
Data Fusion in a Spatial Multivariate
Framework: Trading off Hypotheses
Against Information

D. Fasbender and P. Bogaert

Abstract Due to the exponential growth in the amount and diversity of data that
one may expect to provide greater modeling and predictions opportunities, there is
a real need for methods that aim at reconciling them inside a flexible and sound
theoretical framework. In a geostatistical prediction context, beside more or less
straighforward variations around univariate kriging (e.g. kriging with external drift),
the most classical method (i.e. cokriging) is based on a multivariate random field
approach of the problem, at the price of strong modeling hypotheses. However, there
are expected practical situations where these hypotheses may be hard to fulfill or do
not make sense from a modeling viewpoint.

This paper proposes an alternative way of using secondary information for spa-
tial prediction. Based on a data fusion perspective, a general theoretical procedure
is proposed. Simple cokriging and Bayesian data fusion are compared both from
theoretical and practical viewpoints. Theoretical differences are first emphasized
based on the corresponding modeling hypotheses. A case study based on synthetic
data subsequently allows to compare both methods from a practical viewpoint. It
is shown that, in spite of some simplifying hypotheses required by data fusion,
the method is offering quite comparable performances in situations where simple
cokriging is expected to be the best possible predictor. Moreover, it offers a much
greater flexibility and opens new avenues for incorporating a wide panel of very
different and possibly numerous secondary information that, by nature, would not
easily fit into a multivariate random field framework, as required by cokriging.

1 Introduction

As the classical (co)kriging predictor relies on the knowledge of first and second-
order moments for a given set of random fields (RF’s), we will assume here that
first and second-order stationarities can be assumed for all variables, and that the
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corresponding functions (i.e. themean functionsand the (cross-)covariance functions)
can reasonably be inferred from the data. Without loss of generality and for the
sake of simplicity, we will restrict here the discussion to variables with known mean
functions so that simple cokriging can be used, though the methodology includes
of course the case of non stationary mean and intrinsic stationarity as well (see e.g.
Christakos, 1992).

In a first section, a short recall of simple cokriging (SCoK) formulation is pre-
sented. The hypotheses involved in this model are emphasized and modeling issues
are pointed out with respect to both theoretical and practical viewpoints. Subse-
quently, the Bayesian Data Fusion (BDF) methodology is presented. For the sake
of conciseness and without loss of generality, presentation will be restricted here
to the particular case of bivariate Gaussian RFs. Pros and cons of the method are
discussed too, and a synthetic case study is presented. The corresponding results
indicate that BDF is an interesting alternative in the context of spatial prediction
that need to account for additional secondary information which may not fit very
well into a multivariate stationary RF framework.

2 Simple Cokriging

In the case of several correlated RFs that are sampled over the same spatial domain, as-
suming that means are known everywhere, the classical geostatistical method used for
conducting multivariate prediction is SCoK (Cressie, 1991). If Z = {

Z(x) : x ∈ R
d ,

Z(x) ∈ R
1
}

and Y = {
Y (x) : x ∈ R

d , Y (x) ∈ R
1
}

are two zero-mean second-order
stationary RFs and Zα = Z1, . . . , Zn and Yγ = Yn+1, . . . , Yn+m are corresponding
random vectors sampled from them at locations xi (i = 1, . . . , m + n), the SCoK
predictor for Z0 is then

Z p
0 = (

σ ′
α σ ′

γ

) (Σαα Σαγ

Σγα Σγ γ

)−1 ( zα

yγ

)
(1)

where the σ s and Σs are obtained from the partitioning of the covariance matrix Σ

for the whole vector (Z0, Z′
α, Y′

γ ), with

Σ =
⎛

⎝
σ 2

0 σ ′
α σ ′

γ

σ α Σαα Σαγ

σ γ Σγα Σγ γ

⎞

⎠ (2)

whereas the corresponding variance of prediction is given by

σ
p

0 = σ 2
0 − (

σ ′
α σ ′

γ

) (Σαα Σαγ

Σγα Σγ γ

)−1 (
σ α

σ γ

)
(3)

Clearly, SCoK is the best linear predictor, but not necessarily the best predictor.
However, assuming multivariate gaussianity for (Z0, Z′

α, Y′
γ ), the best predictor is

linear, and SCoK then corresponds to the result of a linear regression, with
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Z p
0 = E

[
Z0|zα, yγ

]
; σ

p
0 = Var

[
Z0|zα, yγ

]
(4)

and where Z0|zα, yγ ∼ N(Z p
0 , σ

p
0 ). In other words, SCoK can only be considered as

the best predictor when full gaussianity holds. If this is not the case, SCoK is still a
valuable predictor, but its prediction variance is not necessarily the smallest possible
one and the true conditional probability distribution function (pdf) for Z0|zα, yγ is
not Gaussian in general.

Though SCoK is a straighforward and well-known method that can be easily
numerically implemented without difficulties, there are some practical issues that
need to be addressed. Clearly, obtaining the covariance matrix Σ for arbitrary loca-
tions rely on a multivariate modeling of the covariance functions, in order to ensure
positive-definiteness of the final results. The most frequently used method is based
on the so-called Linear Model of Coreginalization (see e.g. Chilès and Delfiner,
1999 or Goovaerts, 1997), which for a bivariate case is written as

(
Cαα(h) Cαβ(h)
Cαβ(h) Cββ(h)

)
=
∑

i

(
ai,αα ai,αβ

ai,αβ ai,ββ

)
ci(h) =

∑

i

Ai ci(h) (5)

where all matrices Ai are positive definite and where the same elementary positive
definite covariance models ci (h) must be used for modeling all (cross-)covariance
functions. Clearly, this imposes an important (and rarely discussed) conceptual con-
straint on the method, as any secondary variable that need to be accounted for when
predicting Z0 must fit into the second-order stationary RF paradigm, i.e. the random
vector Yγ must be considered as a sample from a second-order stationary RF that
can be characterized by a covariance function Cββ(xi − x j) that only depends on
xi − x j but neither on xi nor on x j . Unfortunately, it happens frequently that quite
useful information does not fit well into this paradigm. As a simple example, in an
environmental pollution context, the distance x − x j to a chemical industry located
at x j is likely to be a quite relevant measure for quantifying atmospheric deposi-
tion Y (x), but Y (x) cannot be considered as coming from a RF whose covariance
function would be translation invariant, i.e. depending only on h, of course. This in
turn may seriously impair the prediction of a related variable of interest Z(x) (e.g.
soil pollution) using a cokriging approach, as corresponding covariance function
estimates Ĉββ(h) and Ĉαβ(h) are meaningless.

3 Bayesian Data Fusion

By the light of the previous example, it appears that relying on a multivariate second-
order stationary RF framework is quite arguable in some instances. In order to ac-
count for this issue, a new theoretical framework has recently been proposed. Its
aim is to alleviate the need of second-order stationarity for secondary variables at
the price of mild simplifying hypothesis. Due to space limitations, only main and
most important results will be presented here. Additional details can be found and
are disscussed at length in Bogaert and Fasbender (2007).
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Let us assume that Z is a zero-mean second-order stationary RF of primary inter-
est, where Z is random vector sampled from it. Let us define a mapping g : R → R

such that g(Z) = {g(Zi)} is a new random vector, along with an arbitrary zero-
mean random vector E of same size and independent from Z. The basic assumption
of BDF is to assume that, for any secondary variable, we have Y = g(Z) + E.
Clearly, Z and Y are collocated random variables but Y is not longer second-order
stationary in general, as its properties also depend on the arbitrary E. According to
the independence assumption E ⊥ Z, it is also clear that the conditional pdf for Z|y
is given by

fz|y(z|y) ∝ fz fy|z(y|z) = fz(z) fe(y − g(z)) (6)

where fz is the a priori pdf for Z and fe is the pdf for E. A more intuitive interpreta-
tion of Eq. (6) is to consider that each Yi can be viewed as an indirect measurements
of the true Zi , as Yi is a functional g(Zi) up to an additive error Ei , where it is
reasonable in general to assume these errors as independent from the true Z.

Starting from this last very general relation, a straightforward formulation can
be proposed in a spatial prediction context. Let us consider that what is sought
for is the conditional pdf for Z0 given a set of observed values zα = z1, . . . , zn

for the RF of interest Z along with a set of observed values yγ = yn+1, . . . , yn+m

for the auxiliary RF Y. Defining additionally the vector Zβ = Zn+1, . . . , Zn+m of
unobserved variables at the same location as Yγ , the conditional pdf for Z0|zα, yγ

is then given by

fz0 |zα,yγ
(z0|zα, yγ ) ∝

∫

Rm
fz0,zα,zβ

(z0, zα, zβ) fe(yγ − g(zβ))dzβ (7)

This is a very general and nonlinear formula for prediction that requires the knowl-
edge of the joint pdf fz0,zα,zβ

as well as the joint pdf of errors fe. A classical approach
would be to consider Z as a Gaussian RF along with a mutual independence hypoth-
esis for the vector E, so that fz0,zα,zβ

is multivariate Gaussian and fe = ∏
i fei . Using

again Baye’s theorem, we then have fei (yi − g(zi )) ∝ fzi |yi (zi |yi)/ fzi (zi ), so that
Eq. (7) simplifies to

fz0 |zα,yγ
(z0|zα, yγ ) ∝

∫

Rm
fz0,zα,zβ

(z0, zα, zβ)
∏

i

fzi |yi (zi |yi)
fzi (zi )

dzβ (8)

As a consequence, Eq. (8) is still a nonlinear expression that requires multivariate
integration, but it is now possible to express fz0,zα,zβ

from the covariance function
Cαα(h) as well as to infer the pdf’s fzi |yi from the data set. A synthetical illustration
of this can be found in Bogaert and Fasbender (2007). The real advantage of this
formulation is that it is not longer needed to have any stationarity hypothesis about
Y compared to SCoK. Moreover, it can be shown that a similar reasonsing can be
used in order to account for multiple secondary information without any difficulties.
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4 Comparing Data Fusion and Cokriging

Though BDF and SCoK may appear at the first sight as completely different (and
thus difficult to compare) approaches for accounting for secondary information, it
can however be shown that close analytical linear relations for expressing the con-
ditional mean and variances can be obtained for BDF if an additional multivariate
Gaussian hypothesis is assumed to hold.

It has been reminded that, for jointly Gaussian RF’s Y and Z, the corresponding
conditional pdf fz0|zα,yγ

is Gaussian with mean and variance given by Eq. (4), so
that SCoK is the best predictor. On the other side, for BDF, one can also remark that
assuming that Y and Z are jointly zero-mean Gaussian RF’s leads to a zero-mean
Gaussian vector (Z0, Zα, Zβ, Yγ ) with covariance matrix Σ as given by

Σ =

⎛

⎜⎜⎝

σ 2
0 σ ′

α σ ′
β σ ′

γ

σ α Σαα Σαβ Σαγ

σ β Σβα Σββ Σβγ

σ γ Σγα Σγβ Σγ γ

⎞

⎟⎟⎠ (9)

Several simplifications will then occur. First, the functional g is now a linear map-
ping with g(zβ) = σyz

σ 2
0

zβ , where σyz = σzy = Cov(Z(x), Y (x)), ∀x ∈ R
d . Second,

E is now Gaussian with covariance matrix equal to σ 2
γ |βI where σ 2

γ |β is equal to

σ 2
y − σ 2

yz

σ 2
0

with σ 2
y = Var [Y (x)], ∀x ∈ R

d . Third, since (Z ′
0, Z′

α, Z′
β)′ and E are

Gaussian vectors, the product of pdf’s in Eq. (8) is proportional to a Gaussian pdf
with mean vector M and covariance matrix S given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S−1 =
⎛

⎝
σ 2

0 σ ′
α σ ′

β

σ α Σαα Σαβ

σ β Σβα Σββ

⎞

⎠
−1

+

⎛

⎜⎜⎝

0 0 0
0 0 0

0 0
1

σ 2
γ |β

σ 2
yz

σ 4
0

I

⎞

⎟⎟⎠

M = 1

σ 2
γ |β

S

⎛

⎝
0
0

σyz

σ 2
0

yγ

⎞

⎠

(10)

Finally, since the integrand of Eq. (8) is proportional to a Gaussian pdf, integrating
over zβ and conditioning on zα leads to the conclusion that the conditional pdf
Z0|zα, yγ is univariate Gaussian, thus completely characterized by its mean and
variance, with

⎧
⎪⎨

⎪⎩
E[Z0|zα, yγ ] = 1

σ 2
γ |β

σyz

σ 2
0

s′
βyγ + s′

αS−1
αα

(
zα − 1

σ 2
γ |β

σyz

σ 2
0

Sαβyγ

)

Var [Z0|zα, yγ ] = s0 − s′
αS−1

αα sα

(11)

where
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S =
⎛

⎝
s0 s′

α s′
β

sα Sαα Sαβ

sβ Sβα Sββ

⎞

⎠ (12)

The gain of BDF on SCok in terms of inference is non negligible. Indeed, instead
of inferring the multivariate covariance model (with LMC namely), we only need to
estimate three simple quantities: i) Cαα(h) the covariance function of Z, ii) σ 2

y the
variance of Y (x), ∀x ∈ R

d and iii) σyz the pointwise covariance of Z(x) and Y (x),
∀x ∈ R

d .
Comparing Eqs. (1) and (3) with Eq. (11) is not straightforward, but it is worth

noting that (i) BDF now provides expressions for the conditional expectation and
variance that are linear with respect to the observed values zα and yγ as for SCoK,
and (ii) results for BDF and SCoK can be compared too on a common basis, as
we fulfill the optimal conditions for using SCoK as the best possible predictor. It
is worth remembering however that, in general, BDF and SCoK will obey distinct
optimality properties: SCoK is optimal under the hypothesis of jointly Gaussian
RF’s Y and Z, whereas BDF only rely on a Gaussian hypothesis for Z and an inde-
pendence hypothesis for E, which is a somewhat milder hypothesis than assuming
joint Gaussianity for both RF’s Y and Z.

5 A Synthetic Case Study

In order to illustrate the similitudes of the results that are obtained using both ap-
proaches in a situation where SCoK is expected to give the best possible results, a
synthetic case study is presented. The aim here is to show that, even under optimal
conditions for SCoK, using SCoK instead of BDF does not significantly increase the
quality of predictions. Stated in other words, the loss of information due to the use
of BDF instead of SCoK does not dramatically affect the quality of the predictions.

Let assume a smooth zero-mean unit-variance Gaussian RF Z for which a re-
alization over a 100×100 regular grid is given in Fig. 1a (covariance function is
exponential with sill equal to 1 and range equal to 30). Let assume also a second
Gaussian RF Y (Fig. 1b) defined as a linear combination of the RF Z and another
zero-mean unit-variance Gaussian RF E with the same covariance function. By tak-
ing Y = 2Z + E, the resulting RF Y is thus a zero-mean Gaussian RF with variance
equal to 5, and both RF’s are jointly Gaussian with pointwise correlation equal to
0.894. Under these conditions, SCoK is thus the best possible predictor. For con-
ducting predictions, two random samples z and y are extracted from these simulated
grids. In order to be in a situation when SCoK would be interesting compared to
simple kriging (i.e. the auxiliary y conveys valuable extra information compared to
what is already known from z), samples size have been chosen equal to 200 and
400 for z and y, respectively. Predictions of Z is then conducted at the nodes of the
grid using z and y as observed values. It is worth noting too that sampling has been
conducted so that there are no locations for which Z and Y are jointly observed.
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(a) (b)

(c) (d)

Fig. 1 Simulations over a 100×100 regular grid for RF Z (a) and RF Y (b), along with the random
sample z at 200 locations (c) and the random sample y at 400 locations (d)

In order to compare relative differences between BDF and SCoK results com-
pared to simple kriging results, a relative comparison approach has been used here.
Clearly, using simple kriging with the n closest observations of z (that will be de-
noted as SKn) provides a lower bound in terms of prediction quality, as it only
makes use of the primary variable. On the other side, using simple kriging with
the n closest observations of z along with the z observations at the n closest loca-
tions for the observed y (that will be denoted as SK2n) provides an upper bound,
as it assumes that the true values for the primary variable are available at locations
where only the auxiliary variable is observed. As a consequence, in terms of quality
predictions, results for BDF and SCOK will be located somewhere in between these
two bounds. This also provides a way to compare the results for BDF and SCoK on
a relative scale ranging from SKn to SK2n .
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Figure 2 shows the predictions results obtained using the four previously de-
scribed methods, namely SCoK (Fig. 2d), BDF (Fig. 2c) and the two extreme simple
kriging situations (Figs. 2a and 2b). One can notice that BDF and SCoK provide
visually very similar results. This observation is confirmed from the Root Mean
Squared Error (RMSE) as computed between simulated and predicted values (see
Table 1). As expected, SCoK and BDF gives intermediate results in between the
two kriging predictions, with only a slight advantage for SCoK when values are
compared on a relative scale.

The above computations can been repeated by keeping everything identical ex-
cept for the pointwise correlation between the two RF’s Z and Y. It can be seen
from Fig. 3 that the relative difference between BDF and SCoK is null for high and

(a) (b)

(c) (d)

Fig. 2 Results for the different predictions methods. (a) is simple kriging with 10 closest points,
(b) is simple Kriging with 2 × 10 closest points, (c) is BDF with 10 closest points for each RF and
(d) is SCoK with 10 closest points for each RF
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Table 1 Quality assessment for the various prediction methods. RMSEs are computed as the root
mean squared differences between simulated and predicted values. Relative RMSEs are RMSEs
rescaled between 0 and 1 according to the bounds as provided by SKn and SK2n (value 1 is thus
the best possible result whereas value 0 is the worst possible one)

- SKn SCoK Bayesian Data Fusion SK2n

RMSE 0.63 0.53 0.55 0.48
Relative RMSE 0 0.68 0.58 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Fig. 3 Evolution of the RMSE with respect to the pointwise correlation between Z and Y RF’s.
Dashed lines correspond to SKn (higher value) and SK2n (lower value), whereas plain line and
dotted line correspond to BDF and SCoK, respectively

low correlations (i.e. when secondary information is useless and when secondary
information is equivalent to primary one, respectively), so that biggest differences
will be observed for intermediate values.

6 Conclusions

In this paper, a BDF approach has been proposed as an interesting alternative way
to account for various secondary information in a spatial prediction context. In-
deed, the method does not rely on a classical multivariate second-order stationary
RF framework, as it is required for cokriging. Because by nature BDF relies on a
different set of assumptions, it is difficult to compare both methods from a general
viewpoint in situations where both of them would be relevant. In order to overcome
this difficulty, a comparison has been conducted in a situation where SCoK is known
to be the best possible predictor, so that the loss of information caused by using BDF
instead of SCoK can be assessed on an objective way. Results show that in terms of
performances, differences are however quite limited.
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Of course, there is no point in using data fusion instead of cokriging when one
can reasonably assume that a second-order multivariate RF hypothesis holds, as
SCoK is then by definition the right method to be used. However, the application
field of BDF is quite more general, as it allows the user to account for secondary in-
formation that would not fit into this framework, permitting thus to deal with a much
wider panel of situations that could not be meaningfully handled by SCoK. Hence,
BDF can be viewed as a robust alternative to cokriging for multivariate prediction
where cokriging hypotheses are known to be irrelevant or at least quite arguable.

Finally, it is worth noting that the aim of this paper was not to suggest that sound
multivariate spatial prediction methods like cokriging, which have frequently proved
to be quite useful, should be discarded or criticized when used under the appropriate
hypotheses. It is rather the limited practical pertinency of these hypotheses which is
at stake here. It is suggested that in situations where a multivariate modelling does
not appear to be conceptually consistent with what is known from data, BDF is then
a more reasonable choice by avoiding the need of using a multivariate model (e.g.,
as the LMC) at the price of mild simplifying hypotheses. Though rather simple in
the case of a single auxiliary variable, this modelling problem is expected to be-
come critical in situations where the number and diversity of auxiliary informations
sources that need to be accounted for is increasing. This is a typical case where BDF
is expected to be a much more flexible way of handling the problem than SCoK.
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