
Chapter 13
Methodologies for Mapping Land Cover/Land
Use and its Change

Nina Siu-Ngan Lam

13.1 Introduction

Mapping and identifying land cover/land use and its change is the most important,
as well as the most widely researched, topic in remote sensing. Land cover/land use
has been used extensively to derive a number of biophysical variables, such as vege-
tation index, biomass, and carbon content (see other chapters). More importantly,
land cover/land use pattern and its change reflect the underlying natural and/or
social processes, thus providing essential information for modeling and understand-
ing many different phenomena on the Earth. Knowledge of land cover/land use and
its change is also critical to effective planning and management of natural resources.

Mapping land cover/land use accurately and efficiently via remote sensing req-
uires good image classification methods. Unfortunately, there are numerous factors
(e.g., image resolution and atmospheric condition) that could affect the effectiveness
and accuracy of the classification algorithms. Different land cover/land use classifi-
cation methods may be needed for different problems under different environmental
conditions, making generalization and hence automation of the image classification
process across time and space extremely difficult. As a result, new and sophisticated
classification methods designed to improve the classification process continue to ap-
pear in the literature (e.g., Jensen, 2005; Gong, 2006). Newer approaches such as
fuzzy classification, artificial neural network, and object-based classification have
been developed and successfully applied (Definiens, 2004; Benz et al., 2004). How-
ever, these methods require extensive training and human supervision. We are still
far from being able to develop a common framework to successfully identify a vari-
ety of features in different landscapes and to generalize and automate the classifica-
tion process.
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Extending the mapping and modeling of land cover/land use at one time period
to multiple time periods to analyze change will undoubtly add more complexity
and challenges. In addition to the above image classification issues, efficient meth-
ods are needed to ensure comparability and compatibility of images taken in differ-
ent time periods. Many studies on change detection using remote sensing imagery
have already been reported in the literature. Lunetta and Elvidge (1998) provided
an excellent summary of the state of the science. Many others examined the perfor-
mance of various techniques in various applications (e.g., Coppin and Bauer, 1996;
Jensen et al., 1993, 1997; Lu et al., 2005; Mas, 1999; Nackaerts et al., 2005; Yuan
et al., 1998).

Among the new techniques for land cover/land use classification and change
analysis, textural (spatial) analyses are gaining increasing attention from the re-
mote sensing community (e.g., Briggs and Nellis, 1991; Dunn et al., 1991; Estreguil
and Lambin, 1996; Frank, 1984; Jupp et al., 1986; Lambin, 1996; Lambin and
Strahler, 1994; Pickup and Foran, 1987; Smits and Annoni, 2000; Crews-Meyer,
2002). We have seen new applications of old textural measures such as the spa-
tial co-occurrence matrix, local variance, and others (Haralick et al., 1973; Clausi
and Jobanputra, 2006), as well as development of new textural analytical tech-
niques such as wavelets (Daubechies, 1990; Muneeswaran et al., 2005). A number
of textural measures which had not been used for remote sensing applications be-
fore have recently been utilized for more accurate land cover/land use classifica-
tion, such as fractals, variograms, lacunarity, and spatial autocorrelation statistics
(Lam, 1990; Lam and De Cola, 1993; Plotnick et al., 1993; Lam et al., 1998; Carr
and de Miranda, 1998; Carr, 1999; Dale, 2000; Dong, 2000; Franklin et al., 2000).
Although applications of these newer textural measures in change analysis have sel-
dom been reported, we expect that the same textural and spatial methods that can be
used for identification of land cover/land use can also be used for change detection.

The purpose of this chapter is to introduce the use of textural/spatial measures
in land cover/land use classification and its potential for change analysis. Our main
notion is that the utilization of textural/spatial measures, in combination with origi-
nal spectral information, will increase classification accuracy and have great poten-
tial for rapid change detection. The chapter is organized into four main sections. A
summary of the major textural/spatial methods is first provided in Section 13.2, with
a focus on those measures that can be applied directly to unclassified images. This
property is important for rapid image segmentation, classification, and change detec-
tion. Section 13.3 describes a number of examples that have utilized these measures
in land cover/land use classification. In Section 13.4, a framework for classifying
the various land cover/land use change detection methods is introduced. We argue
for the need to develop innovative methods for rapid and reliable change detection
especially during disastrous and unexpected events. We further argue that such need
could be best served by utilizing a metric of textural/spatial measures, in conjunction
with the original spectral information of the images. Section 13.5 describes a real
example of change analysis using textural measures. The prospect of utilizing tex-
tural measures in combination with other approaches for better and faster mapping
of land cover/land use and its change is summarized in the conclusion.
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13.2 Major Textural/Spatial Measures

13.2.1 Terminology

First, some clarification of the terms textural vs spatial measure is in order. The term
“textural” is more commonly used in pattern recognition and the general field of
image processing for raster/pixel data, while the term “spatial” is usually adopted in
geography, economics, statistics and other related disciplines and is derived mostly
for vector/polygonal data.

Texture is an important characteristic in many types of images. Despite its im-
portance, a formal definition of texture does not exist. Haralick (1979) attempted
to characterize texture using two properties, the tonal primitive properties as well
as the spatial interrelationships among them. Under this two-layered tone-texture
concept, when an image has little variation of tonal primitives, the dominant prop-
erty of that image is tone. On the contrary, when an image has wide variation of
tonal primitives, the dominant property of that image is texture. Haralick described
eight statistical approaches to measure image texture, which include autocorrela-
tion functions, optical transforms, digital transforms, textural edgeness, structural
elements, spatial gray tone co-occurrence probabilities, gray tone run lengths, and
autoregressive models.

In remote sensing, texture is the spatial relationship exhibited by gray levels in a
digital image. Therefore, textural measures are measures that capture the spatial re-
lationship among pixels. Spatial measures, which refer to measures mostly derived
from spatial statistics, have been used largely in geospatial applications for char-
acterizing and quantifying spatial patterns and processes Although traditionally the
two fields of studies, textural analysis and spatial analysis, refer to quite different
sets of methods and analyses, they do intersect to a great extent in remote sensing.
In this chapter, we adopt the notion that the two terms, textural and spatial measures,
are interchangeable.

13.2.2 Criteria for Evaluating and Classifying Textural Measures

There are numerous textural measures in the literature, and it is beyond the scope of
this chapter to exhaust and evaluate each of them. Table 13.1 lists some of the com-
monly used measures, which illustrates clearly the diversity, as well as redundancy,
of these various measures. It is important to note that some measures are based
on vigorous statistical theory and mathematical derivation (e.g., fractals, wavelets,
spatial autocorrelation) (Lam et al., 1998), while others are based on simple geomet-
ric measurements with unknown statistical properties and/or theoretical minimum
or maximum (e.g., edge density). Some metrics measure one aspect of the land-
scape (e.g., landscape composition), while others measure another (e.g., landscape
configuration) (McGarigal and Mark, 1995). Baskent and Jordan (1995) classified
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Table 13.1 Some commonly used textural measures

Textural measures References

First-order metrics (computed on the original data matrix)
using traditional statistical measures: mean, standard devia-
tion, variance, correlation

Jensen (2005); Gong et al. (1992);
Woodcock and Strahler (1987)

First-order metrics using traditional texture measures: en-
tropy, energy, contrast, homogeneity, angular second mo-
ment, Shannon diversity

Haralick (1979); Haralick et al.
(1973); Jensen (2005); Gong et al.
(1992)

First-order metrics using adapted spatial measures (from
ICAMS): fractal dimension, lacunarity, spatial autocorrela-
tion, variogram

Lam et al. (1998, 2002);
Quattrochi et al. (1997); Myint and
Lam (2005a, b)

Second-order metrics: same set of metrics calculated on
matrix derived from the original matrix (e.g., gray-level
co-occurrence matrix, wavelet decomposed images)

Haralick (1979); Haralick et al.
(1973); Myint et al. (2002, 2004)

Landscape indices designed for classified images (from
FRAGSTATS): area, density, edge, shape, proximity, con-
nectivity, contagion/interspersion, diversity

McGarigal and Mark (1995);
McGarigal (2002)

landscape indices into areal, linear, and topological. Yet another classification of
textural measures is based on whether the measures are applied directly to the orig-
inal matrix (first-order textural measures), or to matrices derived from the original
matrix such as the gray-level co-occurrence matrix or wavelet decomposed images
(second-order textural measures) (Jensen, 2005). Hence, it is imperative to develop
useful criteria to evaluate and/or classify these textural measures. What is a good
textural measure? Although there may be no definite answers until each measure
is tested extensively for their discriminating and explanatory power, we suggest the
following criteria to evaluate and guide our understanding of these various measures.

Ideally, a good textural measure should have the following properties:

1. The textural measure should be conceptually simple and easy to calculate. For
example, statistical mean and standard deviation are concepts easily grasped
by most researchers and their statistical properties are well known. Extension
of these basic statistical measures in a spatial domain with some modifications
may provide a useful first approximation towards an understanding of the land
cover/land use pattern being studied. On the contrary, some measures may be
conceptually simple but require additional steps for calculation, such as edge
density, which needs an additional step to find the edges.

2. The textural measure should have theoretical maximum and minimum. For ex-
ample, Moran’s I, a most commonly used spatial autocorrelation statistic, has
a range of ±1. A Moran’s I value of 1 indicates a maximum positive spatial
autocorrelation; on the contrary, a −1 indicates a maximum negative spatial au-
tocorrelation (Cliff and Ord, 1973).

3. The textural measure should reflect clearly and intuitively the characteristics
of the image pattern in a consistent manner. For example, a lower fractal
dimension value means a less spatially complex image, therefore, given an image
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computed with a fractal dimension value of 2.3, we should be able to infer that
this image is far less complex than an image computed with a fractal dimension
value of 2.9, and a visual display of the two images should be able to reveal
the difference (Lam, 1990). Fractal dimension (D) also has the second property,
where D is expected to range from 2 to 3.0 for surfaces and 1.0–2.0 for lines
(Mandelbrot, 1982).

4. The statistical properties of the textural measure should be known to provide sta-
tistical confidence of the computed value. For example, theoretically a Moran’s
I value of 0 indicates a random pattern. If a pattern yields a computed value
of 0.2, can we determine if this value is statistically the same or different from
0 to conclude if the pattern is random or not? Fortunately, the statistical prop-
erties of Moran’s I are relatively well known and hypothesis testing of whether
a computed I value is significant can be conducted. Under the assumption of
randomization, the first and second moments of the Moran’s I value can be com-
puted and the statistical significance of the value determined (Goodchild, 1986).
On the contrary, the statistical properties of fractal dimension are still not clear,
though it has well-defined theoretical minimum and maximum. Hence, it is dif-
ficult to judge, for example, if an image with a fractal dimension of 2.3 is signif-
icantly different from another image with a fractal dimension of 2.4. It is noted
that the statistical properties of most spatial measures are very difficult to de-
rive and therefore remain unclear; many researchers have resorted to the Monte
Carlo approach to develop empirical probability functions for statistical hypoth-
esis testing (e.g., Openshaw, 1989).

5. The textural measure should be computable globally for the entire study area
or locally for a local neighborhood. For example, some landscape metrics devel-
oped in FRAGSTATS are only computable at the landscape level, instead of at all
levels (patch, class, and landscape) (McGarigal, 2002), whereas mean, variance,
Moran’s I, and fractals can be applied both globally and locally to capture local
change (Lam, 2004; Emerson et al., 2005). This property refers only to whether
the measure can be computed at all levels; it does not necessarily imply that the
measure is useful in describing the landscape at all levels.

6. Finally, the textural measure should be applicable directly to both classified and
unclassified images. For example, the landscape metrics in FRAGSTATS were
developed exclusively for categorical maps (O’Neill et al., 1998; McGarigal,
2002), or in other words, classified images, though some of the metrics can be
modified and applied to unclassified images. On the contrary, fractals, Moran’s I,
local variance (Woodcock and Strahler, 1987), variogram, lacunarity, and wavelet
measures can be applied to both unclassified and classified images.

This last property is considered very important to automated land cover/land use
classification and change detection for two reasons. First, if they can be applied
directly to unclassified images, land cove change could be detected first before
the tedious classification process. Only after the change is determined to be sig-
nificant, then there is a need to identify or classify what the changes are. This is
considered a more efficient approach, especially for continuous environmental mon-
itoring. Second, since these textural methods measure the spatial variations among
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pixels instead of comparing pixel by pixel, they are more likely to reflect dominant
changes rather than spurious changes that might have resulted from using images
taken in different time periods (Lambin, 1996; Smits and Annoni, 2000). If there
are only small and insignificant changes in land cover, it is expected that the spatial
relationship will not alter and the spatial index values will remain the same. On the
contrary, if there are significant land-cover changes, then it is expected that the spa-
tial properties will be altered, and the spatial indices that are designed to measure
the spatial properties should be able to capture these changes.

13.2.3 Description of Selected Textural Measures

We describe below four textural measures, including spatial autocorrelation
(Moran’s I), fractal, lacunarity, and wavelet transform. All four methods have
already been implemented in a software module called ICAMS (Image Characteri-
zation And Modeling System), developed previously by the author and collaborators
(Quattrochi et al., 1997; Lam et al., 1998, 2002; Emerson et al., 1999). ICAMS was
developed mainly to provide spatial analytical tools, such as fractals, variograms,
and spatial autocorrelation, to visualize, measure, and characterize landscape pat-
terns. Detailed descriptions of ICAMS can be found in a number of publications
(e.g., Quattrochi et al., 1997; Lam et al., 1997, 1998). The four methods were se-
lected for illustration because they at least have properties 5 and 6 (can apply locally
and to unclassified images), which are important properties for rapid classification
and change detection. Furthermore, Moran’s I possesses all properties, fractals have
all but property 4. Lacunarity is an old measure but its use in land cover/land use
analysis is relatively new, its properties remain to be thoroughly studied (Myint and
Lam, 2005a, b). The mathematics of wavelet transformation is well defined. How-
ever, the properties of the textural measures computed on the wavelet transformed
images have seldom been studied, and will be a subject of our ongoing research.

13.2.3.1 Spatial Autocorrelation

Spatial autocorrelation statistic has been commonly used to measure the degree of
clustering, randomness, or fragmentation of a spatial pattern. The two most common
spatial autocorrelation measures for interval-ratio data are Moran’s I and Geary’s C
(Cliff and Ord, 1973). Moran’s I is generally preferred over Geary’s C, because
the values of the former are more intuitive (i.e., positive values for positive auto-
correlation and vice versa). Moran’s I was also found to be generally more robust
(Goodchild, 1986). These two measures were originally developed for measuring
polygonal data (e.g., geographical regions) where the number of units or points
measured (n) is often smaller. It is only recently that these two measures were ap-
plied to raster data such as remotely sensed images, where the number of units being
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measured (n×n) is much larger (Emerson et al., 1999; Lam et al., 2002). Moran’s
I is calculated from the following formula:

I(d) =
∑n

i ∑n
j wi jziz j

w∑n
i z2

i
(13.1)

where wi j is the weight at distance d so that wi j = 1 if point j is within distance
d from point i; otherwise, wi j = 0; z’s are deviations from the mean for vari-
able y, and w is the sum of all the weights where i �= j. Moran’s I varies from
+1 for perfect positive correlation (a clumped pattern) to −1 for perfect negative
correlation (a checkerboard pattern). Figure 13.1 shows three simulated surfaces and
their corresponding Moran’s I and fractal dimension values. Moran’s I and fractal
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Fig. 13.1 Three simulated surfaces mapped in three-dimensional and image forms. From top to
bottom, D = 2.1, 2.5, 2.9, and I = 1.0, 0.99, 0.82. (Modified from Lam et al., 2002.)
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dimension (D) have an inverse relationship, whereby a spatial pattern with a high
degree of fragmentation will have a low Moran’s I but a high fractal dimension.

13.2.3.2 Fractal Dimension

Fractals were derived mainly to overcome the difficulty in analyzing spatial forms
and processes by classical Euclidean geometry. The key parameter in fractals is
fractal dimension D, which is used to represent the complexity of spatial forms
and processes. The higher the D, the more complex is the curve or surface. The
D value of a curve can be any non-integer value between 1 and 2, and a surface
between 2 and 3. For example, coastlines have dimension values typically around
1.2, and topographic surface dimensions around 2.3. Dimension values for satellite
image surfaces have been reported to be much higher, and depending on the type of
landscapes examined, they can be as high as 2.7–2.9 (Lam, 1990; Jaggi et al., 1993).

Fractal dimension is derived from the concept of self-similarity, where a curve or
a surface is made up of copies of itself in a reduced scale (Mandelbrot, 1982). The
number of copies (m) and the scale reduction factor (r) can be used to determine
the dimensionality of the curve or surface, where D = − log(m)/ log(r) (Falconer,
1988). Practically the D value of a curve is estimated by measuring the length of the
curve using various step sizes. The more irregular the curve, the greater increase in
length as step size decreases. Such an inverse relationship between total line length
and step size can be captured by a regression:

log(L) = C +B log(G) (13.2)

where L is the line length, G is the step size, B is the slope of the regression, and C
is a constant. D can be calculated by: D = 1−B. For surfaces, D = 2−B.

Because of its attractive theoretical foundation, literally every major discipline
has found applications using the fractal concept in the past two decades, with nu-
merous algorithms developed for computing the fractal dimension. Unfortunately, a
major problem in applying fractals is that different fractal measurement algorithms
yield different results. Often times, empirically computed fractal dimensions may
exceed the theoretical ranges. Moreover, fractal dimension is defined in various
ways in different algorithms. For example, some algorithms use only a single mea-
surement to derive the dimension, instead of using multiple step sizes to derive the
dimension through regression analysis. FRAGSTATS defines fractal dimension as
the ratio between perimeter and area of a patch, which is very different from the
algorithms described below (Lam, 1990). The former definition of fractal dimen-
sion, though simple and easy to calculate, applies only to images that have already
been classified, whereas the algorithms described below (e.g., the triangular prism
algorithm) follow closely the original definition by Mandelbrot and can be applied
directly to unclassified images for textural comparison.

Lam (1990) demonstrated the use of three methods, including isarithm, trian-
gular prism, and variogram methods, in measuring the spatial complexity of the
reflectance surfaces from remote sensing imagery (Goodchild, 1980; Clarke, 1986;
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Mark and Aronson, 1984). In a subsequent benchmark study, Lam et al. (2002)
found that the modified triangular prism method was the most accurate and reli-
able method for estimating the fractal dimension of surfaces. Hence, the modified
triangular prism method is described as follows.

The modified triangular prism method (Clarke, 1986; Jaggi et al., 1993; Lam
et al., 2002) constructs triangles by connecting the heights or z-values at the four
corners of a grid cell to its center, with the center height being the average of the
pixels at the four corners. These triangular “facets” of the prism are then summed
to represent the surface area. In the second step, the algorithm increases the step
size from one pixel to two pixels, and the z-values at the four corners of the 2× 2
composites are used to construct the prism. It is expected that as step size increases,
the prism surface area will increase, but at a decreasing rate, which can then be used
to determine the fractal dimension by a regression equation similar to Eq. (13.2):
Log A = K +(2−D) Log S, where A is the prism surface area, K is a constant, D is
the fractal dimension, and S is the pixel size.

13.2.3.3 Lacunarity

Despite the potential of fractals, Mandelbrot (1982) realized that fractal dimensions
are very far from providing a complete characterization of spatial forms. He in-
troduced the term lacunarity (lacunar in Latin means gap) to further describe the
gappiness or texture of a spatial pattern. In other words, different fractal sets may
have the same fractal dimension values, but they may look different because they
have different lacunarities (Myint and Lam, 2005a).

Lacunarity represents the distribution of gap sizes; low lacunarity implies homo-
geneity as all gap sizes are the same, whereas high lacunarity implies heterogeneity
(Dong, 2000). Unfortunately, lacunarity is highly sensitive to scale, and depending
on the size of the gliding box used in computing the lacunarity value, the same
pattern can return with very different values, as objects that are homogeneous at a
small scale can be heterogeneous at a large scale (Plotnick et al., 1993). Myint and
Lam (2005a, b) compared several hypothetical patterns; three of them are shown
in Fig. 13.2. When a smaller gliding box of 3× 3 is used, the small gap pattern
(Fig. 13.2) results in low lacunarity (1.05), the big gap pattern yields the highest
(1.40), and the random pattern yields a value in between (1.15). But when a big-
ger gliding box of 11× 11 is used, the results are reverse, with the big gap pattern
yielding the lowest lacunarity (1.02) and the small gap pattern the highest (1.10).
Lacunarity value of the random pattern decreased slightly from 1.15 to 1.08. It is
also observed that the range of difference between the two patterns is much smaller
with bigger gliding box.

An algorithm for computing lacunarity using the gray-scale approach is des-
cribed as follows (Voss, 1986; Myint and Lam, 2005a, b). Let P(m,L) be the proba-
bility that there are m intensity points within a cube size of L centered at an arbitrary
point in an image. Intensity points are points that fill the cube in each step. Hence,
we have
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Fig. 13.2 Three hypothetical binary patterns with different lacunarity values, see text for explana-
tions. (Modified from Myint and Lam, 2005a.)

N

∑
m=1

P(m,L) = 1 (13.3)

where N is the number of possible points in the cube of L. Suppose that the total
number of points in the image is M. If one overlays the image with cubes of side L,
then the number of cubes with m points inside the cube is (M/m)P(m, L). Hence

M(L) =
N

∑
m=1

mP(m,L) (13.4)

and

M2(L) =
N

∑
m=1

m2P(m,L) (13.5)

Lacunarity Λ(L) can be computed from the same probability distribution P(m, L),
and is defined as:

Λ(L) =
M2(L)− (M(L))2

(M(L))2 (13.6)

Unlike fractals, lacunarity has no theoretical maximum or minimum. The perfor-
mance of the index, especially its high scale dependency, will need to be further
studied. However, a few studies have shown that adding a lacunarity layer in image
classification has dramatically improved accuracy (Myint and Lam, 2005a, b), indi-
cating a promising approach towards more accurate, automated land cover/land use
mapping.

13.2.3.4 The Wavelet Transform Method

Pioneered by Mallat (1989) and Daubechies (1990), the wavelet method has found
numerous applications in a wide range of disciplines. The method has also recently
been demonstrated as a promising approach to increasing accuracy in image clas-
sification and image retrieval using remote sensing imagery (Manjunath and Ma,
1996; Zhu and Yang, 1998; Bian, 2003; Myint et al., 2004).

In brief, wavelets are translated and dilated versions of a common mathematical
function, called the mother wavelet. In the case of images, the translation refers to
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Fig. 13.3 Multiresolution wavelet decomposition of a remote sensing image. (a) Original image,
(b) level-1 decomposition: upper left is approximate sub-image, clockwise from upper left are hor-
izontal, diagonal, and vertical detailed sub-images, (c) level-2 decomposition image (From Myint
et al., 2004, reprint with permission from the American Society for Photogrammetry and Remote
Sensing)

the geographic location, and the dilation relates to different scales. By adjusting the
translation and dilation parameters, we can study the texture and scale locally. For
the 2D discrete wavelet transform, which is used for remote sensing image analysis,
the wavelet method will decompose an image into four sub-images: an approximate
image (low frequency) and three detailed images (high frequency – horizontal, ver-
tical, and diagonal). The approximate image can further be decomposed into another
level, resulting in a multi-resolution wavelet analysis. Figure 13.3 shows an example
of multiresolution wavelet decomposition. The coefficients of the four subimages
are computed by Eqs. (13.7)–(13.10):

A(i, j) = ∑
k

∑
l

h(k−2i)h(l −2 j) f (k, l) (13.7)

H(i, j) = ∑
k

∑
l

h(k−2i)g(l −2 j) f (k, l) (13.8)

V (i, j) = ∑
k

∑
l

g(k−2i)h(l −2 j) f (k, l) (13.9)

D(i, j) = ∑
k

∑
l

g(k−2i)g(l −2 j) f (k, l) (13.10)

where f is the original image, A is the approximate image, H is the horizontal de-
tailed image, V is the vertical detailed image, and D is the diagonal detailed image.
h(k), g(k) are the scaling filter and the wavelet filter, respectively, and k, l are the
number of rows and columns (Mallat, 1989; Daubechies, 1990).

After decomposition, indices can be computed for each sub-image at each level
to represent the texture of the image. In addition to mean and standard deviation,
Eqs. (13.11)–(13.14) show other commonly used measures (Myint et al., 2002),
including log energy, Shannon index (SHAN), angular second moment (ASM), and
entropy:
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energy =
K

∑
i=1

K

∑
j=1

log(P(i, j)2) (13.11)

SHAN = −
K

∑
i=1

K

∑
j=1

P(i, j)∗ log(P(i, j)) (13.12)

ASM =
K

∑
i=1

K

∑
j=1

P(i, j)2 (13.13)

entropy = −
K

∑
i=1

K

∑
j=1

Q(i, j)∗ log |Q(i, j)|; Q(i, j) =
|P(i, j)|2√
∑
i, j
|P(i, j)|2

(13.14)

where P(i, j) is the (i, j)th pixel wavelet coefficient value of a decomposed image
at a particular level. These computed textural indices are then used to discriminate
different types of land cover/land use.

13.2.4 Scale and Uncertainty in Textural Analysis

Textural measures must be computed from a group of pixels or objects. Hence, tex-
ture is very scale-dependent. The size of the moving window combined with the
resolution of the imagery plays a big part in determining what features are high-
lighted by these techniques. This scale and uncertainty issue has long been a central
concern across a number of disciplines that involve geospatial/environmental data,
textural analysis is not an exception. Scale variations are well known to constrain
the detail with which information can be observed, represented, analyzed, and com-
municated (Lam et al., 2004).

It should be noted that the term “scale” has different meanings, and depending
on the field of study, its meaning could be opposite. Lam and Quattrochi (1992)
outlined four different meanings of scale (Cao and Lam, 1997). Cartographic scale
refers to the degree of reduction in spatial dimensions that occurs when real-world
measurements are represented in hard-copy maps or computer screens. Operational
scale is an expression of the spatial or temporal dimensions over which a process op-
erates, while observational scale refers to the dimensions within which a particular
phenomenon or process is observed. Measurement scale, commonly called resolu-
tion, refers to the smallest observable unit, such as pixels in remote sensing imagery.
In landscape ecology, observational scale is the extent, whereas measurement scale
is referred to as grain. Radiometric scales also exist within digital imagery. Older
Landsat Multispectral Scanner (MSS) images have a 6-bit grayscale depth, while
IKONOS images have a 16-bit depth. One of the basic goals of scale-related res-
earch is to be able to move up and down spatial scales, within disciplines and across
disciplines, so that the results concluded at one scale can be inferred to another
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scale. Extrapolation of results across broad spatial scales remains the most difficult
problem in environmental research (O’Neill et al., 1989; Turner et al., 1989; Lam
and Quattrochi, 1992; Quattrochi and Goodchild, 1997; Tate and Atkinsons, 2001).

Scale affects change detection. The myriad spatial, spectral, radiometric, and
temporal scales of remotely sensed imagery pose a real challenge to change detec-
tion, as techniques developed for imagery with a pixel resolution of 1 m (IKONOS
imagery) may not be applicable to imagery with a pixel resolution of 1 km (AVHRR
imagery). Since changes may occur at different scales, globally, regionally, or lo-
cally, and they may also occur rapidly or slowly, it is important to examine how
change detection methods and indices perform at different spatial scales.

Scale-related uncertainty in modeling results has significant impacts on decision
making, and basic research on decision making under uncertainty is necessary. Ef-
fective scale-related research requires interdisciplinary efforts of social, physical,
and computer scientists. Scale and scale-related uncertainty is a difficult problem
to tackle. Increasingly, it has been recognized that scale effects exist and can never
be eliminated, therefore strategies must be developed to understand and mitigate
the scale effects rather than to eliminate them. Two interrelated approaches were
suggested to mitigate the scale effects (Lam et al., 2004). The first approach is to
develop techniques to detect the scale ranges within which levels of observation are
phenomena scale-dependent. Techniques such as geographic variance, variograms,
correlograms, fractal analysis, and a number of textural methods have been pro-
posed to detect the range of scales that yield the most information (Emerson et al.,
1999). The second approach is to develop a multi-scale assessment module so that
the same analysis can be conducted in multiple scales to compare the results and
estimate the uncertainty. A thorough benchmark study is very much needed to ex-
amine how textural methods perform at different spatial scales and resolutions in
land cover classification and change detection.

13.3 Land Cover Classification Using the Textural Approach:
Examples

13.3.1 Characterizing Land Cover in the Tropics

Read and Lam (2002) compared the performances of selected textural measures to
characterize different land covers using two sets of unclassified Landsat-TM data
(1986 and 1996/97) for a site in north-eastern Costa Rica. The purpose was to
determine whether landscape complexity can be captured by these methods, and
whether these methods can be used to reflect the degree of human disturbance. The
hypothesis was that complexity in a natural landscape decreases with increasing in-
tensity of human activities. The methods evaluated were: (1) fractal dimension us-
ing the isarithm method, (2) fractal dimension using the modified triangular prism
method, (3) spatial autocorrelation using Moran’s I, (4) Shannon’s diversity index,
(5) contagion, and (6) fractal dimension from perimeter/area. The first three methods
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were available from ICAMS, and the last three were landscape metrics available
from FRAGSTATS.

The results revealed that fractal dimension using the triangular prism method and
Moran’s I could serve as indices for characterizing spatial complexity of Landsat-
TM data, whereas the landscape indices were not consistent. The fractal dimension
decreased along a gradient of increasing human disturbance: forest–scrub–pasture–
agriculture. This study is among the first to examine how spatial indices can be used
to examine hypotheses related to land cover/land use and human disturbance in the
tropics.

13.3.2 Improving Urban Land Cover Classification

Emerson et al. (2005) examined the utility of local variance, fractal dimension, and
Moran’s I in improving urban land cover classification. Landsat ETM+ imagery of
Atlanta, Georgia obtained in 1999 was examined. Using the routines in ICAMS,
texture images were computed from the 15m panchromatic band using a 21× 21
pixel moving window for every other row and column. This two-pixel increment
between rows and columns produced a 30m resolution texture image. The real num-
ber local variance, Moran’s I, and fractal dimension values (computed using the
modified triangular prism method) were converted to 8-bit image, and they were
added to the stack of multispectral bands for classification using a supervised maxi-
mum likelihood classification technique. Five land cover classes based on the USGS
Anderson Level 1 classification scheme were used, including low intensity urban,
high intensity urban, pasture/grassland, forest, and water.

Results show that classification accuracy improved with additional texture layer,
with the fractal dimension band being the most effective. By adding the fractal di-
mension band to the multispectral bands, the overall percent correctly classified
increased from 67.1% to 77.3%. Although not as effective as the fractal band, addi-
tion of local variance and Moran’s I still yielded an improved accuracy of 72.4% and
69.4%, respectively. The results show great promise, but further research is needed
to better utilize these indices.

13.3.3 Urban Feature Discrimination Using Wavelets

Based on a high-resolution ATLAS (Advanced Thermal Land Application Sensor)
image of Baton Rouge, Louisiana, USA, Myint et al. (2002, 2004) introduced the
wavelet approach for urban land cover classification. The ATLAS image had a
2.5 m pixel resolution and was acquired with 15 channels (0.45–12.2µm) from a
NASA LearJet on May 7, 1999. Six urban land cover/land use classes with different
texture appearances were selected, including agriculture, commercial, woodland,
water body, single-family homes with less than 50% tree canopy (residential-1), and
single-family homes with more than 50% tree canopy (residential-2). These land
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cover classes were based on classification by Lo et al. (1997), which was designed
for the purpose of urban planning, as information on surface vegetation and water
availability are crucial for city officials and environmental agencies in developing
better urban infrastructure. Based on previous studies, band 2 (0.52–0.60µm), band
6 (0.76–0.90µm), and band 12 (9.60–10.20µm) were selected. In addition to these
three bands, principal component analysis band 1 (PCA1) was also examined to see
if a composite band could produce better accuracy.

Two segmented regions of each class were identified, and five training pixels
were then randomly selected from each region, leading to a total of 10 samples for
each class. Windows of 65× 65, 33× 33, and 17× 17 pixels were selected using
these 10 pixels as centers. Textural measures of these samples were computed and
a linear discriminate analysis was applied to evaluate which measure is the most ef-
fective in discriminating the different land covers. Four different textural approaches
were evaluated, including the wavelet transform, spatial autocorrelation, spatial co-
occurrence matrix, and fractals. It was found from both studies that the wavelet ap-
proach was the most accurate among all approaches considered (Myint et al. 2002,
2004). When 65× 65 samples were used, the wavelet approach yielded 100% ac-
curacy. The overall accuracy, however, decreased with smaller window sizes, with
an accuracy of 93% and 78%, respectively, for 33×33 and 17×17 samples. These
studies demonstrated the great potential of using the texture approach. They also
highlighted the importance of different scale parameters such as window size in af-
fecting its performance. Future studies that systematically examine the effects of
scale on the certainty, or rather uncertainty, of the results are needed.

13.3.4 Lacunarity-Based Urban Classification

Myint and Lam (2005a, b) introduced the use of lacunarity in urban land cover/land
use classification. As mentioned in Section 13.2.3, lacunarity measures the gappi-
ness of a pattern; low lacunarity implies homogeneity, whereas high lacunarity sug-
gests heterogeneity. An IKONOS image at 4 m spatial resolution with four channels
acquired over Norman, Oklahoma, on March 20, 2000 was used. The selected land-
use and land-cover classes in this study included single-family houses with less
than 50% tree canopy (residential-1), single-family houses with more than 50% tree
canopy (residential-2), commercial, woodland, agriculture, golf course, and water
body. Lacunarity measures for band 4 (0.76–0.90µm), band 3 (0.63–0.69µm), and
band 2 (0.52–0.60µm) were computed for the entire image using the gray-scale
method with a gliding cube of size 3 and a moving widow size of 29 × 29. The
lacunarity-transformed bands were then stacked as additional bands for maximum
likelihood classification.

The results show that adding three lacunarity transformed bands to the origi-
nal three spectral bands (band 4, 3, 2) increased the overall classification accuracy
from 55% to 92%, a drastic improvement. If only the three lacunarity transformed
bands were used for classification, the overall accuracy still increased, but not sub-
stantially, to 68%. This study further confirmed the study by Emerson et al. (2005)
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discussed above and demonstrated clearly that an integrated textural and spectral ap-
proach is needed for more accurate land cover/land use classification and mapping.

13.4 Land Cover/Land Use Change Analysis

Obviously, extending the mapping and modeling of land cover/land use at one time
period to multiple time periods to analyze change adds lot more complexity and
challenges. We outline in this section the inherent difficulties of change detection,
summarize the existing methods into a framework, and then argue that the textural
approach has potential for rapid change detection.

13.4.1 Change Detection Issues

There are inherent difficulties involved in using time-series remote sensing data for
land cover/land use change detection. Ideally, same type of images that have the
same spectral, radiometric, spatial, and temporal resolutions should be used. How-
ever, this may not be possible especially for change studies that involve a longer
time span. For example, Landsat-MSS with a pixel resolution of 80 m started in
1972, whereas Landsat-TM with a 30 m pixel resolution became available in 1982.
Using digital imagery for change analysis before 1972 would be difficult. Often
times, old aerial photographs before these dates are the only image sources to be
used. The imminent danger of discontinuing global coverage due to sensor mal-
function or budget constraints, such as Landsat-7 ETM+, will definitely hamper
land cover/land use research and make long-term change analysis impossible.

When two very different types of images are involved, the only viable approach
to change detection is to conduct detailed image classification of individual images
and then overlay the two classified images to assess the changes. However, even with
the same sensor, images taken in different dates may be affected by several factors,
causing them to be different even if there is no real land cover change. Therefore,
the following factors need to be considered for more accurate change detection:

1. The dates of the two images should be approximately the same to avoid seasonal
difference in vegetation, soil moisture, sun-angle, and other response that are not
real land cover change.

2. Even with the same date but in different years, individual atmospheric condition
can obscure our ability to uncover real changes, such as cloud cover or rainfall.
An image taken right after rainfall in a desert will look very different from an
image of the same desert before rainfall. Atmospheric correction of each image
may need to be applied before the analysis. For coastal landscape, tidal stage
is a crucial factor in conducting change detection. Significant changes can be
observed simply because the images were taken at different tidal stages (Jensen,
2005).
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3. Pre-image processing steps may also contribute errors. Extra caution is needed
to ensure no pixel mis-registration between the two images. A single pixel shift
will shift the entire image and that could lead to substantial error in assessing
change. Another point that has seldom been mentioned in the literature refers to
the algorithm used to convert pixel values from analog to digital scale. Assum-
ing an 8-bit scale (0–255) is used, some algorithms will convert the continuous
signal using the image’s minimum and maximum values as the limit, whereas
others use the 99% or 95% interval. The result is that the same digital number
in different images may have very different actual radiometric value, and the
value is only true relative to the rest of the pixel values in its own image. Hence,
change detection methods that involve direct pixel-by-pixel spectral comparison
could be misleading, whereas change detection methods that are based on ratios
among bands within its own image are more reliable. By the same token, it is
expected that comparing the textural difference between two images, instead of
pixel-by-pixel spectral comparison, would yield more accurate change analysis.

13.4.2 A Classification of Change Detection Methods

New methods for change detection using remote sensing imagery have been con-
tinuously reported in the literature, and it is not the scope of this chapter to exhaust
the list and provide evaluation of each approach. However, the following framework
may be useful to classify the various change detection methods. Figure 13.4 shows
how the various commonly used methods are placed in this framework.

Fig. 13.4 A framework for classifying change detection methods
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Change detection methods can be differentiated into two main groups, depend-
ing on whether the method requires classification before or after the changes are
detected. As shown in Fig. 13.4, the first group of change detection methods, which
is also the most traditional approach to change detection, will first classify individ-
ual images of two dates using a statistical maximum likelihood classifier and then
compare the classified images to provide an assessment of change. This traditional
approach generally requires extensive human supervision for classifying the images.
However, new image classification methods, other than the traditional maximum
likelihood classifier, can be applied to increase accuracy and efficiency. These meth-
ods include, for example, fuzzy classification, artificial intelligence based classifier,
Bayesian approach, and even the textural approach (Moller-Jensen, 1990; Gopal
and Woodcock, 1996; Jensen, 2005; Gong, 2006). Recently, object-based image
segmentation and classification has gained increasing attention, with new software
such as eCognition (Definiens, 2004; Benz et al., 2004) and Feature Analyst (Visual
Learning Systems, Inc.) made available to general users. These methods use both
the spectral (or color) information and various spatial metrics to define homogenous
areas (called objects). Despite its potential, this group of change detection methods
is not germane to rapid change detection, as extensive human supervision is needed
to pre-classify the images.

The second group of change detection methods does not require images to be
pre-classified. Image differencing, change vector method, and multidate compari-
son methods (Fig. 13.4 – box d) can be applied directly to original pixel values or
indirectly to modified values from the spectral bands (e.g., band ratios, principal
components, chi-squared transformed, and texture transformed) (Fig. 13.4 – boxes
b and c). The main advantage of this group of methods is that pre-classification is
not necessary until significant changes are detected, hence avoiding the tedious clas-
sification process at the beginning. The problem remains to be that of determining
the threshold value at which the difference between the two images is considered
significant.

Continuous monitoring of land cover/land use and rapid identification of their
changes is crucial to providing timely decision support and risk assessment es-
pecially during extreme events (e.g., hurricanes, earthquakes, forest fires, terrorist
attacks, disease spread). There is a need to develop efficient and reliable change de-
tection methods that can be automated, easy to use, and applicable to different land
covers observed by different sensors at different scales, times, and places. Although
it is difficult to achieve fully automated change detection, we expect that an inte-
grated approach that incorporates both textural and spectral indices could alleviate
some of the existing change detection problems for two reasons (which have also
been elaborated in Section 13.2.2). First, the texture measures that have property
5 and 6 (e.g., fractals, lacunarity, wavelets, and spatial autocorrelation statistics) can
be applied directly to pre-classified images without the need to go through the image
classification process, thereby reducing the need for extensive human supervision
upfront. Second, since the spatial/texture methods measure the spatial variations
across the image instead of comparing brightness values on a pixel by pixel basis,
they are more likely to reflect dominant changes rather than spurious changes that
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occur due to noise, clouds, or illumination differences. However, whether a com-
bination of these methods can be successfully applied to reliably characterize land
covers and identify changes remains to be studied and is part of our ongoing re-
search.

13.5 Change Detection Using the Textural Approach:
An Example

In this section, we demonstrate the use of textural measures only (not including
spectral information) for change detection in New Orleans before and after Hurricane
Katrina. The utility of fractal dimension and spatial autocorrelation statistics in this
capacity is compared. Hurricane Katrina hit New Orleans on August 29, 2005. Two
Landsat-TM images, dated November 7, 2004 and September 7, 2005, were obtained
from the US Geological Survey/National Wetlands Research Center at Louisiana
State University and the LSU FEMA GIS Store project (http://www.cadgis.lsu.edu).
Although not exactly the same anniversary dates, these two images are the best
available so far for change detection. Both images have already been registered and
geometrically rectified with a pixel resolution of 28.5 m prior to this study. For this
study, we created a subset of 512×512 pixels from both images. Figure 13.5a and
b display the subsets using band 4 (near-infrared band), which is the most effec-
tive band in discriminating water and non-water features. The subsets were mainly
confined to the Orleans Parish, with a small part of the Lower Ninth Ward in St.
Bernard Parish shown at the east edge of the image (east of the Industrial Canal
breach). The post-Katrina image (Fig. 13.5b) clearly shows that most of New Or-
leans was flooded 9 days after Katrina, except in the natural levee area along the
Mississippi River. The northwest corner of the image is Lake Pontchartrain, where
significant storm surge has destroyed properties around the Lake. The three levee
breaches at Industrial Canal, the 17th Street Canal, and the London Avenue Canal
are also marked in Fig. 13.5b.

Both Landsat-TM images used in this example have previously been normal-
ized to minimize sensor calibration offsets and differences in atmospheric effects.
However, other factors may change the pixel values even though there are no real
changes on the ground. A random check on the pixels at the northwest corner (Lake
Pontchartrain) shows that a fair amount of difference in pixel values occurred in
the same location between the two time periods (e.g., 32 vs 72 in pre- and post-
Katrina image, respectively), even though no significant real change is expected
at this location. This shows that change detection using the original spectral value
pixel-by-pixel comparison approach alone could be problematic, especially regard-
ing the determination of the threshold value to identify real changes.

Using ICAMS, we computed the local fractal dimension using the modified trian-
gular prism algorithm and the local Moran’s I for each image. For the local fractal
dimension method, the following parameters were used: moving window size of
17× 17, step size of 5, stretch option, and arithmetic progression. For Morans’ I,
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Fig. 13.5 (a and b) Display of pre-Katrina (November 7, 2004) and post-Katrina (September 7,
2005) Landsat-TM images using band 4. (c) and (d) are Moran’s I transformed pre- and post-
images; (e) and (f) are fractal-transformed pre- and post-images

the only parameter needed to be input was the moving window size, which was also
set to 17×17. The 17×17 window was chosen because a previous study on the im-
pacts of Hurricane Hugo along the South Carolina’s coast by Kulkarni (2004) found
that this window size was the best in representing land cover features. Figure 13.5c–f
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Table 13.2 Summary statistics of band 4 for pre- and post-Katrina Landsat – TM images

Original Fractal-transformed Moran’s I-transformed
Pre Post Diff. Pre Post Diff. Pre Post Diff.

Min 24.00 1.00 −250.00 1.86 1.75 −1.23 −0.07 −0.05 −0.63
Max 255.00 255.00 96.00 4.11 4.13 1.15 0.97 0.97 0.63
Mean 161.50 45.02 −116.49 2.77 2.74 −0.03 0.61 0.66 0.05
SD 52.28 25.51 44.95 0.22 0.21 0.15 0.17 0.14 0.11
CV 0.32 0.57 −0.38 0.08 0.08 5.00 0.28 0.21 2.20

SD – standard deviation; CV – coefficient of variation (= SD/mean); difference image =
(post – pre)

show the Moran’s I-transformed and the fractal-transformed images. Brighter pixels
refer to higher values in fractal dimension or Moran’s I. It should be stressed that
since fractal dimension and Moran’s I have an inverse relationship, features with
low fractal dimension, such as the Mississippi River (darker pixels in the fractal-
transformed images), will be shown as brighter pixels in the Moran’s I transformed
images.

The difference images were computed by subtracting the pre-Katrina image
from the post-Katrina image, and the summary statistics of all images are listed in
Table 13.2. In general, the post-image had lower spectral values than the pre-image,
and the mean difference between the two images (band 4) was as high as −116.49.
This is expected as most of the study area was flooded after Katrina, resulting in
lower spectral reflectance value in the near-infrared band. The fractal-transformed
summary statistics show that the mean spatial complexity, as represented by fractal
dimension, slightly decreased from 2.77 to 2.74. Conversely, the mean Moran’s I
increased from 0.61 to 0.66, which also indicates that the overall spatial complexity
decreased slightly for the post-image.

The fractal and Moran difference images were first mapped in a continuous mode
(with a two-standard deviation stretch) using ICAMS. The fractal difference image
(Fig. 13.6a) shows that increases in fractal dimension (positive changes), as rep-
resented by brighter pixels, occurred in areas close to the Industrial Canal (east
side of the image) and the areas between the 17th Street Canal and London Avenue
Canal (middle part of the image). Areas with decrease in fractal dimension (negative
changes) are represented by darker pixels and they scattered over the image. With a
17×17 window size, the general features of the study area, such as the Mississippi
River, can still be recognized. The Moran’s I difference image (Fig. 13.6b) shows
the same pattern; the darkest pixels represented the highest decrease in spatial auto-
correlation, implying an increase in spatial complexity. It can be observed from the
two difference images that the location of the darkest pixels in the Moran’s I dif-
ference image generally coincided with the brightest pixels in the fractal different
image, and vice versa.

The difference images can also be mapped using standard deviation unit as class
intervals in ICAMS. One of the display options is to map the changes in three
class intervals using two-standard deviations as class boundaries. The first inter-
val, which contains pixels that have highest positive changes in spatial complexity
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Fig. 13.6 Display of the fractal-difference and Moran-difference images in a continuous mode (a)
and (b) and three-class mode (c) and (d). In (c) and (d), the brightest pixels indicate the highest
positive changes in spatial complexity (>2 standard deviations), the darkest pixels indicate high-
est negative changes (<−2 standard deviations), and the gray pixels are values in between. Both
brightest and darkest pixels should be of interest, which may point to areas that are most “affected”

(>2SD), is shaded as the brightest. The second class, which is in middle gray,
is for pixels that have difference values falling between ±2 standard deviations.
The third class, which has the darkest shade, is for pixels that have the great-
est negative changes in spatial complexity (<−2SD). Using this mapping method,
both the brightest and the darkest pixels in the images (Fig. 13c and d) signal the
greatest changes and hence attention is most warranted for these pixels and their
surrounding pixels. This method should guide resources to the most “affected”
areas, and in this case, greatest change in spatial complexity in both positive and
negative directions.

Figure 13.6d, the fractal difference image, shows only a few concentrated spots
belonging to the first and third classes (the brightest and darkest pixels), and they
were generally located close to the three canal breach areas. The rest of the second-
class pixels were scattered throughout the image. For the Moran difference image
(Fig. 13.6c), because of its inverse relationship with fractal dimension (i.e., the
higher the fractal dimension, the lower the Moran’s I value), one should expect that
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the brightest spot in the fractal difference image would coincide with the darkest
spot in the Moran’s I difference image. A visual comparison between the two images
(Fig. 13.6c and d) shows that this is generally true, with the Moran’s I difference
image portraying a wider area of brightest and darkest spots than the fractal dif-
ference image. Based on the Moran’s I difference image (Fig. 13.6c), the greatest
decrease in Moran’s I values (greatest increase in spatial complexity – darkest pix-
els) were also found near the three canal breach areas. Areas that showed greatest
increase in Moran’s I values (greatest decrease in spatial complexity – brightest
pixels) were scattered in the mid city and the area surrounding Lake Pontchartrain.

In summary, this example shows that the textural approach alone could be useful
in pinpointing the areas that need the most attention. With additional information
layers, these maps could serve as a useful guide to focus our efforts in detecting
largest and meaningful changes in a rapid and reliable manner. It is expected that
combining spectral and spatial layers, as well as combining different textural mea-
sures, will increase the accuracy of this approach. Other mapping methods could
also be employed to further enhance the visualization of these changes.

13.6 Conclusions

Efficient methods for rapid monitoring of land cover/land use and their changes
through remote sensing imagery are urgently needed to provide timely decision
support and risk assessment especially during extreme events (e.g., terrorist attacks,
hurricanes, forest fires, earth quakes, disease spread). Although there is a huge liter-
ature on land cover classification and change detection, we are still far from being
able to automate these tasks via remote sensing and GIS. The high variability of
ground conditions as manifested in individual as well as time-series imagery makes
it very difficult to generalize and automate. The search for useful approaches and
methods for rapid land cover identification and change detection remains a very
challenging task.

This chapter introduced the use of textural and spatial metrics as a promising
approach to automated land cover/land use classification and change detection. We
identified in this chapter the major criteria for selecting textural measures and then
illustrated through several examples from previous studies how textural metrics, in
combination with the original spectral bands, have greatly improved the classifica-
tion accuracy. For change detection analysis, we developed a framework for clas-
sifying the numerous change detection approaches. Then, using a recent example
of evaluating the impacts of Hurricane Katrina on New Orleans land cover change,
we illustrated the use of local fractal dimension and local Moran’s I to detect the
largest changes that might need further attention. More research is needed to deter-
mine the effectiveness of the various textural metrics with different types of remote
sensing imagery, different scales and resolutions, different land cover features, and
different environments. These issues are currently being examined in our ongoing
research.
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