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Abstract Efficiency constraints force the use of a coarse discretization of the
numerical transport model compared with the detailed scale required for the most
adequate description of the physical properties. Upscaling encompasses the methods
that transfer small-scale information to the computational scale. The loss of small-
scale information of aquifer properties to construct a numerical model by upscaling
largely modifies the true heterogeneous structure of the aquifer compromising the
final predictions of solute transport. Within this context, we present extensive Monte
Carlo solute transport simulations in heterogeneous porous media to investigate the
impact of upscaling on the evolution of solute plumes, and we analyzed the benefits
of using enhanced block dispersion tensors in the advection-dispersion equation to
compensate for the loss of information. In doing this, we show that when enhancing
the block dispersion tensor to compensate for the loss of small-scale information,
mass transfer between grid blocks is in turn amplified largely reducing macrodisper-
sion in the upscaled model. We conclude that block dispersivities should consider
not only the fluctuation of aquifer properties inside the block but also the simulta-
neous effect of enhanced mass transfer between all blocks of the numerical model.
Then, using a stochastic approach, we present a new concept of block dispersivity
that accounts for both effects: block heterogeneity and mass transfer between grid
blocks. As a result, we quantified the amount of contribution that mass transfer
effects has on block dispersivity.

1 Introduction

In order to efficiently make solute transport predictions in real field settings, com-
plex transport models cannot afford to describe heterogeneity at the necessary detail
scale required for an adequate description of the underlying processes. As a result,
models are often used with a coarse grid discretization of the media. This implies a
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simplification of the physical problem, since not all the subgrid information on the
spatial variability of the parameters is transferred to the numerical grid. In this con-
text, upscaling is used to transfer small-scale information to the computational scale.

We present Monte Carlo solute transport simulations in heterogeneous porous
media to investigate the impact of upscaling on the evolution of solute plumes. We
show that usual upscaled transport models can largely underestimate the spreading
of solute plumes even if block dispersivities are calculated as being representative
of within-block heterogeneity. Two major effects were identified that can restrict the
growth of the solute plume in the numerical upscaled model: (i) tensorial nature of
hydraulic conductivity; and (ii) mass transfer effects between blocks of the numer-
ical model. This paper focuses on the latter effect. In particular, we investigate the
concept of block dispersivity and its relation with mass transfer between grid blocks.

2 Computational Investigations

2.1 Design of Solute Transport Monte Carlo Simulations

Transport simulations consider a square bidimensional confined aquifer with uni-
form mean flow in the x-direction. The domain extends 240 units in the x and y
directions. Boundary conditions were no-flux for boundaries parallel to the mean
flow and constant-head otherwise (mean hydraulic gradient J equal to 0.01). At
the small scale, the hydraulic conductivity tensor is isotropic. The aquifer is het-
erogeneous and described by a spatially varying hydraulic conductivity such that
the lnK(x) follows a multi-Gaussian random function. The geometric mean of the
lnK(x) field is KG =1. The random function model is described by an isotropic
exponential covariance function with the correlation scale (λ) set to 4 units. A very
fine grid is used to generate a reference lnK(x) field through the GCOSIM3D code
(Gómez-Hernández and Journel 1993) representing the real aquifer. The resolution
of the fine-scale model is 4 grid-cells per correlation scale. The Monte Carlo trans-
port simulation scheme consists in 50 realizations for each σ2

lnK that ranged from
0.06 to 4. Each realization of the lnK(x) field is upscaled to a resolution referred to as
30-by-30, which correspond to the upscaling process of transferring the small-scale
information (240 × 240 cells) to a regular computational grid of 30 × 30 blocks. For
simplicity, at the fine-scale the transport model is purely advective. After upscaling,
at the coarse-scale, solute transport is governed by the advection-dispersion equation
that is used with an equivalent block hydraulic conductivity tensor and an equivalent
block dispersivity tensor.

The impact of upscaling was then evaluated by comparing Monte Carlo solute
transport simulations of a large plume moving through the reference lnK(x) fields
with their corresponding upscaled model. A seven-point finite difference ground-
water flow model, MODFLOW2000 (Harbaugh et al. 2000) was used to solve the
flow problem and a transport code based on the Random Walk Particle Method
(Fernàndez-Garcia et al. 2005) was used to simulate solute transport. Transport
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simulations start by injecting a large number of particles (5,000) equidistantly
distributed in a line transverse to the mean flow direction. This line is 35λ long and is
centered with respect to the transverse dimension (Fig. 1). The first arrival time and
the position of particles passing through 20 control planes transverse to the mean
flow direction and located at several distances away from the source were tracked
until particles exited the lower constant head boundary. This allowed measuring
longitudinal macrodispersivity at control planes. We calculate macrodispersivities
from Monte Carlo simulations by using the method of temporal moments as applied
to particle tracking transport codes in Fernàndez-Garcia et al. (2005).

We note that the objective of this work is not to examine the performance of
solute transport under different choices of boundary and initial conditions, but to
evaluate transport behavior with a change of support scale under the same condi-
tions. Thus, we consistently estimate block properties (upscaling rule) and solute
transport behavior always using a slug injection to ultimately estimate transport
behavior/properties through flux-averaged concentrations.

2.2 Upscaling Methodology

The selected method for the calculation of block hydraulic conductivities Kb is known
as the Simple Laplacian method with skin (Wen and Gómez-Hernández 1996). For a
given realization of the lnK(x) field, the region being upscaled is isolated from the rest
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Fig. 1 Sketch of transport simulations showing the initial location of particles, the control planes
where mass fluxes are measured
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of the system. This region not only comprises the portion of the heterogeneousaquifer
delineated by the grid-block, but also includes a small portion of the heterogeneous
aquifer adjacent to the grid-block referred to as theskin (Fig. 1).The skin is designed to
approximately emulate the original water head boundary conditions on the grid-block
without having to solve the flow problem for the entire domain. In this work, the skin
spans over 3λ to minimize boundary effects and block hydraulic conductivity Kb is
assumed to be a diagonal second-order tensor with principal directions parallel to the
block sides. The principal components were calculated as

Kb,ii(x) =

∫

V( x)
qi(u)du

∫

V( x)
−�h/�xi(u)du

(1)

where V(x) denotes the volume of the grid-block the centroids of which is at x,
q is the darcy velocity, and h is the piezometric head. We considered a diagonal
Kb tensor for being the usual assumption underlying most benchmark groundwater
flow models. We proposed a numerical method that evaluates block dispersivities by
simulating a natural-gradient tracer test inside the isolated block region, so that the
solute tracer only samples the block heterogeneity. This choice stems from the fact
that field tracer tests are often attempted as a means of estimating input dispersivities
for transport models. For each isolated block with skin, steady-state flow is achieved
using the needed boundary conditions (i.e. linearly varying pressure head at the
block boundaries) to originate a mean flux equal to the block averaged one. Then,
a Dirac-input tracer line source is injected in a line transverse to the block averaged
flux and situated at the upgradient limit of the block. Block dispersivity values, AL

and AT, are estimated from the mass flux breakthrough curve by the method of
temporal moments as,

AL = L

2

σ2
t

T2
a

− αL (2)

AT = σ2
y

2L
− αT (3)

where L is the size of the block in the mean flow direction, αL and αT are respec-
tively the longitudinal and transverse local dispersivity, σ2

t is the variance of travel
times of particles exiting the block, σ2

y is the variance of transverse displacements
of particles exiting the block, and Ta is the mean arrival time.

2.3 Simulation Results

Figure 2 shows the scale-dependence of longitudinal dispersivity as a function of
travel distances for different σ2

lnK and transport models. We distinguish two impor-
tant features. At early times, when particles have still not travelled through various
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Fig. 2 Comparison of the scale-dependence of longitudinal macrodispersivity obtained from
fine-scale simulations with those for the upscaled model

grid-blocks, dispersivities are larger than those corresponding to the fine-scale
model mainly because block dispersivity was not considered a time-dependent pa-
rameter but represents the time-average behavior within a block. This effect rapidly
vanishes when particles passes through few blocks.

At late times, block dispersivity approaches an asymptotic dispersivity value that
is significantly smaller than those for the fine-scale model. Asymptotic behavior
is seen in all cases yet not clearly appreciated in Fig. 2 because we used logarith-
mic scales. This can be attributed to several effects (Fernàndez-Garcia and Gómez-
Hernández 2006). Among them, we suspect that mass transfer interaction between
grid-blocks of the numerical model and the tensorial nature of hydraulic conduc-
tivity can largely affect the behavior of solute transport in the upscaled model. For
instance, it is suspected that when enhancing the block dispersion tensor to compen-
sate for the loss of velocity variability through upscaling, transverse mass transfer
between grid blocks is in turn amplified reducing macrodispersion. This issue is ana-
lyzed in the following sections based on the small perturbation stochastic approach.

3 A Stochastic Approach to Estimate Block Dispersivities

3.1 General Formulation

This section presents a novel stochastic approach to the problem of upscaling disper-
sivity in heterogeneous formations. Considering a nonreactive solute plume moving



170 D. Fernàndez-Garcia, J. J. Gómez-Hernández

through a stationary lnK random field under steady-state mean uniform flow parallel
to the x1 coordinate, the effective spatial moments of a solute at large travel distances
are written as (e.g., Gelhar and Axness 1983)

lim
x1→∞

1

2

Mij(xm,1)
xm,1

=
(

αi + τDdφ
qm, 1

)
δij + σ2

f λ1Bij(αi, λi) (4)

where xm,1 is the mean travel distance, Mij is the effective spatial moment tensor, αi

are the local dispersivity coefficients, φ is the porosity, τ is the tortuosity, σ2
lnK is

the variance of the natural log of K, λi are the correlation scales in the ith-direction,
and Bij is a real function expressed as

Bij = 1

σln K2λ1

+∞∫

−∞

1

q2
m,1β( k)

Sqiqj
( k)d k (5)

β( k) = ik1 + αik2
i (6)

where Sqq is the spectrum of the darcy velocity field. Einstein’s convention is used.
Following Dagan (1994), the basic requirement for upscaling is that the statistics of
the spatial moments at the fine-scale should be the same as those obtained in the
upscaled model,

1

2

Mij(xm,1)
xm,1

= 1

2

Mm
ij (xm,1)

xm,1
(7)

where the superscript m denotes that the quantity is related to the simulated values
given by the numerical model. The problem is reduced to resolve Mm. To achieve this,
we view the process of upscaling the hydraulic conductivity field as a filtering process.
Thefilter is such that suppresses thehigh frequency lnKfluctuations thatcannotbe rep-
resented by the numerical model. We used a low-pass filter function denoted as Fg(k).
In commercial groundwater systems based on the classical advection-dispersion
equation, the increase in block dispersivity to account for a coarse discretization is
directly translated in the large time growth of spatial moments as

lim
x1→∞

1

2

Mij(xm,1)
xm,1

=
(

αi + τDdφ
qm,1

)
δij + Ab

i δij + σ2
f λ1Bm

ij (A
b
i , αi, λi) (8)

Bm
ij = 1

σ2
ln Kλ1

+∞∫

−∞

1

q2
m,1

βm(k)Fg( k)Sqiqj
( k)d k (9)

βm( k) = ik1 + αik
2
i + Ab

i k2
i (10)

where Ab denotes the increase in block dispersivity due to block heterogeneity.
Since the terms (real part) multiplying the velocity spectrum in the integration of
Bij and Bm

ij are all even functions, and knowing that Sqq is odd if i�=j, in this case,
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the requirement of upscaling (at large travel distances) is fulfilled and reduced to
the following nonlinear system of n equations with n unknowns (Ab

i) , being n the
dimension of the problem,

σ2
ln Kλ1Bii(αi, λi) = Ab

i + σ2
ln Kλ1Bm

ii (A
b
i , αi, λi, Fg) i = 1, . . . , n (11)

3.2 Evaluating Mass Transfer Effects on Block Dispersivity

In this section we discuss the influence of mass transfer effects on block-effective
dispersivities for the case of a two-dimensional aquifer with an isotropic exponential
covariance function. We only focus on the underestimation of the longitudinal spa-
tial moment due to mass transfer effects in the upscaled model. Thus, the objective is
not to exactly solve the coupled system of equations but to understand and quantified
mass transfer effects in modeling solute transport with a numerical code. Assuming
an isotropic dispersivity, i.e., Ab

i = Ab and αi = α, the problem of upscaling
dispersivity is simplified to find the root of the following equation,

σ2
ln Kλ1B11(α, λ) − Ab − σ2

ln Kλ1Bm
11(A

b, α, λ, Fg) = 0 (12)

To obtain simple analytical expressions of Bm, we employed a low-pass filter
function similar to Rubin’s Nyquist model (Rubin et al. 1999), defined as a function
that takes the value of unity if |k| ≤ π/Δ, where Δ is the domain discretization,
assumed constant for all directions. It can be shown that this definition, which is
mathematically convenient, yields analytical solutions which effectively behave as
Rubin’s Nyquist model for negligible mass transfer (Ab approaching zero in Bm

11).
Defining ε= (α+Ab)/λ and ξ=π/(Δ/λ), using the relationship between the velocity
spectrum and the lnK spectrum (Gelhar and Axness 1983), and expressing B11 in
polar coordinates, we obtain after integration,

Bm
11(ε, ξ) = 1

2

ξ∫

0

(−3εz − 2ε3z3 + 2(1 + ε2z2)3/2)(1 + z2)−3/2dz (13)

Using (13) in (12), we solve for Ab by means of finding the root of equation (12).
Knowing that α << Ab for general aquifer conditions, we consider α negligible in
the analysis. We quantified the contribution of mass transfer to block dispersivity
using the relative increase in Ab due to mass transfer defined as,

εr = Ab(ε,Δ) − Ab(ε = 0,Δ)
Ab(ε = 0,Δ)

× 100 (14)

Figure 3 shows the relative increase in Ab due to mass transfer effects as a function
of the size of grid-block, Δ/λ, and degree of heterogeneity, σ2

lnK, for the case of
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Fig. 3 Relative increase in block dispersivity due to mass transfer as a function of size of grid-block
and degree of heterogeneity for the case of a two-dimensional isotropic exponential covariance
function

a two-dimensional isotropic exponential covariance function. The relative contribu-
tion of mass transfer decays with block size and σ2

lnK. Note that as Δ/λ approaches
zero from the right εr tends to infinity because block dispersivity with negligible
mass transfer Ab(ε=0,Δ) approaches zero faster than Ab(ε,Δ). For the usual case
of block sizes of few correlation scales, we see that the contribution of mass transfer is
very important, for instance, εr is about 57 per cent for the case of Δ/λ=3 and σ2

lnK=1.
We note that in realistic modeling applications the form of the dispersivity tensor

is usually anisotropic with Ab
1/Ab

2 ≈ 10. In this case, mass transfer effects can be
significantly decreased, being less dramatic. Nonetheless, our combined numerical-
analytical approach suggests that mass transfer interaction between blocks of the nu-
merical model should be taken into consideration when quantifying block dispersivity
values.

4 Conclusions

We used an analytical stochastic approach combined with Monte Carlo simulations
to study the meaning of block dispersivity as frequently utilize in modeling contam-
inant transport. Specifically, we focus on the relationship between mass transfer
between blocks of the numerical model and block dispersivities. We found that
block dispersivities used as input in transport models should not only reflect the
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underlying heterogeneous structure filtered out by the model but also consider the
effect of mass transfer and the interaction between grid-blocks of the numerical
model. These effects are estimated to be significant with decreasing block size and
increasing degree of heterogeneity.
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