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Abstract Spartan Spatial Random Fields (SSRFs) were recently proposed (Hristop-
ulos 2003) as a new method for modelling spatial dependence. This paper focuses
on (i) the inference of Gaussian SSRF model parameters from spatial data using
kernel methods and (ii) the identification of geometric anisotropy by means of the
covariance tensor identity (CTI) method (Hristopulos 2002). The methods presented
are illustrated with the help of synthetic data and a real set of elevation data. Kriging
predictions obtained with the Spartan covariance estimator are compared to those
obtained with standard estimators. Based on these results, the Spartan estimator
provides a useful alterative to parametric covariance estimators, which it may out-
perform in certain cases.

1 Introduction

Spatial interpolation has many applications in the fields of the earth and environ-
mental sciences. The widely used methodology is based on the kriging algorithm,
which employs the spatial continuity structure encoded in the semivariogram or the
covariance function. Estimation of the latter from the data is often conducted under
the Gaussian and isotropic assumptions. Reliable estimation of the spatial structure
is crucial to producing accurate kriging maps.

Here we investigate the problem of estimating the spatial continuity for both
isotropic and anisotropic processes, in the framework of Spartan Spatial Random
Fields (Hristopulos 2003). The Spartan Spatial Random Fields (SSRFs) aim to pro-
vide a versatile, formally and computationally efficient approach for modelling spatial
dependence. The SSRFs possess a Gibbs joint probability density function (pdf) that
is expressed in terms of physically motivated interactions between the fluctuations,
i.e., f [Xλ(s)] = Z−1 exp

{−H [Xλ(s)]
}
, where Z is a normalization factor and the

energy functional H embodies the interactions. The following functional will be used
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H = 1

2η0ξd

∫
ds
[{

Xλ(s) − m X(s)
}2 + η1ξ

2
{∇Xλ(s)

}2 + ξ4
{∇2 Xλ(s)

}2
]
,

(1)

where m X (s) = E [Xλ(s)]. Equation (1) provides a class of flexible parametric
models derived from the same functional. The three terms in the functional can
be viewed as physical constraints related to the square of the fluctuations, as well
as their gradient and curvature. Such terms can be either physically motivated or
simply used as abstract constraints that lead to flexible covariance models.

The SSRF parameters include η0 (the scale parameter), η1 (the shape parameter),
ξ (the characteristic length) and kc(the frequency cutoff). The isotropic Spartan co-
variance spectral density is given by the following equation, where δ|| k ||≤kc = 1 for
|| k || ≤ kc and 0 for || k || > kc:

G̃λ(k) = η0ξ
dδ‖k‖≤kc

/(
1 + η1ξ

2 ‖k‖2 + ξ4 ‖k‖4). (2)

Permissibility conditions follow simply from requiring non-negative values of the
spectral density (Hristopulos 2003; Hristopulos & Elogne 2006).

The above covariance spectral density corresponds to differentiable random
fields (RFs) for finite kc and non-differentiable ones for infinite kc (Hristopulos &
Elogne 2006). An important issue for practitioners is the ability to differentiate be-
tween covariance models (Gorsich & Genton 2000). In the Spartan framework one
can distinguish between models based on the values of the SSRF parameters. SSRF
model inference is computationally efficient, because it requires the estimation of a
small set of parameters (Hristopulos 2003).

This paper is organized as follows: Section 2 focuses on SSRF parameter infer-
ence using kernel methods. In Section 3, identification of anisotropic covariance
models using the covariance tensor identity method is reviewed, and extensions
based on kernel methods are introduced. Section 4 is devoted to the numerical inves-
tigations of the proposed methods using simulated data sets. Section 5 presents an
application of the methods to real data. Finally, conclusions and some open issues
for further research are presented in Section 6.

2 SSRF Parameter Inference

Parameter inference is based on matching sample (experimental) estimates for the
variance as well as generalized gradient and curvature constraints with respective
values of stochastic (model) constraints (Hristopulos 2003; Elogne & Hristopulos,
2006b). The stochastic constraints are as follows:

E [S0] = Gλ(0), E [S1] = 2d Fλ(a1)
/

a2
1, (3)

E [S2] =
{

8d2 Fλ(a2) − 4d(d − 1)Fλ(a2

√
2) − 2d Fλ(2a2)

}/
a4

2, (4)
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where d is the spatial dimension, Fλ the semivariogram, and a1, a2 isotropic spa-
tial increments. Using the spectral representation of isotropic covariance models,
the stochastic constraints are expressed in terms of one-dimensional integrals that
involve the unknown SSRF parameters.

In order to define corresponding sample constraints, a continuous, isotropic and
compactly supported kernelK and two bandwidth parameters h1 and h2 are intro-
duced. Kernel averages of the field quantities are denoted as follows:

〈
X2

i, j

〉
h

≡
∑

i �= j

{
X(si) − X(s j )

}2
K ((si − s j )/h)

/
∑

i �= j

K ((si − s j)/h). (5)

If μX is the sample mean, the sample constraints are given by

S0 = 1
n

∑
i

{
X(si) − μX

}2
, S1 = d

〈
X2

i, j

〉

h1

/
a2

1, (6)

S2 =
{

4d2μ1
〈
X2

i, j

〉
h2

− 2d(d − 1)μ2
〈
X2

i, j

〉
h2

√
2
− d

〈
X2

i, j

〉
2h2

}/
a4

2 . (7)

The increments a1 and a2 as well as μ1 and μ2, are functions of the sampling loca-
tions, selected so that the sample constraints are asymptotically unbiased estimators
of the stochastic counterparts (Elogne & Hristopulos 2006b).

2.1 Bandwidth Selection

The choice of the bandwidth parameters is a crucial issue. Classical methods are
based of minimizing some criterion (e.g., mean square error) which depends on
unknown characteristics of the process, such as the true semivariogram model and
its second derivative (Garcia-Soidan et al. 2004). In the Spartan framework, the

bandwidths are determined from the consistency principle ap =
〈∥∥si − s j

∥∥2p
〉1/2p

h p

,

for p = 1, 2 (Elogne & Hristopulos 2006b). Under mild regularity conditions on the

sampling locations and the kernel, it is proved that ap = h p (m K ,p+1/m K ,1)
1/2p +

o(h p) almost surely for p = 1, 2 in d= 2, where m K , j represent moments of the
kernel function. Estimates of the increments a1 and a2 are derived from the neighbor
distance distribution of the sampling network.

2.2 Constraints Fitting

Given the nonlinear dependence of the stochastic constraints, i.e., equations (6) and
(7), on the SSRF parameters, the latter need to be determined numerically by solving a
system of equations that fit the stochastic constraints to the sample constraints, given
by equations (6) and (7). This is accomplished by minimizing a nonlinear distance
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functional �, which measures the deviation between the sample and the stochastic
constraints. The initial form of the functional given in (Hristopulos 2003) assumed a
fixed cutoff frequency.The distance functional has been recently extended (Elogne &
Hristopulos 2006b) to allow for direct inference of the cutoff from the data.

The minimization can be implemented using standard optimization algorithms,
(e.g., the Nelder-Mead simplex search method). In the cases explored so far the
convergence is very fast (for a sample of 100 locations approximately two seconds
on a laptop with a Celeron M processor at 1.1GHz and 256Mb RAM, running
Matlab under Windows XP; see also Hristopulos 2003). The initial values of the
SSRF parameters, except for the shape coefficient, are not a crucial factor in the
optimization results. In our experience, all the “solutions” to which the optimiza-
tion converges lead to similar spatial dependence (covariance function), although
sometimes different covariance estimators are obtained, some of which correspond
to local minima of � (also see Section 4.2).

3 Anisotropy Identification

Spatial data often exhibit continuity properties that depend on the direction in space.
Accurate kriging maps require a reliable description of the anisotropic model. Clas-
sical approaches for anisotropy estimation are based mostly on empirical methods
(Goovaerts 1997). In the Spartan framework, it is possible to formulate the energy
functional for general anisotropic dependence. However, this modification increases
the number of model parameters: describing geometric anisotropy in two dimen-
sions requires an anisotropy ratio ρ and an orientation angle φ. If these parameters
are known, isotropic coordinate transformations can be applied to obtain a new sys-
tem, in which the spatial distribution is statistically isotropic. The isotropic SSRF
model can then be applied in the new system.

Systematic, unsupervised identification of anisotropy parameters, especially if it
enables detection of sudden changes in the spatial distribution, is an important aspect
of an automated mapping system for environmental monitoring and emergencies
warning systems. The covariance tensor identity (CTI) approach allows estimating
the anisotropic parameters (Hristopulos 2002), and in certain cases it provides ex-
plicit solutions for the anisotropic parameters (Hristopulos 2006). For second-order
differentiable random fields, if Q11, Q22 and Q12 denote the elements of the sample
gradient tensor Qi j = 1

M

∑M
m=1 �i X(sm) � j X(sm), it follows that

Q11 = αx

{
ρ2 [sin φ]2 + [cosφ]2

}
, Q22 = αx

{
ρ2 [cosφ]2 + [sin φ]2

}

Q12 = αx
(
1 − ρ2) sin φ cosφ, (8)

where the coefficient αx is related to the covariance and is independent of ρ and φ.
Using the scaled gradient moments Zg = Q22/Q11 and Z f = Q12/Q11 eliminates
αx, and the anisotropic parameter estimates are given by the following equations:
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φ̂± = tan−1

(
Zg − 1 ± √

Δ
2Z f

)
and ρ̂± =

⎧
⎨

⎩
2
(

Zg − 2Z2
f − 1 ± √

Δ
)

(
Zg − 1 ± √

Δ
) (

Zg + 1 ± √
Δ
)

⎫
⎬

⎭

1/2

,

(9)

where Δ = (Zg − 1)2 +4Z 2
f and the + (−) signs correspond to equivalent solutions

with ρ greater (smaller) than unity respectively.
In practice, finite differences are used to estimate the gradient tensor. For an

increment b j in the direction−→ej , we define the following quantities in terms of the
semivariogram F : q11 = F

(
b1

−→e1
)
, q22 = F

(
b2

−→e2
)

and q12 = F
(
b1

−→e1 − b2
−→e2
)
.

We introduce two lag tolerances τ1 and τ2, a continuous, and compactly supported
kernel K1 that selects near neighbors in specified directions, and two smoothing
parameters h1 and h2 (Elogne & Hristopulos 2006a). For conciseness we define
xi j = xi − x j , yi j = yi − y j . The estimators qi j of the qi j are defined as follows:

q11 =
∑

i �= j K1 (xi j/h1) δ|yi j |≤τ1
X2

i j∑
i �= j K1 (xi j/h1) δ|yi j |≤τ1

, q22 =
∑

i �= j K1 (yi j/h2) δ|xi j |≤τ2
X2

i j∑
i �= j K1 (yi j/h2) δ|xi j |≤τ2

,

q12 =
∑

i �= j K1 (xi j/h1) K1 (yi j/h2) δxi j yi j <0 X2
i j∑

i �= j K1 (xi j/h1) K1 (yi j/h2) δxi j yi j <0
. (10)

The increments b j are estimated from kernel averages of the distances between
sampling points in the respective directions. Bandwidths are linearly related to the
increments with coefficients that depend on the kernel moments and follow from
asymptotic analysis. The tolerances are taken proportional to the square root of the
average area divided by the number of sampling points; the proportionality coeffi-
cients are selected to render the tolerance smaller than the bandwidth.

The CTI method allows checking the consistency of the anisotropy estimates
by iterative application to the transformed coordinate system. Asymptotic analysis
supports the statistical accuracy and reliability of the method.

4 Numerical Investigations

In this section numerical simulations are conducted to evaluate the performance
of the methods presented above. The first experiment focuses on the estimation of
isotropic spatial dependence from simulated data using an SSRF model. The second
experiment concerns the identification of geometric anisotropy from a training data
set and cross-validation of the results at a set of prediction points. The triangu-
lar kernel is used in all instances of kernel averaging. Unless otherwise specified,
the ordinary kriging (OK) spatial interpolator is used. The maps are generated on
50 × 50 square grids.
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4.1 First Experiment

One hundred independent samples of size n = 50 from a N(0,1) (Gaussian, zero-
mean, unit variance) RF are simulated using the Cholesky method on a square
of side L = 2. The spherical, ρs( ||r||) = {

1 − 3||r||/2bs + ||r||3/2b3
s

}
δ||r ||≤bs ,

and the exponential, ρe(||r||) = exp (−||r||/be), covariance models are used with
bs =0.5 and be =0.3. For each simulation, the SSRF model parameters are de-
termined as discussed in Section 2. The covariance is calculated by inverting the
spectral density (2), which requires an 1-d numerical integral (Hristopulos 2003).

The box plots of the Spartan covariance estimators are displayed in Figure 1
for ten distance lags, uniformly spaced between 0 and three correlation lengths. As
shown in the plots, the Spartan estimator captures satisfactorily the spatial depen-
dence of non differentiable processes.

4.2 Second Experiment

One sample of size n = 400 from an N(20,10) RF (m X = 25, σX = 10)
is generated on a square domain of length L = 10. The hole-type covariance
ρh( ||r|| ) = bhsin( ||r||/bh)/||r|| (in isotropic coordinates) with bh = 1 and
anisotropic parameters φ = 20◦, ρ = 2 is used. The training set involves ntr = 100
randomly selected points, and the prediction set the remaining n pr = 300 points.

Figure 2 shows a map derived from all the data using nearest-neighbor interpo-
lation as well as the locations of the training and prediction sets.

Fig. 1 Box-plots of the Spartan covariance estimator based on 100 independent samples drawn
from random fields with spherical (a) and exponential (b) covariance functions, plotted against the
theoretical covariances (continuous lines)
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Fig. 2 (Left): Nearest-neighbor interpolation map; (right) Training location set (dots) and predic-
tion location set (crosses)

4.2.1 Model Estimation Under the Isotropic Assumption

The training set data are modeled using the isotropic assumption. The experimental
omnidirectional semivariogram is calculated and fitted with three parametric models
(hole-type, exponential and spherical). In addition, two Spartan covariance estima-
tors are obtained by constraint fitting. Initial values of η1 in the range [−0.5, 1.5]
lead to the Spartan I model (η0 =533.59, η1 =0.56, ξ =0.66, kc =2.41), while
other initial values lead to the Spartan II model (η0 =533.59, η1 =1.80, ξ =0.99,
kc =6.51). The latter corresponds to a local minimum of the distance functional,
while the Spartan I is the global minimum. Figure 3 displays a plot of the empirical
semivariogram, as well as plots of the five estimators. The Spartan I estimator dis-
plays an oscillatory dependence, which is also present in the hole-type model used
to generate the data. In contrast, the Spartan II model approaches monotonically
the sill.

OK predictions are derived at the 300 prediction points and compared with the
“actual” values. Table 1 summarizes the performance of the five models, based on
the mean error (ME), mean absolute error (MAE), root mean square error (RMSE)
and the Pearson correlation coefficient (R2).

Fig. 3 Plots of the
experimental semivariogram
and five different isotropic
estimators
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Table 1 OK cross validation results (isotropic assumption)

ME MAE RMSE R2

Spherical 0.98 2.13 3.38 0.90
Exponential 0.99 2.19 3.43 0.90
Hole-Type 1.04 2.99 4.06 0.87
Spartan I 1.00 1.90 3.28 0.91
Spartan II 0.97 2.00 3.31 0.91

All the estimators tested perform similarly with respect to the measures of the
Table 1. The hole-type estimator is marginally worse. This may be due partly to the
sampling density of the training set not being sufficient to accurately estimate the
anti-correlations of the hole-type model. The Spartan I estimator’s milder oscilla-
tions are in better agreement with the empirical semivariogram than the hole-type
estimator. This is probably due to the flexibility provided by the SSRF shape coef-
ficient. The Spartan I estimator has slightly lower MAE and RMSE values than the
other estimators, but it gives a marginally higher ME. The R2values are practically
the same for all estimators except for the hole-type.

4.2.2 Model Estimation with Anisotropy Detection

Based on the 100 observations of the training set, the anisotropic parameters ob-
tained by the CTI method are φ̂=28.75◦ and ρ̂= 1.71. For comparison, if all 400
locations were used, φ̂=26.59◦ and ρ̂=1.76. The increments are equal to h1 = 2.20,
h2 = 2.08, and the tolerances are set to δ j = h j/4, for j = 1, 2. Transforma-
tion in the isotropic coordinate system follows (applying CTI in this system yields
φ̂ = −21.00◦ and ρ̂=1.17).

The spatial dependence is modeled in the isotropic system. The resulting esti-
mators outperform the isotropic counterparts (see Table 2). The hole-type estimator
is not shown, because it performs considerably worse than the others. In both the
isotropic and anisotropic cases, the Spartan I covariance outperforms the other mod-
els, but its advantage is sharpened after the anisotropic correction.

Figure 4 displays the kriging maps obtained with the Spartan I (plot a) and the
spherical (plot b) estimators. The spherical model underestimates higher values as
evidenced by the ranges of the kriging maps (also compare with Figure 2).

Table 2 OK cross validation results (anisotropic assumption)

ME MAE RMSE R2

Spherical 0.85 1.92 2.90 0.94
Exponential 0.87 1.97 2.94 0.94
Spartan I 0.78 1.64 2.72 0.95
Spartan II 0.82 1.78 2.80 0.95
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Fig. 4 OK maps obtained with (a) Spartan I and (b) spherical covariance models

5 Application to Elevation Data

We consider a set of elevation data (sample size n= 52), available online at http://www.
maths.lancs.ac.uk/∼diggle to illustrate the performance of CTI and the SSRF covari-
ance. CTI application gives ρ̂ =1.03 and φ̂ =33.11◦ with tolerances taken equal to
25% of the increments. Hence, there is no significant anisotropy.

Next, we perform leave-one-out cross-validation using the Spartan covariance,
as well as parametric (spherical, exponential, hole-type, Gaussian and power-law)
estimators. The SSRF method yields a single covariance estimator regardless of the
initial value of η1. The best cross-validation results are obtained with the hole-type
covariance, but a kriging map based on this model is physically unsatisfactory (it
includes negative values). The spherical and the exponential parametric estimators
perform also poorly. The Gaussian and SSRF estimators exhibit the best perfor-
mance as summarized in the Table 3:

The semivariograms (empirical and four estimators) are presented in Fig. 5 (left
plot), with the elevation map obtained using the SSRF estimator (right plot). The
SSRF estimator misses the clearly non-stationary long-range dependence of the
empirical semivariogram, which is either due to mean non-stationarity or long-range
fluctuations. Yet, cross validation produces reasonable errors (e.g., mean absolute
relative error around 6%). This is due to the greater importance of short-range
neighbours in spatial interpolation and the ability of ordinary kriging to capture
slowly-changing non-stationarities of the mean.

Table 3 Leave-one-out cross validation OK performance

ME MAE RMSE MARE RMSRE R2

Gaussian 5.82 53.18 60.85 0.06 0.07 0.39
Spartan 5.17 53.07 60.67 0.06 0.07 0.39
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Fig. 5 Elevation semivariograms (left) and OK map based on the SSRF model (right)

6 Conclusions

We present an overview of the SSRF approach, and we investigate its performance
by means of simulated and real data. The central idea of the SSRF approach is to use
interactions between the field values to model spatial correlations. This viewpoint
leads to methodological departures from classical geostatistics, having implications
for both model inference and spatial prediction. Regarding parameter inference, an
important advantage of the SSRF approach is the ability to determine the spatial
dependence with minimal user involvement.

We also study the application of the CTI method, which is a promising tool for
the automatic detection of anisotropy, using kernels to estimate the sample averages.
The current formulation is based on differentiable covariance models, but extensions
to non-differentiable cases are being investigated.
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