
4

Basic Design-Time Scheduling

In this chapter, we present the development of a novel task scheduling algo-
rithm for the design-time scheduling phase of our two-phase TCM framework.
Scheduling has different meanings in different contexts. In this chapter,
scheduling has two meanings. First, assigning every thread node of a given
TF to one of the processors of a given platform. Second, deciding the start
time to execute every node on its assigned processor. We have two assump-
tions for this scheduling problem. First, whether a node can be executed on
a certain processor should be known. Second, if a node can be executed on
a certain processor, the execution time should be known, calculable or pre-
dictable. Based on the second assumption, having decided the start time of
executing a node on a certain processor, the scheduler can derive the finish
time of such an execution immediately. Therefore, the execution order of all
the nodes assigned to each processor is known. In summary, scheduling in
our context means node-to-processor assignment and ordering.

We will first formulate the problem. Then the kernel heuristic is presented.
Next, a number of extensions are introduced to improve the kernel heuris-
tic one way or another. We will use extensive experiments to demonstrate
at each development phase where the strong point and weak point are,
which we should keep and which we should improve. Finally, the scheduler
is extended with a pruning step to handle the timing constraints imposed
between two nodes.

4.1 Problem Formulation

A graph consists of nodes and edges as shown in Fig. 4.1. The edge represents
a dependency between two nodes. The dependency can be a control depen-
dency or a data dependency. From the execution viewpoint, a dependency
dictates the precedence constraint between two nodes, i.e., the node at the end



52 4 Basic Design-Time Scheduling

t0’

t1’ t2’

t4’

t5’

t6’

t7’

t3’

t10

t0

t1

t2 t3

t5 t4

t6t7 t8t9

t11 t12t13 t14 t15t16 t17 t18t19

t20

Fig. 4.1. An example graph

ARM 2.4 V 1.2 V

TriMedia 3 V 2 V 1 V

Fig. 4.2. An example platform

of the edge can only start execution when the node at the start of the edge fin-
ishes execution.

A node, which does not have a parent, is a source node, like node t0, t′0 in
Fig. 4.1; while a node, which does not have a child, is a sink node, like node
t16, t17, t′7, . . .. It is possible for a node to be both a source and a sink node. A
graph can have one or multiple source nodes.

A platform has a number of processors as shown in Fig. 4.2. These
processors can be of the same type or of different types. And they can have
control knobs allowing them to exhibit different Pareto trade-off points. In
Chapters 4 and 5, we will focus on the trade-off between execution time
(T) and energy (E) as an illustration. The approach can be readily extended
to more Pareto axes though. Moreover, we will illustrate the control knobs
by the presence of (a discrete range of) Vdd voltages. So we assume that
the processors and other resources can operate in a given range of different
supply voltages.

According to the recent literature [104, 119, 171], some of today’s proces-
sor cores have the supply voltage varying from 0.9 to 5.0 V. Within this sup-
ply voltage range, the execution time of a node scales inversely proportional
with the supply voltage while the energy consumption scales quadratically
with the supply voltage.

T ∝ 1
Vdd

(4.1)

E ∝ V 2
dd (4.2)



4.2 Exact Scheduling Algorithms 53

These two formulas are known as the execution time model and energy
model, respectively.1

Actually, our scheduling algorithm does not require the execution time
model and the energy model to be strictly kept as Eq. (4.1) and Eq. (4.2).
What the scheduler needs are execution time and energy data of every node
on every processor. As long as the user provides these data, either in a table
format or in a model formula format, the scheduler can work with those
data. However, to have performance and energy-cost trade-offs, the sched-
uler requires that the energy consumption increases at a faster pace than the
execution time decreases when the supply voltage changes. The reason is as
follows. If we take the decrease of execution time as performance gain, and
the increase of energy consumption as loss, since we gain more in the per-
formance than we lose in the energy consumption when raising the supply
voltage, we may always favor the high supply voltage solution. Therefore we
have little trade-off to play between the performance gain and energy consump-
tion. Though semantically, the scheduler does not impose this requirement,
i.e., a user can feed whichever data to the scheduler, the scheduler cannot
derive trade-off curves if the problem itself does not allow trade-off between
performance and energy-cost.

4.2 Exact Scheduling Algorithms

An exact scheduling normally has to exhaustively search the complete search
space. However, the more we know the problem, the more efficient algo-
rithm we can come up with to solve that problem specifically. For example,
branch-and-bound is a well-known framework for exhaustive search. It is a
framework because it only dictates the guidelines of how to make scheduling
decisions, namely, branching rule, lower bound calculation, search strategy,
and dominance rule. Actually, branch-and-bound is a generic framework
for decision-making, not restricted with scheduling decisions. Then it is the
responsibility of the algorithm developer to implement the abstract guide-
lines to concrete operations. The more we know the features of a problem,
e.g., in our context, the topology of the graph, how the node execution time
is distributed in the graph, etc., the better we can tune and implement the
concrete operations to solve the problem efficiently. In other words, the tuned
algorithm only goes over a small fraction of the search space, and hence finds
solutions faster. However, the more specific an algorithm is to a problem,
the more it looses in its generality. In other words, for a different problem,
it can be extremely slow to find the solutions. High sensitivity to the input
data should always be avoided. That is the motivation for us to employ the

1 Note these are approximated formulas for Vdd above or around 1 V. In the future,
when processing technologies go below 45 nm, the Vdd range will become much
lower than 1 V.



54 4 Basic Design-Time Scheduling

heuristic approach, by which we can prune the search space significantly no
matter which input data is given.

For our problem, the scheduling complexity comes from the following
two origins.

1. The combinatorial complexity. This is due to the node-to-processor
assignment possibilities. Assume we have a graph of n nodes and a plat-
form of m processors, the possible assignment number is mn.

2. The permutation complexity. For each fixed node-to-processor assign-
ment, a number of node execution orders exist. Assume for node-to-
processor assignment i, we divide the ordering process into si steps. In
each step j, we order the execution of a number of aj independent nodes.
The number of possible orders at step j is aj !.

Therefore, the total complexity of our scheduling problem calculated by the
following equation.

mn∑

i=1

si∏

j=1

aij ! (4.3)

si∑

j=1

aij = n (4.4)

The complexity depends on how we divide the ordering process into steps
for each node-to-processor assignment. In the worst case, all the nodes are
independent from each other, i.e., no precedence constraint exist between
any two nodes. Then for each node-to-processor assignment, we only have
one step to order the node execution. The number of node execution orders
is n!. This case has the largest ordering freedom. No matter how we divide
the ordering process into steps, for a realistic size problem, apparently, the
design space is far too large to explore exhaustively.

Example A 40-node graph is going to be scheduled on a 4-processor plat-
form. To produce one scheduling, i.e., assignment plus ordering, it takes
1 clock cycle. We have a computer with 1 GHz clock frequency.

Case 1 Use the worst case to get a rough estimation. For one node-to-
processor assignment, the number of node execution orders is 40!, which
equals to 8.15 × 1047. Then to exhaustively search the possible execution
orders, it will take the computer 2.58× 1031 years. Apparently, this is not
realistic.

Case 2 Assume then the ordering process is divided into ten steps. At each
step, we have four independent nodes to be ordered. Then for one
node-to-processor assignment, the number of node execution orders is
(4!)10 = 6.34×1013. To exhaustively search the possible execution orders,
it will take the computer 17.61 h. Since this is for one node-to-processor
assignment, which takes all the possible node-to-processor assignments



4.3 Forward Search Algorithm 55

into account, the total scheduling number should be multiplied by 410.
The result will be 2107 years.

Actually, no matter how well we design the algorithm, to find one
scheduling solution, it must take more than one operation. That is to say,
we cannot find one solution within 1 clock cycle. Therefore, in reality, we
can never afford the run time of an exhaustive search algorithm. Exhaustive
search algorithms work on small toy examples but not on problems of real-
istic sizes.

Fortunately, a lot of the solutions are apparently not Pareto-optimal solu-
tions. If we have a method to either identify the optimal solutions or prune
the non-optimal solutions, we can solve the problem much more efficiently
than using the exhaustive search. In the following sections, we will explain
step by step how we have designed the scheduling algorithm to solve our
problems efficiently.

4.3 Forward Search Algorithm

4.3.1 The Kernel Heuristic

The basic function of a scheduler is to assign the nodes to processors and to
order the nodes on each assigned processor. The problem can be approached
from many angles. We take the following way.

The Framework of the Kernel Heuristic

The problem is decomposed into a certain number of decision steps. At each
decision step, a node is assigned to a processor. Then the start time of exe-
cuting this node on this processor is decided. It immediately follows that the
number of nodes in a graph determines how many scheduling decision steps
there will be.

In this scheduling policy, when the node has parent nodes that all finished
execution, i.e., the node has its precedence constraint resolved, and when the
processor, to which the node is assigned, finishes its job at hand, the proces-
sor will execute this node. Idle time on the processor is possible when the
node has to wait for one or more of its parent nodes to finish execution. Then
the processor may have already finished its previous job for some time. As a
result, this scheduling policy will allow idle time on the processors only due
to precedence constraints.

The Node Selection Policies

Under the scheduling framework is how to select a node and a processor
at each step. It is possible that at one step, several nodes are precedence-
resolved, and several processors are ready to accept a node.



56 4 Basic Design-Time Scheduling

t0

t1

t2

t3 t4

t5
W=6
L=0

W=10
L=6

W=2
L=6

W=15
L=18

W=9
L=0

W=2
L=9

Fig. 4.3. Illustration of weight and load concept

Assume that one processor has been selected. The kernel heuristic then
uses two criteria to select one node among several candidate nodes.

The first criterion is the weight of a node. Weight is defined as the exe-
cution time of the node on a reference processor. All the nodes should be
calibrated on the reference processor. So the measurements for all the nodes
are consistent. The larger the weight of a node, the higher priority it has to be
assigned to the selected processor.

The second criterion is the load of a node. The load of a node is defined
as the sum of the weights of all its descendant nodes. The descendant node
can be a child node, a grand-child node, . . .. Formally speaking, Node B is a
descendant node of Node A if and only if there is an edge or a series of edges
starting from Node A and ending at Node B. The larger load a node has, the
higher priority it has to be assigned to the selected processor.

Figure 4.3 illustrates the concept of weight and load.
Based on these two measures, given the selected processor, the following

policy takes care of selecting a node.

1. When a node is dominant in both weight and load over the other candidate
nodes, it will be assigned to the selected processor;

2. When one node has the dominant weight and another node the domi-
nant load, either of them can be assigned to the selected processor. By
alternating their priorities, different solution points on the energy-cost
vs. time-budget plane will be generated.

When node t0 and t2 in Fig. 4.4 are precedence-resolved, the scheduler
will select t2 to be assigned since it is dominant both in weight and load.

After t2 is assigned, t0, t3, and t4 are precedence-resolved, the scheduler
will select t0 and t4 alternatively to be assigned (Fig. 4.5).

The kernel algorithm favors high-performance execution. It tries to
schedule as tight as possible. Two small examples, an artificial one in Fig. 4.6
and a real-life one in Fig. 4.8, are used to show how optimal the kernel heuris-
tic is. As explained in Section 4.2, we can only use small examples to avoid
run time explosion of the exhaustive search.

All the artificial examples in this chapter are generated by Task Graph for
Free (TGFF, Release 2.0 ) [70].



4.3 Forward Search Algorithm 57

t0

t1

t2

t3 t4

t5 W=6
L=0

W=10
L=6

W=2
L=6

W=15
L=18

W=9
L=0

W=2
L=9

Fig. 4.4. Decision example of the kernel scheduling heuristic

t0

t1

t2

t3 t4

t5
W=6
L=0

W=10
L=6

W=2
L=6

W=15
L=18

W=9
L=0

W=2
L=9

Fig. 4.5. Decision example of the kernel scheduling heuristic

t0

t1

t2

t3 t4 t5

t6

t7t8 t9 t10

t11

P0 3 V

P1 1 V

Fig. 4.6. A 12-node artificial graph with 2 processors

An Artificial Example

Figure 4.6 is an artificial graph with 2 processors. The TGFF input parame-
ter file for this example are listed in Appendix A. The execution-time and
energy-cost data of this example are listed in Table A.1. For this artificial
example, The kernel heuristic gives 4 Pareto optimal solutions, while the
exhaustive search gives 49 Pareto optimal solutions. The detailed solutions
are listed in Tables A.2 and A.3. Figure 4.7 compares the solutions given by



58 4 Basic Design-Time Scheduling

Fig. 4.7. Solution comparison for Fig. 4.6

t0

t1

t2

t3

t4 t5 t6 t7 t8 t9
P0 2.33 V

P1 1 V

t10 t11 t12 t13 t14 t15

Fig. 4.8. A real-life graph with 2 processors

the exhaustive search and the kernel heuristic. This figure only shows the
comparable solutions between the exhaustive search and the kernel heuris-
tic. The exhaustive search produces 41 solutions between time budget 334
and 1110, which are not shown in Fig. 4.7. Since the kernel heuristic does not
generate solutions in that range, there is no sense yet to make a comparison
over that part. But if the solutions are of high optimality in the operational
range, we can use it as the kernel and make extensions to improve the solu-
tion range. If the solutions are of poor quality, we should invent other algo-
rithm as the corner stone. So we concentrate on the comparable part between
the kernel heuristic and the exhaustive search.

Checking these four solutions produced by the heuristic against the
solutions produced by the exhaustive search, we can verify that these four
solutions are indeed optimal.

A Real-Life Example

Figure 4.8 is a real-life example. The graph is extracted from the MPEG-4 IM1
player. The IM1 player is a well-known prototype (executable specification)



4.3 Forward Search Algorithm 59

Fig. 4.9. Solution comparison for Fig. 4.8

of MPEG-4 standards in the MPEG community. IM1 means IMplementation
1. The graph is scheduled on a 2-processor platform.

For this real-life example, the kernel heuristic gives 22 Pareto optimal
solutions, while the exhaustive search gives 3550 Pareto optimal solutions.
The detailed solutions are listed in Table A.5. Figure 4.9 compares the solu-
tions given by the kernel heuristic and the exhaustive search.

Checking the solutions from the kernel heuristic against the solutions
from the exhaustive search, we show that these 22 solutions are indeed opti-
mal. However, the exhaustive search again gives a much broader solution
range while the kernel heuristic favors only the high-performance solutions.

4.3.2 Tuning the Load Calculation

In the kernel heuristic, the load of a node only reflects the total weight of all the
descendant nodes of this node. It does not reflect how the descendant nodes
are topologically connected. For example, nodes t1 and t5 in Fig. 4.10 both
have three descendant nodes. Although they can have identical load, when
doing scheduling, the importance of t1 and t5 can be different according to
how their descendant nodes are connected. In other words, t1 and t5 can have
very different impacts on the performance of the task graph execution.

We have also tried another way to calculate the load. That is, for a certain
node, we first identify the longest path following this node. Longest means
the maximum total weight of the nodes on this path. Then this maximum total
weight is taken as the load of this node.

We have applied this load calculation on three examples, namely, a 29-
node artificial graph on 4 processors (Fig. 4.11), a 41-node artificial graph on



60 4 Basic Design-Time Scheduling

t0

t5

t6

t7

t8

t2 t3 t4

t1

Fig. 4.10. Load difference

t0

t1

t2

t10

t3

t5

t4

t6 t7
t8

t9

t11

t12

t13

t14

t15

t16

t17 t18 t19 t20 t21 t22

t23 t24

t25 t26 t27

t28

P0 3 V

P1 2.3 V

P2 1.7 V

P3 1 V

Fig. 4.11. A 29-node artificial graph with a 4-processor platform

4 processors (Fig. 4.12), and the same real-life graph as in Fig. 4.8 but on 4
processors (Fig. 4.13). The experiment results are discussed in Section 4.3.4.

4.3.3 Tuning the Processor Selection Priority

The kernel heuristic does not tell us how to select a processor. Actually, it
does the selection implicitly.

The kernel heuristic first finds the earliest precedence-resolved nodes.
Then those processors, which have finished their jobs by this earliest resolved
time, make up the candidate processors. Among these candidate processors,
the processor type with a smaller index has priority over the type with a
larger index. Within the same processor type, the processor with the highest
Vdd has the priority over the others.



4.3 Forward Search Algorithm 61

t0

t1

t2

t40

t3

t5

t4

t6

t7

t8

t9

t11

t12

t13

t14

t15

t16

t19

t17
t18

t20

t21t22

t23

t24t25

t26
t27

t28

t30

t31

t35

t36t37

t38

t39

t10

t29

t32 t33

t34

P0 3 V

P1 2.3 V

P2 1.7 V

P3 1 V

Fig. 4.12. A 41-node artificial graph with a 4-processor platform

t0

t1

t2

t3

t4 t5 t6 t7 t8 t9
P0 3 V

P1 2.33 V

t10 t11 t12 t13 t14 t15

P2 1.7 V

P3 1 V

Fig. 4.13. A real-life graph with a 4-processor platform

This processor selection policy is not fair. It favors the high-execution
speed processors. Or viewed differently, it cares more about the node
execution speed than the energy consumption.



62 4 Basic Design-Time Scheduling

By reversing this processor selection policy, i.e., selecting the lowest
Vdd processor when several processors are available simultaneously, the
scheduler will favor the lower-energy consumption processors at the cost
of node execution speed.

This tuned processor selection policy is applied to the same three exam-
ples as in Section 4.3.2. The experiment results are discussed in Section 4.3.4.

4.3.4 Tuning both Load Calculation and Processor Priority

Applying the load tuning (Section 4.3.2) and the processor-priority tuning
(Section 4.3.3) simultaneously yields yet another scheduling algorithm.

Figures 4.14, 4.15, and 4.16 compare the solutions given by the kernel
heuristic, the load-tuning algorithm, the processor-priority tuning algorithm
and the load-and-processor-priority tuning algorithm on the three examples
in 4.11, 4.12, and 4.13, respectively. The detailed solution report can be found
in the appendix of Wong [245].

Figure 4.14 shows that compared with the kernel heuristic, tuning the load
calculation

1. gives more optimal solutions at some time-budgets, but it also gives
worse solutions at some other time-budgets;

2. gives three more solutions;
3. does not increase the solution range.

Fig. 4.14. Solution comparison for Fig. 4.11



4.3 Forward Search Algorithm 63

Fig. 4.15. Solution comparison for Fig. 4.12

Fig. 4.16. Solution comparison for Fig. 4.13



64 4 Basic Design-Time Scheduling

Figures 4.15 and 4.16 show that tuning the load calculation has never
beaten the kernel heuristic regarding the solution optimality at any time-
budget. On the contrary, it only gives worse solutions at some time-budgets.

For the above reasons, we will keep the original load calculation in the
further algorithm development.

The above three examples all show that reversing the processor selection
priority gives slower and energy-cheaper solutions. These solutions are at
least twice slower than those given by the kernel heuristic. That is to say, if we
use a combination of the kernel heuristic and the processor-priority reversed
algorithm, we can increase the solution range at least twice. However, the
energy cost of these slower solutions does not drop as expected. Accord-
ing to Eq. (4.1) and Eq. (4.2), for a single processor, when the execution-time
doubles, the energy-cost should drop to 1/4 of the original value. Given
that these examples all use a 4-processor platform, i.e., the scheduler can
gain extra execution-time due to the parallel executing of the nodes, we still
can expect more energy reduction than it currently gets. That is to say, the
solution quality regarding the energy-cost could be improved. An obvious
example is shown by Fig. 4.14. In this figure, at the time-budget of 561,
the processor-priority tuned algorithm gives a solution with an energy-cost
larger than the smaller time-budget solutions given by the kernel heuristic.
Nevertheless, these three examples have shown us that carefully tuning the
processor selection is a correct direction to favor the slow solutions and hence
to increase the solution range. In later sections, we will follow this direction
to further improve the scheduling algorithm.

Moreover, we can improve the scheduling algorithm at the following two
places. The first one is about the big gap in the time-budget between the solu-
tions produced by the kernel heuristic and by the processor-priority tuned
algorithm. This gap means these two algorithms favor and concentrate on
each of the two extremes respectively. Secondly, Fig. 4.16 clearly shows that
reversing the processor selection priority only produces one slow solution.
This is far from enough. We need to increase the solution count.

Finally, it is easy to observe that because tuning the load calculation does
not have a pronounced improvement, combining it with the processor prior-
ity tuning does not gives us more benefit than tuning the processor priority
alone.

4.3.5 Improving Node Selection Policy

The kernel heuristic, the load-tuned algorithm (Section 4.3.2), the processor-
priority-tuned algorithm (Section 4.3.3), and the load-processor-priority-
tuned algorithm (Section 4.3.4) all implicitly assume that there are always
processors available to accept a node. This is a simplified picture of the
scheduling problem. Actually, the following two cases accurately model the
relation of node and processor in the timing aspect.



4.3 Forward Search Algorithm 65

Case 1 At a decision step, one or more nodes are precedence-resolved while
all the processors are busy. This situation happens when the graph
has many nodes, which can be executed in parallel, while the proces-
sor number is relatively small. In other words, the available processors
cannot accommodate all the precedence-resolved nodes. Then at a cer-
tain moment, one processor finishes its job or several processors finish
their jobs simultaneously. Consequently, one or more nodes can become
precedence-resolved. Therefore, the set of precedence-resolved nodes
should be updated if necessary. Moreover, their priority regarding weight
and load will be reshuffled. Now that precedence-resolved nodes and idle
processors are present, the scheduler will make the node-to-processor
assignment.

Case 2 At a decision step, one or more processors are waiting to accept
a node. This situation happens when the platform has many proces-
sors while the graph is relatively sequential, i.e., due to precedence con-
straints, most of the nodes can only be executed one after another. Then at
a certain moment, one processor finishes it job or several processors fin-
ish their jobs simultaneously. As a result, one node or more nodes become
precedence-resolved. Moreover, the set of waiting processors should be
updated.

For both of the above two cases, when the precedence-resolved nodes
and the idle processors are collected, the scheduler will sort the precedence-
resolved nodes according to their weight and load. If there is only one node
with the largest weight, only one node with the largest load, and only one idle
processor, this is the situation which the kernel heuristic expects.

However, more than one node can share the largest weight or the largest
load, and more than one idle processor can exist. To show a simple example,
all the sink nodes of a graph have 0 as their load. In Fig. 4.11, the graph has
13 sink nodes. It is quite possible that at a certain decision step, the scheduler
has to make the assignment for some or all of those sink nodes.

To avoid missing any important scheduling decisions, the scheduler
should try to assign each of these nodes to each of the idle processors alterna-
tively. Apparently, for a real-size graph and platform, such a policy can lead
to run-time explosion because many nodes and processors can be available
for assignment. If the scheduler tries all those assignment possibilities one
by one, the run time can be very huge. Therefore, we should improve the
node selection policy while keeping the processor selection policy as it is in
the kernel heuristic, i.e., the smaller index processor type and the higher Vdd

processor within the same type have priority over the others.
In Section 4.3.2, we have seen that load as a measurement for the priority

in scheduling is not enough, neither is the improved load calculation. So in
addition to the node selection tuning discussed above, an extra node selec-
tion policy is introduced.



66 4 Basic Design-Time Scheduling

t7

t6 t1

t2

t5

t4t3

t0

2

3

2

011

00

t8 0

Fig. 4.17. Illustration of the generation concept

t7

t6 t1

t2

t5

t4t3

t0

0

0

1

221

32

t8 0

Fig. 4.18. Illustration of reverse generation counting

This new criteria is called generation. The generation of a sink node is 0.
Starting from the sink nodes, the generation of the other nodes are calculated.
For a node other than the sink node, generation is the maximum generation of
all its child nodes plus 1. It is illustrated as in Fig. 4.17. The generation of each
node is annotated on the right side of each node.

The reason that we calculate generation from the sink node is that the sink
node does not have any child node, so it can impact the scheduling only
from its own execution time. Therefore it is less important in the scheduling
decisions than the other nodes. In addition, if we count generation from the
source node, shown in Fig. 4.18, though node t8 has much less impact on
the other nodes than node t2 and t7, it has the same generation value as node
t2 and t7. From another view point, though node t8, t3, t4, and t0 are all
sink nodes, they have different generation values. Since our intention is to
use generation to capture the impact of a node on the other nodes, forward
counting is not in line with this intention.

The new node selection policy is that in addition to the nodes with maxi-
mum weight and the maximum load, the nodes with maximum generation will
also be given the assignment priority. That is, the node with one of these three
maximum measurements will be assigned to the selected processor.

Such a scheduling policy has been implemented and applied to the small
artificial example of Fig. 4.6. Figure 4.19 graphically compares the solu-



4.3 Forward Search Algorithm 67

Fig. 4.19. Solution comparison of the exhaustive search, kernel and improved heuris-
tic for Fig. 4.6

tions produced by the exhaustive search, kernel heuristic, and the selection-
improved algorithm.

From the comparison, we can conclude that

1. The improved algorithm produces more solutions than the kernel
heuristic;

2. However, the solution range does not increase significantly;
3. The improved algorithm produces optimal solutions at the low time-

budget end;
4. At the high time-budget part, the improved algorithm still needs to

improve its solution quality regarding the energy-cost; for example, at
time-budget 367 the improved algorithm gives an energy-cost greater
than the exhaustive search does at time-budget 358.

The reason for the last observation is easy to understand. Because to
avoid run-time explosion, the improved algorithm still uses the old processor
selection policy, which favors the high Vdd hence high-speed and high-energy
processors, then it favors the low time-budget solutions.

While trying to improve the node selection and processor selection, we
come across the problem of too many candidate nodes. This means the search
space explosion.

4.3.6 Comparing ASAP–ACAP and ASAP

In Section 4.3.5, we have come across the following dilemma. On the one
hand, we need to increase the processor selection possibilities, i.e., the sched-
uler should not only favor the high Vdd processors. On the other hand, at a



68 4 Basic Design-Time Scheduling

decision step, normally we already have more than one node to be assigned.
If the number of candidate processors is increased, and the scheduler tries
every possibilities of the node-to-processor assignment, the search space will
explode.

This is one side of the problem. Another side is the processor selection
policy. Currently, the scheduler selects one processor for all the candidate
nodes to be assigned. On a heterogeneous platform, different nodes can favor
different processors for execution speed or energy cost. So it is better to cus-
tomize the processor selection for each candidate node. To avoid the search
space explosion problem, we can start with the following processor selection
policy.

For a selected node, the scheduler tries the following two sets of proces-
sors one by one.

1. Select fastest processors, then select the energy-cheapest processors
among these fastest processors;

2. Select the energy-cheapest processors, then select the fastest processors
among these energy-cheapest processors.

We call the first set of processors As Soon As Possible (ASAP) processors
while we call the second set of processors As Cheap As Possible (ACAP)
processors.

This node selection policy favors the two extremes. One extreme is the
high-performance, the other extreme is the cheap energy-cost.

To check how much gain we can get through such a processor selec-
tion policy, we also implemented a simplified version, which only calculates
ASAP processors for a selected node.

Applying these two algorithms on the example of Fig. 4.6, we get the
following results shown in Fig. 4.20. The detailed solutions are listed in the
appendix of [245]. Following conclusions can be drawn from this figure.

1. The ASAP–ACAP algorithm produces almost four times more solutions
than the ASAP algorithm does.

2. The ASAP algorithm concentrates on the high-performance part. This is
as expected since it selects the ASAP processors only.

3. At the high-performance part, ASAP–ACAP and ASAP algorithms have
almost identical solutions. Actually, they are only different at time-
budget 359 and 361.

4. Compared with the exhaustive search (solutions listed in Table A.3),
before time-budget 359, both ASAP–ACAP and ASAP produce optimal
solutions as the exhaustive search.

5. The ASAP–ACAP algorithm covers 40% of the solution range of the
exhaustive search.

On the same Unix machine, the ASAP–ACAP algorithm takes 0.45 s while
the ASAP algorithm takes 0.04 s. That is because the ASAP–ACAP algorithm



4.3 Forward Search Algorithm 69

Fig. 4.20. Solution comparison of the ASAP–ACAP and ASAP for Fig. 4.6

does more calculation to find the processors for a selected node and hence it
explores a larger search space.

For the design-time scheduling, fast exploration is an essential require-
ment. Most of the search space exploration should be covered at this stage.
It simply because we cannot afford too much time wasted at runtime and
hence no time can be spent on finding extra intermediate solutions then.
That means for a reasonable size task set (represented by the graph) and a
reasonable size platform, the run time of the design-time scheduler normally
should not go beyond one night. Otherwise, other design steps in this TCM
design flow will be blocked by this design-time scheduling phase.

Unfortunately, applying the ASAP–ACAP algorithm on the example of
Fig. 4.11, the scheduler cannot produce final results within 1 h.

In conclusion, the ASAP–ACAP algorithm produces high enough solu-
tion quality. However, it still needs to improve the solution range and the
algorithm run time.

This is again a dilemma. If we increase the search space to expand the
solution range, we will pay more algorithm run time. So we need to tune
either the node selection policy or the processor selection policy further to
target more accurately at the optimal solutions and hence save the time spent
on the non-optimal solutions.

4.3.7 Pruning Techniques for Tie-Breaking

By examining both artificial graphs and graphs extracted from real-life appli-
cations, we have noticed that the node with a higher generation normally also



70 4 Basic Design-Time Scheduling

has a larger load. There are few exceptions. However, if we target the typical
cases, we can tolerate those few exceptions.

Compared with generation, weight indicates more of the node itself than
the impact it has on the descendant nodes. Though weight can have a big
impact on the system total execution time, we can treat this feature by explor-
ing more processor assignments, which will be addressed in Section 4.3.9.

So we introduce a pruning technique by first selecting the maximum gen-
eration nodes. If more than one maximum generation node is present, we
further prune by selecting the maximum load nodes from these maximum
generation nodes. If still more than one node remain, we further prune by
selecting the maximum weight nodes. Normally, if the graph is not created
by intention to fight against such a selection policy, only one node will be
left after these three pruning steps. However, if there are still more than one
node left after the three pruning steps, the scheduler will pick up the nodes
one by one to make the assignment.

In Section 4.3.6, we have seen that the ASAP algorithm will give high
optimality solutions in the high-performance part. That is to say, the solution
quality is guaranteed though it produces solutions of a rather small range. To
avoid the algorithm run time explosion, the ASAP processor selection policy
is used.

Since we prune the nodes in the assignment exploration, and we use the
ASAP processor selection policy, the search space should decrease and hence
the solution number should decrease.

How to increase the solution range will be treated by Section 4.3.9. This
section cares more about finding the solutions of high optimality in a short
algorithm run time.

Experiments are done on three examples to show the optimality and algo-
rithm run time. The first example is Fig. 4.6. The scheduler produces one
solution for this example shown in Table 4.1. Comparing with the exhaus-
tive search (Table A.3), we know this is the optimal solution.

Table 4.2 clearly shows that the algorithm run time is indeed significantly
reduced.

Table 4.1. Scheduling solution after introducing pruning techniques for Fig. 4.6

Time-budget Energy-cost

301 2985.67

Table 4.2. Run time comparison of the exhaustive search, kernel heuristic, and algo-
rithm with pruning techniques for Fig. 4.6

Exhaustive Kernel Algorithm
search heuristic with pruning

Run time (s) 1.13 0.03 0.01



4.3 Forward Search Algorithm 71

t0

t1

t2

t10

t3

t5

t4

t6 t7
t8

t9

t11

t12

t13

t14

t15

t16

t17 t18 t19 t20 t21 t22

t23 t24

t25 t26 t27

t28

P0 3 V

P1 1 V

Fig. 4.21. A 29-node artificial graph with a 2-processor platform

Table 4.3. Scheduling solution after introducing pruning techniques for Fig. 4.21

Time-budget Energy-cost

680 6182.33

The second example is Fig. 4.21. The graph is the same 29-node graph as
in Fig. 4.11, but the platform is a 2-processor platform. The scheduler pro-
duces one solution, as shown in Table 4.3 for this example. However, the
exhaustive search will not work on this example, so we compare this solu-
tion with the solutions produced by the kernel heuristic (see details in the
appendix of [245]). Figure 4.22 shows this comparison. This only solution at
time budget 680 is 3.65% larger than the fastest solution at time-budget 656.
The energy-cost is 3.48% higher than the solution at time-budget 689 pro-
duced by the kernel heuristic. While the kernel heuristic takes 129.40 s, the
algorithm with pruning only takes 4.24 s.

Table 4.4 again shows that with the pruning technique, the algorithm run
time is significantly reduced.

The third example is Fig. 4.12. The scheduler finds one solution for this
example shown in Table 4.5. Again, we use the kernel heuristic for com-
parison. The solutions found by the kernel heuristic (listed in the appendix
of [245]). Figure 4.23 shows this comparison. The only solution at time bud-
get 635.87, is is 9.1% larger than the fastest solution at time-budget 582.826.
The energy-cost is 5.67% higher than the solution at the same time-budget
produced by the kernel heuristic.



72 4 Basic Design-Time Scheduling

Fig. 4.22. Solution comparison of the kernel heuristic and the algorithm with pruning
for Fig. 4.21

Table 4.4. Run time comparison of the kernel heuristic and algorithm with pruning
techniques for Fig. 4.21

Kernel heuristic Algorithm with pruning

Run time (s) 129.40 4.24

Table 4.5. Scheduling solution after introducing pruning techniques for Fig. 4.12

Time-budget Energy-cost

635.87 7734.17

Fig. 4.23. Solution comparison of the kernel heuristic and the algorithm with pruning
for Fig. 4.12



4.3 Forward Search Algorithm 73

Table 4.6. Run time comparison of the kernel heuristic and algorithm with pruning
techniques for Fig. 4.12

Kernel heuristic Algorithm with pruning

Run time (s) 1.02 0.02

Table 4.6 once again shows that with the pruning technique, the algorithm
run time is significantly reduced.

From these three examples, we make the following conclusions

1. With pruning techniques, the algorithm run time is significantly reduced.
For large examples, like Figs. 4.21 and 4.12, a reduction factor of at least
30 can be expected.

2. With pruning techniques, the solution number will be restricted. How-
ever, the solutions are close to the fastest solutions found by the exhaus-
tive search or the kernel heuristic. They are always less than 10% away
from the fastest solutions.

3. The solutions found with pruning techniques are of high optimality. That
is, compared with solutions found by the exhaustive search or the kernel
heuristic, the energy cost is always less than 6% higher.

4.3.8 Further Pruning Technique for Tie-Breaking

In Section 4.3.7, we have mentioned that if the graph is not created by inten-
tion to fight against the pruning techniques, normally only one node should
be left after the generation, load, and weight pruning steps. Therefore though
the scheduler takes all the nodes after the three pruning steps for assignment,
we do not expect the search space explosion with such a node selection pol-
icy. But since the chance of more than 1 node left after all the three pruning
steps is very low, the scheduler can pick up just one node. The scheduler
should target the normal case, not the very rarely happening special case.

However, when extracting graphs from real-life applications, we often
end up with graphs like Fig. 4.24. This graph is extracted from the scalable
mesh decoding algorithm of MPEG-21 [77, 78, 95, 96, 139]. It has four parallel
execution paths. These four parallel execution paths are identical. Actually,
Path2, Path3, and Path4 are just duplicate of Path1. They are used to process
the parallel incoming data packets.

For such kind of graphs, it is obvious that due to the symmetry of those
duplicated paths, the scheduler only needs to explore the assignment pos-
sibilities for one path. In other words, the search space is symmetrically
divided into several pieces, so the scheduler only needs to search one piece of
those search space. One way to implement this search space reduction policy
is to select 1 node after the three pruning steps.

We have done the experiments on the same three examples of
Section 4.3.7 with this further pruned node selection policy. This further



74 4 Basic Design-Time Scheduling

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

t26

t27

Path1 Path2 Path3 Path4

Fig. 4.24. An example graph of path duplication

Table 4.7. Run time comparison between the pruning scheduler and the further prun-
ing scheduler

Example1: Fig. 4.6
Example2: Fig. 4.21
Example3: Fig. 4.12

Run time (s)

Example1 Example2 Example3

Pruning 0.01 4.24 0.07
Further pruning 0.01 4.16 0.03

pruned node selection policy produces exactly the same solutions as the
scheduler in Section 4.3.7. The conclusion is that we do not loose solution
quality when further pruning the node selection space.

Table 4.7 compares the algorithm run time between the pruning tech-
nique and the further-pruning technique. The resolution of the timing mea-
surement is not very small. However, we can see that the further-pruned
technique runs faster on these three examples.

In addition to these three examples, we also ran the original pruning
technique of Section 4.3.7 on the real-life example in Fig. 4.24 with 4 proces-
sors. We did not get final results within 1 h. Apparently, we have run into
the search space explosion. Using the further pruned technique, we can get
results within 1 h. Those experiments with the further pruned techniques
will be explained in the following sections. And the following algorithm
extensions are based on the further-pruned technique.



4.3 Forward Search Algorithm 75

4.3.9 Extension with Exhaustive Search

Though the algorithm with pruning techniques in Section 4.3.7 is very fast
and the solutions are of high quality, it does not produce a wide solution
range. If we use this algorithm as the kernel and make extensions to increase
the solution range, we can keep the solution quality.

The main reason for the small solution range is the processor selection
policy. The scheduler selects only the ASAP processors for each node. Nor-
mally, the number of the ASAP processors will be very limited. However, if
the scheduler uses also the ACAP processors for each node, and when the
graph has a large number of nodes, the search space goes up exponentially.
Assume, on average, each node has one ASAP processor and one ACAP
processor. The scheduler will then try to assign one node to each of these
two processors. If a graph has 50 nodes, the scheduler will search all the 250

assignment possibilities. Assume, we have a machine of 1 GHz clock fre-
quency, and it takes this machine one cycle to explore one assignment possi-
bility. To explore all these 250 assignment possibilities, it will take 13.03 days.

In addition, remember the example shown in Fig. 4.20, the ASAP–ACAP
algorithm produces a solution range of 40% of the exhaustive search. That is
to say, trying to assign the nodes to their ASAP–ACAP processors is perhaps
not enough for producing a large solution range. To get a larger solution
range, the scheduler should explore more processor assignment possibilities.

We can draw the following conclusions from this example.

1. Increasing the number of processor assignment possibilities of the node
is effective in expanding the solution range.

2. Applying the same number of processor assignment possibilities to every
node is not computationally affordable.

Since not all the nodes have the same importance in scheduling, if we
try the important nodes with more exhaustively processor assignment pos-
sibilities, we probably will get a larger solution range. Moreover, since the
percentage of the important nodes of a graph will remain stable when the
graph size goes bigger, the assignment possibilities will not explode with the
graph size. For small graphs, perhaps every node is an important node, i.e.,
the percentage of the important nodes is very high. However, we can afford
exhaustive search for small graphs. So small graphs will not make difficulties
in such a scheduling policy.

The previous experiments have shown that the node generation is an
important parameter in scheduling. In addition, weight is also important. A
node with a very large weight has a big impact on the finish-time of the graph
execution. So the scheduler will be extended with an exhaustive search on the
nodes with top values of generation and weight.

Figure 4.25 illustrates the exhaustive assignment search on top genera-
tion values. In this figure, if we set the exhaustive search depth for the top
generation values to be 2, node t0 and t1 will be exhaustively searched in



76 4 Basic Design-Time Scheduling

t0

t1

t2

t3 t4 t5

t6

t7t8 t9 t10

t11

Processor
1V

Processor
2V

Processor
3V

0

000 1

103

4

5

6

2

Fig. 4.25. Exhaustive search on top 2 generation values

their processor assignment possibilities. In general, if the user sets the search
depth parameter to be n, the exhaustive search will be applied to the nodes
with the top n generation nodes.

Figure 4.26 illustrates the exhaustive assignment search on top weight val-
ues. In this figure, if we set the exhaustive search depth for the top weight
values to be 1, and if node t5 is the heaviest node of this graph, its processor
assignment possibilities will be exhaustively searched. In general, if the user
sets the search depth parameter to be n, the exhaustive search will be applied
to the top n weight nodes. However, here the situation is more complicated
than in the case of generation. If we sort the nodes by their weight, and we
assign a rank number to each node according to their weight, it is possible
that we have less nodes than required by the user, namely, n, at rank m, while
we have more nodes than n at rank m + 1. In such a situation, the scheduler
will only pick up part of the nodes of rank m + 1 to meet the required node
number n.

It is worth noting that the search depths for generation and for weight are
two separate parameters of the scheduler. So we can explore the impact of
these two exhaustive search scenarios separately. In addition, these two para-
meters work differently. The search depth for generation dictates that every
node with a generation larger or equal to this parameter will be exhaustively
searched. So the user does not have the direct control of how many nodes will
be exhaustively searched. In contrast, the search depth for weight does dictate
the number of nodes to be exhaustively searched. It is the scheduler which
takes care of finding the nodes starting from the maximum weight nodes, sec-
ond largest weight nodes, . . . , until the required number of nodes is reached.



4.3 Forward Search Algorithm 77

t0

t1

t2

t3 t4 t5

t6

t7t8 t9 t10

t11

Processor
1V

Processor
2V

Processor
3V

Very heavy !

Fig. 4.26. Exhaustive search on top 1 weight value

We will use two examples to thoroughly study the effects of these two
parameters and the combination of these two parameters. The first example
is the artificial example in Fig. 4.21, and the second example is the real-life
example in Fig. 4.35.

Experiment with Fig. 4.21

We first study the effect of the generation parameter. We have switched off
the exhaustive search for load (i.e., set the load search depth to 0), and applied
the scheduler to Fig. 4.21 with the generation search depth of 4, 5, 6, 7, respec-
tively. Figure 4.27 compares the scheduling solutions for these four search
depths. The detailed solution report is listed in the appendix of Wong [245].
Figure 4.28 compares the scheduling solutions of generation 7 and the kernel
heuristic. Figure 4.29 and Table 4.8 compare the run time at different genera-
tion values and the run time of the kernel heuristic.

The solution comparison provides us with the following conclusions.

1. Increasing the search depth for generation improves both the solution
quality and the solution range.

2. There can be one or more threshold generation values, at which either
the solution quality or the solution range can have a significant improve-
ment. In this example, generation 6 has a big improvement in solution



78 4 Basic Design-Time Scheduling

Fig. 4.27. Solution comparison at different generation values for Fig. 4.21

Energy-cost

6000

5500

5000

4500

145012501050
Kernel-heuristic

850 650
Generation=7

4000 Time-budget

Fig. 4.28. Solution comparison at generation 7 and the kernel heuristic for Fig. 4.21



4.3 Forward Search Algorithm 79

Fig. 4.29. Run time comparison at different generation values for Fig. 4.21

Table 4.8. Run time comparison at different generation values and the kernel heuristic
for Fig. 4.21

G Generation
G=4 G=5 G=6 G=7 Kernel heuristic

Run time (s) 0.2 0.63 6.4 197.53 129.40

quality while generation 7 has a big improvement both in solution quality
and solution range.

3. Increasing the search depth for generation does not necessarily increase
the solution count. In this example, generation 6 has 15 solutions while
generation 5 has 26 solutions. But this is not a problem as long as the
solution count remains reasonable because the solution range is much
more important than the solution count. At run time, the solution count,
which can be incorporated in the Pareto point selection, is anyway not
higher than about 10.

4. At generation 7, the scheduler produces solutions very close to those of
the kernel heuristic at the high-performance part while it has a much
larger solution range than the kernel heuristic.

We can further conclude that though many pruning techniques are intro-
duced to reduce the search space, this will not reduce the solution quality if
the generation parameter is set properly.

The algorithm run time comparison shows us that the run time penalty
can be quite large due to increasing the generation. In addition, at a certain
generation, e.g., 7 in this example, the algorithm run time can have a jump.



80 4 Basic Design-Time Scheduling

Finally, at generation 7, though the solution quality is very close to the ker-
nel heuristic and the solution range is very large, the algorithm run time is
comparable to the kernel heuristic.

Next, we study the effect of the weight parameter. Figure 4.30 compares
the scheduling solutions at weight values of 5, 10, 15, and 20, respectively. The
detailed solution report is listed in the appendix of Wong [245]. Figure 4.31
compares the scheduling solutions of weight 20 and the kernel heuristic.
Figure 4.32 and Table 4.9 compare the run time at different weight values
and the run time of the kernel heuristic.

From the solution comparison, we can make similar conclusions as with
the generation parameter.

1. Increasing the search depth for weight improves both the solution quality
and the solution range.

2. At weight 20, the scheduler produces the solutions even better than those
of the kernel heuristic at the high-performance part while it has a much
larger solution range than the kernel heuristic.

Comparing the solutions produced at different generation values and the
solutions at different weight values, we can conclude that generation and
weight can have different effects on the solution quality. For this example
(Fig. 4.21), the solutions at weight 20 are best both in the quality and in the
solution range though its run time is 3.89 times of the run time at generation 7.

Fig. 4.30. Solution comparison at different weight values for Fig. 4.21



4.3 Forward Search Algorithm 81

Fig. 4.31. Solution comparison at weight 20 and the kernel heuristic for Fig. 4.21

Fig. 4.32. Run time comparison at different weight values and the kernel heuristic for
Fig. 4.21

Comparing the algorithm run time, we can conclude that the algorithm
run time increases fast with the weight values. However, even at weight 20,
where the solution quality becomes better than the kernel heuristic and
where the slowest solution is more than 3 times the fastest solution, the algo-
rithm run time is acceptable.



82 4 Basic Design-Time Scheduling

Table 4.9. Run time comparison at different weight values and the kernel heuristic for
Fig. 4.21

W Weight
W=5 W=10 W=15 W=20 Kernel heuristic

Run time (s) 0.27 3.89 49.47 768.9 129.40

Generation=7 Generation=6Weight=20 Weight=15

Fig. 4.33. Solution comparison at generation 7, weight 20, and the combination of
generation 6 and weight 15 for Fig. 4.21

Finally, we study the effect of combining exhaustive search for generation
and weight simultaneously. Figure 4.33 compares the solutions at generation
7, weight 20, and the combination of generation 6 and weight 15. The detailed
solutions at this generation and weight combination are listed in the appendix
of Wong [245]. Figure 4.34 and Table 4.10 compare the run time at generation 7,
weight 20, generation 6 and weight 15, and the run time of the kernel heuristic.

The solution comparison clearly shows that the algorithm at weight 20 is
the best both in solution quality and solution range among these three algo-
rithm configurations. However, at the high-performance part, these three
algorithms have similar solution quality.

Since the node selection policies by generation and by weight are different,
i.e., they will select different nodes for exhaustive search, they have different
impact on the scheduling solution quality. In this example, though the algo-
rithm run time configured at weight 20 and the algorithm run time configured
generation 6 and weight 15 are very close, the solution quality at weight 20 is
much higher than at generation 6 and weight 15. In other words, when we are



4.3 Forward Search Algorithm 83

Fig. 4.34. Run time comparison at generation 7, weight 20, generation 6 and weight 15,
and the kernel heuristic for Fig. 4.21

Table 4.10. Run time comparison at generation 7, weight 20, generation 6 and weight 15,
and the kernel heuristic for Fig. 4.21

W Weight
G Generation

G=7 W=20 G=6 & W=15 Kernel heuristic

Run time (s) 197.53 768.9 739.2 129.40

not satisfied with the solution quality at weight 15, and we want to improve
the solution quality, we should increase the search depth for weight instead
of the search depth for generation. By increasing the search depth for weight,
we get higher solution quality with almost the same algorithm run time.

The same argument holds for the generation search depth. That is, at gen-
eration 6, if we need to improve the solution quality, we should increase the
search depth for generation instead of the search depth for weight. Then we
get higher solution quality with an even smaller algorithm run time.

So we can conclude that given the same amount of algorithm run time,
the combination of exhaustive search for generation and weight is not nec-
essarily better than the single “incremental” search for either generation or
weight.

Experiment with Fig. 4.35

Having done the first experiment on an artificial example, we are now going
to repeat the experiment with a real-life example (Fig. 4.35). This graph
is extracted from the scalable mesh decoding algorithm of MPEG-21. The



84 4 Basic Design-Time Scheduling

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

t26

t27

P0 2.4 V

P1 2.0 V

P2 1.6 V

P3 1.2 V

Fig. 4.35. A real-life graph of MPEG-21 with a 4-processor platform

Fig. 4.36. Solution comparison at different generation values for Fig. 4.35

execution time and energy data of this example are listed in the appendix of
Wong [245].

We first study the effect of the generation parameter. Figure 4.36 compares
the scheduling solutions at generation 1, 2, and 3, respectively. The detailed
solution report is listed in the appendix of Wong [245].

To check the solution quality, we have applied the kernel heuristic on this
example. The kernel heuristic finds only one solution shown in Table 4.11.



4.3 Forward Search Algorithm 85

Table 4.11. Scheduling solution produced by the kernel heuristic for Fig. 4.35

Time-budget(µs) Energy-cost(µJ)

222108 729613

Table 4.12. Run time comparison at different generation values and the kernel heuristic
for Fig. 4.35

G Generation
G=1 G=2 G=3 Kernel heuristic

Run time (s) 0.47 89.52 3996.6 0.03

Table 4.12 compares the run time at different generation values and the
run time of the kernel heuristic.

The solution comparison reinforces our conclusions obtained from the
previous experiment. That is, increasing the search depth for generation
improves both the solution quality and the solution range. However, this
example also has differences from the previous example.

1. At the low time-budget end, the solutions produced at different genera-
tion values almost merge together. In other words, the solution quality
difference becomes more pronounced at the high time-budget part.

2. The solution counts are not very large for all these three generation para-
meters at 1, 2, and 3, but they are still sufficient.

The only solution produced by the kernel heuristic is among the three
solutions produced at generation 1. At generation 2 and 3, the scheduler pro-
duces solutions of better optimality than this solution. We can conclude that
the kernel heuristic is not good at solving this type of graph.

Comparing the algorithm run time, we find that the kernel heuristic is
very fast. The reason is that its scheduling policy prunes the search space
very heavily for this example, so it becomes very fast. As a result, it produces
only one solution and that solution is less optimal than solutions found at
generation 2 and 3. Remember that in the previous example (Fig. 4.21), the
kernel heuristic takes comparable run time with the algorithm configured
at generation 7, which is pretty large. We can conclude that this exhaustive
search enhanced scheduler is less sensitive to different problem character-
istics. In other words, this scheduler has a more predictable and consistent
behavior with different problems. Finally, we can conclude that up to genera-
tion 3, the algorithm run time is acceptable.

Next, we study the effect of the weight parameter. Figure 4.37 compares
the scheduling solutions at weight values of 3, 6, 9, and 10, respectively. The
detailed solution report is listed in the appendix of Wong [245].

From the solution comparison, we can derive similar conclusions as with
the generation parameter.



86 4 Basic Design-Time Scheduling

Fig. 4.37. Solution comparison at different weight values for Fig. 4.35

Table 4.13. Run time comparison at different weight values and the kernel heuristic
for Fig. 4.35

W Weight
W=3 W=6 W=9 W=10 Kernel heuristic

Run time (s) 0.34 6.33 836.87 3109.67 0.03

1. Increasing the search depth for weight improves both the solution quality
and the solution range.

2. At the low time-budget end, the solutions produced at different weight
values merge almost together. In other words, the solution quality differ-
ence becomes more pronounced at the high time-budget part.

3. The solution counts are not very large but still sufficient for all these four
weight parameters at 3, 6, 9, and 10.

Comparing with the only solution produced by the kernel heuristic, we
find again this single solution is among the two solutions produced at gener-
ation 3. At generation 6, 9, and 10, the scheduler produces solutions of better
optimality than this solution.

Table 4.13 compares the run time at different weight values and the run
time of the kernel heuristic.

The algorithm run time at these weight values is comparable with the
algorithm run time at generation 1, 2, and 3. Therefore, the algorithm run time
is acceptable.



4.3 Forward Search Algorithm 87

Fig. 4.38. Solution comparison at generation 2, 3, weight 9, 10 for Fig. 4.35

Comparing the solutions produced at different generation values and the
solutions at different weight values, shown in Fig. 4.38, we have the following
conclusions.

1. Solutions produced by these four scheduler configurations are very close
to each other at the low time-budget end.

2. At generation 3, the scheduler produces the largest solution range while
the solutions are of the highest optimality.

3. The algorithm run time at generation 3 and weight 10 is comparable.

If we remember that with the previous example (Fig. 4.21), the search depth
for weight plays a more important role regarding the solution quality and
solution range, we can further conclude that how to set the search depth
for generation and weight is problem specific. In other words, given the same
amount of algorithm run time, for some problems, the generation is more
effective in producing high-quality Pareto curves (regarding both the solu-
tion quality and solution range), while for other problems, the weight become
more effective. This is a natural outcome since the graph topology and the
node execution time distribution can be very different from one graph to
another. To get a high-quality Pareto curve, we need to experiment with the
configuration of generation and weight parameters.

Finally, we study the effect of combining exhaustive search for generation
and weight simultaneously. Figure 4.39 compares the solutions at generation
2, weight 9, and the combination of generation 2 and weight 9. The detailed



88 4 Basic Design-Time Scheduling

Energy-cost (mJ)

Time-budget(ms)

Generation=2 Generation=2 & Weight=9Weight=9

730000

710000

690000

670000

650000

630000

610000
210000 240000 270000 300000 330000

Fig. 4.39. Solution comparison at generation 2, weight 9, and the combination of gener-
ation 2 and weight 9 for Fig. 4.35

Table 4.14. Run time comparison at generation 2, weight 9, generation 2 and weight 9,
and the kernel heuristic for Fig. 4.35

W Weight
G Generation

G=2 W=9 G=2 & W=9 Kernel heuristic

Run time (s) 89.52 836.87 831.19 0.03

solutions at this generation and weight configuration are listed in the appendix
of Wong [245].

Table 4.14 compares the run time at generation 2, weight 9, generation 2 and
weight 9, and the run time of the kernel heuristic.

The solution comparison shows that using the configuration of generation
2 and weight 9, the scheduler produces exactly the same solutions as con-
figured at weight 9. The algorithm run time of these two configurations is
also very close. By analyzing the graph, it is easy to understand this result.
The graph in Fig. 4.35 is a duplicated graph, i.e., the four parallel execution
paths are identical. Moreover, the first 6 nodes of each execution path are also
identical. And these six nodes are heavier in weight than the last node on the
execution path. When the search depth for generation is set to 2, the first 2
nodes of each execution path will undergo the exhaustive processor assign-
ment. When the search depth for weight is set to 9, the first 2 nodes of each
execution path and the third node of the first execution path will undergo



4.4 Backward Search Algorithm 89

the exhaustive processor assignment. When the scheduler is configured at
generation 2 and weight 9, the nodes selected by weight 9, which undergo
exhaustive assignment, contain the nodes selected by generation 2. Therefore,
the scheduler behaves just as configured at weight 9.

This experiment reinforces our conclusion obtained from the previous
example. That is, given the same amount of algorithm run time, the com-
bined exhaustive search for generation and weight is usually not better than
the single exhaustive search for either generation or weight. To produce high-
quality Pareto curves, we need to be aware of the topology and node
execution time distribution of the input graph. Through experimenting with
different configurations of the scheduler, we can find good configuration
parameters for a specific problem, which means high-quality Pareto curve
and a low algorithm run time.

Finally, it is good to stress that the example of Fig. 4.35 is representative
for the graphs which we have extracted from real-life applications. There-
fore, the scheduler configuration methods discussed above can be instructive
when experimenting with those graphs.

Summary

In this section, we have applied the pruning techniques of Sections 4.3.7
and 4.3.8, and we have extended the scheduling algorithm with exhaustive
search. The exhaustive search is applied to nodes according to either its gen-
eration or weight. Using the combined exhaustive search for both generation
and weight usually is not a good solution. The designer can also be in the
control of which node should go under exhaustive assignment search.

By using the pruning techniques, we have reduced the algorithm run
time, so the scheduler can work with all the graphs we have, either
artificially generated or extracted from real-life applications. By introduc-
ing the exhaustive search, we have improved both the solution range and
the solution optimality. The reason is that the exhaustive search for genera-
tion and weight targets the main problems accurately, so it solves the problem
effectively.

4.4 Backward Search Algorithm

In Section 4.3.9, though we have improved both the solution quality and the
solution range by exhaustive search on some “important” nodes, the sched-
uler can still potentially increase the solution range further.

The example in Fig. 4.21 uses two processors, one at 3 V, the other one
at 1 V. The cheapest energy-cost solution is at time-budget 2050, where the
energy-cost is 2721.89.

Assume that all the nodes are assigned on the 1 V processor, then the
energy-cost will simply be the sum of the energy-cost of each node on this



90 4 Basic Design-Time Scheduling

1 V processor. That will be 933.444. Since only one processor is available, no
matter how much “concurrency” or “parallelism” exists between the nodes,
the platform cannot exploit that. Therefore, all the nodes will be executed
sequentially on this only available processor. Moreover, the sequential execu-
tion of these nodes can be ordered without any slack in between. And many
orderings exist for a no slack schedule. However, their time-budget will be
the same, i.e., the sum of all the node execution times on this 1 V processor.
That will be 2547.

This example shows clearly that especially on the energy-cost dimension
exists a large space for improvement.

The reason that the scheduler stays far away from the energy-cheapest
solution is that the node selection policy and the processor selection pol-
icy, generically called scheduling policy, do not support the cheap node-to-
processor assignment. As discussed in previous sections, all the scheduling
algorithms developed so far favor the fastest solution. They all put the per-
formance as their primary importance. From all the extensions made so far to
the kernel heuristic, it is obvious that they do not work effectively for increas-
ing the solution range far enough. In other words, we need an algorithm,
which favors the energy-cheapest solution. Luckily, it is always straightfor-
ward to know the energy cheapest processor for each node. Therefore the
scheduler can force such a node-to-processor assignment on each node. Then
using a simple algorithm to order these node-to-processor assignments, e.g.,
the kernel heuristic in Section 4.3.1, we can find a high optimality ordering
and hence the final schedule.

This will be used as the starting point of a backward search phase. In
addition, the backward search will move some nodes from their energy
cheapest processor to the more energy-costly processor, then order those
resulted node-processor couples to produce the final schedules with reduced
the time-budget. The basic idea is illustrated by Fig. 4.40.

Be aware that due to the heterogeneity of processors, i.e., moving a node
from an energy-cheaper processor to a more energy-expensive processor

Energy cost

Time-budget

Fastest solution: forward search

Cheapest solution: backward search

Fig. 4.40. Backward search



4.4 Backward Search Algorithm 91

does not necessarily reduce the execution time of this node. Within the same
processor type, to be energy-costly is equivalent to increasing the Vdd of
a processor, Then to be energy-expensive is equivalent to execution time
reduction. However, between different processor types, this does not hold
anymore. It is simply because one type of processor can be very inefficient at
handling a certain node. No matter how high the energy-cost is, it does not
handle the node as well as another type. Even in such a case, sometimes it
is still beneficial to pay the energy-cost because the node moved away from
one processor makes room for other nodes to execute earlier on this proces-
sor. Therefore, the total time-budget can be reduced.

In summary, trying to move the node from its energy-cheapest proces-
sor to a more energy-expensive processor can potentially reduce the time-
budget. In other words, it can potentially increase the performance.

When it comes to how to move the node, many options exist. One main
reason for a slow schedule is that the nodes, which can be executed in par-
allel, are sequentially squeezed on one processor. Therefore, we can try to
reduce the time-budget by distributing some nodes, which were originally
assigned to one processor, and which can be executed in parallel, to different
processors.

Refining the above idea, we identify the following steps.

Step 1: Initial Phase Start with the energy-cheapest node-to-processor bind-
ing, i.e., every node assigned to its energy-cheapest processor. To avoid
misunderstanding, and to make the text easy to read, we have to make
the following definition.

Definition 4.1 (Binding) Given a graph and a platform, a binding is the aggre-
gation of every node-to-processor assignment.

On certain platforms, a node can have two or more energy-cheapest
processors. Those processors can be either identical processors, or differ-
ent types of processors. Energy-wise speaking, as long as all the nodes are
assigned to their energy-cheapest processors, no matter how the nodes
are distributed among the processors, the energy-cost will always remain
the same. In other words, the energy-cost of a schedule is only decided by
its binding, not by how the nodes are ordered on each processor. How-
ever, under the same energy-cost, the time-budget of the final schedule
can be different. Two reasons exist for that. First, if the node-to-processor
binding results in an ill-balanced workload among the processors, e.g.,
one processor has many nodes assigned to it while another is almost idle,
and if the graph allows parallel execution on those processors, which is
now destroyed by the workload distribution, the final schedule will have
a larger time-budget than it can reach under a better workload distribu-
tion. Second, given the same workload distribution, if the node execution
is badly ordered, due to the precedence constraints, some nodes will be
unnecessarily delayed. Therefore, the time-budget of the final schedule
is also larger than a better ordering can make.



92 4 Basic Design-Time Scheduling

However, the first special case can be handled by carefully distributing
the nodes among the processors. When every node has only one energy-
cheapest processor, and actually, this is the normal case for most exper-
iments in our study, this preprocessing step can be skipped. The sec-
ond special case is guaranteed by the node selection policy of the our
scheduling algorithm. Though all the algorithms we have discussed so
far handles the node selection and the processor selection in separate
steps, if we apply the node selection policy to node-processor couples,
we get good ordering solutions as well. We have demonstrated this by
the experiments in this section.

Step 2: Generating Time-budget Intervals using the scheduling heuristic, we
get the least time-budget solution. This solution is also the most energy
expensive solution. Then from the cheapest energy-cost to this most
expensive energy-cost, we can divide this space into a number of inter-
vals. The number of intervals can be set by the user. The boundaries of
these intervals form a number of threshold values. When adapting the
cheapest node-to-processor binding incrementally, we raise the energy-
cost step by step, and the adapted bindings target these threshold values.

Step 3: Adapting Bindings Starting with the energy-cheapest binding, start-
ing with the source nodes of the graph, when two or more nodes inde-
pendent from each other exist, check their processor assignments. We
identify the following three cases.
If the number of independent nodes is less than or equal to the processor
number and all these independent nodes are assigned to different proces-
sors, i.e., they will be potentially executed in parallel, we skip these nodes
and go on to check their child nodes. Why “potentially”? Because due to
the execution time of their parents nodes, it is possible that they do not
overlap in their execution time. Anyhow, the physical location, i.e., their
different processor assignments allow them to be executed in parallel.
If the number of independent nodes is larger than the processor num-
ber and all the processors have one or more node assigned to it, we skip
these nodes and go on to check their child nodes. In this case, though the
graph provides more parallel execution possibility, the platform cannot
utilize the parallelism. However, since no processor is idle, the platform
has used the parallelism at its best. From this example, we distinguish
the concept of “parallelism” from two origins, one from the graph, the
other from the platform. When the graph is rather “sequential”, i.e., only
a few nodes are independent from each other, it is no use to execute the
graph on a platform consisting of many processors. On the contrary, if the
graph is very “parallel,” it is better to use a large number of processors
to execute the graph. In summary, the match between the “parallelism”
of the graph and the “parallelism” of the platform provides the fast exe-
cution of the graph. Increasing the processor number without knowing
the graph topology is a waste of resources.



4.4 Backward Search Algorithm 93

Finally, when one or more idle processors exist and two or more nodes
are assigned to the same processor, move one of the nodes occupying
the same processor to an idle processor. Currently, we select the energy-
cheapest move among all the possible moves. Finely tuning the move
policy can be a future extension to this algorithm. If the energy incre-
ment reaches one of the energy-cost threshold values, the adaptation is
recorded. Otherwise, we continue to find idle processors and move one
of the nodes occupying the same processor to an idle processor. Each time
we move one node until the energy increment reaches the next energy-
cost threshold value.

When all the possible moves are exhausted or when all the energy-cost
threshold values are met, the binding adaptation finishes. Then the schedul-
ing algorithm will be applied on those bindings to find the final order of the
node execution. Since the node and processor are bound together, we can also
say the node execution order is the execution order of the node-processor
couple.

Discussion 1 When adapting the bindings, we are basically checking the
nodes assigned to one processor, which can be executed in parallel. Cur-
rently, we check the nodes generation by generation. That is to say, only
the nodes of the same generation are checked to see whether more “paral-
lelism,” which is destroyed by the processor assignment, can be released
and utilized. This is illustrated by Fig. 4.41. In this figure, only the “par-
allelism” of node t1, t2, and t3, or the “parallelism” of node t5, t6, t7, and
t8 are checked to see whether they are fully utilized. However, as illus-
trated by Fig. 4.42, “parallelism” also exist, e.g., in node t1, t6, t7, and t8.
These four nodes do not have any dependency between each other. The
same thing is also true for other node groups, e.g., node t2, t3, t4, and t5.

t4 t5 t6 t7 t8

t0

t1 t2 t3

Fig. 4.41. Parallelism checking within the same generation

t0

t1 t2 t3

t4 t5 t6 t7 t8

Fig. 4.42. Cross-generation parallelism checking



94 4 Basic Design-Time Scheduling

For a realistic size graph, the number of such kind of node groups can
be very large. If we explore all the possibilities, the algorithm run time is
not affordable. However, as we discussed before, at the assignment stage,
we do not know the exact node execution order. Though we assign two
independent nodes to different processors, probably in the final sched-
ule, they do not overlap in execution time. That is to say, viewed from
the time axis, they are executed sequentially on different spatial loca-
tions, i.e., on different processors. So much potential “parallelism” exist,
which cannot be utilized in reality. To prune the search space, we just
check the nodes of the same generation. Tuning the “parallelism” check-
ing policy can be a future extension to this algorithm.

Discussion 2 As discussed earlier, having found a number of node-processor
bindings, we need an algorithm to order the execution of assigned node-
processor couples for each binding. The scheduling algorithm developed
so far does the node selection and processor selection in two steps. The
node selection is based on generation, load, and weight. Since the node and
processor are bound together here, the processor selection does not exist
any more. Therefore, if we apply the node selection policy to the bind-
ings, it can do the ordering for all the assigned node-processor couples.
However, a deeper thought reveals also the following facts. So far, the
node weight is calibrated on a reference processor. This is not an ideal
solution. If we know exactly where the node is going to be executed,
we should certainly use the execution time on that processor to help
us make scheduling decisions. Exact information is more effective than
uncertain information in decision-making. It is only because we lack
this information that we use this better-than-nothing measurement. Now
that the binding is given, the execution time of each node becomes fixed
with a specific binding, we exploit this information by a new parameter
called dynamic weight. It is dynamic in the sense that it can take different
values with different processor assignments. Accordingly, dynamic load is
also introduced to reflect the fact that we know the node execution time
exactly.

We have implemented this backward search extended scheduling
algorithm. Two examples are used to study the algorithm. One is Fig. 4.11,
the other is Fig. 4.35.

4.4.1 Experiment with Fig. 4.11

For this example, the scheduler is configured at the search depth of three for
both generation and weight. Due to the heavy search space pruning introduced
in Section 4.3.9, we have found that the scheduler produces a reasonably
large solution range when configured at a search depth bigger than 0, e.g. 2
or 3. And the algorithm run time is very small at such configurations, e.g.
10s to 20s. That is the reason that we set the search depth for both generation



4.4 Backward Search Algorithm 95

Fig. 4.43. Comparing solutions produced by the forward and bidirectional search for
Fig. 4.11

and weight at 3. The number of time-budget intervals is the default value
9, i.e., the number of the boundaries of these 9 intervals is 10. The detailed
scheduling solutions are listed in the appendix of Wong [245].

The forward search produces 29 solutions while the bidirectional search
produces 34 solutions. Checking the solutions, we find that the first 29
solutions produced by the bidirectional search are identical with the 29 solu-
tions produced by the forward search. Figure 4.43 compares the solutions
produced by the forward and the bidirectional search. We have three obser-
vations from this figure.

1. The number of low time-budget solutions is dominant. The backward
search only produces 5 solutions at the lowest energy-cost end, which is
a small fraction of the solutions.

2. The solutions found by the forward search are of high density while the
solutions found by the backward search are sparsely distributed.

3. A reasonably big gap exists between the solutions found by the forward
search and the backward search.

Graph in Fig. 4.11 has 1 source node and 8 generations. The first 3 genera-
tions have 1 node each. That is to say, no “parallelism” can be utilized at
these 3 generations. Our current policy utilizes the parallelism generation by
generation, i.e., no cross-generation is utilized. Therefore, we can already make
a rough estimation, namely, starting from the energy-cheapest binding how
many bindings we can get through adapting the energy-cheapest binding.



96 4 Basic Design-Time Scheduling

Table 4.15. Run time comparison between the forward search and the bidirectional
search for Fig. 4.11

Forward search Bidirectional search

Run time (s) 22.02 22.34

The number should be 5 due to the lack of “parallelism” in the first 3 genera-
tions. This explains why the backward search finds only 5 extra solutions on
the energy-cheap side.

The number of energy-cost intervals is set at 9, which is the default value.
The cheapest energy-cost is 933.444, the highest energy-cost is 5271.36. There-
fore, the step size of the energy-cost is 481.99. Our solutions (in the appen-
dix of Wong [245]), follow this energy-cost increment scheme. We cannot
expect that they follow this scheme strictly because we are treating a discrete
mathematic problem, i.e., we can neither split a node into arbitrary granula-
rities nor change the processor supply voltage continuously. This explains
why these 5 solutions produced by the backward search are distributed at
much larger intervals than solutions produced by the forward search. It also
explains that why the backward search stops at time-budget 1827, which
leaves a big gap from time-budget 594, which is the slowest solution found
by the forward search.

Finally, Table 4.15 compares the algorithm run time of the forward search
and the bidirectional search. Apparently, for this example, the algorithm run
time difference is negligible.

4.4.2 Experiment with Fig. 4.35

Next, we proceed with the example in Fig. 4.35. We compare the forward
search and the bidirectional search algorithm both configured at weight 9
because the forward search produces high-quality solutions at this configura-
tion. The number of energy-cost intervals is 9, the default value. The detailed
solutions of the bidirectional are listed in the appendix of Wong [245].

The forward search produces 13 solutions for this example while the bidi-
rectional search doubles the solution number, namely 26. We find that the
first 13 solutions of the bidirectional search are identical with the those of the
forward search. Figure 4.44 compares the solutions produced by the forward
search and the bidirectional search.

Contrary to the previous experiment, this time, the backward search pro-
duces a reasonable number of solutions. These solutions are distributed
evenly on the energy-cost axis and no significant gap exists between the
forward search and the backward search. In summary, the backward search
works much better for this example than the example in Fig. 4.11.

Two reasons lead to this difference. One is the topology between the
graphs. The graph in Fig. 4.35 has more “parallelism” to utilize within each



4.4 Backward Search Algorithm 97

Fig. 4.44. Comparing solutions produced by the forward and bidirectional search for
Fig. 4.35

generation than the graph in Fig. 4.35. The graph in Fig. 4.35 is a duplicated
graph, i.e., the four parallel execution paths are identical. It has “parallelism”
in all these 7 generations.

The other reason is the node execution time distribution. For each bound-
ary of the energy-cost intervals, the scheduler tries to find two bindings,
one with a lower energy-cost, the other with a higher energy-cost. However,
because the node execution time is a discrete value, we cannot guarantee two
bindings for each boundary. For example, if a binding has exactly the same
energy-cost with one of the boundary value, the scheduler will only take
this binding. Sometimes, the scheduler can only find one binding closest to
the boundary value. The next energy-cost higher binding will be the closest
binding to the next higher boundary value, or even the closest binding to the
next next higher boundary value. In the latter case, no binding exists for the
skipped boundary value. In this example, the scheduler finds two bindings
for some of the boundary values. After ordering those bindings and checking
the optimality, 13 solutions remain.

Table 4.16 compares the algorithm run time of the forward search and
the bidirectional search. Again, for this example, the algorithm run time dif-
ference is negligible. Actually, the run time is even smaller for the bidirec-
tional search. But apparently, this is due to the inaccurate measurement on
Unix. Unix is a time-sharing operating system. We cannot dedicate the server
for running this algorithm only. Every time when measuring the time, the
workload of the server is not the same. In addition, the resolution is only



98 4 Basic Design-Time Scheduling

Table 4.16. Run time comparison between the forward search and the bidirectional
search for Fig. 4.35

Forward search Bidirectional search

Run time (s) 832.43 828.53

0.01 s, which is pretty low. However, from this rough measurement, what we
can be sure about is the algorithm run time difference between the forward
and the bidirectional search will be negligible. In other words, the backward
search does not increase the run time significantly.

4.4.3 Summary

In summary, the backward search works well for graphs, which has its “par-
allelism” distributed evenly among its generations. For graphs, like Fig. 4.11,
we need further extensions to cover the gap between the forward search and
the backward search. This is the topic of the next section.

4.5 Subplatform Scheduling

The experiments in Section 4.4 show that the bidirectional search does not
cover the gap between the forward and backward search. Moreover, if we
look at the experiment result in Fig. 4.44, we can see that the energy-cost
and time-budget trade-off curve goes almost linearly. This is again not what
we expect because the energy-cost reduces quadratically with the supply
voltage while the execution-time increases linearly with the supply voltage.
Of course, our scheduling problem is a discrete mathematic problem. It is
discrete because the node execution time can only take a few values. And the
parallel execution introduces even more irregularity in this problem. How-
ever, it is good to think this way and check whether we can improve further.

By checking the results in the middle range of Fig. 4.44, we can identify
that some nodes are assigned to high Vdd processor unnecessarily. It seems
that the scheduler builds up some bindings only for the sake of increasing
energy-cost. It does not consider whether moving nodes to high energy-cost
processors is the most optimal move. Figure 4.45 illustrates such a situation.
Suppose node t7 is only dependent on node t4 and t8 is only dependent on t5,
we can move them to the idle time-slots as illustrated. Such a change reduces
the energy-cost while keeping the time-budget as before.

This example shows us that we can get energy-cheaper schedules by
restricting the processor selection. Since the forward search is a fast algo-
rithm, we can derive all the possible subsets of the given platform, then apply
the forward search on each of the derived platforms, and finally select the



4.5 Subplatform Scheduling 99

P0 time

t0

P1 time

t4

P2 time
t7

P3 time
t8

t1 t2

t5 t6

t3

Fig. 4.45. Illustration of unnecessary high Vdd processor assignments

Table 4.17. Sub-platform numbers of typical processor numbers

Processor Num Sub-platform Num

2 3
3 7
4 15
5 31
6 63
7 127
8 255

optimal solutions out of the intermediate solutions. Since the derived plat-
forms are subsets of the given platform, the name “sub-platform” scheduling
has been selected for this heuristic.

Generally speaking, for a given platform of n processors, the number of
possible sub-platforms is the sum of C1

n, C2
n, . . ., Cn−1

n , Cn
n , i.e.,

∑n
i=1 Ci

n. By
mathematical induction, we can prove that

∑n
i=1 Ci

n = 2n − 1. Table 4.17
shows the sub-platform numbers for typical processor numbers. Given these
numbers, we can conclude that the algorithm run time should still be afford-
able for typical cases.

To make easy comparisons, we have used the same two examples in
Section 4.4 to study the sub-platform scheduling.

4.5.1 Experiment with Fig. 4.11

We still configure the search depth for both generation and weight at 3. The
detailed solutions produced by sub-platform scheduling are listed in the
appendix of Wong [245]. The sub-platform scheduling produces 64 solutions,
which almost doubles 34, i.e., the solution count of the bidirectional search,
Fig. 4.46 compares the solutions produced by the bidirectional search and the
sub-platform scheduling.



100 4 Basic Design-Time Scheduling

Fig. 4.46. Comparing solutions produced by the bidirectional search and the sub-
platform scheduling at search depth 3 for generation and 3 for weight for Fig. 4.11

Table 4.18. Algorithm run time of the bidirectional search and the sub-platform
scheduling at generation 3 and weight 3 for Fig. 4.11

Bidirectional search Sub-platform scheduling

Run time (s) 22.34 44.91

At the low time-budget part, the sub-platform scheduling produces iden-
tical solutions with the bidirectional search. In general, the sub-platform
scheduling produces solutions in four groups. At time-budget 564.353 and
719.8, there are cliffs in the energy-cost axis. These big jumps in energy-
cost say that at those time-budgets reducing the time-budget will incur a
high-energy penalty. Also at energy-cost 1949.63 is a cliff in the time-budget
axis, which says the energy-cost is not sensitive to the time-budget. In other
words, when we reduce the time-budget, the energy-cost remains flat.

Such a solution distribution is good enough for normal use. Because
when the energy-cost has a big jump, the time-budget does not jump. Vice
versa, when the time-budget has a big jump, the energy-cost remains flat.
As long as the jump does not happen in both dimensions simultaneously, or
in other words, at least one dimension is continuously changing, the trade-
off curve is usable.

Table 4.18 compares the algorithm run time of the bidirectional search and
the sub-platform scheduling. Apparently, the run time overhead introduced
by sub-platform scheduling is affordable. Especially considering the gain in
solution space, this overhead is worthwhile.



4.5 Subplatform Scheduling 101

Fig. 4.47. Comparing solutions produced by the bidirectional search and the sub-
platform scheduling at search depth 3 for generation and 6 for weight for Fig. 4.11

Table 4.19. Algorithm run time of the bidirectional search and the sub-platform
scheduling at generation 3 and weight 6 for Fig. 4.11

Bidirectional search Sub-platform scheduling

Run time (s) 1104.87 1558.69

It is clear that, for this example, to get a better solution distribution, i.e.,
to reduce the gaps on either the time-budget dimension or the energy-cost
dimension, we have to increase the search depth for generation and/or weight.

Figure 4.47 compares the solutions of the bidirectional search and the sub-
platform scheduling when they are configured at generation 3 and weight 6.
The detailed solutions are listed in the appendix of Wong [245]. Compared
with Fig. 4.46, the solutions are distributed more smoothly at the algorithm
run time penalty shown in Table 4.19.

Increasing the search depth for generation, we get even smoother solu-
tion distribution for this example. Figure 4.48 compares the solutions of the
bidirectional search and the sub-platform scheduling when they are config-
ured at generation 6 and weight 3. The detailed solutions are listed in the
appendix of Wong [245]. As expected, we pay an even higher run time
price for the improved solution quality. Table 4.20 shows the algorithm run
time.

Figure 4.49 illustrates how the solution quality and distribution improve
when the search depth for generation and weight increase. The solutions are



102 4 Basic Design-Time Scheduling

Fig. 4.48. Comparing solutions produced by the bidirectional search and the sub-
platform scheduling at search depth 6 for generation and 3 for weight for Fig. 4.11

Table 4.20. Algorithm run time of the bidirectional search and the sub-platform
scheduling at generation 6 and weight 3 for Fig. 4.11

Bidirectional search Sub-platform scheduling

Run time (s) 2436.63 2964.44

produced by the sub-platform scheduling. The scheduler is configured at
generation 3 and weight 3, generation 3 and weight 6, and generation 6 and emph-
weight 3.

We have tried to increase the search depth even further, e.g., genera-
tion 6 and weight 6. However, the solution quality and distribution does
not improve significantly. When configured at generation 6 and weight 6, the
scheduler produces two more solutions than configured at generation 6 and
weight 3. Most of the solutions produced with these two configurations are
identical. Considering the scheduler already has 119 solutions at generation 6
and weight 3, this improvement is negligible.

For discrete mathematic problems, the gap is due to the discrete nature of
the problem itself. When a scheduling solution does not exist in the gap, no
matter which algorithm we use, we simply cannot create something, which
does not exist.



4.5 Subplatform Scheduling 103

generation 6&weight 3generation 3&weight 3 generation 3&weight 6

Fig. 4.49. Comparing solutions produced by the sub-platform scheduling at different
search depths for Fig. 4.11

4.5.2 Experiment with Fig. 4.35

Applying the sub-platform scheduling to the example in Fig. 4.35, we get 38
solutions (listed in appendix of Wong [245]). The scheduler is configured at
weight 9, which is the same as in the experiment of Section 4.4.2. Figure 4.50
compares the solutions produced by the bidirectional search and the sub-
platform scheduling.

The following conclusions can be derived from this comparison.

1. The solution count increases from 26 to 38, which is approximately 50%.
2. Both in the low time-budget part and in the energy-cost cheap part, the

solutions produced by these two schedulers are very close. Actually, they
come up with identical solutions at many places.

3. In the middle range, sub-platform scheduling improves the solution
quality significantly.

4. The overall solution distribution of sub-platform scheduling is as good
as the bidirectional search.

Table 4.21 compares the algorithm run time between bidirectional search
and sub-platform scheduling. Compared with the bidirectional search, the
run time of sub-platform scheduling increases 52.1%. However, considering
the improvement in solution quality, the penalty is worthwhile.

4.5.3 Summary

Through these two experiments, we can derive the following conclusions
about the sub-platform scheduling.



104 4 Basic Design-Time Scheduling

Fig. 4.50. Comparing solutions produced by the bidirectional search and the sub-
platform scheduling for Fig. 4.35

Table 4.21. Run time comparison between the bidirectional search and the sub-
platform scheduling for Fig. 4.35

Bidirectional search Sub-platform scheduling

Run time (s) 828.53 1206.38

1. It helps covering the gap in time-budget dimension and energy-cost
dimension.

2. It improves the scheduling solution quality especially in the middle
range.

3. It produces a better solution distribution, which means it produces more
solutions at the places, where energy-cost changes sharply with the time-
budget.

4. It introduces a reasonable algorithm run time overhead, which is afford-
able and worthwhile.

4.6 Handling Timing-Constraints

In our target domain of embedded systems, it is not rare to have timing con-
straints between two nodes. We have classified the timing constraints in the
following four types from experiments with real-life applications. Assume t1
and t2 are two nodes in a graph. They can be directly connected, indirectly
connected or independent from each other.



4.6 Handling Timing-Constraints 105

1. Minimum timing constraint from the finish of t1 to the start of t2. This
happens when, for example, t2 waits for the data from t1 to start execu-
tion, t1 only produces the data at the end of its execution, and the data
produced by t1 can only become available to t2 after the minimum timing
constraint due to some kind of hardware delay.

2. Minimum timing constraint from the start of t1 to the finish of t2. This
happens, when for example, t2 waits for the data from t1 to finish execu-
tion, t1 produces data as soon as it starts execution, but the data can only
become available to t2 after the minimum timing constraint due to some
hardware delay.

3. Maximum timing constraint from the finish of t1 to the start of t2. This
happens when, for example, t2 needs data from t1 to start execution, t1
only produces the data at the end of its execution, and the data will go
corrupted after the maximum timing constraint.

4. Maximum timing constraint from the start of t1 to the finish of t2. This
happens, when, for example, t2 needs data from t1 to finish execution,
t1 produces the data at the start of its execution, and the data will go
corrupted after the maximum timing constraint.

Figure 4.51 illustrates these four types of timing constraints. This section
extends the scheduling algorithm to handle the timing constraints. The basic
idea is to use timing-constraints to prune the solutions before checking its
optimality. The order of the timing-constraint pruning and the optimality
checking is important. Because we can only talk about the optimality after
the solution is valid in timing constraints. This means for every solution
found by the scheduler, the scheduler will check the solution’s validity first
regardless of its optimality. That is, checking the solutions against all the tim-
ing constraints, which means an overhead of the algorithm run time. There
are two consequences of such a pruning step. One is that at some time-
budgets, we will not find any solution at all due to the timing constraints.
The other is that some solutions, which are non-optimal without timing-
constraints, become optimal.

t1 t2
min

min

t1 t2
max

max

Fig. 4.51. Four types of timing constraints between two nodes



106 4 Basic Design-Time Scheduling

t7

t6 t1

t2

t5

t4t3

t0

P0 2.4 V

P1 1.2 V

P2 3 V

P3 2 V

P3 1 V

ARM

ARM

TriMedia

TriMedia

TriMedia

min=40
max=90

min=20
max=50

Fig. 4.52. An example task graph with timing constraints

A small example of 8 nodes with 5 processors and 4 timing constraints as
shown in Fig. 4.52, is used to illustrate how this pruning step works. Timing
constraints are represented with dash lines in the graph. Both the scheduler
without and with timing constraints are configured at search depth 1 for both
generation and weight. Table 4.22 lists the solutions produced by these two
schedulers. This table shows that due to timing constraints, some scheduling
solutions become invalid, e.g., at time-budget 64, 117, 133, 134, 162, and 210.
Those scheduling solutions violate the timing constraints, so they are ruled
out by the pruning step. At other places, e.g., at time-budget 72, the original
optimal solution is replaced by an originally non-optimal solution. Like dis-
cussed before, the optimal solution violates the timing constraints while the
non-optimal solution meets the timing constraints, so it survives the pruning
step.

Table 4.23 compares the algorithm run time of the scheduler without and
with timing-constraint pruning. As expected, the timing-constraint pruning
introduces a run time overhead. This is really a tiny example. When the prob-
lem size goes big, checking every outcome solution against a set of timing
constraints can be a large overhead.

In summary, handling timing-constraints as a pruning step is a safe way
to solve the problem. It will not reduce the search space, hence it will keep the
solution quality. However, it may not be very efficient in algorithm run time.
An alternative is to treat the timing-constraints in the scheduling algorithm.
Apparently, this increases the algorithm complexity and also the run time.
With careful algorithm design, especially by using the hierarchical approach
of the next chapter, we may expect a reasonable run time. That is a direc-
tion for future extension to this scheduling algorithm. However, treating the
scheduling and timing constraints separately gives us a chance to switch the
pruning step off completely. Therefore, we can save algorithm run time very
effectively for those problem without timing-constraints.



4.7 Summary 107

Table 4.22. Comparing solutions produced by the algorithms with and without
timing-constraint handling

TB: Time-budget
E: Energy-cost
TC: Timing-constraint
TB E

Without TC handling With TC handling

64 1109
72 1026 1086
77 613 613
90 568 568
108 490 490
117 487
133 448
134 436
137 376 376
162 158
210 156

Table 4.23. Run time comparison between the scheduler without and without timing-
constraint handling for Fig. 4.52

TC: Timing-constraint
Without TC handling With TC handling

Run time (s) 0.24 0.37

4.7 Summary

This chapter gives a detailed explanation of our basic design-time scheduling
algorithm. This algorithm can be applied on individual TFs and generate
energy vs performance trade-off points for each TF. The heuristics used in
this algorithm work well with small to medium sized TFs (i.e., <100 TNs).
For extremely large TFs, a more scalable design-time scheduling technique
has been developed and will be discussed in the next chapter.




