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Abstract The analysis of health data and putative covariates, such as environmental,
socio-economic, behavioral or demographic factors, is a promising application for
geostatistics. It presents, however, several methodological challenges that arise from
the fact that data are typically aggregated over irregular spatial supports and consist
of a numerator and a denominator (i.e. population size). This paper presents an
overview of recent developments in the field of health geostatistics, with an em-
phasis on three main steps in the analysis of aggregated health data: estimation of
the underlying disease risk, detection of areas with significantly higher risk, and
analysis of relationships with putative risk factors. The analysis is illustrated using
age-adjusted cervix cancer mortality rates recorded over the 1970–1994 period for
118 counties of four states in the Western USA. Poisson kriging allows the filter-
ing of noisy mortality rates computed from small population sizes, enhancing the
correlation with two putative explanatory variables: percentage of habitants living
below the federally defined poverty line, and percentage of Hispanic females. Area-
to-point kriging formulation creates continuous maps of mortality risk, reducing
the visual bias associated with the interpretation of choropleth maps. Stochastic
simulation is used to generate realizations of cancer mortality maps, which allows
one to quantify numerically how the uncertainty about the spatial distribution of
health outcomes translates into uncertainty about the location of clusters of high
values or the correlation with covariates. Last, geographically-weighted regression
highlights the non-stationarity in the explanatory power of covariates: the higher
mortality values along the coast are better explained by the two covariates than the
lower risk recorded in Utah.

1 Introduction

Since its early development for the assessment of mineral deposits, geostatistics
has been used in a growing number of disciplines dealing with the analysis of data
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distributed in space and/or time. One field that has received little attention in the
geostatistical literature is medical geography or spatial epidemiology, which is con-
cerned with the study of spatial patterns of disease incidence and mortality and the
identification of potential “causes” of disease, such as environmental exposure or
socio-demographic factors (Waller and Gotway 2004). This lack of attention con-
trasts with the increasing need for methods to analyze health data following the
emergence of new infectious diseases (e.g. West Nile Virus, bird flu), the higher oc-
currence of cancer mortality associated with longer life expectancy, and the burden
of a widely polluted environment on human health.

Individual humans represent the basic unit of spatial analysis in health research.
However, because of the need to protect patient privacy publicly available data are
often aggregated to a sufficient extent to prevent the disclosure or reconstruction
of patient identity. The information available for human health studies thus takes
the form of disease rates, e.g. number of deceased or infected patients per 100,000
habitants, aggregated within areas that can span a wide range of scales, such as
census units, counties or states. Associations can then be investigated between these
areal data and environmental, socio-economic, behavioral or demographic covari-
ates. Figure 1 shows an example of datasets that could support a study of the impact
of demographic and socio-economic factors on cervix cancer mortality. The top
map shows the spatial distribution of age-adjusted mortality rates recorded over the
1970-1994 period for 118 counties of four states in the Western USA. The corre-
sponding population at risk is displayed in the middle map, either aggregated within
counties or assigned to 25 km2 cells. The bottom maps show two putative explana-
tory variables: percentage of habitants living below the federally defined poverty
line, and percentage of Hispanic females. Indeed, Hispanic women tend to have
elevated risk of cervix cancer, while poverty reduces access to health care and to
early detection through the Pap smear test in particular (Friedell et al. 1992). These
socio-demographic data are available at the census block level and were assigned to
the nodes of a 5 km spacing grid for the purpose of this study (same resolution as
the population map).

A visual inspection of the cancer mortality map conveys the impression that rates
are much higher in the centre of the study area (Nye and Lincoln Counties), as well
as in one Northern California county. This result must however be interpreted with
caution since the population is not uniformly distributed across the study area and
rates computed from sparsely populated counties tend to be less reliable, an effect
known as “small number problem” and illustrated by the top scattergram in Fig. 1.
The use of administrative units to report the results (i.e. counties in this case) can
also bias the interpretation: had the two counties with high rates been much smaller
in size, these high values likely would have been perceived as less problematic. Last,
the mismatch of spatial supports for cancer rates and explanatory variables prevents
their direct use in the correlation analysis.

Unlike datasets typically analyzed by geostatisticians, the attributes of interest
are here measured exhaustively. Ordinary kriging, the backbone of any geostatisti-
cal analysis, thus seems of little use. Yet, I see at least three main applications of
geostatistics for the analysis of such aggregated data:
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1. Filtering of the noise caused by the small number problem using a variant of
kriging with non-systematic measurement errors.

2. Modeling of the uncertainty attached to the map of filtered rates using stochastic
simulation, and propagation of this uncertainty through subsequent analysis, such
as the detection of aggregate of counties (clusters) with significantly higher or
lower rates than neighboring counties.

3. Disaggregation of county-level data to map cancer mortality at a resolution com-
patible with the measurement support of explanatory variables.

Goovaerts (2005a, 2006a,b) introduced a geostatistical approach to address all three
issues and compared its performances to empirical and Bayesian methods which
have been traditionally used in health science. The filtering method is based on Pois-
son kriging and semivariogram estimators developed by Monestiez et al. (2006) for
mapping the relative abundance of species in the presence of spatially heterogeneous
observation efforts and sparse animal sightings. Poisson kriging was combined with
p-field simulation to generate multiple realizations of the spatial distribution of can-
cer mortality risk. A limitation of all these studies is the assumption that the size
and shape of geographical units, as well as the distribution of the population within
those units, are uniform, which is clearly inappropriate in the example of Fig. 1.
The last issue of change of support was addressed recently in the geostatistical
literature (Gotway and Young 2002, 2005; Kyriakidis 2004). In its general form
kriging can accommodate different spatial supports for the data and the prediction,
while ensuring the coherence of the predictions so that disaggregated estimates of
count data are non-negative and their sum is equal to the original aggregated count.
The coherence property needs however to be tailored to the current situation where
aggregated rate data have various degree of reliability depending on the size of the
population at risk (Goovaerts, 2006b).

This paper discusses how geostatistics can benefit three main steps of the anal-
ysis of aggregated health data: estimation of the underlying disease risk, detec-
tion of areas with significantly higher risk, and analysis of relationships with pu-
tative risk factors. An innovative procedure is proposed for the deconvolution of
the semivariogram of aggregated rates and the disaggregation of these rates, ac-
counting for heterogeneous population densities and the shape and size of admin-
istrative units. The different concepts are illustrated using the cervix cancer data of
Fig. 1.

2 Estimating Mortality Risk from Observed Rates

For a given number N of entities vα (e.g. counties), denote the observed mortality
rates as z(vα) = d(vα)/n(vα), where d(vα) is the number of recorded mortality cases
and n(vα) is the size of the population at risk. Let us assume for now that all entities
vα have similar shapes and sizes, with a uniform population density. These entities
can thus be referenced geographically by their centroids with the vector of spatial
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Fig. 1 Geographical distribution of cervix cancer mortality rates recorded for white females over
the period 1970–1994, and the corresponding population at risk (aggregated within counties or
assigned to 25 km2 cells). Scatterplot illustrates the larger variance of rates computed from sparsely
populated counties. Bottom maps show two putative risk factors: percentage of habitants living
below the federally defined poverty line, and percentage of Hispanic females

coordinate’s uα = (xα, yα). The disease count d(uα) is interpreted as a realization
of a random variable D(uα) that follows a Poisson distribution with one parameter
(expected number of counts) that is the product of the population size n(uα) by the
local risk R(uα), see Goovaerts (2005a) for more details.
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In Poisson kriging (PK), the risk over a given entity vα is estimated as a linear
combination of the kernel rate z(uα) and the rates observed in (K -1) neighboring
entities:

r̂P K (uα) =
K∑

i=1

λi (uα)z(ui ) (1)

where λi (uα) is the weight assigned to the rate z(ui) when estimating the risk at uα .
The K weights are the solution of the following system of linear equations:

K∑
j=1

λ j (uα)
[
CR(ui − u j ) + δi j

m∗
n(ui )

]
+ μ(uα) = CR(ui − uα) i = 1,. . . ,K

K∑
j=1

λ j (uα) = 1
(2)

where δi j =1 if ui=uj and 0 otherwise, and m* is the population-weighted mean of
the N rates. The addition of an “error variance” term, m*/n(ui), for a zero distance
accounts for variability arising from population size, leading to smaller weights for
less reliable data (i.e. measured over smaller populations). The prediction variance
associated with the estimate (1) is computed using the traditional formula for the
ordinary kriging variance:

σ 2
P K (uα) = CR(0) −

K∑

i=1

λi (uα)CR(ui − uα) − μ(uα) (3)

The computation of kriging weights and kriging variance (Equations (2) and (3))
requires knowledge of the covariance of the unknown risk, CR(h), or equivalently its
semivariogram γ R(h)=CR(0)- CR(h). Following Monestiez et al. (2006) the semi-
variogram of the risk is estimated as:

γ̂R(h) = 1

2
N(h)∑
α=1

n(uα)n( uα+h)
n(uα)+n( uα+h)

N(h)∑

α=1

{
n(uα)n(uα + h)

n(uα) + n(uα + h)
[z(uα) − z( uα + h)]2 −m∗

}

(4)

where the different pairs [z(uα) − z(uα+h)] are weighted by the corresponding
population sizes to homogenize their variance.

2.1 Area-to-Area (ATA) Poisson Kriging

In the situation where the geographical entities have very different shapes and sizes,
areal data can not be simply collapsed into their respective polygon centroids. Fol-
lowing the terminology in Kyriakidis (2004), ATA kriging refers to the case where
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both the prediction and measurement supports are blocks (or areas) instead of points.
The PK estimate (1) for the areal risk value r(vα) thus becomes:

r̂P K (vα) =
K∑

i=1

λi (vα)z(vi ) (5)

The Poisson kriging system (2) is now written as:

K∑

j=1

λ j(vα)
[

C̄R(vi , v j ) + δi j
m∗

n(vi )

]
+ μ(vα) = C̄R(vi , vα) i = 1,. . . ,K

K∑

j=1

λ j(vα) = 1.

(6)

The main change is that point-to-point covariance terms CR(ui − u j ) are replaced
by area-to-area covariances C̄R(vi , v j ) = Cov{Z(vi),Z(vj)}. Like in the traditional
block kriging, those covariances are approximated by the average of the point sup-
port covariance C(h) computed between any two locations discretizing the areas vi

and vj :

C̄R(vi , v j ) = 1
Pi∑

s=1

Pj∑
s ′=1

wss ′

Pi∑

s=1

Pj∑

s ′=1

wss ′C(us, us ′) (7)

where Pi and Pj are the number of points used to discretize the two areas vi and vj,
respectively. For the example of Fig. 1 a grid with a spacing of 5 km was overlaid
over the study area, yielding a total of 11 to 2,082 discretizing points per county
depending on its area. The high-resolution population map in Fig. 1 clearly shows
the heterogeneous distribution of population within counties. To account for spa-
tially varying population density in the computation of the area-to-area covariance,
the weights wss ′ were identified to the product of population sizes within the 25 km2

cells centred on the discretizing point us and u′
s :

wss ′ = n(us) × n(us ′) with
Pi∑

s=1

n(us) = n(vi ) and
Pj∑

s ′=1

n(us ′) = n(v j ) (8)

The kriging variance for the areal estimator is computed as:

σ 2
P K (vα) = C̄R(vα, vα) −

K∑

i=1

λi (vα)C̄R(vi , vα) − μ(vα) (9)
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where C̄R(vα, vα) is the within-area covariance that depends on the form of the
geographical entity vα and decreases as its area increases. Thus, ignoring the size of
the prediction support in the computation of the kriging variance (3) can lead to a
systematic overestimation of the prediction variance of large blocks.

2.2 Area-to-Point (ATP) Poisson Kriging

A major limitation of choropleth maps is the common biased visual perception that
larger rural and sparsely populated areas are of greater importance. A solution is to
create continuous maps of mortality risk, which amounts to perform a disaggrega-
tion or area-to-point interpolation. At each discretizing point us within an entity vα ,
the risk r (us) can be estimated as the following linear combination of areal data:

r̂P K (us) =
K∑

i=1

λi (us)z(vi ) (10)

The Poisson kriging system is similar to system (6), except for the right-hand-side
term where the area-to-area covariances C̄R(vi , vα) is replaced by the area-to-point
covariance C̄R(vi , us). The latter is approximated by a procedure similar to the one
described in equation (7). A critical property of the ATP kriging estimator is its
coherence, that is the aggregation of the Pα point risk estimates within any given
entity vα yields the areal risk estimate r̂P K (vα) :

r̂P K (vα) = 1

n(vα)

Pα∑

s=1

n(us)r̂PK (us) (11)

Condition (11) differs from the constraint commonly found in the geostatistical
literature (Kyriakidis, 2004) in that: 1) the observation z(vα) is uncertain, hence
it is the reproduction of the PK risk estimate r̂P K (vα) that is imposed, and 2) the
incorporation of the population density in the computation of the areal covariance
implies that it is the population-weighted average of the point risk estimates, not
their arithmetical average, that satisfies the coherence condition. The constraint (11)
is satisfied if the same K areal data are used for the estimation of the Pα point risk
estimates. Indeed, in this case the population-weighted average of the right-hand-
side covariance terms of the K ATP kriging systems is equal to the right-hand-side
covariance of the single ATA kriging system:

1
n(vα)

Pα∑
s=1

n(us)C̄R(vi , us) = 1
n(vα)

Pα∑
s=1

n(us)
[

1
n(vi )

Pi∑
s ′=1

n( us ′)C(us ′ , us)
]

= C̄R(vi , vα) ,

(12)
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per relations (7) and (8). Therefore, the following relationship exists between the
two sets of ATA and ATP kriging weights:

λi (vα) = 1

n(vα)

Pα∑

s=1

n(us)λi (us) i = 1, . . . , K (13)

which ensures the coherence of the estimation.

2.3 Deconvolution of the Semivariogram of the Risk

Both ATA and ATP kriging require knowledge of the point support covariance of
the risk C(h), or equivalently the semivariogram γ (h). This function cannot be es-
timated directly from the observed rates, since only aggregated data are available.
Derivation of a point support semivariogram from the experimental semivariogram
of areal data is called “deconvolution”, an operation that is frequent in mining and
has been the topic of much research (Journel and Huijbregts, 1978). However, in
typical mining applications all blocks (areas) have the same size and shape, which
makes the deconvolution reasonably straightforward. Goovaerts (2008) proposed
an iterative approach to conduct the deconvolution in presence of irregular geo-
graphical units. This innovative algorithm starts with the derivation of an initial
deconvoluted model γ (0)(h); for example the model γR(h) fitted to the areal data.
This initial model is then regularized using the following expression:

γregul(h) = γ̄ (0)(v, vh) − γ̄
(0)
h (v, v) (14)

where γ̄ (0)(v, vh ) is the area-to-area semivariogram value for any two counties
separated by a distance h. It is approximated by the population-weighted average
(7), using γ (0)(h) instead of C(h). The second term, γ̄

(0)
h (v, v), is the within-area

semivariogram value. Unlike the expression commonly found in the literature, this
term varies as a function of the separation distance since smaller areas tend to be
paired at shorter distances. To account for heterogeneous population density, the
distance between any two counties is estimated as a population-weighted average of
distances between locations discretizing the pair of counties:

Dist(vi , v j ) = 1
Pi∑

s=1

Pj∑
s ′=1

n(us)n(us ′)

Pi∑

s=1

Pj∑

s ′=1

n(us)n( us ′) ‖us − us ′‖ (15)

Note that the block-to-block distances (15) are numerically very close to the Euclid-
ian distances computed between population-weighted centroids (Goovaerts, 2006b).
The theoretically regularized model,γregul(h), is compared to the model fitted to
experimental values, γR(h), and the relative difference between the two curves,
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denoted D, is used as optimization criterion. A new candidate point-support semi-
variogram γ (1)(h) is derived by rescaling of the initial point-support model γ (0)(h),
and then regularized according to expression (14). Model γ (1)(h) becomes the new
optimum if the theoretically regularized semivariogram model γ

(1)
regul(h) gets closer

to the model fitted to areal data, that is if D(1) < D(0). Rescaling coefficients are
then updated to account for the difference between γ

(1)
regul(h) and γR(h), leading to

a new candidate model γ (2)(h) for the next iteration. The procedure stops when the
maximum number of allowed iterations has been tried (e.g. 35 in this paper) or the
decrease in the D statistic becomes negligible from one iteration to the next. The use
of lag-specific rescaling coefficients provides enough flexibility to modify the initial
shape of the point-support semivariogram and makes the deconvolution insensitive
to the initial solution adopted. More details and simulation studies are available in
Goovaerts (2006b, 2008).

2.4 Application to the Cervix Cancer Mortality Data

Figure 2 (top graph, dark gray curve) shows the experimental and model semi-
variograms of cervix cancer mortality risk computed from aggregated data using
estimator (4) and the distance measure (15). This model is then deconvoluted and,
as expected, the resulting model (light gray curve) has a higher sill since the punc-
tual process has a larger variance than its aggregated form. Its regularization using
expression (14) yields a semivariogram model that is close to the one fitted to ex-
perimental values, which validates the consistency of the deconvolution.

The deconvoluted model was used to estimate aggregated risk values at the
county level (ATA kriging) and to map the spatial distribution of risk values within
counties (ATP kriging). Both maps are much smoother than the map of raw rates
since the noise due to small population sizes is filtered. In particular, the high risk
area formed by two central counties in Fig. 1 disappeared, which illustrates how
hazardous the interpretation of the map of observed rates can be. The highest risk
(4.081 deaths/100,000 habitants) is predicted for Kern County, just west of Santa
Barbara County. ATP kriging map shows that the high risk is not confined to this sole
county but spreads over four counties, which is important information for designing
prevention strategies. By construction, aggregating the ATP kriging estimates within
each county using the population density map of Fig. 1 (right medium graph) yields
the ATA kriging map.

The map of ATA kriging variance essentially reflects the higher confidence in
the mortality risk estimated for counties with large populations. The distribution of
population can however be highly heterogeneous in large counties with contrasted
urban and rural areas. This information is incorporated in the ATP kriging variance
map that shows clearly the location of urban centers, such as Los Angeles, San
Francisco, Salt Lake City, Las Vegas or Tucson. The variance of point risk estimates
is much larger than the county-level estimates, as expected.
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ATA kriged risk ATA kriging variance

ATP kriged risk                                         ATP kriging variance

deaths/106
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Fig. 2 Experimental semivariogram of the risk estimated from county-level rate data, and the
results of its deconvolution (top curve). The regularization of the point support model yields a curve
(black dashed line) that is very close to the experimental one. The model is then used to estimate
the cervix cancer mortality risk (deaths/100,000 habitants) and associated prediction variance at
the county level (ATA kriging) or at the nodes of a 5 km spacing grid (ATP kriging)

3 Detection of Spatial Clusters and Outliers

Mapping cancer risk is a preliminary step towards further analysis that might
highlight areas where causative exposures change through geographic space, the
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presence of local populations with distinct cancer incidences, or the impact of
different cancer control methods.

3.1 Local Cluster Analysis (LCA)

The local Moran test aims to detect the existence of local clusters or outliers of high
or low cancer risk values (Goovaerts, 2005b). For each county, the so-called LISA
(Local Indicator of Spatial Autocorrelation) statistic is computed as:

L I S A(vα) =
[

z(vα) − m

s

]
×
⎛

⎝
J (vα)∑

j=1

1

J (vα)
×
[

z(v j ) − m

s

]⎞

⎠ (16)

where z(vα) is the mortality rate for the county being tested, which is referred to
as the “kernel” hereafter; z(vj) are the rates for the J (vα) neighboring counties
that are here defined as units sharing a common border or vertex with the kernel
vα (1-st order queen adjacencies). All values are standardized using the mean m
and standard deviation s of the set of risk estimates. Since the standardized values
have zero mean, a negative value for the LISA statistic indicates a negative local
auto-correlation and the presence of spatial outlier where the kernel value is much
lower (higher) than the surrounding values. Cluster of low (high) values will lead to
positive values of the LISA statistic.

In addition to the sign of the LISA statistic, its magnitude informs on the extent to
which kernel and neighborhood values differ. To test whether this difference is sig-
nificant or not, a Monte Carlo simulation is conducted, which traditionally consists
of sampling randomly and without replacement the global distribution of rates (i.e.
sample histogram) and computing the corresponding simulated neighborhood av-
erages. This operation is repeated many times (e.g. M = 999 draws) and these
simulated values are multiplied by the kernel value to produce a set of M simulated
values of the LISA statistic for the entity vα . This set represents a numerical approx-
imation of the probability distribution of the LISA statistic at vα , under the assump-
tion of spatial independence. The observed statistic (Equation 16) is compared to the
probability distribution, enabling the computation of the probability of not rejecting
the null hypothesis of spatial independence. The so-called p-value is compared to
the significance level chosen by the user and representing the probability of rejecting
the null hypothesis when it is true (Type I error). Every county where the p-value
is lower than the significance level is classified as a significant spatial outlier (HL:
high value surrounded by low values, and LH: low value surrounded by high values)
or cluster (HH: high value surrounded by high values, and LL: low value surrounded
by low values). If the p-value exceeds the significance level, the county is declared
non-significant (NS).

Figure 3 (left top map) shows the results of the LCA of the observed cervix cancer
mortality rates. Only two counties are declared significant HL outliers, a result that
must be interpreted with caution given their small population sizes. Indeed, these
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two counties become non-significant when the analysis is conducted on the map
of kriged risks, see Fig. 3 (right top map). Accounting for population size in the
analysis reveals a cluster of low risk values in Utah, which likely reflects cultural
or religious influence on sexual practices resulting in reduced transmission of hu-
man papillomavirus. Yet, the smoothing effect of kriging tends to enhances spatial
autocorrelation in the risk map, with the risk of inflating artificially cluster sizes.
For example, the one-county HH cluster detected in the middle of the mortality map
grows to become an aggregate of seven counties on the map of kriged risks. Another
weakness is that the uncertainty attached to the risk estimates (i.e. kriging variance)
is ignored in the analysis.

3.2 Stochastic Simulation of Cancer Mortality Risk

Static maps of risk estimates and the associated prediction variance fail to depict
the uncertainty attached to the spatial distribution of risk values and do not allow
its propagation through local cluster analysis. Instead of a unique set of smooth
risk estimates {r̂P K (vα), α = 1, . . . , N}, stochastic simulation aims to generate
a set of L equally-probable realizations of the spatial distribution of risk values,
{r (l)(vα), α = 1, . . . , N ; l = 1, . . . , L}, each consistent with the spatial pattern
of the risk as modeled using the function γ R(h). Goovaerts (2006a) proposed the
use of p-field simulation to circumvent the problem that no risk data (i.e. only risk
estimates), hence no reference histogram, is available to condition the simulation.
The basic idea is to generate a realization {r (l)(vα), α = 1, . . . , N} through the
sampling of the set of local probability distributions (ccdf) by a set of spatially
correlated probability values {p(l)(vα), α = 1, . . . , N}, known as a probability
field or p-field. Assuming that the ccdf of the risk variable is Gaussian, each risk
value can be simulated as:

r (l)(vα) = r̂P K (vα) + σP K (vα)y(l)(vα) (17)

where y(l)(vα) is the quantile of the standard normal distribution corresponding to
the cumulative probability p(l)(vα). r̂P K (vα) and σP K (vα) are the ATA kriging esti-
mate and standard deviation, respectively. The L sets of random deviates or normal
scores, {y(l)(vα), α = 1, . . . N}, are generated using non-conditional sequential
Gaussian simulation with the distance metric (15) and the semivariogram of the
risk, γ R(h), rescaled to a unit sill; see Goovaerts (2006a) for a detailed description
of the algorithm.

Figure 3 (medium row) shows two realizations of the spatial distribution of cervix
cancer mortality risk values generated using p-field simulation. The simulated maps
are more variable than the kriged risk map of Fig. 2, yet they are smoother than
the map of potentially unreliable rates of Fig. 1. Differences among realizations
depict the uncertainty attached to the risk map. For example, Nye County in the
center of the map, which has a very high mortality rate (recall Fig. 1) but low
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Fig. 3 Results of the local cluster analysis conducted on cervix cancer mortality rates and esti-
mated risks (top maps); see legend description in text. Middle maps show two realizations of the
spatial distribution of cervix cancer risk, while the bottom map shows the most likely (ML) classi-
fication inferred from 500 realizations. The intensity of the shading increases as the classification
becomes more certain (i.e. the likelihood increases)
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population, has a simulated risk that is small for realization 1 but large in the
next realization. Five hundreds realizations were generated and underwent a local
cluster analysis. The information provided by the set of 500 LCAs is summarized
at the bottom of Fig. 3. The color code indicates the most frequent classification
(maximum likelihood = ML) of each county across the 500 simulated maps. The
shading reflects the probability of occurrence or likelihood of the mapped class,
see Fig. 3 (right bottom graph). Solid shading corresponds to classifications with
high frequencies of occurrence (i.e. likelihood > 0.9), while hatched counties de-
note the least reliable results (i.e. likelihood < 0.75). This coding is somewhat
subjective but leads to a clear visualization of the lower reliability of the clusters
of high values relatively to the cluster of low risk identified in Utah. Only one
county south of Salt Lake City is declared a significant low-risk cluster with a high
likelihood (0.906).

4 Correlation Analysis

Once spatial patterns, such as clusters of high risk values, have been identified on the
cancer mortality map, a critical step for cancer control intervention is the analysis
of relationships between these features and putative environmental, demographic,
socioeconomic and behavioral factors. The major difficulty is the choice of a scale
for quantifying correlations between variables that are typically measured over very
different supports, e.g. counties and census blocks in this study.

4.1 Ecological Analysis

The most straightforward approach is to aggregate the finer data to the level of
coarser resolution data, resulting in a common geographical scale for the corre-
lation analysis. For example, Fig. 4 shows the county-level kriged risk and the two
covariates of Fig. 1 aggregated to the same geography: percentage of habitants living
below the federally defined poverty line, and percentage of Hispanic females. Both
variables were logarithmically transformed, and their product defines the interac-
tion term. Table 1 (first two rows) shows the correlation coefficient between each
of the three covariates and the mortality rates before and after application of Pois-
son kriging. Filtering the noise due to the small number problem clearly enhances
the explanatory power of the covariates: the proportion of variance explained (R2)
increases by almost one order of magnitude (6.2% to 48.8%) and all correlation co-
efficients become highly significant. The uncertainty attached to the risk estimates
can be accounted for by weighting each estimate according to the inverse of its
kriging variance, leading to slightly larger correlation coefficients and R2 (Table 1,
3rd row).

So far the significance of the correlation coefficient is tested using the common
assumption of independence of observations, which is clearly inappropriate for most
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ATA kriged risk Hispanic population 

Poverty  level Interaction term

deaths/106 Ln %

Ln %Ln %

Fig. 4 Maps of cancer mortality risk estimated by Poisson kriging and the logtransformed val-
ues of three putative covariates aggregated to the county-level for conducting the ecological
analysis

spatial datasets. Instead of computing the correlation between each covariate and
the smoothed risk map, the correlation was quantified for each of the 500 risk maps
generated by p-field simulation in Section 3.2. This propagation of uncertainty leads
to a range of correlation coefficients and R2 that can be fairly wide, see Table 1 (4th
row). Next, this distribution must be compared to the one expected under the as-
sumption of no correlation between mortality risk and each covariate. This reference
distribution was obtained empirically in 2 steps. First, the maps of covariates were
modified using the spatially ordered shuffling procedure proposed by Goovaerts and
Jacquez (2004). The idea is to generate a standard normal random field with a given
spatial covariance, e.g. the covariance of the demographic variable in this paper,
using non-conditional sequential Gaussian simulation. Each simulated normal score
is then substituted by the value of same rank in the distribution of proportion of
Hispanic females. To maintain the correlation among covariates, all three covariate
maps were modified simultaneously. The operation was repeated 100 times, yielding
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Table 1 Results of the correlation analysis of cervix cancer mortality rates and kriged risks with
two putative covariates, as well as their interaction. Kriging estimates are weighted according to the
inverse of their kriging variance. The use of neutral models allows one to incorporate the spatial
uncertainty attached to cancer risk estimates into the computation of the correlation coefficients
and testing of their significance (∗ = significant, ∗∗ = highly significant). The last two rows show
the results obtained after disaggregation

Correlation with covariates

R2(%)Regression models Hispanic Poverty Interaction

County-level correlation

Rates 0.210∗ 0.144 0.240∗∗ 6.2

ATA kriging 0.625∗∗ 0.473∗∗ 0.690∗∗ 48.8

ATA kriging (weighted) 0.641∗∗ 0.613∗∗ 0.729∗∗ 54.1

ATA kriging (neutral model) 0.247–0.703∗∗ 0.173–0.590∗∗ 0.347–0.716∗∗ 14.4–52.0

Point-level (25 km2 cells) correlation

ATP kriging 0.096∗∗ −0.036∗∗ 0.188∗∗ 9.8

ATP kriging (weighted) 0.239∗∗ 0.090∗∗ 0.321∗∗ 14.0

100 sets of covariate maps. Second, the correlation between each of the re-ordered
covariate maps and each of the 500 simulated risk maps is assessed, leading to a
distribution of 50,000 correlation coefficients that corresponds to an hypothesis of
independence, since the covariate maps were modified independently of the risk
maps. For this case study, this more realistic testing procedure does not change the
conclusions drawn from the classical analysis.

Correlations computed between health outcomes and risk factors averaged over
geographical entities, such as counties, are referred to as ‘ecological correlations’.
The unit of analysis is a group of people, as opposed to individual-based stud-
ies that relies on data collected for each cancer case. A limitation of ecologi-
cal analyses is the resolution available which might be too coarse to obtain a
detailed view of geographical patterns in disease mortality or incidence. The ag-
gregation may also distort or mask the true exposure/response relationship for
individuals, a phenomenon called the ecological fallacy. The disaggregation per-
formed by ATP Poisson kriging eliminates the need for using averaged values,
and the correlation coefficients between both risk and covariates estimated at the
nodes of the 5-km spacing grid are listed in Table 1 (last rows). The correlation
is much weaker than for county-level data, which might be due to the noise in
the map of socio-demographic variables and/or reflects the scale-dependence of the
relationship.

4.2 Geographically-Weighted Regression

The analysis in Table 1 is aspatial and makes the implicit assumption that the
impact of covariates is constant across the study area. This assumption is likely
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unrealistic for large areas which can display substantial geographic variation in
demographic, social, economic, and environmental conditions. Several local regres-
sion techniques have been developed to account for the non-stationarity of relation-
ships in space (Fotheringham et al., 2002). In geographically-weighted regression
(GWR) the regression is performed within local windows centred on each observa-
tion or the nodes of a regular grid, and each observation is weighted according to its
proximity to the centre of the window. This weighting avoids abrupt changes in
the local statistics computed in adjacent windows. Local regression coefficients and
associated statistics (i.e. proportion of variance explained, correlation coefficients)
can then be mapped to visualize how the explanatory power of covariates changes
spatially (Goovaerts, 2005c).

GWR regression was conducted using as dependent variable the mortality risk
estimated by ATA and ATP kriging (20 km spacing grid). The centers of the local
windows were identified to either the county population-weighted centroids or the
nodes of the 5 km spacing grid. The window size was defined as the set of 50 clos-
est observations for both county-level and point-level data. The weight assigned to
each observation uα was computed as Csph(h0α)/σ 2

P K (ua), where Csph(h0α) is the
value of the spherical covariance at a distance h0α to the center u0 of the window,
and σ 2

P K (ua) is the kriging variance of the ATA or ATP kriged estimate. The range
of Csph(h) was set to the distance between the center of the window and the most
distant observation. Two statistics are displayed in Fig. 5: the proportion of vari-
ance explained within each window (left column) and the covariate with the highest
significant correlation coefficient (right column).

The analysis of county-level data (Fig. 5, top maps) shows a clear SW-NE
trend in the explanatory power of the local regression models: the higher mortality
values along the coast are better explained by the two covariates than the lower risk
recorded in Utah. In this state, none of the covariates displays significant correla-
tion with cancer mortality. Poverty level is the best correlated covariate in Northern
California while the interaction between economic and demographic variables is
the most significant factor in Central California and in the South of the study area.
The proportion of Hispanic females is the most significant covariate in a very small
transition area between the coast where higher mortality rates and proportion of
Hispanic females are observed and Utah where the same two variables have lower
values. The computation of the GWR statistics over a regular grid allows one to
visualize the within-county variability (Fig. 5, middle maps), yet the analysis is
still based on county-level aggregates of socio-demographic variables which can be
overly simplistic for some counties, recall Figure 1 (bottom maps). For example,
the largest R2 observed in the Northeast corner of the study area (Fig. 5, left bottom
map) corresponds to the Eastern border of a county that display great variation for
both proportion of Hispanic females and habitants below the poverty level. Differ-
ences between the GWR of county-level and point-support data are even more strik-
ing for the map of significantly correlated covariates. The pattern becomes much
more complex and correlations are locally negative, see hatched areas in Figure 5
(right bottom map). These maps are mainly used for descriptive purpose and should
guide further studies to interpret these local relationships.
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ATA kriging (R2) ATA kriging (covariate)

ATA kriging (R2) ATA kriging (covariate) 

ATP kriging (R2) ATP kriging (covariate)
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Inter.
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Fig. 5 Results of the geographically-weighted regression applied to the ATA and ATP kriged risk
values. Left column displays the maps of the local proportion of variance explained, while the right
maps show, for each county or node of the 5 km spacing grid, the covariate (Hispanic population,
poverty level, and interaction) that has the highest significant correlation (hatched areas = negative
correlation) with cancer mortality risk. The analysis of county-level data conducted at each node
of the 5 km spacing grid is shown in the middle maps
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Conclusions

The analysis of health data and putative covariates, such as environmental, socio-
economic, behavioral or demographic factors, is a promising application for geo-
statistics. It presents, however, several methodological challenges that arise from
the fact that data are typically aggregated over irregular spatial supports and con-
sist of a numerator and a denominator (i.e. population size). Common geostatistical
tools, such as semivariograms or kriging, thus cannot be blindly implemented in
environmental epidemiology. This paper demonstrated how recent developments
in other disciplines, such as ecology for Poisson kriging or remote sensing for
area-to-point kriging, can foster the advancement of health geostatistics. Capital-
izing on these results and an innovative approach for semivariogram deconvolution,
this paper presented the first study where the size and shape of administrative
units, as well as the population density, is incorporated into the filtering of noisy
mortality rates and the mapping of the corresponding risk at a fine scale (i.e.
disaggregation).

Like in other disciplines, spatial interpolation is rarely a goal per se; rather it is
a step along the decision-making process. In epidemiology one main concern is to
establish the rationale for targeted cancer control interventions, including consider-
ation of health services needs, and resource allocation for screening and diagnostic
testing. It is thus important to delineate areas with significantly higher mortality or
incidence rates, as well as to analyze relationships between health outcomes and
putative risk factors. The uncertainty attached to cancer maps needs however to be
propagated through this analysis, a task that geostatisticians have been tackling for
several decades using stochastic simulation. Once again the implementation of this
approach in epidemiology faces specific challenge, such as the absence of mea-
surements of the target attribute. This paper introduced the application of p-field
simulation to generate realizations of cancer mortality maps, which allows one to
quantify numerically how the uncertainty about the spatial distribution of health
outcomes translates into uncertainty about the location of clusters of high values
or the correlation with covariates. Last, this study demonstrated the limitation of a
traditional aspatial regression analysis, which ignores the geographic variations in
the impact of covariates.

The field of health geostatistics is still in its infancy. Its growth cannot be sus-
tained, or at least is meaningless, if it does not involve the end-users who are the
epidemiologists and GIS specialists working in health departments and cancer reg-
istries. Critical components to its success include the publication of applied studies
illustrating the merits of geostatistics over current methods, training through short
courses and updating of existing curriculum, as well as the development of user-
friendly software. The success of mining and environmental geostatistics, as we
experience it today, can be traced back to its development outside the realm of spatial
statistics, through the close collaboration of mathematically minded individuals and
practitioners. Health geostatistics will prove to be no different.
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