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Systematic bifurcation analysis requires the repeated continuation of different
phase objects in free parameters, the detection and analysis of their bifurca-
tions, and branch switching. Such computations produce a lot of numerical
data that must be analyzed and, finally, presented in graphical form. Thus,
continuation programs should not only be efficient numerically but should al-
low for interactive management and have a user-friendly graphics interface.
The development of such programs is progressing rapidly. Here we make an
attempt to survey existing interactive continuation and bifurcation tools and
outline their history and perspectives. This is followed by the presentation
of a framework that organizes the different types of objects and bifurcating
branches. We give a brief overview of how such a framework is implemented in
the recent software environment Matcont. In the final two sections we give
a few examples that illustrate the use of Matcont and indicate directions of
future developments.

2.1 Overview of Existing Software

During the last decades, considerable efforts have been made to develop
general-purpose software tools for bifurcation analysis. One may distinguish
at least three types (generations) of such software:

1. Noninteractive packages and codes,
2. Interactive programs,
3. Software environments.

Since the development of numerical algorithms advances with each generation,
these tools also differ in supported computations. We give here an overview
for each of the above types, with emphasis on the best known packages.
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2.1.1 Noninteractive Packages and Codes

Noninteractive packages and codes first appeared in the beginning of the 1980s
and were written in FORTRAN. They allowed one to continue equilibria and
limit cycles of ODEs, as well as detect and subsequently continue their ba-
sic bifurcations: limit point (saddle-node) bifurcation, Hopf bifurcation, and
period-doubling bifurcation. The most widely used packages of this genera-
tion are Auto86 [12] and Linlbf [24]. Although these two packages sup-
ported a similar level of bifurcation analysis, they employed very different
numerical algorithms. For example, Linlbf bases its test functions to locate
Hopf and Neimark-Sacker bifurcation points on Hurwitz determinants, while
Auto86 bases the detection and location of all local bifurcations on monitor-
ing the eigenvalues (multipliers). Moreover, the continuation of equilibrium
(fixed point) bifurcations in Auto86 is done using extended augmented sys-
tems that include eigenvectors, while in Linlbf minimally augmented systems
are used. The most essential difference, however, lies in the continuation of
limit cycles and their codimension-one bifurcations. In Linlbf these tasks
are performed via numerically constructed and differentiated Poincaré maps,
while Auto86 employs the discretization of the corresponding boundary value
problems using piecewise-polynomial approximations and orthogonal colloca-
tion. The latter proved its superiority for more complex multi-dimensional
ODEs.

Bifurcation theory relies on center manifold reduction, followed by trans-
formation to a normal form. The computation of normal-form coefficients is an
important aspect of bifurcation software; for background we refer to [32]. The
explicit computation of normal-form coefficients is not supported by Auto86,
and Linlbf only computes normal-form coefficients for local codimension-one
bifurcations. There were a few codes available in the 1980s for simple numeri-
cal normal-form and branching analysis, e.g. Stuff [5] and Bifor2 [22], but
switching to the computation of different bifurcating objects required manual
restarting of the code with new initial data.

Several other noninteractive packages for the continuation of simplest bi-
furcations in ODEs also appeared around this time, e.g. Bifpack by Sey-
del [38, 39], and development continues to date, in particular for large-scale
dynamical systems with packages such as Loca3 by Salinger et al. [35, 36].

2.1.2 Interactive Programs

Interactive programs for the bifurcation analysis of ODEs appeared at the end
of the 1980s, when workstations and IBM-PC compatible computers became
widely available at universities and general research institutes. All programs
of this generation have a simple Graphical User Interface (GUI) with buttons,

3 loca is available via http://www.cs.sandia.gov/loca/.
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Fig. 2.1. Screen snapshot of Auto94/97.

windows, and pull-down menus, and support the on-line input of the right-
hand side of ODEs (through compilation with a FORTRAN or C compiler).
Computed curves could now be plotted directly in a graphics window.

The continuation code Auto86 mentioned above already comes with a
simple interactive graphics program called plaut that allows for graphical
presentation of computed data. There are versions of plaut for most of the
widespread workstations, as well as a Matlab version mplaut4, written by
De Feo. There have been several attempts to improve the user interface of
Auto86 and later versions of Auto. The first interactive version of Auto86
was developed at Princeton University by Taylor and Kevrekidis [41] for SGI
workstations. Another example is XppAut5 by Ermentrout [15] for work-
stations and PCs, which developed from combining the MS-DOS program
Phaseplane with Auto. XppAut is also capable of simple phase-plane anal-
ysis, including the computation of one-dimensional global invariant manifolds
of equilibria, as is Scigma [40]. Note that XppAut is still widely used and
includes tools for the analysis of delay equations, functional equations, and
stochastic equations. Doedel, Wang, and Fairgrieve also designed the interac-

4 mplaut is available via http://www.math.uu.nl/people/kuznet/cm.
5 XppAut is available via http://www.math.pitt.edu/˜bard/xpp/xpp.html.
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Fig. 2.2. Screen snapshot of LocBif 2.0.

tive version Auto94 for UNIX workstations with X-Windows; see Fig. 2.1.
This version has extended numerical capabilities, including the continuation
of all codimension-one bifurcations of limit cycles and fixed points. The soft-
ware was upgraded in 1997 to support the continuation of homoclinic orbits
using HomCont [9, 13]. This version is called Auto976 and there is also the
C-version Auto2000 which has a new interactive graphics browser.

The major difficulty in using all versions of Auto is the analysis of detected
bifurcation points and switching at these points to the continuation of other
bifurcation curves, which requires browsing of several output files and a good
understanding of their formats. However, due to the exceptional numerical
efficiency of Auto, attempts to provide a better GUI for it continue to date;
see, for example, Oscill87.

The first user-friendly interactive bifurcation program for bifurcation anal-
ysis was LocBif8 developed for PCs under MS-DOS by Khibnik, Kuznetsov,
Levitin, and Nikolaev [25]; a screen snapshot of version 2.0 is shown in Fig. 2.2.
The numerical part of the program is based on the non-interactive code

6 Auto is available via http://cmvl.cs.concordia.ca/.
7 Oscill8 is available via http://oscill8.sourceforge.net/doc/.
8 LocBif is available via http://www.math.uu.nl/people/kuznet/LOCBIF;

LocBif works as a DOS-application under MS-Windows, but is no longer
supported.
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Linlbf and allows for continuation of equilibrium, fixed-point, and limit cycle
bifurcations up to codimension three. The program allows for easy switching
between the computation of various curves at detected bifurcation points. The
user can manipulate individual computed bifurcation curves, which are stored
separately in an archive. Version 1.0 of LocBif uses an external FORTRAN
compiler and has a very simple keyboard-based interface, but version 2.0 can
be driven by a mouse and has a special built-in compiler for the right-hand
side. Neither version, however, has special tools to output the computed curves
in a graphic format.

The program Candys/QA9 by Feudel and Jansen [16] also belongs to this
generation but is less widely used. All programs mentioned so far have closed
architecture.

2.1.3 Software Environments

The first software environments for bifurcation analysis were DsTool10 and
Content11, developed in the 1990s. Both programs support the simulation
of ODEs. The user can define/modify a dynamical model, perform a rather
complete analysis, and export the results in a graphical form, all without
leaving the program. Though hard, it is possible to extend them. The pro-
grams have an elaborate GUI and provide off- or on-line help and extensive
documentation for users and developers.

DsTool [3] runs under UNIX or Linux. It performs simple phase-plane
analysis and includes the computation of equilibria and associated one-
dimensional stable and unstable manifolds, along with the continuation of
equilibria and their codimension-one bifurcations, which is done by using parts
of the Linlbf code.

The interactive software Content was developed by Kuznetsov and Lev-
itin with contributions by De Feo, Sijnave, Govaerts, Doedel, and Skovoroda;
a screen snapshot of Content 1.5 is shown in Fig. 2.3. The software runs
on most popular workstations under UNIX and on PCs under Linux or MS-
Windows and supports the continuation of equilibria and their bifurcations of
codimension up to two. Content uses minimal and extended augmented sys-
tems, as described in [19, 20], as well as the continuation of limit cycles using
Auto-like algorithms. Moreover, Content supports the normal-form com-
putations for many equilibrium bifurcations, taking advantage of internally
generated symbolic derivatives of order up to three, and allows for branch
switching by using algebraic branching equations. The software provides ex-
tensive storage, export and import facilities for computed curves and dia-
grams, including their numerical and PostScript formats. Switching between

9 Candys/QA is available via http://www.agnld.uni-potsdam.de/˜wolfgang/

candys.html.
10 DsTool is available via http://www.cam.cornell.edu/˜gucken/dstool.
11 Contentis available via http://www.math.uu.nl/people/kuznet/CONTENT/.



56 Willy Govaerts and Yuri A Kuznetsov

Fig. 2.3. Screen snapshot of Content 1.5.

various bifurcating objects at special points is very easy and flexible in Con-
tent. The latest software project Matcont12 is a Matlab interactive toolbox
for the continuation and bifurcation analysis of ODEs [11] that is based on
experience in developing and using Content.

To conclude this section, we mention that numerical bifurcation analy-
sis of smooth iterated maps is also supported by existing software. Location,
analysis, and continuation of fixed-point bifurcations are very similar to those
for equilibria of ODEs, and are supported, for example, by Auto, LocBif,
and Content [18]. Other problems, particularly the analysis of global bifur-
cations, require special algorithms. For example, one needs special algorithms
for the computation of the one-dimensional stable and unstable invariant man-
ifolds of fixed points of maps; implementations for one-dimensional manifolds
already exist in DsTool [29, 30] and Dynamics [34, 43, 44]. Such algorithms
are necessary for the continuation of homoclinic orbits and their tangencies [4],
which is also implemented as an Auto-driver by Yagasaki [42]. The compu-
tation of two- or higher-dimensional invariant manifolds, for example, global
stable and unstable invariant manifolds and invariant tori, and their bifurca-
tions both for ODEs and maps is much more difficult and only a few algorithms

12 Matcont is available via http://www.matcont.ugent.be/.
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are available; see Chap. 4, and [28, 31] for global manifolds and [6, 14, 37] for
invariant tori.

2.2 Bifurcation Objects and Their Relations

The application of bifurcation theory to multi-parameter dynamical systems
requires a clear continuation strategy that should provide rules on how to
increase and decrease the number of control parameters while studying objects
of different codimension. In addition, this strategy should suggest how to
switch between different bifurcations of the same codimension, keeping the
number of control parameters constant. As was first mentioned in [25] from a
theoretical point of view, this strategy must be based on graphs of adjacency [1]
that describe relationships between bifurcations. Below, we present two graphs
of adjacency, describing detection relationships and branching relationships.
The next section identifies the bifurcation objects for ODEs; the equivalent
for maps is done in Sect. 2.2.2.

2.2.1 Bifurcation Objects in ODEs

Tables 2.1 and 2.2 list the codimension-zero, -one, and -two objects that can
be found in generic continuous dynamical systems, along with associated la-
bels based on standard terminology [32]. Table 2.1 lists all objects related
to equilibria and limit cycles, while Table 2.2 focusses on objects related to
homoclinic orbits of equilibria. The relationships between these objects are
complicated.

The detection relationships between the objects in Tables 2.1 and 2.2 are
presented in Figs. 2.4 and 2.5, respectively. For example, the arrows from O

to EP and LC mean that it is generically possible for a computed orbit (O)
to converge to a (stable) equilibrium (EP) or to a (stable) limit cycle (LC).
An arrow from an object A different from O to an object B means that the
continuation of a one-parameter family of objects of type A can generically
lead to the detection of an object of type B, either because object B is a
special case of object A or because it is a limiting case when the parameter
tends to a special value. An example of the first situation is a Hopf bifurcation
point (H) on a curve of equilibria (EP); an example of the second situation
is a homoclinic orbit of a hyperbolic saddle (HHS), because it is the limit
of a branch of periodic orbits (LC) when the period tends to infinity. We do
not distinguish between the two situations, because the difference depends
somewhat on the definition of a family of objects and it may depend on the
implementation of the defining system that is used in the computation of the
branch (e.g. an H point on a family of LC objects). Note that any computation
normally starts with a point P as an initial condition to generate an orbit
O; this first step does not feature in Fig. 2.4. We are interested in generic
detection relationships, which is why the arrows always connect objects from
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Table 2.1. Objects and associated labels related to equilibria and limit cycles of
ODEs

Type of object Label

Point P

Orbit O

Equilibrium EP

Limit cycle LC

Limit Point (fold) bifurcation LP

Hopf bifurcation H

Limit Point bifurcation of cycles LPC

Neimark-Sacker (torus) bifurcation NS

Period Doubling (flip) bifurcation PD

Branch Point BP

Cusp bifurcation CP

Bogdanov-Takens bifurcation BT

Zero-Hopf bifurcation ZH

Double Hopf bifurcation HH

Generalized Hopf (Bautin) bifurcation GH

Branch Point of Cycles BPC

Cusp bifurcation of Cycles CPC

Generalized Period Doubling GPD

Chenciner (generalized Neimark-Sacker) bifurcation CH

1:1 Resonance R1

1:2 Resonance R2

1:3 Resonance R3

1:4 Resonance R4

Fold–Neimark-Sacker bifurcation LPNS

Flip–Neimark-Sacker bifurcation PDNS

Fold-flip LPPD

Double Neimark-Sacker NSNS

one codimension level down to objects on the next codimension level. The only
two exceptions are the arrows from EP to BP and from LC to BPC, which jump
over two codimension levels. In fact, these situations are non-generic, but they
are so often found in systems with equivariance or invariant subspaces that
most software packages support their detection.

The branching relationships between the objects in Tables 2.1 and 2.2 can
be obtained directly from Figs. 2.4 and 2.5, respectively. In general, if there
is an arrow in Fig. 2.4 or 2.5 from an object A different from O to an object
B then for each object of type B there is a unique one-parameter family of
objects of type A that branches off B, provided a total of k+1 free variables is
chosen, where k is the codimension level of A. There are only four exceptions:

1. The arrows from EP to BP and from LC to BPC: there are generically two
codimension-zero curves emanating from the codimension-two points.
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Table 2.2. Objects and associated labels related to homoclinic orbits of equilibria
of ODEs

Type of object Label

Limit cycle LC

Homoclinic orbit of a Hyperbolic Saddle HHS

Homoclinic orbit of a Saddle-Node HSN

Neutral saddle NSS

Neutral saddle-focus NSF

Neutral Bi-Focus NFF

Shilnikov-Hopf SH

Double Real Stable leading eigenvalue DRS

Double Real Unstable leading eigenvalue DRU

Neutrally-Divergent saddle-focus (Stable) NDS

Neutrally-Divergent saddle-focus (Unstable) NDU

Three Leading eigenvalues (Stable) TLS

Three Leading eigenvalues (Unstable) TLU

Orbit-Flip with respect to the Stable manifold OFS

Orbit-Flip with respect to the Unstable manifold OFU

Inclination-Flip with respect to the Stable manifold IFS

Inclination-Flip with respect to the Unstable manifold IFU

Non-Central Homoclinic to saddle-node NCH

Codimension

2

1

0

BP CPC BPC LPNS PDNS LPPD GPDNSNSR1 R3 R4 CH R2

O

HH

LP H LPC NS PD

EP LC

ZHBTCP GH

Fig. 2.4. Detection relationships between bifurcations of equilibria and limit cy-
cles of ODEs; the branching relationships are found by following the arrows in the
opposite directions, with four exceptions as discussed in the text.

2. The arrows from H to HH and from NS to NSNS: there are generically two
codimension-one curves emanating from the codimension-two points.

3. The arrow from NS to ZH: the existence of the NS curve rooted in the ZH

point is subject to an inequality constraint.
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0

2

1

Codimension

NSS NFF ND* OF*

LC

HSNHHS

NSF DR* TL* SH IF* NCH

Fig. 2.5. Detection relationships between homoclinic bifurcations of ODEs; here *

stands for S or U; the branching relationships are found by following the arrows in
the opposite directions.

Codimension

0

1

2 CP GPD CH R1 R2 R3 R4 LPPD LPNS PDNS NSNS BP

LP NS PD

FP

O

Fig. 2.6. Detection relationships between dynamical objects for maps.

4. The arrow from NS to HH: there are generically two NS curves emanating
from an HH point.

We note that generically a curve of HHS orbits emanates from a Bogdanov
Takens point (BT), as well as two such curves from a Zero-Hopf bifurcation
point (ZH). These are not indicated in Figs. 2.4 and 2.5.

2.2.2 Bifurcation Objects for Cycles of Maps

In this section we present the equivalent objects and relationships for maps.
Table 2.3 lists the codimension-zero, -one, and -two objects that can be found
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Table 2.3. Objects and associated labels related to equilibria and cycles of maps

Type of object Label

Point P

Orbit O

Fixed Point FP

Limit Point of cycle bifurcation LP

Period Doubling Point of cycles PD

Neimark-Sacker bifurcation NS

Branch Point BP

Cusp bifurcation CP

Generalized Period Doubling GPD

Chenciner (generalized Neimark-Sacker) bifurcation CH

1:1 Resonance R1

1:2 Resonance R2

1:3 Resonance R3

1:4 Resonance R4

Fold–Neimark-Sacker bifurcation LPNS

Flip–Neimark-Sacker bifurcation PDNS

Fold-flip LPPD

Double Neimark-Sacker NSNS

in generic maps, together with the associated labels [32]. The detection rela-
tionships between them are presented in Fig. 2.6. The precise meaning of the
arrows is simpler than in the case of ODEs: if we exclude O then an arrow
from an object A to an object B indicates that object B can generically be
found as a regular point on a branch of objects of type A. The only exception
is the arrow from FP to BP which is again not generic but found in many
examples that exhibit a form of equivariance or have invariant subspaces.

The branching diagram for maps, on the other hand, is far more compli-
cated than for ODEs; this is largely due to the fact that one needs to consider
different iterates of the underlying maps, which causes an additional compli-
cation. For reasons of clarity we, therefore, present two branching diagrams;
see Figs. 2.7 and 2.8. As before, the arrows indicate the type of object to which
one can generically switch from a given codimension-one or -two bifurcation
point. If the arrow is dashed then this switching is subject to additional con-
straints. Furthermore, several switches to branches of lower codimension lead
to curves with double, triple or quadruple iteration number, which is indicated
by the symbols ×2, ×3, and ×4, respectively.

2.3 The Implementation in Matcont

The framework described in the previous section has been implemented in
the recent Matlab-based software environment Matcont [11]. At present
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2

1

0

Codimension

R2

NS PD

CP

LP

FP

GPD CH R1 BP

×2 ×2

×2

Fig. 2.7. Partial branching relationships for maps; see also Fig. 2.8. Dashed lines
indicate switching subject to constraints and ×2 indicates switching to a curve with
twice the period.

2

Codimension

1

LPNSR4

NS PD

R3

LP

NSNSPDNSLPPD

×3

×4 ×4

×4

×2

×2

Fig. 2.8. Partial branching relationships for maps; see also Fig. 2.7. Dashed lines
indicate switching subject to constraints and ×2 (×3, ×4) indicates switching to a
curve with twice (three times, four times) the period.

three related Matlab packages are distributed, namely a command-line ver-
sion Cl Matcont and a GUI version Matcont for ODEs, and a command-
line version Cl MatcontM for Maps13. As in Auto and Content, limit
cycles are computed by an approach based on the discretization via piecewise-
polynomial approximation with orthogonal collocation of the corresponding
boundary value problem. However, Matcont uses sparse Matlab solvers

13 Cl Matcont, Matcont, and Cl MatcontM are all available via http://www.

matcont.ugent.be/.
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instead of the original Auto algorithm (a special block elimination; see
Chap. 1). The same approach is applied for homoclinic orbits, in combination
with the continuation of invariant subspaces for the equilibrium end point of
the homoclinic orbit; for details on this method we refer to [10] and for its
implementation in Matcont to [17].

Nearly all functionalities described in Sect. 2.2 are supported. Remaining
functionalities (now under construction) are:

• Branch switching at HH (equilibria), NSNS (limit cycles) and NSNS (cycle
of maps) to the secondary branch of type H, NS (limit cycle) or NS (cycle
of maps), respectively.

• Branch switching from ZH (equilibria) to NS (limit cycles).
• Branch switching from HH (equilibria) to NS (limit cycles).

A computationally more difficult problem is branch switching from ZH to
HHS [8]. It is also planned to have a GUI version for Cl MatcontM and
to introduce automatic differentiation routines for the computation of the
normal-form coefficients, which are now computed either via numerical direc-
tional derivatives or using a user-supplied code. Preliminary evidence indi-
cates that finite difference approximations are not reliable for these compu-
tations. Also, for high-order iterates of maps the normal-form computations
are much faster when using automatic differentiation compared to symboli-
cally generated derivatives. The computation of normal-form coefficients for
codimension-two bifurcations of limit cycles is not yet supported in Matcont
and is another topic for further development.

In some cases normal-form coefficients are not very informative. For exam-
ple, for a limit point of equilibria (LP) the quadratic normal-form coefficient a
is defined up to a nonzero multiple and the LP point is nondegenerate if a 6= 0
and degenerate (CP) if a = 0. However, because of truncation and round-off
errors the value computed for a will always be nonzero. Therefore, the value
of a reported at LP points is not very useful. However, provided its continuity
along the LP-branch is ensured, this value is important for the detection of
the CP-points.

In other cases the normal-form coefficients are very useful for the user,
because their values determine the number and type of branches of new objects
that emanate from the bifurcation points and whether these objects are stable
or not. In the following two sections we discuss the cases that are of particular
interest.

2.3.1 Normal-Form Coefficients for Bifurcations of ODEs as Given
in Matcont

The implementation in Matcont provides normal-form coefficients for all
codimension-one and -two bifurcations of equilibria, and periodic normal-form
coefficients for all codimension-one bifurcations of limit cycles; see [32] and
[33] for further details and notation used. We discuss here four cases:
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1. The Hopf bifurcation H of an equilibrium, where the equilibrium has a
pair of purely imaginary eigenvalues, is determined by the first Lyapunov
coefficient l1, which is the real part of the third-order coefficient in the
complex normal form. If l1 < 0 then the Hopf bifurcation is supercritical,
i.e., unstable fixed points coexist with stable periodic orbits on one side
of the bifurcation point in the center manifold. If l1 > 0 then the Hopf
bifurcation is subcritical, i.e., stable fixed points coexist with unstable
periodic orbits on one side of the bifurcation point in the center manifold.

2. The Zero-Hopf bifurcation ZH, also called saddle-node Hopf, fold-Hopf
or zero-pair bifurcation [32], is a codimension-two bifurcation where an
equilibrium has one zero eigenvalue together with a pair of purely imagi-
nary eigenvalues. The normal form involves quadratic coefficients denoted
s and θ; see [32, Lemma 8.11]. An NS curve emanates from the ZH point
only if s θ < 0. The implementation in Matcont also computes a rela-
tively technical term E(0). If E(0) < 0 then time has to be reversed in the
unfolding analysis in [32], i.e., stable becomes unstable, and vice versa.

The above two cases deal with bifurcation of equilibria. For limit cycles we
have:

3. The period-doubling or flip bifurcation PD, where the limit cycle has one
Floquet multiplier at −1, involves the coefficient c in the periodic normal
form that determines the bifurcation. If c < 0 then the flip bifurcation
is supercritical, i.e., unstable periodic orbits coexist with stable double-
period orbits on one side of the bifurcation point in the center manifold.
If c > 0 then the flip bifurcation is subcritical, i.e. stable periodic orbits
coexist with unstable double-period orbits on one side of the bifurcation
point in the center manifold.

4. At a Neimark-Sacker bifurcation NS the limit cycle has a pair of com-
plex conjugate Floquet multipliers on the unit circle. The bifurcation is
determined by the cubic coefficient Re(d) of the periodic normal form. If
Re(d) < 0 then the NS bifurcation is supercritical, i.e., unstable limit cy-
cles coexist with stable invariant tori on one side of the bifurcation point
in the center manifold. If Re(d) > 0 then the NS bifurcation is subcritical,
i.e., stable limit cycles coexist with unstable invariant tori on one side of
the bifurcation point in the center manifold.

2.3.2 Normal-Form Coefficients for Bifurcations of Maps as Given
in MatcontM

The implementation in MatcontM provides normal-form coefficients for all
codimension-one and -two bifurcations of fixed points; see [32] for details. The
codimension-one cases are very similar to the corresponding bifurcations of
limit cycles listed in the previous section. The user should, in particular, be
aware of:
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1. The period-doubling or flip bifurcation PD, where the fixed point has an
eigenvalue −1. The sign of the cubic normal-form coefficient b1 determines
whether the bifurcation is supercritical (b>0) or subcritical (b1 < 0) as
before.

2. The Neimark–Sacker bifurcation NS, where the fixed point has a pair
of complex conjugate eigenvalues on the unit circle. As before, the NS

bifurcation is supercritical (subcritical) if the cubic normal-form coefficient
c1 = Re(d1) is negative (positive) and no strong resonances (1:1, 1:2, 1:3,
1:4) are present.

For codimension-two bifurcation points the user should pay particular atten-
tion to:

1. At a 1:2 Resonance point R2 the fixed point has a pair of complex conju-
gate eigenvalues on the unit circle that are both at −1. The normal form
contains two cubic coefficients C1 and D1 that determine this bifurcation.
If C1 < 0, then an NS curve of double-period cycles emanates from the
R2 point. The MatcontM output is [c, d] = [4C1,−2D1 − 6C1] .

2. At a 1:4 Resonance point R4 the fixed point has eigenvalues ±i. This
bifurcation is determined by a complex normal-form coefficientA0 = a+ib.
If a2+b2−1 > 0 then two half lines l1,2 of limit points of quadruple-period
cycles emanate from the R4 point. If |b| > (1 + a2)/

√
1 − a2 then there is

a curve of quadruple-period cycles that contains an NS bifurcation point.
3. At a fold-flip bifurcation LPPD the fixed point has eigenvalues 1 and −1.

MatcontM computes normal-form coefficients a
2e and be

2 ; see [32] for
details. If be > 0 then an NS curve of double period emanates from the
LPPD point. In this case, MatcontM also reports an approximation of
the corresponding first Lyapunov coefficient. The NS points of the second
iterate are stable in the center manifold if this coefficient is negative; they
are unstable if it is positive.

2.4 Examples and Applications

We end this chapter with two examples that illustrate how Matcont is used
in practice. In the next section we describe the process of a continuation
strategy for a vector field. We use the model of a Van der Pol–Duffing oscillator
that is also used in Chap. 4. Section 2.4.2 illustrates the use of MatcontM
for a discrete model of a production strategy involving two competing firms.

2.4.1 The Koper Model

In [27] Koper introduced the following model to describe a three-dimensional
Van der Pol–Duffing oscillator:
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Fig. 2.9. Screen snapshot of Matcont with the computed equilibrium and LP

curves of the Van der Pol–Duffing oscillator (2.1).







ẋ = (ky − x3 + 3x− λ)/ε1,
ẏ = x− 2y + z,
ż = ε2(y − z).

(2.1)

As in [27] we use ε1 = 0.1 and ε2 = 1. We note that if (x(t), y(t), z(t)) is
a solution of (2.1) for a particular value of λ, then (−x(t),−y(t),−z(t)) is
a solution for −λ. Therefore, bifurcation diagrams in which λ is represented
usually have some symmetry.

We begin the analysis of (2.1) by determining the equilibria. Note that
an equilibrium solution (x0, y0, z0) satisfies x0 = y0 = z0, which must be a
solution of

kx− x3 + 3x− λ = 0. (2.2)

In particular, for λ = 0 and k = 0.15 the equilibria are (0, 0, 0) and (x0, y0, z0)
with x0 = y0 = z0 = ±

√
3.15 ≈ ±1.77482393492988. By selecting one of

these latter two points in Matcont we compute by numerical continua-
tion the solution of (2.2) as a function of λ; the cubic solution curve is vi-
sualized in the two-dimensional graphics window of the screen snapshot of
Matcont in Fig. 2.9. On the equilibrium curve Matcont detects two limit
points LP at λ = ±2.151860 and reports for both points the critical normal-
form coefficient a = −4.437060. We select one of the LP points, set both k
and λ as free parameters, and compute a curve of LP points that connects
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Fig. 2.10. Limit cycles of (2.1) started from a Hopf point and converging to a
homoclinic orbit.

the two LP points for k = 0.15; this curve is also shown in Fig. 2.9. Dur-
ing the computation of the LP curve Matcont detects two BT points at
(k, λ) = (−0.050000, 1.950209) and (k, λ) = (−0.050000,−1.950209), with
normal-form coefficients (a, b) = (6.870226e + 000, 3.572517e + 001) and
(a, b) = (−6.870226e+000,−3.572517e+001), respectively; two Zero-Neutral
Saddle points (formally ZH) at (k, λ) = (−0.300000, 1.707630) and (k, λ) =
(−0.300000,−1.707630); and a cusp point CP at (k, λ) = (3.000000, 0.000000)
with normal-form coefficient c = 5.649718e − 002. These codimension-two
points are also shown in Fig. 2.9.

Starting from the BT point at λ = 1.950209 we can compute a Hopf curve
in the two free parameters k and λ. We stop, fairly arbitrarily, at the Hopf
point with x0 = y0 = z0 = 0.98460576, k = −0.25185549, and λ = 1.7513143.
Starting from this point we keep k fixed and compute a curve of limit cycles
(LC) as a function of λ; see Fig. 2.10. It is visually clear that the limit cycles
converge to a homoclinic orbit; this can also be inferred from the fact that
the parameters change very slowly at the end of the continuation, while the
period increases rapidly.

When computing limit cycles, Matcont allows for the computation and
visualization of their phase response curves (PRC) [21] as well as the time
derivatives of these phase response curves (dPRC). The study of such curves
is an important subject in the theory of weakly connected neural networks [23].
In particular, it is well known that they take very specific shapes in the neigh-
borhoods of bifurcations of limit cycles [7]. We demonstrate this by presenting
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Fig. 2.11. The phase response curve PRC (a) and its derivative dPRC (b) of a limit
cycle of (2.1) close to a homoclinic orbit.
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Fig. 2.12. Continuation of an orbit of (2.1) that is homoclinic to a hyperbolic
saddle, starting from a limit cycle with large period.

the curves PRC and dPRC in Fig. 2.11 for the limit cycle of the above con-
tinuation at λ = 1.7510571. This limit cycle has period 46.799011, that is, it
is close to a homoclinic orbit.

It is possible in Matcont to start a continuation of homoclinic orbits in
two parameters from a limit cycle close to a homoclinic orbit; see Fig. 2.5.
An example is presented in Fig. 2.12, where we start from the last limit cycle
computed in the previous run, declare it to be of type HHS, and choose k and
λ as the two free parameters. The time length of the discretized part of the
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Fig. 2.13. Continuation of an orbit of (2.1) that is homoclinic to a hyperbolic
saddle, starting from a Bogdanov-Takens point.

orbit is kept fixed at the period of the original limit cycle while the distances
from the end points in the stable and unstable directions are free.

It is also possible to start the continuation of a curve of homoclinic orbits
from a Bogdanov-Takens point BT; cf. Sect. 2.2.1. An example of such a
continuation is presented in Fig. 2.13. Here we started from the BT point at
λ = 1.950209 that is shown in Fig. 2.9. In this case the distance from the end
point in the unstable direction was fixed.

2.4.2 The Duopoly Model

We demonstrate the use of MatcontM for an example of two competing
firms that decide on annual production quantities in a duopoly environment.
The two firms are homogeneous with regard to forming their expectation and
the action effect on each other. The model that we use is the two-dimensional
map

F :

{
x1(t+ 1) = (1 − ρ)x1(t) + ρµx2(t)(1 − x2(t)),
x2(t+ 1) = (1 − ρ)x2(t) + ρµx1(t)(1 − x1(t)),

(2.3)

described in [2, 26]. The duopoly model assumes that at each discrete time t
the two firms produce the quantities x1(t) and x2(t), respectively, and decide
their productions x1(t+ 1) and x2(t+ 1) for the next period. The parameter
µ > 0 measures the intensity of the effect that one firm’s actions has on the
other firm. The parameter ρ, which is typically in [0, 1], has an averaging
effect.
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Fig. 2.14. An R4 point on an NS curve of (2.3) with emanating branches of fold
curves of period-four cycles.

We start with parameter values µ = 3.5 and ρ = 0.1. It is checked easily
that F has a fixed point

(x1, x2) =

(

µ+ 1 +
√

(µ+ 1)(µ− 3)

2µ
,
µ+ 1 −

√

(µ+ 1)(µ− 3)

2µ

)

.

We now perform a continuation of fixed points of F with free parameter ρ
and find an NS point at (x1, x2) = (0.857143, 0.428571) for ρ = 0.888889.
The normal-form coefficient is −6.273434e+001. Since it is negative, the NS

bifurcation is supercritical.
Starting from this NS point we can now compute a curve of NS points

in the two free parameters µ and ρ. On this curve we find a 1:4 reso-
nance point R4 at (x1, x2) = (0.849938, 0.439960) for ρ = 1.000000 and
µ = 3.449490. It is worthwhile to note that this R4 point lies precisely
on the boundary of the region where ρ ≤ 1, i.e., the region that is rel-
evant from the application’s point of view. The normal-form coefficient is
A0 = (−3.000000e+000 − 9.231411e−017 i). Since |A0| > 1, two cycles of pe-
riod four are born at the R4 point. Furthermore, near the R4 point their region
of existence is bounded by two fold curves of period-four cycles that emanate
from the R4 point. We can start the continuation of these curves from the
codimension-two point R4 in MatcontM. Interestingly, on each of these two
curves an LPPD point (of the fourth iterate) is found. A picture of this situa-
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Fig. 2.15. The diamond-shaped region bounded by period-four LP and PD curves
near the R4 point on the NS curve of (2.3) contains stable period-four cycles.

tion is presented in Fig. 2.14. The lower LPPD point is detected at (x1, x2) =
(0.841586, 0.354516) for ρ = 0.935299 and µ = 3.566686; its normal-form coef-
ficients are a/(2e) = 2.574002e+000 and be/2 = −5.829597e+001. The upper
LPPD point is detected at (x1, x2) = (0.836428, 0.522216) for ρ = 1.071080
and µ = 3.486079, and has normal-form coefficients a/(2e) = 1.733856e+000
and be/2 = −2.471512e+001. We note that the lower LPPD point is in the
region relevant to applications while the upper one is not.

It is further interesting to compute the PD curves that emanate from
the LPPD points and they are presented in Fig. 2.15. The stable period-four
cycles exist in the diamond-shaped region bounded by curves LP and PD of
the fourth iterate F 4.

2.5 Directions for Future Development

We presented an overview of software tools for bifurcation analysis. At present,
the state of the art is a software environment that provides a clear contin-
uation strategy as implemented in Matcont. We showed two examples of
how to use Matcont for ODEs and maps. Matcont has the advantage that
it is implemented in Matlab, which is standard in many applied fields, par-
ticularly in engineering. Furthermore, its numerical capabilities include the
computation of normal-form coefficients and automatic branch switching.
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The development of Matcont is ongoing. In the near future, we hope
to implement the remaining functionalities listed in Sect. 2.3. Furthermore,
we plan to include algorithms for the computation of invariant manifolds and
develop facilities to analyze global bifurcations. Other directions for further
development would be the provision of higher-codimension bifurcations and
the corresponding detection and branching relationships. Moreover, it would
be of interest to generalize the functionalities to other classes of systems, for
example, systems with symmetry or preserved quantities; see also Chap. 9.
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