
5

Scalable Design-Time Scheduling

Task scheduling on multiple heterogeneous processors is notorious for its
computation intractability. Although previous design-time task schedulers
have tackled this intractability with fast heuristics, it remains time-consuming
to explore the design space for large input TF. This chapter presents a novel
method that combines the graph partition and the TF interleaving technique
to tackle the trade-off exploration problem in a scalable way. Based on this
method, we have developed a hierarchical scheduler that can employ the
existing design-time schedulers and can significantly accelerate the design
space explorations for large TF.

Section 5.1 briefly introduces the problem addressed in this chapter.
Section 5.2 gives an overview of the scalable design flow. Section 5.3
explains the details of the decomposition process. Section 5.4 shows how to
deal with the decomposed partitions. Section 5.5 discusses the novel inter-
leaving technique for the post-decomposition process. Section 5.6 presents
our experimental results and Section 5.7 lists the related work. Finally,
Section 5.8 concludes this chapter.

5.1 Introduction

Today’s embedded software becomes much larger, and contains large por-
tions of static software components such as the multimedia application
codecs. When mapping those complex software components onto the hard-
ware platform, system designers need a good synthesis tool that can make
trade-offs for multiple objectives such as the energy consumption and
the system performance. The first step of such a synthesis tool is typi-
cally a platform-independent parallelism analysis and optimization such
as the work by Yang and Gerasoulis [254] and Stahl et al. [228]. The basic
assumption of most platform-independent task parallelism analysis is an
unbounded parallel platform which leads to a very large scale concurrent



110 5 Scalable Design-Time Scheduling

task model (i.e., a TF) with all inherent parallelism explicitly specified in
the software specification. This large-scale model however has unnecessary
details when mapping the model on a practical platform with limited proces-
sors and other physical constraints such as bandwidth and capacity limi-
tation over the memory hierarchy. Moreover, an overdetailed concurrency
model often leads to a extremely long scheduling process. Because most
scheduling problems encountered during system-level synthesis are diffi-
cult problems in terms of computational complexity, conventional schedul-
ing algorithms suffer from a lengthy execution when scheduling larger TF.
A divide-and-conquer (DNC) strategy is normally employed on the TF in
order to reduce the scheduling complexity. However, conventional DNC
algorithms often partition the TF based on the criterion defined by the num-
ber of threads, which is not the only essential reasons that resulted in the long
computation time in task-level design space exploration. Moreover, those
DNC algorithms neglect the fact that the resulting thread partitions can be
partly run in parallel, which can be exploited to increase the exploration
quality at a very low cost. In other words, conventional DNC approaches
lack a post-DNC step which could partly compensate the final performance-
energy trade-off exploration results for the loss of scheduling optimality due
to the dividing.

This chapter addresses how to deal with very large task concurrency
models as well as how to exploit the concurrency among the partitioned
thread partitions. We propose an effective TF partitioning algorithm to split
up the large input TF into smaller thread partitions and we schedule each
partition separately. Then we use a novel design-time algorithm to generate
interleaved schedules based on the separate schedules of TF. We have imple-
mented this combined approach in a hierarchical scheduler that can deal
with very complex applications with many tasks in a scalable way. Our
hierarchical scheduler can decrease the performance-energy trade-off explo-
ration time by up to 2 orders of magnitude compared to a flattened approach
while the exploration results have much lower energy consumptions.

5.2 Motivational Example

The proposed hierarchical scheduling approach mainly consists of five steps,
namely the input TF decomposition, the design space exploration of each
thread partition, the thread partitions clustering, the thread partition inter-
leaving, and thread partition merger (Fig. 5.1). Note that the Pareto curves
indicated in the overview figure are actually sets of Pareto-optimal sched-
ules of individual thread partitions. Why the Pareto-curves are better than
the individual optimal schedule should be clear after the earlier discussion
in Chapter 1.

In the first step, the input TF is decomposed into a set of thread par-
titions under certain guidelines. Each thread partition contains a number



5.2 Motivational Example 111

Decomposing

Design Space Exploration

Input Thread Frame

Thread
Partition0 Inter-Partition 

Dependencies

Thread Partition Clustering

Global Pareo Curve

Thread Partition Interleaving

Hierarchical Tradeoff
Exploration

Thread
Partition1

Thread
Partition2

Pareto 
Curve0

Pareto
Curve1

Pareto
Curve2

Cluster 0 Cluster 1

Pareto
Curve0

Pareto
Curve1

Thread Partition Merger

Fig. 5.1. Hierarchical scheduling overview

of thread nodes from the original TF and the corresponding edges among
those thread nodes. The edges which are cut during the decomposition are
removed from the thread partitions. Instead, new edges are created between
thread partitions such that the dependent relationships among thread nodes
are preserved.

In the second step, we use a design-time scheduler to explore the design
space of each individual thread partition and produce a set of Pareto-optimal
schedules for each thread partition. An effective example of that scheduler is
the basic TCM design-time scheduler discussed in the previous chapter.

In the third step, we put thread partitions into a sequence of clusters such
that partitions in each cluster have no dependencies among them. This is the
preparation for the interleaving in the next step.

In the fourth step, which mainly distinguishes our work from conven-
tional DNC approaches, we interleave the Pareto-optimal schedules of those
thread partitions that can be run in parallel, i.e., partitions in each cluster.



112 5 Scalable Design-Time Scheduling

0

43 5

6

2

7

10

8

12

15

9

17

20

13 14

16

11

18

21

19

1

Thread Frame

Fig. 5.2. Input thread frame example

Table 5.1. Profiling data for each thread node

VLIW RISC

Energy consumption (µJ) 485.438 1040.55
Execution time (µs) 177.816 1009.69

The interleaved schedules form the new Pareto-optimal schedules which are
presented in a Pareto curve for each cluster.

In the last step, we simply merge all Pareto curves from each cluster and
thus constitute the global performance-energy trade-off Pareto curve for the
entire input TF.

Example 5.1 Consider a design-time exploration problem of mapping a given
TF onto a three-processor platform (shown in Fig. 5.2). We assume that these
three processors are one VLIW processor running at 1.56 V and two scalar
RISC processors running at 1.08 and 1.62 V. For simplicity, we let all threads
have the same amount of execution time and energy consumption on each
processor, namely all threads are the same. The execution times and energy
consumptions are given in Table 5.1. Only the profiling data for the refer-
ence RISC processor, namely a RISC running under 3.1 V, is given in the
table. This is because for the other RISC processors, the profiling data can
be derived from the reference data based on f ∝ V 3

dd, where f and Vdd denote
the frequency and the Vdd of the processor, respectively.



5.2 Motivational Example 113

0

43 5

6

2

7

10

8

12

15

9

17

20

13 14

16

11

18

21

19

1

TP1 TP2

TP3

TP5TP4

Fig. 5.3. Decomposed input thread frame

The first scheduling experiment has treated the TF as a flattened graph
and has used the basic TCM design-time scheduler from the previous chap-
ter which can explore the energy-performance trade-off space for a single TF.
As a comparison, the second experiment has used the hierarchical schedul-
ing approach. That is, it first decomposed the input TF into a set of thread
partitions (see Fig. 5.3); then it scheduled threads inside each thread parti-
tion using the conventional TCM scheduler; at the end, it interleaved the
individual schedules generated from each thread partition. To respect the
dependencies among thread partitions, only the thread partitions without
dependencies are allowed to be interleaved. Therefore, TP1 can be inter-
leaved with TP2, and also TP4 with TP5. Figure 5.4 illustrates the differ-
ences between flattened scheduling, conventional DNC, and the hierarchical
scheduling with interleaving.

All the data are measured on a Linux PC running at 1.7 GHz. The design
space exploration results of the two experiments are plotted in Fig. 5.5. It
is clearly shown that the flattened exploration Pareto curve is very close
to the hierarchical exploration Pareto curve. In fact, the flattened schedul-
ing has only found a schedule 5% faster than the fastest schedule explored
by hierarchical scheduling with interleaving. Although the two results are
very close, hierarchical scheduling has reached this result in much fewer
efforts. In our experiments, the flattened scheduling time (15.5 s) is about 30
times longer than the time of the hierarchical scheduling with interleaving
(0.5 s).



114 5 Scalable Design-Time Scheduling

TP1, TP2, ..., TP5

TP1+TP2 TP4+TP5

t1

t3

TP1

t2

Flattened scheduling

Conventional DNC scheduling

Hierarchical scheduling with interleaving

0

0

2

1 3 4 5 7 9 12 6 8 10 11 14 15 18 19 17 2016

13

0 21

RISC0

RISC1

VLIW

13 4 5 7 9 122 8 10 111415 18 1917 20 16

13

0 21

RISC0

RISC1

VLIW
6

0
13 4 5 7 9 122 8 10 111415 18 1917 20 16

13

0 21

RISC0

RISC1

VLIW
6

TP5TP2 TP4TP3

TP3

Fig. 5.4. Illustration of flattened and hierarchical scheduling

5.3 Thread Frame Decomposition

The TF decomposition step can create multiple thread partitions from the
input TF in order to break down the scheduling efforts. In this section, we
first provide a formal description of the problem. Then we discuss what
properties of the TF are influential on making a decomposition decision. We
finish with an effective TF decomposition algorithm.



5.3 Thread Frame Decomposition 115

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 10000 20000 30000 40000 50000 60000 70000

T
im

e 
B

ud
ge

t (
us

)

Energy Consumption (uJ)

TCM Pareto Curve(s)

Flattened Scheduling
Hierarchical Scheduling

Fig. 5.5. Design space exploration results comparison

5.3.1 Problem Formulation

We consider an input TF as a Directed Acyclic Graph (DAG) T (V,E) where
the vertices V = {v0, v1, ...} represent the set of threads and the edges E
represents the control- and data-dependencies among threads.

Before the formal definition of the TF decomposition, we need three auxi-
liary definitions.

Definition 5.2 (Graph Dependency) For two thread frames G0(V0, E0) and
G1(V1, E1), a Graph Dependency (G0, G1) is a constraint between thread frame
G0(V0, E0) and thread frame G1(V1, E1)) such that the activation of threads ∈ V1

cannot start before the completion of all threads ∈ V0.

Definition 5.3 (Thread Frame Partition) A Thread Frame Partition (TFP) is a
function from a thread frame (V,E) to N sub-frames (referred to as thread par-
titions) {(V0, E0), (V1, E1), . . . , (VN−1, EN−1)} and a set of Graph Dependencies
GD, such that,

1. V0 ∪ V1 · · · = V
2. ∀Vi, Vj , Vi ∩ Vj = φ
3. ∀vi, vj ∈ Vk,

(vi, vj) ∈ E ⇒ (vi, vj) ∈ Ek

4. ∀(vi, vj) ∈ E, vi ∈ Ek, vj ∈ El,
k �= l ⇒ (Gk, Gl) ∈ GD



116 5 Scalable Design-Time Scheduling

Definition 5.4 (Complexity Estimator)
A Complexity Estimator (CE) is a function from a DAG (V,E) to a real number

R. The function value of input DAG (V,E) is an estimation of the scheduling time
of (V,E).

A TF decomposition problem is formally defined as follows,

Definition 5.5 (Thread Frame Decomposition Problem) A Thread Frame
Decomposition Problem is a Thread Frame Partition on the input thread frame
(V,E), such that: ∀(Vi, Ei), CE((Vi, Ei)) ≤ Threshold, where Threshold is a
pre-determined value set by the designer.

5.3.2 Decomposition Guidelines

While the basic intention of TF decomposition is to keep the scheduling com-
plexity under control, we must also consider how to provide larger room of
freedom for the later step of merging. Therefore, two important concerns
exist regarding the decision-making of decomposition. First, how to esti-
mate the scheduling time of a certain thread partition and thus ensure that
the resulting subgraphs would not lead to a heavy computation effort. Sec-
ond, how to establish the inter-thread partition dependencies such that those
dependencies will give fewer constraints to utilize the parallel processors.
To address these two concerns, we present two guidelines, namely the hori-
zontal decomposition and the look-ahead decomposition, on the appropriate
decompositions which lead to fast scheduling as well as better scheduling
results.

Horizontal Decomposition

Most DNC algorithms only relate the problem’s complexity to the size of the
problem. The time to solve scheduling problems, however, does not merely
depend on the size of the problem. In fact, the structure of a thread parti-
tion can influence the scheduling time significantly. Hence, in addition to the
sizes of thread partitions, we also consider the parallelism inside each thread
partition.

We define the maximum number of parallel threads in a thread partition
as its width, i.e., if a graph is traversed by a breadth-first search, the maxi-
mum number of vertices that are traversed within one search step is called
the width of this graph. For example, the graph depicted in Fig. 5.2 has a
width of 4 (node 11, 13, 14, and 15).

In general, the more parallel threads a thread partition has, the longer
the design-time scheduling will be. This is because that parallel threads have
no ordering constraints between them, and thereby lead to a larger explo-
ration space when allocating and ordering the threads onto heterogeneous
processors. For instance, when scheduling two parallel threads onto two



5.3 Thread Frame Decomposition 117

different processors, one has six possible schedules. On contrast, scheduling
two sequential threads on the same two processors only has four possible
schedules.

Therefore, we use the maximum width of a thread partition to predict
its scheduling time during the TF decomposition. That is, we first decide a
maximum width threshold value based on experiments, and then ensure that
each thread partition has a maximum width less or equal to the maximum
width threshold.

As the result of the maximum width control, our decomposition scheme
tends to split a wide TF into a number of horizontal (parallel) thread parti-
tions. Although this horizontal decomposition seems to bring a penalty in the
sense that less concurrency would be available when conducting the explo-
ration for each partition, the interleaving technique that we are to present
later would effectively exploit the concurrency across the boundaries of
partitions.

Example 5.6 Consider a scheduling experiment on a large set of random TF.
We decompose the TF using two options. The first option, OPT1, let us
decompose the input TF into thread partitions with the maximum thread
number of 10 and the maximum width of 5; the second option, OPT2, allows
the same maximum thread number, but increases the maximum width to 10.
We conducted design-time scheduling on these thread partitions and mea-
sure the scheduling time of each thread partition. This experiment employed
random input TF with different sizes, namely 50 threads, 75 threads, and 100
threads.

The average scheduling times for TF with different options shown in
Fig. 5.6.

50 nodes 75 nodes 100 nodes
0

5

10

15

20

25

30

35

40

45

Dopt1
Dopt2

T
im

e 
(M

in
ut

e)

Schedul ing Time Comparisons

Fig. 5.6. Scheduling times comparison



118 5 Scalable Design-Time Scheduling

The figure clearly shows that not only the number of threads in a TF
can affect the scheduling time, the different widths also lead to significantly
different scheduling times. This observation indicates that reducing the
width of a thread frame would result in a faster scheduling process.

Dependency-Aware Decomposition

In addition to decomposing the original TF to thread partitions that have
lower scheduling costs, we need to consider the scheduling quality after
decomposition. In other words, we want to have the scheduling results of
the decomposed TF as good as the ones that we can obtain by scheduling
the original TF in the flattened way. In order to explore more parallelism
from the original TF, we have developed an interleaving technique that can
exploit the parallelism from different thread partitions (Section 5.5 will give
the explanations of interleaving technique).

The interleaving technique can extract the parallelism from different
thread partitions at a low computation cost. However, it can only be applied
to a set of concurrent thread partitions. That is, if two thread partitions have
a dependency in-between, they will not be able to be interleaved. Therefore,
we must create thread partitions as concurrent as possible to boost the final
scheduling quality.

From previous discussion about the scheduling time estimation, we can
derive the maximum width a thread partition can have. This does not mean
that we should partition the input TF in a greedy way, i.e., decomposing into
thread partitions as wide as the maximum width allows. Because partition-
ing as many threads as possible to a thread partition could lead to additional
inter-thread partition dependencies.

Example 5.7 Suppose we have a maximum width of 2 for decomposing an
input TF illustrated on the left side of Fig. 5.7(a), a greedy decomposition is to
split the TF in the way shown on the right side of Fig. 5.7(a). This straightfor-
ward decomposition however leads to an inter-thread partition dependency
between the two thread partitions. This dependency is an additional con-
straint that postpones the start time of thread 2 to the finish time of thread 3,
even though there is no such dependency in the original TF.

Instead of the greedy decomposition, we could check if any two threads
have a common immediate successor by looking one step ahead. That is, we
try to group the threads who share a same immediate successor in the same
thread partition, as long as the the parallelism inside the thread partition
does not go beyond the maximum width. In this way, we have a decomposi-
tion result illustrated in Fig. 5.7(b). Now that the two thread partitions are in
parallel, the later interleaving step can further extract the thread concurrency
across the thread partition’s boundaries.

To reduce the inter-thread partition dependencies, we have proposed
the a look-ahead dependency-aware decomposition (LADAD). The basic



5.3 Thread Frame Decomposition 119

0 1 2

3 4

(a) Without Look-ahead and the sequential result

(b) With Look-ahead and the parallel result

0 1

2

3

4

0 1 2

3 4

0 1 2

3 4

Fig. 5.7. Non-lookahead vs lookahead decomposition

idea of LADAD is that if there are N candidate threads to be decomposed
(N > Maximum Width), we do not treat those candidate threads as unrelated
ones. Instead, we look one step ahead on each candidate thread by checking
if any two candidate threads share a common successor thread. If two candi-
date threads share a common successor, we call them relative threads. In doing
so, we actually create an undirected graph called look-ahead graph (LAG),
as formally defined below.

Definition 5.8 (Look-ahead Graph) A Look-ahead Graph is an undirected graph
LAG(V,E), where,

1. V = {v0, v1, . . . } is the set of all candidate threads
2. ∀vi, vj ∈ V,

(vi, vj) ∈ E ⇐⇒ vi, vj are relative threads

An established LAG may have a number of disjointed subgraphs. Each
subgraph consists of the candidate threads that share common successor
threads. For each disjointed subgraph of a LAG, we can now apply the
greedy partition. Because candidate threads that share common successors
stay in the same subgraph, greedy partition is much less likely to allo-
cate them to different thread partitions (the partition heuristics presented
in the next subsection can further reduce the chance that relative threads are
allocated to different thread partitions).



120 5 Scalable Design-Time Scheduling

5.3.3 Valid Decomposition

During the TF decomposition, a set of graph dependencies are created
among the thread partitions. These graph dependencies are additional con-
straints over the original control dependencies specified by the edges of
those thread partitions. According to the Definition 5.2, a graph depen-
dency between the thread frame TG1 and TG2 constraints the activation of
all threads inside TG2 to the completion of TG1. The graph dependencies
between thread partitions are built up by following Definition 5.3. After the
TF decomposition, each thread partition is regarded as an independent unit
by the scheduler, the graph dependencies are crucial to preserve the control
dependencies in the original TF.

If we model the decomposed N thread partitions with a graph G(V,E),
where V = {vi | 1 ≤ i ≤ N} denotes all thread partitions and E = {(vi, vj) |
vi, vj ∈ V } denotes all graph dependencies, it is obvious that a valid G must
be a DAG. However, a straightforward TF decomposition by only following
the decomposition guidelines discussed so far could lead to an invalid non-
DAG for the thread partitions.

Example 5.9 Consider a TF decomposition with maximum thread partition
width of 2 on the input TF depicted in Fig. 5.8(a). Because of the look-ahead
guided decomposition, thread 0 and thread 1 are partitioned to the same
thread partition, while thread 2 starts a new thread partition. Then the ini-
tial thread partitions are expanded with the constraint that the maximum TF
width is less or equal to 2. Due to the thread dependency between thread 3
and thread 7, a graph dependency is created from the thread partition 1 to
the thread partition 2; while the thread dependency between thread 7 and
thread 9 leads to an opposite graph dependency. The two thread partitions
are then in a deadlock as illustrated in Fig. 5.8(b). The TF decomposition is
then an invalid decomposition.

The invalid decomposition is caused by the fact that the original TF is not
a tree and hence a thread may have more than one predecessor. As illustrated
in Fig. 5.8(a), thread 9 has two predecessors, since one of its predecessor,

0 1 2

3 4

5 6 7 8

9 10

0 1 2

3 4

5 6 7 8

9 10

(a) Thread Frame Decomposing (b) Graph Dependency Deadlock

Fig. 5.8. Invalid thread frame decomposition



5.3 Thread Frame Decomposition 121

namely thread 7, has been decomposed to another thread partition. As a con-
sequence, the left-side thread partition has an inbound graph dependency
from the right-side thread partition; unfortunately, this situation also takes
place on thread 7, which leads to a graph dependency from left side to right
side and hence causes the deadlock condition.

It is hard to detect the deadlock graph dependencies during an arbi-
trary TF decomposing. However, we can effectively avoid such deadlocks by
controlling the inbound graph dependencies. Before controlling the depen-
dencies, we label all threads of the original TF with generation numbers. A
thread’s generation number is 0, if it has no predecessor; Otherwise, its gen-
eration number is the maximum one of all predecessors’ generation numbers
plus 1. For a thread partition, we call the set of threads with the smallest gen-
eration number as the entry threads (note that the entry threads may have
predecessors outside the thread partition). If we let that all inbound graph
dependencies only occur at the entry threads, we can then guarantee that the
decomposition on the original thread frame does not have graph dependen-
cies in deadlock.

Proposition 5.10 If a set of thread partitions only have inbound graph dependencies
at each thread partition’s entry thread(s), then there are no graph dependencies in
deadlock.

Proof Suppose a chain of graph dependencies (s0, s1), ...(sN , s0) is in dead-
lock, and all inbound graph dependencies only occur at the entry threads.
Let us refer the threads where the graph dependencies start as outbound
threads, and denote outbound threads on that graph dependency chain as
t0, t1, ...tN , where ti stays in the partition si. The outbound threads’ genera-
tion numbers are g0, g1, ...gN , respectively. Because a graph dependency only
occurs between an outbound thread and an entry thread of another partition,
for any graph dependency (si, sj), the generation number gi of the outbound
thread ti is smaller than that of the entry thread of the partition sj , and thus
smaller than the generation number of any thread in the partition sj . Hence,
it is clear that g0 < g1 < ... < gN . However, g0 < gN contradicts the exis-
tence of (sN, s0). Therefore, such a deadlock chain cannot exist.

In order to ensure a valid decomposition on the original TF, we have
developed a two-step decomposition method. By following this two-step
method, the decomposition process can guarantee that all inbound graph
dependencies only occur at the beginning of a thread partition and thus effec-
tively avoid the invalid decomposition.

The first step is called thread partition initialization. It can create thread
partitions from the set of threads with the same generation numbers, i.e., it
creates thread partitions in a single generation layer.

The second step is called thread partition expansion. This step tries to
expand the initial thread partition generation by generation, until either no
further successors are available, or all successors have at least one predeces-
sor not partitioned to the current thread partition.



122 5 Scalable Design-Time Scheduling

0 1 2

3 4

5 6 7 8

9 10

(a) Initial Decomposing (b) After Expansions

0 1 2

3 4

5 6 7 8

9 10

0 1 2

3 4

5 6 7 8

(c) Final Result

9 10

Fig. 5.9. Two-step thread frame decomposition

Example 5.11 Consider applying the two-step decomposition method on the
problem given in Example 5.9. The first step can create two initial thread
partitions, as illustrated in Fig. 5.9(a). These two thread partitions are then
expanded in the second step, generating the intermediate result depicted
in Fig. 5.9(b). Since unpartitioned threads, i.e., thread 7, 9 and 10, are still
present in the original TF, we repeat the first step of our decomposition
method and then carry out the second step. The final result of the decom-
position is shown in Fig. 5.9(c). It is clear that there is no graph dependency
in deadlock for the final result.

5.3.4 Thread Frame Decomposition Algorithm

The whole decomposition process is listed in Algorithm 1. The topological
sorting at line 4 labels each thread with an unique generation number. Then
the first set of initial thread partitions is created from threads at generation
0 with consideration of dependency-aware look-ahead mechanism (line 5).
Each initial thread partition is expanded as large as possible under the con-
straint of maximum width (line 7). If any threads in the original TF are not
partitioned after the expansions, new initial thread partitions are created
from the earliest generation level (line 8).

Algorithm 1 Thread Frame Decomposition
1: INPUT: Original Thread Frame
2: OUTPUT: Thread Partitions, Partition Dependencies
3: Initialize thread frame data-structures
4: Sort of all threads topologically
5: Create initial thread partitions from generation 0
6: while Input thread frame is not fully decomposed do
7: Expand each initial thread partition
8: Initialize new thread partitions from undecomposed part of the input thread

frame
9: end while



5.4 Thread Partition Clustering 123

5.4 Thread Partition Clustering

After the decomposition, the input TF is broken into multiple thread
partitions which are then passed to the TCM design-time scheduler. The
design-time schedules of each thread partition are explored by the TCM
design-time scheduler independently from other thread partitions. There-
fore, this design-time schedules exploration can be easily executed on differ-
ent computers and thus dramatically speed up the overall scheduling time.

The TCM design-time schedulers can generate the Pareto-optimal sched-
ules on the performance-energy trade-off space for each thread partition. All
Pareto-optimal schedules of a thread partition is referred as its Pareto-curve.

Traditional hierarchical thread scheduling techniques often stop after
decomposing the input TF and schedule each thread partition individually.
In contrast, our hierarchical scheduling approach moves one step forward
by exploiting the parallelism among thread partitions, i.e., we will gener-
ate a more parallel global schedule than just run over the schedules of all
thread partitions in a row. An interleaving phase is necessary to achieve that
parallelism. Before the interleaving phase, we must first cluster the thread
partitions.

The thread partition clustering mainly consists of two components:

1. Identifying the thread partitions clusters such that thread partitions
within a cluster can be run in parallel.

2. Generating a new Pareto curve for each thread partition cluster based on
merging and pruning the Pareto curves of all thread partitions.

5.4.1 Identifying Thread Partition Clusters

The output from the decomposition process include a set of thread partitions
and the corresponding graph dependencies. Since we are going to extract the
parallelism across the thread partitions’ boundaries, it is necessary to assign
thread partitions to different clusters such that each cluster only has thread
partitions in parallel. Then we can interleave all thread partitions in a cluster.

If we construct a graph G(V,E), where V = {vi | 1 ≤ i ≤ N} denotes all
thread partitions and E = {(vi, vj) | vi, vj ∈ V } denotes all graph dependen-
cies, G must be a DAG according to Proposition 5.10. Thus it is a straight-
forward step to label the cluster numbers to each partition by a topological
sorting on G, as illustrated in Algorithm 2.

5.4.2 Generating New Pareto Curves

After the thread partition clustering, we have a sequence of clusters. Each
cluster has one or more thread partitions inside. If a cluster contains more
than one thread partition, we need to prune the Pareto-optimal schedules
from each individual thread partitions. Because each thread partition has a



124 5 Scalable Design-Time Scheduling

Algorithm 2 Thread Partition Clustering
1: INPUT: Thread Partition Graph G(V, E)
2: OUTPUT: Cluster(C0, C1, ...CN )
3: L ← 0
4: C0 = C1 = ... = CN = φ
5: while V �= φ do
6: CL ← all v ∈ V without predecessors
7: E ← E − {all edges that starts from v ∈ C}
8: Cluster ← Cluster + {CL}
9: L ← L + 1

10: end while

0 1 2 3

1

2

3

0 1 2 3 4 5 6

1

2

3

4

5

6

Pruned

0 1 2 3

1

2

3
Pareto Curve 0 Pareto Curve 1

New Pareto Curve

Combining

(1,3)

(3,1)

(1.5,1.5) (1.5,1.5)

(3,1)

(1,3)

(6,2)

(3,3)

(2.5,4.5)

(4.5,2.5)

(2,6)

Fig. 5.10. Pareto curve pruning

number of Pareto-optimal schedules, the total number of combinations of
Pareto-optimal schedules would be too large to examine. In fact, many com-
binations are not Pareto-optimal and need to be pruned. Therefore, we need
to build a new Pareto curve for all thread partitions in this cluster. This prun-
ing is illustrated on Fig. 5.10, note that the energy figure of each combination
is the summation of energy figures of each individual thread partitions, and
the time figure is the summation of all individual time figures.

5.5 Thread Partition Interleaving

5.5.1 Motivation

Each thread partition cluster established in the clustering step has a
pruned Pareto curve consisting of a sequence of Pareto-optimal schedules.
Those Pareto-optimal schedules represent the sequential combinations of



5.5 Thread Partition Interleaving 125

Pareto-optimal schedules of individual thread partitions within this cluster.
The sequential combination implies that although the thread partitions do
not have dependencies within a cluster, they have to be run in a sequen-
tial manner. In the meantime, an interesting observation of Pareto-optimal
schedules of individual thread partitions is that they have significant slacks
inside. This is mainly due to two reasons: (a) when decomposing the original
thread frame, we have limited thread parallelism within a thread partition to
reduce the scheduling time. This limited parallelism leads to insufficient uti-
lization of the processors, and (b) different execution times and energy con-
sumptions caused by running the same thread on heterogeneous processors
let the power-optimizing design-time scheduling strategies under-utilize the
parallelism in favor of the energy efficiency.

Because of the slacks inside the schedules, the sequential execution is not
able to fully utilize the available parallelism of the underlying hardware and
hence provides an inferior overall Pareto curve for the whole TF. In order
to generate better Pareto curves, we propose to apply a new technique to
exploit the inter-thread-graph concurrency, namely the INTERLEAVING.

5.5.2 Preliminaries

The basic idea of interleaving is to build a new global schedule based on
shifting the Pareto-optimal schedules of individual thread partitions. During
this shift, both the processor allocation of a thread and the sequence of
threads that belong to one thread partition are kept unchanged. For a clear
problem definition, we provide the problem formulation below.

In our problem formulation, a thread partition’s schedule Sk for c proces-
sors is a list (M1, ...,Mc), where Mi = ((bj , ej), ...) is the list of threads
scheduled on the ith processor and (bj , ej) denotes that the first thread on
this processor is sj with the start time of bj and the execution time of ej .
For k schedules (S1, ..., Sk) of the thread partitions ((V1, E1), ..., (Vk, Ek))
on a platform with c processors, the interleaving problem can be formally
expressed as:

∀si ∈
(

k⋃

q=1

Vq

)
, Minimize [(xi + ei)max]

such that:

1. ∀e(si, sj , t) ∈ {E1, E2, ..., Ek} xi + ei + t ≤ xj ;
2. ∀a ∈ {1, 2, ...c} ∀(xi, ei), (xj , ej) ∈ M1a ∪ ... ∪ Mka

(xi < xj ⇒ xi + ei ≤ xj ∧ xi > xj ⇒ xj + ej ≤ xi).

5.5.3 Interleaving Technique

Scheduling threads with nonuniform execution times on multiple proces-
sors is well known for its intractability [76]. In fact, Hoogeveen et al. [94]



126 5 Scalable Design-Time Scheduling

have proved that even for three processors, scheduling threads with fixed
processor allocations is a NP-hard problem. Our interleaving problem is
more restrictive than the thread scheduling problem with fixed processor
allocations in the sense that interleaving has to consider the precedence con-
straints. The NP-hard nature of interleaving problem makes it a difficult
problem to solve. Still, for not too many threads, an exact algorithm can be
applied. We have developed a branch-and-bound algorithm for the inter-
leaving problem (Algorithm 3). This algorithm starts with an initial state S
formed by all threads’ starting times. All starting times are not decided and
thus the partial global schedule is empty. The algorithm first selects threads
without predecessors or with predecessors whose starting times are already
decided, and then decides the starting times for these threads. Each time
when the starting time of a thread is decided, this thread is inserted to the
partial global schedule. The algorithm checks if the partial global schedule is
valid after each insertion. A partial schedule is valid only if no precedence
constraints are violated in all the threads that have been inserted. Once a
thread’s starting time is decided, its successors become candidates for further
thread selection to grow the partial global schedule. This growing is contin-
ued until the global schedule is completed. A partial global schedule is com-
pleted once all threads are inserted. For each completed global schedule, the
algorithm measures its makespan, i.e., the difference between the starting time
of the first thread and the finishing time of the last thread. If the makespan
is shorter than the shortest one from all explored completed global schedule,
this completed global schedule is then recorded. After that, the algorithm
does backtracking in an attempt to explore better schedules. The searching
stops when all possible schedules are explored.

Algorithm 3 Branch-and-bound algorithm for interleaving
1: BnB()
2: INPUT: status; upper bound
3: OUTPUT: makespan
4: if makespan of status > upper bound then
5: return makespan of status
6: end if
7: if all threads are scheduled then
8: print status
9: return makespan of status

10: else
11: schedulable threads ← precedence free threads
12: for all thread i in schedulable threads do
13: new status ← status
14: schedule thread i and update new status
15: makespan ← BnB(new status, upper bound)
16: if makespan < upper bound then
17: upper bound ← makespan
18: end if
19: end for
20: return upper bound
21: end if



5.5 Thread Partition Interleaving 127

It is still interesting though to have fast algorithms that can handle more
threads. Therefore an effective heuristic algorithm has been developed to
interleave multiple TF. This heuristic must be fast to construct a valid sched-
ule so that the designer can evaluate multiple schedules which have been
provided by preceding individual thread scheduler.

We have developed a fast interleaving heuristic based on the list schedul-
ing algorithm [98]. This heuristic uses the first-come-first-served principle
to keep a list for each processor and from all given schedules, allocate each
thread to the list of the processor where it is mapped in its own thread par-
tition’s schedule. All threads allocated to a list are sorted according to their
starting times (ST) in the original schedules. An earlier thread in the original
schedule is put closer to the top in the list than a thread with a later starting
time. For each processor, the algorithm then scans the list from top to bot-
tom. Once a scanned thread has all of its predecessors completed, it will be
added to the ready list and scheduled onto the current processor. To allevi-
ate the greedy behavior of this heuristic, we have also adapted the threads’
order in the ready list using a look-ahead mechanism, i.e., we modify the
order such that a thread is put to an earlier position if it has successors with
larger accumulated execution times. Please note that the successors include
both immediate successors and the successors of immediate successors. The
entire heuristic algorithm is presented in Algorithm 4. Once the interleaved
schedule is generated, we can use it to steer the code generation by using the
code merging technique presented by Marchal et al. [148]. The resulting code
can then be executed on the multiprocessor platform.

Algorithm 4 Interleaving heuristic
1: INPUT: Schedules of N partitions: S1, ...SN

2: OUTPUT: Global Schedule
3: timer ← 0
4: unsched threads ← threads from all partitions
5: while unsched threads > 0 do
6: for all processor i do
7: for all schedule Sj do
8: if Sj has threads on processor i then
9: add the threads to the ready list on the processor i

10: end if
11: end for
12: for all threads on the ready list i do
13: priority ← ST + accu. exec. time of successors
14: end for
15: ST ← ST of the highest priority thread
16: if timer < ST then
17: timer ← EST
18: end if
19: schedule the top priority thread T starting at timer
20: processor schedulei ← processor schedulei + T
21: inform this thread’s start time to its successors
22: unsched threads ← unsched threads − 1
23: end for
24: end while
25: Global Schedule ← {processor schedule1} + ... + {processor scheduleN}



128 5 Scalable Design-Time Scheduling

5.6 Experimental Results and Discussions

In this section, we first give a brief introduction to the implemented hierar-
chical scheduler. Then we present the hierarchical scheduling experiments
on a large set of random TF generated by TGFF [70].

5.6.1 Experimental Setup

We have implemented the whole hierarchical scheduler in three main com-
ponents, namely the Thread Frame Decomposer (TFD), the Thread Partition
Design-time Scheduler (TPDS), and the Thread Partition Merger (TPM). The
TFD module is implemented in Python code, its main functionality is to
parse the input description file of TF and generate description files for each
resulting thread partition. The TPDS module is a Python wrapper around the
executable of the existing design-time scheduler [245], which does a trade-off
exploration for each thread partition. The TPM module is also implemented
in Python code. It can parse the output files of TPDS and identify thread par-
tition clusters. For each thread partition cluster, the TPM then invokes the
executable of our interleaver (implemented in C code) to generate a Pareto
curve. The TPM then merges all Pareto curves into a global Pareto curve.

5.6.2 Experiments with Random Thread Frames

To evaluate the effectiveness of the hierarchical scheduling, we need a large
set of random TF. We have used a software tool called TGFF [70] to gene-
rate the TF for evaluations. TGFF can generate random TF according to the
specified options such as the thread number. In addition to generating the
random TF, TGFF can be configured to also generate a random configuration
for a multiprocessor platform. A sample option file for TGFF is illustrated in
Fig. 5.11. This option file can make TGFF generate a TF with 50 thread nodes
as well as a platform with 6 processors running at random working voltages,
as illustrated in Figs. 5.12 and 5.13, respectively.

In order to measure the optimality of Pareto curves, we first need to
calculate the lower bounds. The lower bound of energy consumption for
scheduling a TF on a given platform can be calculated by allocating each
thread to the processor with minimal energy consumption and then the sum
of all threads’ energy numbers is the lower bound. The lower bound of exe-
cution time is calculated by allocating threads to their fastest processors and
then the sum of all individual execution times is divided by the number of
processors on the given platform. The result is the lower bound of execution
time. Please note that this lower bound of time may not be reached by any
feasible schedule at all. But it is clear that no feasible schedule could have an
execution time shorter than the lower bound.

The optimality measurement of the scheduling results is then carried
out by applying the metric of Pareto-optimality. That is, we calculate the



5.6 Experimental Results and Discussions 129

seed 10
################
#thread graph
################

tg_cnt 1 #nr of thread frames

thread_cnt 50 1 #base nr of threads in a graph

period_mul 1 #multiple of base nr of threads

################
#processor speed
###############

thread_type_cnt 30

table_cnt 6 #processor nr

tg_write
pe_write
###############
#processor power
###############
table_label Power
thread_type_cnt 6
table_cnt 1
type_attrib working_power 20 10

pe_write
eps_write

Fig. 5.11. Sample TGFF option file

time difference between a result’s length and the lower bound of time
consumption as well as the energy difference between a result’s energy con-
sumption and the lower bound of the energy consumption. The product of a
result’s time difference and its energy difference is used to measure its Pareto
optimality. The optimality of a Pareto curve is then measured by the mean
value of all Pareto points’ products (as illustrated in Fig. 5.14).

A large number of random TF are generated for three categories, the first
category has 50 TN in each TF, the TN numbers of the second and third
categories are 75 and 100. Thread frames from each category are decomposed
with the maximum partition width of 5 and with the maximum thread num-
ber of 10. We have conducted scheduling experiments for platforms with 6
and 8 processors, respectively. The design-time scheduler of [244] is used as



130 5 Scalable Design-Time Scheduling

@TASK_GRAPH 0 {
TASK t0_0 TYPE 22
......

ARC a0_0 FROM t0_0 TO t0_1 TYPE 8
......

}
@PE 0 {
# type version exec_time
0 0 104
......
29 0 86

}
@PE 1 {
# type version exec_time
0 0 108
......
29 0 91

}
......
......
......

@PE 5 {
# type version exec_time
0 0 113
......
29 0 127

}
@Power 0 {
# type version working_power
0 0 25
......
5 0 20

}

Fig. 5.12. TGFF output file

the reference flattened scheduler for the comparisons. The results are listed
in Table 5.15; note that the lower value in the metric of Pareto-optimality
represents a better Pareto curve in the sense that it gives faster schedules at
lower-energy consumptions.

5.7 Comparison with State of the Art

Scheduling a DAG on multiprocessor platforms with a minimum make-
span is notorious for its intractability. The scheduling time increases dramati-
cally with large DAGs, even when using heuristic algorithms. This problem



5.7 Comparison with State of the Art 131

TASK_GRAPH 0
  Period= 1400
  In/Out Degree Limits= 5 / 5

0

1

2

3

4 5

6 7 8

9

10 11 12 13 14

15

16 17 18

19 20 21 22

23 24 25

26 27 28

29

30

31 32 33 34 35 36

37 38 39 40 41

42

43 44

45

46

47 48 49 50

d=800

d=900

d=1000

d=1100

d=1000

d=1200 d=1200 d=1200

d=1300 d=1300 d=1300

d=1000 d=1000

d=1200

d=1400

d=1300 d=1300 d=1300 d=1300

Fig. 5.13. TGFF output thread frame

becomes even worse when the designers have to consider other scheduling
criteria such as energy consumptions, in addition to the schedules’ lengths.
A natural way to speedup the scheduling process is to split up the original
DAG and schedule each sub-DAG in parallel.

The general graph decomposition problem using the divide-and-conquer
strategy has been investigated for many years, most of the publications, such
as [74], have been aimed at solving general graph decomposition problems
without considering the constraints introduced by the scheduling process
after the decomposition.

Recently, Ahmad and Kwok [2] has combined the decomposition prob-
lem and the scheduling problem within an unified hierarchical scheduling



132 5 Scalable Design-Time Scheduling

Energy

Time budget

Pareto Optimality = TD0 * ED0 + TD1*ED1 
+ TD2*ED2 + TD3*ED3 + TD4*ED4

Energy Lower Bound

Time Lower Bound

ED1

TD1

0

1

2

3
4

Fig. 5.14. Pareto optimality metric

6-processor 8-processor
optimality sched. time optimality sched. time

50 Flat 13.9 × 106 1000 s 14.3 × 106 1000 s

threads Hier 7.5 × 106 29 s 7.7 × 106 30 s

75 Flat 13.3 × 106 2000 s 15 × 106 2000 s

threads Hier 2.8 × 106 30 s 3.0 × 106 35 s

100 Flat 36 × 106 4000 s 32 × 106 6000 s

threads Hier 10 × 106 35 s 9 × 106 37 s

Fig. 5.15. Result Pareto optimality comparison: flattened scheduling vs hierarchical
scheduling

flow. However, their work has only considered the performance of resulting
schedules and hence severely reduced the scheduling exploration space for
each subgraph.

General purpose evolutionary algorithms have been widely studied for
the multiobjective optimization problems (see [63] for a good survey). They
have recently been adapted to in the embedded software synthesis method-
ologies [68, 199]. These evolutionary algorithms are distinguished from pre-
vious scheduling algorithms by their capabilities to explore the trade-off
space of the multiobjective optimization, which is an important problem
encountered when designing modern embedded systems. The evolutionary
algorithms, however, are designed for general-purpose problem-solving and
thus inefficient for task scheduling problems. Despite their extremely long
scheduling times, they are not robust in terms of optimality. Because they
choose starting points randomly, and a bad starting point can dramatically
reduce the result’s quality.



5.8 Summary 133

In contrast, the design-time performance-energy trade-off exploration
algorithm presented by Wong [245] was designed specifically for the thread
scheduling problem on multiprocessor platforms and therefore is much
effective. Because of the intractable nature of scheduling problems, even the
heuristic method of this specific exploration algorithm may suffer a lengthy
execution time, which makes it unsuitable to work on large TF.

5.8 Summary

This chapter has presented a hierarchical scheduling approach based on the
interleaving technique. This hierarchical scheduling approach can deal with
large TF efficiently. As a result, the speedup of up to 2 orders of magni-
tude has been achieved for large TF. Moreover, the hierarchical scheduling
approach can speedup the scheduling process in a scalable way by creat-
ing concurrent scheduling jobs, where each job can be performed indepen-
dently on an individual processor. The interleaving technique ensures that
the final results from the hierarchical scheduler can reach the lower bound
of energy consumption. The hierarchical scheduler does suffer a makespan
penalty when compared to a flattened scheduling. Nevertheless, the aver-
age overall Pareto optimality of the scheduling results from our hierarchi-
cal scheduler is 50% better than the results from the conventional flattened
scheduler due to its faster exploration.




