, N. Moës3, and A. Combescure1

Summary. This paper deals with the numerical modelling of cracks in the dynamic
case using X-FEM. More precisely, we are interested in explicit algorithms. We prove
that by using a specific lumping technique, the critical time step is exactly the same
as if no crack were present. This somewhat improves a previous result for which the
critical time step was reduced by a factor of square root of 2 from the case with no
crack. The new lumping technique is obtained by using a lumping strategy initially
developped to handle elements containing voids. To be precise the results obtained
are only valid when the crack is only modeled by the Heaviside enrichment. Note
also that the resulting lumped matrix is block diagonal (blocks of size 2 by 2).

Key words: eXtended Finite Element Method, Explicit dynamics, Critical
time step, Crack propagation, Lumped mass matrix.

1 Introduction

The eXtended Finite Element Method (X-FEM) allows one to introduce a
crack within an existing mesh without the need to modify the mesh. Discon-
tinuous enrichments are introduced on elements cut by the crack using the
partition of unity technique [2]. The enrichment is composed of a tip enrich-
ment [4] and a Heaviside enrichment [11] away from the crack tip. Initially
developped in the 2D setting, the method was then extended to 3D in [15].
At about the same time, two level sets were introduced to conveniently store
the crack as two finite element fields [16, 8]. This level set representation of
cracks was also found to be extremely convenient to handle crack growth [8]
(without any remeshing).

The implementation of the X-FEM requires some enhancements of the
regular FEM implementation:

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 267–281.
© 2007 Springer. Printed in the Netherlands.
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• A specific integration scheme on enriched elements must be used [11, 3];
• The number of degrees of freedom per element depends on the location

of the element with respect to the crack. The use of an objected oriented
language like C++ is quite convenient in dealing with the variable number
of element degrees of freedom (in space and time as the crack is growing);

• Conditioning issue are raised when many layers of elements are enriched
around the crack tip (a pre-conditioning technique for this event is pro-
vided in [3]).

When dynamic loadings are applied, additional issues must be addressed
for the X-FEM to work properly. For transient analysis, one usually distin-
guishes between implicit and explicit algorithms. The standard Newmark im-
plicit approach is known to be unconditionally stable in the finite element
context for stationary cracks. As cracks are growing and remeshing is used,
stability may be obtained provided that the energy release rate at the crack
tip is properly computed [13].

A nice thing about the extended finite element method is that the mesh is
held fixed as the crack is growing. The number of degrees of freedom is how-
ever growing during the computation. The stability of X-FEM with implicit
algorithms was studied in [12] and with explicit algorithms in [10]. The latter
paper introduces a special lumping technique leading to a critical time step
smaller (factor 1/

√
2) than the one in the FEM case. We shall in this paper

introduce a new lumping technique allowing one to use the same critical time
step as in FEM (considering only Heaviside enrichment).

The paper is organized as follows. In section 2, the critical time step is
theoretically studied with two different lumping techniques for simple elements
(one-dimensional, triangular and tetrahedral elements). Section 3 is dedicated
to numerical experiments.

2 Explicit dynamics for X-FEM

It is well known that the critical time step of an explicit integration scheme for
dynamics may be estimated by computing the minimum value of the critical
time step for all elements in the mesh taken separately. Moreover, the estimate
is an upper bound for the exact critical time step. This result was obtained
in [6] as an extension of a theorem first given by Rayleigh.

The paragraph above remains valid if the approximation is obtained
through the extended finite element method. We can thus concentrate on
a single cracked element.

2.1 1D bar element

The shape functions

We start by a 1D cracked element shown in figure 1. The length of the element
is L, its density ρ, its section S and its Young modulus E. The crack cuts
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the element into two sub-segments of size εL and (1− ε)L, respectively. Using
the Heaviside enrichment [11], four approximation functions are defined over
the element (figure 1): two classical and two enriched. We have assumed that
the ”Heaviside” type enrichment function is +1 on the left side of the bar
and −1 on the right side. Equivalently, the four functions shown in figure 2
may be used. The latter base is in the spirit of Hansbo and Hansbo [9]. The
equivalence of the basis depicted in figures 1 and 2 was proven in [1]. The
basis functions are related by:⎛⎜⎜⎝

fI

fI′

fII

fII′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1

⎞⎟⎟⎠ .
⎛⎜⎜⎝
f1
f1′

f2
f2′

⎞⎟⎟⎠ = P.

⎛⎜⎜⎝
f1
f1′

f2
f2′

⎞⎟⎟⎠ (1)

εL ε

fI’ fII’
fIIfI

1− L( )

Fig. 1. Classical (fI , fII) and enriched (f
I
′ , f

II
′) approximation functions on a

cracked 1D element.

εL ε1− L( )

f2’

f1 f2

f1’

Fig. 2. Truncated function basis for a 1D cracked element (shadow node version).
This basis is equivalent to the one depicted in figure 1.

Using the approximation functions depicted in figure 1, an approximated
field u on the 1D element reads:

u = uIfI + uI′fI′ + uIIfII + uII′fII′ (2)

Alternatively, one can use the equivalent basis depicted in figure 2. The ap-
proximation reads with this basis:

u = u1f1 + u1′f1′ + u2f2 + u2′f2′ (3)
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Using the link (1), the degrees of freedom of the approximations are related
by: ⎛⎜⎜⎝

u1

u1′

u2

u2′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎠ .
⎛⎜⎜⎝
uI

uI′

uII

uII′

⎞⎟⎟⎠ = P
T .

⎛⎜⎜⎝
uI

uI′

uII

uII′

⎞⎟⎟⎠ (4)

It can be noticed that the basis functions used in figure 2 are as if the two
sub-segments were completely independent. The approximation on the left
segment is as if the right one was void and conversely. On each sub-segment
the approximation is exactly the one used to model voids with non-matching
meshes as described in [7]. It is thus tempting to use the lumping strategy
developped in [14] for voids leading to a critical time step independent of ε
and of value h/c where c is the wave speed c =

√
E/ρ, i.e. the same critical

time step as for a regular element.

The mass and stiffness matrix

Following [14], the lumped mass matrix is in our case:

M1,1′,2,2′ =
ρSL

2

⎛⎜⎜⎝
ε 0 0 0
0 1 − ε 0 0
0 0 1 − ε 0
0 0 0 ε

⎞⎟⎟⎠ (5)

And the stiffness matrix is written as (see [10]):

K1,1′,2,2′ =
ES

L

⎛⎜⎜⎝
ε 0 0 −ε
0 1 − ε ε− 1 0
0 ε− 1 1 − ε 0
−ε 0 0 ε

⎞⎟⎟⎠ (6)

The mass and stiffness matrices determine the critical time step of the element.

The critical time step

For an explicit scheme, the critical time step is computed as 2/ωmax where
ωmax is linked to the maximum eigenvalue of the generalized system:

det
(
K1,1′,2,2′ − ω2

M1,1′,2,2′

)
= 0 (7)

Thus we obtain in our case

ε2 (1 − ε)2 α2 (α− 2)2 = 0 (8)

where

α =
ω2ρSL2

2ES
(9)
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So the biggest value for ω is when α is 2: ωmax = 2
L

√
E
ρ
. So the critical time

step is: L
√

ρ

E
, which exactly corresponds to the critical time step of the finite

element problem.
The results obtained here seem really interesting: the critical time step of a

one-dimensional enriched element is exactly the same as the one of a standard
element. Moreover this result does not depend on the shape functions basis
used: (1, 1′, 2, 2′) or (I, I ′, II, II ′). The proof is

det(K1,1′,2,2′ − ω2
M1,1′,2,2′) = det(PT

KI,I′,II,II′P − ω2
P

T
MI,I′,II,II′P)

= det(PT (KI,I′,II,II′ − ω2
MI,I′,II,II′)P)

= det(KI,I′,II,II′ − ω2
MI,I′,II,II′) (10)

where matrix P is defined in equation (11). So going back to the X-FEM basis
functions, we apply to the mass matrix above the transformation

MI,I′,II,II′ =

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎠
T

.M1,1′,2,2′ .

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎠ (11)

=
ρSL

2

⎛⎜⎜⎝
1 2ε− 1 0 0

2ε− 1 1 0 0
0 0 1 2ε− 1
0 0 2ε− 1 1

⎞⎟⎟⎠ (12)

We did obtain a block diagonal mass matrix. The blocks being of size 2.
Finally, had we decided that node 1 was on the negative side of the ”Heav-

iside”, the results would have been different. The results would have been the
one obtained by replacing ε by 1−ε in (12). The result (12) is thus valid what-
ever the choice of sign for the Heaviside, provided that ε is always defined as
the matter fraction on the positive Heaviside side.

Kinetic energy conservation

In this part we check that the lumping techniques conserve the kinetic energy
for 2 rigid modes.

In the classical finite element setting, the sum of the entries in a mass
matrix is always equal to the total mass. The reason for this is that if all
degrees of freedom are set to one, we obtain a rigid translatio mode. In the X-
FEM case, the sum of the entries of the matrix is not equal to the total mass
because setting to 1 all degrees does not give a rigid mode. However if we sum
the entries corresponding to a rigid mode (firt and third line and column)
we recover the total mass. Let us consider a one-dimensional element with
two nodes. Each node has ordinary degrees of freedom corresponding to the
shape functions N1 and N2 and additional degrees of freedom corresponding
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to the enriched function H . The fraction ratio of this element is ε ∈ [0, 1].
First we consider a rigid motion at speed V (as if there was no crack). The
exact kinetic energy is:

Ec =
1
2
mV 2 (13)

where m = ρSL is the mass of the element, S its section, L its length and ρ
its density. And the discretized corresponding to this motion is described by
the vector (in the Hansbo basis (1, 1′, 2, 2′) as shown in figure 2):

[U ] =
[
V V V V

]T (14)

So the discretized kinetic energy reads:

Edis =
1
2
[U ].M1,1′,2,2′ .[U ] =

1
2
m

2
(ε+ 1 − ε+ 1 − ε+ ε)V 2

=
1
2
mV 2 = Ec (15)

Let us now consider the rigid motions of a cut element whose parts move
away at speed V . The discretized speed vector is:

[U ] =
[
V −V −V V

]T (16)

And the discretized kinetic energy can be written as:

Edis =
1
2
[U ].M1,1′,2,2′ .[U ] =

1
2
m

2
(
εV 2 + (1 − ε)(−V )2 + (1 − ε)(−V )2 + εV 2

)
=

1
2
mV 2 = Ec (17)

The other lumped mass matrix has already been verified as well in [10].
Let us now consider a more complex case. The figure 3 presents a bar

composed of three elements; the middle one is enriched. Each element has a
length L, its Young modulus is E, its section S and its density ρ. The position
of the discontinuity in the middle element is at (1+ ε)L far from the left node
of the 3-elements structure. The length of the bar is l = 3L, and the mass
is m = ρSl. Here we check the conservation of kinetic energy for the bar.
The figure 4 presents the X-FEM shape functions: 4 standard and 2 enriched
functions.

2 3 41

ρ LεL, E, S, 

Fig. 3. A 3-elements structure cut by a crack.
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1

0
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3210

N3

1

0

-1

3210

HN3

1

0

-1

3210

N4

Fig. 4. Standard shape functions for the 3 elements mesh: N1, N2, HN2, N3, HN3

and N4.

The discrete displacement space is of size 6:

[U ]diag =
[
u1 u2 a2 u3 a3 u4

]T (18)

and the approximate displacement is

U(M, t) = u1.N1(M) + u2.N2(M) + a2.H(M).N2(M) + u3.N3(M)
+a3.H(M).N3(M) + u4.N4(M) (19)

The diagonal mass matrix [10] for the whole structure is the following:
(with l = 3L)

Mdiag =
ρSL

2

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (20)

And the block diagonal mass matrix [14] is:

Mblock−diag =
ρSL

2

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 2 2ε− 1 0 0 0
0 2ε− 1 2 0 0 0
0 0 0 2 2ε− 1 0
0 0 0 2ε− 1 2 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (21)

Mdiag is the diagonal mass matrix obtained with the technique developped in
[10], and Mblock−diag the block diagonal mass matrix obtained in [14]. As in
the last paragraph let us consider two rigid motions.
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Motion 1: rigid body at speed V . The speed vector is:

[v1] =
[
V V 0 V 0 V

]T (22)

The discretized energy is evaluated by 1
2 [v1]T .M.[v1]

Ecdiag
motion−1 =

1
2
[v1]T .Mdiag .[v1] =

1
2
ρSlV 2 = Ecexact

motion−1 (23)

Ecblock−diag
motion−1 =

1
2
[v1]T .Mblock−diag .[v1] =

1
2
ρSlV 2 = Ecexact

motion−1 (24)

Motion 2: rigid body left part at speed −V , and right part at speed V .
So the speed vector is written as:

[v2] =
[
−V 0 −V 0 −V V

]T (25)

The discretized energy is evaluated by: 1
2 [v2]T .M.[v2] for both mass matrix:

Ecdiag
motion−2 =

1
2
[v2]T .Mdiag .[v2] =

1
2
ρSlV 2 = Ecexact

motion−2 (26)

Ecblock−diag
motion−2 =

1
2
[v2]T .Mblock−diag .[v2] =

1
2
ρSlV 2 = Ecexact

motion−2 (27)

We have to notice that the two lumped mass matrix allow to conserve the
kinetic energy for both rigid body motions.

Conclusion

To conclude on the one-dimensional case, the lumping technique developped
in [14] allows one to obtain the same critical time step for an enriched element
than for a standard element. This result improves the technique explained in
[10] which was only

√
2 smaller than standard one. However the cost here to

obtain a better result is in the mass matrix which depends on the fraction
ratio, whereas mass matrix in [10] was simply diagonal constant.

In addition, we showed that these two lumping techniques allow to conserve
kinetic energy for rigid motions.

Now the use of each technique can be motivated by different reasons: the
use of block diagonal matrix will be preferable except for pure explicit codes
which does not own matrix (as LS DYNA, RADIOSS, EUROPLEXUS). For
these codes, a constant diagonal mass matrix will be enough unless they were
able to store 2 by 2 matrices for each enriched node.

2.2 2D element: Triangular element

We now move to 2D elements, we shall see that the mass matrix keeps exactly
the same topology as in (12). Consider a triangular element depicted in figure
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5. As in the 1D case, we use roman indices to denote the classical shape func-
tions and the roman prime indices to denote the enriched shape function. The
arabic indices denote the truncated shape functions. For instance, the function
f1 is equal to the classical shape function fI on the sub-triangle containing
node 1 and is zero on the other sub-triangle. Finally the prime arabic indices
indicate the ”complementary” truncated functions. For instance, f1′ is such
that f1 + f1′ = fI .
The truncated and enriched basis functions are related by

fI = f1 + f1′ (28)
fI′ = H(xI) (f1 − f1′) (29)
fII = f2 + f2′ (30)
fII′ = H(xII) (f2 − f2′) (31)
fIII = f3 + f3′ (32)
fIII′ = H(xIII) (f3 − f3′) (33)

where H(.) indicates the sign of the Heaviside at the corresponding node.
The mass matrix in the truncated base reads

M1,1′,2,2′,3,3′ =
ρS

3

⎛⎜⎜⎜⎜⎜⎜⎝
ε 0 0 0 0 0
0 1 − ε 0 0 0 0
0 0 1 − ε 0 0 0
0 0 0 ε 0 0
0 0 0 0 1 − ε 0
0 0 0 0 0 ε

⎞⎟⎟⎟⎟⎟⎟⎠ (34)

Applying the proper transformation, based on (28-33), we obtain the fol-
lowing mass matrix for the enriched basis:

MI,I′,II,II′,III,III′ =
ρS

3

⎛⎜⎜⎜⎜⎜⎜⎝
1 2ε− 1 0 0 0 0

2ε− 1 1 0 0 0 0
0 0 1 2ε− 1 0 0
0 0 2ε− 1 1 0 0
0 0 0 0 1 2ε− 1
0 0 0 0 2ε− 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ (35)

We have assumed that the material fraction ε is computed on the positive
side of the Heaviside. Otherwise, ε must be replaced by 1 − ε. The obtained
mass matrix is basically the same as in the 1D case. For 3D elements, the 2 x
2 block diagonal matrix will not change except for the factor in front of the
matrix which will be the element volume divided by the number of nodes of
the element.

The results for a triangular element is presented in the figure 6. The figure
6 presents the critical time step normalized by the Finite Element critical
time step obtained with a lumped mass matrix. The two results are for the

275



T. Menouillard, N. Moës and A. Combescure

II,2

I,1

S

Sε(1−   )

ε

III,3

Crack

Fig. 5. A triangular element of area S cut by a crack. The fraction ratio is denoted
ε.
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Fig. 6. Normalized critical time step for a triangular element in function of the
position of the crack as explained in Figure 5.

two different lumping techniques which use a diagonal mass matrix [10], and
a block diagonal mass matrix [14], respectively. It underlines the fact that
the critical time step of the enriched triangular element is the same than the
one of the triangular finite element, whatever the position of the crack in the
element. Hence the result is similar to the one-dimensional case. Moreover the
figure 6 shows that the critical time step for the diagonal case is quite smaller
than for the block-diagonal case. Finally, note that the block-diagonal 2 × 2
matrix is not the same for all the enriched nodes. It depends on the crack
path.

To conclude, using a block diagonal mass matrix, one obtains the same
critical time step than in the Finite Element case, so around twice the value
of the critical time step obtained using constant diagonal mass matrix. The
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block diagonal mass matrix is composed of 2 by 2 matrices each of which
depends on the fraction ratios ε of the elements around the considered nodes.

2.3 3D element: Tetrahedral element

The figure 7 presents a tetrahedral element cut by a crack. The figure 8

III,3

IV,4

II,2

I,1

(1−  )V

V

ε

ε

Fig. 7. Three dimensional tetrahedral element of volume V cut by a crack. ε is the
fraction ratio on the positive side of the Heaviside function.
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Fig. 8. Normalized critical time step for a tetrahedral element in function of the
position of the crack as explained in Figure 7.
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presents the critical time step normalized by the Finite Element critical time
step obtained with a lumped mass matrix. The two results are for the two
different lumping techniques which use a diagonal mass matrix [10], and a
block diagonal mass matrix [14], respectively.

For this 3D element, the critical time step obtained with a block diagonal
mass matrix is exactly the same as the one of the non-enriched Finite Element.
So the results for the three dimensions studied in this paper are similar: one-
dimensional linear element, triangular element and tetrahedral element allows
one to obtain a X-FEM critical time step equal to the FEM critical time step.

2.4 Results analysis

In this section, we take a deeper look at the reasons why we can obtain the
same critical time step than for the Finite Element case. Using the Hansbo
basis for an enriched element, we have for a 1D element (as it is shown on
figure 2)

1
L

∫ L

0

∂f1(x)
∂x

dx =
∫ ε

0

dX = ε

1
L

∫ L

0

∂f1′(x)
∂x

dx =
∫ ε

0

dX = ε (36)

1
L

∫ L

0

∂f2(x)
∂x

dx =
∫ 1

ε

dX = 1 − ε

1
L

∫ L

0

∂f2′(x)
∂x

dx =
∫ 1

ε

dX = 1 − ε

Thus the X-FEM stiffness matrix is proportional to the FEM stiffness matrix
on each side of the discontinuity.

K1,2′,1′,2 =
ES

L

⎛⎜⎜⎝
ε −ε 0 0
−ε ε 0 0
0 0 1 − ε ε− 1
0 0 ε− 1 1 − ε

⎞⎟⎟⎠ =
(
εKFEM O

O (1 − ε)KFEM

)
(37)

where KFEM is described in the appendix. The same may be said for the
lumped mass matrix written in equation (5). The fact that both stiffness and
mass matrices are proportional to the FEM on each side of the discontinuity
explains why the X-FEM critical time step is the same as the FEM one.

For the three simple elements we studied, the standard shape functions
were linear in space, and written as the following functions Φk (where k ∈
{1...nnodes}, nnodes is the number of nodes in the element):

Φk(x, y, z) = I0 + I1.x+ I2.y + I3.z (38)

So the gradient of the shape functions are constant as it was explained in
equation (36). This is why the X-FEM stiffness matrix is linked to the Finite
Element one.
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Note that this is not the case for a quadrangular element because the shape
functions are not linear:

Φk(x, y) = I0 + I1.x+ I2.y + I3.x.y (39)

We can sum up the results in table 1 which presents the normalized critical
time step for the 3 studied elements: one-dimensional linear, triangular and
tetrahedral elements, with the two lumping techniques.

Element Δt
F EM

c
Δt

XF EM

c

normalized by Δt
F EMlump

c

M standard M lumped M block-diagonal M diagonal

1D 0.577 1 1 > 0, 707

Triangular 0, 2819 0, 5638 1 > 0, 707

Tetrahedral 0, 1919 0, 4071 1 > 0, 707

Table 1. Table presenting critical time steps for different elements: standard and
enriched (Young’s modulus E = 1, length L = 1, density ρ = 1, Poisson’s ratio
ν = 0, 3).

3 Numerical applications

The compact compression specimen (CCS) problem is described schematically
in figure 9. The material properties are those of PMMA: E = 5.76 GPa,
ν = 0.42, ρ = 1, 180kgm−3. The force P1(t) is due to an impact at velocity
V0 = 20ms−1. The CCS is assumed to be linear elastic. Although the CCS
geometry is symmetrical, the deformation and, therefore, the crack’s path is
not. This is due to the non-symmetric loading and boundary conditions.

We carry the computations with the two methods: first using a block
diagonal mass matrix and a time step close to the corresponding critical time
step of this method, and second the technique using a diagonal mass matrix
with its corresponding critical time step. For both the results agree with the
experiments [17, 18]: crack path and velocity of crack tip. Figure 10 shows the
final deformed shape.

The technique with the diagonal mass matrix is interesting because it
does not require inversion of 2 by 2 matrices at the enriched nodes. On the
other hand, the technique with the diagonal mass leads to a time step quite
smaller. The time step of the block diagonal method (bigger than the other
one) largely allows to compensate the time used for the inversion of the block
diagonal mass matrix. This fact is even more obvious as the non linearities
appear as more time is spend in the computation of the internal forces.
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initial crack
a

crack path

60mm

20mm
70
m
m

35
m
m

P1(t) (16.5mm)

Fig. 9. Modeling of the CCS: boundary conditions and geometry (specimen thick-
ness: 16.5mm)

Fig. 10. Deformed mesh (with triangular elements).

4 Conclusion

In this paper, we introduced a new lumping technique for the mass matrices
of meshes enriched with Heaviside functions with the X-FEM. This lumping
technique yields the same critical time step at the element level than the one
for non enriched elements. The lumped mass matrix is not strictly diagonal but
rather block diagonal. A 2 by 2 matrix needs to be stored at each enriched
node. This additional storage provides a better critical time step than the
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one obtained using a true diagonal mass matrix. Numerical experiments did
demonstrate the robustness and stability of the approach.

Appendix: One-dimensional Finite Element problem

For the 1D Finite Element problem, the consistent mass matrix, the lumped
mass matrix and the stiffness matrix are:

MFEM =
ρSL

6

[
2 1
1 2

]
M

lumped
FEM =

ρSL

2

[
1 0
0 1

]
KFEM =

ES

L

[
1 −1
−1 1

]
So the corresponding stable time step is: Δtlumped

c = L
√

ρ

E
=

√
3Δtconsistent

c
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Variational Extended Finite Element Model for
Cohesive Cracks: Influence of Integration and

Interface Law

Günther Meschke1, Peter Dumstorff2, and Wagner Fleming1

Summary. According to a recently proposed variational formulation of the Exten-
ded Finite Element Method for cohesive crack propagation analyses [1] the length
and the direction of new crack segments are determined on a global level from min-
imizing the total energy of the system. The focus of this paper is laid on the influence
of the numerical integration and of the cohesive interface law on the energy distri-
bution and, consequently, on the predicted crack trajectory. These influences are
investigated by means of crack propagation analyses in plane structures made of
quasi-brittle materials.

Key words: Extended Finite Element Method, variational formulation, crack
propagation, fracture, cohesive cracks, quasi-brittle materials, crack interface

1 Introduction

Reliable prognoses of serviceability and of ultimate states of structures made
of quasi-brittle materials such as concrete require robust and reliable compu-
tational models for the opening and propagation of cracks. Numerous invest-
igations by different authors have shown that the Extended Finite Element
Method (X-FEM) is capable of simulating cracking and crack propagation in-
dependently of the discretisation of the finite element mesh [2–4]. The X-FEM
was first introduced in the context of linear elastic fracture mechanics [2] and
has been extended for the modelling of cohesive cracks [3, 4].

The analysis of crack propagation crucially depends on the crack growth
criterion. In most of the existing implementations of X-FEM-based models
for cohesive cracks, the opening of new cracks is based upon a local stress-
based criterion, such as the principal stress, evaluated at the crack tip, while
the direction of crack propagation is determined according to the principal
axes of stresses evaluated in the vicinity of the crack tip by means of a non-

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 283–301.
© 2007 Springer. Printed in the Netherlands.
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local averaging procedure [4–6]. An alternative to this local approach was
proposed by Oliver and co-workers [7,8] with the so-called ,,Global Tracking
Algorithm”.

In this paper a variational formulation of the Extended Finite Element
Method for propagation of cohesive cracks in quasi-brittle solids recently
proposed in [1] is investigated numerically. According to this model crack
propagation (crack direction as well as the length of new crack segments) is
determined on a global level from minimizing the total energy of the system.
Since in this model the energy distribution controls the predicted crack tra-
jectory, main emphasis of this paper is laid on the influence of the numerical
integration (Section 4) and of the interface law (Section 5) on the energy dis-
tribution. Starting from a variational formulation in terms of the displacement
field, the directions and the length of new crack segments, a coupled format
of the tangential algebraic equation system analogous to multifield problems
is solved simultaneously by means of the Newton iteration scheme. The
idea of revisiting brittle fracture as an energy minimization problem has been
formulated previously (restricted to cohesionless cracks) in a general vari-
ational format in [9]. A comparative assessment of the aforementioned local
and global approaches including the energy-based Extended Finite Element
model is provided in [10].

In the model investigated in this paper, cohesive cracks may continuously
penetrate through elements. Hence, besides enriching elements which are fully
crossed by a crack, enrichments of the displacement field in the vicinity of the
crack tip (which do not lead to singular stress fields) are included.

2 Variational Formulation of Cracked Bodies

Assuming quasi-static and isothermal conditions, a body whose domain Ω
contains an existing curved cohesive crack and a new crack segment, creating
a new crack surface Ac, which propagates with a kinking angle θc relative to
the existing segment is considered. The total area of the current configuration
of the crack is denoted as Γc.

The total energy of this body at a certain loading stage t consists of the
internal energy U , the external work Wb and Wt of the body forces b and the
surface tractions t	, respectively, and the surface energy of the crack Wc:

Ψ(u, Ac, θc) = U −Wb −Wt + Wc, (1)

with

U =
∫

Ω\Γc

∫ εt

0

σ(ε)dε dV,

Wb =
∫

Ω

∫
ut

0

bdudV, Wt =
∫

Γσ

∫
ut

0

t	 dudA. (2)
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The total energy Ψ depends on the displacement field u, the crack angle θc

and the surface Ac of the created crack segment.
The displacement field of a body containing a crack can be decomposed

into a continuous part ū and a discontinuous part ǔ

u(x) = ū(x) + ǔ(x) ∀ x ∈ Ω with ǔ(x) = Sc(x) û(x), (3)

where ū and û are continuous functions in the domain Ω and Sc is the Sign
function. Inserting the displacement field (3) into (2)1 and assuming linear
elastic behavior of the uncracked material yields:

U = 1
2

∫
Ω\Γc

ε : C : ε dV

= 1
2

∫
Ω\Γc

(∇sū : C : ∇sū + ∇sû : C : ∇sû + 2Sc∇sū : C : ∇sû) dV.(4)

a)

Γc

x

y

b)

Γc

x

y

Ac

θc

Fig. 1. Schematic illustration of crack propagation in a cracked body

For cohesive cracks, the surface energy Wc is given as

Wc =
∫

Γc

∫ [[u]]t

0

t([[u]]) d[[u]] dA, (5)

with the separation-dependent residual traction vector t([[u]]) acting along the
process zone of the crack.

Among all possible deformed configurations of the body containing one
(or more) crack(s) extended by one (or more) new crack segment(s), the ac-
tual one, associated with safe equilibrium of the cracked body will lead to a
minimum of Ψ(u, θc, Ac) [11]. This is equivalent to the stationarity condition:
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δΨ(u, θc, Ac) =
∂Ψ

∂u
δu +

∂Ψ

∂θc
δθc +

∂Ψ

∂Ac
δAc = 0. (6)

In the following the consideration of body forces is neglected and it is
assumed that the term Wt which corresponds to the applied tractions t	 is
independent of θc and Ac. Inserting Equation (1) and (2) into (6) leads to the
conditions:

∫
Ω\Γc

σ : δε dV −
∫

Γσ

t	δudA+
∫

Γc

t
∂ [[u]]
∂u

δudA = 0,∫
Ω\Γc

σ :
∂ε

∂θc
δθc dV +

∫
Γc

t
∂ [[u]]
∂θc

δθc dA = 0,∫
Ω\Γc

σ :
∂ε

∂Ac
δAc dV +

∫
Γc

t
∂ [[u]]
∂Ac

δAc dA = 0. (7)

In the implementation of the model (see also Section 3.3), the derivatives
with respect to the angle θc and the surface Ac of new crack segments are
computed numerically as [1]

∂Wc

∂Ac
=

1
ΔAc

[Wc(Ac +ΔAc) −Wc(Ac)] ,

∂Wc

∂θc
=

1
Δθc

[Wc(θc +Δθc) −Wc(θc)] . (8)

3 Energy-Based Extended Finite Element Method

This section contains the enrichment strategy using the Extended Finite Ele-
ment Method, the traction separation law employed for mixed mode condi-
tions and a concise description of the energy-based X-FEM formulation as
proposed in [1] for 2D analyses of cohesive cracks.

3.1 Enhanced Displacement Approximation

If a crack fully crosses an element, the Sign function according to Equation (3)
is used to represent the discontinuous displacement field across the crack.
Using standard bi-linear finite element shape functions as a partition of unity,
the approximation of the displacement field within this element is - according
to Equation (3) - given by a continuous part ū and a discontinuous part ǔ

u = ū + ǔ = ū + Scû with ū ≈
nr∑
i=1

Ni ūr
i and û ≈

4∑
i=1

Ni ûs
i , (9)

where nr is the number of nodes used for the spatial discretization of the reg-
ular displacement field (superscript r). In the present implementation, hier-
archical higher order shape functions, allowing to chose polynomials in the
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range between p = 1 to p = 4, are used for the approximation of the reg-
ular displacements. For the displacements û enriched by the Sign-function
(superscript s) four low order (bi-linear) shape functions are used.

In the vicinity of a crack tip, crack tip enhancement functions are used.
As in the previous case, the approximation within elements located in the
vicinity of the crack tip (see Figure 3) consists of a continuous part ū and a
discontinuous part ǔ:

u = ū + Scû, with

ū ≈
nr∑
i=1

ur
iNi +

4∑
i=1

3∑
k=1

ūt
kiNiFk and û ≈

4∑
i=1

ût
4iNiF̃4 (10)

where ScF̃4 = F4 for notation consistency and again low order shape functions
are used for the enriched part (superscript t). The crack tip functions for
cohesive cracks F1-F4 are assumed as [1]

F1(rc, θc) = rc cos
(
θc

2

)
, F2(rc, θc) = rc sin

(
θc

2

)
sin (θc) ,

F3(rc, θc) = rc cos
(
θc

2

)
sin (θc) , F4(rc, θc) = rc sin

(
θc

2

)
, (11)

which leads to bounded derivatives and, consequently, to bounded stresses at
the crack tip (Figure 2).

F1 F2 F3 F4

Fig. 2. Functions F1–F4 used for the approximation of the displacement field in the
vicinity of the tip of cohesive cracks

Figure 3 illustrates the nodal enrichment strategy for open cracks and for
crack tip segments according to Equations (9) and (10), respectively. Since,
according to the proposed energy-based crack propagation criterion, the ori-
entation and the length of new segments is not known a priori, a larger region
in the vicinity of the root of the crack tip segment is enriched with the crack tip
functions. This enhancement strategy avoids a change of the nodal enrichment
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root of the crack tip segment

Regular node

Enrichment by Signum function

Crack-tip enrichment

Combined enrichment

Fig. 3. Nodal enrichment strategy for open cracks and for the region in the vicinity
of the crack tip

during the equilibrium iteration. The evaluation of the area integrals within
elements crossed by a crack is based on a Delaunay sub-triangularization of
the respective areas on both sides of the crack [12].

3.2 Traction-Separation Law for Mixed-Mode Conditions

The traction-separation law suitable for cohesive cracks in quasi-brittle ma-
terials subjected to general Mixed-Mode conditions follows the formulation
introduced by [13] and later employed in [5]. It accounts for dissipative in-
terface mechanisms in Mode-I and Mode-II conditions using an equivalent
traction separation law.

The relation between the traction vector t and the displacement jump [[u]]
representing its energetic conjugate variable is given in the general format

t = T [[u]] =
(
T

e − T
d
)
[[u]] , (12)

where T
e = T eI is an initial isotropic (elastic) stiffness corresponding to the

initial uncracked situation and T
d denotes a damage tensor governing the

degradation of the stiffness T.
In the present model, the relation (12) is formulated in terms of an equi-

valent traction teq and an equivalent crack opening [[u]]eq, respectively

teq = (T e − T d) [[u]]eq , (13)

with [[u]]eq defined as:

[[u]]eq =
√

[[u]]2n + β2 [[u]]2s. (14)
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The subscripts n and s refer to normal and shear components, respectively.
The parameter β governs the ratio between the strength and stiffness in mode
I and mode II opening. For both modes of fracture the same fracture energy
Gc is assumed in the model (see [1, 13] for more details).

3.3 Finite Element Formulation

According to the proposed energy-based crack propagation model [1] the angle
θc and the length rc of new crack segments are introduced as additional de-
grees of freedom in the discretized structural model. Accordingly, the station-
arity condition (6) and its linearization is recast in vector- and matrix-form,
respectively, in the format

δΨ =

⎡⎢⎣ δuδrc
δθc

⎤⎥⎦ ·

⎡⎢⎣
⎡⎢⎣ru

rr

rθ

⎤⎥⎦−

⎡⎢⎣r	u

0
0

⎤⎥⎦
⎤⎥⎦ = 0,

ΔδΨ =

⎡⎢⎣ δuδrc
δθc

⎤⎥⎦ ·

⎡⎢⎣kuu kur kuθ

kru krr krθ

kθu kθr kθθ

⎤⎥⎦
⎡⎢⎣Δu

Δrc

Δθc

⎤⎥⎦ , (15)

where r	u is the vector of external forces. The vectors of internal forces are
identified from (6) as

ru = ∂U/∂u + ∂Wc/∂u,

rθ = ∂U/∂θc + ∂Wc/∂θc,

rr = ∂U/∂rc + ∂Wc/∂rc. (16)

The computation of the components of the vectors rr, rθ, and of the
submatrices kur, kuθ, krr, krθ and kθθ requires the determination of the first
and the second derivatives of the total energy (1) with respect to the crack
angle θc and the segment length rc. Due to the complexity involved in the
analytical determination of these derivatives, they are computed by means
of numerical differentiation. Details of the numerical determination of these
components are contained in [1, 12].

The incremental-iterative solution of boundary value problems using the
proposed energy-based Extended finite element method is characterized by
applying the total load in a sequence of incremental steps [tn, tn+1] and en-
forcing the the stationarity condition (151)

δΨn+1(u, rc, θc) = 0 (17)

by solving (17) simultaneously for the three unknowns u, rc and θc. The format
of (17) and its algorithmic formulation is identical to multifield problems.
The starting value of the crack angle θc,n+1 is always taken according to the
previous converged state θc,n.
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If a crack is signalled to propagate, the coupled equation system⎡⎢⎣ru

rr

rθ

⎤⎥⎦
k

n+1

−

⎡⎢⎣r	u

0
0

⎤⎥⎦
n+1

+

⎡⎢⎣ δuδrc
δθc

⎤⎥⎦ ·

⎡⎢⎣kuu kur kuθ

kru krr krθ

kθu kθr kθθ

⎤⎥⎦
⎡⎢⎣Δu

Δrc

Δθc

⎤⎥⎦
k+1

n+1

= 0, (18)

is solved within the k-th iteration of a loading step [tn, tn+1]. The stationary
value of the energy functional provides, for the given increment of external
load, the correct crack configuration. After convergence, the state of displace-
ments un+1, crack angle θc,n+1 and crack length rc,n+1 is updated and the
external load is increased.

4 Influence of Integration

The robustness of the proposed energy-based X-FEM model using the New-
ton’s method to solve the coupled system of equations (18) highly depends
on the smoothness of the solution. This subsection contains a numerical study
on the influence of the mode of integration on the energy distribution.

To this end, the classical example of a crack growing from a fillet of a
plane T-shaped structure is considered. The geometry, loading and boundary
conditions of the investigated structure together with its discretization are
illustrated in Figure 4a. Linear elastic material behavior with Young’s modulus
E=200 [GPa], Poisson’s ratio ν=0.3 and plane strain conditions are assumed.
The thickness of the slab is d=1 [m] and the applied tension is σ=1 [KPa].

a) b)

θc

rc

Fig. 4. Numerical study on the influence of integration on the energy distribution:
a) Geometry, loading and discretization of the benchmark example, b) Crack tip
zone (Units in [cm])

290



Variational X-FEM for Cohesive Crack Propagation

In the numerical study, only one loading step is considered. Restricting the
attention to a region ahead of the initial crack tip as depicted in Figure 4b,
the distribution of the total energy as a function of the crack kinking angle θc

of a new crack segment rc with fixed length (rc=0.4 [cm]), covering a range
-60≤ θc ≤ 40, is investigated. The crack tip element is a square with size 0.5
[cm] (Figure 4). The nodes with near tip and combined enrichment are marked
according to Figure 3. Since, according to Subsection 3.1, all nodes located
within a circular area in the vicinity of the crack tip are enriched, unlike the
case where just the element containing the crack tip would be enriched, no
jumps in the global energy distribution are expected if an exact integration is
carried out.

The following situations are identified as potential sources for discontinu-
ities in the energy distribution:

Cases A and C: The crack tip changes from one element to another. This is
associated with an abrupt change of the order of integration of the adjacent
element. In the investigated benchmark, this occurs for θc ≈ -49(Case A)
and θc ≈ 30(Case C) see Figure 5.
The Delaunay triangulation used for the subintegration of the crack tip
element changes abruptly. This occurs at θc ≈ 16, see Figure 6.

a) b)

Fig. 5. Numerical study on the influence of integration on the energy distribution:
a) Crack tip located within original crack tip element, b) Crack tip changes to
neighboring element

Figures 7 and 8 show the global energy Ψ(u, θc) as a function of the crack
kinking angle θc for different orders of integration. The total energy Ψ has been
normalized with respect to the absolute value of the energy corresponding to
the configuration without crack extension Ψ0. The three abovementioned cases
A, B and C are marked in these figures.
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a) b)

Fig. 6. Numerical study on the influence of integration on the energy distribution:
Abrupt change of Delaunay triangulation within the crack tip element (Case B)

−60 −40 −20 0 20 40

−1.0035

−1.003 

−1.0025

−1.002 

−1.0015

 7   Gauss points

 25 Gauss points

CBA

Angle θc[deg]

Ψ
|Ψ0|

Fig. 7. Normalized global energy vs. crack angle θc considering 7 and 25 Gauss
points for the subtriangles and 2× 2 integration for the quadrilaterals

Figure 7 refers to analyses using a 2×2 integration of the finite elements.
As far as the integration of the subtriangulation in the crack tip element is
concerned, an integration scheme using 7 integration points is compared with
a scheme using 25 integration points. The three states of discontinuities are
also marked in Figure 7. This figure shows, that the discontinuity related to
Case B can be easily resolved using a higher order of integration (25 instead of
7 Gauss points) for the subtriangles. However, the discontinuities associated
with A and C are not resolved.

To this end, an alternative scenario, characterized by a higher order integ-
ration of the finite elements using a 40×40 instead of 2×2 integration scheme
has been investigated. Figure 7 shows, that with a higher order integration of
the neighboring (uncracked) elements, the discontinuity connected with the
crossing of the crack tip from one element to the other (stages A and C) is
substantially reduced. It is concluded, that a comparable level of integration
order is required in all elements located in the vicinity of the crack tip.
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Fig. 8. Normalized global energy vs. crack angle θc considering 2×2 and 40×40
integration for the quadrilaterals and 25 Gauss points for the subtriangles

5 Influence of the Interface Law

The influence of the interface law on the predicted crack trajectory is investig-
ated by means of re-analyses of two classical benchmark examples for cohesive
crack propagation: A L-shaped panel made of concrete, characterized primar-
ily by Mode-I fracture (Subsection 5.1) and a notched panel made of mortar
subjected to mixed mode condition (Subsection 5.2). In addition, the influence
of taking different fracture energies in mode I and mode II conditions on the
crack propagation direction within a biaxially compressed slab is investigated
in Subsection 5.2.

5.1 Crack Propagation in a L-Shaped Panel

The first numerical example is a L-shaped panel, which has been tested ex-
perimentally by [14] and has been used as a benchmark problem by several
researchers [14–16]. The geometry, the loading and boundary conditions of
the panel as well as the material parameters are contained in Figure 9.

The major interest of this study is to investigate the influence of the shear
transfer law, governed by the coupling parameter β, on the predicted crack
path. Three values of the parameter β, representing different values of the
elastic shear stiffness as well as of the shear strength, have been used for the
analyses: β = 1 (small shear stiffness and strength), β = 1.5 (medium shear
stiffness and strength) and β = 2 (large shear stiffness and strength). It should
be noted, that no attempt was made to calibrate the value of β directly from
experiments on cracked specimens.

Figure 10 contains the numerical results obtained by means of the dam-
aging interface model for three different values of the shear parameter β. This
parameter represents, on a macroscopic level, the load carrying capacity of the
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Fig. 9. Numerical analysis of a L-shaped panel: Geometry and material parameters
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Fig. 10. Numerical analysis of a L-shaped panel: Computed crack paths obtained
from the damage interface law using three different values for the parameter β

crack faces, which depends on the asperities and the tortuosity of the crack,
and, consequently, on the microstructure of the material. As is illustrated in
this Figure, the shear resistance expressed by the parameter β has a notice-
able influence on the predicted crack path. The crack path obtained from a
value of β = 1.5 lies reasonably well within the range of the experimental
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results. Also the crack trajectory seems to agree well with the median of the
laboratory observations. Despite these noticeable differences, all three crack
paths are located within the range of experimental results indicated in grey
color in Figure 10.

5.2 Crack Propagation in a Tension-Shear Specimen

A benchmark problem characterized by Mixed-Mode crack propagation in a
concrete specimen which has been investigated experimentally by Nooru-
-Mohammed [17] is investigated numerically. In this test, a notched panel
(see Figure 11) made of mortar has been first subjected to a shear force Fs=
10 [kN] applied along the upper left and the lower right side of the specimen.
Subsequentially, displacement controlled tensile loading Fn was applied on the
upper face of the specimen. For additional analyses of this benchmark test by
means of the energy-based X-FEM model we refer to [1].

200
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5 2
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Fn, un

Fn, un

Fs

Fs

Young’s modulus: 3x104 [N/mm2]

Poisson’s ratio: 0.20 [−]

Fracture energy: 0.11 [N/mm]

Tensile strength: 3.00 [N/mm2]

Thickness: 50.00 [mm]

Dimensions: [mm]

θc

Fig. 11. Numerical analysis of a tension-shear test: Geometry and material para-
meters

The finite element discretization consists of 435 elements. Quadratic shape
functions are used for the approximation of the regular displacements ū (see
Equation (9)) while bi-linear functions are used as Partition of Unity.

The material parameters used for this study are also contained in Fig-
ure 11. It should be noted that, as in the previous example, no attempt has
been made to adjust the parameters to the numerical results. Since no inform-
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ation on the fracture energy Gf is contained in [17], the value of Gf has been
taken from [18].

First, the influence of the shear transfer model, i.e. the influence of the
value of the coupling parameter β on the distribution of the total energy Ψ
with a variation of the crack propagation angle θc is investigated. To this
end, only one single loading step is considered. Starting from an initial crack
segment, a new crack segment with constant length rc associated with an
increment of the prescribed load is assumed to propagate from the existing
crack tip at different angles θc within a range of θc =−22.9◦ to θc = 31.5◦ (see
Figure 11). For each position of the new segment an equilibrium state was
computed and the respective values of the total energy Ψ and of the surface
energy Wc were recorded. Figure 12a contains the respective diagrams of
the total energy Ψ versus the crack kinking angle θc within the investigated
interval. As is noted from this Figure, the energy functional is not convex for
all investigated situations. For β = 2.0 and β = 1.5, the functional Ψ is locally
convex with a minimum at ≈ 1.9o and ≈ 5.8o, respectively. This range of the
crack kinking angles corresponds well with experimental observations.

For β = 1, i.e. assuming a small shear transfer capacity along the interface,
no stationarity point is existing within the investigated range of crack kinking
angles. Consequently, using the proposed energy-based crack model, which
is based on the simultaneous solution of δΨ(u, θc, rc) no converged solution
could be found for β = 1. Also, for β = 1.5 convergence problems have been
observed and the analysis could not be completed.
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Fig. 12. Numerical analysis of tension-shear benchmark problem: Distribution of
total energy Ψ [Nm] versus the crack propagation angle θc within a range of a) -23o

≤ θc ≤ 31.5o and b) -23o ≤ θc ≤ 70o

Figure 12b, shows the energy distribution for a larger range of θc (-23o

≤ θc ≤ 70o) computed for the three values of β. According to this figure, a
minimum energy level exists at θc ≈ 60o for all three analyses. This second
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energy minimum corresponds to a Mode II-dominated crack propagation. It is
assumed, that this second energy minimum would not appear if a more real-
istic interface model, characterized by different values of the fracture energy in
Mode I and Mode II crack opening, is used. This assumption is corroborated
by the results presented in the following subsection.

5.3 Crack Propagation in a Slab Subjected to Biaxial Compression

In the interface model used in the energy-based X-FEM model the same value
of the fracture energy in mode-I and mode-II is assumed, which, as alluded
above, strongly influences the energy distribution and the location of local
and global minima of Ψ .

a = 0.8

px

py

4

4

x

y

Fig. 13. Crack propagation from an existing inclined crack in a slab subjected to
compression: Geometry and discretization (Units [cm])

In this subsection, numerical analyses of the propagation of an inclined
flaw located in a plane slab subjected to biaxial compression (Figure 13) are
performed in order to study the distribution of the total energy Ψ as a function
of the kinking angle θc and to assess the relevance of taking different values
of the fracture energy in mode-I and mode-II conditions. The existing crack
has the length of 0.8 cm and is inclined 45o to the loading directions. The
Young’s modulus and the Poisson’s ratio are taken as E= 1000 MPa, ν=0.28
In these analyses, no cohesion was assumed in the crack faces, i.e. linear elastic
fracture mechanics analyses have been performed.

Figure 14 illustrates the distribution of the total energy Ψ as a function
of the kinking angle θc of a new crack segment with rc= 0.08 cm for dif-
ferent ratios py/px of the axial and the lateral loading. A minimum of Ψ is
obtained approximatly within a range of θc ≈ 20o – 40o, which corresponds to
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a shear-dominated crack propagation. However, in laboratory tests on sand-
stone, tensile wing cracks at θc ≈ 90o have been observed [19].
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Fig. 14. Total energy Ψ as a function of the crack propagation angle θc for GIc/GIIc
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Fig. 15. Total energy Ψ as a function of the crack propagation angle θc for GIc/GIIc

= 1/10

Therefore, following the work of Shen & Stephansson [19], the partial
energies ΨI and ΨII attributed to a pure mode-I (pure separation) and a
pure mode-II (pure sliding) mechanism, respectively, have been computed
separately and associated with different weigths to plot a weighted total energy
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Ψ̄ as a function of θc according to

Ψ̄ = ΨI + ΨIIGIc/GIIc → min. (19)

To this end, different values of the fracture energies GIc and GIIc associated
with mode I and mode II conditions, respectively, are assumed. ForGIc = GIIc

the total energy Ψ̄ is given by the sum ΨI + ΨII . This case is illustrated in
Figure 14.

Figure 15 contains the plots of the total energy according to (19) using
weighted fracture energies with a ratio GIc/GIIc = 1/10. Indeed, now a local
minimum of the energy is observed at the location where previously a global
minimum was observed, and another global minimum now existis at θc ≈
90o − 100o. This minimum corresponds, as expected, to a tensile wing crack
propagating more or less orthogonal to the direction of the existing crack.

6 Concluding Remarks

This paper contains numerical studies of a recently proposed energy-based
approach to model propagation of cohesive cracks in quasi-brittle materials
within the framework of the Extended Finite Element Method [1]. The main
focus has been laid on selected aspects of the model expecting to have an
impact on the energy distribution and, consequently, on the robustness and
the reliability of the results. According to this model cracks are allowed to
continuously propagate through elements and the crack propagation angle θc

and the surface of new crack segments Ac are determined from a variational
formulation characterized by the stationarity of the total energy Ψ(u, θc, Ac) of
the structure. Any ad hoc assumptions often employed for the determination
of the crack propagation angle are avoided. The finite element formulation
has the typical structure of a multifield problem, with only two additional
unknowns to be introduced for each propagating crack.

It was shown, that the order of integration within the cracked as well
as within the neighboring elements in the vicinity of the crack tip has a
considerable influence on the smootheness of the energy distribution, and,
consequently, on the robustness of the numerical solution using Newton’s
method. It was also shown, that the shear transfer capacity represented by
the interface model has a considerable influence on the distribution of the
energy for varying crack kinking angles θc and, consequently, on the location
of the minimum of this (locally convex) distribution. As was shown by numer-
ical analyses of mixed-mode crack propagation in a tension-shear specimen,
physically unrealistic assumptions for the interface law are reflected by the
fact that local convexity of the energy distribution Ψ(θc) may be lost within
the expected range of (physically plausible) crack kinking angles. According
to the interface law, in which the same fracture energies are used in mode I
and mode II conditions, alternative modes of crack propagation are indicated
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by energy minima at larger kinking angles corresponding to mode II fracture.
The necessitiy of taking different fracture energies in mode I and mode II
conditions into account has been corroborated by numerical analyses of the
propagation of a wing crack in a slab subjected to biaxial compression.

Acknowledgement

The authors thank Prof. G. Dresen and Dr. A. Zang from the Potsdam Re-
search Center for Geosciences for partially supporting the second author.

References

1. G. Meschke and P. Dumstorff. Energy-based modeling of cohesive and cohe-
sionless cracks via X-FEM. Computer Methods in Applied Mechanics and En-
gineering, 2007. in press.
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An Evaluation of the Accuracy of
Discontinuous Finite Elements in Explicit

Dynamic Calculations

Joris J.C. Remmers1, René de Borst1,2, and Alan Needleman3

Summary. The use of partition of unity based discontinuous finite element formu-
lations for the simulation of crack propagation with implicit simulations is now well
established. However, in explicit simulations the accuracy is still a point of concern.
Some outstanding issues will be addressed in this paper.

Key words: Explicit time integration, fast crack growth, partition of unity method

1 Introduction

Over the last years, partition of unity based finite element formulations have
become one of the most important approaches to simulate fracture processes.
Initially, the technique served as an elegant way to represent the traction-free
crack and the singular displacement field in linear elastic fracture mechan-
ics models [1]. Later, the approach has been used together with a cohesive
zone formulation for the simulation of fracture in brittle materials [2, 3] and,
in combination with geometrically nonlinear kinematic relations, to analyse
delamination growth in composite materials [4, 5].

Recent developments have focused on the application of the approach to
the simulation of fast crack growth in brittle solids [6–8]. Since the speed of the
propagating crack tip is in the order of magnitude of the Rayleigh wave speed,
explicit solution algorithms are usually preferred for these analyses. In contrast
to implicit methods, the convergence of the solution is not guaranteed, which
may lead to inaccurate results.

In this paper, the performance of discontinuous elements in explicit sim-
ulations is investigated for three different cases. First, the effect of lumping

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 303–322.
© 2007 Springer. Printed in the Netherlands.
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the mass matrix is studied. Lumping the mass matrix is a standard procedure
to decouple the system of equations and to speed up the simulations. In this
case, however, important information regarding the coupling of the regular
and enhanced degrees of freedom can be lost, which may influence the results.
In a second benchmark test, the accuracy of the Newmark-β method is tested.
As a rule of thumb, the critical time-step in conventional finite element simu-
lations is equal to the dilatational speed of the material divided by the specific
element length. When using discontinuous elements, it is questionable whether
this specific length is equal to the original length of the element. The specific
length can then be equal to the size of the smallest part of an element that is
crossed by a discontinuity, which will have large implications on the critical
time step. Finally, the effects of a propagating discontinuity are investigated.
Adding degrees of freedom to a system may affect the energy balance of the
system. Because the convergence of the calculation is not guaranteed this can
lead to spurious energy dissipation, or even worse, the creation of energy. In
this test, a cohesive constitutive relation for the crack opening is used.

2 Finite Element Formulation

Kinematically, cracks are represented as a discontinuity in the displacement
field. The body Ω in Figure 1 is crossed by a discontinuity Γd. The two parts
on either side of Γd are denoted byΩ+ and Ω−, respectively. The displacement
of a material point on this body with coordinate x at time t can be written as
a regular displacement field û plus the additional field ũ according to [1, 2]:

u(x, t) = û(x, t) + HΓd(x)ũ(x, t) , (1)

where HΓd represents a step function which has constant but different values
on either side of the discontinuity:

HΓd =

{
H+ if x ∈ Ω+,

H− if x ∈ Ω− .
(2)

Γ

Γt
Γu

t̄

ū

Ω+

Γd

Ω−

nΓd

Fig. 1. A domain Ω is crossed by a discontinuity Γd (denoted by the dashed line).
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Table 1. An overview of different step functions that can be used to create a jump
in the displacement field, see equation (2).

Jump function H+ H− h

Heaviside 1 0 1
Symmetric 1/2 -1/2 1
Unit Symmetric 1 -1 2

In most cases, a standard Heaviside function is used [2], but alternative func-
tions can be considered as well, e.g. [7]. An overview of possible step functions
is given in Table 1.

The opening of the crack is equal to the magnitude of the jump in the
displacement field at the discontinuity and is given by:

v = hũ (3)

with the constant h defined in Table 1. The velocity and acceleration of a ma-
terial point can be found by differentiating the displacement field, equation (1)
with respect to time:

u̇ = ˙̂u + HΓd
˙̃u ; ü = ¨̂u + HΓd

¨̃u ; (4)

where (˙) and (̈ ) denote the first and second time derivative, respectively.
The displacement and velocity fields can be used to determine the strain

(rates) in a material point, which in combination with a constitutive relation
gives the local the Cauchy stress σσσ. The presence of the discontinuity in the
displacement field does not impose any restrictions on the choice of the strain
formulation. Moreover, there is no restriction on the choice of constitutive
relation.

The acceleration and the stress field can be put in the linear momentum
balance, which reads:

ρü + ∇ · σσσ = 0 , (5)

where ρ denotes the density of the material. The balance equation can be
expressed in a weak form by multiplication with an admissible variational dis-
placement field δu that belongs to the same space as the actual displacement
field (1), thus consisting of a regular part δû and an additional part δũ:

δu = δû + HΓdδũ . (6)

The displacement and strain fields can be cast in a discrete form by employ-
ing the partition of unity property of finite element shape functions. It has
been demonstrated by Babuška and Melenk [9] that any field f , even if it is
not continuous, can be discretised using the finite element shape functions in
combination with a set of enhanced basis functions, according to:
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f(x, t) =
nnod∑
i=1

φi(x)
(
ai(t) +

m∑
j=1

γj(x)bij(t)
)
. (7)

In this equation φi is the shape function associated to a node i, ai is the
corresponding regular degree of freedom of that node, γj(x, t) is an enhanced
basis with m orthogonal terms and bij are the additional degrees of freedom in
node i that support the enhanced basis functions j. The numberm of enhanced
base functions may be different for each node i in the mesh. However, in order
to avoid linear dependency, the enhanced basis γj and the shape functions φi

may not originate from the same span of functions.
In the present situation, the displacement and acceleration fields can be

written as:
u = Na + HΓdNb ; ü = Nä + HΓdNb̈ . (8)

where N is a matrix containing the finite element shape functions and a and b
are the regular and additional nodal displacement components, respectively.
Inserting these expressions and the corresponding discrete admissible vari-
ations, into the weak form linear momentum balance gives the following set
of equilibrium equations:⎡⎣Maa Mab

Mab Mbb

⎤⎦⎡⎣ä

b̈

⎤⎦=
⎡⎣fext

a

f ext
b

⎤⎦−
⎡⎣f int

a

f int
b

⎤⎦
,

(9)

where f int
a and f int

b denote the internal force vectors associated with the regular
and enhanced degrees of freedom, respectively and fext

a and fext
b the corres-

ponding external forces. For a detailed description, see [8] The terms in the
mass matrix M are equal to:

Maa =
∫

Ω

ρNTNdΩ ;

Mab =
∫

Ω

HΓdρN
TNdΩ ;

Mbb =
∫

Ω

HΓdHΓdρN
TNdΩ .

(10)

Note that this element mass matrix is completely filled and contains terms
that couple the regular degrees of freedom a to the additional degrees of
freedom b.

3 Solution Procedure

The equilibrium equations are discretised in the time domain using a variant
of the Newmark-β explicit time integration scheme with β=0 [10]:
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ḋt+ 1
2 Δt = ḋt +

1
2
Δt d̈t ; (11a)

dt+Δt = dt +Δt ḋt+ 1
2 Δt ;

1
2

(11b)

d̈t+Δt = M−1
(
fext,t+Δt − f int,t+Δt

)
; (11c)

ḋt+Δt = ḋt+ 1
2 Δt +

1
2
Δt d̈t+Δt , (11d)

In these equations Δt is the discrete time step and d represents the total array
of degrees of freedom in the system: d = [a,b]T.

For wave equations, the time step is limited by the speed of the stress wave
in the material, or the dilatation speed cd. In general, the simulation becomes
unstable when the stress wave crosses a single element with a specific element
length le within one time interval Δt. Hence, the critical interval is equal to:

Δtcr =
le
cd
. (12)

Traditionally, the calculation time of an explicit time integration procedure is
reduced significantly by using a diagonal mass representation Mdiag in equa-
tion (11c). In such a matrix, all terms are zero except for those on the diagonal.
As a result, the system of equations (11c) is no longer coupled and each degree
of freedom i can be solved separately:

dt+Δt
i =

f ext,t+Δt
i − f int,t+Δt

i

Mdiag
i

. (13)

A diagonal mass matrix can be constructed in several different ways. In the
case of a standard continuum element formulation, it is possible to concentrate
the mass of the element in its nodes. Each node then has a portion of the total
mass of the element, which is placed on the diagonal term of the corresponding
degrees of freedom in the mass matrix.

An alternative approach that is pursued here is to lump the mass matrix
by replacing the diagonal term of the mass matrix by the total sum of the
mass terms on the corresponding row. The off-diagonal terms are set to zero.
In the case of a system with n unknowns, the diagonal mass matrix Mdiag

can be written as:

Mdiag
i =

n∑
j

Mij . (14)

It can be seen from equation (9) that the mass matrix contains terms that
couple the regular and additional degrees of freedom. By lumping the matrix,
this information will be lost. In order to determine the effects of lumping, the
different approaches are studied in the following problem, which is based on
a numerical test by Xu and Needleman [11].
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2W

2L

˙̄u

Fig. 2. Geometry and loading condition of the block.

4 Benchmark Problem

Consider the plane strain wave propagation block in Figure 2. The block has
dimensions L= 5 mm and W = 10mm and is made of PMMA with Young’s
modulus E = 3.24GPa, Poisson’s ratio ν = 0.35 and density ρ= 1190kg/m3.
The corresponding dilatational, shear and Rayleigh wave speeds for the given
material are cd =2090m/s, cs =1004m/s and cR =938m/s, respectively [12].

The block is not supported and is loaded by an impact velocity ˙̄u, acting
in the positive y direction on the top boundary of the block (at y=+L). The
impact velocity is increased linearly to a constant value V within a certain
rise time tr, according to:

˙̄u =

{
V t/tr for t < tr ,

V for t ≥ tr .
(15)

In this experiment, the rise time is taken to be tr = 1.0 · 10−7 s and the
prescribed velocity V = 10m/s. The uni-axial stress wave created by these
loading conditions will propagate through the block at approximately the
dilatational wave speed, cd = 2090m/s, carrying a tensile stress of 25.0MPa.

Since the block and the loading conditions are symmetric about the y-
axis, only the part in the positive x-axis is modelled using a regular mesh
with 39 × 39 four node elements. The specific length of each element is le =
0.256mm. The displacements in the x-direction of the nodes at x= 0.0mm
are constrained in order to enforce symmetric boundary conditions. Regarding
the specific length of an element and the magnitude of the dilatational wave
speed, a sufficiently small time step of Δt=1.0 · 10−9 s has been used in the
simulations, which have been performed using both a lumped and a consistent
representation of the mass matrix.

Figure 3 shows the profile of the σyy stress along the y-axis at x=0.0mm
during the simulation. It can be seen that the average magnitude of the stress
wave is in agreement with the analytical prediction of 25MPa. The small
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Fig. 3. Stress curves σyy versus vertical position y measured along the centre of the
plane strain wave specimen (x = 0.0 mm) at different times during the simulation.

x

y

2W

2L

˙̄u

traction free discontinuity

Fig. 4. Geometry and loading condition of the block with a traction free discon-
tinuity.

stress oscillations of approximately 5.0MPa can be contributed to the relat-
ively coarse mesh that has been used in these simulations. The wave speed
can be determined from the progression of the stress front with respect to
time. Due to the numerical smoothing in the coarse mesh, the position of
the stress wave cannot be determined exactly. Nevertheless, a rough estima-
tion reveals that the wave speed is in good agreement with the analytically
obtained dilatational speed cd = 2090m/s.

A remarkable difference between the simulations with the lumped mass
matrix and the simulations with the consistent mass matrix is the appearance
of the stress overshoot. The lumped mass matrix gives rise to an extra over-
shoot of approximately 5.0MPa on top of the wave front of 25.0MPa, whereas
in the case of a consistent mass matrix, the stress wave is preceded by a dip
of 5.0MPa.
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Fig. 5. Stress curves σyy versus vertical position y measured along the centre of
the plane strain wave specimen (x = 0.0 mm) at t = 3 μs. The initial crack (denoted
by the dotted line) is modelled as a traction free discontinuity which is constructed
using a Heaviside jump function.

Subsequently, the block is divided into two parts by means of a horizontal
crack at y=0mm crossing the entire width of the specimen, Figure 4. In the
finite element mesh, this crack is represented as a traction free discontinu-
ity. In this particular case, the discontinuity is represented using a standard
Heaviside enhancement function, where H+ = 1 and H− = 0, see Table 1.
The boundary conditions and material parameters of the specimen, as well as
the impact velocity are not changed.

In the simulations, the stress wave carrying a tensile stress of 25 MPa
will propagate from the top side of the specimen to reach the crack after
approximately t = 2μs. Since the crack can be considered as a traction free
boundary, the wave will reflect and move upwards. Obviously, the traction
free crack prevents any kind of physical contact between the two parts of the
specimen and the stresses in the lower part of the specimen will remain zero
throughout the simulation.

Figure 5 shows the σyy stress curves along the y-axis in the centre of the
specimen for both the mesh with a consistent and with a lumped representa-
tion of the mass matrix. In both graphs, the stress state at t = 3μs is shown.
At this instance, the stress wave has been reflected by the traction free crack.
Both simulations are compared with a benchmark calculation in which the
slit is created in the traditional way: by disconnecting adjacent elements. The
benchmark calculations are performed using a consistent and a lumped mass
matrix, respectively.

The simulation of the specimen with the crack using the consistent mass
matrix shows perfect agreement with the benchmark simulation, see Figu-
re 5 (a). The stress wave is properly reflected and, more importantly, the lower
part of the specimen remains completely stress free. This is not the case in
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Fig. 6. Stress curves σyy versus vertical position y measured along the centre of
the plane strain wave specimen (x = 0.0 mm) at t = 3 μs. The initial crack (denoted
by the dotted line) is modelled as a traction free discontinuity which is constructed
using a unit symmetric jump function.

the simulation with a lumped mass matrix, Figure 5 (b). Here, a considerable
amount of the energy is transferred across the discontinuity, which results in
a stress wave with an amplitude of 10MPa in the lower part of the specimen.
As a matter of fact, this spurious stress wave propagates with exactly the
dilatational speed. Even more alarming is the extremely high stress peak of
over 42MPa in the integration points just below the discontinuity. Compared
to this, the small mismatch of the stresses in the top part of the specimen,
can be considered as a modest problem.

The simulations are now repeated with a different jump function. Instead
of the Heaviside function a symmetric jump function is used, in which H+ = 1
and H− = −1, Table 1. The corresponding traction profiles are shown in
Figure 6. Remarkably, the spurious stress wave reflections in the simulations
with the lumped mass matrix representation have disappeared, Figure 6 (b).
The stresses in the lower part of the specimen remain zero. Apparently, this
can be contributed to the symmetric nature of the enhancement function.
Nevertheless, the mismatch in the reflected stress wave in the top part of
the specimen did not disappear, which reveals a small inconsistency in the
current lumped matrix formulation. The stress waves in the simulation with
the consistent mass matrix again show a perfect agreement to the benchmark
simulations, see Figure 6 (a).

An alternative way to check the accuracy of the method is to look at the
energy balance of the system. Obviously, the amount of external work that is
used to deform the specimen must be equal to the total internal energy, which
is composed of the strain energy and the kinetic energy. The external work
W at time t+Δt is obtained by integration in time, according to, see [13]:
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Wt+Δt = Wt +
1
2
Δt
(
ḋt+ 1

2 Δt
)T (

fext,t + fext,t+Δt
)
. (16)

When the specimen is loaded by a prescribed velocity instead of an external
force, this relation can be written as:

Wt+Δt = Wt +
1
2
Δt
(
ḋt+ 1

2 Δt
p

)T (
f int,t + f int,t+Δt

)
, (17)

where ḋt+ 1
2 Δt

p denotes the prescribed velocity vector in which the uncon-
strained degrees of freedom are replaced by zeros. The internal strain energy
is obtained as follows:

Et+Δt
int = Et

int +
1
2
Δt
(
ḋt+ 1

2 Δt
)T (

f int,t + f int,t+Δt
)
, (18)

whereas the kinetic energy is given by:

Et+Δt
kin =

1
2

(
ḋt+Δt

)T

Mḋt+Δt . (19)

Energy conservation requires that the sum of internal and kinetic energy is
equal to the total external work, or:

|Ekin + Eint −W| < ε max(|W|, |Eint|, Ekin) , (20)

where ε is a small tolerance. When this tolerance is on the order of 10−2

or smaller at each time increment, it can be concluded that energy is con-
served [13].

The energy variations as a function of time for the simulations with the
traction free discontinuity are shown in Figure 7. Figure 7 (a) shows the vari-
ation of energy for the benchmark calculation in which the crack is modelled
in the traditional way by disconnecting adjacent elements. In this particular
case, a consistent mass matrix is used. The energy variations for the calcula-
tion with a lumped mass matrix are nearly identical. It can be seen that in
these calculations, the kinetic and internal strain energy sum up to the ex-
ternal work, which indicates that energy is conserved. Note that the line that
represents the total internal energy Etot is hardly visible in Figures 7 (a) to (d)
since it is overlapped by the line representing the external work W .

Figures 7 (b) to (d) show the energy variations for the simulations in which
the slit is represented by a traction free discontinuity. In (b) a consistent mass
matrix has been used, in combination with a Heaviside jump function for
the discontinuity. In the calculation depicted in (c) a lumped mass matrix
has been used. Here, the discontinuity has been modelled with a Heaviside
step function. Finally, Figure 7 (d) shows the energy variation of the simula-
tion with a lumped mass matrix in combination with a unit symmetric step
function for the discontinuity.

Although in both simulations with the lumped mass matrix energy is con-
served, the variation of total internal energy in time is different than the
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Fig. 7. Energy variations as a function of time. Figure (a) shows the benchmark
simulation with a traditional finite element mesh. The other figures show the cal-
culations with a traction free discontinuity with (b) a consistent mass matrix, (c) a
lumped mass matrix and a Heaviside jump function and (d) a lumped mass matrix
and a symmetric jump function.

variation of total energy in the benchmark case. For the calculations with the
Heaviside jump this was to be expected. It was demonstrated before that a
significant amount of energy was transferred across the discontinuity. As a
result, the magnitude of the stress waves reflecting back from the discontinu-
ity is smaller, which in turn gives rise to a different behaviour at the clamped
edge. The deviation of the total energy in the case of a lumped mass matrix in
combination with a unit symmetric jump function, Figure 7 (d) may come as
a surprise. In the previous tests, this combination did not give rise to spurious
stress wave reflections into the lower part of the specimen. Nevertheless, the
magnitude of the σyy stress carried by the reflecting stress wave is slightly
different than the magnitude of this stress in the benchmark simulation, see
Figure 6 (b). It appears that this relatively small deviation gives rise to a
difference in the total energy variation.

Despite the differences in energy variations, in all cases, the total energy is
well conserved. Apparently, the traction free discontinuity does not give rise to
the creation or dissipation of internal energy, even when a lumped mass matrix
and a Heaviside jump function are used. The magnitudes of the tolerance ε for
all four cases are shown in Figure 8. Apart from a few peaks, the average value
of the tolerance is indeed on the order of 10−2. The large peak at the start of
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Fig. 8. Energy tolerances as a function of time for the four simulations: the bench-
mark simulation, the traction free discontinuity with a consistent mass matrix, the
lumped mass matrix in combination with the Heaviside jump function and the
lumped mass matrix in combination with the symmetric jump function.

the simulation is due to the fact that at this instant the prescribed velocity
ū is increased to its final value V in a relatively short amount of time. The
second peak after approximately t = 10μs is caused by the reflecting stress
wave that reaches the crack of the specimen for the second time. This marks
a sudden change in the direction of stress wave propagation, which results in
an abrupt change of external work and therefore in an increase of the energy
mismatch. In general, these boundary effects are less significant when a denser
finite element mesh is used in which the amount of degrees of freedom that
are constrained is relatively small.

In general, the simulations in which a consistent mass matrix is used give
results that are identical to the benchmark simulations. When a lumped mass
matrix is used, different jump functions to give rise to different results.

5 Stability of the Time-Integration Algorithm

It has already been observed by Babuška and Melenk [9] that in most cases the
condition of the Jacobian decreases significantly when base functions are ad-
ded to shape functions by using the partition of unity method. It was demon-
strated by Wells and Sluys [2] that the stiffness matrix in implicit calcula-
tions becomes ill-conditioned when a discontinuity crosses an element close to
a node. This anomaly however can be solved by enhancing only those nodes
that have a significant contribution to the stiffness matrix.

In explicit simulations a more or less equivalent problem occurs. It appears
that when an element is crossed by a discontinuity, the two separated parts
can be considered as individual elements, each with a smaller effective length
le than the original element. In principle, an element can be crossed by a
discontinuity in such a way that one of the two resulting portions of the
element becomes so small that, according to relation (12), the critical time
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Fig. 9. Detail of the quadrilateral finite element mesh that has been used to de-
termine the critical time step for various positions of a discontinuity.
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Fig. 10. The critical time step vs. the position of the discontinuity within the
element. s denotes the distance of the discontinuity with respect to the nodes in the
Ω− part of the domain.

increment for a stable solution procedure will almost be infinitesimal. In such
a situation, numerical solutions, such as the selective enhancement of nodes,
do not work.

In order to determine the exact effect of the position of the discontinuity on
the critical time step of the explicit time integration method, the simulation
of the plane strain wave specimen with an initial slit is considered again. In
this case, the specimen consists of 40 × 40 quadrilateral elements with an
specific element length le = 0.25mm. The position of the horizontal traction
free discontinuity that represents the initial slit is varied between a = 0.0mm
and a = 0.25mm so that it covers all positions within a single element, see
Figure 9. The material parameters and the boundary and loading conditions
remain the same. The simulations are performed using a standard Heaviside
function and a unit-symmetric enhancement function.

The critical time increment Δtcr is shown as a function of the position of
the discontinuity within the element in Figure 10. The critical time increments
are normalised by the critical time step in case of a simulation without a
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rle

le

Fig. 11. Overview of the algorithm that prevents a discontinuity to cross an element
boundary in the vicinity of a supporting node. The grey dashed line denotes the
original position of the discontinuity. Since it crosses the node within a distance rle
(denoted by the dashed circle), it is moved away from the node.

discontinuity Δt0cr. This value is found to be 0.1172μs which is relatively
close to the estimation from equation (12): Δt0cr = 0.1196μs.

As expected, the critical time increment decreases almost linearly to zero
when the discontinuity approaches the boundary of the element. In the case of
the standard Heaviside enhancement function, there is no difference whether
this boundary is in the Ω+ or the Ω− part of the domain. When using the
unit-symmetric enhancement function, this effect only occurs when the dis-
continuity is in the vicinity of nodes in the Ω+ part of the domain. On the
other side of the element, the critical time increment increases up to over
80% of the nominal critical increment when the discontinuity approaches the
boundary in the Ω− part of the domain.

The problem of infinitesimal critical time increments can be avoided by
using an alternative lumping technique, as demonstrated by Menouillard et
al. [14]. Unfortunately, this lumping procedure suffers from the spurious trans-
fer of stress waves as reported in section 4 and will not be considered in the
scope of this paper.

In the case of the simulation of propagating cracks, infinitesimal critical
increments are only avoided when the discontinuity is not allowed to cross
an element boundary within a certain distance rle to a node, where r is an
offset factor between 0.0 and 0.5, see Figure 11 [8]. When r is set to 0.0,
the trajectory of the discontinuity is not confined at all. When r = 0.5 the
discontinuity is only allowed to cross an element boundary exactly through its
centre point, which leaves as many possible crack trajectories as the original
approach by Xu and Needleman [11]. Intermediate values of r will lead to
partially modified crack trajectories.
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Fig. 12. Geometry and loading conditions of a square block with an initial side
crack.

Because of the nearly linear relation between the critical time step and the
distance between the discontinuity, the stability requirement can be expanded
as follows:

Δt = α
r le
cd

, (21)

where α is an additional factor to compensate for shock wave effects at crack
propagation [11], which is normally set to 0.1. In the simulations in the next
section, r is taken to be 0.1, which implies that the crack is deflected with at
most a few degrees.

6 A Propagating Discontinuity

In the previous section, it was observed that the inclusion of a discontinuity in
a finite element formulation can influence the robustness of the explicit time
integration scheme. In the following test, the effects of adding new degrees of
freedom to the system in order to accommodate a propagating discontinuity
is considered.

Consider the square block made of PMMA with length sides L = 3mm
as shown in Figure 12. The block contains an edge crack that penetrates
a = 0.25mm into the material. The block is loaded in tension by two pulse
loads that are applied to the top and bottom edges respectively. In the finite
element simulations, these pulses are represented by prescribed velocities with
magnitudes V = 6 m/s. This magnitude is reached after a rise time tr =
1.0·10−7 s, see equation (15).

Because of symmetry of both the geometry of the specimen as well as
the boundary conditions, it is assumed that the crack will propagate in a
straight line and will open in a pure tensile mode. In these calculations, the
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discontinuity is extended along the x-axis when the σyy stress in the element
ahead of the tip of the discontinuity exceeds the strength of the material
tmax. The discontinuity is extended until it touches the boundary of the next
element. All nodes of the element are hereby enhanced apart from the ones
that support the terminus of the discontinuity to ensure a zero opening at the
tip [2].

The opening of the discontinuity is governed by a cohesive constitutive
relation [2, 8]. The normal component of the traction tn is related to the
normal component of the displacement jump vn, according to [15]:

tn = tmax

(
1 − vn

vn,cr

)
. (22)

where vn,cr is the characteristic length of the cohesive law at which the crack
has fully developed and the tractions have reduced to zero. This parameter
is related to the fracture toughness Gc, or the area under the softening curve
and can be determined as follows:

vn,cr =
2Gc

tmax
. (23)

In this simulation, the strength of the material is set to tmax = 1.0·108 N/m2

and the fracture toughness Gc = 700N/m. Since the traction at the discon-
tinuity in normal direction at zero opening is equal to the strength of the
material, traction continuity is guaranteed [16].

The block is analysed with three different finite element meshes that con-
sist of quadrilateral elements only. In the first mesh, the specific length of
an element is le = 37.5μm, in the second mesh this length is le = 25.0μm
and in the third mesh le = 12.5μm. Considering equation (21) a timestep
Δt = 1.0 · 10−9 s is used in all simulations.

Since the trajectory of the crack is known beforehand, a comparative study
is performed in which the crack is represented by a weak interface. In this
benchmark calculation, a discontinuity is inserted over the full width of the
specimen at the start of the analysis. The first 0.25mm of this segment are
traction free, the remaining part is equipped with Xu-Needleman’s cohesive
law [11], with the same cohesive properties as mentioned above. Apart from
the fact that the cohesive zone in this case has an initial non-zero compliance,
the overall behaviour of this model must be nearly identical. However, note
that in this case, no degrees of freedom are added during the simulation.

The energy variations of the simulations are given in Figure 13. In these
plots, a distinction is made between the contribution of the bulk material and
the cohesive zone to the internal energy Eint:

Eint = Ebulk + Ecoh , (24)

where Ebulk is the internal energy of the bulk material, which is defined as:
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(d) le = 12.5 μm

Fig. 13. Energy variations as a function of time. Figure (a) shows the benchmark
simulation with an initial discontinuity with Xu-Needleman’s cohesive relation. The
other figures show the calculations with a propagating discontinuity in meshes with
different specific element lengths (b) 37.5 μm, (c) 25.0 μm and (d) 12.5 μm.

Et+Δt
bulk = Et

bulk +
1
2
Δt
(
ḋt+ 1

2 Δt
)T (

f int,t
bulk + f int,t+Δt

bulk

)
, (25)

where f int
bulk is the contribution of the bulk material to the internal forces, see

equation (9). For the cohesive zone, a similar relation can be formulated:

Et+Δt
coh = Et

coh +
1
2
Δt
(
ḋt+ 1

2 Δt
)T (

f int,t
coh + f int,t+Δt

coh

)
, (26)

where f int
coh is the contribution of the cohesive zone to the internal forces,

see (9).
Figure 13 (a) shows the variations of the total work W , the sum of internal

energies Etot and the variations of the individual terms Ebulk, Ecoh and Ekin

for the benchmark simulation with a predefined discontinuity in combination
with Xu-Needleman’s cohesive relation, i.e. the simulation in which no degrees
of freedom are added during the simulation. In this particular figure, the
energy variations of the simulation with the dense mesh are shown, but the
results with the coarser meshes are nearly identical. Figures 13 (b) to (d)
show the variations of the simulations with the coarse, medium and dense
mesh respectively. It appears that in all four cases, the total internal energy is
in good agreement with the external work of the simulations. This can also be
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Fig. 14. (a) Energy tolerances as a function of time for the four simulations of a
propagating straight crack through a square block. (b) Position of the crack tip as
a function of time for the four simulations of a propagating straight crack through
a square block.

seen in Figure 14 (a) in which the error tolerances of the four simulations are
plotted. In none of the cases ε exceeds the value of 0.01. It can be concluded
that irrespective of the coarseness of the finite element mesh, the creation of
new degrees of freedom does not destroy the energy balance. This is a result
of the fact that in the cohesive constitutive relation, the value of the strength
tn,0 is taken to be equal to the the stress state that caused the discontinuity
to propagate. Effects of overshoot are thus canceled and stress continuity is
ensured [16]. The oscillations at the end of the simulations are a result of the
fact that at the instant of the extension of the discontinuity, the values of the
internal energy are not uniquely defined. The displacement and internal force
terms in equations (25) and (26) that correspond to the degrees of freedoms
that have been added at time t + Δt are not defined at time t, which gives
rise to a small error.

Nevertheless, a remarkable difference in the simulations with the coarser
meshes can be observed, Figure 13 (b) and (c). Here, the total work is signi-
ficantly larger than the total work in the benchmark simulation (a) and the
simulation with the dense mesh (d). This a consequence of the fact that the
averaged σyy stress in the element ahead of the tip is used to extend the dis-
continuity. Since the magnitude of this stress is smaller than the actual stress
at the tip, the new segment is extended too late, particularly in the simula-
tions with a coarse mesh. This allows the bulk material to store too much
internal energy prior to crack propagation. This can also be concluded from
Figure 14 (b) where the position of the crack tip are plotted as a function of
time. Here, the position of the crack tip is defined as the first point along the
discontinuity where the tractions have reduced to 5% the value of the strength
of the material.

The coarseness of the mesh does not have an effect on the internal energy
dissipated by the cohesive segment. In all simulations with a propagating
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segment, the final value of the cohesive internal energy Ecoh, when the crack
has completely crossed the specimen is equal to Ecoh = 1.92J, which is exactly
identical to the length of the crack, 2.75mm times the fracture toughness of the
material Gc = 700N/m. In the benchmark simulation, with an initial cohesive
segment, this value is slightly bigger, Ecoh = 1.93J, which is probably due
to the fact that prior to cracking, the cohesive zone, with its initial non-zero
compliance, already contributes to the internal energy.

7 Conclusions

In this paper, the accuracy of partition of unity based discontinuous elements
in explicit simulations has been discussed. In the first simulation, the consist-
ency of the method was checked by means of a benchmark test in which a
solid block is divided in two parts by a slit over the full width of the specimen.
In the finite element simulations, the slit is represented by a traction free dis-
continuity. When the mass matrix is lumped, spurious transfer of stress waves
across the discontinuity can be observed. This anomaly disappears when the
Heaviside function is replaced by a unit-symmetric jump function. However,
from an energetic point of view, the numerical results still showed small de-
viations. Only use of the consistent mass matrix guarantees correct results.
This requires the solution of a fully coupled system. However, the additional
computational effort can be minimised by employing the observation that the
mass matrix only changes when new degrees of freedom are added, which nor-
mally occurs in a limited number of steps. The decomposition of the matrix,
which is by far the most expensive part of the solution process, only needs to
be preformed after these steps.

In a second benchmark problem, the stability of the solution procedure
has been investigated. In standard finite element implementations, the crit-
ical step size is approximately equal to the dilatational wave speed of the
material divided by the element specific length. In the case of discontinuous
elements, the specific length appears to be equal to the specific length of
the smallest part of a discontinuous element. Depending on the position of
the discontinuity, this length can go to zero, which results in an infinitesimal
time step. The only remedy to this problem is to prevent discontinuities from
crossing an element border close to a node.

In the final problem, the effect of adding new degrees of freedom for a
propagating discontinuity is studied. The behaviour of the fracture process
is represented by a cohesive zone model, which is known to be energetically
consistent. It has been checked that the energy is conserved, regardless of the
mesh size of the specimen. An important requirement however is that traction
continuity is guaranteed when the discontinuity is extended.
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14. Menouillard T, Réthoré J, Combescure A and Bung H (2006) International

Journal for Numerical Methods in Engineering 68 (9): 911–939
15. Camacho G T and Ortiz M (1996) International Journal of Solids and Structures

33: 2899–2938
16. Papoulia K D, Sam S H and Vavasis S A (2003) International Journal for Nu-

merical Methods in Engineering 58 (5): 679–701

322



A discrete model for the propagation of
discontinuities in a fluid-saturated medium

Julien Réthoré1, René de Borst12, and Marie-Angèle Abellan3

Summary. The first part of this manuscript discusses a finite element method that
captures arbitrary discontinuities in a two-phase medium by exploiting the partition-
of-unity property of finite element shape functions. The fluid flow away from the
discontinuity is modelled in a standard fashion using Darcy’s relation, and at the
discontinuity a discrete analogy of Darcy’s relation is used. Subsequently, dynamic
shear banding is studied numerically for a biaxial, plane-strain specimen. A Tresca-
like as well as a Coulomb criterion are used as nucleation criterion. Decohesion is
controlled by a mode-II fracture energy, while for the Coulomb criterion, frictional
forces are transmitted across the interface in addition to the cohesive shear tractions.
The effect of the different interface relations on the onset of cavitation is studied.

Key words: shear band, dynamic fracture, two-phase medium, partition-of-
unity method

1 Introduction

Broadly speaking, two approaches exist for the numerical analysis of the nucle-
ation and propagation of discontinuities in solids, such as cracks, shear bands
and faults. Within the classical theory of continuum mechanics, the approach
in which discontinuities are distributed over a finite volume, so that relative
displacements across the faces of a discontinuity are transformed into strains,
is perhaps the most natural. Also in an engineering sense, it offers advantages,
since there is no need to keep track of all individual microcracks that arise in a
solid. Indeed, for computations of large structures, any attempt to model each
individual crack would exceed even the currently available computing power.
However, from a theoretical point of view, the modelling of discontinuities
in a distributed or smeared sense has a limitation, namely that at a certain
level of accumulated damage, the set of governing equations locally changes

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 323–342.
© 2007 Springer. Printed in the Netherlands.
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character, from elliptic to hyperbolic for quasi–static loadings, and from hy-
perbolic to elliptic for dynamic loadings. Unless a regularisation is applied,
the resulting initial/boundary value problem becomes ill–posed, resulting in
numerical solutions that depend severely on the discretisation [1].

Intuitively the most appealing approach is to model discontinuities in a dis-
crete manner, thus reflecting the change in topology that actually takes place
in the solid when a discontinuity propagates. Recently, such finite element
methods have been constructed that exploit the partition-of-unity property
of finite element shape functions [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While pre-
serving the original discretisation, the addition of extra degrees-of-freedom
to nodes whose support is crossed by a discontinuity allows to construct two
continuous displacement fields that are separated by a Heaviside function at
the discontinuity. As a consequence, discontinuities can propagate, not biased
by the original discretisation.

Many problems in geomechanics involve the coupling of the set of equa-
tions that describe the stress evolution and those which describe diffusion-type
processes, e.g. water or ion transport. Indeed, hydro-mechanical interactions
have been recognised to play a crucial role in geotechnical, petroleum and
mining engineering since the pioneering works by Terzaghi [13] and Biot [14].
It is the purpose of this manuscript to formulate a numerical model that is
capable of describing dynamic shear band propagation in a porous medium,
with a solid skeleton and an interstitial fluid as the constituent phases, in a
discrete, mesh-independent manner. The model exploits the partition-of-unity
property of finite element shape functions, and can therefore be considered
to be an extension to earlier works on fracture for single-phase media. On
the other hand, the present methodology can be extended in a fairly straight-
forward manner to introduce discontinuities, including cracks, in initial value
problems where several diffusion-type problems play a role.

The manuscript starts with a concise derivation of the balance equations
for a fluid-saturated porous medium. Subsequently, the general methodology
and the assumptions regarding the introduction of a discontinuity in a finite
element model are discussed. The approach is specialised to a medium where
the (discrete) failure mode is caused by exhaustion of the shear stress capacity
on a critical plane. Next, studies are carried out for a plane-strain, biaxial
specimen. Two different nucleation criteria for shear band propagation are
investigated, and the role of localisation on cavitation in a fluid-saturated
porous medium is highlighted.

2 Balance equations

We consider a two-phase medium subject to the restriction of small displace-
ment gradients and small variations in the concentrations [15]. Furthermore,
the assumptions are made that there is no mass transfer between the con-
stituents and that the processes which we consider, occur isothermally. With
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these assumptions, the balances of linear momentum for the solid and the
fluid phases read:

∇ · σσσπ + p̂π + ρπg =
∂(ρπ vπ)
∂t

+ ∇ · (ρπvπ ⊗ vπ) (1)

with σσσπ the stress tensor, ρπ the apparent mass density, and vπ the absolute
velocity of constituent π. As in the remainder of this paper, π = s, f , with
s and f denoting the solid and fluid phases, respectively. Further, g is the
gravity acceleration and p̂π is the source of momentum for constituent π
from the other constituent, which takes into account the possible local drag
interaction between the solid and the fluid. Evidently, the latter source terms
must satisfy the momentum production constraint:∑

π=s,f

p̂π = 0 (2)

We now neglect convective terms and the gravity acceleration, so that the
momentum balances reduce to:

∇ · σσσπ + p̂π = ρπ

∂vπ

∂t
(3)

Adding both momentum balances, and taking into account eq. (2), one obtains
the momentum balance for the mixture:

∇ ·σσσ − ρs

∂vs

∂t
− ρf

∂vf

∂t
= 0 (4)

where the stress is, as usual, composed of a solid and a fluid part,

σσσ = σσσs + σσσf (5)

For relatively slow dynamic loadings, the assumption is often made that the
accelerations of the solid and of the fluid are equal: ∂vs

∂t
≈ ∂vf

∂t
. With the mass

density of the mixture, ρ = ρs + ρf , the balance of momentum (4) reduces to:

∇ · σσσ − ρ
∂vs

∂t
= 0 (6)

Numerical analyses are usually conducted with the latter equation as bal-
ance of momentum, cf [16], but the accuracy of this assumption is seldom
quantified.

In a similar fashion as for the balances of momentum, one can write the
balance of mass for each phase as:

∂ρπ

∂t
+ ∇ · (ρπvπ) = 0 (7)

Again neglecting convective terms, the mass balances can be simplified to
give:
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∂ρπ

∂t
+ ρπ∇ · vπ = 0 (8)

We multiply the mass balance for each constituent π by its volumetric ratio
nπ, add them and utilise the constraint∑

π=s,f

nπ = 1 (9)

to give:

∇ · vs + nf∇ · (vf − vs) +
ns

ρs

∂ρs

∂t
+
nf

ρf

∂ρf

∂t
= 0 (10)

The change in the mass density of the solid material is related to its volume
change by:

∇ · vs = −
Ks

Kt

ns

ρs

∂ρs

∂t
(11)

with Ks the bulk modulus of the solid material and Kt the overall bulk
modulus of the porous medium. Using the definition of the Biot coefficient,
1 − α = Kt/Ks [16], this equation can be rewritten as

(α− 1)∇ · vs =
ns

ρs

∂ρs

∂t
(12)

For the fluid phase, a phenomenological relation is assumed between the in-
cremental changes of the apparent fluid mass density and of the fluid pressure
p [16]:

1
Q

dp =
nf

ρf

dρf (13)

with the overall compressibility, or Biot modulus

1
Q

=
α− nf

Ks

+
nf

Kf

(14)

where Kf is the bulk modulus of the fluid. Inserting relations (12) and (13)
into the balance of mass of the total medium, eq. (10), gives:

α∇ · vs + nf∇ · (vf − vs) +
1
Q

∂p

∂t
= 0 (15)

The field equations, i.e. the balance of momentum of the saturated
medium, eq. (4), and the balance of mass, eq. (15), are complemented by
the boundary conditions

nΓ · σσσ = tp , v = vp (16)

which hold on complementary parts of the boundary ∂Ωt and ∂Ωv, with
Γ = ∂Ω = ∂Ωt ∪ ∂Ωv, ∂Ωt ∩ ∂Ωv = ∅, tp being the prescribed external
traction and vp the prescribed velocity, and
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nf (vf − vs) · nΓ = qp , p = pp (17)

which hold on complementary parts of the boundary ∂Ωq and ∂Ωp, with
Γ = ∂Ω = ∂Ωq ∪ ∂Ωp and ∂Ωq ∩ ∂Ωp = ∅, qp and pp being the prescribed
outflow of pore fluid and the prescribed pressure, respectively. The initial
conditions which specify the displacements uπ, the velocities vπ, and the
pressure field at t = 0:

uπ(x, 0) = u0
π, vπ(x, 0) = v0

π, p(x, 0) = p0 (18)

close the initial value problem.

tp
Γt

up

Γu

nΓd

Γ = ∂Ω

Γd

Ω+

Ω−

Fig. 1. Body composed of continuous displacement fields at each side of the dis-
continuity Γd

3 Discontinuities in a two-phase medium

A finite element method that can accommodate the propagation of disconti-
nuities through elements was proposed by Belytschko and co-workers [3, 4],
exploiting the partition-of-unity property of finite element shape functions [2].
Since finite element shape functions ϕj form partitions of unity,

∑n

j=1 ϕj = 1
with n the number of nodal points, the components vi of a velocity field v
can be interpolated as

vi =
n∑

j=1

ϕj

(
˙̄aj +

m∑
k=1

ψk
˙̃ajk

)
(19)

with āj the ‘regular’ nodal degrees-of-freedom for the displacements, ψk the
enhanced basis terms, and ãjk the additional displacement degrees-of-freedom
at node j which represent the amplitude of the kth enhanced basis term ψk.
Next, we consider a domain Ω that is crossed by a single discontinuity at Γd

(see Figure 1). The velocity field v can be written as the sum of two continuous
velocity fields v̄ and ṽ:

v = v̄ + HΓd
ṽ (20)

where HΓd
is the Heaviside step function centred at the discontinuity. The de-

composition in eq. (20) has a structure similar to the interpolation in eq. (19),
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e.g. [17]. Accordingly, the partition-of-unity property of finite element shape
functions enables the direct incorporation of discontinuities, including cracks
and shear bands, in finite element models such that the discontinuous char-
acter of cracks and shear bands is preserved. With the standard small-strain
assumption that the strain-rate field of the solid, εεεs, is derived from the sym-
metric part of the gradient of the velocity field, we obtain:

ε̇εεs = ∇sv̄s + HΓd
∇sṽs + δΓd

(ṽs ⊗ nΓd
)s (21)

with the superscript s denoting the symmetric part of the gradient operator.
With respect to the pore fluid, we consider the case that a diaphragm

with a permeability kd is placed at the discontinuity in the displacement. As
a consequence, the fluid pressure can be discontinuous across Γd and, similar
to eq. (20), we have:

p = p̄+ HΓd
p̃ (22)

It is noted that this assumption is different from that of Armero and Callari [18],
who adopt a smooth pressure field (and therefore p = p̄) and is also different
from that of Larsson and Larsson [19], who assume that a regularised Dirac
distribution is added to the continuous pressure field at the location of the
discontinuity in the displacement field. For the fluid flow, gradients of the
pressure need to be computed. Differentiating eq. (22), we obtain:

∇p = ∇p̄+ HΓd
∇p̃+ δΓd

p̃ nΓd
(23)

τ

δ t

Gc

Fig. 2. Relation between relative sliding at the discontinuity and shear tractions

4 Constitutive equations

4.1 Models for the bulk

The effective stress increment in the solid skeleton, dσσσ′s is related to the strain
increment dεεεs by an incrementally linear stress-strain relation for the solid
skeleton,
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dσσσ′s = D̄tan : dεεεs (24)

where D̄tan is the fourth–order tangent stiffness tensor of the solid material
and the d - symbol denotes a small increment. Since the effective stress in the
solid skeleton is related to the partial stress by σσσ′s = σσσs/ns, the above relation
can be replaced by

dσσσs = Dtan : dεεεs (25)

where the notation Dtan = nsD̄tan has been used. In the examples, a linear-
elastic behaviour of the bulk material has been assumed, and we have set
Dtan = D, the linear-elastic stiffness tensor.

For the flow of the pore fluid, Darcy’s relation for isotropic media is as-
sumed to hold,

nf (vf − vs) = −kf∇p (26)

with kf the permeability coefficient of the porous medium. For loading situ-
ations in which high strain rates play a significant role, Darcy’s relation can
be extended with a so-called dynamic seepage term [16, 20], which results in:

nf (vf − vs) = −kf

(
∇p+ ρf

∂vf

∂t

)
(27)

In line with the earlier assumption to neglect the gravity acceleration, this
term has also been omitted here. In practical situations, following the as-
sumption ∂vs

∂t
≈

∂vf

∂t
for relatively slow dynamic loadings, eq. (27) is often

approximated by

nf (vf − vs) = −kf

(
∇p+ ρf

∂vs

∂t

)
(28)

4.2 Interface behaviour

At the discontinuity Γd a discrete relation holds between the interface tractions
td and the relative displacements δδδ:

td = td(δδδ, κ) (29)

with κ a history parameter. After linearisation, necessary to use a tangential
stiffness matrix in an incremental-iterative solution procedure, one obtains:

ṫd = Tδ̇δδ (30)

with T the material tangent stiffness matrix of the discrete traction-separation
law:

T =
∂td

∂δδδ
+
∂td

∂κ

∂κ

∂δδδ
(31)

A first possibility that has been used in the example calculations for shear
band initiation is the use of a maximum shear stress criterion in the spirit
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of Tresca. With the resolved shear stress τ , a shear-band like discontinuity
is created when the criterion equals the critical value τc: τ = τc. The ori-
entation of the interface is such that it maximises the shear stress. In this
orientation, the shear stress τ = |σ1−σ2|

2 , σ1, σ2 being the principal stresses. A
maximum shear stress nucleation criterion is primarily applicable when com-
pressive stress states around the discontinuity prevail, such as in rocks and
soils. Then, the failure mode will only involve sliding at the discontinuity, but
no crack opening. For this reason, in the example calculations only degrees-of-
freedom that describe this sliding mode have been added to the finite element
model, which is different from earlier shear-band simulations (for single-phase
media) [5, 6, 12] that have exploited the partition-of-unity property of finite
element shape functions, but is similar to [9]. Dilatancy in the shear band
can be incorporated when, in addition to the tangential degrees-of-freedom,
during propagation extra degrees-of-freedom are activated which are normal
to the shear band.

A key element is the presence of a mode-II fracture energy, GII
c , which

governs the shear band evolution and enters the interface constitutive rela-
tion (29) in addition to the shear strength τc. It is defined as the work needed
to create a unit area of fully developed shear band, e.g. [21]:

GII
c =

∫ ∞

δt=0

τdδt (32)

with τ the shear stress across the shear band, and δt the relative sliding
between both faces of the shear band. GII

c equals the area under the decohesion
curves shown in Figure 2.

tan φ
μ

δ

μ

δ

c

c

Fig. 3. Relation between relative sliding at the discontinuity and friction coefficient

Alternatively, a Coulomb criterion for local inception of the shear band has
been used in the examples at the end of this paper. In this criterion nucleation
starts when

τ = τcoh + τfr (33)

with
τcoh = c0

the cohesive contribution and c0 the cohesion. Decohesion is governed by the
fracture energy GII

c , similar to the Tresca-like criterion, cf. eq. (32). τfr is the

330



Discontinuities in a fluid-saturated medium

frictional contribution, which is defined as a function of the traction normal
to the discontinuity and the effective friction coefficient μ:

τfr = μnΓd
· σσσ · nΓd

The effective friction coefficient has a virgin value μ = tanφ, with φ the
friction angle. The vector nΓd

is such that it is normal to the critical plane
where Coulomb’s criterion for incipient shear failure is satisfied. A frictional
softening relation models the microstructure evolution of the solid grains in
the interface. The particular relation used in the example calculations is shown
in Figure 3. In it, μc is the threshold value and δc the relative sliding at this
value. It is assumed that δc = 2GII

c /c0, which equals the value defined by the
cohesive softening relation.

As with the Tresca-like criterion, it is assumed that the failure mode only
involves sliding. Possible dilatancy effects are not included in the kinematics
of the discontinuity. For this reason, one can also now suffice by adding only
degrees-of-freedom to the finite element model that describe the discrete slid-
ing mode. It is interesting to note that, unlike in non-associated plasticity, the
resulting stiffness matrix remains symmetric.

A discrete equivalent of Darcy’s relation is now defined for the fluid flow
qd at the discontinuity as:

nΓd
· qd = −kd(p+ − p−) = −kd p̃ |x∈Γd

(34)

where kd is the permeability of the diaphragm that has been assumed to coin-
cide with the displacement discontinuity Γd and p+ and p− are the pressures
in the Ω+ and Ω− domains, respectively. For an impervious boundary, kd = 0,
which implies that nΓd

· qd = 0 according to eq. (34). Conversely, ideal per-
meability requires that kd → ∞, so that nΓd

· qd can only be bounded if
p+ − p− = 0, which implies that no discontinuity can exist in the pressure
field and the formulation of Armero and Callari [18] is retrieved.

5 Numerical elaboration

5.1 Weak forms

To arrive at the weak form of the balance equations, we multiply the momen-
tum balance (4) and the mass balance (15) by test functions for the velocities
of the skeleton and for the pressures. In the spirit of a standard Bubnov-
Galerkin approach, they are assumed to be of the following format:

ηηη = η̄ηη + HΓd
η̃ηη (35)

for the velocities, and
ζ = ζ̄ + HΓd

ζ̃ (36)
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for the pressures. Substitution into eqs (4) and (15), and integrating over the
domain Ω leads to the corresponding weak forms:∫

Ω

(η̄ηη + HΓd
η̃ηη) ·
(
∇ · σσσ − ρ

∂vs

∂t

)
dΩ = 0 (37)

and ∫
Ω

(ζ̄ + HΓd
ζ̃)
(
α∇ · vs + nf∇ · (vf − vs) +

1
Q

∂p

∂t

)
dΩ = 0 (38)

Using the standard procedure of applying the divergence theorem, using the
external boundary conditions (16) and (17), eliminating the Heaviside func-
tions by changing the integration domain fromΩ to Ω+, eliminating the Dirac
delta functions by transforming the volume integral into a surface integral, and
introducing the shorter notation of a superimposed dot for ∂/∂t, the balance
equations take the form: ∫

Ω

ρη̄ηη · v̇sdΩ +
∫

Ω+
ρη̃ηη · v̇sdΩ+∫

Ω

(∇ · η̄ηη) · σσσdΩ +
∫

Ω+
(∇ · η̃ηη) · σσσdΩ+∫

Γd

η̃ηη · tddΩ =
∫

Γ

(η̄ηη + HΓd
η̃ηη) · tp dΩ

(39)

and

−

∫
Ω

kfρf∇ζ̄ · v̇sdΩ −

∫
Ω+
kfρf∇ζ̃ · v̇sdΩ

−

∫
Ω

αζ̄∇ · vsdΩ −

∫
Ω+
αζ̃∇ · vsdΩ

−

∫
Ω

kf∇ζ̄ · ∇pdΩ −

∫
Ω+
kf∇ζ̃ · ∇pdΩ −

∫
Γd

ζ̃nΓd
· qd dΓ

−

∫
Ω

ζ̄Q−1ṗ dΩ −

∫
Ω+
ζ̃Q−1ṗ dΩ =

∫
Γ

(ζ̄ + HΓd
ζ̃)qp dΓ

(40)

where for the derivation of the latter equation also Darcy’s relation (28) has
been employed.

5.2 Discretisations

We now switch to matrix-vector notation and discretise the trial functions vs

and p and the test functions ηηη and ζ as:

vs = N( ˙̄a + HΓd
˙̃a)

p = H(p̄ + HΓd
p̃)

ηηη = N(w̄ + HΓd
w̃)

ζ = H(z̄ + HΓd
z̃)

(41)
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Eqs (41) can be inserted into eqs (39) and (40) to obtain the semi-discrete
form under the requirement that the result holds for all admissible w̄, z̄, w̃
and z̃.

The semi-discrete initial value problem is second order in time with respect
to the displacement variables and first order for the fluid pore pressure. Yet,
the same integration scheme will be used for both variables, in particular the
Newmark method commonly used in structural dynamics. Let y denote an
array which is a function of time. At the discrete time instant tn its value is
yn. Under the assumption of time continuity, the updating equations of the
Newmark method are:

yn+1 = yn +Δtẏn + (
1
2
− β)Δt2ÿn + βΔt2ÿn+1 (42)

ẏn+1 = ẏn + (1 − γ)Δtÿn + γΔtÿn+1 (43)

with β, γ the parameters of the time integration scheme. The equations can
be recast as:

ÿn+1 = α0(yn+1 − yn) − α2ẏn − α4ÿn

ẏn+1 = α1(yn+1 − yn) − α3ẏn − α5ÿn

(44)

with

α0 =
1

βΔt2
, α2 =

1
βΔt

, α4 =
1
2β

− 1

α1 =
γ

βΔt
, α3 =

γ

β
− 1 , α5 = (

γ

2β
− 1)Δt

For future use we also list the expressions for the variations that can be derived
from expressions (44):

δÿn+1 = α0δyn+1 , δẏn+1 = α1δyn+1 (45)

Application of the time integration scheme (44) to semi-discrete balance
equations results in a set of coupled, discrete equations, which is nonlinear.
Therefore, an iterative solution procedure has to be applied within each time
step Δt. When using the Newton-Raphson method, as has been done in the
ensuing examples, and exploiting the variations defined in eqs (45), one obtains
a sequence of linearised problems, which for implementation purposes are
conveniently be cast in a matrix-vector format:⎡⎢⎢⎣
α0Māā + Kāā α0Māã + Kāã Kāp̄ Kāp̃

α0Mãā + Kãā α0Mãã + Kãã Kãp̄ Kãp̃

α0Mp̄ā + α1KT
āp̄ α0Mp̄ã + α1KT

ãp̄ α1Mp̄p̄ + Kp̄p̄ α1Mp̄p̃ + Kp̄p̃

α0Mp̃ā + α1KT
āp̃ α0Mp̃ã + α1KT

ãp̃ α1Mp̃p̄ + Kp̃p̄ α1Mp̃p̃ + Kp̃p̃

⎤⎥⎥⎦
⎛⎜⎜⎝
dā
dã
dp̄
dp̃

⎞⎟⎟⎠ =

⎛⎜⎜⎝
f∗ā
f∗ã
f∗p̄
f∗p̃

⎞⎟⎟⎠
(46)

with the external force vectors:
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fext
ā =

∫
Γ

NTtpdΓ , fext
ã =

∫
Γ

HΓd
NTtpdΓ

fext
p̄ =

∫
Γ

HTqpdΓ , fext
p̃ =

∫
Γ

HΓd
HTqpdΓ

the internal force vectors:

f int
ā =

∫
Ω

BTσσσdΩ

f int
ã =

∫
Ω+

BTσσσdΩ +
∫

Γd

NTtddΓ

with B = ∇N and, for two dimensions, m = [1, 1, 0]. The mass matrices:

Māā =
∫

Ω

ρNTNdΩ , Mãā = Māã = Mãã =
∫

Ω+
ρNTNdΩ

Mp̄ā = −

∫
Ω

kfρf∇HTNdΩ , Mp̃ā = Mp̄ã = Mp̃ã = −

∫
Ω+
kfρf∇HTNdΩ

Mp̄p̄ = −

∫
Ω

Q−1HTHdΩ , Mp̃p̄ = Mp̄p̃ = Mp̃p̃ = −

∫
Ω+
Q−1HTHdΩ

the stiffness matrices:

Kāp̄ = −

∫
Ω

αBTmHdΩ , Kãp̄ = Kāp̃ = Kãp̃ = −

∫
Ω+
αBTmHdΩ

Kp̄p̄ = −

∫
Ω

kf∇HT∇HdΩ , Kp̃p̄ = Kp̄p̃ = −

∫
Ω+
kf∇HT∇HdΩ

Kp̃p̃ = −

∫
Ω+
kf∇HT∇HdΩ −

∫
Γd

kdHTHdΓ

Kāā =
∫

Ω

BTDBdΩ , Kãā = Kāã =
∫

Ω+
BTDBdΩ

Kãã =
∫

Ω+
BTDBdΩ +

∫
Γd

NTTNdΓ

and the arrays at the right-hand side:

f∗ā = fext
ā − (f int

ā )i − α0Māā¨̄ai
n+1 − α0Māã

¨̃ai
n+1

f∗ã = fext
ã − (f int

ã )i − α0Mãā¨̄ai
n+1 − α0Mãã

¨̃ai
n+1

f∗p̄ = fext
p̄ − α0Mp̄ā¨̄ai

n+1 − α0Mp̄ã
¨̃ai

n+1 − α1Mp̄p̄ ˙̄pi
n+1 − α1Mp̄p̃

˙̃pi
n+1

−α1KT
āp̄

˙̄ai
n+1 − α1KT

ãp̄
˙̃ai
n+1

f∗p̃ = fext
p̃ + −α0Mp̃ā¨̄ai

n+1 − α0Mp̃ã
˙̃ai
n+1 − α1Mp̃p̄ ˙̄pi

n+1 − α1Mp̃p̃
˙̃pi

n+1

−α1KT
āp̃

˙̄ai
n+1 − α1KT

ãp̃
˙̃ai
n+1

where the superscript signifies that the corresponding quantity has to be evalu-
ated at iteration i. The quantities ¨̄ai

n+1, ¨̃ai
n+1, ˙̄ai

n+1, ˙̃ai
n+1, ˙̄pi

n+1, ˙̃pi
n+1 are eval-

uated using eqs (44).
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The stiffness matrix of eq. (46) is not symmetric. Symmetry can be re-
stored by multiplying the third and the fourth row of submatrices by α−1

1 and
omitting the contributions in the tangent stiffness matrix that are due to the
dynamic seepage term – the submatrices Mp̄ā, Mp̄ã, Mp̃ā and Mp̃ã. Since the
corresponding terms are retained in the right-hand side, the results are not
affected, only the convergence speed of the iterative procedure.

5.3 Stress computation at the tip

The nucleation criterion requires the determination of the stresses at the tip
of the discontinuity. Unfortunately, the stresses vary strongly in the vicinity of
the tip and an accurate estimate of them is difficult to obtain. In the present
case, the stress in the bulk of the specimen is almost homogeneous except
for a small area around the tip, which exacerbates the problem. Following
Wells [5] and Jirasek [23] we use a smoothing of the stresses around the tip
and compute the stress at the tip by the following nonlocal-like procedure:

σσσtip =

∫
Ω
wσσσ dΩ∫

Ω
w dΩ

(47)

where w is a Gaussian weight function:

w = e−r2/2l2

with r the distance to the tip, and l a characteristic length which defines the
size of region of influence of the stress. Because of the nearly homogeneous
stress state in the specimen, a small value of l is desired, preferably in the same
order of magnitude as the characteristic element length. This is accomplished
in the following manner. By virtue of the linear behaviour of the solid phase in
the bulk, a separate, independent integration domain can be defined, which
follows the tip during propagation. This domain contains integration cells
smaller than those of the mesh used in the discretisation – typically their
length is in the order of 15-20% of the element size. Moreover, a higher-order
Gaussian quadrature is used over this domain, which results in a very accurate
determination of the tip stress.

6 Example calculations

All results of the computations are based for the same two-dimensional spec-
imen with a width w = 0.04 m and a height H = 0.1 m, see also Fig-
ure 4, which is loaded under plane-strain conditions. The sides are traction
free and the external loading is applied via an imposed constant velocity
V0 = −10−3 m/s. Undrained conditions have been imposed on the entire
boundary of the specimen, because fast transient phenomena have been con-
sidered. The solid constituent is assumed to behave in a linear elastic manner
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initial defect

V0

Fig. 4. Geometry and boundary conditions

with a Young’s modulus E = 20 GPa and a Poisson’s ratio ν = 0.35. The
absolute mass densities are ρ′s = ρs/ns = 2000 kg/m3 for the solid phase
and ρ′f = ρf/nf = 1000 kg/m3 for the fluid phase, while the fluid fraction
nf = 0.3. The Biot coefficient α has been set equal to 1, the Biot modulus has
been assigned a value Q = 5.0 GPa, while the bulk material was assumed to
have a permeability kf = 10−14 m3/Ns. The permeability of the diaphragm
was assigned a value kd = 0.5 · 10−14 m2/Ns. Shear-band formation was trig-
gered by a small imperfection, see Figure 4.

A structured mesh has been used and consists of 5841 four-noded elements
with equal (bilinear) interpolations for the displacements and the pressure.
The simulation is started using a time step of 0.4 s, which is small enough to
accurately follow the pressure evolution and the near quasi-static behavior of
the solid skeleton before the onset of the shear band. When the shear band
starts to propagate, the phenomenon becomes dynamic and the time step size
is reduced severely in order to properly capture the propagation of the stress
wave. The parameters of the Newmark scheme are γ = 0.5 and β = 0.25.

6.1 Tresca-like initation criterion

The simulation for the Tresca-like nucleation criterion from which most of
the results derive, has been obtained with the following parameters: the time
step size during the shear-band formation equals 0.2 μs, nucleation traction
τc = 50 MPa and mode-II fracture energy GII

c = 750 J/m2. The dynamic
seepage term has not been taken into account in the analysis.

The evolution of the pore pressure field following the time t0 at which the
shear band starts to propagate, is shown in Figure 5. The scale has been chosen
such that the white regions on the picture have a pore pressure below the
cavitation pressure (here: −10+5Pa). One observes that, initially, cavitation
occurs only in the close vicinity of the discontinuity. When the shear band tip
reaches the centre of the specimen, the level of the pore pressure above the
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t = t0 + 4.0 μs t = t0 + 8.0 μs t = t0 + 12.0 μs t = t0 + 16.0 μs

Pore pressure (Pa)

Fig. 5. Evolution of the pressure field for the Tresca criterion

Fig. 6. Pressure field near the process zone and tractions at the discontinuity. The
scale of the pressures is equal to that in Figure 5. The magnitudes of the tractions
are proportional to the lengths of the bars
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discontinuity increases and pore pressures that exceed the cavitation pressure
develop over a larger region below the interface. Subsequently, this region
follows the tip of the shear band, and when it reaches the right boundary of the
specimen, the cavitation phenomena extend over the entire specimen. Because
of the limitations of the model – a gas phase has not been modelled separately
– the physical interpretation of the numerical results at this advanced stage
of shear band propagation becomes questionable.

As illustrated by Figure 6, it seems that in the present simulations that
utilise the Tresca-like criterion, cavitation is a consequence of local elastic un-
loading behind the process zone, where cohesive softening takes place. Indeed,
Figure 6 shows the pressure field as well as the values of the shear tractions in
the cohesive interface (with bars orthogonal to the discontinuity). The cavita-
tion front appears to coincide with the transition zone between the damaged
and the intact parts of the interface.

t = t0 + 5.0 μs t = t0 + 10.0 μs t = t0 + 15.0 μs t = t0 + 20.0 μs

Pore pressure (Pa)

Fig. 7. Evolution of the pressure field for the Coulomb criterion with δc

ΔUini
= 0.024

6.2 Coulomb initiation criterion

For the Coulomb criterion, the following model parameters have been used:
cohesion c0 = 10.0 MPa, friction angle φ = 30o. The threshold value in the
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t = t0 + 5.0 μs t = t0 + 10.0 μs t = t0 + 15.0 μs t = t0 + 20.0 μs

Pore pressure (Pa)

Fig. 8. Evolution of the pressure field for the Coulomb criterion with δc

ΔUini
= 0.16

frictional softening law is μc = 0.2 tanφ. A parametric study has been car-
ried out with respect to the influence of δc

ΔUini
, where δc is the tangential

displacement jump when the cohesive part of the traction has vanished, and
ΔUini the value of the prescribed displacement at the top of the specimen
at shear-band initiation. The simulations have been carried out using a time
step size of 0.25 μs.

A first simulation has been carried obtained for a fracture energy GII
c =

15 J/m2. In this case δc

ΔUini
equals 0.024. The evolution of the pressure field

is shown in Figure 7. The results are quite similar to those obtained with the
Tresca criterion since the values of δc

ΔUini
are close. Figure 10 shows that for

this case the process zone, i.e. where the tractions do not vanish, is rather
small. As a consequence, local unloadings are obtained behind this process
zone and cavitation occurs only in a small zone behind the shear-band tip.

Increasing the value of δc

ΔUini
to 0.16, the length of the process zone be-

comes approximately equal to that of the shear band, see Figure 10. Now,
local unloadings are not observed, but a global unloading occurs that can be
associated with the strain localisation inside the shear band and the softening
of the interface at the end of propagation. As a consequence, the pressure
evolution on Figure 8 has no local cavitation zone. Indeed, cavitation is first
obtained around the initiation locus and, subsequently, in the entire specimen.
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t = t0 + 5.0 μs t = t0 + 10.0 μs t = t0 + 15.0 μs t = t0 + 20.0 μs

Pore pressure (Pa)

Fig. 9. Evolution of the pressure field for the Coulomb criterion with δc

ΔUini
= 0.24

Instability patterns are observed on the last two figures that plot the pressure
distribution.

Such instabilities, which are due to friction, are observed at a larger scale
when δc

ΔUini
is increased further up to 0.24. Now, the shear band propagates

because the stress is higher than the material strength, but the mechanical
energy is not sufficient to damage the interface. Consequently, no localisation
is obtained, but only frictional instabilities are observed. No cavitation is
induced because of the absence of strain localisation.

7 Concluding remarks

In this contribution a numerical model has been elaborated which can cap-
ture discontinuities, e.g. cracks or shear bands, in a fluid-saturated medium.
The representation of the discontinuity is truly discrete and unbiased by the
discretisation. Moreover, the constitutive relations for the bulk and for the
discontinuity can be specified independently, for the solid phase as well as for
the fluid phase. Example calculations of dynamic shear band propagation have
been presented with a Tresca-like and a Coulomb criterion for shear band ini-
tiation. The results show that the propagation of the shear band is strongly
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δc

ΔUini
= 0.024 δc

ΔUini
= 0.16 δc

ΔUini
= 0.24

Shear traction (Pa)

Fig. 10. Shear traction distribution at the end of the shear–band propagation for
different values of δc

ΔUini

influenced by the constitutive assumptions in the discontinuity. Indeed, as
highlighted by the results of the calculations, the cavitation phenomenon is
triggered by unloading of the solid skeleton, which is a direct consequence
of strain localisation and strongly depends on the constitutive model for the
discontinuity.

8 Acknowledgements

This work was supported by the European Commission under contract HPRN-
CT-2002-00198.

References

1. de Borst R (2004) Damage, material instabilities, and failure. In: Encyclopedia
of Computational Mechanics. Wiley, Chichester

2. Babuska I, Melenk JM (1997) International Journal for Numerical Methods in
Engineering 40:727–758

3. Belytschko T, Black T (1999) International Journal for Numerical Methods in
Engineering 45:601–620

341
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17. de Borst R, Réthoré J, Abellan MA (2006) Archive of Applied Mechanics 75:595–
606

18. Armero F, Callari C (1999) International Journal for Numerical Methods in
Engineering 46:1673–1698

19. Larsson J, Larsson R (2000) Mechanics of Cohesive-frictional Materials 5:565–
582

20. Schrefler, B, Scotta R (2001) Computer Methods in Applied Mechanics and
Engineering 190:3223–3246

21. Feenstra PH, de Borst R (1996) International Journal of Solids and Structures
33:707–730

22. Abellan MA, de Borst R (2006) Computer Methods in Applied Mechanics and
Engineering 195:5011–5019

23. Jirasek M (1998) Embedded crack models for concrete fracture In: Computa-
tional Modelling of Concrete Structures. Balkema, Rotterdam, 291–300

342



Single Domain Quadrature Techniques for
Discontinuous and Non-Linear Enrichments in

Local Partion of Unity FEM

Giulio Ventura
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I-10129 Torino, Italy; giulio.ventura@polito.it

Summary. The problem of the evaluation of the stiffness matrix for finite elements
enriched by discontinuous/non-linear functions is investigated. If the introduction
of discontinuities inside the elements through enrichment functions is nowadays well
established by local partition of unity techniques, the evaluation of the element
stiffness requires splitting the element into quadrature subcells where appropriate
quadrature rules apply. To overcome this problem a technique is suggested, called
polynomial mapping, based on replacing the enrichment function with polynomials
having the same integral of the original function. These polynomials are function
of the position of the discontinuity and are defined on the entire element domain,
therefore avoiding the generation of quadrature subcells. The technique is applied
to discontinuities in the displacement and strain and is introduced for regularized
jumps in the displacement. An integration error analysis is shown in the latter case.

Key words: Extended finite element method, partition of unity, regularized dis-
placement jump, quadrature, equivalent polynomial.

1 Introduction

Local Partition of Unity Finite Element Methods [1] (like the eXtended Finite
Element Method) enrich the standard finite element by introducing suitable
discontinuous and/or non-linear functions to best approximate the solution
and to model arbitrary discontinuities independent of the mesh [2–5]. In this
context a well-known problem is given by the numerical evaluation of the
stiffness matrix in the elements intersected by the discontinuity surface and
in the elements where the enrichment is highly non-linear. In fact, in this
case, Gaussian quadrature is inadequate as large errors may arise. This is
commonly solved by partitioning the elements to generate quadrature sub-
cells [6, 7] where the integrands are continuous and differentiable, by high
order Gauss rules or by adaptive quadrature with all the relevant computa-
tional costs. In this work the problem of the quadrature of discontinuous or

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 343–361.
© 2007 Springer. Printed in the Netherlands.



non-linear functions in the enriched elements is investigated. A technique is il-
lustrated to eliminate the requirement of quadrature subcells generation. The
technique extends the concepts introduced in [8] and it relies on the analytic
study of the integrand of the element stiffness. Let the signed distance from
the discontinuity surface be a level set function. Based on the nodal values of
the level set, it is demonstrated that an equivalent polynomial function exists
such that its integral gives the exact value of the original function integrated
on subcells. The polynomial is defined in the whole element domain, so that
it can be conveniently integrated by Gauss quadrature, and no quadrature
subdomains need be defined. This has been developed, in the hypothesis of a
linear discontinuity surface crossing completely an element, with reference to
displacement jumps in one, two and three dimensions, as well as in the case
of a discontinuity in the strain field due to a material interface. The case of
a regularized Heaviside displacement jump is here analyzed as a first applic-
ation to a continuous but non-polynomial and highly non-linear enrichment.
The problem is formulated in an arbitrary number of dimensions and, for the
sake of brevity, results are given in the one dimensional case: polynomials
are given in closed form replacing the enrichment function and its derivative
in the element stiffness evaluation. An error analysis for different quadrature
strategies is performed and the results are reported and commented.

2 Analysis of the Problem

Consider a body described by a domain Ω with boundary ∂Ω and let u be
the displacement field.

The boundary is partitioned into ∂Ωu where the displacements are pre-
scribed, u = ū, and ∂Ωq where the traction q is given, such that ∂Ωu

⋂
∂Ωq =

∅.
The local Partition of Unity approximation to the displacement field is:

u(x) =
∑
I∈N

NI(x) (uI + aIfe(x)) (1)

where N are the nodes of the finite element mesh, NI(x) the finite element
shape functions and the coefficients uI , aI are to be determined through the
application of a variational principle or weak form to the discrete displacement
field (1).

Suppose the enrichment fe is a function of the signed distance d(x) from
a given surface Γ . In the case of cracks Γ is the crack (discontinuity) surface.

The enrichment part is usually added only to the nodes of the elements
intersected by the surface Γ or to a suitable neighbor of this surface, so that
these elements are called enriched elements. The coefficients aI are not in-
cluded (i.e. set to zero) at nodes of unenriched elements.

As described in [3], the discontinuity in the displacement field given by a
crack can be represented assuming as enrichment function fe the generalized
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Fig. 1. Enrichment functions: (a) for crack problems, (b) for material discontinuity.

Fig. 2. Regularized Heaviside function plots for δ = 1.0, 0.1, 0.01.

Heaviside step function, Fig. 1a

fe(x) = H(x) = sign (d(x)) =
{

1 if d(x) ≥ 0
−1 if d(x) < 0 (2)

Material discontinuities, generating a discontinuity in the strain field, can
be represented by the function, Fig. 1b

fe(x) = Q(x) = abs (d(x)) =
{

d(x) if d(x) ≥ 0
−d(x) if d(x) < 0 (3)

Finally, in recent works on shear bands and localization [9,10] regularized
Heaviside functions have been considered, i.e. continuous and differentiable
functions that tend to the Heaviside step function according to the value of
a parameter. In the present work the following regularized Heaviside function
will be considered, Fig. 2

fe(d(x)) = Hρ(x) =
∫ d(x)

0

e−
|ξ|
ρ dξ = sign(d(x))(1 − e−

|d(x)|
ρ )) (4)

The traditional Gaussian quadrature used to evaluate the element stiffness
matrices cannot be immediately applied when the above enrichment functions
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are present, being it suitable only for polynomial functions. As mentioned in
the Introduction, this is usually solved by splitting the element domain into
two quadrature subdomains, determined by the discontinuity surface Γ , or by
finer cell subdivisions and higher Gauss quadrature rules for non-polynomial
and non-linear enrichments.

To study how the subdivision of the quadrature domain can be eliminated,
it is useful to consider the symbolic form of the element stiffness matrix. In the
following subsections this will be developed for the three listed enrichments
(2), (3), (4), but the method may be extended to other enrichment functions.

The displacement and strain fields in a single enriched finite element can
be written in the form

u = Nue + feNae (5)
ε = Bue + feBae + (∇εfe) Nae (6)

where ue, ae are the element standard and enriched nodal variables and ∇ε

is the symmetric gradient operator, so that Bue = (∇εN) ue.
Let E the elastic operator, such that the stress σ is given by σ = Eε. The

element internal virtual work is given by

Li =
∫

Ωe

εTσ dΩ =∫
Ωe

BTEBdΩ ue · ue +
∫

Ωe

(
feBTEB + BTE (∇εfe)N

)
dΩ ae · ue+∫

Ωe

(
feBTEB + NT (∇εfe)

T EB
)

dΩ ue · ae+∫
Ωe

(
f2
e BTEB + feBTE (∇εfe)N + feNT (∇εfe)

T EB+

+NT (∇εfe)
T E (∇εfe)N

)
dΩ ae · ae (7)

The element stiffness matrix is then

Ke =
∫

Ωe

[
kuu kua

kau kaa

]
dΩ =

∫
Ωe

⎡⎢⎢⎢⎢⎣
BTEB feBTEB + BTE (∇εfe)N

feBTEB+ f2
e BTEB + feBTE (∇εfe)N+

NT (∇εfe)
T EB feNT (∇εfe)

T EB+

NT (∇εfe)
T E (∇εfe)N

⎤⎥⎥⎥⎥⎦ dΩ (8)

where the matrix has been partitioned into four submatrices according to the
ordering of nodal variables.
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Note that, for discontinuous enrichment functions, the formal integral (8)
on the element domain Ωe needs to be split into two separate Gauss integra-
tions, dividing the domain along the discontinuity surface Γ . For non-linear
and non-polynomial enrichments high order Gauss rules or adaptive quadrat-
ure is needed for an accurate evaluation.

In the next sections it will be shown how the integrand function in (8)
can be replaced by an equivalent polynomial expression defined in the whole
domain Ωe.

To this end, it will be assumed that the surface Γ will split the element
domain Ωe into two subdomains Ω1

e and Ω2
e such that

Ω1
e ∪Ω2

e = Ωe ; Ω1
e ∩Ω2

e = Γ (9)

Although all the developments will carried out in the parent domain of the
elements, when linear shape functions elements are considered these apply as
well to the general case of isoparametric mapping, the Jacobian of the trans-
formation being constant. In a more general setting the effect of isoparametric
mapping has been outlined in [8].

3 Step Function Enrichment

Let consider the enrichment function fe = H , Eq. (2), typically used in crack
problems and suppose linear shape functions are used for the partition of
unity [11]. It follows that functionH is piecewise constant with zero derivative,
Fig. 1a and:

• the strain matrix B is formed by constants for the linear bar, triangular
and tetrahedral element;

• the strain matrix B is formed by linear functions for the bilinear quadri-
lateral element;

• ∇εfe is identically zero.

In the present case the element stiffness (8) simplifies to

Ke =
∫

Ωe

[
BTEB HBTEB
HBTEB H2BTEB

]
dΩ (10)

where

BTEB are continuous and differentiable functions;
HBTEB are piecewise continuous and differentiable functions;
H2BTEB are continuous and differentiable functions (H2 = 1 in Ωe).

Therefore, only the off diagonal part HBTEB is not Gauss integrable on
the entire domain Ωe, but is Gauss integrable on the two subdomains Ω1

e and
Ω2

e so that the integration of (10) can be split as follows
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Ke =
∫

Ωe

[
BTEB 0

0 H2BTEB

]
dΩ+∫

Ω1
e

H

[
0 BTEB

BTEB 0

]
dΩ +

∫
Ω2

e

H

[
0 BTEB

BTEB 0

]
dΩ (11)

We want to join the integration domains Ω1
e and Ω2

e by replacing the last
two integrals in (11) with one defined on Ωe giving the same numerical result.
To this end let H̃ a polynomial defined by the formal equivalence∫

Ωe

H̃BTEBdΩ =
∫

Ω1
e

HBTEBdΩ +
∫

Ω2
e

HBTEBdΩ (12)

If such polynomial H̃ exists, then it is, trivially

Ke =
∫

Ωe

[
BTEB H̃BTEB
H̃BTEB H2BTEB

]
dΩ (13)

so that the integration can be performed on the entire element domain Ωe

with traditional Gauss quadrature.
The determination of the equivalent polynomial H̃ has been presented

in [8] for one to three dimensional elements. The polynomial coefficients are
functions of the signed distance function values at the element nodes.

4 Material Discontinuity Problems

The methodology introduced to deal with the jump in the displacement field
due to cracks is applied to material discontinuity problems, i.e. to a discon-
tinuity in the strain field. This kind of discontinuity can be represented by
the enrichment function Q given by (3).

This case is slightly more involved than the previous one as the enrichment
function has nonzero derivative and the elastic operator changes when crossing
the discontinuity line.

Let d(x) ≥ 0 in Ω1
e and assume that the discontinuity line crosses com-

pletely an element. The enrichment function Q(x) = abs(d(x)) has the prop-
erty that its gradient is constant in Ω1

e and Ω2
e (the distance function being

represented by a plane). It is

∇Q(x1) = −∇Q(x2) ∀x1 ∈ Ω1
e , ∀x2 ∈ Ω2

e (14)

Consequently, introducing the signed distance functionH(x) = sign(d(x)),
it is

∇Q = H(x)∇d ∀x ∈ Ωe (15)
∇εQ = H(x)∇εd ∀x ∈ Ωe (16)
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Let
∇εd = E (17)

Replacing fe by Q and ∇εQ by HE, the element stiffness matrix (8) can
be written

Ke =
∫

Ωe

⎡⎢⎣ BTEB QBTEB +HBTEEN

QBTEB+ Q2BTEB +QHBTEEN+
HNTETEB QHNTETEB +H2NTETEEN

⎤⎥⎦ dΩ (18)

Suppose the two regions Ω1
e and Ω2

e , separated by the discontinuity line,
have elastic operators E1 and E2, respectively. Let

Em =
1
2

(E1 + E2) (19)

ΔE =
1
2

(E1 − E2) (20)

Then the elastic operator can be written as

E = Em +H(x)ΔE (21)

so that (18) is split into the sum of two parts

Ke =
∫

Ωe

⎡⎢⎣ BTEm B QBTEm B +HBTEmEN

QBTEm B+ Q2BTEm B +QHBTEmEN+
HNTETEm B QHNTETEmB +H2NTETEmEN

⎤⎥⎦dΩ+

+
∫

Ωe

⎡⎢⎣ HBTΔEB HQBTΔEB +H2BTΔEEN

HQBTΔEB+ HQ2BTΔEB +H2QBTΔEEN+
H2NTETΔEB H2QNTETΔEB +H3NTETΔEEN

⎤⎥⎦dΩ

(22)

With the above transformations, all the discontinuities have been concen-
trated into the functions Q and H , so that (22) can be split into continuous
and differentiable terms, and piecewise continuous and differentiable terms.
Table 1 summarizes the properties of the integrand functions.

To evidence continuous and differentiable terms in Ωe and continuous and
differentiable terms in the subdomains Ω1

e and Ω2
e , (22) is written
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Table 1. Continuity of the integrand functions for material discontinuity.

Continuous and differentiable Piecewise continuous and differentiable

H2 H
Q2 Q
H Q H3

H Q2

H2 Q

Ke =
∫

Ωe

⎡⎢⎣BTEm B 0
0 Q2BTEm B +QHBTEmEN+

QHNTETEmB +H2NTETEmEN

⎤⎥⎦dΩ+

+
∫

Ω1
e∪Ω2

e

⎡⎢⎢⎢⎢⎣
0 QBTEm B+

HBTEmEN
QBTEm B+ 0

HNTETEm B

⎤⎥⎥⎥⎥⎦dΩ+

+
∫

Ωe

⎡⎢⎢⎢⎣
0 H QBTΔEB+

H2BTΔEEN
HQBTΔEB+ 0

H2NTETΔEB

⎤⎥⎥⎥⎦dΩ+

+
∫

Ω1
e∪Ω2

e

⎡⎢⎣HBTΔEB 0
0 HQ2BTΔEB +H2QBTΔEEN+

H2QNTETΔEB +H3NTETΔEEN

⎤⎥⎦ dΩ (23)

and, grouping together the terms with the same continuity and differentiability
properties,

Ke =
∫

Ωe

⎡⎢⎣ BTEm B HQBTΔEB +H2BTΔEEN

HQBTΔEB+ Q2BTEm B +QHBTEmEN+
H2NTETΔEB QHNTETEmB +H2NTETEmEN

⎤⎥⎦dΩ+

+
∫

Ω1
e∪Ω2

e

⎡⎢⎣ HBTΔEB QBTEm B +HBTEmEN

QBTEm B+ H Q2BTΔEB +H2QBTΔEEN+
HNTETEm B H2QNTETΔEB +H3NTETΔEEN

⎤⎥⎦dΩ (24)

The first term on the r.h.s. of (24) can be numerically evaluated by Gauss
quadrature, while the second should be evaluated separately on the two sub-
domains Ω1

e and Ω2
e . In the light of the proposed methodology two equivalent

polynomials H̃ and Q̃ are to be determined as a replacement to the discon-
tinuous functions, satisfying the following equation
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∫
Ω1

e

⎡⎢⎣ HBTΔEB QBTEm B +HBTEmEN

QBTEm B+ HQ2BTΔEB +H2QBTΔEEN+
HNTETEm B H2QNTETΔEB +H3NTETΔEEN

⎤⎥⎦dΩ+

+
∫

Ω2
e

⎡⎢⎣ HBTΔEB QBTEm B +HBTEmEN

QBTEm B+ H Q2BTΔEB +H2QBTΔEEN+
HNTETEm B H2QNTETΔEB +H3NTETΔEEN

⎤⎥⎦dΩ =

=
∫

Ωe

⎡⎢⎣ H̃BTΔEB Q̃BTEm B + H̃BTEmEN

Q̃BTEm B+ H̃ Q2BTΔEB +H2Q̃BTΔEEN+
H̃NTETEm B H2 Q̃NTETΔEB + H̃ H2NTETΔEEN

⎤⎥⎦dΩ (25)

The problem of the determination of Q̃ and H̃ has been examined and
solved with reference to 1D and 2D problems in [8]. Tables 2 and 3 summarize
the polynomial degree of the terms multiplying H̃ and Q̃ in (25).

Table 2. Polynomial degree of the terms multiplying H̃ in (25).

Term Degree

BTΔEB quadratic
BTEmEN cubic (incomplete)
NTETΔEEN quartic (incomplete)
Q2BTΔEB quartic

Table 3. Polynomial degree of the terms multiplying Q̃ in (25).

Term Degree

BTEm B quadratic
BTΔEEN cubic (incomplete)

5 Regularized Heaviside Function

In the present section is examined the case the enrichment function is given
by the regularized Heaviside function fe = Hρ, Eq. (4). By the chain rule and
(17) it is

∇εHρ =
∂Hρ

∂d
E = δ E (26)
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where it has been set δ = ∂Hρ/∂d. The element stiffness (8) in this particular
case is therefore

Ke =
∫

Ωe

⎡⎢⎢⎣
BTEB HρBTEB + δBTEEN

HρBTEB+ H2
ρB

TEB + δHρBTEEN+

δNTETEB δHρNTETEB + δ2NTETEEN

⎤⎥⎥⎦dΩ (27)

where E is a constant tensor. The examination of (27) shows that the non-
polynomial terms are

• Hρ, multiplying the constants BTEB;
• δ, multiplying the first order polynomials BTEEN;
• H2

ρ , multiplying the constants BTEB;
• δHρ, multiplying the first order polynomials BTEEN;
• δ2, multiplying the second order polynomials NTETEEN.

For each of these non-polynomial functions an equivalent polynomial can
be defined for replacement in (27), following the path introduced in [8]. As
previously pointed out, the equivalence is set so that the integral of the poly-
nomial is equal to the integral of the original function in each finite element
Ωe.

The replacement of the original functions with the equivalent polynomials
allows to use traditional low order Gauss quadrature without introducing any
approximation in the evaluation of the element stiffness.

To illustrate the procedure, reference is made to the one-dimensional case,
ξ being the abscissa in the parent element domain [−1,+1].

• As function Hρ multiplies constants, its equivalent polynomial PH must
have the property ∫ +1

−1

Hρ dξ =
∫ +1

−1

PH dξ (28)

• As function δ multiplies first order polynomials, its equivalent polynomial
Pδ must have the property∫ +1

−1

δ dξ =
∫ +1

−1

Pδ dξ (29a)∫ +1

−1

δ ξ dξ =
∫ +1

−1

Pδ ξ dξ (29b)

• As function H2
ρ multiplies constants, its equivalent polynomial PH2 must

have the property ∫ +1

−1

H2
ρ dξ =

∫ +1

−1

PH2 dξ (30)
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• As function δHρ multiplies first order polynomials, its equivalent polyno-
mial PδH must have the property∫ +1

−1

δ Hρ dξ =
∫ +1

−1

PδH dξ (31a)∫ +1

−1

δ Hρ ξ dξ =
∫ +1

−1

PδH ξ dξ (31b)

• As function δ2 multiplies second order polynomials, its equivalent polyno-
mial Pδ2 must have the property∫ +1

−1

δ2 dξ =
∫ +1

−1

Pδ2 dξ (32a)∫ +1

−1

δ2 ξ dξ =
∫ +1

−1

Pδ2 ξ dξ (32b)∫ +1

−1

δ2 ξ2 dξ =
∫ +1

−1

Pδ2 ξ2 dξ (32c)

The left hand sides of Equations (28). . .(32) can be analytically evaluated
for the assumed function Hρ, Eq. (4). Assuming PH and PH2 as constants,
Pδ and PδH as first order polynomials and Pδ2 as second order polynomial,
it is straightforward to observe that Equations (28). . .(32) are linear systems
in the unknown polynomial coefficients of the form

Ac = b (33)

where c is the column vector of the variables (polynomial coefficients) and b
is the column vector of solutions.

The vectors of solutions are the right end sides of the equations, listing the
analytic integrals on the element domain and will be function of the position
of the surface Γ , Hρ being function of the signed distance d.

The determination of the equivalent polynomials has been carried out for
the linear bar and triangle. For the sake of brevity, in the Appendix to the
present work the solution will be given for the one-dimensional case, being
the 2D case long to list.

6 Gaussian Quadrature for the Equivalent Polynomials

In the previous sections it has been shown that, replacing the enrichment
function by equivalent polynomials allows for the evaluation of the stiffness
matrix by Gauss quadrature without splitting the element domain.

The results are summarized in Table 4, for the examined problems and
finite elements. As evident from the Table, in the case of cracks and material
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discontinuity the proposed method avoids the quadrature domain splitting
at the cost of sometimes doubling the polynomial degree of the integrand
functions. For crack problems with triangular or tetrahedral elements the
degree of the integrand remains the same, yielding an additional advantage.

For the regularized Heaviside function a numerically exact Gauss quadrat-
ure rule does not exist and comments and results are illustrated in the next
section.

Table 4. Maximum polynomial degree of the integrand functions for the examined
problems (element parent domain).

Problem Element Max polyno-
mial degree
(quadrature
on subcells)

Equivalent
polynomial

Max equivalent
polynomial
degree (quad-
rature on Ωe)

crack 2 nodes bar, 3
nodes triangle, 4
nodes tetrahed-
ron

0 H̃ 0

4 nodes quadri-
lateral

2 H̃ 4

material
discont.

2 nodes bar, 3
nodes triangle, 4
nodes tetrahed-
ron

2 H̃, Q̃ 4

4 nodes quadri-
lateral

4 H̃, Q̃ 8

regularized
Heaviside

2 nodes bar, 3
nodes triangle, 4
nodes tetrahed-
ron

n.a. PH , PH2 0

n.a. Pδ, PδH 1
n.a. Pδ2 2

6.1 Quadrature errors

In this section attention will be focused on the quadrature of the regularized
Heaviside step function (4). This function and its derivative multiply from
constants to second degree polynomials, see Table 5 and is to be integrated
in the element domain. In this analysis the one dimensional case is examined
as the higher dimensional cases are expected to behave similarly.

To study the influence of the quadrature method in the evaluation of the
terms, the errors in the integral of the function times the monomial terms, as
reported in Table 5, have been computed.
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Table 5. Multiplying monomials for the enrichment function and derivative.

Function Multiplying monomials

Hρ 1
δ 1, ξ

H2
ρ 1

δHρ 1, ξ
δ2 1, ξ, ξ2

Three integration methods are considered:

• analytic integration, providing the reference exact value;
• equivalent polynomial integration, giving the same exact values as analytic

integration. These results will not be listed being equal to the above;
• Gauss integration on the entire element domain;
• Gauss integration by splitting the element in two integration subdomains

at the abscissa where d = 0;

The results are reported in tables where the position of the “discontinuity”
d = 0 has been fixed at the abscissa ξd = 0.5, then two values of ρ, ρ = 0.1
and ρ = 0.001, and four Gauss rules, 2, 5, 10, 50 Gauss points have been
considered. All the computations have been performed developing a software
with Mathematica� by Wolfram Research.

For each quadrature term Tables 6 . . . 12 report the exact value of the
integral and the percentage error by using the Gauss rule over the entire
element domain (1 dom.) and by splitting the element into two subdomains
separated by the line d = 0, i.e. at ξd = 0.5, and applying the rule in each
subdomain (2 dom.). Therefore, the two domain quadrature actually uses two
times the number of Gauss points compared to the quadrature over the entire
domain.

An important consideration is to be made for a proper reading of the
results: as some of the integrals have zero as exact limit value when the reg-
ularization parameter ρ→ 0, the error in this case has basically no meaning,
being influenced by truncation errors to a large extent.

The two examined cases, ρ = 0.1 and ρ = 0.001, are such that in the first
the function varies rather smoothly in the domain and its first derivative δ is
numerically nonvanishing; on the other hand, in the second case, Hρ numeric-
ally approximates quite closely the Heaviside step function and, numerically,
it presents a vanishing derivative except at the point ξ = ξd where it attains
a very large value.

Assume the meaningful error in the evaluation of the stiffness is due to the
terms whose absolute integral value is greater than 1% the largest integral.
With reference to Table 6 the largest absolute integral value is 1 and this
means the only meaningful terms are on the first four rows, Hρ, H2

ρ , δ and δξ.
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Examine the case ρ = 0.1, Tables 6 . . . 8. The error decreases as the number
of Gauss points is increased, as expected. Although the regularized Heaviside
function is everywhere continuous and differentiable, we observe that splitting
the domain into two subdomains yields much better results than the single
domain quadrature. The single domain quadrature gives satisfactory results
only with the 10 points rule, that is an excessive number, especially if we think
of higher dimensional problems (2D and 3D).

If reference is made to the case ρ = 0.001, Tables 9 . . . 12, we observe again
that domain splitting is necessary. In fact, if two domains are considered, the
5 points Gauss rule gives satisfactory results, while single domain quadrature
requires a 50 Gauss points rule to give an error less than 5% in the largest
integral.

In general, it may be concluded that the regularized Heaviside function
requires splitting of the integration domain and a high order quadrature rule
for a proper evaluation of the stiffness terms. Unless very high order rules are
adopted, single domain Gauss quadrature results in large errors.

Comparing these results to the polynomial mapping technique we observe
that, although the evaluation of the polynomial coefficients is slightly time
consuming (see the expressions of the coefficients in the Appendix), the exact
value of each term is obtained with a very low order Gauss rule, see Table 4.
Moreover, no splitting of the domain is required, with the consequent simpli-
fications in 2D and, especially, 3D problems.

Table 6. Quadrature results for ρ = 0.1 and the 2 Gauss points quadrature. The
equivalent polynomial results are not listed, being exact. The error of classical Gauss
quadrature on the entire domain and by domain splitting are reported in the last
two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −0.99933 −53.8 % +6.1 %
H2

ρ +1.70135 −24.2 % +4.9 %
δ +0.01993 +131.5 % −38.2 %
δ ξ +0.00993 +168.4 % −36.8 %
δ Hρ −0.00007 −37105 % −4755 %
δ Hρ ξ +0.00143 +906.2 % +131.9 %
δ2 +0.00010 +112.9 % −68.4 %
δ2 ξ +0.00050 +145.8 % −62.8 %
δ2 ξ2 +0.00025 +178.3 % −56.1 %
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Table 7. Quadrature results for ρ = 0.1 and the 5 Gauss points quadrature. The
equivalent polynomial results are not listed, being exact. The error of classical Gauss
quadrature on the entire domain and by domain splitting are reported in the last
two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −0.99933 −10.4 % +0.1 %
H2

ρ +1.70135 −8.6 % −0.3 %
δ +0.01993 +67.4 % −0.3 %
δ ξ +0.00993 +80.5 % −0.6 %
δ Hρ −0.00007 −15621 % +826 %
δ Hρ ξ +0.00143 +318.3 % −22.4 %
δ2 +0.00010 +121.8 % −6.2 %
δ2 ξ +0.00050 +138.9 % −7.5 %
δ2 ξ2 +0.00025 +152.4 % −8.7 %

Table 8. Quadrature results for ρ = 0.1 and the 10 Gauss points quadrature. The
equivalent polynomial results are not listed, being exact. The error of classical Gauss
quadrature on the entire domain and by domain splitting are reported in the last
two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −0.99933 +2.4 % +0.0 %
H2

ρ +1.70135 −0.1 % +0.0 %
δ +0.01993 −5.4 % +0.0 %
δ ξ +0.00993 −9.5 % +0.0 %
δ Hρ −0.00007 +6091 % +0.2 %
δ Hρ ξ +0.00143 −141.2 % −0.0 %
δ2 +0.00010 −22.5 % −0.0 %
δ2 ξ +0.00050 −29.9 % −0.0 %
δ2 ξ2 +0.00025 −36.3 % −0.0 %

7 Conclusions

In the paper a method for eliminating the introduction of quadrature sub-
cells when using discontinuous/non-differentiable or highly non-linear enrich-
ment functions in local Partition of Unity methods has been introduced.
The method replaces the enrichment functions with equivalent polynomials,
defined to yield the same value of the original enrichment function in the
integration of the stiffness coefficients. Consequently, the employment of the
equivalent polynomials allows low order Gauss quadrature to be be applied
to the entire element domain. The method is deeply tied to the level set rep-
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Table 9. Quadrature results for ρ = 0.001 and the 2 Gauss points quadrature. The
equivalent polynomial results are not listed, being exact. The error of classical Gauss
quadrature on the entire domain and by domain splitting are reported in the last
two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −1.00000 −100.0 % +0.0 %
H2

ρ +1.99700 +0.2 % +0.2 %
δ +0.00000 −100.0 % −100.0 %
δ ξ +0.00000 −100.0 % −100.0 %
δ Hρ −0.00000 −100.0 % −100.0 %
δ Hρ ξ +0.00000 −100.0 % −100.0 %
δ2 +0.00000 −100.0 % −100.0 %
δ2 ξ +0.00000 −100.0 % −100.0 %
δ2 ξ2 +0.00000 −100.0 % −100.0 %

Table 10. Quadrature results for ρ = 0.001 and the 5 Gauss points quadrature.
The equivalent polynomial results are not listed, being exact. The error of classical
Gauss quadrature on the entire domain and by domain splitting are reported in the
last two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −1.00000 −43.1 % +0.0 %
H2

ρ +1.99700 +0.2 % +0.2 %
δ +0.00000 −100.0 % −100.0 %
δ ξ +0.00000 −100.0 % −100.0 %
δ Hρ −0.00000 −82.4 % +0.0 %
δ Hρ ξ +0.00000 −100.0 % −100.0 %
δ2 +0.00000 −100.0 % −100.0 %
δ2 ξ +0.00000 −100.0 % −100.0 %
δ2 ξ2 +0.00000 −100.0 % −100.0 %

resentation of the discontinuity surface, as the data defining the discontinuity
are used to generate the closed form solution of the equivalent polynomial.
The method is illustrated with reference to linear shape function elements for
crack, material discontinuity and regularized jump problems in one, two and
three dimensions. In particular a regularized Heaviside function is considered
and the polynomials are given in the one dimensional case. An extensive er-
ror analysis has been performed in this case, showing domain splitting along
the discontinuity surface is always necessary to properly evaluate the stiffness
terms.
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Table 11. Quadrature results for ρ = 0.001 and the 10 Gauss points quadrature.
The equivalent polynomial results are not listed, being exact. The error of classical
Gauss quadrature on the entire domain and by domain splitting are reported in the
last two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −1.00000 +13.0 % +0.0 %
H2

ρ +1.99700 +0.2 % +0.1 %
δ +0.00000 −100.0 % −98.8 %
δ ξ +0.00000 −100.0 % −98.8 %
δ Hρ −0.00000 −100.0 % +0.0 %
δ Hρ ξ +0.00000 −100.0 % +725.0 %
δ2 +0.00000 −100.0 % −100.0 %
δ2 ξ +0.00000 −100.0 % −100.0 %
δ2 ξ2 +0.00000 −100.0 % −100.0 %

Table 12. Quadrature results for ρ = 0.001 and the 50 Gauss points quadrature.
The equivalent polynomial results are not listed, being exact. The error of classical
Gauss quadrature on the entire domain and by domain splitting are reported in the
last two columns.

Function Exact value % of error in Gauss % of error in Gauss
of integral quadrature, 1 dom. quadrature, 2 dom.

Hρ −1.00000 −4.5 % +0.0 %
H2

ρ +1.99700 +0.1 % +0.1 %
δ +0.00000 −68.9 % −98.8 %
δ ξ +0.00000 −68.9 % −98.8 %
δ Hρ −0.00000 +1015 % +0.000 %
δ Hρ ξ +0.00000 +20582 % +725 %
δ2 +0.00000 −99.3 % −100.0 %
δ2 ξ +0.00000 −99.3 % −100.0 %
δ2 ξ2 +0.00000 −99.3 % −100.0 %
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Appendix

Equivalent polynomials for the 1D bar in the parent domain ξ ∈ [−1, 1].
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Numerical determination of crack stress and
deformation fields in gradient elastic solids

G.F. Karlis1, S.V. Tsinopoulos2, D. Polyzos3 and D.E. Beskos4

Summary. A boundary element method is developed for fracture analysis of gra-
dient elastic 2-D solids under static loading. A simple version of Mindlin’s general
theory of gradient elastic materials is employed and the two required boundary in-
tegral equations, one for displacements and the other for its normal derivative are
presented. Use is made of the fundamental solution of the problem and this leads
to a formulation that requires only a boundary discretization. Two representative
numerical examples are presented to illustrate the method, demonstrate its accuracy
and efficiency and assess the gradient effect on the response. The first deals with a
mode I crack, while the second with a mixed mode (I & II) crack. For the second
case the proposed method is used in conjunction with the method of subregions.
The method is employed with regular and regular plus special (near the crack tip)
boundary elements. The gradient effect consists of modifying both the displacement
and the stress field around the crack tip and resulting in a response which is more
physically acceptable than the one coming from the classical theory of elasticity.

Key words: gradient elasticity, fracture mechanics, BEM, variable-order sin-
gularity element

1 Introduction

The mechanical behavior of linear elastic materials with microstructure, such
as polymers, polycrystals or granular materials, cannot be adequately de-
scribed by the classical elasticity theory and the concept of the local stress.
When the microstructural effects are important, the state of stress is defined in

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 365–380.
© 2007 Springer. Printed in the Netherlands.
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a non-local manner and the material behavior can be macroscopically modeled
by using higher order strain gradient, micropolar or couple stress theories.

Among these theories, the simple gradient elastic theory with just one or
two constants in addition to the two classical Lamè constants has received
considerable attention during the last fifteen years or so. This theory is a
special case of the simplified versions of the general gradient elasticity theory
of Mindlin [1, 2]. These simple gradient elasticity theories have been success-
fully used for the analytic solution of various boundary value problems and
have demonstrated the elimination of singularities or discontinuities of clas-
sical elasticity, their ability to capture size and edge effects and wave disper-
sion in cases where this was not possible in the classical elasticity framework
(Aifantis [3], Ru and Aifantis [4], Vardoulakis and Sulem [5], Exadaktylos and
Vardoulakis [6]).

In linear elastic fracture analysis one encounters large strain gradients near
the crack tip and gradient elasticity theory appears to be the ideal theory for
studying the strain and stress fields near the crack tip at the microscale. One
can mention here the analytical works of Vardoulakis et al [7], Vardoulakis
and Exadaktylos [8], Exadaktylos [9], Shi et al [10], Zhang et al [11], Fannjiang
et al [12] and Georgiadis [13] on the determination of strain and stress fields
around the tip of mode I, II and III cracks under conditions of plane strain
or anti-plane strain. In all these works no computation of stress intensity
factors (SIF) has been reported, because of the complexity of the problem. It
is obvious that for complex gradient elastic fracture mechanics problems use
of numerical methods of solution is imperative.

Shu et al [14] and Amanatidou and Aravas [15] have used the finite element
method (FEM) for solving two-dimensional (2-D) elastostatic problems in the
framework of the general theories of Mindlin. For the same purpose Tang et
al [16] proposed a meshless local Petrov-Galerkin (MLPG) methodology, while
Polyzos et al [17] and Tsepoura et al [18, 19] developed a boundary element
method (BEM) for solving two and three dimensional elastostatic problems
in the context of the simple gradient elastic theory.

In the present work, the gradient elastic BEM proposed by Polyzos et
al [17] and Tsepoura et al [18] is employed for the solution of 2-D mode-I
and mixed mode (I & II) fracture mechanics problems. This is accomplished
by a displacement type of formulation in connection with the multiregion
approach. For the other types of BEM formulations for fracture mechanics
problems one can consult [20–22]. As it is explained in [7–13], near the tip of
the crack displacements and strains are regular, while double stresses and to-
tal stresses exhibit a singular behavior of order r−1/2 and r−3/2, respectively,
with r being the distance from the tip. Adopting the idea of variable-order
singularity boundary elements around the tip of the crack for the evaluation
of the corresponding stress intensity factor (SIF) [23], a new special variable-
order singularity discontinuous element is proposed here for the treatment of
singular fields around the tip of the crack. The paper is organized as follows:
the constitutive equations, the classical as well as the non-classical boundary
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conditions and the integral representation of the considered gradient elas-
tic fracture mechanics problem are presented in the following section. The
proposed new special variable-order singularity discontinuous element is illus-
trated next in the third section. The numerical implementation of the problem
and the solution procedure of the utilized BEM code are explained in brief
in the fourth section. Finally, the mode-I and the mixed mode (I & II) crack
problems are solved and the corresponding crack profiles and SIFs are pre-
sented and discussed. The paper closes with a list of conclusions.

2 Simple gradient elasticity theory and integral
formulation

In this section the equation of equilibrium, the corresponding boundary con-
ditions and the integral representation of a gradient elastic problem are pre-
sented in brief. More details can be found in [18]. Mindlin [2], consider-
ing isotropic materials and a special case of his general theory, where the
macroscopic strain coincides to micro-deformation, proposed a modification
of Hookes law involving only five constants. A simpler and mathematically
more tractable constitutive equation can be obtained by further reducing the
number of constants to just three. In that case one has the constitutive equa-
tions

σ̃ = τ̃ + s̃

τ̃ = 2μẽ + λ (∇ · ū) Ĩ
ẽ = (∇ū + ū∇) /2 (1)
μ̃ = g2∇τ̃

s̃ = −∇ · μ̃ = −g2∇2τ̃

where ∇ is the gradient operator, ∇2 is the Laplacian, σ̃ is the total stress
tensor, τ̃ and s̃ are the so-called by Mindlin, Cauchy stress tensor and relative
stress tensor, respectively, λ and μ are the Lamè constants, ū is the displace-
ment vector, ẽ is the strain tensor and g is the volumetric strain gradient
energy coefficient, the only constant which relates the microstructure with
the macrostructure and represents the characteristic length of the material.

Consider a finite 2-D gradient elastic body of volume V surrounded by a
smooth boundary S. According to Mindlin’s [1,2] theory in conjunction with
the assumption of zero body forces acting on the body, the static equation of
equilibrium reads

∇ · (τ̃ −∇ · μ̃) = 0 (2)

and is accompanied by the classical boundary conditions

u (x) = u0, x ∈ S1 and
P (x) = P0, x ∈ S1, with S1 ∪ S2 = S (3)
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and the non-classical ones

q (x) =
∂u
∂n

= q0, x ∈ S3 and

R (x) = n̂ · μ̃ · n̂ = R0, x ∈ S4, with S3 ∪ S4 = S (4)

where n̂ is the normal unit vector on S, τ̃ the classical elastic stress tensor,
μ̃ the third order tensor of double forces per unit area, P the external sur-
face tractions, R the surface double stress tractions and P0, u0, R0 and q0

prescribed values.
Adopting the above simplified theory of Mindlin and inserting the constitu-

tive equations (1) into eq.(2) one obtains the following equation of equilibrium
of a gradient elastic continuum in terms of the displacement field ū:

μ∇2ū + (λ+ μ)∇∇ · ū− g2∇2
(
μ∇2ū + (λ+ μ)∇∇ · ū

)
= 0 (5)

The fundamental solution of the present gradient elastostatic problem is of
the form [18]

ũ∗ (r, μ, ν, g) =
1

16πμ (1 − ν)

[
Ψ (r, ν, g) Ĩ −X (r, g) r̂ ⊗ r̂

]
(6)

where ν is the Poisson ratio, r̂ the unit vector in the direction r = y − x and
X , Ψ scalar functions given by the relations

X = −2 +
8g2

r2
− 4K2

(
r

g

)
(7)

Ψ = −2 (3 − 4ν) ln r +
4g2

r2
− 2 (3 − 4ν)K0

(
r

g

)
− 2K2

(
r

g

)
(8)

with K0 (·) and K2 (·) being the modified Bessel functions of the second kind
and zero and second order, respectively.

For a smooth boundary S the integral representation of the problem has
the form [18]

c̃ (x) · u (x) +
∫

S

{p̃∗ (x,y) · u (y) − ũ∗ (x,y) · p (y)} dSy =∫
S

{
∂u∗ (x,y)
∂ny

·R (y) − R̃∗ (x,y) · q (y)
}
dSy (9)

where ũ∗ (x,y) is the fundamental solution given by eq.(6), p̃∗ (x,y) and
R̃∗ (x,y) are the fundamental traction and double stress traction tensors,
respectively and c̃ (x) is the well-known jump tensor being equal to 1/2Ĩ
for x ∈ S and equal to Ĩ when x ∈ V ∩ S. Observing eq.(9), one realizes
that this equation contains four unknown vector fields, u (x), P (x), R (x)
and q (x) = ∂u/∂n. Thus, after the satisfaction of the classical and non-
classical boundary conditions, the evaluation of the unknown fields requires
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the existence of one more integral equation. This integral equation is obtained
by applying the operator ∂/∂n on eq.(9) and has the form

c̃ (x) ·
∂u (x)
∂nx

+
∫

S

{
∂p̃∗ (x,y)
∂nx

· u (y) −
∂ũ∗ (x,y)
∂nx

· p (y)
}
dSy =∫

S

{
∂2ũ∗ (x,y)
∂nx∂ny

· R (y) −
∂R̃∗ (x,y)
∂nx

· q (y)

}
dSy (10)

All the kernels appearing in the integral equations (9) and (10) are given
explicitly in [18].

Integral equations (9) and (10) accompanied by the classical and non-
classical boundary conditions form the integral representation of the general
gradient elastic boundary value problem.

3 Discontinuous line element of variable order singularity

According to [7–13], the fields u, q, R and P near the crack tip vary as r3/2,
r1/2, r−1/2 and r−3/2 respectively, with r being the distance from the tip. As
it is well known, the elements used in a classical BEM formulation interpolate
the unknown fields either linearly or quadratically and therefore the behavior
of the fields around the crack tip can never be represented correctly. In the
present work, adopting the idea of using variable-order singularity boundary
elements around the tip of the crack for the description of the near tip behavior
and the evaluation of the corresponding SIFs [23], a new special variable-
order of singularity discontinuous element is proposed. The advantage of this
approach is that the fields around the tip of the crack are treated in a unified
manner.

In this special element, the functional nodes are identical to those of a
classical discontinuous three-noded quadratic line element, with the discon-
tinuous side residing always at the crack tip. The main advantage of using
discontinuous elements is that no functional nodes are located at the tip of
the crack and thus, despite the singularity of R and P at the tip, the field
nodal values are finite and can be easily computed.

As shown in 1, the tip of the crack can be located either at ξ = −1 or at
ξ = 1. In order to unify these two possible cases the linear transformation.

p =
(1 + cξ)

2
(11)

is introduced with c = ±1 for the tip residing at ξ = ∓1, respectively. Noting
that p ∈ [0, 1], the tip of the crack is always located at p = 0. The fields, in
terms of the asymptotic solutions [23], can be expressed as

F = K1r
λ1 + K2r

λ2 + C (12)
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Crack tip
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22

î

pd1

1 223 p

Transformation

Geometrical node

Functional node

Fig. 1. Variable-order singularity discontinuous element and its transformation

Table 1. Orders of magnitude of the asymptotic fields

F λ1 λ2

u 3/2 1
q 1/2 1
R −1/2 1
P −3/2 −1/2

with the symbol F representing u, q, R or P and λ1, λ2 taking values those in
table 1. Writing eq.(12) for the three functional nodes of the variable-order of
singularity discontinuous element one obtains the linear system of equations

r = pd1L : K1 (Lpd1)
λ1 + K2 (Lpd1)

λ2 + C = F1

r =
L

2
: K1

(
L

2

)λ1

+ K2

(
L

2

)λ2

+ C = F3 (13)

r = L : K1 (L)λ1 + K2 (L)λ2 + C = F2

where F1, F2 and F3 are the nodal values of the field, pd1 is the local coordi-
nate of the discontinuous functional node and L is the length of the element.
In the present work pd1 is considered to be equal to 1/6. The solution of the
linear system (13) yields the values for the parameters K1, K2 and C as
functions of the nodal values F1, F2 and F3. Substituting K1, K2 and C
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into eq.(12), rearranging with respect to the nodal values F1, F2 and F3 and
taking into account that the distance from the tip of the crack is r = Lp, the
field F can be written as

F = N1F1 +N2F2 +N3F3 (14)

with the interpolation functions Ni being of the form

N1 (p) =
2λ1
[(

1 − 2λ2
)
pλ1 − 1

]
− 2λ2

[(
1 − 2λ1

)
pλ2 − 1

]
2λ1

[
(1 − 2λ2) pλ1

d1
− 1
]
− 2λ2

[
(1 − 2λ1) pλ2

d1
− 1
]

N2 (p) =
−2λ1

[(
1 − 2λ2pλ2

d1

)
pλ1 − pλ1

d1

]
+ 2λ2

[(
1 − 2λ1pλ1

d1

)
pλ2 − pλ2

d1

]
2λ1

[
(1 − 2λ2) pλ1

d1
− 1
]
− 2λ2

[
(1 − 2λ1) pλ2

d1
− 1
]

N3 (p) =
2λ1+λ2

[(
1 − pλ2

d1

)
pλ1 −

(
1 − p+ d1λ1

)
pλ2 − pλ1

d1
+ pλ2

d1

]
2λ1

[
(1 − 2λ2) pλ1

d1
− 1
]
− 2λ2

[
(1 − 2λ1) pλ2

d1
− 1
] (15)

It can be easily verified that
∑
Ni = 1 and for λ1 = 2 and λ2 = 1

the functions (15) coincide with the classical discontinuous quadratic element
interpolation functions. The interpolation functions (15) as functions of the
local coordinate p are displayed in figs (2–5) for the fields u, q, R and P,
respectively. Observing figs (4) and (5), it is obvious that for the fields R and
P the interpolation functions (15) become singular when approaching the tip
of the crack (p→ 0).

4 BEM procedure

The goal of the boundary element methodology is to solve numerically the
well-posed boundary value problem consisting of the system of the two bound-
ary integral equations (9) and (10) with c̃ (x) = 1/2Ĩ together with the bound-
ary conditions (3) and (4). To this end, the smooth boundary S is discretized
into three-noded quadratic line isoparametric boundary elements, except at
either side of the crack tip, where special elements of the type described in
the previous section are employed. The discretized boundary integral equa-
tions (9) and (10) are collocated at all nodal points and the linear system of
algebraic equations[

1
2 Ĩ + H̃ K̃

S̃ 1
2 Ĩ + T̃

]
·

{
u
q

}
=
[
G̃ L̃
Ṽ W̃

]
·

{
P
R

}
(16)

is obtained, where the influence matrices H̃, K̃, S̃, T̃, G̃, L̃, Ṽ and W̃ contain
line integrals over the boundary elements involving products of fundamen-
tal kernels times shape functions and Jacobians [18]. Applying the boundary
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Fig. 2. Interpolation functions for displacements u (λ1 = 3/2, λ2 = 1)
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Fig. 3. Interpolation functions for displacement normal derivative q (λ1 = 1/2,
λ2 = 1)
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Fig. 4. Interpolation functions for double stresses R (λ1 = −1/2, λ2 = 1)
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conditions (3) and (4) and rearranging eq.(16), one produces the final linear
system of algebraic equations of the form

Ã · X = B (17)

where the vectors X and B contain all the unknown and known nodal com-
ponents of the boundary fields, respectively.

The singular and hyper-singular integrals involved, are evaluated with high
accuracy applying a methodology for direct treatment of Cauchy principal
value and hyper-singular integrals [18], noting that an extra singularity due
to the singular behavior of the interpolation functions (15) near the tip of the
crack should be also taken into account. Finally, the linear system is solved
via a typical LU-decomposition algorithm and the vector X, comprising all
the unknown nodal values of u, q, R and P, is evaluated.

5 Computation of Stress Intensity Factors

Once the boundary value problem has been solved, the calculation of SIFs is
being done via the three nodal traction values of the special elements.

Approaching the crack tip (r → 0), the traction P, according to eq.(12),
admits a representation of the form

P =
K1 (P1,P2,P3)

√
2π

lim
r→0

r−
3
2 +

K2 (P1,P2,P3)
√

2π
lim
r→0

r−
1
2 (18)

where the components of the vectors K1 and K2 stand for the stress inten-
sity factors corresponding to x and y directions according to the following
relations:

K1 =
{
K1x

K1y

}
=

= L
3
2
√

2πpd1

√
pd1

(
2 −

√
2
)
P1 +

(√
2 − 2√pd1

)
P2 −

(√
2 −

√
2pd1

)
P3

2 −
√

2 +
(
−4 +

√
2
)
pd1 + 2p3/2

d1

K2 =
{
K2x

K2y

}
=

=
√
L
√

2π
p
3/2
d1

(√
2 − 4

)
P1 +

(
4p3/2

d1
−
√

2
)
P2 +

√
2
(
1 − p

3/2
d1

)
P3

2 −
√

2 +
(
−4 +

√
2
)
pd1 + 2p3/2

d1

(19)

6 Numerical examples

Two fracture problems, the first of mode-I and the second of mixed mode (I
& II), are solved and the obtained crack profiles as well as the corresponding
SIFs are presented and compared against those of classical elasticity.

374



Num. determ. of crack stress and deform. fields in gradient elastic solids

Mode-I crack problem

A square gradient elastic plate with very small radius of curvature round
corners (in order to have a smooth boundary) containing a central horizontal
line crack and subjected to in-plane forces is analyzed. A uniform tensile
traction P0 = 100MPa, is applied normal to its top and bottom sides, as
shown in fig.6. The crack length is chosen to be equal to 2a = 1m and the side
of the square plate is L = 16a. The Young modulus and the Poisson ratio of
the gradient elastic plate are E = 210GPa and = 0.2, respectively. Due to the
double symmetry of the problem, only one quarter of the plate is discretized,
with the following boundary conditions along the axes of symmetry: P (0, y) =
0 and R (0, y) = 0 for 0 ≤ y < a, uy (0, y) = 0 and R (0, y) = 0 for a ≤ y ≤
L/2 and ux (x, 0) = 0 and R (x, 0) = 0 for 0 ≤ x ≤ L/2.

2a

16a

1
6
a

x

y
P0

P0

radius 0.05m

Fig. 6. Gradient elastic plate with a central diagonal line crack

Fig. 7 displays the upper-right-quarter of the crack opening displacement
profile obtained by the present BEM for four different values of the material
volumetric strain energy coefficient g (0.01, 0.1, 0.3, 0.5). In the same figure,
the crack profile provided by the classical elasticity theory (g = 0) is also
shown. The main conclusion here is that the crack profile of the gradient elastic
case remains sharp at the crack tip and is not blunted as in the classical case.
This cusp type of profile is identical to the one coming out of Barenblatts [24]
cohesive zone theory. Also, it should be noticed that as the volumetric strain
energy gradient coefficient g increases, the crack becomes stiffer.
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In fig. 8 the two SIFs for a gradient elastic problem, (KI)1 and (KI)2, are
plotted with respect to g. The interesting remark here is that the SIF (KI)1
tends to zero as the gradient coefficient g tends to zero. As a result of that,
eq.(18) becomes Py = (KI)2 /

√
2π limr→0 r

−1/2 with (KI)2 being the mode-I
SIF as defined in classical elasticity theory.

Furthermore, the most important observation here is that the SIF (KI)1
takes only negative values. This means that in gradient elasticity the stresses
near the crack tip not only go to infinity with a different order (r−3/2) com-
pared to the linear elasticity (r−1/2), but are also compressive and not tensile
as in classical elasticity. This explains the different shapes of the crack profile
in gradient and classical elasticity theories, as shown in fig.7.

6.1 Mixed mode I & II crack problem

The square plate of the previous example with an inclined at an angle of
45o central slant crack is analyzed here again by the proposed method. The
problem domain is divided into two subregions, as shown in fig.9, which are
both treated by the BEM and combined together through equilibrium and
compatibility at their interface. This is necessary in view of the displacement
based BEM employed here [20–22]. A traction based BEM would be also
possible, but this is associated with higher order kernel singularities [20–22].

2a

16a

1
6
a

x

y
P0

P0

radius 0.05m

Region 2

Region 1

Fig. 9. Gradient elastic plate with a central diagonal line crack
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In figs 10 and 11 the SIFs, (KI)1, (KII)1 and (KI)2, (KII)2, respectively
are plotted as functions of g. Similarly to the mode-I case, the SIFs (KI)1,
(KII)1 tend to zero as the gradient coefficient g tends to zero and take only
negative values. The crack opening displacement profile (not shown here) has
the same shape as the one of the pervious mode-I case.
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Fig. 10. SIFs, (KI)1, (KII)1 with respect to g

7 Conclusions

On the basis of the preceding developments, the following conclusions can be
drawn:

1. A displacement based BEM was employed for the solution of 2-D crack
analysis problems involving gradient elastic material behavior. This ap-
proach requires, in general, the use of subregions but is associated with
lower order kernel singularities than other approaches.

2. A new three-noded discontinuous line boundary element of variable singu-
larity for the crack modeling has been developed. This special element can
lead to the determination of the stress intensity factor(s) directly via its
three nodal traction values after the determination of boundary tractions
and displacements.
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3. The employed BEM leads to highly accurate results with a discretization
which is restricted only to the boundaries and possible interfaces of the
domains considered.

4. Stress and displacement fields around the crack tip in a gradient elastic
plate are more physically acceptable than those of the case of classical
elasticity.
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The variational formulation of brittle fracture:
numerical implementation and extensions

B. Bourdin
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Summary. This paper presents the implementation of a variational formulation
of brittle fracture mechanics proposed by G.A. Francfort and J.-J. Marigo in 1998.
The essence of the model relies on successive global minimizations of an energy
with respect to any crack set and any kinematically admissible displacement field.
We briefly present the model itself, and its variational approximation in the sense
of Gamma–convergence. We propose a globally convergent and monotonically de-
creasing numerical algorithm. We introduce a backtracking algorithm whose solution
satisfy a global optimality criterion with respect to the time evolution. We illustrate
this algorithm with three dimensional numerical experiments. Then we present an
extension of the model to crack propagation under thermal load and its numerical
application to the quenching of glass.

Key words: Variational Model, Brittle Fracture, Crack Path Identification,
Free Discontinuity Model, Gamma Convergence

Introduction

The work presented here is based an original approach proposed by G. Franc-
fort and J.-J. Marigo in [18, 19]. While this model is still limited to quasi-static
problems under fixed displacement boundary conditions, we extend it to ac-
count for body forces under some restrictions. The main virtue of the model
we use is to remain largely compatible with Griffth theory, departing as lit-
tle as possible to allow crack initiation or branching, path identification, and
interactions between multiple cracks. However, these benefits have a cost in
terms of complexity of the numerical implementation. The Francfort-Marigo
formulation involves a global minimization of a total energy with respect to
any admissible crack set and displacement field, and requires specialized nu-
merical tools which we present in this article.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 381–393.
© 2007 Springer. Printed in the Netherlands.
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1 Francfort and Marigo’s model for quasi-static brittle
fracture

The brittle fracture formulation studied in this paper was first introduced
by G. Francfort and J.J. Marigo, see [18, 17, 16, 12, 13] for a comprehensive
presentation of the model. We will only briefly recall the essential points of this
approach. As the emphasis of this paper is on the numerical implementation,
we limit ourselves to a time discrete formulation. The reader will refer to [17,
16] for the time-continuous limit of the model. We differ from the original
in that we consider body forces (under some restrictions) while the original
formulation is restricted to fixed displacement boundary conditions.

In all that follows, we consider a two or three dimensional body with ref-
erence configuration Ω ⊂ R

N (N = 1, 2, 3) open, bounded with Lipschitz
boundary. We assume that Ω can be partitioned into two connected subdo-
mains ΩF and ΩD, corresponding respectively to a fragile and ductile mate-
rials with Hooke’s law AF and AD. We suppose that a part ΩD,0 ⊂ ΩD with
non-null measure is clamped while ∂Ω \ ∂ΩD,0 remains traction free.

The first key ingredient of the Francfort-Marigo model is to identify the
cracks of the brittle material with the discontinuities of the displacement
field. For that matter, we consider displacement fields in the space of Special
Functions of Bounded Deformations (SBD). A detailed presentation of the
space SBD is far beyond the scope of this article, the key point here is that
any function u ∈ SBD may be discontinuous, and that one can define its
discontinuity set (or jump set) Ju.

We consider P + 1 time steps 0 ≤ t(0) < ... < t(P ) = T . At each time step
t(p), we apply a force f(t(p);x) on ΩD. In the sequel, we will assume that f
depends linearly on t, that is that f(t;x) := t.f(x).

The set of kinematically admissible displacement fields is

K(p)
A :=

{
u ∈ SBD(Ω) ; u(x) = 0 a.e. in ΩD,0 ; Ju ⊂ Ω̄F ; ‖u‖∞ ≤M

}
, (1)

where M is an arbitrarily large constant whose role is purely technical. Again
we will refer the reader to [18, 17] for a complete exposition of the model.

In order to account for the irreversible nature of the fracture process, we
define the total jump set at time step p of a sequence

(
u(0), . . . , u(P )

)
by

Γ (p)
u :=

⋃
0≤s≤p

Ju( s) . (2)

Note that we have trivially that Γ (s)
u ⊂ Γ

(p)
u for any s ≤ p so that the total

crack set indeed grows monotonically.
The second key of Francfort Marigo is the global minimization of a total

energy with respect to any admissible displacement field. For that, we define
the bulk, surface, and total energies by
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Eb(u(t(p))) :=
1
2

∫
ΩF

AFe(u) : e(u) dx

+
1
2

∫
ΩD

ADe(u) : e(u) − 2f · u dx, (3)

Es(u(t(p))) := γHN−1(Γ (p)
u ), (4)

E(u(t(p))) := Eb(u(t(p))) + Es(u(t(p))), (5)

where HN−1 denotes theN−1–dimensional Hausdorff measure (i.e. the length
in two dimensions and surface in the three dimensional case), e(u) denotes
the symmetrized gradient of u, and γ is the fracture toughness of the brittle
material considered. At time t(p), the displacement field u(t(p)) is solution of
the global minimization problem:

inf
u∈K( p)

A

E(u), (6)

and will denote by E(t(p)) the total energy E(u(t(p))). Similarly, by Es(t(p))
and Eb(t(p)), we refer to the surface and bulk energy of the solution of (6).

As the crack set at time t is given through a global minimization process
among all possible crack states, the Francfort-Marigo model does not require
a priori knowledge of the crack path. It does not even require the existence
of an initial crack. It also does not assume smooth propagation of cracks (i.e.
that the surface energy Es(t) is a continuous function of t). Indeed, as we
will see in the numerical experiments, it is often the case that the total crack
length is a discontinuous function of the time, a phenomenon we will refer to
as brutal crack propagation.

2 Numerical implementation

In order to discretize the Francfort-Marigo functional, one needs to be able to
approximate any function in SBD. This is by nature more complicated that
building a discrete space allowing jumps across a known curve or surface.
For that reason, the extended finite elements method is not easily applicable.
This model also requires the ability to accurately approximate the location
of the cracks, as well as their length, which may not be possible if the cracks
are restricted to propagate along edges of faces in between elements like in
a discontinuous Galerkin or cohesive finite element methods, for instance.
Lastly, in light of [14], it is expected that in absence of singularity in the
deformation field, cracks initiation will always be brutal. In particular, this
means that sensitivity with respect to “small” cracks will never provide a
descent direction toward a global minimizer of the Francfort-Marigo energy,
in the case of “brutal” crack evolution.

Several methods have been proposed, based on discontinuous (see [21]) or
adaptive (see [9, 24]) finite elements. Our previous experience with adaptive
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finite elements is that the mesh adaption step can introduce artificial local
minimizers and render the global minimization of Eε practically impossible.
The method which we present here relies on approximating the Francfort-
Marigo energy, in the sense of Γ–convergence, by means of elliptic functionals.
It is similar to the one proposed in [3, 4] for the Mumford-Shah functional,
inspired by a now classical example in phase transition by [22, 23, 2] and
extended in [6, 12, 13, 20].

2.1 Approximation of the Francfort-Marigo energy

Following [3, 4], we introduce a secondary variable v ∈W 1,2(Ω), representing
the crack in some sense, and for any ε > 0, ηε = o(ε), and αε = o(ε), we
define

Eε(u, v) := Eb
ε(u, v) + Es

ε(v) :=
1
2

∫
ΩF

(
v2 + ηε

)
AFe(u) : e(u) dx

+
1
2

∫
ΩD

ADe(u) : e(u) − 2f · u dx+ γ

∫
Ω

(1 − v)2

4ε
+ ε|∇v|2 dx. (7)

We do not attempt to prove the Γ–convergence of Eε to E here. However, it
is a known result in the original setting of the Francfort-Marigo model (i.e.
when considering fixed displacement boundary conditions) and does not seem
to be difficult to adapt to this case (see [10, 12, 13, 20]). Using a classical
compactness argument (see for instance [15, 11]), one obtains that the global
minimizers of (uε, vε) of Eε converge to that of E, and that in some weak
sense, the set {x ∈ Ω ; vε(x) ≤ αε} converges to Ju.

In order to account for the irreversibility, we define

K(p)
ε :=

{
x ∈ Ω̄ ; v(p) ≤ αε

}
. (8)

At each time step, we seek for
(
u

(p)
ε , v

(p)
ε

)
solution of the problem

inf8
><

>:

u ∈ K(p)
A

v = 0 on K(p)
ε .

Eε(u, v). (9)

The last step in view of the numerical implementation of Francfort and
Marigo’s brittle fracture model is its discretization. For the Mumford-Shah
problem, one can consider a discretized version Fε,h of Fε by means of linear
finite elements. Provided that the mesh size h is such that h� ε, it is known
that Fε,h Γ–converges to F (see [5, 7]). Extending this result to our case does
not seem to present any difficulty but is again not the scope of this study. We
will take for granted that the restriction Fε,h of Fε to discrete functions on a
linear finite element space Γ–converges to F . This relation between the mesh
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size and the regularization parameter can be an issue. However, a careful study
of the Γ–convergence results in [5, 7] reveal that the relation h� ε needs only
to be verified “close” to the cracks. Unfortunately, finding the location of the
cracks is the essence of the problem! In the numerical results we present,
we used uniformly fine meshes, which can result very large meshes (typically,
10,000 to 50,000 elements in two dimensions and 200,000 to 1,500,000 elements
in three dimensions).

2.2 Minimization methods

A major hurdle in the way of the minimization of (7) is its non-convexity.
However, it is easy to see that Eε is convex with respect to each of its argu-
ments separately, and can therefore be iteratively minimized with respect to
u and v. In the experiments presented later we used the following alternate
minimization algorithm, δ being a fixed tolerance parameter:

Algorithm 1 The alternate minimization algorithm

1: Let i = 0 and v0 := v
(p−1)
ε if p > 0 or v0 = 1 if p = 0.

2: repeat
3: i← i+ 1
4: Compute ui := argminu Fε(u, vi−1) with ui = 0 on ΩD,0.
5: Compute vi := argminv Fε(ui, v) under the constraint vi = 0 on K(p−1)

ε

6: until ‖vi − vi−1‖∞ ≤ δ

7: Set u(p)
ε := ui and v(p)

ε := vi

It can be proved (see [8]) that in cases where the crack propagation is smooth,
this algorithm converges to the global minimizer, provided that the time dis-
cretization is fine enough. In cases where cracks propagate brutally, this algo-
rithm can only be proved to converge to a critical point of Eε, which may be
a local (or a global) minimizer, but also a saddle point for Eε. In some cases,
the local minimizers of Eε can be proved to converge to local minimizers of
E, but no such a thing can be said of its saddle points.

A full treatment of saddle points would require studying the stability of
critical points, and has not been implemented yet. In order to detect some
saddle points and local minimizers, we implemented a backtracking in time
algorithm, based on necessary condition for optimality of the crack evolution
with respect to time. In the sequel, we assume that the boundary condition
grows linearly with time, i.e. that g(t;x) := tg(x). If this is the case, it is
easy to see that if (u(p), v(p)) is admissible for Eε at time step t(p), then
for any 0 ≤ r ≤ p,

(
t( r)

t( p) u
(p), v(p)

)
is admissible for t(r). Noticing then that

Eb
ε

(
t( r)

t( p) u
(p), v(p)

)
=
(

t( r)

t( p)

)2

Eb
ε(u

(p), v(p)), we see that if u(r) and u(p) are

global minimizers of E at time steps t(r) and t(r), then one necessarily has
that
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Eε(u(r), v(r)) ≤
(
t(r)

t(p)

)2

Eb
ε(u

(p), v(p)) + Es
ε(v(p)), for any 0 ≤ r ≤ p. (10)

In order to ensure that condition (10) is satisfied at each time step, we
implemented the following backtracking algorithm, δε being a small tolerance
parameter:

Algorithm 2 The backtracking algorithm
1: v0 ← 1
2: repeat
3: Compute (u(p), v(p)) using the alternate minimization algorithm initial-

ized with v0.
4: Compute the bulk energy Eb

ε(u
(p), v(p)) and the surface energy Es

ε(u(p), v(p))
5: for r = 1 to p− 1 do

6: if Eε(u(r), v(r)) −
(

t( r)

t( p)

)2

Eb
ε(u

(p), v(p)) − Es
ε(v(p)) ≥ δε then

7: v0 ← v(p)

8: p← r
9: return to 3:
10: end if
11: end for
12: v0 ← v(p)

13: p← p+ 1
14: until p = P

3 Numerical Experiments

We present some numerical experiments based on the formulation and algo-
rithms presented above. We consider a three dimensional cylinder of radius 2
and length 10, along the z–axis reinforced in its center by a ductile shaft of
radius .5 (depicted in light grey in Figure 1) capped at each end by a rigid
reinforcement (in black in Figure 1). The elastic moduli of both materials are
E = 1 and ν = .2, while the fracture toughness is normalized to γ = 1. The
bottom cap is clamped while on the top one, a body force is applied along the
positive z direction. On the brittle material, we initiated a hairline crack along
a disk of radius .4 centered at the edge of the outer cylinder, and forming an
angle of 30 degrees with the xy–plane.

The domain is meshed using 130,950 nodes and 584,150 linear tetrahedral
elements. The magnitude of the force varies linearly between .5 and 5.5 in 250
time steps.

Figure 2 represent the evolution of the total and surface energies between
the times t = 1.4 and t = 1.9. The location of the crack set at various times
is shown in Figure 3. In these figures, the part of the domain corresponding
to the britle material has been removed, and the ductile reinforcement is
transparent. The upper and lower rows of figures correspond to the same
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Fig. 1. Computational domain. Front, side and top views

time steps seen from different angles. The crack is represented by plotting the
iso-volume v ≤ 5.0E − 2.

The outcome of the alternate minimizations, combined with the backtrack-
ing is as follows:

• For 0 ≤ t ≤ 1.76, no crack appears, however, the numerical solution ex-
hibits some spurious surface energy (the lower branch of the dotted curve
on Figure 2–right).

• At t = 1.7, the minimization algorithm bifurcates towards a cracked solu-
tion, and the surface energy jumps from 2.48 to 6.49. However, the total
energy jumps from -12.5 to -14.2, which is forbidden by (10). The algo-
rithm backtracks then to t = 1.5, time of the first violation of (10).

• Restarting from t = 1.5, alternate minimization lead to a smooth propa-
gation of the crack until t = 1.82.

• At t = 1.84, the minimization algorithm bifurcates again towards a solu-
tion with an helicoidal crack. Again, the total energy jumps, which is in
contradiction with (10), and the algorithm backtracks to t = 1.64

• At t ≥ 1.64, the crack continue to grow, this time along the interface
separating the fiber and the matrix (two rightmost figures in Figure 3).
The evolution is smooth and the surface energy is continuous.

The final evolution can be summarized as follows:

• For 0 ≤ t ≤ 1.50, no crack appears.
• At t = 1.5, a crack appears brutally starting from the existing notch (see

Figure 3–left). The surface energy jumps (see the first jump of the plain
curve in Figure 2–right).

• This crack propagates slowly for 1.50 ≤ t ≤ 1.62 (see the slow growth
of the plain curve in Figure 2–right) until it reaches the configuration in
Figure 3 (second from the left).

• At t = 1.64, the crack propagates brutally again along a helicoidal path
(Figure 3 center). The surface energy jumps again (second jump of the
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plain curve in Figure 2–right). The crack spreads along the entire width
of the brittle part, from the reinforcement until the edge of the matrix.

• For t > 1.64, a second branch of the crack develops along the reinforcement–
matrix interface.

The total final and surface energy are represented by the plain lines in
Figure 2. Using the backtracking algorithm, the total energy is continuous,
(which is mandated by (10)), while solutions obtained without backtracking
can enjoy discontinuities (see [24] Figure 11 or [10] Section 3.2). While we can
still not guaranty that our solution corresponds to a global minimizer of the
Francfort-Marigo energy, its energty is certainly less that that of a solution
obtained without backtracking step (which would correspond to the upper
envelope of the dashed curve in Figure 2–left).

This experiment also illustrates another strength of the Francfort-Marigo
model and of our implementation. Recall again that in this experiment, the
crack path (which is far from obvious) was not not known a priori. Using the
Francfort-Marigo model, we were able to compute the crack path, as well as
the position of the crack along this path. By using the approximation in the
sense of Γ–convergence, we were able to represent complicated geometries.
Note how the branch growing along the interface and the helix crack merge
at t = 3.08. One of the virtue of our representation of the crack set is that it
allows for such complicated change of topology without any special numerical
treatment.

Fig. 2. Total and surface energy as a function of the load

4 Extensions to thermal loads

We present here some preliminary results on the extension of the Francfort-
Marigo model to thermal loads.

In all that follows, we consider a given temperature field θ(t;x). In doing
so, we assume that a thermal analysis of the problem can be made a priori, and
in particular we neglect the effect of the cracks on the thermal conductivity of
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Fig. 3. Traction on a cylinder reinforced in its center. Isovolume v ≤ 5.0E − 2,
representing the crack set at times t =1.5, 1.58, 1.6, 3.08 and 5.5.

the sample. Denoting by α the thermal expansion coefficient of the material,
the bulk term of the total energy becomes

Eb(u(t(p))) :=
1
2

∫
Ω

Ae(u) : e(u) − 2
αE

1 − ν
θ(t(p);x)tre(u) dx, (11)

and the regularized functional Eε becomes:

Eε(u, v) :=
1
2

∫
Ω

(
v2 + ηε

)(
Ae(u) : e(u) − 2

αE

1 − ν
θ(t(p);x)tr(e(u))

)
dx

+ γ

∫
Ω

(1 − v)2

4ε
+ ε|∇v|2 dx. (12)

The numerical implementation is similar to that described above. One
major difference, is that unless temperature field depends linearly on the time
(which is not the case in the experiments presented farther), the backtracking
algorithm cannot be used.

Using this model, we conducted numerical simulations of a glass quenching
experiments described in [26, 1, 27, 25]. We consider a thin microscope slide of
width 25mm and height 75mm, with elastic moduli E=72.3GPa and ν = .23
and thermal extension parameter α=7.7E-6 K−1, pre-notched in its lower
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end. The slide is heated up at temperature θH and quenched in a liquid at
temperature θC at speed v = 5mm.s−1. The temperature difference between
the slide and the water bath is Δθ := θH − θC = 125K. Neglecting the effect
of the crack on the thermal properties of the sample, the temperature field in
the domain is given by

θ(x, y) =

{
θC if y ≤ vt

θC +Δθe(−
v
κ (x−vt)) otherwise,

where κ is the heat diffusion coefficient. In [25], several experiments are pre-
sented for various values ofΔθ and v. The qualitative results are as follow, for a
given Δθ. Below a critical speed v0, a single crack propagate along the symme-
try axis. When v0 ≤ v1 for some v1, the crack starts developing oscillations,
then becomes unstable. For v ≥ v1, the behavior is more complicated and
qualified of “erratic”. The crack splits and each branch can in turn propagate
a long a straight line, oscillate or branch. For technical reasons, we piloted
our numerical experiments in terms of the fracture toughness and thermal
conductivity of the material. Up to a rescaling, this is equivalent to varying
the temperature difference and quenching speed. Figure 4 represents the final
crack pattern for various values of γ and κ. The domain was discretized in
34,736 triangular linear elements and 17,637 nodes. The parameters ε and ηε

are respectively equal to 5E-4 and 1E-7.

Fig. 4. Quenching of a microscope slide, the v–field for κ = 17.73 and γ =
12.8, 10.0, 8.8, 7.1 (left to right in N.m−1 ), and κ = 10, γ = 6.0 (extreme right).

Qualitatively, the results correspond to the behavior depicted in the lit-
erature. However, in order to achieve meaningful results, we had to set κ to
an unphysical high value (the real value of κ is at least two order of magni-
tudes lower). Using the actual value, we were only able to obtain “erratic”
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propagation, unless the fracture toughness was in turn set to unrealistic high
values.

Several hypothesis that could already explain this, but the problem is still
open. Since the backtracking algorithm does not apply to this problem, we
have no guaranty that the numerical results correspond to global minimizers.
Conversely, it may be possible that the actual physical solution may be a local
and not global minimizer of Eε.

5 Conclusion and extensions

The numerical experiments presented here illustrate some the strength of the
Francfort-Marigo approach, but also some pending issues with the model as
well as its numerical implementations.

Beside the model’s ability to predict crack path, as well as position along
this path, one of the strength of Francfort and Marigo’s model resides in its
being applicable in two and three spaces dimensions without any modification.
Indeed, none of the difficulties involved in the three–dimensional numerical
implementation are related to the model itself. Instead, the major issues are
the usual ones in three dimensional finite elements, i.e. mesh generation, vi-
sualization, file formats, or size of the discrete models, for instance.

Also, by representing the cracks in terms of the function v in (7), one avoids
all difficulties related to the parameterisation of potentially complicated curves
or surfaces. Note how the cracks in Figure 3 would be complicated to represent
in terms of an explicit function, and how in Figure 4, simple or branched
cracks are represented without special treatment. Also, again because of this
representation, branching or splitting of cracks requires no special treatment
to be represented.

Of course, these benefits are obtained at the cost of theoretical and nu-
merical difficulties. In the numerical experiments and the description of the
model, we had to limit the type of body forces we consider. Indeed, the for-
mulation in its current state is inherently unable to handle surface or body
forces applied to a brittle material (see the discussion in [19]). Another issue
resides in the use of a Griffith-based criterion to render crack initiation and
propagation simultaneously. Using cohesive energies à la Barenblatt may be
more sound, however, the mathematical difficulties involved in doing so are
tremendous and far from being solved at this point.

At the numerical level, global minimization is also very involving, as the
energy to be minimized is non-convex. Future numerical work will include
investigation of better minimization algorithms, as well as the study of the
stability of critical points, using the Hessian of Eε. See for that matter the an-
alytical study of the stability of the local minimizer for a traction problem on
a long beam in [8]. Lastly, numerical and mathematical evidences also suggest
that in some cases, global minimization may lead to unphysical evolutions.
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Summary. Digital Image Correlation allows one to estimate displacement fields
based on a series of digital images of the surface of a specimen subjected to a specific
loading history. Recent advances have been achieved through a novel formulation
that enables one to decompose the searched displacement field onto a suited library
of such fields. The latter are either finite element shape functions, which open the
way to a further identification step, or mechanically significant fields such as ana-
lytic displacement fields for cracks. The interest of this experimental tool is that
it provides full kinematic fields. For heterogeneous tests or discontinuities, it thus
gives access to a wealth of data that are exploited to estimate mechanical properties.
A first route is given by post-processing measured displacements. Two options are
followed. First, by using a standard least squares technique, stress intensity factors
and crack tip locations are determined by using a known displacement basis. Second,
an integral interaction formulation gives also access to stress intensity factors. By
choosing suitable test functions, the minimization of a scalar product with respect
to measurement noise yields the optimal basis to extract stress intensity factors.
An alternative route consists in using the displacement basis directly at the meas-
urement stage. The different procedures are applied to the analysis of a high cycle
fatigue experiment on a cracked sample.

Key words: Crack tip location, digital image correlation (DIC), integrated ap-
proach, interaction integral, Photomechanics, Q4 finite elements, stress intensity
factor evaluation, subsingular and supersingular displacement fields.

1 Introduction

The simulation of structural failure by numerical tools, such as the finite
element method [1], has passed into common usage in many different areas of
industry. Most of commercial codes deliver displacements, stresses and strains,
yet rarely were the codes used to predict structural failure. The reason for
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Discontinuities, 395–412.
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this has been that failure is a non-linear process and non-linear codes are
difficult to use and non-friendly for design engineers. This is now changing.
For example, the automotive industry has been using dynamic elasto-plastic
codes for evaluating crashworthiness for over a decade. The same description
will simulate metal forming, and has been accepted by the airframe and en-
gine companies, and by the certification authorities for some component tests.
Virtual testing needs to establish its reliability by industrial and academic re-
search establishments. Apart from developing the numerical tools themselves,
there is also a need for validating not only the constitutive models but also
the numerical procedures by comparisons with experimental data.

The present paper is devoted to the development of measurement proce-
dures and identification techniques suitable for numerical simulations using,
for instance, finite element codes. One key quantity to bridge the gap between
experiments and simulations is a displacement field. Digital Image Correla-
tion (DIC) allows one to estimate full displacement fields based on a series of
digital images of the surface of a specimen subjected to a specific loading his-
tory [2, 3]. Recent advances have been achieved through a novel formulation
that enables one to decompose the searched displacement field onto a suited
library of such fields. The latter are either finite element shape functions [4],
which open the way to a further numerical identification procedure, or me-
chanically significant fields such as analytic displacement fields for cracks [5],
which directly provide mechanical parameters such as elastic properties [6],
stress intensity factors or toughness. It is believed that DIC techniques may
offer an ideal interface between experiments and numerical modeling, thus
allowing for major progress in the reliability of virtual testing, and hence its
future wide use and dissemination for demanding applications.

This paper is organized as follows. Displacement measurements through
DIC are presented in a rather general framework, including recent advances
such as the multiscale approach that endow the technique with more robust-
ness and less uncertainty [4]. Typical performances in terms of displacement
uncertainty are reached commonly in the range 10−2 to 10−3 pixel size. The
interest of this experimental tool is that it provides full kinematic fields. For
heterogeneous tests or discontinuities, it thus gives access to a wealth of data
that is to be exploited to estimate mechanical properties. A first route is given
by post-processing measured displacements. Two options are followed to an-
alyze discontinuities. First, with a standard least squares technique, stress
intensity factors and crack tip locations are determined by using a known dis-
placement basis. Second, an integral interaction formulation gives also access
to stress intensity factors. By choosing suitable test functions, measurement
noise sensitivity is minimized yielding the optimal basis to extract stress in-
tensity factors. An alternative route consists in using the displacement basis
directly at the measurement stage. In such a case, referred to as integrated
Digital Image Correlation (or I-DIC [5]), there is no decoupling between the
measurement and identification stages. A fatigue crack in steel (CCT geome-
try) is studied and the three identification techniques are compared.
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2 Principles of Image Correlation

The principle of image correlation is the following. Two digital (gray level)
images corresponding respectively to a reference, f(x), and deformed, g(x),
state are simply related by the “passive” advection of the local texture in the
displacement field u. Therefore it is assumed that

g(x) = f(x + u(x)) (1)

From the knowledge of f and g, the problem consists in estimating u as
accurately as possible, usually by regularization of the conservation equation
of the optical flow [7, 8, 9, 10, 11].

2.1 Classical Approach

Whenever u is a simple rigid translation, a powerful technique consists in
looking for the maximum cross-correlation between f and g. The latter is
reached accurately for the displacement u, and suited interpolation techniques
allow one to reach sub-pixel uncertainty (down to 10−2 pixel or below [12]).
From this observation a natural scheme is to decompose the original image
into small zones of interest, where the approximation of a local rigid transla-
tion or uniform strain may hold. The collocation of all the local translations
thus provides an estimate of the global displacement field. Each elementary
determination is performed either in the physical space [2, 3] or in Fourier
space [13, 14, 15]. One difficulty however is the accurate pairing of zones of
interest which implies a good evaluation of the displacement prior to further
refinement. This has led to the development of multiscale algorithms that
proceed by iteration from a coarse description to a finer one [16].

2.2 General Framework

The conservation of the optical flow (1) is rewritten by assuming that the
reference image is differentiable and consists in minimizing the local residual
Φ

Φ2(x) = [u(x).∇f(x) + f(x) − g(x)]2 (2)

The measurement of the displacement is an ill-posed problem. The displace-
ment is only measurable along the direction of the intensity gradient. Conse-
quently, additional hypotheses have to be proposed to solve the problem. To
estimate u, the quadratic difference [right hand side of Eq. (2)] is integrated
over the studied domain Ω and subsequently minimized

η2 =
∫∫

Ω

[u(x).∇f(x) + f(x) − g(x)]2 dx (3)

The displacement field is decomposed over a set of functions Ψn(x). Each
component of the displacement field is treated in a similar manner, and thus
only scalar shape functions ψn(x) are introduced

397



François Hild, Julien Réthoré, and Stéphane Roux

u(x) =
∑
α,n

aαnψn(x)eα (4)

where eα are elementary unit vectors along each space dimension α and aαn

the corresponding amplitudes. The objective function is thus expressed as

η2 =
∫∫

Ω

[∑
α,n

aαnψn(x)∇f(x).eα + f(x) − g(x)

]2

dx (5)

and hence its minimization leads to a linear system∑
β,m

aβm

∫∫
Ω

[ψm(x)ψn(x)∂αf(x)∂βf(x)]dx =

=
∫∫

[g(x) − f(x)]ψn(x)∂αf(x)dx (6)

that is written in a compact form as

Ma = b (7)

where ∂αf = ∇f.eα denotes the directional derivative, the matrix M and the
vector b is directly read from Eq. (6)

Mαnβm =
∫∫

Ω

[ψm(x)ψn(x)∂αf(x)∂βf(x)]dx (8)

and
bαn =

∫∫
Ω

[g(x) − f(x)]ψn(x)∂αf(x)dx (9)

The present development is similar to a Rayleigh-Ritz procedure frequently
used in elastic analyses [1]. The only difference corresponds to the fact that
the variational formulation is associated with the (linearized) conservation of
the optical flow and not the principal of virtual work.

2.3 First Case: Q4-DIC

A large variety of functions Ψ may be considered. Among them, finite ele-
ment shape functions are particularly attractive because of the interface they
provide between the measurement of the displacement field and a numerical
modeling of it based on a constitutive equation. Whatever the strategy cho-
sen for the identification of the constitutive parameters, choosing an identical
kinematic description suppresses spurious numerical noise at the comparison
step. Moreover, since the image is naturally partitioned into pixels, it is ap-
propriate to choose a square or rectangular shape for each element. This leads
us to the choice of Q4-finite elements as the simplest basis. Each element is
mapped onto the square [−1, 1]2, where the four basic (i.e., P1) functions are
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(1 ± x)(1 ± y) in a local (x, y) frame. The displacement decomposition (4) is
therefore particularized to account for the previous shape functions of a finite
element discretization. Each component of the displacement field is treated in
a similar manner, and thus only scalar shape functions Nn(x) are introduced
to interpolate the displacement ue(x) in an element Ωe

ue(x) =
ne∑

n=1

∑
α

ae
αnNn(x)eα (10)

where ne is the number of nodes (here ne = 4), and ae
αn the unknown nodal

displacements. The objective function is recast as

η2 =
∑

e

∫∫
Ωe

[∑
α,n

ae
αnNn(x)∇f(x).eα + f(x) − g(x)

]2

dx (11)

and hence its minimization leads to a linear system (6) in which the ma-
trix M is obtained from the assembly of the elementary matrices Me whose
components read

Me
αnβm =

∫∫
Ωe

[Nm(x)Nn(x)∂αf(x)∂βf(x)]dx (12)

and the vector b corresponds to the assembly of the elementary vectors be

such that
beαn =

∫∫
Ωe

[g(x) − f(x)]Nn(x)∂αf(x)dx (13)

Thus it is straightforward to compute for each element e the elementary con-
tributions to M and b. The latter is assembled to form the global “rigidity”
matrix M and “force” vector b, as in standard finite element problems [1].
The only difference is that the “rigidity” matrix and the “force” vector contain
picture gradients in addition to the shape functions, and the “force” vector
includes also picture differences. The matrix M is symmetric, positive and
sparse. These properties are exploited to solve the linear system efficiently.
Moreover, the only parameter the user has to choose is the size � of the con-
sidered elements. A regular mesh is used and is made of squares containing
�× � pixels. The size � has a direct impact on the measurement uncertainty as
will be shown later on. Last, the domain integrals involved in the expression of
Me and be require imperatively a pixel summation. The classical quadrature
formulas (e.g., Gauss point) is not used because of the very irregular nature
of the image texture. This latter property is crucial to obtain an accurate
displacement evaluation. Furthermore, sub-pixel interpolation is used to de-
crease the resolution of the algorithm. The very use of a Taylor expansion
requires that the displacement be small when compared with the correlation
length of the texture. For a fine texture and a large initial displacement, this
requirement appears as inappropriate to converge to a meaningful solution.
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Thus one may devise a generalization to arbitrarily expand the correlation
length of the texture. This is achieved through a coarse-graining step. The
interested reader may refer to Ref. [4] for additional details concerning the
above mentioned features.

2.4 Second Case: I-DIC

The route outlined in Sect. 2.2 is still followed, but the relevant displacement
fields, Ψi, are introduced a priori at the measurement stage. It is referred
to as an integrated approach of measurement and identification, or I-DIC [5].
The direct computation of the amplitudes of the singular crack fields will
thus immediately provide an estimate for the SIFs. The generality of the
correlation approach is fully exploited, and no specific restrictions appear
from having to deal with eight functions. First, rigid body motions have to be
accounted for, and constitute the first three fields, two in-plane translations,
Ψ1 and Ψ2, and one rotation about an axis normal to the observation plane,
Ψ3. One single uniform strain field, Ψ4, is allowed for in order to leave the
crack face stress-free, the so-called “T-stress” (uniaxial tension along the crack
direction). The presence of the crack generates two independent singular strain
fields corresponding to modes I, Ψ5, and II, Ψ6, with two scalar amplitudes
that will give access to the stress intensity factors. Last, in order to enrich
the basis, one may also consider the next order sub-singular mode I and II
fields, respectively denoted by Ψ7 and Ψ8. It is very convenient to express
these vectors as complex valued fields in the local crack frame (crack tip at the
origin, and crack extension along the negative real axis). A current point M
is represented by a complex number z = x+ iy or polar coordinates z = reiθ,
and similarly the displacement is represented by u = ux + iuy. The expression
of the eight basis functions reads

Ψ1(z) = 1
Ψ2(z) = i
Ψ3(z) = iz
Ψ4(z) = (κ− 1)z + 2z
Ψ5(z) =

√
r[2κeiθ/2 − e3iθ/2 − e−iθ/2]

Ψ6(z) = i
√
r[2κeiθ/2 + e3iθ/2 − 3e−iθ/2]

Ψ7(z) =
√
r3[2κe3iθ/2 − 3eiθ/2 + e−3iθ/2]

Ψ8(z) = i
√
r3[2κe3iθ/2 + 3eiθ/2 − 5e−3iθ/2]

(14)

where

κ =
(3 − ν)
(1 + ν)

(15)

in plane stress condition, as expected along the free observation surface, with
ν being the Poisson’s ratio. Let us note however that the amplitudes of these
functions are real numbers. The motivation for choosing such a basis will be
described further down.
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3 Stress Intensity Factor Identification

3.1 First Method: Least Squares Minimization

Extracting some mechanically meaningful information using the detailed map
of displacement is performed by identifying the amplitudes of relevant ref-
erence displacement fields. In the present case, one lists easily meaningful
contributions [see Eq. (14)]. The strategy is thus to decompose the estimated
displacement field (from image correlation) onto the basis of Ψk test functions.
For this goal, the following objective function is minimized

T (a, z0, θ0) =
Nmes∑
n=1

|un[(zn − z0)e−iθ0 ] −
∑

k

akΨk(zn)|2 (16)

where Nmes is the number of measured displacement points, ak the sought
amplitudes, zn the location of the n-th measurement point, z0 the location of
the crack tip in the original frame, and θ0 the orientation of the crack front.

One advantage of this formulation is that the value reached by the objec-
tive function constitutes a global quality parameter. Since the identification
procedure assumes that the crack geometry is known, a minimization of this
global residual over the a priori guessed crack tip position also provides a
natural way of optimizing the crack geometry.

3.2 Second Method: Interaction Integral

It is worth noting that other techniques are followed to extract the stress
intensity factor by computing the crack opening displacement profile [17] or
by using an interaction integral formalism [18, 19, 20]. The latter is now
discussed and was shown to be applicable to experimental tests [21].

Let us introduce a displacement field u and the corresponding stress field
σ, which are solutions of a linear elastic problem with known elastic constants,
and whose geometry contains a linear crack. To measure the stress intensity
factor at the crack tip, it is convenient to use auxiliary displacement and stress
fields, uaux and σaux, (related through the same constitutive equation and
domain geometry) and the so-called virtual crack extension (or VCE in the
sequel) field q. The interaction integral Iint is defined as

Iint = −
∫

Ω

[
σaux

ml um,lδkj − (σaux
ij ui,k + σiju

aux
i,k )

]
qk,j dΩ (17)

where δkj is the Kronecker operator. In this expression, the VCE field q simply
appears as a (vector) weight function. It is assigned a value x at the tip and 0
on the boundary of the integration domain ∂Ω. It is also parallel to the crack
faces

q · nΓ = 0 on Γ
q = x at the tip
q = 0 on ∂Ω

(18)
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where Γ is the geometrical support of the crack and nΓ is the normal to Γ . It is
shown theoretically that Iint is domain-independent and that the interaction
integral value only depends on the stress intensity factors of the actual and
auxiliary fields [22], or more precisely in plane stress

Iint =
2
E

(KIK
aux
I +KIIK

aux
II ) (19)

where Ki, respectively Kaux
i , are the stress intensity factors of the actual,

respectively auxiliary, field, and E the Young’s modulus. Consequently, one
computes KI (respectively KII) choosing the auxiliary field to be the Wester-
gaard solution for a cracked body in mode I (resp. mode II) with a unit stress
intensity factor. This technique has been widely used in numerical simulations
with a VCE field q, which is everywhere parallel to the crack tip, and whose
modulus varies linearly with the distance to the crack tip from 1 at the tip, to
0 at the edge of a circular domain (this geometry is referred to as “conical”
in the sequel).

For identification purposes, the measured displacement field is chosen for
u, while σ is estimated from the displacement field and the constitutive equa-
tion, so that the interaction integral is a linear operator acting on the mea-
sured displacement field. A difficulty is that the interaction integral involves
the gradient of the measured displacement field and singular auxiliary fields.
Therefore, a high noise sensitivity of the stress intensity factors estimation by
this technique is expected (and observed). However, only the satisfaction of
the boundary conditions [Eq. (18)] is required for the result (19) to hold, and
hence the VCE field is adjusted to reduce the noise sensitivity of the stress
intensity factors identification.

A discretization scheme similar to that of the displacement is written for q

qe(x) =
ne∑

n=1

∑
α

qe
αnNn(x)eα (20)

Inserting the discrete displacement and virtual crack extension into the inter-
action integral Iint, one obtains a generic stress intensity factor K (for mode
I or mode II) in a matrix / vector form, where Q (respectively A) collect the
VCE nodal degrees of freedom (resp. the displacement)

K = QTLA (21)

In this equation, K and L are specialized for mode I or mode II by selecting
the appropriate auxiliary field.

Let us now assume that the actual approximated displacement field is
corrupted by a random (vector) noise ζζζ of zero mean

〈ζζζ(x)〉 = 0 (22)

This noise is also characterized by its variance γ2 and more completely by
its (normalized) correlation kernel C, so that the auto-correlation function is
written as
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〈ζζζ(x)ζζζ(x + y)〉
x

= γ2C(y) (23)

For an uncorrelated isotropic white noise, Cij(x) = δijδ(x) and the variance
of the noise along any direction is γ2.

The measurement uncertainties affect the estimation of the stress intensity
factors. Using the linearity of Eq. (21), the perturbation δK induced by noise
ζζζ is of zero mean

〈δK〉 = QTL 〈ζζζ〉 = 0 (24)

and its variance reads

〈δK2〉 = QT LCLT Q γ2 (25)

From this equation, the variance 〈δK2〉 depends upon the nodal values of the
VCE field, both displacement and weight functional bases, the auxiliary field
and the noise kernel. However, it is independent of the measured displacement
field. An interesting feature of Eq. (25) is that the K variance is a quadratic
form of Q. Hence, it is exploited for a minimization under the constraints
given by the boundary conditions (18). The optimal weight function for mode
I is displayed in Fig. 1.

1.0

0.5

0.0

Fig. 1. Shape of the optimal VCE computed for mode I.

Figure 2 illustrates the noise sensitivity reduction obtained by the opti-
mization of the VCE field. It is shown that the variance 〈δK2〉 for a conical
VCE is decreasing as a−2 where a is the size of the integration domain. For
the optimized VCE, the decay is steeper, scaling as a−3. Consequently, one
predicts that the ratio of the noise reduction from the cone to the optimum
VCE weight decreases with the domain size as 1/a. For typical sizes that are
considered in digital image correlation applications, the decrease in variance
reaches up to two orders of magnitude. More details about the improvements
brought out by the VCE optimization are given in Ref. [23].
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Fig. 2. Noise sensitivity for mode I with the cone and the optimal weight functions.

3.3 Third Method: I-DIC

Up to now, the identification procedures discussed herein consisted of two
independent steps:

• first, the measurement of the displacement field, and in particular the use
of an arbitrary functional basis for that purpose,

• second, the projection of the measured displacement field onto a few me-
chanically significant fields.

It is worth noting that the separation into two steps is unnecessary, and in
particular the introduction of Q4-elements is artificial, and only used at an
intermediate stage. This a priori partition will reduce the performance of
the method, as compared to an integrated approach. This third method has
already been presented in Section 2.4. Since the trial fields already contain
the pure mode I and mode II cases, the respective stress intensity factors are
directly the amplitude of those fields, and no further treatment is necessary.

3.4 Comparison between the different approaches

Since three different methods have been presented, it is worth discussing their
expected merits and weaknesses. Let us first note that the three approaches
require the knowledge of the elastic properties of the uncracked medium. If
they are not known or spatially varying the method is not directly applicable.
Furthermore, the present approaches are restricted to quasi-static situations
since inertia terms that arise in dynamic fracture are not included. This is
however not an intrinsic limitation of the method, since this generalization
may be performed in the same spirit as the quasi-static case. As mentioned
earlier, there is a major difference between the first two methods, and the
last one, because of the additional projection of the kinematic field onto a
functional basis that does not contain any specificities inherited from the
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analysis of the mechanical problem itself. The first two methods will thus be
compared first.

Starting for a discretized kinematic field, both routes 1 and 2 aim at pro-
jecting the field onto the pure crack singularity. However, this projection is
based on a different metric. In the first case, the Euclidian scalar product of
the actual and reference field is used, whereas in the second case, the scalar
product is traced back as the elastic “co-energy” between actual and auxiliary
fields. Therefore, one sees the advantage of the second method, in the sense
that the projection will be orthogonal to all (other than the auxiliary) elas-
tic displacement fields on the same geometry (but potentially with different
boundary conditions remote from the crack tip). Therefore, the presence of a
boundary, a complex (or even unknown) loading, will not affect the determi-
nation of the stress intensity factor. Moreover, a slight error in the positioning
of the crack tip is investigated using a perturbation approach. In this case,
on top of the standard singularity, a stronger one will appear (displacements
decaying as 1/

√
r away from the crack tip), termed generically super-singular

field. By construction, the latter is naturally the solution to an elastic prob-
lem on the same geometry, and hence is orthogonal (with the elastic co-energy
metric) to the reference field. Consequently, a slight error in the crack tip lo-
cation along its axis should have no impact on the measurement of K, and
hence this estimate should be quite robust. Let us however underline that as
elasticity is an essential ingredient included in the chosen metric, crack tip
plasticity, damage, or any other non-linear behavior may affect this property.

This property is not valid for the first approach. Yet, it is artificially rein-
troduced. It suffices to enrich the basis of trial fields with well chosen functions
to limit their influence. In particular, supersingular fields are introduced in
the library of basis functions. Subsingular fields are also considered as Ψ7 and
Ψ8 in Eq. (14), to account for complex loadings. The limitation is that such
fields have to be explicitly constructed. There is however an advantage of this
method, since the amplitude of all fields will be estimated from the projection.
For instance, the amplitude of the first supersingular field will give a very pre-
cise estimate of the ideal location of the crack tip. The other property of the
first approach is that it is based on the minimization of a functional, and thus
minimization with respect to different parameters are considered, such as the
crack geometry, or Poisson’s ratio, to extract this information. Yet another
interesting feature, illustrated below, is the fact that this minimization is the
surface integral of an “error” density. Thus the latter field itself is extremely
informative, namely, it indicates whether systematic deviations are observed
close to the crack tip (e.g., small scale yielding) or remote from it (e.g., pres-
ence of a boundary), and thus the field library are enriched or the domain
limited to account for this. It may also reveal specific regions in the sample
where the presence of defects are detected (e.g., porosity, micro-crack) and
that are to be excluded from the analyzed kinematic field.

Most of the characteristics of the first method also hold for the third one,
with the additional benefit of dealing with the kinematic field precisely at the
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pixel level, and not after a first filtering due to the kinematic analysis func-
tions (such as Q4 finite elements used herein). After this general discussion,
the application of the three approaches to a real experimental test is now
presented.

4 Analysis of a Fatigue Experiment

4.1 Experimental Configuration and Kinematic Measurements

The studied material is an XC48 (or C45) steel with a Young’s modulus of
190 GPa, a Poisson’s ratio of 0.3. The cyclic yield strength (offset: 0.2 %)
is equal to 210 MPa. The sample has a CCT geometry (Fig. 3-a) and is
subjected to cyclic tension with a load ratio R = 0.4. In the present analysis,
only the stage corresponding to the maximum load level is considered after
about 300,000 cycles for which the crack size 2a = 14.5 mm. Pictures are
taken by using a long distance microscope and a CCD camera (resolution:
1024 × 1280 pixels, dynamic range: 12 bits) so that the physical size of one
pixel is 2.08 μm. At this magnification, the raw surface is observed (Fig. 3b).
Contrary to other materials (e.g., aluminium alloy [24]) no special surface
preparation was used.

1
8

0
 m

m

60 mm

14.5 mm

-a-                                                       -b-

detail

150 μm

Fig. 3. -a-Reference picture of the CCT test (12-bit digitization, 1024 × 1280 pixel
resolution). -b-CCT geometry.

The displacement field is measured by using the Q4-DIC algorithm (see
Sect. 2.3). Prior to any actual analysis, it is important to estimate the perfor-
mance of the approach on the texture of the image (Fig. 3-a). If one changes
the picture, one may not get exactly the same performance since it is related
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to the local details of the gray level distribution as shown in Sect. 2.3. This
is performed by using the original image f only, and generating a translated
image g by a prescribed amount upre. Such an image is generated in Fourier
space using a simple phase shift for each amplitude [25]. This procedure im-
plies a specific interpolation procedure for inter-pixel gray levels, to which
one resorts systematically [4]. The algorithm is then run on the pair of im-
ages (f, g), and the estimated displacement field uest(x) is measured. One is
mainly interested in sub-pixel displacements, where the main origin of errors
comes from inter-pixel interpolation. Therefore the prescribed displacement
is chosen along the (1, 1) direction so as to maximize the interpolation sensi-
tivity. To highlight this reference to the pixel scale, one refers to the x- (or
y-) component of the displacement upre ≡ upre.ex varying from 0 to 1 pixel,
rather than the Euclidian norm (varying from 0 to

√
2 pixels).
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Fig. 4. Displacement uncertainty vs. element size for the picture shown in Fig. 3
with a Q4-DIC algorithm.

The quality of the estimate is characterized by the standard uncertainty
σu = 〈‖uest − 〈uest〉‖2〉1/2. It reaches a maximum for one half pixel displace-
ment, upre = 0.5 pixel, and is approximately symmetric about this maxi-
mum [4]. Integer valued displacements (in pixels) imply no interpolation and
are exactly captured through the multi-scale procedure discussed above. To
quantify the effect of the element size �, the standard uncertainty is averaged
over upre within the range [0, 1] as a function of the element size �. The result
is shown in Fig. 4. A power-law decrease

〈σu〉 = A1+ζ�−ζ (26)

for 8 ≤ � ≤ 64 pixels is observed as shown by a line on the graph. The am-
plitude is close to 1 pixel (more precisely A = 0.9 pixel). The exponent is
measured to be ζ = 1.4. These results quantify the trade-off the experimen-
talist has to face in the analysis of a displacement field, namely, either the
measurement is accurate but estimated over a large zone, or it is spatially
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resolved but at the cost of a less accurate determination. This is a signifi-
cant difference with classical finite element techniques for which convergence
is achieved when the element size decreases [1].

Even though the displacement uncertainty is the lowest for large element
sizes, the heterogeneity of the displacement prompts one to use small sizes.
To achieve a displacement uncertainty less than 2.5 × 10−2 pixel (or 52 nm),
elements of size 12 × 12 pixels.

4.2 Analysis of the Maximum Load Level

This study aims at comparing the three discussed methods to identify stress
intensity factors. It is performed for the maximum load level of the cycle. Fig-
ure 5 shows a map of the two components of the displacement field, where the
discontinuity of displacements appears clearly, mainly in mode I, although the
crack does not propagate along the horizontal direction, had the experimen-
tal conditions been perfect. Consequently, an identification based on “perfect”
boundary conditions, which is usually assumed by using finite element simu-
lations, is not secure in the present case. In the analyzed configuration, there
are Nmes = 10788 nodes.

Fig. 5. Vertical (a) and horizontal (b) displacement fields expressed in pixels (1
pixel is equal to 2.08 μm) in a CCT experiment measured by using a Q4-procedure
with an element size � = 12 pixels.

For any of the three identification routes, one key quantity in the error T or
η is the location of the crack tip in the reference picture, and the angle of the
crack face wrt. a reference direction in the picture. For each given location
of the crack, the values of the amplitudes of the fields Ψk is computed by
minimizing T or η.

When using the first identification route, it is shown that there is no need
to account for mode II terms (i.e., Ψ6 and Ψ8 are discarded) since the values
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of the stress intensity factor KII is less than 3 % that in mode I and the
influence on the identification error is vanishingly small.

Figure 6 shows a map of the two components of the identified displacement
field in very good agreement with the measured data (Fig. 5). A value of
KI = 20 MPa

√
m with an uncertainty on the order of 1.5 MPa

√
m is obtained

with the least squares minimization, when the crack tip location (z0, θ0) is
optimized.

Fig. 6. Vertical (a) and horizontal (b) displacement fields expressed in pixels (1
pixel is equal to 2.08 μm) in a CCT experiment identified by using 6 displacement
fields when � = 12 pixels and excluding from the analyzed a disk centered on the
crack tip and of radius Ri = 75 pixels.

Second, the interaction integral is used with an optimized virtual crack
extension field. The crack tip position is set at the same location as for the
first identification technique. Figure 7 shows the results obtained with this
identification route. Stress intensity factors are plotted as functions of the
size of the integration domain a. The domain independence of this approach
is illustrated. The quantitative estimation of the asymptotic value of KI is
23 MPa

√
m with an uncertainty on the order of 1 MPa

√
m. For KII , the

asymptotic value is extremely close to 0 MPa
√

m, in good agreement with the
results obtained using the first method.

Last, the analysis is performed with the integrated approach. Only one
element of size 512 × 512 pixels (or 1.13 mm2) is used. All the pixels are
considered apart those such that �(z) < 0 and �(z) < 12 pixels (to be con-
sistent with the first a posteriori analysis), as well as |z| < Ri = 75 pixels
(or 156 μm). The correlation procedure to estimate the amplitude of the dis-
placement field is quite similar to that presented in Ref. [4]. First, a gross
determination of the displacement field is searched for using coarse-grained
images, where super pixels are defined as averages of the true pixel values on
squares of size 2n × 2n pixels with n = 3 to start off with. After a first deter-
mination of the mean displacement, the strained image is corrected for using

409



François Hild, Julien Réthoré, and Stéphane Roux
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Fig. 7. Stress intensity factors from the interaction integral with an optimized VCE
field, a is the size of the integration domain.

a linear interpolation. The process is repeated until convergence. Then a sim-
ilar determination is carried out on a finer image where the coarse-graining is
performed for n = 2, and similarly down to the original images. This provides
a faster convergence, but more importantly, it avoids spurious trapping into
secondary minima when the displacement amplitude is large. Each determina-
tion at any scale is performed using the above formulation (6) for assembling
the linear system. First, the most likely crack tip position is determined. A
25 pixel (or 52 μm) difference is observed when compared with that given
by the first a posteriori analysis. This may be due to the discretization er-
ror introduced with the kinematic field determination projected onto finite
elements.

In the present case, the unresolved differences are measured in terms of
gray levels [see Eq. (5)]. When the map of Φ is analyzed and related to the
dynamic range of the considered region of interest, a maximum value of the
order of 1% is obtained (Fig. 8). It follows that the displacement evaluation
is deemed secure and the corresponding SIF value are trustworthy. Many un-
resolved differences are masked, in particular along the crack mouth. The
remaining unresolved and unmasked differences are uncorrelated, thereby in-
dicating that the basis of considered displacements is sufficient to describe
the present experiment. The map of displacements is very close to those of
Fig. 6. A value of KI = 18 MPa

√
m with an uncertainty on the order of

1 MPa
√

m is obtained. Within the uncertainty levels, the three values are in
a good agreement.

5 Summary

Two approaches were presented to measure a displacement field based on the
comparison of two digital images. First, the sought displacement field is de-
composed onto a basis of continuous functions using P1-shape functions with
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Fig. 8. Map of the residuals in gray levels at convergence for the integrated approach
with � = 512 pixels. The dynamic range of the region of interest is 3052 gray levels.
The dashed lines depict the masked areas.

Q4 elements as proposed in finite element methods. The latter corresponds to
one of the simplest kinematic descriptions. It therefore allows for a compat-
ibility of the kinematic hypotheses made during the measurement stage and
the subsequent identification / validation stage, for instance, by using conven-
tional finite element techniques. Based on the latter kinematic analysis, again
two identification techniques for the stress intensity factors were proposed.
Both of them are seen as a projection on pure elastic singular crack fields, but
with different metrics. The merits of these two approaches were discussed.
Second, an integrated kinematic measurement technique including an elastic
identification step based on a suited basis of functions was introduced.

All those procedures were tested on an experimental test, and provided
consistent estimates of mode I and mode II stress intensity factors. This paves
the way to stress intensity factor measurements, and even quantitative thresh-
old stress intensity factor or toughness estimates in situations that could not
have been analyzed otherwise. Moreover, such estimates only require at most
a few minutes of computation on a standard PC, and provide a global quality
criterion as well as spatial error maps enabling one to adjust the analysis tool
to meet any specific bias revealed therein. This study illustrates the level of
accuracy that is obtained on the stress intensity factor and crack geometry
using a high quality long-distance microscope, but otherwise quite common
equipment. The fact that only one camera was used limits the analysis to
planar surfaces. Investigating three dimensional fatigue cracks using X-ray
tomography constitutes therefore a challenging direction for future investiga-
tions.
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Conservation under Incompatibility for
Fluid-Solid-Interaction Problems: the NPCL

Method
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Summary. Finite-element discretizations of fluid-solid-interaction problems only
trivially preserve the conservation properties of the underlying problem under re-
strictive compatibility conditions on the approximation spaces for the fluid and the
solid. The present work introduces a new general method for enforcing interface
conditions that maintains the conservation properties under incompatibility. The
method is based on a nonlinear variational projection of the velocity field to impose
the kinematic condition, and a consistent evaluation of the load functional that ac-
counts for the dynamic condition. Numerical results for a projection problem are
presented to illustrate the properties of the method.

Key words: fluid-solid interaction, incompatibility, conservation, space-time finite-
element methods.

1 Introduction

The numerical solution of fluid-solid-interaction problems has prominence in
many scientific and engineering disciplines. The interaction is induced by in-
terface conditions, which prescribe continuity of displacements and tractions
across the fluid-solid interface. If the approximation spaces for the fluid and
the solid in the discretization are compatible, i.e., if the fluid and the solid
have identical meshes and orders of approximation at the interface, then the
enforcement of these continuity requirements is trivial. However, in many in-
stances, it is necessary to allow for incompatible approximation spaces. For
instance, the meshes for the fluid and solid subsystems may have been gen-
erated by different analysts. Moreover, the disparate regularity properties of
the fluid and solid solutions typically prompt distinct approximation spaces.

Alain Combescure et al. (eds.), IUTAM Symposium on Discretization Methods for Evolving
Discontinuities, 413–432.
© 2007 Springer. Printed in the Netherlands.
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An important characteristic of fluid-solid-interaction problems pertains to
their conservation properties: on account of the continuity of tractions and
displacements, mass, momentum and energy are conserved at the interface
and, accordingly, the interface does not appear in the conservation statements
for the aggregated system. However, incompatibility impedes continuity of
tractions and displacements across the interface in the discrete approxima-
tion. Consequently, incompatible finite-element discretizations of fluid-solid-
interaction problems do not generally preserve the conservation properties of
the underlying continuum problem.

Current coupling strategies for fluid-solid interaction are in general non-
conservative. The change in a conserved quantities in the interior of the fluid
and solid domains via the interface can be expressed as an inner product on
the interface. Conservation requires that this inner products evaluates to the
same value at both sides of the interface. Most coupling methods however fail
to identify the inner products. The methodology presented in [3] identifies the
inner products, but the inner products do not properly represent the change
in the interior of the domains.

In this work we present a new general coupling method for fluid-solid-
interaction problems that preserves the conservation properties under incom-
patibility. The method comprises three complementary primitives: a suitable
nonlinear variational projection to impose the kinematic condition, represen-
tation of the load functional in the velocity trace space of the fluid, and a
consistent evaluation of the load functional to account for the dynamic condi-
tion. We refer to the approach concisely as the NPCL (Nonlinear variational
Projection with Consistent Loading) method.

2 Problem Statement

In this section, we present the governing equations for the fluid and solid sub-
systems and the interface conditions. Based on these equations, we then derive
the conservation properties of the aggregated fluid-solid-interaction system.

2.1 Problem Setting

To furnish a setting for the model problem, let X be a Euclidean space of
dimension d (d = 2, 3) with measure | · |. Upon introducing orthonormal base
vectors ei, i = 1, . . . , d in X , we can specify any element x ∈ X by its
coordinates (x1, . . . , xd) with respect to the basis according to x = x1e1 +
· · · + xded. Thus, we obtain an isomorphism between X and R

d, viz., |x| =√
x2

1 + · · · + x2
d, and we can identify X and R

d.
To accommodate the fluid and solid subproblems, we consider an open,

bounded time interval ]0, T [ and two time-dependent open, bounded subsets
of X , viz., Ω(t) and Ξ(t). The mappings t �→ Ω(t) and t �→ Ξ(t) are con-
tinuous, so that Ω(t) and Ξ(t) are well-defined for all t ∈ [0, T ]. The fluid
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and solid subproblems are set on Ω(t) and Ξ(t), respectively. We assume
that Ω(t) and Ξ(t) are contiguous. This implies that the intersection of the
domains is empty, i.e., the domains are non-overlapping, and the intersection
of their closures is non-empty. The latter implies that there exists an interface

Γ (t) = cl(Ω(t)) ∩ cl(Ξ(t)) �= ∅ between the fluid domain Ω(t) and the solid
domain Ξ(t), where cl(·) represents set closure.

To facilitate the presentation, we denote by G(A) := {(A(t), t) : t ∈]0, T [}
the space-time domain corresponding to the time-dependent set A(t).

2.2 Fluid Subsystem

Denoting by r, E, θ and u = (u1, . . . , ud) the density, total energy, abso-
lute temperature and velocity of the fluid, respectively, conservation of mass,
momentum and energy is expressed by the Navier-Stokes equations:

r′ + ∂j(ruj) = 0, (x, t) ∈ G(Ω), (1a)
(rui)′ + ∂j(ruiuj − πij) = 0, (x, t) ∈ G(Ω), (1b)

E′ + ∂j(Euj − πijui − κθ,j) = 0, (x, t) ∈ G(Ω), (1c)

where we have used the notation (·)′ = ∂/∂t and ∂j = ∂/∂xj and summa-
tion on repeated indices is implied, e.g., ∂iui is the divergence of the vector
field u. Moreover, κ denotes the thermal conductivity, and πij represent the
components of the (Cauchy) stress tensor π with respect to the Cartesian
basis {ei}.

Closure of the system of equations (1) requires suitable constitutive rela-
tions which relate π and θ to the state variables r, E and u. For the purposes
in this paper, it is not necessary to specify these constitutive relations. For
further details, we refer to, e.g., Refs. [9, 10]. Moreover, in (1) we have assumed
the fluid to be compressible. The analysis below extends however with only
minor modifications to incompressible fluids.

The system of partial-differential equations (1) must be complemented
with suitable auxiliary conditions, viz., initial and boundary conditions. The
boundary conditions at the interface G(Γ ) are treated separately in sec-
tion 2.4. The auxiliary conditions on the complementary parts of the space-
time boundary are not further elaborated.

2.3 Solid Subsystem

The solid is governed by conservation statements identical to (1), but with in-
trinsically different constitutive relations. However, for solids the equations are
customarily transformed to Lagrangian form, i.e., the equations are expressed
with respect to a reference configuration. To formulate the solid subproblem,
we assume that for all t ∈ [0, T ] the domain Ξ(t) can be characterized by a
differentiable one-to-one mapping (diffeomorphism) from the reference con-
figuration Ξ̂ according to x̂ ∈ Ξ̂ �→ Φ(x̂, t) ∈ Ξ(t). The map x̂ �→ Φ(x̂, t)
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associates to each point in the reference configuration its position in the actual
configuration. The map x̂ �→ Φ(x̂, t) − x̂ is referred to as the displacement.

Let x̂ = (x̂1, . . . , x̂d) denote a Cartesian coordinate system in the refer-
ence configuration. The map x̂ �→ x = Φ(x̂, t) renders (x̂1, . . . , x̂d) a general
coordinate system on Ξ(t). The covariant base vectors associated with this co-
ordinate system are defined by εα = ∂αΦ, where the Greek index serves to in-
dicate that the derivative acts in the reference configuration, i.e., ∂α = ∂/∂x̂α.
The contravariant base vectors εα are defined by εα · εβ = δα

β . The Jacobian
of the transformation x̂ �→ x is given by J = det(εαi), where εαi = εα · ei

represent the Cartesian components of the covariant base vectors.
Denoting by ρ(x̂, t) the density of the solid in the actual configuration,

and by ρ̂(x̂) the density in the reference configuration, conservation of mass
is expressed by:

ρ(x̂, t)J(x̂, t) = ρ̂(x̂), (x̂, t) ∈ G(Ξ̂). (2)

Using this expression in the equation of motion for the solid, one obtains

ρ̂(x̂)Φ′′
i (x̂, t) − ∂αS

α
i (x̂, t) = 0, (x̂, t) ∈ G(Ξ̂), (3)

where Sα
i represent the first-Piola-Kirchoff components of the stress tensor.

The first-Piola-Kirchoff components Sα
i and the Cauchy components σij of

the stress tensor are related by the identity

σij = J−1Sα
i εαj ; (4)

see, e.g., Ref. [8]. One may note that (3) describes the Cartesian components
of the acceleration of the solid, Φ′′

i , in the reference configuration.
In this treatise we restrict ourselves to isothermal solid processes. This

implies that the system of equations (2)–(3) can be closed without an energy-
conservation equation. Instead, a constitutive relation is required, which re-
lates the stress tensor to the displacement field. For instance, a common con-
stitutive relation for an isotropic solid is σij = Cijklεkl, with ε the Green-
Lagrange strain tensor, viz., εαβ = 1

2 (εαiεβi − δαβ). For later reference, how-
ever, we note that for isothermal processes the solid complies with the energy-
conservation equation

(ϕJ)′(x̂, t) − ∂α(Φ′
iS

α
i )(x̂, t) = 0, (x̂, t) ∈ G(Ξ̂), (5)

where ϕ : G(Ξ̂) → R represents the total internal energy of the solid.
The partial-differential equation (3) must be complemented with suitable

initial and boundary conditions. The boundary conditions at the interface
are detailed in section 2.4. The auxiliary conditions at the complementary
space-time boundary are not further specified.
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2.4 Interface Conditions

The fluid and the solid are interconnected by interface conditions. With the
restriction to isothermal processes, the interface conditions for the fluid-solid
system can be separated into kinematic and dynamic conditions.

The kinematic conditions stipulate that the boundaries of the fluid and
the solid domains coincide at the interface,

cl(G(Ω)) ∩ cl(G(Ξ)) = cl(G(Γ )), (6)

and, moreover, that the fluid velocity at the interface is identical to the struc-
tural velocity at the interface. The latter condition can be expressed as

u(Φ(x̂, t), t) = Φ′(x̂, t), (x̂, t) ∈ G(Γ̂ ) . (7)

For inviscid flows it suffices that the velocities of the fluid and the solid in
the direction normal to the interface are identical. Denoting by n(x, t) the
outward unit normal vector on the boundary ∂Ω(t) of the fluid domain, and
by λ(x̂, t) the outward unit normal vector on the boundary Ξ(t) of the solid
domain in the actual configuration, the kinematic condition (7) thus reduces to

u(Φ(x̂, t), t) · n(Φ(x̂, t), t) = −Φ′(x̂, t) · λ(x̂, t), (x̂, t) ∈ G(Γ̂ ) .

The dynamic condition specifies the equilibrium of stresses at the interface.
This translates into the condition

πij(Φ(x̂, t), t)nj(Φ(x̂, t), t) dμ∂Ω(Φ(x̂, t), t)

= −Sα
i (x̂, t) λ̂α(x̂, t) dμ∂Ξ̂(x̂, t), (x̂, t) ∈ G(Γ̂ ) , (8)

with λ̂α the Cartesian components of the unit normal vector on the boundary
of the solid domain in the reference configuration. Furthermore, dμ∂Ω and
dμ∂Ξ̂ denote the surface measures carried by the boundary of the fluid domain
and the boundary of the structural domain in the reference configuration,
respectively. It is noteworthy that Nanson’s formula,

λi dμ∂Ξ = J (∂x̂j/∂xi) λ̂j dμ
∂Ξ̂
,

(see, e.g., [7, p. 88]) and (4) yield the following sequence of identities:

Sα
i λ̂α dμ∂Ξ̂ = Sα

i

∂xj

∂x̂α

∂x̂k

∂xj

λ̂k dμ∂Ξ̂ = Sα
i εαj J

−1 λj dμ∂Ξ = σij λj dμ∂Ξ .

(9)
Hence, equation (8) indeed imposes the equilibrium of tractions at the inter-
face, with the fluid contribution expressed in the actual configuration and the
solid contribution expressed in the reference configuration. Let us allude to
the fact that for inviscid fluids the left member of (8) reduces to pni and,
accordingly, it holds that wiπijnj = pwini = 0 for all vectors w ∈ TxΓ (t)
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tangent to the interface. This implies that the shear stresses vanish at the
interface.

In principle, the fluid and solid subsystems also interact through ther-
modynamic interface conditions. With the restriction to isothermal processes
in the solid, however, the initial-boundary-value problem for the fluid must
instead be complemented separately with thermodynamic boundary condi-
tions, for instance, a specification of the temperature or the heat flux at the
interface.

2.5 Conservation Properties

To establish the conservation properties of the aggregated fluid-solid system,
we consider the generic conservation statement w′ + ∂ifi = 0 on the arbitrary
space-time domain G(A). Integration on the domain G(A) and application of
the divergence theorem yields[ ∫

A(t)

w(x, t) dx

]T

0

+
∫

G(∂A)

wν + fin̄i dμG(∂A) = 0, (10)

with (n̄1, . . . , n̄d, ν) the space-time normal vector on G(∂A) and dμG(∂A) the
measure carried by the space-time boundary. On account of the identities

n̄i = ni(1 + v2n)−1/2, ν = −(1 + v2n)−1/2vn, dμG(∂A) = (1 + v2n)1/2 dμ∂A(t) dt,

with vn the velocity of the boundary ∂A(t) in its normal direction, Eq. (10)
implies that[∫

A(t)

w(x, t) dx

]T

0

=
∫ T

0

∫
∂A(t)

wvn dμ∂A(t) dt−
∫ T

0

∫
∂A(t)

fini dμ∂A(t) dt.

(11)
By applying Eqs. (10)–(11) to the conservation equations for the fluid and
the solid (1)–(5), and combining the resulting expressions according to their
connotation, we obtain[∫

Ω(t)

r(x, t) dx +
∫

Ξ̂

ρ̂(x̂) dx̂

]T

0

= 	1 + ψ1, (12a)[ ∫
Ω(t)

[rui](x, t) dx +
∫

Ξ̂

ρ̂(x̂)Φ′
i(x̂, t) dx̂

]T

0

= 	2i + ψ2i, (12b)[ ∫
Ω(t)

E(x, t) dx +
∫

Ξ̂

Φ(x̂, t) dx̂

]T

0

= 	3 + ψ3, (12c)

where the various ψ terms pertain to integrals on the external boundary of
the aggregated fluid-solid system and the interface conservation residuals are
defined as:
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	1 =
∫ T

0

∫
Γ (t)

r(vn − ujnj) dμΓ (t) dt, (13a)

	2i =
∫ T

0

∫
Γ (t)

rui(vn − ujnj) dμΓ (t) dt

+
∫ T

0

∫
Γ (t)

πijnj dμΓ (t) dt+
∫ T

0

∫
Γ̂

Sα
i λ̂α dμ

Γ̂
dt, (13b)

	3 =
∫ T

0

∫
Γ (t)

E(vn − ujnj) dμΓ (t) dt

+
∫ T

0

∫
Γ (t)

uiπijnj dμΓ (t) dt+
∫ T

0

∫
Γ̂

Φ′
iS

α
i λ̂α dμ

Γ̂
dt. (13c)

One can infer that the residuals in (13) vanish subject to the interface con-
ditions (6)–(8). For example, the integrant in the first term in (13c) vanishes
identically on account of the kinematic conditions (6)–(7). Moreover, by trans-
forming the third term in (13c) to the actual solid configuration and adding
a suitable partition of zero, we obtain:∫ T

0

∫
Γ (t)

uiπijnj dμΓ (t) dt+
∫ T

0

∫
Γ̂

Φ′
iS

α
i λ̂α dμ

Γ̂
dt

=
∫ T

0

∫
Γ (t)

(Φ′
i − ui)σijλj dμΓ (t) dt+

∫ T

0

∫
Γ (t)

(σijλj + πijnj)ui dμΓ (t) dt.

(14)

It follows from (6)–(9) that the integrants in the right member of (14) vanish
identically and, hence, 	3 = 0.

In the absence of the residuals, Eqs. (12a)–(12c) can be identified as state-
ments of conservation of mass, momentum and energy for the aggregated
fluid-solid system. The interface is absent in the conservation statements for
the aggregated system, and changes in the conserved quantities are incurred
at the external boundary of the aggregated system only.

2.6 Incompatibility and Conservation

Equipped with the interface residuals (13), we can state the problem con-
sidered in this paper more precisely. In a finite-element discretization of a
fluid-solid-interaction problem, it is in general prohibitively restrictive to stip-
ulate compatibility of the approximation spaces pertaining to the fluid, the
solid and the geometry of the fluid domain. For incompatible approximation
spaces, however, the interface conditions cannot be satisfied in a pointwise
sense. This implies that for incompatible finite-element approximations, the
interface conservation residuals do not generally vanish and, accordingly, the
discrete approximation does not maintain the conservation properties of the
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continuum problem. The objective of this paper is to devise a methodology for
maintaining conservation under incompatibility for finite-element discretiza-
tions of fluid-solid-interaction problems.

3 Finite-Element Formulation

3.1 Finite-Element Setting

We restrict ourselves to boundary-fitted finite-element methods. Moreover,
we assume that the fluid domain Ω(t) is always diffeomorphic to the initial
domain Ω(0). Accordingly, Ω(t) can be characterized by a diffeomorphism
Ψ : Ω̂ → Ω(t) from the reference domain Ω̂ = Ω(0). Let Ω̂ represent a finite-
element partition of the reference domain into non-overlapping elements e,
i.e., Ω̂ is a collection of subdomains De, e.g., a simplicial complex [1]. We
refer to |Ω̂| = int(∪e∈Ω̂

cl(De)) as the underlying space of Ω̂, and we assume
that |Ω̂| ≈ Ω̂ in the sense that |Ω̂| and Ω̂ are homeomorphic and close, e.g., in
terms of their Hausdorff distance. Let V (|Ω̂|) denote a finite-element approxi-
mation space for the fluid-domain map Ψ . For instance, V (|Ω̂|) can consist of
all continuous functions |Ω̂| �→ R

d that are piecewise polynomial of a certain
degree on the elements De, e.g., iso-parametric elements [6]. Similarly, Ξ̂ rep-
resents a finite-element partition of the solid reference domain Ξ̂ and W (|Ξ̂|)
is a finite-element space for the solid position.

Let ∂|Ω̂|Γ and ∂|Ξ̂|Γ represent the sections of the underlying-domain
boundaries associated with the interface for the fluid and the solid, respec-
tively. We refer to ∂|Ω̂|Γ and ∂|Ξ̂|Γ as the interface boundaries. At the inter-
face, the fluid and solid boundaries can assume positions in the trace spaces:

VΓ = VΓ (∂|Ω̂|Γ ) = {γ∂|Ω̂|Γ
Ψ : Ψ ∈ V (|Ω̂|)},

WΓ = WΓ (∂|Ξ̂|Γ ) = {γ∂|Ξ̂|Γ
Φ : Φ ∈W (|Ξ̂|)},

where the trace operators γ∂|Ω̂|Γ
and γ∂|Ξ̂|Γ

represent the extension of func-
tions in V (|Ω̂| and W (|Ξ̂|) onto the fluid and solid interface boundaries,
respectively. The tractions that occur at the fluid and solid interface bound-
aries reside in the dual spaces V ′

Γ andW ′
Γ , respectively. Incompatibility of the

finite-element spaces can be characterized as VΓ �= WΓ and V ′
Γ �= W ′

Γ .
In this paper we consider tensor-product space-time finite-element dis-

cretizations. Denoting by V (A) a spatial finite-element space on an arbitrary
domain A and by P κ(τ) the space of polynomials of degree ≤ κ on the generic
temporal interval 0 < t < τ , the corresponding tensor-product space-time
finite-element space is given by V (A)×P κ(τ). Let us remark that the analysis
below extends mutatis mutandis to conventional finite-element discretizations
in which space and time are treated separately.
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3.2 Mesh Association

A profound complication in the treatment of incompatible discretizations, is
the disparity of the geometric representations of the interface corresponding
to the fluid and the solid. The expressions for the interface conditions (7)–(8)
are contingent on the fact that the fluid and solid interface boundaries coin-
cide and, accordingly, that Φ provides a one-to-one association between the
solid interface boundary in the reference configuration, ∂Ξ̂Γ , and the fluid in-
terface boundary, ∂Ω(t)Γ . Under incompatibility, the fluid and solid interface
boundaries do not generally coincide, which necessitates the construction of a
proper associative map between the two boundaries. The construction of an
association between two geometrically distinct meshes is commonly referred
to as mesh association. Common examples of mesh-association algorithms are
nearest-neighbor and orthogonal-projection association, although these associ-
ations are not generally one-to-one. A detailed treatment of mesh association
is beyond the scope of this paper. For further elaboration, we refer to [2, 4].
In the following exposition, a proper associative map Λ : ∂|Ξ̂|Γ → ∂|Ω̂|Γ is a
proviso.

3.3 Boundary Conditions

The interface conditions can be conceived as boundary conditions for the fluid
and solid subproblems on the interface boundaries. We adhere to the conven-
tional partitioning of the interface conditions: the kinematic condition (7)
yields essential (Dirichlet) boundary conditions for the fluid subsystem and
the dynamic condition (8) provides natural (Neumann) boundary conditions
for the solid subsystem.

To elucidate the enforcement of natural boundary conditions in the finite-
element formulation of the solid, we suppose that the boundary ∂|Ξ̂| is com-
posed of a nonempty section ∂|Ξ̂|D on which essential boundary conditions are
specified, and a section ∂|Ξ̂|N ⊇ ∂|Ξ̂|Γ on which natural boundary conditions
are prescribed. For simplicity, we assume homogeneous boundary conditions
on ∂|Ξ̂|D and ∂|Ξ̂|N = ∂|Ξ̂|Γ , but these assumptions are nonessential. De-
noting byW0(|Ξ̂|) the subspace of W (|Ξ̂|) of functions that vanish on ∂|Ξ̂|D,
the space-time finite-element formulation of the solid subsystem can be con-
densed into the variational formulation: Find Φ ∈W0(|Ξ̂|)×P κ(τ) such that

S(Φ; Y ) = "(Y ) + ı(Y ) ∀Y ∈ W0(|Ξ̂ |) × P κ(τ), (15)

where

S(Φ,Y ) =
∫ τ

0

∫
|Ξ̂|

[
Yi ρ̂ Φ

′′
i + Sα

i ∂αYi

]
(x̂, t) dx̂dt

+
∫
|Ξ̂|

[
YiΦ

′
i − Y

′
i Φi

]
(x̂, 0) dx̂, (16a)
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"(Y ) =
∫ τ

0

∫
∂|Ξ̂|N

[Yiŝi](x̂, t) dμ∂|Ξ̂|(x̂) dt, (16b)

ı(Y ) =
∫
|Ξ̂|

(
Yi(x̂, 0)Θ1(x̂) − Y ′

i (x̂, 0)Θ0(x̂)
)
dx̂. (16c)

The function ŝ in (16b) represents the traction data in the reference config-
uration on the boundary ∂|Ξ̂|N and Θ1 and Θ0 in (16c) represent initial
data according to Φ(·, 0) = Θ0 and Φ′(·, 0) = Θ1. In formulation (15)–(16),
the initial conditions are enforced weakly. However, other formulations are
possible, e.g., with strongly enforced initial conditions. The most important
term for our considerations is the load functional (16b), which accounts for
the weak enforcement of the load data on the interface boundary. In (16b),
we conceive of " as a linear functional from W0(|Ξ̂ |) × P κ(τ) into R. It is to
be noted, however, that "(Y ) depends on the trace of Y at ∂|Ξ̂|Γ only. The
following identity holds for all Y ∈ W0(|Ξ̂ |) × P κ(τ):∫ τ

0

∫
∂|Ξ̂|Γ

Yi S
α
i λ̂α dμ∂|Ξ̂|Γ

dt = "(Y ) .

In particular, the right-most terms in the interface conservation residuals (13b)
and (13c) are to be interpreted as∫ τ

0

∫
Γ̂

Sα
i λ̂α dμ

Γ̂
dt = "(ei),

∫ τ

0

∫
Γ̂

Φ′
iS

α
i λ̂α dμ

Γ̂
dt = "(Φ′) , (17)

where ei and Φ′ indicate functions in W0(|Ξ̂|) × P κ(τ) such that γ∂|Ξ̂|Γ
ei

coincides almost everywhere with any one of the Cartesian base vectors ei

(cf. section 2.1) and γ∂|Ξ̂|Γ
Φ′ = γ∂|Ξ̂|Γ

Φ′ almost everywhere.
We assume that the essential boundary conditions for the fluid are enforced

strongly in such a manner that γ∂|Ω̂|Γ
u = γ∂|Ω̂|Γ

Ψ ′ identically, i.e., the fluid
velocity at the fluid interface boundary is identical to the velocity of the fluid
interface boundary. This identity stipulates compatibility between the approx-
imation spaces for the fluid-domain position, Ψ , and the fluid-velocity, u. For
instance, this compatibility condition is satisfied if the approximation space
for the fluid velocity at the interface is VΓ × P κ(τ) and the approximation
space for the fluid-domain position at the interface is VΓ × P κ+1(τ), because
(·)′ maps P κ+1(τ) into P κ(τ).

4 Conservation under Incompatibility: the NPCL
Method

Our approach to maintaining conservation under incompatibility consists of
three complementary components, viz., a suitable nonlinear variational pro-
jection that imposes the kinematic condition (7), Riesz’ representation of the
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load functional in the velocity space, and a consistent evaluation of the load
functional (16b) that accounts for the dynamic condition (8). We refer to
the approach concisely as the NPCL (Nonlinear variational Projection with
Consistent Loading) method.

4.1 Riesz Representation of Load Functionals

An important primitive in the NPCL method is the identification of the trac-
tion exerted by the fluid on the solid to an element of the velocity space by
means of Riesz’ representation theorem. To elaborate the identification, let H
denote a Hilbert space with inner product (·, ·)H . Riesz’ representation theo-
rem asserts that for any linear functional f ∈ H ′ there exists a unique element
J (f) ∈ H such that

(J (f), v)H = f(v) ∀v ∈ H ,

and, moreover, ‖J (f)‖H = ‖f‖′H ; see, e.g., [6, 11]. A Hilbert space H can
therefore be identified with its dual by means of the ambiguous notation
J (f) = f . A Hilbert space H endowed with the identification H ′ = H is
called a pivot space. Moreover, if V is a closed subspace of the pivot space H ,
then V ′ can be identified with a superspace of H .

The above expose reveals that the L2 inner product of displacements and
tractions in the load functional (16b) is to be understood as a duality pairing,
under the convention that L2 acts as pivot space. Hence, the load functional
admits a Riesz representation in the displacement space. Conservation of en-
ergy, however, is based on the duality pairing 〈",Φ′〉 of the load functional with
the interface velocity and, remarkably, displacement and velocity do not gen-
erally reside in the same function space; cf. [5, §3.4 and §3.8]. More precisely,
the displacement space can generally be embedded in the velocity space. This
implies that one can only assign meaning to the duality pairing of velocity
and load that underlies conservation of energy under additional assumptions
on the regularity of the velocities and tractions. Assuming that the load func-
tional in fact resides in the dual velocity space, " admits a Riesz representation
according to

(πn,v)V = "(v) ∀v ∈ V , (18)

where V denotes the velocity function space (on a space-time domain) and
(·, ·)V represents the corresponding inner product. Riesz’ representation theo-
rem moreover asserts that the identity (18) defines a unique element πn ∈ V .

4.2 The NPCL Method

In the NPCL method, the kinematic condition (7) is imposed by defining the
velocity of the fluid interface boundary as the projection of the velocity of the
solid interface boundary. The projection can be condensed into the variational
problem: Find u ∈ VΓ × P κ(τ) such that

423
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0

(
u(·, t),v(·, t)

)
V,g(t)

dt =
∫ τ

0

(
Φ′(Λ−1(·), t),v(·, t)

)
V,g(t)

dt

∀v ∈ VΓ × P κ(τ). (19)

The position of the fluid interface boundary follows by integration. The inner
product (·, ·)V,g(t) represents the spatial inner product pertaining to the ve-
locity space. This inner product depends on the metric g of the actual fluid
interface boundary, viz., a twice-covariant vector field that expresses the dis-
tance on the boundary. For example, if (·, ·)V,g(t) is the L2 inner product,
then∫ τ

0

(
u(·, t),v(·, t)

)
V,g(t)

dt =
∫ τ

0

∫
∂|Ω̂|Γ

u(x, t)v(x, t) dμ∂Ω(t)(x) dt ,

and dμ∂Ω(t)(x) =
√

det(g) dx; see section 5 for exemplification. It is to be
noted that the projection (19) is nonlinear, on account of the fact that the
metric g depends on the actual position of the fluid interface boundary, which
in turn depends on u. Moreover, the integrals in (19) are evaluated on the
fluid interface boundary, which necessitates the transfer of the velocity on the
solid interface boundary to the fluid interface boundary in the right member
of (19). This transfer is accomplished by the inverse of the associative map
Λ : ∂|Ξ̂|Γ → ∂|Ω̂|Γ ; see section 3.2. Note that the association is established
in the reference configuration and, hence, Λ is independent of Φ and Ψ .

In the NPCL method, the dynamic condition (8) is imposed by means of
the following specification of the load functional, consistent with (19),

"(Y ) = −

∫ τ

0

(
Y (Λ−1(·), t),πn(·, t)

)
V,g(t)

dt (20)

where πn designates the approximation of the Riesz representation of the
traction πijnj in the velocity space, defined as the unique element of VΓ ×
P κ(τ) in compliance with∫ τ

0

(
πn(·, t),v(·, t)

)
V,g(t)

dt =
∫ τ

0

∫
∂|Ω̂|Γ

[πijnj ] vi(x, t) dμ∂Ω(t)(x) dt

∀v ∈ VΓ × P κ(τ) . (21)

The functional " according to (20) depends implicitly on the position of the
fluid interface boundary through the metric g. The evaluation of the test
functions pertaining to the solid, Y , on the fluid interface boundary again
requires the inverse association Λ−1.

To prove that (19)–(21) ensure conservation of mass, momentum and en-
ergy, we first note that the first terms in the interface conservation residu-
als (13) vanish on account of the stipulated identity γ

∂|Ω̂|Γ
u = γ∂|Ω̂|Γ

Ψ ′.
Hence, 	1 = 0 and conservation of mass is ensured. Moreover, the first iden-
tity in (17) and equations (20) and (21) yield the sequence of identities:
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0

∫
Γ̂

Sα
i λ̂α dμ

Γ̂
dt = "(ei) = −

∫ τ

0

(
ei(Λ

−1(·), t),πn(·, t)
)

V,g(t)
dt

= −

∫ τ

0

∫
∂|Ω̂|Γ

[πijnj ](x, t) dμ∂Ω(t)(x) dt . (22)

Noting that Γ (t) in (13) in fact represents the interface boundary of the fluid
domain, equation (22) implies that the second and third term in (13b) cancel.
Therefore, 	2i vanishes, which implies that momentum is conserved. It is to
be mentioned that the second identity in (22) is found on the assumption
that VΓ ×P κ(τ) contains functions that coincide almost everywhere with the
Cartesian base vector ei, but this assumption is nonrestrictive. Finally, on
account of, successively, (17), Eq. (20), Eq. (19) and πn ∈ VΓ × P κ(τ), and
Eq. (21) and u ∈ VΓ × P κ(τ), it holds that:∫ τ

0

∫
Γ̂

Φ′
iS

α
i λ̂α dμ

Γ̂
dt = "(Φ′)

= −

∫ τ

0

(
Φ′(Λ−1(·), t),πn(·, t)

)
V,g(t)

dt = −

∫ τ

0

(
u(·, t),πn(·, t)

)
V,g(t)

dt

=
∫ τ

0

∫
∂|Ω̂|Γ

ui(x, t) [πijnj ] (x, t) dμ∂Ω(t)(x) dt .

Hence, the second and third term in (13c) cancel and 	3 = 0, which corrobo-
rates that the NPCL method also preserves energy.

In a practical implementation, the integrals in (19)–(21) are typically eval-
uated by means of Gauss quadrature. The evaluation of the test functions of
the solid on the fluid interface boundary in (20) then only requires the asso-
ciation of quadrature points on the fluid interface boundary in the reference
configuration to corresponding points on the solid interface boundary in the
reference configuration. Hence, the NPCL method only requires a point-to-
point association algorithm.

The (·, ·)V,g(t) inner product in (19)–(21) in general assumes a profoundly
difficult form, on account of the fact that it pertains to a trace space. A typical
functional setting for the solid problem is:

Φ ∈ L2
(
0, τ ;H1

0 (Ξ̂)
)
, Φ′ ∈ L2

(
0, τ ;L2(Ξ̂)

)
, Φ′′ ∈ L2

(
0, τ ;H−1(Ξ̂)

)
;
(23)

see [5, §3.8]. However, according to the trace theorem (see, e.g., [6, Thm. 4.9]),
this implies that the appropriate corresponding inner product for the interface-
boundary velocity is

(u,v)V =
∫ τ

0

(
u(·, t),v(·, t)

)
H−1 /2 ,g(t)

dt .

Although such an inner product is computable, it is utterly impractical. In
a practical implementation, one can therefore opt to replace (·, ·)V,g(t) by the
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standard L2 inner product, in violation of the proper functional setting. Such
a violation of the functional setting can lead to non-convergence if the trace
value γ

Γ̂
Φ′ does not reside in L2(0, τ ;L2(Γ̂ )), i.e., if Φ′ is highly irregular

at the interface boundary. The practical relevance of such extreme cases is
however limited. One can infer that the conservation properties of the NPCL
are preserved if the inner products in (19)–(21) are consistently replaced by
the L2 inner product.

5 Example

To exemplify the NPCL method, we consider its application to an elementary
projection problem in (2+1)D space-time. Let us consider approximate fluid
and solid interface boundaries in the reference configuration, given by:

∂|Ξ̂|Γ =
{
x ∈ R

2 : x = (s, 0), 0 ≤ s ≤ 1
}
,

∂|Ω̂|Γ =
{
x ∈ R

2 : x =
(
s− 1

10 ,
1
10s+ 1

10

)
, 0 ≤ s ≤ 1

}
.

Clearly, there is a mismatch between the approximate interface boundaries.
We construct the following associative map (with corresponding inverse) be-
tween ∂|Ξ̂|Γ and ∂|Ω̂|Γ :

Λx =
(
x1 −

1
10 , x2 + 1

10x1 + 1
10

)
, (24a)

Λ−1x =
(
x1 + 1

10 , x2 −
1
10x1 −

11
100

)
. (24b)

One easily infers that Λ according to (24a) indeed provides a diffeomorphism
from ∂|Ξ̂|Γ onto ∂|Ω̂|Γ . In addition, suppose that the position of the solid
interface boundary is given by:

Φ(s, t) = (s, 0) +
(

1
10 sin(2πt) sin(s), t sin(2πs)

)
. (25)

It is to be noted that due to the initial mismatch between the fluid and solid
interface boundaries, the corresponding actual position of the fluid interface
boundary is:

Ψ (s, t) = (s− 1
10 ,

1
10s+ 1

10 ) +
(

1
10 sin(2πt) sin(s), t sin(2πs)

)
; (26)

see figure 2 on page 17.
We approximate the velocity field corresponding to (25) on the fluid inter-

face boundary ∂|Ω̂|Γ by tensor product polynomials of degree κ. In particular,

ũ(s, t) =
κ∑

i=0

κ∑
j=0

ûijηi(s)ηj(t) , (27)

where ηi represents the Legendre polynomial of degree i on the interval [0, 1].
For given coefficients ûij , the corresponding approximation to the position of
the fluid interface boundary is determined by
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Ψ̃ (s, t) =
(
s− 1

10 ,
1
10s+ 1

10

)
+

κ∑
i=0

κ∑
j=0

ûijηi(s)Hj(t) , (28)

where Hj represents the anti-derivative of ηj . The metric tensor g(t) and the
measure dμ∂Ω(t) associated to (28) are given by

g(t)(s) =
∂Ψ̃

∂s
·
∂Ψ̃

∂s
=
∣∣∣∣∂Ψ̃∂s

∣∣∣∣2, dμ∂Ω(t) =
√
g(t)(s) ds , (29)

respectively. Setting (·, ·)V in Eqs. (19)–(21) to the L2 inner product and
denoting by [P κ]2 the tensor-product approximation space of order κ on the
unit square, the projection problem (19) can be condensed into the following
variational problem: find ũ ∈ [P κ]2 such that

A(ũ, ũ, ṽ) = B(ũ, ṽ) ∀ṽ ∈ [Pκ]2 , (30)

where the trilinear from A and the bilinear form B are defined by

A(ũ, w̃, ṽ) =
∫

[0,1]2

ṽ · ũ

∣∣∣∣∂Ψ̃(w̃)
∂s

∣∣∣∣ ds dt , (31a)

B(w̃, ṽ) =
∫

[0,1]2

ṽ · Φ

∣∣∣∣∂Ψ̃(w̃)
∂s

∣∣∣∣ ds dt , (31b)

and the notation Ψ̃ (ũ) has been used to expose the dependence of Ψ̃ on ũ

through (28). It is to be noted that this dependence renders (30) nonlinear.
For completeness, we mention that the integrals in this section, e.g., in (31),
are approximated by gauss quadrature with (κ+5)2 integration points, which
renders the quadrature error negligible.

We solve the nonlinear problem (30) by means of successive approximation:
For a given initial estimate ũ0 ∈ [P κ]2, for n = 1, 2, . . . find ũn ∈ [P κ]2 such
that

A(ũn, ũn−1, ṽ) = B(ũn−1, ṽ) ∀ṽ ∈ [P κ]2 . (32)

To illustrate the convergence behavior of the successive-approximation method,
figure 1 on the next page plots the norm of the residual,

‖rn‖ = sup
ṽ∈[P κ]2

A(ũn, ũn, ṽ) − B(ũn, ṽ)
A(ṽ, ũn, ṽ)

, (33)

versus the iteration counter n for various orders of approximation κ. Figure 1
confirms that the successive approximation method converges. Moreover, the
figure shows that the convergence behavior of the method improves as κ in-
creases. To elaborate this property of the method, let us note that:

A(ũn, ũn, ṽ) − B(ũn, ṽ) = A(ũn, ũn−1, z̃) − B(ũn−1, z̃)

= A(ũn, ũn−1, z̃ − w̃) − B(ũn−1, z̃ − w̃) , (34)
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for all w̃ ∈ [P κ]2, where

z̃ = ṽ

∣∣∣∣∂Ψ̃ (ũn)
∂s

∣∣∣∣ ∣∣∣∣∂Ψ̃ (ũn−1)
∂s

∣∣∣∣−1

.

The final identity in (34) is an immediate consequence of (32). Selecting w̃

in (34) as the projection of z̃ onto [P κ]2, it follows that the residual is in-
creasingly effectively reduced by the successive-approximation method as κ
increases. Let us note that this argument is general, and not restricted to the
considered model problem. Hence, the convergence behavior of the successive-
approximation method for the nonlinear variational problem (19) will in gen-
eral improve if the mesh is refined or the order of approximation is increased,
independent of the specifics of the underlying fluid-solid-interaction problem.

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0

n

1
0
lo

g
‖
r

n
‖

Fig. 1: Convergence behavior of the successive approximation method:
norm of the residual according to (33) versus the iteration counter n for
κ = 2 (•), κ = 3 (∗), κ = 4 (×), κ = 5 (�), κ = 6 (�), κ = 7 (◦), κ = 8 (	),
κ = 9 (�), and κ = 10 (+),

Let us next consider a traction field on the fluid interface boundary with
components:

π1jnj = 1 + et cos(2πs), π2jnj = 10 + sin(2πst) ; (35)

see figure 3 on the facing page. The next operation in the NPCL method is the
construction of an approximation to the Riesz representation of πijnj in the
velocity space. This operation can be condensed into the variational problem:
find π̃ ∈ [P κ]2 such that:

A(π̃, ũ, ṽ) = L(ũ, ṽ) ∀ṽ ∈ [Pκ]2 , (36)
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Fig. 2: Position of the fluid interface boundary: exact according to (26)
(left) and approximations for κ = 2 (center) and for κ = 6 (right).

with the trilinear form A according to (31a) and the bilinear form L,

L(ũ, ṽ) =
∫

[0,1]2
ṽi [πijnj ]

∣∣∣∣∂Ψ̃(ũ)
∂s

∣∣∣∣ ds dt . (37)

Note that (37) depends on the velocity approximation ũ defined by (30)
via Ψ̃ (ũ).
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Fig. 3: Traction on the fluid interface boundary, components 1 (top) and 2
(bottom): exact according to (35) (left) and approximations for κ = 2
(center) and for κ = 6 (right).

429



E.H. van Brummelen and R. de Borst

The final operation in the NPCL method pertains to the construction of
the load-functional approximation:

"̃(Y ) = −

∫
[0,1]2

Y · π̃

∣∣∣∣∂Ψ̃(ũ)
∂s

∣∣∣∣ ds dt . (38)

The association between the fluid interface boundary and the solid interface
boundary is accounted for by the use of (s, t) coordinates.

To illustrate the conservation properties of the NPCL method, table 1 on
the next page lists the energy flux across the fluid interface boundary, L(ũ, ũ),
the momentum flux across the fluid interface boundary, (L(ũ, e1),L(ũ, e2)),
the energy flux across the solid interface boundary, "̃(Φ′), and the momentum
flux across the solid interface boundary, ("̃(e1), "̃(e2)), for κ = 2, 4, . . . , 10.
For conciseness, the results in table 1 have been restricted to even orders of
approximation. Moreover, for Φ, Ψ and πijnj according to (25), (26) and (35),
respectively, we obtain the reference values:∫

[0,1]2
Φ′

i [πijnj ]
∣∣∣∣∂Ψ∂s

∣∣∣∣ ds dt = 3.606070414460000E− 01 , (39a)∫
[0,1]2

(
π1jnj

π2jnj

) ∣∣∣∣∂Ψ∂s
∣∣∣∣ ds dt =

(
2.481752533540000E+ 00
2.464690628610000E+ 01

)
. (39b)

The results in table 1 corroborate the conservation properties of the NPCL
method. For all orders of approximation, the energy and momentum fluxes
across the fluid and solid interface boundaries are essentially identical. More-
over, as the order of approximation increases, the approximate fluxes converge
to the reference values in (39).

6 Conclusion

We presented a new coupling method for fluid-solid-interaction problems
which preserves the conservation properties of the underlying continuum prob-
lem under incompatibility of the approximation spaces for the fluid and the
solid. The method imposes the kinematic interface condition by means of a
nonlinear variational projection of the velocity from the solid boundary to
the fluid boundary. The dynamic condition is enforced by a consistent eval-
uation of the load functional, which involves the Riesz representation of the
load functional in the velocity trace space of the fluid. The method is referred
to as the NPCL (Nonlinear variational Projection with Consistent Loading)
method.

As the appropriate inner product for the velocity trace space can assume a
profoundly complicated form, we propounded the use of L2 inner products in
practical computations. The NPCL method preserves its conservation prop-
erties if the inner product is consistently replaced in all components of the
method.
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fluid solid

L(ũ, ũ) 1.538313684748479E − 01 	̃(Φ′) 1.538313684748228E − 01

κ = 2 L(ũ, e1 ) 1.395877705335224E + 00 	̃(e1 ) 1.395877705335224E + 00

L(ũ, e2 ) 1.445000844112377E + 01 	̃(e2 ) 1.445000844112375E + 01

L(ũ, ũ) 3.830462789356112E − 01 	̃(Φ′) 3.830462789356541E − 01

κ = 4 L(ũ, e1 ) 3.199991700241049E + 00 	̃(e1 ) 3.199991700241051E + 00

L(ũ, e2 ) 2.609101263224458E + 01 	̃(e2 ) 2.609101263224456E + 01

L(ũ, ũ) 3.763395670325019E − 01 	̃(Φ′) 3.763395670324617E − 01

κ = 6 L(ũ, e1 ) 2.463939376383578E + 00 	̃(e1 ) 2.463939376383568E + 00

L(ũ, e2 ) 2.470803076025526E + 01 	̃(e2 ) 2.470803076025531E + 01

L(ũ, ũ) 3.547985610065834E − 01 	̃(Φ′) 3.547985610066048E − 01

κ = 8 L(ũ, e1 ) 2.473739029165391E + 00 	̃(e1 ) 2.473739029165391E + 00

L(ũ, e2 ) 2.460630254948687E + 01 	̃(e2 ) 2.460630254948681E + 01

L(ũ, ũ) 3.598488191723714E − 01 	̃(Φ′) 3.598488191723657E − 01

κ = 10 L(ũ, e1 ) 2.483470257439778E + 00 	̃(e1 ) 2.483470257439793E + 00

L(ũ, e2 ) 2.462978310231236E + 01 	̃(e2 ) 2.462978310231259E + 01

Table 1: Conservation properties of the NPCL method: energy and mo-
mentum fluxes across the fluid and solid interface boundaries for orders of
approximation κ = 2, 4, 6, 8, 10.

Finally, we exemplified the NPCL method by means of numerical experi-
ments on a projection problem. The nonlinear-variational-projection problem
was solved by means of successive approximation. We observed that the con-
vergence behavior of the successive-approximation method improves as the ap-
proximation space is refined, and we elaborated that this is a generic property
of successive approximation for the nonlinear-variational-projection problem,
independent of the underlying fluid-solid-interaction problem. This implies
that the nonlinear-variational-projection problem in the NPCL method can
in general be solved effectively by means of successive approximation. Consid-
eration of the energy and momentum fluxes across the fluid and solid interface
boundaries confirmed the conservation properties of the NPCL method.
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Birkhäuser, Boston, 1996.

2. E.H. van Brummelen. Mesh association by projection along smoothed-normal-
vector fields: association of closed manifolds. 2006. Accepted for publication
in Int. J. Num. Meth. Engng. Also available as DACS report DACS-06-005 at
http://www.emserver.lr.tudelft.nl/downloads/DACS-06-005.pdf.

431



E.H. van Brummelen and R. de Borst

3. C. Farhat, M. Lesoinne, and P. LeTallec. Load and motion transfer algorithms
for fluid/structure interaction problems with non-matching discrete interfaces:
Momentum and energy conservation, optimal discretization and application to
aeroelasticity. Comput. Methods Appl. Mech. Engrg., pages 95–114, 1998.

4. X. Jiao and M.T. Heath. Common-refinement-based data transfer between non-
matching meshes in multiphysics simulations. Int. J. Numer. Meth. Engng.,
61:2402–2427, 2004.

5. J.L. Lions and E. Magenes. Non-Homogeous Boundary Value Problems and

Applications I. Springer-Verlag, 1972.
6. J.T. Oden and J.N. Reddy. An Introduction to the Mathematical Theory of

Finite Elements. Pure and Applied Mathematics. John Wiley & Sons, New
York, 1974.

7. R.W. Ogden. Non-linear elastic deformations. Ellis Horwood, 1984.
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