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Abstract Transport of reactive species in the subsurface is driven by mixing
processes. Quantification of the mixing rate is, therefore, the basis for a proper
characterization of the fate of pollutants in geochemically active environments. We
consider the case of an anisotropic correlated random field, with perfect correlation
in the horizontal plane, while the vertical integral scale is finite. Flow is uniform
and takes place in the x-direction. Longitudinal constant dispersion is considered.
Based on the analytical results of De Simoni et al. (2005) for the evaluation of
reaction rates at the local scale, reaction is driven by local dispersion at any given
point in space and time. Still, due to uncertainty in the advective velocity, reaction
rates become a Spatial and Temporal Random Function. The aim of the work is to
find the statistical moments of reaction rates, which in this particular configuration
can be obtained exactly.

1 Introduction

Mixing has been recognized as the controlling process in several problems dealing
with transport of reactive species in the subsurface. Mixing of two waters under
perfect geochemical equilibrium with the natural porous medium would produce a
local disequilibrium. A reaction will then take place to equilibrate the system. The
types of reactions include precipitation/dissolution, adsorption/desorption, redox,
and acid/base, amongst others. Appropriate quantification of the mixing rate is key
for a proper characterization of solute spreading in geochemically active hetero-
geneous environments, with important implications in a number of environmental
applications, including aquifer remediation schemes.
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Recently a methodology was presented to evaluate solute concentrations and
reaction rates when homogeneous reactions (between aqueous species) or hetero-
geneous reactions (involving both aqueous species and the solid phase) take place
under chemical equilibrium conditions (De Simoni et al., 2005). This methodology
allows for the derivation of exact analytical expressions, applicable at the local scale,
where mixing is mainly driven by diffusion or local dispersion. The salient question
then becomes how to further elaborate on these results in order to obtain predictions
of reaction rates in randomly heterogeneous media, together with a quantification of
the associated uncertainty.

Our approach consists of the following steps. First, we define the geochemical
problem. In this case, we consider a reaction of pure precipitation/dissolution, in-
volving two aqueous species at equilibrium with an immobile solid mineral. Second,
the flow and transport problems are formulated. These take place within a three-
dimensional randomly heterogeneous, statistically uniform, hydraulic conductivity
field, K , of infinite lateral extent. Hydraulic conductivity is isotropic at the local
scale, but highly anisotropic in terms of correlation distances. The range of the
conductivity variogram is very large (theoretically infinite) in the two horizontal
directions, while it is finite along the vertical. This model is often employed to pro-
vide a depiction of a statistically stratified medium, where layering is not described
in terms of a vertical sequence of disjoint materials, but rather as a continuous tran-
sition between different values of K , that are variably correlated along the vertical.
A uniform head gradient is imposed parallel to the direction of layering. The (ran-
dom) reaction rates are then computed exactly at the local scale as a function of the
random K , following the methodology of De Simoni et al. (2005). It is then possible
to compute the main statistics of the reaction rate, in terms of a simple quadrature
in the probabilistic space from which hydraulic conductivity values are sampled.
We concentrate on the first two statistical moments, and provide some ideas on the
conditions where the ensemble values are actually a good representation of the real
physical values.

2 Problem Statement

2.1 The Geochemical Problem

We consider the geochemical problem of the so-called bi-species system (Gramling
et al., 2002; De Simoni et al., 2005). This involves the presence of two aqueous
solutes, B1 and B2, which are in chemical equilibrium with a solid mineral, M3.
Without loss of generality we consider the case in which both stoichiometric coeffi-
cients are equal to one and the immobile solid mineral dissolves reversibly to yield
species B1 and B2:

B1 + B2 ⇔ M3. (1)
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In this particular case, the mass action law implies that the two aqueous species must
satisfy at all points and all times the following condition

c1c2 = Keq, (2)

where Keq is the equilibrium constant, which is a function of temperature, pressure
and chemical composition of the solution. In (2) we assume implicitly that activity
coefficients are equal to 1. If at any given moment in space or time two waters sat-
isfying (2) are put in contact, it is easily proven that the mixed water will not satisfy
the equilibrium condition anymore (i.e., immediately it occurs that c1,mc2,m > Keq ,
c1,m and c2,m respectively being the concentration of B1 and B2 in the mixed water).
Under these circumstances precipitation takes place instantaneously and concentra-
tions ci (i = 1, 2) are reduced in equal proportions, until (2) is again satisfied.

2.2 Geostatistical Model for Hydraulic Conductivity
and Flow Set-up

We model hydraulic conductivity, K , as a three-dimensional stationary random
space function, with mean 〈K 〉 and variance σ 2

K . The two-point covariance of
K is of axisymmetric anisotropy and is modeled with an exponential variogram

γK (h) ≡ γK (h1, h2, h3) = σ 2
K exp

(
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(
h1

2

λ1
2 + h2
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2 + h3

2

λ3
2

)1/2
)

. Here, h1, h2, h3

are separation distances along directions x ,y, and z, respectively; λ1, λ2 (= λ1),
λ3 are measures of the corresponding correlation scales. The adopted assumption of
stationarity implies that the probability density function (pdf) of K , pK , be invariant
under translation within the system.

We then consider one of the simplest models of heterogeneity, which is that of
stratified formations. According to this model, K varies only in the vertical direc-
tion, z. Interest in this model has been motivated by its simplicity and by the recog-
nition of the importance of layering upon solute transport in sedimentary formations
(e.g. Matheron and de Marsily, 1980). Its simplicity allows grasping the key features
of transport processes that can be recognized in more complex systems. From a
practical viewpoint, we note that, although perfect layering is rarely found over large
horizontal distances, the model can be applied to depict transport of contaminants
over relatively short travel times.

In this work, layering is modeled in a geostatistical sense, i.e., we consider that
λ1, λ2 → ∞, while λ3 is finite. We consider a saturated groundwater flow that is
parallel to the direction of bedding. In other words, flow is driven by a constant
horizontal gradient, J, that is aligned along the x-direction (J = (J ,0,0)). We further
assume the flow domain to be of large lateral extent, so that boundary effects can
be disregarded. As a consequence, the steady-state Darcy’s velocities at any point in
the domain, q(z), are given by
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q(z) = −K (z)J. (3)

Here, we note that J is negative, so that flow takes place in the direction of increas-
ing x .

2.3 The Transport Equations

The mass balance equations for the two aqueous species are

φ
�ci

�t
= JK

�ci

�x
+ φDL

�2ci

�x2
+ wece,i − r i = 1, 2, (4)

where φ [–] is porosity, DL [L2T−1] is the local scale longitudinal diffusion-
dispersion value, we [T−1] is an external recharge contribution, and ce,i [ML−3] are
the concentrations of species Bi in the recharging water. In this paper we concen-
trate on a diffusion coefficient which is constant and independent on local velocity.
The problem could be made more general by adding an additional term account-
ing for a dispersion coefficient, but the main conclusions of the paper would not
change.

Defining c3 as the concentration of the mineral, the reaction rate, r [ML−3T−1]
is incorporated as a sink/source term in the right hand side of (4), given as

�c3

�t
= r. (5)

In (4) we have discarded the impact of the transverse dispersion, DT , that causes
mixing along the y-direction and between (statistically defined) layers. The reason
is that we are interested in exploring the early-time behavior of the system, i.e.,
processes occurring within the regime for which (tDT )/λ2

3 << 1. In these scenarios,
the effect of tranverse dispersivity has not yet developed in the system (Dentz and
Carrera, 2003) and can be neglected in the governing equation.

Following the methodology of De Simoni et al. (2005), the system can be fully
defined in terms of a conservative components, u, defined as stoichiometric com-
binations of the aqueous concentrations. In the bi-species system presented here,
where the precipitation/dissolution reaction involves equal stoichiometric coeffi-
cients, a single component is needed, defined as

u = c1 − c2. (6)

This component is advected and dispersed according to a transport equation that can
be derived by subtracting the two transport equations in (4), leading to

φ
�u

�t
= JK

�u

�x
+ φDL

�2u

�x2
+ weue. (7)
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The solution for u depends on the boundary and initial conditions of the problem
to be solved. Combining (6) and the mass action law (2), it is possible to write the
concentrations ci explicitly, in terms of u (speciation process)

c1 = u + √
u2 + 4Keq

2
; c2 = −u + √

u2 + 4Keq

2
. (8)

Even though Keq displays variations with temperature or salinity, in many
groundwater-related geochemical processes we can assume that Keq

∼= constant.
In such a case, the aqueous concentrations are only functions of u(i .e., ci = f (u)).
Based on the method of De Simoni et al. (2005), it is possible to derive a closed-form
expression for the reaction rate. The method consists of expanding (4) for one of the
species, and then developing the spatial and temporal derivatives of ci using the
chain rule. We finally simplify the resulting expression by means of (7) and derive
the following expression for the reaction rate,

r = φDL
�2c2

�u2

(
�u

�x

)2

+ we

(
ce,2 − ue

�c2

�u

)
, (9)

where the derivatives of c2 with respect to u have the following expressions

�c2

�u
= 1

2

(
−1 + u√

u2 + 4 Keq

)
,

�2c2

�u2
= 2 Keq

(u2 + 4 Keq)
3/2 .

(10)

2.4 Statistics of Reaction Rates

It is clear from (9) and (10) that the reaction rate is only a function of u and its
spatial derivative, u′ = �u/�x , while u itself is only a function of K . Thus, one
can see that r = r(u(K ), u′(K )) = r(K ). This implies that, if one can derive an
analytical solution of (9) for the random rate, r , the moments of r can be obtained
by integration in the probability space over which K is sampled.

Alternatively, it would be possible to obtain approximate expressions for the (sta-
tistical) moments of r , starting by approximating r in terms of a Taylor’s expansion
around the (constant) arithmetic mean of K , K A(≡ 〈K 〉)

r(K ) = r(K A) +
∑

i=1

1

i !
dir

d K i

∣∣∣∣
K=K A

(K − K A)i . (11)

The leading terms for the first two moments of r can then be obtained after truncat-
ing (11) at second order. Thus, the (second-order) mean rate, 〈r〉, and the (second-
order) variance of reaction rate, σ 2

r , are given respectively by
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〈r〉 ≈ r(K A) + 1

2

d2r

d K 2

∣∣∣∣
K=K A

σ 2
K , (12)

σ 2
r =

(
dr

d K

∣∣∣∣
K=K A

)2

σ 2
K . (13)

An alternative way to find the derivatives involved in (12) and (13) is graphically.
For a given set-up it would be possible to find the curve r vs. K . Then the derivatives
can be derived graphically.

3 Application Example: 1-D Fixed-step Function

3.1 Explicit Random Solution for the Reaction Rates

The proposed methodology is here applied to the previously described setup prob-
lem. The initial and boundary conditions associated with the transport problem are
described mathematically as follows:

u (x, y, z, t = 0) = u0 x ≥ 0

u (x = 0, y, z ∈ [−a, a], t) = u0 + Δu0 t ≥ 0 (14)

u (x = ∞, y, z, t) = u0 t ≥ 0

The solution of the problem, in the absence of recharge we = 0, and along
one-dimensional lines was provided by Ogata and Banks (1961). The normalized
concentration of the component, uD = u/Δu0, can be written in terms of a dimen-

sionless time, tD = − J K t
φx and the Peclet number,

(
Pe = − J K x

φDL

)
:

u D = u0

Δu0
+ 1

2

{
exp (Pe) erfc

[(
Pe

4tD

)1/2

(1 + tD)

]
+erfc

[(
Pe

4tD

)1/2

(1 − tD)

]}

(15)
It is noted that Pe practically ranges between 1 and 100 for flow in aquifers. From
(9) and (15), we can obtain an exact, random solution for the dimensionless rate,
rD(x , y, z, t) = (r x2) / (φ DLΔu0) = f (Keq D , uD(K ), Pe(K ), tD(K )), as

rD ≡ f (K ) = 1

2

Keq D
(
u2

D + 4 Keq D
)3/2

{
Pe ePeerfc

[(
Pe

4tD

)1/2

(1 + tD)

]

(16)

− 2√
π

(
Pe

tD

)1/2

exp
(

−
(

Pe

4tD

)
(1 + tD)2

)}2
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Fig. 1 Dependence of the (random) conservative component, u, and of the rate, r , on K at various
distances from the injection line (x = 0.2, 1.0, 2.0, 3.0 m) and after a time t = 2 days has elapsed
since injection. Constant parameters used in the evaluation of (15) and (16) are: J / φ = −0.167,
DL = 10−2m2/day, u0 = 0.0 kg/m3, Δu0 = 9 × 10−4 kg/m3, Keq = 10−7(kg/m3)2

Here, Keq D = Keq / (Δu0)2. Notice that rD depends on K through uD , Pe, and tD ,
leading to a highly non-linear behavior. To illustrate this non-linearity, Fig. 1 depicts
the dependence of the (random, dimensional) conservative component, u, and of the
rate, r , on K at various distances from the injection line (x = 0.2, 1.0, 2.0, 3.0 m)
and after a time t = 2 days has elapsed since injection. Constant parameters used in
the evaluation of (15) and (16) are also detailed in the Figure.

From Fig. 1 we see that, for a given time, the rate displays a different behavior
at observation points located close to or at some distance from the injection line.
Close to the source, the effect of the type of injection, encapsulated by the second
term in the parenthesis in (16), results first in the presence of a non-zero value
of the rate for K → 0. This is related to dominant diffusive effects in the pres-
ence of very low conductivities. This is then followed by a decreasing behavior
of the rate with increasing K . This behavior persists until r vanishes and then
starts increasing until it reaches a peak. The boundary effect is not felt at larger
distances (i.e., at x = 1 m the boundary effect is completely lost) so that (15) can be
approximated by:

uD = uD,0 + 1

2
erfc

[(
Pe

4tD

)1/2

(1 − tD)

]
, (17)

with uD,0 = u0/Δu0. We note that this is also an approximate solution for the
transport problem (7) in the presence of different types of boundary conditions,
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including (a) the third-type boundary condition (Lindstrom et al., 1967), (b) the
Kreft and Zuber (1978) condition, and (c) the constant point source condition
(Sun, 1996). The total reaction rate then becomes

r = Keq D
(
u2

D + 4 Keq D
)3/2

︸ ︷︷ ︸
A

φ Δu0

2π t︸ ︷︷ ︸
B

{
exp

[
− 1

4DLt

(
x + J K t

φ

)2
]}2

︸ ︷︷ ︸
C

. (18)

In (18), we identify the product of three terms. The spatial distribution of r is mainly
driven by term C . This term is of symmetric shape in x , and peaks at the value
K = − φ x / (t J ), that is, it increases linearly with x . Term B provides the in-
fluence of the maximum with time. Basically, the maximum rate is proportional to
t−1. Term A provides a non-linear behavior that basically displaces the maximum
towards smaller values of K (as evidenced by Fig. 1). Actually this term is driven by
speciation, so that its variation with x is not that relevant. In any case, it is possible
to write some bounds for the maximum reaction rate, as follows

Keq D
((

uD,0 + 1
2

)2 + 4Keq D

)3/2

φ Δu0

2π t
≤ rmax ≤ Keq D

(
u2

D,0 + 4Keq D
)3/2

φ Δu0

2π t
. (19)

3.2 Statistical Moments of Reaction Rates

Following Section 2.4, we are now in a position to write the following exact expres-
sions for the mean and variance of rD

〈
rD(x, t)

〉 =
∞∫

0

f (K ) pK (K ) d K , (20)

σ 2
r D =

∞∫

0

{
f (K ) − 〈rD〉}2

pK (K ) d K , (21)

where the f function is provided in (16). The results in (17) and (18) are valid
regardless of the functional format for the selected pdf. A common choice for the
univariate distribution of K is the Log-Normal model, defined by:

pK (K ) = p(K ) = 1√
2π σY K

exp

{
−1

2

(ln K − μY )2

σ 2
Y

}
, (22)

where μY and σY are, respectively, the mean and standard deviation of the natural
logarithm of K , Y = ln K. Thus, the mean and variance of the reaction rate can
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be obtained after a single quadrature, independently of the shape of the hydraulic
conductivity variogram.

It is also important to note that the actual result for mean and variance is indepen-
dent of the variogram model selected, since it involves only the univariate statistics
of K . The main restriction to use the results of (20) and (21) in a single realization
is that the parameter a in (14) a has to be much larger than λ3, in order for ergodic
conditions to hold.

4 Evaluation of the Reaction Rate Moments

Figure 2 depicts the dependence of the (ensemble) mean reaction rate, 〈r〉, on the
distance from the line of injection and on time elapsed since injection when Y is
Normal with μY = 0 and σ 2

Y = 1. The constant input parameters are those of Fig. 1.
The mean rate displays a non-monotonous behavior. It is characterized by a local
maximum that (a) decreases in magnitude and (b) is displaced towards larger dis-
tances with time. The local maximum is then followed by a decreasing limb, whose
rate of decay decreases with time.

The effect of the dispersion coefficient on 〈r〉 at a given time is illustrated in
Fig. 3. Increasing the rate of mixing, as implied by large values of DL , produces
an increase of the local value of the mean reaction rate. The latter displays a larger
spatial persistence for the largest DL examined, thus evidencing the importance of
this term in a geochemically active system. With the only exception of locations at
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Fig. 2 Dependence of the (ensemble) mean reaction rate, 〈r〉, on the distance from the line of
injection and on time elapsed since injection when Y is Normal with μY = 0 and σ 2

Y = 1
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Fig. 3 Dependence of the (ensemble) mean reaction rate, 〈r〉, on the distance from the line of
injection and on DL for a fixed time when Y is Normal with μY = 0 and σ 2

Y = 1

short distances from the source line, each increase of DL of an order of magnitude
produces a local increase of 〈r〉 of about half order of magnitude.

The standard deviation, σ r , associated with the mean reaction rate is shown in
Fig. 4 as a function of distance and time, when Y is Normal with μY = 0 and σ 2

Y = 1.
We start by noting that the σ r is of the same order of magnitude as 〈r〉 for very short
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distances from the injection line. The rate of decay of σ r with x is generally lower
than that of 〈r〉. It follows that for the investigated time intervals σ r is generally
larger than 〈r〉 and much more so as x increases. This suggests that this type of
structured heterogeneity results in coefficients of variations of the local rate gener-
ally larger than 100% for short times and/or distances. Since the system we analyze
displays a high geochemical activity precisely in the range of short times and dis-
tances, we can conclude that uncertainty in the vertical distribution of hydraulic
conductivity has a large negative influence on the predictability of the behavior of
the system within regions where significant reaction rates occur.

As opposed to the mean rate, σ r displays a local minimum that is located close to
the source line and travels from the origin relatively slowly with time. In the example
considered, σ r displays a primary and a secondary peak, both of them decreasing
with time. While the location of the primary peak is largely insensitive to the elapsed
time (controlled by the boundary conditions), the position of the secondary peak
travels along x as time increases.

The dependence of the spatial distribution of 〈r〉 on the variance of Y for times
t = 0.5 and 2 days is depicted in Fig. 5. Corresponding depictions documenting the
behavior of σ r are offered in Fig. 6. It can be noted that, in general, both 〈r〉 and σ r

tend to increase with σ 2
Y . This tendency is less pronounced as time increases. It is

also interesting to note that 〈r〉 and σ r are relatively insensitive on the heterogeneity
of the underlying log-conductivity field close to the line source. The distance within
which this behavior persists increases with elapsed time.
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Fig. 5 Impact of the variance of Y on the spatial distribution of 〈r〉 versus travel distance, for
times t = 0.5 and 2 days. Constant parameters used are: J / φ = −0.167, DL = 10−2m2/day,
u0 = 0.0 kg/m3, Δu0 = 9 × 10−4 kg/m3, Keq = 10−7(kg/m3)2, μY = 0.0
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0.0 kg/m3, Δu0 = 9 × 10−4 kg/m3, Keq = 10−7(kg/m3)2, μY = 0.0

5 Conclusions

We consider transport of reactive species in an anisotropic correlated random hy-
draulic conductivity field, with perfect correlation in the horizontal plane, while the
vertical integral scale is finite. Flow is uniform and takes place in the x-direction.
Uncertainty in the (vertical) distribution of the advective velocity causes the reaction
rate to become a Spatial and Temporal Random Function. The low-order statistical
moments (mean and variance) of the reaction rate for given space-time coordinates
can be obtained in terms of a simple quadrature in probability space of hydraulic
conductivity.

Our results highlight that, in general, both the mean and standard deviation of
the reaction rate tend to increase with the level of heterogeneity of the hydraulic
conductivity field. The coefficient of variation of the rate of reaction is always larger
than 100%, thus evidencing the negative impact of uncertain hydraulic conductivity
distribution on the predictability of such geo-chemical processes.

This work is a first stage toward advancing in the study of the evaluation of
reaction rates in complex mutispecies transport of reactive species in heterogeneous
media. This problem has profound implications in natural or enhanced attenuation
systems. At larger distances it will be necessary to consider more realistic variogram
models with finite correlation scales as well as to incorporate the effect of transverse
dispersion.
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