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Abstract The automatic interpolation of environmental monitoring network data
such as air quality or radiation levels in real-time setting poses a number of practi-
cal and theoretical questions. Among the problems found are (i) dealing and com-
municating uncertainty of predictions, (ii) automatic (hyper)parameter estimation,
(iii) monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v)
quality control. In this paper we discuss these issues, in light of the spatial interpo-
lation comparison exercise held in 2004.

1 Introduction

Many environmental variables are monitored in a (semi-)continuous way; examples
include air quality and background radiation levels. In order to utilize the network,
maps of observed values are usually instantly available to network operators, but
maps with interpolated values often need lengthy intervention by (spatial) statisti-
cians before they become available. We believe that spatial interpolation can, and
should, be automated to the extent that both in routine and emergency situations
interpolated maps can become available in near real-time (i.e., within seconds up to
tens of minutes) without such intervention. Of course there will always be a role for
the spatial statistician in providing in depth analysis of a given data; our focus is on
situations where decisions must be made quickly.

In a decision theoretic setting, a map with interpolated (predicted) values, is not
sufficient information; knowledge of prediction errors and their probability distri-
butions is necessary for optimal results. We explore some of the issues that the
requirement for automatic, probabilistic, real-time, prediction raises.

This paper discusses issues in both algorithm development and their practical
implementation in the form of a web service for operational monitoring network
management. It will review some of the submissions of the Spatial Interpolation
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Comparison (SIC) 2004 (Dubois and Galmarini, 2005; EUR, 2005). The issues we
will address comprise

i. quantifying and communicating exceedance probabilities for given threshold
levels, in order to estimate risk of exposure.

ii. the automated estimation of parameters describing the spatial variability in pres-
ence of extremes

iii. dealing with heterogeneity of monitoring networks, e.g. across EU member state
boundaries

iv. detection of outliers in space and time
v. quality control.

2 Communicating Prediction Error Distributions

Interpolating in two dimensions can be relatively simple. In cases where the var-
iogram is close to an exponential or spherical model, and the nugget variance is
small, the inverse distance interpolation algorithm is hard to beat significantly with
highly advanced geostatistical models, when the implementation is tuned to have a
varying power in the distance weights, or a varying neighbourhood selection. One of
the disadvantages of inverse distance methods is that they do not yield interpolation,
or prediction errors when no variogram model is assumed. Interpolation errors can
be large, and are of importance, if for example someone is faced with the decision
whether an area, or how large an area should be evacuated based on the interpolation
of measured radiation levels after a radioactive outbreak.

Ideally, an automatic prediction algorithm should provide a user with the full
conditional cumulative distribution function (ccdf), which is for a random variable
Z at arbitrarily chosen unobserved location s0 the probability

F(Z(s0), c) = Pr(Z(s0) < c | z(si ), i = 1, ..., n) (1)

with Z(si ), i ≥ 1 the observed data. Usually s0 is chosen to be a large number of
points (or square blocks) over a regular grid, and F(Z(s0), c), for a given level c, can
be shown as a map. In risk studies, it may be more intuitive to map 1 − F(Z(s0), c),
which is the probability of exceeding c, but for the discussion here this is irrelevant.
An alternative visualisation is that of the quantile function, obtained by inverting
(1), which gives the Z values corresponding to a spatially constant given quantile
value q ∈ [0, 1]:

F−1(Z(s0), q) = c (2)

such as the median, or the 2.5 and 97.5 percentiles1.

1 Although not necessary for the discussion here, we want to note that in a considerable part of the
geostatistical literature ccdf’s are associated with, or discussed in the context of certain specific
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Fig. 1 Screen shot of a tool to visualize the distribution function F(Z(s), c) for PCB-138 con-
centrations in North Sea floor sediment data, analyzed in Pebesma and Duin (2005). The maps
show probabilities for the interpolated values of being below the PCB138 threshold value of 1 ppm
(the legend caption misses this point). The scenarios refer to block size: (0) refers to point kriging,
(5000) to kriging at 5 km × 5 km block, (10000) to kriging at 10 km × 10 km blocks

For fixed, chosen values of c, the value of F(Z(s), c), or alternatively one minus
this value (the probability of exceeding c) may be shown as a static map. Usually but
not necessarily, s is a collection of points on a regular grid covering the area studied.
Accordingly, for fixed values of q a quantile map for F−1(Z(s), q) can be shown.
Choosing these values ahead of time may be guided by regulatory guidelines, e.g.
from maximum tolerated or established zero-risk concentrations, but threshold val-
ues found there often contain a certain or even considerable amount of arbitrariness
in them, and a user may want to change them. An important issue to find out is
how much a slight change in c results in a different assessment of the exceedence
probability map.

Visual communication of the full functions F(Z(s), c) and F−1(Z(s), q) is area
of research. Pebesma et al. (accepted) describe a tool for the dynamic analysis of
maps of (1) and (2) under different modelling or interpolation scenarios. In case
of the ccdf (Fig. 1) the value of c can be dynamically changed by dragging and
dropping the vertical line in the ccdf widget, which is followed by immediate update

forms of kriging, notably indicator kriging and its descendents or generalisations. This is not
necessary as ordinary, simple or universal kriging can provide ccdf’s whenever a parametric distri-
bution function (e.g. normal, lognormal, normal after Box-Cox transformation) is assumed. Such
assumptions may be strong, but so are the assumptions about the identification of tail distributions
and their spatial correlation in the indicator and related approaches.
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Fig. 2 Screen shot of a tool to visualize the quantile function F−1(Z(s), q) for PCB-138 concen-
trations in North Sea floor sediment data, analyzed in Pebesma and Duin (2005). The maps show
quantiles for the interpolated values for the probability value 0.5 (i.e., the median)

of the corresponding maps of F(Z(s), c). In case of the quantiles plot (Fig. 2), the
value of q (horizontal line in the ccdf widget) can be dynamically changed, to be
followed by an update of the maps of F−1(Z(s), q).

3 An INTERPOLATE Button, or Web Service?

Ideally, we would like to have a routine (let us say a button in a computer program
or web client) which, given a set of measurements, provides near real-time maps
of interpolated values, and/or their associated distribution or quantile views. This
means that data have to be submitted, interpolated values computed, and ccdf’s are
returned (Fig. 3).

While the implementation of the interpolation algorithm is clearly very important
in determining the accuracy of the predictions, the usefulness of the system also
depends on the ease of integration into the overall network management system. An

Monitoring network data

Interpolated maps

Interpolation routine

Fig. 3 Idealised data flow for an automatic mapping procedure. Implemented as a web service, the
arrows may represent data flow over http connections
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exciting opportunity is presented by the adoption of a service oriented architecture
(often called “web services”) with carefully defined interfaces offers an exciting
prospect of developing an automatic interpolation service which any user capable of
employing web services can utilise. This will necessitate the definition of standards
for communicating uncertainty.

4 Monitoring Network Heterogeneity

The idealized situation of Fig. 3 discards much of the information that is usually
available for monitoring networks. Besides the measurements themselves, the fol-
lowing, non-exhaustive list may be relevant for the interpolation routine:

� what do the measurements usually look like?
� are these measurements taken from a variable that can only take positive values

(e.g. a concentration variable), and does it have an upper boundary?
� are the measurements obtained under identical conditions, or are there differ-

ences in measurement device, monitoring network design (e.g. between states
or countries), standardization issues, or rules regarding the classification of a
monitoring station? (e.g. is an air quality monitoring station classified as rural
comparable to a likewise classified station in another country?)

� are there variables available to which the monitored variable bears a relationship,
that are useful for interpolation? (e.g. ozone may be related to altitude when
looking a large region)

� is there any other prior knowledge available that needs to be taken into account
in interpolation? (e.g. previous measurements, spatial correlation characteristics,
prior beliefs)

� is there historic information that certain measurement stations behave anoma-
lous, more often than others?

A naive interpolation procedure that does not take any of these issues into account
may seem fairly easy to implement. When looking at interpolation as a stage in ex-
ploratory analysis of monitoring network data, such a naive interpolation procedure
should be useful to detect some of the issues mentioned. As a dedicated system for
decision support in emergency conditions, the requirements are different. Commu-
nicating any (or all) of the information to an interpolation procedure poses another
interesting technical problem.

However, even if none of the above information is provided, an automatic inter-
polation should still be possible. The main issue is then (i) the modelling of the var-
iogram (or covariance function), and (ii) the possible uncertainty about variogram
model and/or model parameters. Given measurements and their locations, several
issues require careful consideration. If we want to fit models to sample variograms,
for example

1. how should we compute the sample variogram (maximum distance, lag interval
width, directional or isotropic)?
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2. which particular variogram model or group of models do we want to fit?
3. which criteria do we use for the actual fit?
4. which initial values do we provide for the fit, in case it involves non-linear

parameters (such as range)?
5. how do we deal with the problem of an ill-fitting model or non-convergence in

the fit?

Some of the above questions were discussed, but not typically “solved” by Pebesma
(2005). When fitting by ML/REML, questions 2, 4 and 5 are relevant as well. In case
of a Bayesian, so-called model-based approach (Diggle et al., 1998), two further
questions are

6. which prior distributions should be chosen, automatically, for the variogram fit-
ting procedure, and

7. how do we verify automatically that the Markov chain Monte Carlo algorithm
has converged?

In the context of SIC2004, Palaseanu-Lovejoy (2005) has shown that this Bayesian
procedure worked when the algorithm was applied to data that matched the prior
assumptions, but failed in case of extreme, unexpected outlying data. Clearly further
research is required to address these issues in the context of an automatic interpola-
tion method.

5 Outliers in Space and Time

Outliers are of utmost importance, as they either need to be discarded as invalid
measurements (monitoring network failure) or indicate extreme conditions, possibly
notifying us of an emergency condition. An automatic interpolation routine should
never automatically remove outliers in order to remain useful for the second type
of situation, but it is useful for network management, to provide a mechanism for
deciding which case is true.

Interpolation in the presence of outliers (one or very few highly extreme val-
ues) is a major source of trouble for any interpolation procedure (e.g. EUR, 2005).
One wonders whether single stationary random fields of whatever kind are use-
ful as models for fields which really include outliers. We might also consider how
one field (say, background concentrations) should be distinguished from the second
(with outlying measurements) and in addition how the spatial correlation of the
outlier field should be characterized on the basis of maybe one or two observations.
Cornford (2005) suggested that in case of outliers that arise from real physical pro-
cesses, we should work to probabilistic models that incorporate the physics of the
phenomena modelled, using a data assimilation framework. This is a complex task
and it remains to be seen whether one or two outlying observations are sufficient for
successful assimilation of the outlying phenomena in absence other information on
the magnitude and location of a source, but an integrated space-time analysis does
seem indispensable for these cases.
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6 Space-time Approaches

One important issue for (near) real-time interpolation is whether past observations
should be taken into account for the interpolation based on current observations.
If measurements are taken with high frequency, this seems attractive because they
may carry additional information when the process is temporally correlated. On the
other hand, for certain processes sudden jumps in time (e.g. a radioactive outbreak)
may not show up well in interpolated maps if these rely on the regular behaviour
that nuclear radiation shows when there is no outbreak. For such emergency cases a
space-time model should allow for sudden jumps in time. In any case, when inter-
polations are needed in near real-time, computation speed is an issue and this may
currently be a challenge for space-time approaches, more than for spatial approaches
alone.

7 Quality Control and Implementation Issues

As in many other fields, software architectures in Geographic Information Systems
are shifting from application oriented to service oriented paradigms. This means that
algorithms are not implemented as a button in a stand-alone application, but rather
operate as a web service facilitating their use from a client anywhere in the world.
We envisage that interpolation is a service that can, and should be served this way.
Among the motivations for this are (i) monitoring data are collected in real-time,
but are not present in real-time on the client computer, but typically available after
a service request, (ii) the network data may not be publicly available, but views on
the data or other derivative products may or may not be, or may be available for
specific purposes, and (iii) the monitoring data may be served by a varying data
base infrastructures and computer architectures.

How can we ensure that the code, or web service, does what it is supposed to
do? At the base of software development, one should always build regression tests.
Such tests provide input and verified output, such that in an automatic setting the
code can be run to verify that it produces output identical to the verified output. As
an example, package development in R (R development core team, 2006) stimulates
package writers to supply their own tests, which are automatically run when porting
packages to a new computing platform, or when R itself is upgraded. Developing
regression tests for a wide variety of situations (not only success, but also failure
situations) does harden the code, but is no guarantee for quality.

Another aspect is the use of legacy code. Software contains errors, or has undoc-
umented features. Using code leads to errors being found and software that has been
maintained for a long time may therefore be expected to contain fewer (unknown)
bugs than freshly written code. Use of legacy code may also reflect the environment
in which the code is written, e.g. low-level programming languages as C or Fortran,
object-oriented languages such as C++ or java, or high-level environments such as R
or Matlab. Code written in the latter environments may be easier to verify (by those
who can read it), as it is 5–10 times as compact. The underlying numerical algebra
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is, at least for R, dealt with by legacy linear algebra libraries (lapack/linpack/blas).
In addition, every aspect of R is open source, and as such fully verifiable by anyone.

The implementation as a web service facilitates the creation of a web testing
client, which can subsequently be used to (automatically) test the performance of
any other web service that implements the automatic mapping interface. This can
give us more confidence in a new implementation since the automated regression
tests will be extensive.

8 Lessons Learnt from SIC2004

SIC2004 (Dubois and Galmarini, 2005; EUR, 2005) was a spatial interpolation
comparison, especially set up to test automated mapping routines, and to see how
they performed in case of unexpected, rare extremes (a simulated local radioactive
outbreak). Some lessons learned from this exercise are:

� SIC2004 used overall, average performance criteria. It did not take the proba-
bilistic aspect of prediction (predictive distributions) into account, and did not
evaluate as a performance criteria of the area above a certain cut-off value.

� In a comparison of automated mapping routines, one should never reach final
conclusions based on comparison experience using a single data set only, and one
should use criteria related to the emergency mapping context (Boogaart, 2004).

� All but one of the participants truly applied an automatic interpolation algorithm,
meaning that manual intervention took place after discovery of the outliers and
before submitting results (Myers, 2004).

Overall, the results of SIC2004 highlighted the need for further research before a
truly automatic algorithm can be robustly deployed. The research issues include spa-
tial statistics, algorithmic developments and software implementations, with their
practical deployment requiring development of software architecture and standards
for interoperability making this a truly inter-disciplinary problem.

9 Discussion

Insurance companies know that knowledge about uncertainties pays off when taking
decisions (setting insurance rates). However, they can spread risk because failure
happens with some frequency. When taking decisions in environmental emergency
conditions (such as treatment or evacuation of populations), the situation is totally
different, because taking a wrong decision may worsen (or even cause) a disaster.
This does not mean that we do not need the uncertainties, but rather that we (and the
decision makers) have to learn how to use probabilistic information optimally.

When there is no direct emergency, the information about the distribution of pre-
diction errors may also be of use for exposure assessment. As an example, it seems
that black smoke has health effects for a considerable fraction of the population in
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parts of Europe and Northern America. Distribution functions obtained from spatial
interpolation should be handled with care though; if a spatial interpolation algorithm
suggests that in some region the probability of exceeding a critical level is 10%, this
does not mean that 10% of the time the level is exceeded, nor that 10% of the
population living there is affected. Despite that, interpolation, and analysing error
distribution functions may help evaluating monitoring network management (e.g.
monitoring network optimization), assess risk of exposure for populations and be
instrumental to policy evaluation and development.

Automatic interpolation procedures seem to be far away now, but we expect them
to become available, and envisage their use will be adopted by monitoring network
management, risk assessments, and policy evaluation instruments.
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