Chapter 7

Estimating Canopy Characteristics
from Remote Sensing Observations:
Review of Methods and Associated Problems

Frédéric Baret and Samuel Buis

Abstract This article describes the methods and problems associated to the esti-
mation of canopy characteristics from remote sensing observations. It is illustrated
over the solar spectral domain, with emphasis on LAI estimation using currently
available algorithms developed for moderate resolution sensors. The principles of
algorithms are first presented, distinguishing between canopy biophysical and ra-
diometric data driven approaches that may use either radiative transfer models or
experimental observations. Advantages and drawback are discussed with due atten-
tion to the operational character of the algorithms. Then the under-determination
and ill-posedness nature of the inverse problem is described and illustrated. Finally,
ways to improve the retrieval performances are presented, including the use of prior
information, the exploitation of spatial and temporal constraints, and the interest in
using holistic approaches based on the coupling of radiative transfer processes at
several scales or levels. A conclusion is eventually proposed, discussing the three
main components of retrieval approaches: retrieval techniques, radiative transfer
models, and the exploitation of observations and ancillary information.

7.1 Introduction

Many applications require an exhaustive description of the spatial domain of interest
that may cover a large range of scales: from the very local one corresponding to pre-
cision agriculture where cultural practices are adapted to the within field variability,
through environmental management generally approached at the landscape scale, up
to biogeochemical cycling and vegetation dynamics investigated at national, conti-
nental and global scales. Most of these applications are using our knowledge on the
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main physical, chemical and biological processes involved such as energy balance,
evapotranspiration, photosynthesis and respiration. This knowledge is encapsulated
into a variety of surface process models. However, to account for the spatial het-
erogeneity observed at all scales, dedicated imaging systems are required to get a
distributed description of surface characteristics within the domain of interest. By
its capacity to cover exhaustively large space areas, remote sensing provides a very
pertinent answer to those requirements. However, remote sensing observations sam-
ple the radiation field reflected or emitted by the surface, and thus do not provide
directly the biophysical characteristics required by the models for describing some
state variables of the surface. An intermediate step is therefore necessary to trans-
form the remote sensing measurements into estimates of the surface biophysical
characteristics.

Many methods have been proposed to retrieve surface characteristics from re-
mote sensing observations. They span from simple empirical ones with calibration
over experimental data sets, up to more complex ones based on the use of radia-
tive transfer models. Radiative transfer models summarize our knowledge on the
physical processes involved in the photon transport within vegetation canopies or
atmosphere, and simulate the radiation field reflected or emitted by the surface for
given observational configuration, once the vegetation and the background as well
as possibly the atmosphere are specified. Retrieving canopy characteristics from the
radiation field as sampled by the sensor aboard satellite needs to “invert” the radia-
tive transfer model.

This article aims at presenting the state of the art in the estimation of surface
characteristics from remote sensing observations. Although this is a very general
problem in remote sensing, it will be illustrated by examples taken in the solar do-
main (400-2,500nm), with emphasis put on the current operational algorithms that
are mainly used for medium resolution sensors such as MODIS, MERIS, AVHRR,
VEGETATION, POLDER and SEAWIFS. Among the possible canopy characteris-
tics accessible from remote sensing in the reflective solar domain, we will focus on
leaf area index (LAI), defined as half the developed area of green elements per unit
horizontal soil (Stenberg, 2006). As a matter of fact, LAI is one of the key canopy
state biophysical variables required by many process models to describe energy and
mass exchanges in the soil/plant/atmosphere system.

7.2 Principles of Biophysical Variable Retrieval Algorithms

Remote sensing data result from radiative transfer processes within canopies that
depend on canopy variables, and observational configuration (wavelength, view and
illumination directions). Canopy variables include the variables of interest for the
applications such as LAI, and the other variables that are not of direct use for the
applications but that influence the radiative transfer, such as soil background prop-
erties. The causal relationship between the variables of interest and remote sens-
ing data corresponds to the forward (or direct) problem (Fig. 7.1). They could be
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Fig. 7.1 Forward (solid lines) and inverse (dashed lines) problems in remote sensing

either described through empirical relationships calibrated over experiments or us-
ing radiative transfer models based on a more or less close approximation of the
actual physical processes. Conversely, retrieving the variables of interest from re-
mote sensing measurements corresponds to the inverse problem, i.e., developing al-
gorithms to estimate the variables of interest from remote sensing data as observed
in a given configuration. Prior information on the type of surface and on the dis-
tribution of the variables of interest can also be included in the retrieval process to
improve the performances as we will see later.

A panoply of retrieval techniques currently used have been reviewed in the early
1990s by several authors (Asrar et al., 1989; Goel, 1989; Pinty and Verstraete, 1991)
and more recently by Kimes et al. (2000) and Liang (2004). They can be split into
two main approaches (Fig 7.2) depending if the emphasis is put on remote sens-
ing data (radiometric data) or on the variables of interest to be estimated (canopy
biophysical variables).

7.2.1 Canopy Biophysical Variables-driven Approach

The approach requires first to calibrate the inverse model: a parametric model rep-
resenting the inverse model is adjusted over a learning data set (Fig. 7.2, left). It
mainly consists in adjusting the parameters to fit a response surface between ref-
lectance values and the corresponding canopy variables of interest (LAI in this ex-
ample). Once calibrated, the parametric model is run to compute the variables of
interest from the observed reflectance values. The learning data set can be gener-
ated either using simulations of radiative transfer models, or based on concurrent
experimental measurements of the variables of interest and reflectance data.
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Fig. 7.2 The two main approaches used to estimate canopy characteristics from remote sensing
data for LAI estimation. On the left side the approach focusing on the biophysical variables show-
ing the calibration of the inverse model. Once the inverse model is calibrated it can be applied
using the measured reflectance as input. On the right side, the approach focusing on radiometric
data showing the solution search process leading to the estimated LA value, LAI*. “A” represents
the cost function to be minimized over the biophysical variables (left) or over the radiometric
data (right)

7.2.1.1 Calibration over Experimental Data Sets

This was the first approach historically used, the reflectance in few bands being
generally combined into vegetation indices (VI) designed to minimise the influence
of confounding factors such as soil reflectance and atmospheric effects (Baret and
Guyot, 1991). The relationships between VIs and canopy variables are calibrated
over experimental observations (Asrar et al., 1984; Huete, 1988; Wiegand et al.,
1990; Wiegand et al., 1992; Richardson et al., 1992). Recently Chen et al. (2002)
used simple VIs to derive LAI estimates from AVHRR and VEGETATION across
Canada. This was extended at the global scale by Deng et al. (2006). In agreement
with several observations, these authors found that the relationships vary from one
cover type to another as illustrated by Fig. 7.3. The development of such empir-
ical transfer functions is limited by the difficulty to get a training data base that
represents the whole range of possible conditions encountered over the targeted sur-
faces, i.e., combinations of geometrical configurations, type of vegetation and states
including variability in development stage and stress level, and type of background
and state (roughness, moisture). Measurement errors associated both to the variables
of interest and to radiometric data may also propagate into uncertainties and bi-
ases in the algorithm and should be explicitly accounted for Fernandes and Leblanc
(2005) and Huang et al. (2006). Further, since ground measurements having a foot-
print ranging from few meters to few decametres, specific sampling designs should
be developed to represent the sensor pixel. This task is obviously more difficult for
medium and coarse resolution sensors as outlined by Morisette et al. (2006). Higher
spatial resolution observations could be used to extend the local ground measure-
ments to the actual pixel size of medium or coarse resolution sensors.
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Fig. 7.3 Empirical relationships between LA/ values as a function of the simple ratio vegetation
index (RSR) computed for VEGETATION data for four types of canopies (After Chen et al., 2002)

7.2.1.2 Calibration over Radiative Transfer Model Simulations

To avoid limitations associated to the empirical nature of the training data base, ra-
diative transfer models could be used alternatively to generate a training data base.
Radiative transfer models can be used to create a data base covering a wide range
of situations and configurations. Several authors have therefore proposed replac-
ing actual observations by numerical experiments based on radiative transfer model
simulations to calibrate empirical relationships (Sellers, 1985; Baret and Guyot,
1991; Rondeaux et al., 1996; Leprieur et al., 1994; Banari et al., 1996; Huete et al.,
1997; Verstraete and Pinty, 1996). Based on these principles, operational algorithms
developed for medium resolution sensors are currently used: MGVI for MERIS
(Gobron et al., 2000) further extended to other sensors, MODIS back-up algorithm
based on NDVI (Knyazikhin, 1999), POLDER algorithm based on DVI computed
from bidirectional reflectance factor (BRF) measurements normalized to a standard
geometrical configuration (Roujean and Lacaze, 2002). Nevertheless, although quite
often effective, VIs are intrinsically limited by the empiricism of their design and the
small number of bands concurrently used (generally 2—3). This might not be a major
problem for fAPAR and fCover variables that are relatively simple to estimate, but
would be more difficult for variables such as LAI or chlorophyll content (C,,) show-
ing higher level of non linearity with reflectance measurements (Weiss et al., 2000).

The efficient interpolation capacity of neural network (NNT) can be exploited to
adjust surface responses (Leshno et al., 1993). Several authors have proposed such
an approach since the beginning of the 1990s (Smith, 1992; Smith, 1993; Atkinson
and Tatnall, 1997; Kimes et al., 1998; Abuelgasim et al., 1998; Gong et al., 1999;
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Danson et al., 2003). Neural networks were compared with a specific implementa-
tion of multiple regression, the projection pursuit regression, and were concluded
to achieve very similar performances (Fang and Liang, 2005). Baret et al. (1995)
demonstrated that NNT used with individual bands were performing better than
classical approaches based on vegetation indices especially when calibrated with
radiative transfer model simulations rather than with experimental observations.
Weiss et al. (2002a) validated such techniques over a range of crops for estimating
the main canopy biophysical parameters LAl and fCover from airborne POLDER
instrument. Recently, several authors developed operational products for medium
resolution sensors, starting from top of canopy level: Lacaze (2005) for POLDER,
Bacour et al. (2006) for MERIS, and Baret et al. (2007) for VEGETATION instru-
ments. Baret et al. (2006b) proposed an operational algorithm from the MERIS top
of atmosphere data by coupling an atmospheric radiative transfer model to the sur-
face one, exploiting explicitly 13 over the 15 bands of MERIS.

Several ways may be used to build a data set for training empirical relationships
depending on the performances targeted. Evaluation of the performances of an al-
gorithm is generally achieved by computing the Root Mean Square Error (RMSE)
value over a test data base made of representative cases. Best performances will
therefore be obtained when the variables in the training data base are distributed
similarly to those in the testing one, i.e., close to the actual distribution of the vari-
ables: the coefficients of the empirical transfer function will be optimized for these
conditions, and uncertainties will be minimal for the most frequent cases. Although
achieving poorer performances in term of RMSE, a more even distribution of the
uncertainties may be alternatively obtained using uniform distributions of the vari-
ables. Note that, for a given number of cases simulated in the training data base, the
density of cases that populate the space of canopy realization may rapidly decrease
as a function of the number of required variables. Experimental plans may be used
in this situation as proposed by Bacour et al. (2002b), in order to focus on the first
order effects and interactions. Additionally, Baret et al. (2006b) proposed to steam-
line the data base in the reflectance space by retaining the cases that belong both to
the simulated and actual remote sensing measurements spaces (Fig. 7.4). This al-
lows discarding cases that were simulated but not actually observed. Conversely, it
allows also identifying cases which are observed but not simulated. This is achieved
by first compiling a large data base of reflectance measurements that should be rep-
resentative of the possible situations available. Then the reflectance mismatch is

wal measurements

Cases not represented

Cases not represented in the simulated database

in the measured database

Training database: selection
of cases in the intersection space

Fig. 7.4 Streamlining the simulated training data set by comparison to actual measurements. The
intersection between the space of simulated radiometric data (in dark gray) with that of the actual
measurements (in light gray) is used as the training data base
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computed for each case in the simulated data base: it is the minimum RMSE value
computed between the reflectance in the simulated data base and the ensemble of ac-
tual measurements. A threshold corresponding to the uncertainties in the radiometric
measurements is then used to decide whether a simulated case is rejected from the
training data base. Additional criterions could be used to streamline the training data
base, based on the expected consistency between several products such as LAI and
fAPAR as proposed by Bacour et al. (2006).

Although the use of radiative transfer models appears very appealing, this ap-
proach is however limited by several aspects. The first one is the capacity of the
models to get a faithful description of the radiative transfer in canopies. Up to now,
most radiative transfer models used are computer efficient ones allowing populating
large training data base within few hours/days with a single regular computer. They
generally correspond to simple description of canopy architecture which may not
represent the actual one, particularly regarding the clumped nature of many vegeta-
tion types. This leads to model uncertainties that may dominate all other sources of
uncertainties for some of the vegetation types. Recent advances in modeling more
complex canopy architecture (e.g., Soler et al., 2001; Lewis et al., 2004) offer great
potential for improvement. However, the second limitation will probably counter-
balance these advancements: building a realistic training data set requires a fair de-
scription of the distribution and co-distribution of the corresponding architectural
variables to define the actual space of canopy realization. For the simplest radia-
tive transfer models (e.g., Verhoef, 1984; Kuusk, 1995; Gobron et al., 1997) at least
three architectural variables are required (LAI, leaf angle distribution function and
size of the leaves relative to canopy height), the distribution of which being very
poorly known. This is even more difficult when using more complex and realistic
architectural description that requires more variables.

Note that in these approaches based on radiative transfer model simulations, ra-
diometric measurements uncertainties have to be added to the simulations when
building up the training data base. This allows more robustness within the training
process and thus improved retrieval performances. Accounting for these uncertain-
ties is also critical when large differences exist among bands used or when these
uncertainties are strongly correlated.

Canopy biophysical variables driven approaches present the advantage of being
very flexible. For example, estimates of biophysical variables from one sensor could
be used to constitute the training data base for another sensor. This could be applied
over high spatial resolution products that are aggregated to coarser spatial resolu-
tion to generate an appropriate training data base. This could also apply to generate
consistent products between sensors.

7.2.2 Radiometric Data-driven Approach

While the previous approach was focusing on minimizing the distance between the
variables retrieved from the inverse model and those from the training data set,
the alternative approach is based on finding the best match between the measured
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reflectance values and those either simulated by a radiative transfer model or stored
within a database made of experimental observations. No proper calibration step
is required in this approach. However, several ingredients of these techniques are
difficult to evaluate (uncertainties, parameters of the search algorithm) and need
generally some tuning over a “prototyping” data set. The performances of the ap-
proach will both depend on the minimization algorithm itself and on the level of
ill-posedness of the inverse problem as a function of measurement configuration
and model and measurement uncertainties. Several minimization techniques have
been used: classical iterative optimization, simulated annealing (Bacour, 2001), ge-
netic algorithms (Fang et al., 2003; Renders and Flasse, 1996), look up tables and
Monte Carlo Markov Chains (Zhang et al., 2005). However, classical iterative op-
timization techniques (OPT) and look up tables (LUT) have been the most widely
used and will be described with more details below.

7.2.2.1 Iterative Optimisation (OPT)

This classical technique consists in updating the values of the unknown input bio-
physical canopy radiative transfer model variables until the simulated reflectance
closely fit the corresponding measurements (Goel and Deering, 1985; Kuusk, 1991a
and 1991b; Goel, 1984a and b; Pinty et al., 1990; Jacquemoud et al., 1995; Privette
et al., 1996; Bicheron and Leroy, 1999; Combal et al., 2000; Bacour et al., 2002a;
Combal et al., 2002). A good review on optimization methods used in remote sens-
ing for land applications can be found in Bacour (2001). The goodness of fit between
measured and simulated reflectance spectra is quantified by a cost function (J) that
may account explicitly for measurements and model uncertainties. The cost function
may be theoretically derived from the maximum likelihood (Tarentola, 1987). When
no prior information is available and when uncertainties associated to each config-
uration used are assumed independent and gaussian, J is assessed using norm L2,
i.e., sum over the N observational configurations of the square of the difference be-
tween the measured reflectance values (R) and those simulated (R), weighed by the
variance (G2) associated to both reflectance measurements and model uncertainties:

(7.1)

However, because of the difficulty to provide an estimate of 62, several approxima-
tions have been used as shown in Bacour (2001). It spans from the simple ones such
as norm L1 to norm L2 with no weighing of the configurations, up to more complex
based on some modeling of the variance term (Table 7.1).

The main limitation of OPT techniques is twofold. (1) Firstly, the algorithm
might converge to a local minimum of the cost function that could be far away
from the global one expected to correspond to the actual solution. This can be partly
avoided by using a range of initial solutions, coupled with constraints on the range
of variation of the variables to be estimated. The use of a priori information in the
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Table 7.1 The cost functions (J) used in several studies dealing with radiative transfer model in-
version for canopy biophysical variables retrieval. N is the number of configurations (bands and
directions); R, and R, being respectively the simulated and measured reflectance values for con-
figuration n. 6, and ¢ are the zenith and relative azimuth view angles

Cost function References
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n=1 Bicheron and Leroy, 1999; Weiss et al., 2000)
2 o
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cost function generally improves the convexity of the error surface, which is critical
as we will see later (Combal et al., 2002). The descent algorithm may also limit
the trapping in a local minimum by reducing the rate of descent. However, a com-
promise has to be chosen between rapid convergence achieved with large descent
rate, and limiting the probability of falling in a local minimum achieved with a slow
descent rate. Further, the optimization algorithm may sometimes lack of robustness
due to numerical problems occurring generally with very small values of J. The
criterion used to stop the iterations is in addition not always easy to adjust, requir-
ing some preliminary tests (Bonnans et al., 2006). (2) Secondly, the OPT algorithm
requires large computer resources because of its iterative nature. However, there
are ways to speed up the process by limiting the number of model runs for each
iteration using the adjoint model that provides an analytical expression of the gradi-
ent of the cost function (Lauvernet et al., 2007). Nevertheless, OPT techniques are
still difficult to use routinely and exhaustively over large images, although image
segmentation may help reducing significantly the number of pixels to process, the
optimization process being restricted to a limited set of representative pixels. Note
that these techniques allow getting some estimates of the uncertainties associated
to the solution under some assumptions. However, the distribution of the solution
will be here always unimodal, conversely to what could be achieved with the other
radiometric driven approaches.

The main advantage of iterative optimization methods is their flexibility, allow-
ing retrieving canopy characteristics from several observational configurations. It is
even possible to invert radiative transfer models concurrently over several pixels.
This opens great potentials for exploiting additional temporal or spatial constraints
as we will see later.



182 F. Baret, S. Buis

7.2.2.2 Look Up Tables

This is conceptually the simplest technique, although its implementation is not triv-
ial (Weiss et al., 2000). It is the basis of the MODIS and MISR LAI and fAPAR
products (Knyazikhin et al., 1999). Firstly a large data base (the Look Up Table,
LUT) is generated, consisting of sets of input variables of the canopy radiative trans-
fer model used. Then, the corresponding reflectance values are simulated. The LUT
can alternatively be based on experimental observations, although this requires a
very good sampling of the space of canopy realization. Once the LUT has been
generated, finding the solution for a given set of reflectance measurements consists
in selecting the closest cases in the reflectance table according to a cost function,
and then extracting the corresponding set of canopy biophysical variables. Note that
the distribution of the solution could be obtained by accounting for the uncertain-
ties associated to the reflectance values as discussed by Knyazikhin et al. (1998a
and b).

This technique overcomes some of the limitations of iterative optimization tech-
niques. As a matter of fact, the search for the solution is global here, leading to
the true minimum if the space of canopy realisation is sufficiently well sampled.
Note that for generating the LUT, the space of canopy realization has to be sampled
to represent the surface response, i.e., with better sampling where the sensitivity
of reflectance to canopy characteristics is the higher (Weiss et al., 2000; Combal
et al., 2002). This is different from the sampling of the training data base required
in canopy biophysical variables driven approaches.

The implementation of a LUT technique in algorithmic operational chains is very
efficient because the radiative transfer model is run off-line. However, LUT tech-
niques require a fixed number of inputs unless having very large tables that could
be more difficult to manipulate. In addition, the way the solution is defined is not
always based on solid theoretical background. The cases selected as possible solu-
tions are either defined as a fraction of the initial population of cases (after tests
and trials) such as in Weiss et al. (2000) or Combal et al. (2002). It can be also
defined by a threshold corresponding to measurement and model uncertainties as in
Knyazikhin et al. (1998a and b).

7.2.2.3 Bayesian Methods: Importance Sampling and MCMC

Alternative methods are available which are based on statistical backgrounds: Monte-
Carlo Markov Chains (MCMC) and Importance Sampling (IS) (Makowski D.,
J. Hiller, et al., 2006). These two Bayesian methods approximate the posterior
distribution, i.e., the distribution of the variables when the reflectance measurement
is known. Although very little attention has been paid to these techniques at the
exception of Zhang et al. (2005) who used with success the MCMC Metropolis-
Hastings algorithm with MODIS data. However, Metropolis-Hastings algorithm is
an iterative process that might not be well suited for operational applications at



7 Estimating Canopy Characteristics from Remote Sensing Observations 183

large scale, similarly to OPT methods. Conversely, IS methods that do not require
multiple iterations might be efficient for this purpose and need to be properly eval-
uated for remote sensing applications.

7.3 The Under-determined and Ill-posed Nature of the Inverse
Problem in Remote Sensing

7.3.1 Under-Determination of the Inverse Problem

Estimating biophysical variables from remote sensing measurements is often an
under-determined problem: the number of unknowns is generally larger than the
number of independent radiometric information remotely sampled by sensors. In
the case of a simple canopy radiative transfer model such as SAIL (Verhoef, 2002),
canopy reflectance at the top of canopy (p’*¢) for a given illumination and view
geometry (Os, Ov, @) is simulated (Eq. (7.2)) using three variables describing
canopy structure that do not depend on wavelength (LA, average leaf angle (ALA)
and hot spot parameter (hot) as modelled by Kuusk (1995)), and leaf reflectance
(refl) and transmittance (tran) as well as soil reflectance (Rs) that obviously depend
on wavelength (1).

p(A, Bs, BV, @)
= CAN(LAI, ALA, hot, refl(A), tran(L), Rs(A, Bs, Ov, @), 0s, Bv, @) (7.2)

Several studies report that canopy (and soil) bidirectional reflectance distribution
function (BRDF) could be decomposed using empirical or semi-empirical orthog-
onal functions with generally 2—4 kernels (Lucht, 1998; Bréon et al., 2002; Weiss
et al., 2002). Therefore, 7-9 characteristics (3 canopy structure, 2 leaf properties
[refl, tran] input variables and the 2—4 terms describing soil BRDF, Rs(A, 6s, v, @)
have to be estimated out of a maximum of 4 independent information derived from
BRDF measurements in a single band. Retrieval of canopy characteristics from
BRDF measurements in a single band is therefore not possible without introducing
other information in the system, particularly when soil background plays a signifi-
cant role, i.e., for low to medium LA/ values.

Similar observations are made when considering the reflectance spectral vari-
ation: leaf spectral properties may be described by a dedicated model such as
PROSPECT (Jacquemoud and Baret, 1990) requiring at least 5 input variables: mes-
ophyll structure parameter (N), chlorophyll (C,), dry matter (Cy, ), brown pigment
(Cpp) and water (C,,) contents:

[refl(A), tran(A)] = LEAF(N, Cup, Cam, Cpp, Cuy A) (7.3)
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Soil reflectance Rs(A, 6s, Ov, @) may be described by a model such as that pro-
posed by Jacquemoud et al. (1992) and derived from that of Hapke (1981). It
requires a single scattering albedo (A7) that varies with wavelength and soil com-
position, between 1 to 4 phase function coefficients (), and a roughness parameter
(r). According to Price (1990), soil spectral variation, may be approximated as a
linear combination of 2—-10 end-members. This is assumed to apply similarly to the
spectral variation of the single scattering albedo with weigh w; and end members
(0] /(l)

w()L):ij-a)j(/l) (7.4)

J

The whole soil spectral and directional reflectance field could subsequently be sim-
ulated with at least five parameters:

Rs(A, Bs, Ov, @) = SOIL([w;], [e4], r, A, Os, Ov, @) (7.5)

Consequently, the whole spectral and directional top of canopy reflectance field
could therefore be modelled by coupling together the soil, leaf and canopy re-
flectance models, which leads to at least 13 input variables. These 13 unknowns
have to be estimated from the information content in remote sensing measurements.
Most of currently available sensors for which operational biophysical products are
available have a relatively small number of configurations: from two for AVHRR
(red and near infrared bands), to 15 bands for MERIS (VIS and NIR) and MODIS
(VIS, NIR, SWIR) with several bands dedicated to particular atmosphere, cloud,
snow/ice, or ocean characteristics. In the case of multidirectional sensors, the
number of configurations may be larger as in the case of MISR (36 configura-
tions = 9 cameras x4 bands), or POLDER (84 configurations = 14 directions x6
bands). However, the actual dimensionality of remote sensing measurements is
much smaller than the number of available configurations considering the relatively
high level redundancy between bands (Price, 1994; Price, 1990; Liu et al., 2002;
Green and Boardman, 2001) and directions (Zhang et al., 2002a and b; Weiss et al.,
2002b). Although further investigation is required to better quantify the actual
dimensionality of remote sensing observations, it is clear that retrieval of surface
characteristics from reflectance measurements is an under-determined problem in
many cases. Improving retrieval performances will require introducing ancillary
information and constraints in the system.

7.3.2 Evidence of the Ill-posed Problem

A problem is well posed if and only if its solution exists, is unique, and depends
continuously on the data (Garabedian, 1964). Several authors have reported that the
inverse problem in remote sensing is ill-posed (Knyazikhin et al., 1999; Combal
et al., 2001; Baret et al., 2000) because of its under-determination and uncertainties
attached to models and measurements. In addition, models may incorporate sets of
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Fig. 7.5 Actual reflectance measurements (left plot, solid lines representing the mean and stan-
dard deviations) and the corresponding closer simulations achieved with a simple turbid medium
radiative transfer model (the series of dots). On the right, the input LAI and Cab (the “+” symbols)
variables used to simulate the reflectance spectra shown on the left plot. The actual LAI and Cab
measurements are displayed with their associated confidence interval (bold line corresponding to
1 standard deviation). Data acquired over a sugar beet experiment conducted in 1990

variables that appear always in combinations such as products between variables. In
these conditions, very similar reflectance spectra simulated by a radiative transfer
model (Fig. 7.5, left) may correspond to a wide range of solutions (Fig. 7.5, right).
In the case illustrated by Fig. 7.5, high correlation is found between LAI and those
leaf chlorophyll content estimated values. This compensation between variables was
sometimes termed “ambiguity” (Baret et al., 1999) or “equi-finality” (Shoshany,
1991; Teillet et al., 1997). This may also indicate that the product LAl - C,;, should
be used in place of individual estimates of LAl and C,,. Although not appearing
formally in the radiative transfer model, this product is physically meaningful from
the radiative transfer processes perspective and corresponds to the actual optical
thickness of the medium (Weiss et al., 2000).

Measurement and model uncertainties may also induce instability in the solu-
tion of the inverse problem. This is particularly true for well developed canopies,
where a small variation in the measured reflectance can translate into large varia-
tion of variables such as LA, for which reflectance “saturates”, i.e., is very little
sensitive to LAI variation. A proper sensitivity analysis should help quantifying in-
teractions between input variables. A complementary sensitivity analysis conducted
over the cost function could also help evaluating the identifiability of the solution,
i.e., if output variables could be accurately retrieved from a given set of observations
(Salteli, 2004).

Regularization techniques are thus necessary to obtain a stable and reliable so-
lution of the ill-posed inverse problem. This could be achieved both by using prior
information on the distribution of the variables, and by exploiting some constraints
on the variables. These two issues will be investigated separately in the following.
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7.4 Improving the Retrieval Performances

7.4.1 Using Prior Information

If no remote sensing measurement is available, the best estimates of the variables
would come from the prior information on their distribution (Fig. 7.6d), capital-
izing, all the knowledge coming from bibliography, past experiments or experts.
Conversely, when a radiative transfer model is available along with remote sensing
measurements, the variables can be estimated by inverting the RT model without
using any prior information. This will be illustrated using a simple example: esti-
mating LAl from NDVI vegetation index. In this case the RT model consists in an
analytical relationship as proposed by Baret and Guyot (1991):

—K-LAI
NDVI=NDVI.+ (NDVI;-NDVI,)-e (7.6)
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Fig. 7.6 Estimation of canopy variables by combining remote sensing measurements, radiative
transfer model and prior information. All these pieces of information are represented by their prob-
ability distribution function (PDF): (a) PDF of remote sensing measurements in the simple case of
NDVI; (b) PDF of RT model simulations (NDVI = f(LAI)) accounting for model uncertainties; (c)
PDF of LAI as retrieved from RT model and NDVI measurement and their associated uncertain-
ties, without using prior information; (d) PDF of LAI used as prior information; (e¢) Computation
of LAI PDF as estimated from NDVI measurements and RT model, using prior information on LAI;
(f) PDF of the solution (posterior distribution) when using only prior information (idem as plot d),
using RT model and NDVI measurements and their associated uncertainties only, and using all the
information available (RT model and NDVI measurements and their associated uncertainties and
prior information). The three contour plots (b, c, e) are coded from white to black for zero to max
PDF values with the same gray scale. Very simple assumptions on uncertainties models and values
are used here just for illustration
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with NDVI; and NDV ., being respectively the bare soil and asymptotic values
of NDVI, and K an extinction coefficient (K = 0.8). However, uncertainties are
associated both with remote sensing measurements (Fig. 7.6a NDVI. = X(0.8,0.1)
where X (x, %) means a Gaussian distribution with mean x and variance 6%) and
the RT model (Fig. 7.6b RT model represented by Eq. (7.2) with a Gaussian noise
X (0,0.1)). Accounting for these uncertainties in the form of the corresponding
probability distribution function (PDF) allows deriving the PDF of the estimated
variable (Fig. 7.6c). The small sensitivity of NDVI to LAl as compared to mea-
surement and model uncertainties induce a relatively broad PDF for the larger
LAI values (Figs. 7.6¢, f). This corresponds to an ill-posed problem, where a wide
range of possible solutions match very similar measurements. The combination of
RT model, remote sensing measurements and prior information on the variables
(here LAI = X (2, 1.5) allows getting more reliable solutions accounting for all the
sources of information available in an optimal way (Figs. 7.6e, f).

The example provided above for a measurement value of NDVI = 0.8 could be
extended to the whole range of NDVI values. It shows that the mode of the dis-
tribution of the solution corresponding to the maximum likelihood (maximum of
the PDF) strongly depends on the type of input information used (Fig. 7.7, left).
When only prior information is used, the mode stays constant and obviously inde-
pendent from measurements. When RT model and measurements are used with their
uncertainties, the LAl mode is generally close to the values obtained without con-
sidering uncertainties, assuming perfect model and measurements. However, over
the saturation domain corresponding to NDVI values higher than 0.85, accounting
for the uncertainties provides lower modal values because of the non linearity of the
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Fig. 7.7 Mode (plot on the left) of the distribution of the solution (LAI) of the inverse problem
as a function of the measured value (NDVI). The mode corresponds to the maximum PDF value,
i.e., the maximum likelihood. Four estimates are displayed: using only prior information; using RT
model (LAI = RT~! (NDVI)) assumed to be perfect with perfect measurements (no uncertainities
accounted for); using RT model and measurements with their associated uncertainities; using RT
model and measurements with their associated uncertainities and prior information. On the right,
the standard deviation of the distribution of the solution is also displayed for the several cases. The
case with perfect RT model and measurements is not displayed here because its standard deviation
is null by definition
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model. When prior information is used in addition to RT model and remote sensing
measurements, differences of LAl mode are marginal over the domain where NDVI
is sensitive enough to LAI. Conversely, over the saturation domain, LA/ modal val-
ues are always lower (closer to prior information value) than those observed when
not using prior information which would lead to a bias. However, the interest of
using the prior information is clearly demonstrated when considering the standard
deviation of the distribution of the solutions (Fig. 7.7, right).

Introducing prior information in the inversion process provides a very significant
reduction of the variability of the posterior distribution. This is obviously more im-
portant for the larger NDVI values corresponding to the saturation domain: in this
case, very large scattering of the retrieved LAI values is expected when no prior
information is used. Although the maximum likelihood is often used as “the solu-
tion”, the variability within the posterior distribution as represented by its standard
deviation appears to be very informative and useful.

The theory behind this Bayesian approach has been extensively described by
Tarantola (2005). When restricting the solution as that maximizing the likelihood,
i.e., corresponding to the maximum of the PDF, a general formulation of the cost
function may be derived under Gaussian distribution assumption:

J=R-R) W' (R-R)+(V-V,)-C"-(V-V,) (7.7)

Radiometricinformation Prior information

where V is the vector of the input biophysical variables estimates, R corresponds to
the vector of remote sensing measurements of dimension N (the number of bands
and directions used), R is the vector of the simulated reflectance corresponding to
the solution V (the vector of canopy biophysical variables) and V), the vector of
prior values of biophysical variables. Matrices W and C are the covariance matrices
characterizing respectively the radiometric and model uncertainties, and that of the
prior information. Note that the first part of this equation corresponds to the distance
between the measured and the simulated radiometric data. It simplifies into Eq. (7.1)
if the covariance terms of matrix W are assumed to be zero, i.e., measurement and
model uncertainties are independent between configurations. The second part of
Eq. (7.7) corresponds to the distance between the values of the estimated variables
and those of the prior information. Very few studies are currently based on this
formulation of the cost function where prior information is explicitly used (Combal
et al., 2002).

Implementing the cost function as expressed by Eq. (7.7) requires some reason-
able estimates of covariance matrices W and C as well as prior values V,,. The terms
of W should reflect both measurement and model uncertainties. While some rough
estimates of measurement uncertainties could be derived from the sensor specifica-
tion, model uncertainties are far more difficult to estimate. Further, they may de-
pend significantly on the type of situation considered, such as low or high vegeta-
tion amount. Even more difficult to estimate, are the covariance terms in W: mea-
surement and model uncertainties may have important structure that translates into
high covariance terms which are however very poorly known. When using simul-
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taneously a large number of configurations as in the case of hyperspectral observa-
tions, these covariance terms will be very important to account for: they will allow
weighing properly the several configurations used. The difficulty to estimate the
covariance terms explains why a small number of configurations is often selected
when a larger number is available as in the case of hyperspectral and/or directional
observations.

Retrieval approaches should be used within well defined and if possible restricted
domains. Larger domains will generally degrade retrieval performances since the
prior information will be looser defined, similarly to the covariance matrices char-
acterizing uncertainties. However, splitting the whole domain into a set of sub-
domains may introduce problems due to misclassification and attribution errors as
observed by Lotsch et al. (2003), and artefacts at the limit between classes translat-
ing into more chaotic spatial or temporal variation of the solution.

The way prior information is introduced in the inversion process depends on the
inversion technique used. The cost function represented by Eq. (7.7) is used within
iterative optimization and LUTs. Bayesian methods include the a priori distribution
through the use of the Bayes theorem to estimate the a posteriori distribution. For
biophysical variables driven approaches the training data base should reflect the
actual knowledge on the distribution of the variables. Note that the difficulty in
defining explicitly the covariance terms in the uncertainties on remote sensing inputs
(RT model and measurements) for the radiometric data driven approaches remains
in the biophysical variables driven approaches for the generation of the training data
base. However, implicit introduction of these terms may be achieved when using a
training data base made from actual satellite measurements as suggested by Bacour
et al. (2006).

7.4.2 Using Additional Constraints

7.4.2.1 Coupling Models

The radiative transfer in each element of the soil/leaf/canopy/atmosphere system is
strongly coupled to the radiative transfer in the whole system. The simple example
given previously to demonstrate the under-determined nature of the inverse problem
in remote sensing shows that top of canopy reflectance could be written as:

p'(A, 65, Bv, @) = CAN(LAI, ALA, hot, LEAE(N, Cap, Cam, Chp, Cu),

The same applies when retrieving some characteristics of the system from top of
atmosphere reflectance (p’°) measurements as usually achieved by sensors aboard
satellite:

P (A, Bs, Bv, @) = ATM(p'*“ (A, 0s, Ov, @), T550, A, Paym, Cyov, Co3, A, 05, 6, @)
(7.9)
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where ATM represents an atmospheric RT model such as 6S (Vermote et al., 1997)
or MODTRAN (Berk et al., 1998), 7550, A, being respectively the aerosol optical
thickness at 550 nm and the Angstrom coefficient, P, is the atmospheric pressure,
C,,y is the water vapor content and Cpz the ozone content.

Retrieval of characteristics of some element of the system without solving (im-
plicitly or explicitly) the whole system will therefore be sub-optimal as demon-
strated below.

Let consider retrieving leaf biophysical properties [N, Cup, Cam, Cpp, Cy] from
top of canopy remote sensing observations in B wavebands using a decoupled sys-
tem and an iterative optimization technique. For sake of simplicity, soil reflectance
will be assumed to be known. Estimates of leaf properties could be achieved in
two steps. First, estimate the variables [LAI, ALA, hot, refl(A), tran(A)] from the
reflectance in each of the B bands. A cost function accounting for the reflectance
in the B bands should be minimized with the constraint that [LAI, ALA, hot] does
not vary with wavelength. The number of unknowns in the system will therefore be
(342 B) corresponding to the 3 canopy structure variables and the 2 (reflectance
and transmittance) leaf optical properties time the B bands. The second step of the
process consists in estimating leaf biophysical properties [N, Cup, Cam, Cpp, Cy]
from the retrieved leaf reflectance and transmittance in the B bands. The variables
[N, Cap, Cipm, Chps C,] are tuned by minimizing a cost function accounting for
leaf reflectance and transmittance in the B bands. Obviously, increasing the number
of bands will not improve the underdetermined nature of the problem because the
number of unknowns in the first step of the process will grow twice faster. In addi-
tion, since no biophysical constraints are set on the spectral variation of leaf optical
properties, canopy structure variables derived from the first step may express larger
and unrealistic range of variation. The proper way to solve this type of problem is to
minimize a cost function accounting for canopy reflectance over the B wavebands
based on the coupled leaf and canopy models. In this case, the number of unknowns
will be eight (the three canopy structure variables and the five leaf characteristics)
which is independent from the number of wavebands used. This allows limiting the
under-determined nature of the problem by increasing the spectral sampling.

Most of the retrieval approaches from top of canopy radiometric observations are
now using implicitly or explicitly coupled models as shown in Table 7.2. However,
although offering great potentials as demonstrated recently (Baret, 2006b), the use
of coupled atmosphere/surface models is still not very well developed because each
sub-problem was handled by different communities.

7.4.2.2 Spatial Constraints

Up to now, most retrieval algorithms are applied to independent pixels, neglecting
the possible spatial structure as observed on most images. However, some authors at-
tempted to exploit these very obvious patterns at high spatial resolution. The “object
retrieval” approach proposed by Atzberger (2004) is based on the use of covariance
between variables as observed over a limited cluster of pixels representing the same
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Table 7.2 Synthesis of the several algorithms currently used operationally to retrieve canopy bio-
physical variables. 1: (Lacaze, 2004); 2: (Knyazikhin et al., 1999); 3: (Gobron et al., 1999); 4:
(Weiss et al., 2002; Baret et al., 2007); 5: (Chen et al., 2002; Deng et al., 2006); 6: (Bacour et al.,
2006)

#| Algorithm RT models Inversion | certainties prior
9 leaf soil Canopy Atmosphere technique information
" POLDER PF:\‘OSCF;icT PRICE Kuusk Toc NNT measurements Some variables fixed
LAI, fAPAR (cw, bdm YCs) 2 abundances | LAI, ALA, hot Range of variation
, | mopismisr | prescrived for | :*af’c';el . DISORD 06 wr mf::;‘f’]i’::”ﬁf specific values for 6
LAI, fAPAR each biome yp 6 biomes P biomes
understorey 20%
(1)
3 M;RGIVSI PF:\‘OSCZiCT 5 typical soil Gobron TOA Parametric not specified Range of variation
FAPAR (cw, bdm YCs) unique BRDF | LAI, ALA, hot (MODTRAN) P (uniform distribution)
VEGETATION® | <o | brightness SAIL model and
CYCLOPES parameter LAI, ALA, hot, measurements |approximation of actual
4 N, Cab, TOC NNT " o e
LAI, fAPAR, Cw.Cdm. Cby &reference vCover prescribed at 4%, distribution
fCover ’ - op spectra (relative)
Empirical relations for specific biomes
5 (\:IE:iTA(';I'IIO;‘l-I using TM sensor and the corresponding ground Toc Parametri not ified Specific relations for
ana LaAI obal measurements over some sites arametric ot specifie each biome
Prescribed BRDF model
PROSPECT ) .
MERIS green/brown b:?:r:\:::r SAIL, - 'Iz'gér?/:r';?én men;:iir:nei!s approximation of actual
6 | LA fAPAR, separated p: LA, ALA, hot, ! NNT : S |pproximation |
&reference - TOA version prescribed at 4% distribution
fCover, LAIxCab | N, Cab, Cdm, vCover
Cw, Cbp spectra (SMAC) (relative)

class of object such as an agricultural field. Results show quite significant improve-
ment of the retrieval performances for LAI, C,, and C,,, presumably because of a
better handling of the possible compensation between LAl and ALA in the retrieval
process as suggested by Atzberger (2004) and outlined by Jacquemoud (1993).

Other approaches based on models with random effects (Faivre and Fischer,
1997) may be also very attractive, although rarely used within the land remote
sensing community. They allow characterizing a population by their two first statis-
tical moments (mean and variance). In the case of remote sensing applications, this
could be applied over a cluster of P pixels belonging to the same class of surface as
in the “object retrieval” approach of Atzberger (2004). The inversion process could
be achieved by tuning both the mean and variance values of each input variable over
the P pixels using iterative optimization techniques. The individual values of each
pixel could be derived from the estimated mean and variance values of the vari-
ables and the departure between the actual radiometric measurements of the pixels
and the mean values over the object. The under-determination of the problem could
significantly decrease with this approach: the number of unknowns to estimate is
independent on the number of pixels considered in the cluster and is just twice the
number of variables to estimate (mean and variance).

Although quite promising, these methods need further evaluation, and probably
adaptation before being accepted and used by the remote sensing community. Note
that only statistical distributions are used for both methods presented, although addi-
tional geo-statistical constraints could be exploited particularly for the higher spatial
resolutions, based on variograms (Garrigues et al., 2006).
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7.4.2.3 Temporal Constraints

The dynamics of canopies results from elementary processes under the control of
climate, soil and the genetic characteristics of the plants that incrementally change
canopy structure and optical properties of the elements. Very brutal and chaotic time
course are therefore not expected, at the exception of accidents such as fire, flooding,
harvesting, or lodging. The smooth character of the dynamics of canopy variables
may be exploited as additional constraint in the retrieval process. Kotz et al. (2005)
proposed using a semi-empirical model of canopy structure dynamics to improve
remote sensing estimates of LAl over maize crops. Results show a significant im-
provement of estimates, particularly for the larger LAI values where saturation of re-
flectance is known to be a problem. This approach requires a semi-empirical model
of canopy structure dynamics (here LAI) describing the whole growth cycle with
few parameters. In the case of the model used by Kotz et al. (2005) five parameters
are needed. In this case, the under-determined nature of the inverse problem will
decrease only if more than five dates of remote sensing observations are available
and well distributed over the growth cycle. However, because the parameters of the
model of LAI dynamics have some biological meaning, prior information on them
could be accumulated and efficiently exploited.

More recently, Lauvernet et al. (2007) proposed a “multitemporal patch” in-
version scheme to account for both spatial and temporal constraints. Reflectance
data are here considered observed from top of atmosphere. Atmosphere/canopy/
leaf/soil RT models are thus coupled to simulate top of atmosphere reflectance from
the set of input variables as stated by Eqs. (7.8) and (7.9). Spatial and temporal
constraints are based on the assumption that the atmosphere is considered stable
over a limited area (typically few kilometres) but varies from date to date, and
that surface characteristics vary only marginally over a limited temporal window
(typically -7 days) but may strongly change from pixel to pixel. This has obviously
important consequences on the under-determined nature of the inverse problem as
demonstrated hereafter. The atmosphere characteristics [Pym, Cyv, Cos], except the
aerosol ones [Tss, A], are assumed to be known from independent observations
such as meteorological estimation or dedicated sensors or algorithms. The observa-
tional configuration [A, 6s, Ov, ¢] is also known at the time of image acquisition.
Soil reflectance was simply approximated as lambertian, with reflectance propor-
tional to a reference soil spectra according to a brightness parameter Bs (Bacour
et al., 2006). The brightness parameter is assumed to vary both from date to date
and pixels to pixels, without any constraints. The forward model resulting from
nesting the RT models presented previously could be written as a function of the
ten unknowns [N, Cap, Cym, Cpp, Cw, LAI, ALA, hot, Bs, Tsso, A] with ny =2
atmosphere variables, nc = 8 canopy and leaf variables and n; = 1 soil variables.
Let consider d dates of observation available over a limited temporal window during
which the canopy variables are about constant, and a spatial window of p pixels
for which the atmosphere is considered homogeneous. The number of unknowns,
N(p,d) in the case of concurrent inversion of an ensemble of d dates and p pixels
using the spatial and temporal constraints described above is therefore:
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N(p,d)=d-ns+p-nc+d-p-ng (7.10)

Inverting the nested radiative transfer models concurrently over an ensemble of d
dates and p pixels will significantly reduce the total number of unknowns. (N(p,d))
as compared to p times d independent instantaneous pixel inversions (p.d.N(1,1)).
Figure 7.8 shows that the number of unknowns to be estimated within the same
inversion process for p pixels and d dates as compared to p.d single pixel and
single date inversions (N(p,d)/(p.d.N(1,1))) decreases significantly up to about
10 pixels. However, the main advantage over “ensemble” inversion is reached when
applying concurrently the inversion process to several dates. Using two dates and
more than 10 pixels allows dividing by almost 2 the number of unknowns. Note that
these results concern only the number of unknowns, and is therefore applicable to
any observational configuration characterized by a set of bands and directions.

Results on the performances achieved demonstrate the interest of the approach
for the estimation of most of the variables, particularly for the aerosol characteristics
and for LAI, LAI x C,, and ALA canopy characteristics. However, again, this new
approach was only demonstrated over RT simulations, and its interest should be
verified over experiments with actual remote sensing data and the corresponding
ground truth.
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7.5 Conclusion

This overview of retrieval approaches is based on methods currently used, while
alternative ways to solve the problem and hopefully improve the accuracy and ro-
bustness of estimates were briefly introduced. Several ingredients of the algorithms
were identified apart from the retrieval techniques themselves: radiative transfer
models, observations, additional information and constraints. We will briefly sum-
marize the conclusions for each of these ingredients in the following.

7.5.1 Retrieval Techniques

The several techniques investigated have been classified as radiometric variables or
biophysical variables driven approaches. However, both types of methods could be
either derived from actual measurements or based on radiative transfer model simu-
lations. The best approaches are obviously the ones that will be trained over data sets
that are as close as possible to the evaluation data set. For this very reason, canopy
biophysical variables trained over empirical data sets would be ideal. In addition,
canopy biophysical variables driven approaches present the advantage of being very
computer efficient once trained, allowing easy implementation within operational
processing chains. However, because of the difficulty of getting a large enough
training data set representing the actual distribution of cases (observational config-
uration, type of canopies and state, background properties, eventually atmosphere
characteristics), training data base made of radiative transfer model simulations is
preferred. These hybrid techniques as termed by Liang (2004) require however the
radiative transfer models to be well adapted to the type of canopy they target, and
their adequacy to be quantified to properly input model uncertainties. In addition,
the structure of uncertainties on the radiometric variables and distribution and co-
distribution of the input biophysical variables should be also known. An alternative
approach currently not yet explored would consist in bridging the two retrieval ap-
proaches: actual sensor measurements are used to build the training data base allow-
ing to keep all the structure of measurement uncertainties. This data base should be
representative of the cases investigated, which might be possible by specific spatial
and temporal sampling schemes as proposed by Baret et al. (2006a) in the case of
global observations. The corresponding best estimates of canopy biophysical vari-
ables could be derived from inversion methods such as iterative optimization tech-
niques for which all the information available should be exploited: fusion of all
currently available sensors observations, prior information and spatial and temporal
constraints.

As a matter of fact, most radiometric variables driven approaches are very flex-
ible and could easily ingest data from several sensors, bands and directions, at the
expense of computer requirements which make these methods more difficult for an
operational use. Conversely, canopy biophysical driven approaches are not as flex-
ible as radiometric driven approaches: they are generally tuned for a limited set of
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observational conditions: using other configurations would require a specific train-
ing or a dramatic enlargement of the training data base.

Retrieval methods will be more efficient when applied to a limited set of surface
types as compared to a very generic (global) solution. Approaches based on a classi-
fication would thus allow closer adaptation to each class of both the radiative transfer
model and prior information. However, attribution errors may significantly alter the
performances. Using a continuous classification (Hansen et al., 2002; Hansen and
DeFries, 2004; Schwartz and Zimmermann, 2005) will probably limit this source
of uncertainties and avoid getting artefacts when two consecutive pixels will jump
from one class to another.

Biophysical variables estimates are generally integrated within other process
models such as hydrology or biogeochemical cycling along with other ground obser-
vations. Quantification of the associated uncertainties is therefore required to prop-
erly merge these several sources of information. Current available products did not
provide quantitative evaluation of the confidence interval around the solution, but
are limited to qualitative indices. Bayesian approaches provide a direct access to the
distribution of the solution of the inverse problem and may be very useful for esti-
mating the uncertainties. Current operational algorithms need further developments
to fully satisfy this important user requirement.

7.5.2 Radiative Transfer Models

Performances of methods based on radiative transfer models are largely depending
on the realism of the simulations. Radiative transfer models are based on a set of
assumptions, particularly regarding the description of canopy architecture. A more
realistic description of canopy architecture will require additional input variables
and will be probably more demanding in computer resources. Knowledge of prior
distribution and co-distribution of these additional canopy structure variables will
constitute a limitation. Further, using such more realistic radiative transfer model
requiring a larger number of unknowns will not necessarily improve the retrieval
performances because the under-determination of the problem will be even more
limiting. A compromise should therefore be found between the realism of the de-
scription of canopy structure, and its complexity.

Particular attention should be paid on the definition of the variables used in the
radiative transfer model that should match the one required for the application. For
example, the original LA/l definition (Stenberg, 2006) may be altered depending
on the way and scale at which leaf clumping is accounted for (Chen and Leblanc,
1997). Great caution should be also paid when comparing retrievals with ground
measurements or inter-comparing several products.

As demonstrated here, holistic approaches based on the coupling of canopy, leaf
and soil models are optimal for best performances. Eventually, coupled surface and
atmosphere models would certainly help solving in an elegant way the retrieval of
surface variables from top of the atmosphere observations.
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7.5.3 Observations and Ancillary Information

The observational configuration is an important element that drives the accuracy
of canopy biophysical variables estimation. It depends obviously on the variables
targeted. For the time being, sufficient maturity is achieved for the estimation of
LAI fAPAR, the cover fraction, chlorophyll and water contents variables to imple-
ment operational algorithms for delivering the corresponding products to the user
community. The interest of multidirectional and hyperspectral observations is still
to be rigorously demonstrated for these variables by comparison over actual ground
measurements.

Frequent observations are required to monitor the dynamics of the vegetation that
conveys a large amount of information on the functioning of the surface. With the
hopefully venue of systems capable of high revisit frequency with high spatial reso-
lution, new retrieval methods should be developed to exploit the temporal and spatial
dimensions in addition to the more classical spectral and in a lesser way directional
ones. This would allow benefiting from the spatial and temporal constraints and con-
sequently reduce the number of unknowns to be retrieved. Ultimately, this approach
will converge towards direct assimilation of top of atmosphere radiances into sur-
face process models. However, the research community is not mature enough on the
coupling between radiative transfer models and canopy process models. Radiative
transfer model inversion had still to mature and improve the accuracy of surface
variables estimation before jumping towards radiance data assimilation.

Knowledge and management of uncertainties is one of the critical issues for the
retrieval algorithms. If measurement uncertainties coming from the sensor are rel-
atively well known, their structure (covariance between bands and directions for
example) is poorly documented. This is even worse when considering model uncer-
tainties that may change dramatically from place (and time) to place (and time) with
presumably specific features (covariance between configurations).

The other critical issue is the lack of prior information on the distribution of
most land surface attributes. However, this could be accumulated from the numer-
ous experiments organized in support of satellite images. A mechanism should thus
be developed to capitalize on the information gathered within the remote sensing
research community as well as other communities working with ecosystems. Note
that getting high spatial resolution data will considerably ease the characterization
of prior distribution of the variables, provided that each pixel could be properly
classified.

Any retrieval algorithm should be properly validated before delivering its prod-
ucts to the user community according to consensus protocols (Morisette et al.,
2006). This process will not only provide a way to characterize the associated uncer-
tainties, it will be also critical for improving the algorithms. A short feedback loop
should therefore be set-up between algorithm prototyping and validation. When re-
trieval algorithms are based on radiative transfer modeling, this will implicitly merge
observations and model to improve robustness and accuracy of the products at the
expense of a decrease in the desired independency between the validation and cali-
bration processes.
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