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Abstract Monitoring Networks topology and resolutions (spatial and dimensional/
fractal) influence the ability of networks to detect spatial phenomena. In the present
paper we consider several fundamental questions related to the clustering of moni-
toring networks and their ability (1) to detect spatial phenomena and (2) to reproduce
spatial patterns using geostatistical simulations. Artificial monitoring networks with
known level of clustering characterized by their fractal dimension are sampled on
a same reference image with known spatial structure. Subsequently, these networks
are used to interpolate using Sequential Gaussian Simulation. Resulting images are
compared with several methods. Clustering of networks does not harm global detec-
tion of spatial structures (i.e., definition of correct variogram model), but influence
heavily the uncertainty related to these maps, especially in tasks of detection of
areas-at-risk.

1 Introduction

Design of monitoring networks (MN) is an essential task for correct pattern detection
and modelling of environmental phenomena. Non-homogeneous spatial distribution
(clustering) of measurement points in space can lead to an over- or underestimation
of global parameters such as mean or variance and to nonrepresentative probabil-
ity distribution functions, which are crucial for conditional stochastic simulations
(Deutsch and Journel 1997, Kanevski and Maignan 2004).

Monitoring networks design and optimization have been discussed by several
authors (see Christakos 1992, Markus et al. 1999, Caeiro et al. 2003). Traditional
spatial design techniques have been recently reviewed in a exhaustive way by De
Gruijter et al. (2006).

Most of the studies on MN clustering have been dedicated to the consequences
of clustering on distributions (without considering spatial aspect of data) while very
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few of them studied two-point declustering in experimental variogram calculations
(Richmond 2002). The present study is a first attempt to characterise the effect of
clustering on spatial pattern detection: how clustered networks affect spatial pre-
dictions and how the potential losses can be described in terms of spatial patterns.
In general, MN can be characterised by spatial and dimensional resolution. Dimen-
sional (fractal) resolution characterises the dimension of the phenomena which can
be detected by a particular network: in 2 dimensional space homogeneous networks
(no clusters) can detect 2 dimensional phenomena (patterns). Clustered monitoring
networks have a dimensional resolution df smaller than 2 and are not usually able to
detect phenomena having dimension (2-df) (Lovejoy et al. 1986). Therefore, a loss
of information can occurr, which will cause problems in spatial pattern reconstruc-
tion by using interpolations or simulations.

This paper presents synthetic example of simulated spatial patterns sampled with
monitoring networks having different level of clustering and different dimensional
resolutions.

Section 2 introduces basic notions about dimensional resolution and validity do-
mains that are necessary to characterize the level of clustering of real monitoring
networks. Section 3 focuses on the methodology used for the study that is performed
in Section 4.

2 Quantitative Description of Network Clustering

There are different measures to quantify MN clustering: topological, statistical and
fractal. Each measure characterises different aspects of clustering such as spatial
resolution, dimensional resolution or statistical properties of clustering. In gen-
eral, these measures are connected to each other. In the present study, monitor-
ing networks with dimensional resolutions characterised by fractal dimensions are
considered.

2.1 Fractal Dimension of Monitoring Network

Dimensional resolution (ability to detect spatial phenomena) was introduced for
characterization of monitoring networks by Lovejoy et al. (1986). By fractals we
mean statistically self-similar clustered point objects, whose structure is reproduced
throughout the scales and whose dimension is usually not an integer.

In the present paper, fractal dimension df is used as a general indicator of clus-
tering, where a dimension lower than 2 can be interpreted as the appearance of
clusters at a certain spatial scale. Here, df is computed with the box-counting method
(Falconer 1990, Peitgen et al. 1992): the area under study is covered by a regular
grid of N cells, and the number of cells necessary to cover the whole network, S(L),
is computed. Then, the size of boxes L is gradually decreased (accordingly, the
number of boxes N is increased). The box-counting operation is repeated m times.
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For the fractally distributed measurement points, the number of boxes necessary to
cover the network points follows a power-law

S(L) ∼ L−d f (1)

The fractal dimension of the network df can be computed as the slope of the regres-
sion line after log-transformation of both sides of Eq. (1).

The equations presented above do not take into account real-life situations where
different geographical constrains and finite number of measurement points are im-
portant. A recent paper by the same authors (Tuia and Kanevski 2006) has shown
that a good way to quantify real monitoring networks is to compare them with a ref-
erence network generated within the same domains and having predefined fractality.

2.2 Validity Domains and Fractality of Monitoring Networks

Clustering of networks causes incorrect global estimations of mean and variance of
the probability distribution function and erroneous spatial predictions over a regu-
lar two dimensional space. In geostatistics, a common practice is to interpolate the
variable over the whole two-dimensional surface (often a square) and then to clip
the results over the area of interest, e.g., with a GIS. These areas of interest, called
validity domains (VD), spatially constrain the predictive space. In most cases, fractal
dimension of such regions is less than two. In general, VD are related to geograph-
ical, political or economical constraints such as political boundaries or topographic
barriers. In such cases, even homogeneous monitoring networks have fractal dimen-
sion smaller than two. Therefore, in order to quantify clustering of networks within
VD, it was proposed to generate reference networks and to compare them with a
real measurement network (Kanevski and Maignan 2004, Tuia and Kanevski 2006).
Deviations between these networks (real and reference) were used to quantify the
degree of clustering. Interpolation techniques have then been applied only on the
area of interest, taking into account the irregular shape of the VD.

In order to analyze the effect of clustering on spatial predictions (reconstruction
of spatial patterns), a region characterized by heavy geographical constraints has
been chosen: the Swiss canton of Graubünden, which is characterized by a validity
domain related to its mountainous landscape and to the organization of its inhabited
areas into small settlements. The real monitoring network corresponds to indoor
radon data measurements network. According to the methodology developed, three
MN have been used for the current study (Fig. 1).

A. Raw network: a real MN (RMN), related to samples taken during an indoor
Radon sampling campaign. The network is composed of N = 3258 unique mea-
surements. The RMN is characterized by a high level of clustering correspond-
ing to the fractal dimension df = 1.38; Two artificial homogeneous monitoring
networks (GR network and Pop network) with the same number of sampling
points generated within a validity domain of interest:
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Fig. 1 Monitoring network used for the analysis. (A) RMN; (B) GR network; (C) Pop network

B. GR network: 3258 samples homogeneously distributed within the political
boundaries of the canton of Graubünden. This VD corresponds to administrative
geographical constraints. The dimension df of the network is 1.79, where the
loss of dimensionality is related to complex boundary effects;

C. Pop network: 3258 samples homogeneously distributed within the limits of the
populated regions of the canton of Graubünden. This VD corresponds to geo-
graphical constraints: the use of populated regions as VD avoids the presence of
samples on mountainous regions and provides a distance-related barrier in terms
of covariance. The dimension df of this network is 1.46.

Thus, the number of observations is constant throughout the networks, and the re-
sults should be a function of the network‘s design, i.e., the level of clustering, as
defined by the fractal dimension.

In order to understand and to characterise spatial patterns (and corresponding
uncertainties) detected by different networks, a reference model (complete image,
CI) was simulated. Then, the CI model was sampled with different MN, which are
described above. Finally, conditional simulations were carried out using sampled
data and the results were compared with the CI.
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3 Simulation of Spatial Patterns

3.1 Sequential Gaussian Simulations of a Reference Pattern

The reference patterns CI have been generated by a nonconditional simulation of a
Gaussian random field Y (u) with a given covariance CY(h) by using Geostat Office
(Kanevski and Maignan 2004):

CY (h) =
{

1 − 3
2

|h|
a − 1

2
|h|3
a3 h ≤ a

1 h > a
(2)

Only the results on one reference image called SIM1 and generated according to the
isotropic spherical variogram with 20 km correlation range are given (Fig. 2).

Once the reference SIM1 image was generated over the coordinates of Graubün-
den, it was sampled using three monitoring networks described above. These three
artificial “measurement campaigns” were used to reconstruct the original pattern
with Sequential Gaussian Simulation algorithm and to make the analysis and com-
parison between the results. The reconstruction of the patterns has been carried out
with complete (including variogram analysis and modelling) conditional SGS based
on the three sampling campaigns. The use of conditional SGS gives the possibility
not only to compare generated patterns but also to quantify uncertainties and the
variability between them.

Fig. 2 Artificial phenomenon SIM1 generated by nonconditional simulation over the coordinates
of Graubünden
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3.2 Tools to Evaluate the Detection of Patterns

Several tools have been applied in order to evaluate the efficiency of pattern
reconstruction.

3.2.1 E-type Maps

Conditional SGS provides many realizations of the random field Z(u) governing the
phenomenon. The first tool to evaluate the quality of the simulation is the compari-
son of the maps obtained by computation of the mean value for every simulated node
over the M realizations with SIM1. A correct reconstruction of the SIM1 image by
the simulations shows the ability of a clustered network to reproduce the underlying
spatial structures described, for example, by the γ model.

3.2.2 Probability Isolines

Then, the generation of many realizations of Z (u) allows post-processing analysis,
such as the elaboration of maps of probability to exceed a given threshold g:

P(X ≥ g) = F(g) (3)

This procedure allows drawing the isolines corresponding to the same probability to
exceed the threshold g. The SIM1 being an artificial reference image, the threshold
is defined a priori for the analysis and is not related to a real level of risk.

3.2.3 Spatial Metrics

Finally, the analysis and comparison of the patterns generated by the conditional
SGS cannot be made only by simple visual comparison. Several quantitative pattern
description metrics coming from landscape ecology (O‘Neill et al. 1988, Turner
et al. 2001) have been applied on the risk maps discussed above.

3.3 Percentage of Landscape Covered (PLC)

This metric quantifies the percentage of landscape occupied by the patterns. The
total area of the pattern is divided by the total area of the landscape (Validity Domain
of the political boundaries).

3.4 Land Shape Index (LSI)

The LSI is an indicator of dispersion of a pattern formed by k disconnected patches.
It is computed by dividing the total pattern edge length by the edge length of the
smallest patch:
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LSI =

k∑
i=1

ei

min ei
(4)

This metric provides a standardized measurement of patches aggregation: the more
the LSI increases, the more the patches are disaggregated (McGarigal and Marks
1994).

3.5 Concentration-dependent Fractal Dimension (CDFD, df(Zth))

CDFD can be estimated with functional box-counting method over simulated nodes
exceeding a given threshold Zth for every level of probability tested. The CDFD
curve is characterised by the dependence df (Zth). If the probability level influences
the shape of the pattern, then the CDFD curve should decrease with an increase
of the level. If the pattern shape is stable, the curve should remain constant or de-
crease slowly.

4 Discussion

4.1 E-type Maps: Visual Comparison of Results

Fifty stochastic realisations were generated on three sampling networks of the same
SIM1 reference phenomenon. In Fig. 3, E-type maps of the realisations are shown.

At a first glance, the networks can reproduce correctly the structure of the phe-
nomenon, i.e., the variogram model. The dependence of the SGS mean results on
the clustering of MN is visible by an effect of smoothing of the overall pattern. The
GR network gives the best visual result, while the other networks, more clustered,
are characterized by smoothed images.

4.2 Probability Isolines: Risk Maps to Draw Pattern Detection

For the SIM1 random field, the value of 1 has been defined as an action threshold
for environmental protection (this choice is arbitrary). Then, the SGS simulations
allow to draw maps of probability of exceeding that threshold. Figure 4 shows the
probability maps related to every set of simulations considered.

The different probability maps studied showed that clustering of the network has
a tendency to dilate the regions above a threshold for high uncertainty (i.e., small
probabilities). The GR network shows small differences between the regions over
the threshold for P(X ≥ 1) = 0.7 and P(X ≥ 1) = 0.5, while the Pop, and
more clearly the Raw, show increasing differences of patterns between the maps.
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The clustering of networks increases differences between the simulations of Z(u)
and destabilizes the shape of the surface at risk for a given probability level.

Comparing only the isolines for probabilities 0.7 and 0.9 (Fig. 5), it can be seen
that the clustering of the network leads to a progressive loss of detection of the shape
of the area at risk: the GR network allows a correct detection of pattern for small
uncertainty levels, while the Pop and Raw networks lose detection on peripheral
areas and start having false detections of the phenomenon in areas which are, in
reality, below the defined threshold.

4.3 Spatial Metrics

The analysis of the spatial metrics discussed above (Fig. 6) confirmed the observa-
tions made following the analysis of probability isolines maps. On one hand, the GR
network keeps a higher connectivity level through the probability levels, showed by
the slow decrease of PLC (that shows the consistency of small uncertainty levels)
and the stability of the CDFD index, which can be explained by the stability of
patches keeping their shape and connectivity. On the other hand, clustered networks
(Raw and Pop) lead to a faster decrease of PLC, showing a higher uncertainty de-
pending on the probability considered. The CDFD index shows a loss of connectiv-
ity of the pattern for small uncertainty (for F(1) ≥ 0.8) which can even be observed
on the map (Fig. 5) by the reduction of the pattern to small patches localized on
areas related to high density of samples.

LSI shows the level of aggregation of pattern: the real situation (SIM1) is heav-
ily fragmented, reflecting the complexity of Z(u): the GR network can reproduce
partially this disaggregation, which is completely lost with the clustered networks.
There are characterized by small values of LSI, i.e., aggregated and smoothed pat-
terns for every probability level.

5 Conclusion

Clustering of monitoring networks has a significant impact on spatial prediction
of random fields. Heavily clustered sampling schemes can decrease the quality of
definition of areas at risk for environmental and pollution problems. In this study it
was shown that even clustered networks can detect correctly the variogram model,
but that the realization of the random field cannot provide a correct definition of
areas at risk, especially if small uncertainty levels are required.

Patterns created by clustered networks are heavily dependent on the probability
level considered. For high levels connectivity is lost, as it is shown by the CDFD
analysis. Risk maps can only detect hot spots related to the location of samples.

This study has only used measures of pattern detection based on visual compar-
ison and spatial metrics, which do not analyze patterns in terms of shape or correct
reconstruction of the random field. In order to better compare generated patterns,
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Probability levels

Probability levels

CDFD

Fig. 6 Spatial metrics. (Top left) Percentage of landscape covered; (Top right) LSI; (bottom)
CDFD index

the spatial metrics are being calculated for every independent simulation within our
current research. In this way, the point-to-point relationships are preserved and the
patterns are coherent for comparison of independent simulations. Approaches based
on multiple points statistics and mathematical morphology may be also useful in
order to characterize patterns in relation to their shapes and localizations.

Another important issue concerns the fractal dimension used to characterize the
clustering of the MN: even if df is often used as a global measure of clustering,
one must remember that different networks can show the same fractal dimension.
The analysis of the robustness of df as index of clustering in topologically different
situations is central in the process of validation of the index.
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