
6

Fast and Scalable Run-time Scheduling

As explained in previous chapters, a run-time scheduler is indispensable to
efficiently explore the design space and make system level trade-off accord-
ing to the dynamic context. For that sake, a fast and effective heuristic is
needed. In this chapter, we first review again why we need a two-phase
approach for task scheduling and how it is applied. The problem is then
defined in a more formalized way and a greedy heuristic is described.
After that, experimental results on both randomly generated and real-life
applications are explained. In this chapter, we will illustrate our method
on 2-dimensional Pareto trade-offs with execution time vs energy as axes.
But the underlying techniques can also be applied to other axes and
more dimensional trade-offs, which will be demonstrated in the next chapter.

6.1 Two-Phase Task Scheduling: Why and How

The design of concurrent real-time embedded systems, and embedded
softwares in particular, is a difficult problem, which is hard to perform man-
ually due to the complex consumer–producer relationships, the presence
of various timing constraints, the nondeterminism in the specification and
the sometimes tight interaction with the underlying hardware. Our TCM
methodology provides a novel and effective cost-oriented approach to the
concurrent task-scheduling problem, by carefully distinguishing what can
be modeled and optimized at design time from what can only (or better) be
done at run time.

As shown in Chapter 3, we model applications with TNs and TFs. The
design-time scheduling is applied on the thread nodes inside each TF at com-
pile time, including a processor assignment decision of the TNs in the case
of multiple processing elements. On different types of processors of a het-
erogeneous platform, the same TN will be executed at different speeds and



136 6 Fast and Scalable Run-time Scheduling

start

thread 
frame 1

thread 
frame 2

tn_1

tn_2 tn_3

tn_A

tn_B

Fig. 6.1. The gray-box model of a simple example

Table 6.1. The execution time and energy consumption of TNs in Fig. 6.1

Processor 0 Processor 1
1 2 3 A B 1 2 3 A B

Execution time (µs) 10 30 15 20 32 20 60 30 40 64
Energy (µJ) 30 86 41 75 90 8 22 10 19 23

with different costs, i.e., energy consumption in this chapter. These differ-
ences provide the possibility of exploring the cost-performance trade-off at
the system level.

The idea of our two-phase scheduling can be illustrated with the simple
example in Fig. 6.1. Here we assume a dual-processor platform. For the five
thread nodes in that example, we assume they have different execution times
and energy consumptions on different processors. The numbers are summa-
rized in Table 6.1.

Now for every TF, the design-time scheduler will try different mapping
and ordering of the TNs of that TF, satisfying all the dependency and time
constraints. An example is given for TF 1 in Fig. 6.2, where the execution time
and energy consumption are shown also. When TN 2 and TN 3 are assigned
to the same processor (e.g., (d)), it makes no difference which one has to be
executed first. For simplicity, we show only one possible order. However,
extra constraints may exist and they will further fix the order. The design-
time scheduling result can be represented as a Pareto curve and it is shown
in Fig. 6.3. From that figure, we can see that not all scheduling decisions are
beneficial. For instance, (a) and (e) neither run faster nor consume less energy
compared with all the other schedulings. We say they are dominated or they



6.1 Two-Phase Task Scheduling: Why and How 137

proc 0

proc 1

1 2 3

ex.=55, en.=157

(a)

proc 0

proc 1

1 2

3

ex.=40, en.=126

(c)

proc 0

proc 1 1 3

ex.=110, en.=40

(b)

2

proc 0

proc 1 3

ex.=100, en.=62

(d)

2

1

proc 0

proc 1

2 3

ex.=65, en.=135

(e)

1

proc 0

proc 1

ex.=70, en.=93

(f)

2

1 3

proc 0

proc 1

2

ex.=50, en.=104

(g)

1 3

proc 0

proc 1

ex.=80, en.=71

(h)

2

3

1

Fig. 6.2. The design time scheduling of thread frame 1

are not on the boundary of a Pareto curve. Similar results can be obtained for
TF 2 (see Figs. 6.4 and 6.5).

Here we illustrate only a simple example. With the increase of the number
of TNs/processors, complex inter-TN dependencies and time constraints, it
becomes impractical to do the design-time scheduling by hand. Therefore
an automatic tool, known as the TCM design-time scheduler presented in
Chapters 4 and 5, is needed.

Only at run time the system-level information required to decide on a
cost-effective schedule meeting all real-time constraints will be complete.
First of all, the active scenario is identified (see Chapter 3). Next, given
the number of TFs, the Pareto curve of each TF and system constraints
such as the global deadline, the run-time scheduler will select a mapping
and/or ordering decision pre-computed by the design-time scheduler for
every active TF and combine them together to get the system scheduling.
For the above example, when the global deadline is 125 µs, the run-time
scheduler will select design-time scheduling (g) for TF 1 and (c) for TF 2,



138 6 Fast and Scalable Run-time Scheduling

(a)

(e)

(c)

(g)

(f)

(h)
(d)

(b)

200

180

160

140

120

100

80

60

40

20

00 50
execution time (us)

en
er

gy
 c

on
su

m
pt

io
n 

(u
J)

100 150

Fig. 6.3. The Pareto curve of thread frame 1. Scheduling (a) and (e) are not on the
curve

proc 0

proc 1

A B

ex.=52, en.=165

(a)

proc 0

proc 1

ex.=72, en.=109

(c)

proc 0

proc 1 A

ex.=104, en.=42

(b)

B

proc 0

proc 1

ex.=84, en.=97

(d)

B

A

A

B

Fig. 6.4. The design time scheduling of thread frame 2

combine them together and find the system scheduling with the minimum
energy consumption. The main goal of this chapter is to solve the problem of
how to find the global scheduling and how to support it with implementable
run-time systems on real platforms.

Given a TF, our design-time scheduler will try to explore different assign-
ment and ordering possibility, and generate a Pareto-optimal set [167], where



6.1 Two-Phase Task Scheduling: Why and How 139

(a)

(c)

(d)

(b)

200

180

160

140

120

100

80

en
er

gy
 c

on
su

m
pt

io
n 

(u
J)

execution time (us)

60

40

20

0
0 50 100 150

Fig. 6.5. The Pareto curve of thread frame 2

every point is better than any other one in at least one way, i.e., either it
consumes less energy or it executes faster. This Pareto-optimal set is usually
represented by a Pareto curve. Since the design-time scheduling is done at
compile time, computation efforts can be paid as much as necessary, pro-
vided that it can give a better scheduling result and can reduce the com-
putation efforts of run-time scheduling in the later stage. However, if very
data-dependent behavior is present inside the TF, the design-time explo-
ration still has to assume worst-case conditions to guarantee hard real-time
requirements. In such a case, a TF can be further classified into a few typical
execution scenarios to give a more accurate prediction.

At run time, the run-time scheduler will then work at the granularity of
TF. Whenever new TFs are initiated, the run-time scheduler will try to sched-
ule them to satisfy their time constraints with an aim to minimize the system
energy consumption. The details inside a TF, like the execution time or data
dependency of each thread node, can remain invisible to the run-time sched-
uler and this reduces its complexity significantly. Only essential features of
the points on the Pareto curve will be passed to the run-time scheduler by the
design-time scheduling results, and will be used to find a reasonable cycle
budget distribution for all the running TFs.

In summary, we separate the task scheduling into two phases, namely
design-time and run-time scheduling, for three reasons. Firstly, it gives more
run time flexibility to the whole system. We can indeed accommodate more



140 6 Fast and Scalable Run-time Scheduling

start

thread
frame 1

thread 
frame 2

tn_1

tn_2 tn_3

tn_A

tn_B

0 50 100 1500

20

40

60

80

100

120

140

160

180

200

execution time (us)

en
er

gy
 c

on
su

m
pt

io
n 

(u
J)

0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

execution time (us)

en
er

gy
 c

on
su

m
pt

io
n 

(u
J)

proc 0

proc 1

1 2

3

proc 0

proc 1

2

1 3

proc 0

proc 1

proc 0

proc 1

B

A

A

B

run-time 
scheduler

proc 0

proc 1

2

1 3

B

A

Fig. 6.6. When the global deadline is 125 µs, the run-time scheduler selects design-
time scheduling (g) for TF 1 and (c) for TF 2, combines them together and finds the
system scheduling

unforeseen demands for more execution time by any TF, by “stealing” time
from other TFs, based on their available Pareto sets. Secondly, we can mini-
mize energy for a given timing constraint that usually spans several TFs by
selecting the right combination of points. Finally, it minimizes the run-time
computation complexity, which reduces the energy and time penalty so that
faster reaction time can be achieved (up to 1 ms). This is needed for mod-
ern multimedia and wireless communication applications. The design-time
scheduler works at the gray-box level but still sees quite a lot information
from the global specification. The end result hides all the unnecessary details
and the run-time scheduler can operate mostly on the granularity of TFs, not
single TNs. Only when a large amount of slack is available between the TNs,
a run-time local refinement on the TF schedule points can result in further
improvements.

This methodology can in principle be applied in many different contexts
as long as Pareto-curve like trade-offs exist. For example, in the context of
DVS, the cost can be the energy consumption. Thus our methodology results
in an energy-efficient system. When the cost is energy and the horizontal axis
is replaced by the QoS, the problem becomes the energy minimization with a
guaranteed QoS, as e.g., formulated in [183]. Also the deadline miss rate can
be optimized in soft hard real-time applications (e.g., video decoding) for a
given platform and a set of deadlines.



6.2 Run-Time Scheduling Algorithm 141

6.2 Run-Time Scheduling Algorithm

In the previous section, we have shown the concept of our two-phase, Pareto-
curve-based scheduling methodology. The key step of this method is the run-
time scheduler. Given a set of TFs and a deadline, the run-time scheduler
has to select one and only one point from the Pareto curve of each TF and
combine them into the final scheduling. It has to be done fast because that
will allow a more frequent (re)evaluation of the run-time scheduling decision
or the handling of more tasks in a single shot. Both will result in still more
energy savings. The quality of the solution is also important because it affects
the amount of energy which can be saved.

In this section, we will first formulate the problem in a formal mathemat-
ical model. Then a greedy heuristic is proposed for our specific problem.

6.2.1 Application Model

We model applications as a set of interacting TFs, which have to be mapped
to a multi/uni-processor platform. We mainly consider the frame-based sys-
tems, which issue a set of TFs when the input data is ready (normally it
is the start of a time frame or period).1 Most typically, there is an end-to-
end deadline by which all TF should finish. Examples of this kind of sys-
tem include MPEG2 decoding and MP3 decoding. Therefore, we have the
following application model.

• At the beginning of every time frame, there are k TFs waiting to be exe-
cuted, each represented by a Pareo curve.

• Each TF i has Nij Pareto points, i.e., Nij different ways of mapping and
ordering on the given platform and they are represented with their exe-
cution time tij and energy consumption eij .

• At any moment, only one TF can be executed on the given platform. In
other words, that TF occupies the platform exclusively.

• There is a global deadline D before which all the TF have to finish.

The run-time scheduling problem can be stated as picking a
mapping/ordering pattern for every active TF and minimizing the total sys-
tem energy consumption while meeting the global deadline.

In most situations, dependencies exist between TFs (e.g., TF 2 can only
start after TF 1 and TF 4 finish). These dependencies can be handled by
assigning priority levels to TF and the priority levels can be decided at design
time. Hence the dependencies will not impact the scheduling algorithm we
present later, though they will require the final run-time system to identify
the TF priority levels and react appropriately.

1 Aperiodic TF sequence is just a special case of this model, for which we have only
to consider one time frame.



142 6 Fast and Scalable Run-time Scheduling

6.2.2 Problem Formulation

For the application given above, we can formulate our run-time scheduling
as follows. Since k TFs exist and each of them has Ni Pareto points, we can
introduce an integer variable xij to denote whether the jth Pareto point of
TF i is selected (xij equals 1) or not (xij equals 0). For each TF, one and just
one Pareto point can be selected, which leads to:

Ni∑

j=1

xij = 1, i = 1, . . . , k

For a Pareto point i of TF j, the execution time of that TF is tij and the energy
consumption is eij . The total system execution time can never exceed the
global deadline D for real-time systems. Therefore we have:

k∑

i=1

Ni∑

j=1

tijxij ≤ D

The goal of our run-time scheduler illustrated for the 2D execution-time vs
energy trade-off is to reduce the total system energy consumption as much
as possible. This can be represented as:

minimize : z =
k∑

i=1

Ni∑

j=1

eijxij

Putting the above equations together, we have a constrained minimization
problem.

minimize : z =
∑k

i=1

∑Ni

j=1 eijxij (6.1)

subject to
∑k

i=1

∑Ni

j=1 tijxij ≤ D, (6.2)
∑Ni

j=1 xij = 1, i = 1, . . . , k, (6.3)
xij is 0 or 1, i = 1, . . . , k, j = 1, . . . , Ni. (6.4)

The total number of Pareto points can be denoted by n, n =
∑k

i=1 Ni.
The minimization problem can be transformed into a different form [155].

Taking into account that each Pareto curve is an ordered set, we can substi-
tute eij with sij as

sij = (ei0 − eij), sij ≥ 0. (6.5)

Thus Eq. 6.1 becomes a maximization problem:

maximize : z
′
=

k∑

i=1

Ni∑

j=1

sijxij (6.6)



6.2 Run-Time Scheduling Algorithm 143

With the same set of constraints, this is a classic Multiple Choice Knapsack
Problem (MCKP) and it is known as NP hard [151].

When of limited size, MCKP can be solved optimally in pseudo-
polynomial time through dynamic programming (DP). For bigger instances,
it is generally solved by a DP algorithm constructed from the exact solution
of its linear relaxation, LMCKP, by replacing Eq. 6.4 with

0 ≤ xij ≤ 1, i = 1, . . . , k, j = 1, . . . , Ni. (6.7)

Several exact algorithms have been proposed to solve the reduced LMCKP
problem in O(n) time [151]. To evaluate the result of our algorithm, we use
the DP algorithm presented in [172]. However, the worst-case computation
complexity of DP is still exponential, which is not acceptable as an run-time
algorithm for medium problem size. Another issue is that the computation
time of DP is nondeterministic, which is undesirable for real-time systems.

Several approximate algorithms exist for MCKP but all have limitations
or are not suitable for our problem. Current heuristics are designed for big
problems, which can not be solved easily by any accurate algorithm due to
the problem’s NP-hard feature. They rival each other in which can get a solu-
tion closer to the optimal value or which can handle a bigger (or more diffi-
cult) problem. Execution time is only the second or the third concern to them,
which makes them unsuitable to work as an run-time algorithm. In addition,
most of the heuristics do not recognize that in our case, all points are already
Pareto optimal and ordered. That can save quite extra computation effort.

The goal of our heuristic is to find a good enough solution in as short as
possible time for a typical problem size. It is not our major interest to improve
the solution by 1% if it means 2 times longer execution time. Moreover,
the heuristic should be interruptible, which improves its solution incremen-
tally in every iteration so that it can be interrupted if the time slot assigned
to the run-time scheduler expires. Then it returns its best solution at that
moment. This can guarantee a deterministic computation time for the run-
time scheduler.

6.2.3 Greedy Heuristic

We have developed a fast and effective greedy heuristic with the above con-
siderations in mind. Algorithm 5 consists of two stages, the initialization (line
2–16) and the iteration stage (line 18–41). Every point i of our Pareto curve m
is denoted by two basic parameters, tm,i and em,i, standing for the execution
time and energy consumption if that point is selected by the scheduler (the
corresponding concepts in MCKP are weight and profit). D is the deadline. In
the initialization stage, we compute the changes of t and e if we move to the
right (from point i to i+1, see Fig. 6.7) or to the left (from point i to point i−1)
and the corresponding slopes (line 5–12). Here a superscript “+” means the
rightward direction and “−” means the leftward direction. The initial solu-
tion is found at line 13 and 14: a portion of the deadline (sm) is assigned



144 6 Fast and Scalable Run-time Scheduling

Algorithm 5 The greedy heuristic algorithm.
1: INITIALIZATION
2: step 0:
3: slack=0;
4: for all curve m do
5: for all point i on curve m do
6: δe+

m,i = em,i − em,i+1;
7: δe−m,i = em,i−1 − em,i;
8: δt+m,i = tm,i+1 − tm,i;
9: δt−m,i = tm,i − tm,i−1;

10: slope+
m,i = δe+

m,i/δt+m,i;
11: slope−m,i = δe−m,i/δt−m,i;
12: end for
13: sm = tm,0D/

∑k−1

l=0
tl,0;

14: search for maximal j with tm,j ≤ (sm + slack);
15: update slack;
16: end for
17: ITERATIVE IMPROVEMENT
18: step 1:
19: sort slope+ descendingly and slope− ascendingly;
20: for all curve m in slope+ do
21: for all curve n in slope− and m �= n do
22: if slope+

m ≤ slope−n then
23: goto step 2;
24: end if
25: if δe+

m > δe−n andδt+m < δt−n + slack then
26: change solution of curve m from i to i + 1;
27: change solution of curve n from j to j − 1;
28: update slack;
29: goto step 1;
30: end if
31: end for
32: end for
33: step 2:
34: sort slope+ descendingly;
35: for all curve m in slope+ do
36: if δt+m < slack then
37: change solution of curve m from i to i + 1;
38: update slack;
39: goto step 2;
40: end if
41: end for

to a curve proportional to the execution time of its leftmost point. There-
fore it guarantees a valid initial solution can always be found for that curve.
For finding the initial solution we use an on-the-fly strategy. The difference
between the time assigned to curve m and the actual execution time of its



6.2 Run-Time Scheduling Algorithm 145

i

i-1

i+1δem,i
+

δem,i
−

δt m,i
+

δt m,i
−

t

e
thread frame m

Fig. 6.7. The Pareto curve of thread frame m

i

i+1
δem,i

+

δtm,i
+

t

e

j

j-1

δen,j
−

δt n,j
−

t

e
thread frame m thread frame n

Fig. 6.8. Incremental improvement step 1, when the operating points change from
(i, j) to (i + 1, j − 1). δt+m,i < δt−n,j + slack and δe+

m,i > δe−n,j have to be satisfied to
get a valid and meaningful solution

initial solution will be accumulated in the variable slack and added to the
available time of the following curves.

After the initialization, we explore the chances of finer tuning the solu-
tion in two steps, step1 and step2. step1 checks the possibility of moving the
operating point on one curve to the right and the operating point on another
curve to the left in pair. At line 19, all curves are sorted according to the slopes
of their current solutions, slope+ descendingly and slope− ascendingly. Then
the algorithm will try to find two curves m and n, which satisfy the time
constraint and reduce the energy consumption most, when the solution of
m is changed from i to i + 1 and the solution of n from j to j − 1 (Fig. 6.8).
When no such kind of tuning is possible, the algorithm will enter the next
step.

step2 does the final tuning by finding any curve m which can still satisfy
the time constraint if we move its current solution from i to i+1. It is possible
to switch the order of these two steps. However, our experiments show the
current order is faster and generally leads to better solutions. Another option



146 6 Fast and Scalable Run-time Scheduling

is to move the operating point to the right as much as possible in step2. In that
case, if step2 is done before step1, this will cause the heuristic to converge in
fewer iterations but deteriorate the optimality of the final solution.

Assuming k curves and l points are present on each curve, the complexity
of the initialization step is O(k log l) because for every curve we have only to
do an ordered search (line 14). The complexity of the iterative stage is also
very low. In step1 every iteration takes maximally O(k2) operations, while
in step2 O(k) operations. The heuristic ends when no improvement is possi-
ble, but we can interrupt the iteration at any moment to finish the run-time
scheduling in a predefined time slot. In that case the algorithm just returns
the best available solution. This capability is very important for a real-time
system where bounded and deterministic service is always desirable. The
performance of our greedy heuristic is illustrated in Section 6.3.

6.3 Experimental Results

We have implemented the greedy algorithm in C and tested it with both
randomly generated and real-life applications. They are discussed separately
in the following sections.

6.3.1 Randomly Generated Test Cases

The first test set we have used is based on random task graphs generated
by TGFF. For each task graph, a Genetic Algorithm [250] is used to extract
the Pareto curve. Finally the heuristic is applied to find the run-time task
scheduling within a given deadline. A DP optimal algorithm [172] is used in
this step to check the speed and quality of our heuristic.

We have generated three task sets with TGFF, containing 5, 10, and 20
task graphs, respectively. For every task graph, we have extracted two Pareto
curves, one with 5 points and the other with 9 points. The former is just a
subset of the latter. The points are distributed almost uniformly, in the sense
of execution time, between the lowest and highest possible values. Different
deadlines are then tried for the same task set and the same Pareto curves and
the results are summarized in Tables 6.2 and 6.3.

The performance of our heuristic can be evaluated in two ways: the exe-
cution time and the quality of the result. Tables 6.2 and 6.3 give the overview
of the result. In the tables, the first column is the number of curves; the second
column is the average speedup of the execution time of the greedy heuristic
against the DP solver; the third column is the maximum speedup; the fourth
column gives the average error between the heuristic and DP solution; and
the fifth column is the maximum error. The next four columns are the same
as column 2–5 but for the initial solution given by step0 of Algorithm 5.



6.3 Experimental Results 147

Table 6.2. The performance of the greedy algorithm compared to DP, 5 points per
curve

No. Average Max Average Max Average Max Average Max
Pareto initial initial initial initial
curves speedup speedup error error speedup speedup error error

5 14.9 24.0 1.2% 5.2% 44.0 58.7 4.1% 9.1%
10 8.8 13.2 1.0% 2.9% 42.9 53.3 6.8% 13.4%
20 3.9 7.3 1.0% 2.0% 24.0 50.2 4.5% 8.7%

Table 6.3. The performance of the greedy algorithm compared to DP, 9 points per
curve

No. Average Max Average Max Average Max Average Max
Pareto initial initial initial initial
curves speedup speedup error error speedup speedup error error

5 15.4 24.9 0.6% 3.5% 46.0 65.1 3.4% 10.3%
10 8.4 14.5 0.8% 2.1% 34.5 55.6 4.1% 8.7%
20 4.3 7.7 0.9% 1.9% 26.2 43.4 3.5% 7.0%

The results show that our heuristic achieves average speedup up to 15
times gainst the optimal solver, while maintaining a very high solution qual-
ity (error within 1.2% on average). If the initial solution is considered, the
average speedup is up to 46 times while the solution error is up to 6.8%,
on average. This is quite acceptable for an run-time scheduling algorithm,
because if the optimal solution means an energy reduction from 1000 nJ to
500 nJ, a 10% error just means the energy is reduced to 550 nJ, which is
already a big improvement compared to the original value, especially if we
take into account the high speed to find the initial solution.

For the run-time scheduling stage, the time spent on the scheduler itself
will not contribute to executing the application functionality. So it has to be
minimized or bounded, even though we can have a separate CPU to run
the scheduler in some architectures. Our heuristic provides the capability of
improving the initial solution iteratively until the time slot assigned to the
scheduler depletes. This is especially important for big problem sizes, when
the scheduler could not run to its end and still has to find a solution in a short
time slot. Table 6.4 shows an example of the iterative improvement of our
heuristic. This example is for the 9 points per curve, 20 curves case because
it is the worst case in our experiment with respect to the execution time. The
optimal result is 37836 nJ and it takes the DP 232 k processor cycles to find
it. With the heuristic, to find the final solution 38443 nJ, it takes 119k cycles,
which may be too long. However, the final solution is only 1.6% from the
optimal one and we are usually already satisfied with solutions which are
not that good but can be found rather fast. If we assume we have 50 k (100 k)



148 6 Fast and Scalable Run-time Scheduling

Table 6.4. The iterative improvement of the heuristic for a 20 curves, 9 points case

Iterative # Time (cycles) Energy (nJ)

0 11554 39366
1 36909 39102
2 48201 38857
3 59389 38695
4 70700 38640
5 81939 38556
6 93502 38538
7 103381 38526
8 113225 38463
9 119312 38443

cycles available for the scheduler, which is 0.25 ms (0.5 ms) on a 200 MHz
processor, the result we can find is 38857 nJ (38538 nJ) and it is only 2.7%
(1.9%) away from the optimal solution. Even the initial solution is acceptable
in this case, which can be found in less than 12 k cycles. Given the fact that
the run-time scheduler is triggered by external events (e.g., user related) at
the frequency of tens of ms, this result is quite good.

6.3.2 Real-Life Applications

We have also tried our heuristic on some real-life applications. One example
is the QoS adjustment algorithm of a 3D image rendering application (this
experiment has been explained in [253] in detail). On the start of each time
frame, depending on the number of visible objects and which kind of objects
they are, the QoS controller will adjust the number of vertices assigned to
each object, in order to provide the best quality at a fixed computation power.
Figure 6.9 illustrates the energy consumption of QoS adjustment algorithm
for 1000 frames, with a frame rate of 5 fps (frame per second) or 10 fps. From
this figure it is obvious that our run-time scheduler can achieve a very high
energy saving (65% for 5 fps and 46% for 10 fps). The inter-task DVS does not
work very well here because the number of task graphs and the execution
time of each task graph varies dramatically in this application. Having to
assume the worst case for the unscheduled task graphs, the inter-task DVS
scheduler has a limited chance to scale the voltage. Another observation is
that the difference between the greedy heuristic and the DP is very small.
This is because, during most of the frames, the heuristic can easily find the
optimal solution due to the limited problem size.

Another real-life application we have experimented on is the Visual
Texture Coding (VTC) decoder of the MPEG-4 standard. Similar to the QoS
example, it is frame based. However, unlike the highly dynamic number of
objects in QoS, the number of blocks to be decoded is fixed (3 in this experi-
ment) for every frame, though the workload of each block varies from frame



6.3 Experimental Results 149

17,53

14,32

6,211 6,171

17,53

14,65

9,487 9,469

0

2

4

6

8

10

12

14

16

18

20

no DVS inter-task DVS greedy heur. DP

en
er

g
y(

J)

fps=5 fps=10

Fig. 6.9. The energy consumption of QoS adjustment algorithm for 1000 frames

14,39

11,97

10,55 10,5

14,39

12,37

10,89 10,89

0

2

4

6

8

10

12

14

16

no DVS inter-task DVS greedy heur. DP

en
er

g
y(

J)

fps=8 fps=10

Fig. 6.10. The energy consumption of the VTC decoder for 1365 frames

to frame (see [143] for further discussion). As shown in Fig. 6.10, this exam-
ple gives less space for voltage scaling because of its relative high and less
varying work load. This is mainly due to the sequential feature of the initial
task graph.2 In spite of that, our heuristic still outperforms the inter-task DVS

2 It can be removed after applying TCM transformation step.



150 6 Fast and Scalable Run-time Scheduling

and provides an energy saving of 27%. Again the results from the heuristic
and DP are very close.

6.4 Summary

In this chapter we have modeled the Pareto-optimization-based run-time
task scheduling as the Multiple Choice Knapsack Problem and have pro-
posed a greedy heuristic for it. Results from randomly generated and real-life
applications prove that our heuristic is fast (speedup of more than 10) and
accurate (suboptimality less than 5%). The incremental and scalable feature
makes the heuristic well suitable for our run-time task scheduling context.




