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Abstract: Inherited susceptibility due to a defective gene is a factor in a small 
percentage of people who develop cancer (<5%), while induced susceptibility, 
which is due to the wide variation in individual responses to exogenous agents, 
is believed to result from the great diversity in responsiveness to risk factors 
in the environment. Interindividual variations in DNA repair capacity for 
specific types of DNA damage are documented. Functional polymorphism 
has been identified primarily at enzymes associated with redox regulation 
and detoxification, such as glutathione S-transferase and cytochrome p450 
isozymes. Cancer susceptibility can be the inability to eliminate mutated cells 
by apoptosis due to mutation in apoptosis regulatory genes and/or induced 
disruption in gap junction, activation of proto-oncogene and/or inactivation 
of suppressive genes. Detectable gene mutations and alterations in signal 
transduction pathways together with modified post-translational proteins 
offer valuable molecular biomarkers for occupational and environmental 
human biomonitoring applied for the identification of potentially hazardous 
exposures before adverse health effects appear and allow the establishment of 
exposure limits in order to minimize the likelihood of significant health risks. 
An emerging concept is that the combined action of environmental factors and 
individual susceptibility determines an individual’s likelihood of developing 
cancer, asthma, diabetes as well as many other aging-associated diseases.

Introduction

During the last decades diseases such as asthma (Eggleston et al., 1999), 
obstructive lung diseases (Lagorio et al., 2006) diabetes mellitus (Lee et al., 
2006), cardiovascular disease (Chen et al., 2005), cancer (Brennan, 2002) 
atherosclerosis (Wang and Wang, 2005), Alzheimer’s disease (Landrigan et al., 
2005) and autoimmune disorders (Dooley and Hogan, 2003) are increasing 
in incidence. These diseases are multifactorial and all are suggested to involve 
complex interactions between genetic (individual susceptibility) environmental 
(potentially modifiable) factors. It is recognized that environmental exposures 
play a key role factor in their propagation.
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Inherited susceptibility due to a defective gene is a factor in a small 
 percentage of people who develop cancer (<5%). Nearly all hereditary 
 diseases are recessive, meaning that both copies of a gene must be mutated in 
order for the disease to develop (Risch, 2000). Induced susceptibility, which 
is due to the wide variation in individual responses to exogenous stressors, 
is believed to result from the great diversity in responsiveness to risk factors 
in the environment. These variations, known as polymorphism, are caused 
by sporadic mutations caused by both endogenous and exogenous processes 
(Elena and de Visser, 2003). In most instances, such mutations, which result 
in minor changes in the nucleotide sequence of the coding region as well as 
5´ and 3´ untranslated regions, are sufficient to alter expression or stability 
at both the RNA and protein levels (Malkin, 1995). However, there are many 
instances, where modifications in gene expression do not involve changes 
in DNA nucleotide sequences. Modifications in gene expression through 
methylation of DNA and remodelling of chromatin via histone proteins are 
believed to be the most important events of the epigenetic changes (Verma 
and Srivastava, 2002).

Potential sources of  susceptibility for complex diseases risk include 
interindividual variation in DNA repair capacity for specific types of 
DNA damage (Au et al., 1996). Also variation in enzymes, which  activate 
and detoxify procarcinogens and carcinogens (e.g. Phase I enzymes, which 
 catalyze oxidation, reduction, and hydrolysis reactions, and Phase II 
enzymes, which catalyze conjugation and synthetic reactions) are causes for 
interindividual susceptibility. Functional polymorphism has been identified 
primarily at enzymes associated with redox regulation and detoxification, 
such as glutathione S-transferase (Nakajima et al., 1995) and cytochrome 
p450 isozymes (Oyama et al., 1997). Cancer susceptibility can be the inabil-
ity to eliminate mutated cells by apoptosis due to mutations in the apoptosis 
regulatory genes (Malkin, 1995), and/or induced disruption in gap junction 
(Trosko et al., 1994), activation of proto-oncogene (You et al., 1989) and/or 
inactivation of suppressive genes (Weinberg, 1991; Greenblatt et al., 1994).

BIOLOGICAL VARIABILITY IN THE ACTIVITY 
OF OXIDANT-PRODUCING ENZYMES

Nitric oxide species (NOS) and reactive oxygen species (ROS)  regulate 
 multiple cellular functions such as DNA synthesis (Kandacova and 
Zagrebel’naia, 2004), signal transduction (Ruiz-Ramos et al., 2005), 
 transcription factor activation, (Bove and van der Vilet, 2006), gene expression 
(Hsu et al., 2004), cell proliferation (Attene-Ramos et al., 2005) and apoptosis 
(Nair et al., 2004). Numerous various enzymes including: NADPH oxidase 
(Fialkow et al., 1994) and xanthine oxidase (Weiss, 1986) generate ROS. 
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Endothelial cells, neutrophils, macrophages and other inflammatory cells 
generate and release ROS and NOS via an NADPH-oxidase- dependent 
mechanism that is mediated by membrane receptor activation of protein 
kinase C and phospholipase C (Cemerski, 2002; Gelinas et al., 2002). 
One of the major functions of these free radicals is immunological host 
defence, where they are generated by macrophages and neutrophils and 
play critical role as bactericidal, antiviral and anti-tumour agent (Wiesman 
and B. Halliwell, 1996; Guzik et al., 2003). H2O2 is considered to activate 
NF-κB (Siebenlist et al., 1994), which regulates the expression of multiple 
immune and inflammatory molecules. Generation of such ROS to a level 
that  overwhelms tissue antioxidant defence systems, results in an oxidative 
stress, whose magnitude depends on the ability of the tissues to detoxify 
such free radicals (Ames, 1983), and consequently damaging cellular lipids, 
proteins and DNA inducing lipid peroxides, protein carbonyls and DNA 
damage (Cerutti, 1985; Henson and Johnston, 1987; Wiesman and Halliwell, 
1996). Environmental agents, which generate free radical are numerous and 
include alcohol, numerous food sources (Ames, 1983), infectious organisms 
(Freeman and Crapo, 1982), most physical and chemical agents including 
ionizing radiation (Gisone et al., 2006), dust particles (Fujimura, 2000), 
asbestos (Dopp et al., 2005), and are also provoked during exercise (Xiao 
and Li, 2006)

ROS have been implicated in the pathogenesis of most diseased conditions 
(Favier, 2006). ROS are virtually implicated in every stage of  vascular 
lesion formation, angiotensin II-dependent hypertension (Kazama et  al., 
2004), hyperhomocysteinemia (Dayal et al., 2006), diabetes (Moore, 2006), 
metabolic syndrome, (Erdos et al., 2004) inflammation together with 
ischaemia and reperfusion (Weiss, 1986), subarachnoid haemorrhage (Kim 
et al., 2002). ROS are also implicated chronic kidney diseases (Shah, 2006), 
liver diseases (Kouroumalis and Notas, 2006) peripheral arterial disease 
(Loffredo et al., 2006), Alzheimer’s disease (Onyango and Khan, 2006) and 
many others. Genetic variabilities in intensity of  free radicals generation 
in response to external stressors and environmental stimuli in humans are 
largely unknown. However, the most striking example is chronic granulo-
matous diseases of  childhood (CGD), which are a group of  disorders in 
which, phagocytic cells are unable to produce superoxide (O−

2) produc-
tion from the respiratory burst system, due to defaults in the phagocyte 
NADPH oxidase, which is a complex system consisting of  membrane and 
cytosolic components that must assemble at the membrane for proper 
 activation. Lack in this system makes children succumb from infection and 
die at an early age (Nouni et al., 1998).

Nitric oxide (NO) has been identified as a widespread and  multifunctional 
biological messenger molecule in the central nervous system (CNS), with 
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possible roles in neurotransmission, neurosecretion, synaptic plasticity, 
and tissue injury in many neurological disorders, including schizophrenia. 
Nitric oxide (NO) has been identified as a widespread and multifunctional 
biological messenger molecule produced in several types of mammalian cells 
including CNS, PMNs, macrophages and muscle cells. It participates in a 
broad range of important physiologic processes, including vasodilatation, 
neurotransmission, neurosecretion, synaptic plasticity, and host defence 
(Nathan and Xie, 1994). NO is generated from the amino acid L-arginine 
by three isoforms of the enzyme NO synthase; the constitutive (cNOS), 
the endothelial (eNOS) and the inducible (iNOS). The inducible form 
 generates much larger amounts of NO (1,000 times fold than the other two 
 isoforms) and its cellular production continues for many hours (Nathan, 1992). 
Inducible NOS has been detected in virtually every cell type, and the NO that 
it produces can perform both beneficial and detrimental actions, where, in 
physiological amounts, it is the key signal molecule in cell–cell interactions 
controlling vascular regulation (Clough, 1999) and neuronal  communication 
(Yang and Hatton, 2002), NO can eliminate infiltrating microorganisms 
(James, 1995), reduce thrombosis, and improve blood  supply to injured  tissues 
(Gross and Wolin, 1995). NO can be  detrimental, where excess  production of 
NO can cause tissue damage and contribute to the  development of a wide 
spectrum of diseases including septic shock,  rheumatoid arthritis, cerebral 
ischaemia, multiple sclerosis, and  diabetes (Nathan, 1992). On the contrary, 
NO deficiency may contribute to  cardiovascular events and progression of 
kidney damage at end stage renal  disease (Boger and Zoccali, 2003). Also loss 
of endothelial cell-derived nitric oxide (NO) in hypertension is a hallmark 
of arterial dysfunction as it is  associated with decreased arterial vasodila-
tor activity (Thakali et al., 2006). Concurrently, decreased NO levels 
are closely associated with preeclampsia-related endothelial dysfunction 
(Var et al., 2003).

Several studies suggest that the nitric oxide synthases gene polymorphism 
may confer increased susceptibility to several diseases. Increased NO 
 generation has been reported to be caused by a mutation at the C150T iNOS. 
C150T iNOS polymorphism is associated with the risk of H pylori-related 
gastric cancer in a Japanese population. And is related to  increasing the risk 
of gastric cancer in Asian countries with the highest rates of  gastric cancer 
(Goto et al., 2006). This polymorphism is also associated with  cigarette- and 
alcohol-induced gastric cancer in Chinese population (Shen et al., 2004). 
Decreased NO generation is caused by a mutation in eNOS gene promoter 
T-786C single nucleotide polymorphism. eNOS T-786C SNP has been shown 
to predict susceptibility to post-subarachnoid haemorrhage  vasospasm 
(Khurana et al., 2004), and rheumatoid arthritis (Melchers et al., 2006). T-786C 
has been suggested to be an important risk factor in the development of 
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non-arteritic anterior ischaemic optic neuropathy (NAION) among Japanese 
subjects and is associated with a higher risk of multivessel coronary artery 
disease in Caucasians (Rossi et al., 2003). It is believed that high salt intake 
interacts with the T-786C mutation and leads to a significant increase in the 
risk of hypertension (Miyaki et al., 2005). Severity of carotid atherosclerosis 
is linked to the eNOS G/T polymorphism (Glu298Asp variant) (Spoto et al., 
2005). The endothelial nitric oxide synthase (eNOS) gene is responsible for 
constitutive nitric oxide synthesis and arterial vasodilatation. 4a allele of the 
eNOS gene is related to elevated blood pressure levels particularly among 
type 2 diabetic patients with coronary heart disease (Zhang et al., 2006).

Agents known to induce the expression of iNOS mRNA are numerous 
and some of them include UV (Artiukhov et al., 2005), ionizing radiation 
(Chi et al., 2006), Helium neon laser (El Batanouny and Korraa, 2002), 
ozone (Fakhrzadeh et al., 2004), hypoxia (Lu et al., 2006), fly ash particles 
(Gursinsky et al., 2006) and asbestos (Sandrini et al., 2006). Morphin 
(Frenklakh et al., 2006) and dioxin (Cheng et al., 2003; Kuchiiwa, 2003) 
administration down-regulates NO production, while hydrogen sulphide can 
inhibit NO production in LPS-stimulated macrophages (Oh et al., 2006). 
Silymarin, a polyphenolic flavonoid antioxidant, inhibits NO production 
and iNOS gene expression (Kang et al., 2002) and 2-Chloroethyl ethyl sulphide 
(CEES) is a sulphur vesicating agent and an analogue of the chemical 
warfare agent 2,2´-dichlorodiethyl sulphide, or sulphur mustard gas (HD) 
decreases iNOS expression in murine macrophages (Qui et al., 2006)

BIOLOGICAL VARIABILITY IN NUCLEAR TRANSCRIPTION 
FACTORS ACTIVITY

Altering gene expression is the fundamental and effective way for a cell 
to respond to extracellular signals or environmental stresses in short- or 
long-term responses (D’Angio and Finkelstein, 2000). In the short term, 
transcription factors are involved in mediating responses to growth factors 
and a variety of other extracellular signals (Cosma, 2002). Regulation of the 
signaling responses is governed at the genetic level by transcription factors 
that bind to control regions of target genes and alter their expression (Alder 
et al., 1999). Transcription factors are endogenous DNA-binding proteins 
that enhance the transcription phase proteins by regulating gene expression 
of a variety of genes and are required for maximal transcription of many 
cytokines. They are effective in the initiation, stimulation or termination of 
the genetic transcription process. (Chu and Chang, 1988; Escoubet-Lozach 
et al., 2002) While in the cytoplasm, the transcription factor is incapable of 
promoting transcription. The activity of transcription factors is typically 
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regulated by phosphorylation-dependent events that can include the phospho-
rylation of the transcription factor itself; a signaling event occurs, leading 
to a change of the state of phosphorylation, followed by protein subunit 
translocation into the nucleus (Whitmarsh and Davis, 2000).

An example of these nuclear transcription factors is the Hypoxia-
 inducible factor 1 (HIF-1), which functions as a master regulator of oxygen 
homeostasis. HIF-1 consists of a constitutively expressed HIF-1β subunit 
and an oxygen-regulated HIF-1α subunit. Under hypoxic conditions, HIF-1α 
protein accumulates and translocates to the nucleus where it forms an active 
complex with HIF-1β, which activates transcription of >60 target genes 
important for the adaptation and survival under hypoxia (Semenza, 2003). 
HIF-1 target genes encode proteins that increase oxygen delivery, such as 
angiogenic factors (Tanimoto et al., 2003), as well as proteins that mediate 
adaptive responses to oxygen deprivation in ischaemic tissue, such as glucose 
transporters and glycolytic enzymes (Semenza, 2000). Genetic variations in 
HIF-1α genotype have been reported. HIF-1α may influence development 
of coronary artery collaterals in patients with significant coronary artery 
disease (Kelly et al., 2003), where the development of collateral circula-
tion plays an important role in protecting tissues from ischaemic damage. 
Clinical observations have documented substantial differences in the extent 
of collateralization among patients with coronary artery disease, with some 
individuals demonstrating marked abundance and others showing nearly 
complete absence of these vessels (Resar et al., 2005). Mutation in two nucle-
otide sequence variants in exon 12 of the human HIF1A gene that affect the 
 coding sequence of HIF-1α were lately reported to be present in patients 
with renal cell carcinoma (Clifford et al., 2001).

Hypoxia-inducible factor 1 (HIF-1) is affected by external stressors, 
where smoking damages the human placenta by altering the expression of 
HIFs, which play a key role in enhancing mediators of placental development 
(Genbacev et al., 2003). Carbon monoxide suppresses the activation of HIF-1 
by hypoxia in a dose-dependent manner (Huang et al., 1999) by decreasing the 
binding of  HIF-1 to its enhancer as exhibited by nuclear proteins  isolated 
from CO-treated cells (Lui et al., 1998). HIF-1α is also overexpressed in the 
vast majority of patients with squamous cell cancer of the oropharynx and 
the degree of its expression has predictive and prognostic significance in 
 individuals undergoing curative radiation therapy (Aebersod et al., 2001).

Another nuclear transcription factor is the nuclear transcription factor 
κB (NF-κB). It designates a group of critical transcription factors involved 
in a variety of immunologic and/or inflammatory processes and apoptosis in 
response to external stressors in many cell types. The predominant  complex 
of NF-κB in most mammalian cells is p50/p65. NF-κB is required for 
maximal transcription of many cytokines, including tumour necrosis factor 
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(TNF-), interleukin-1 (IL-1), IL-2, IL-6, and IL-8, which are thought to be 
important in the generation of  acute inflammatory responses (Siebenlist 
et al., 1994).

NF-κB activation was shown to be stimulated by alcohol consumption 
(Jaruga et al., 2004), bacterial endotoxin, chemical mitogens, viral proteins 
(Parsonnet, 1995), and certain chemical agents including ozone (Fakhrzadeh 
et al., 2004), arsenic and chromium (Ding et al., 2000; Dong, 2002) and 
asbestos (Faux and J. Howden, 1997). Excessive activation of  NF-κB in 
 leucocytes is stimulated by Short wavelength UV (Li and Karin, 1998; 
Wu et al., 2004) and ionising radiation in a dose-response pattern (Iarilin, 
1999). There is an increasing body of  evidence suggesting a role for NF-κB 
in carcinogenesis (Baldwin, 1996). For example, NF-κB is implicated in 
signaling tumour  promoter-induced transformation and is activated by 
viral- transforming proteins (Dahr et al., 2002). The importance of  NF-κB 
cannot be overstated, as failure in any of the mechanisms leading to NF-κB 
activation can have  serious consequences for the cell. Impaired ability to 
signal and activate specific gene transcription through NF-κB has been 
directly linked to immunodeficiency (Uzel, 2005). Agents such as hydrogen 
sulphide can inhibit NO NF-κB activation in LPS-stimulated macrophages 
(Oh et al., 2006). Silymarin, a polyphenolic flavonoid antioxidant (Kang 
et al., 2002), and mustard gas analogue (Qui et al., 2006) individually inhibits 
NF-κB activation.

Concurrently, the constitutive activation of NF-κB has been linked with 
a wide variety of human diseases, including asthma, atherosclerosis, AIDS, 
rheumatoid arthritis, diabetes, osteoporosis, Alzheimer’s disease, and 
cancer. Several agents are known to suppress NF-κB activation, including 
Th2 cytokines (IL-4, IL-13, and IL-10), interferons, endocrine hormones 
(LH, HCG, MSH and GH), phytochemicals, corticosteroids, and immuno-
suppressive agents. Because of the strong link of NF-κB with different stress 
signals, it has been called a “smoke-sensor” of the body (Ahn and Aggarwal, 
2005). Polymorphism in the promoter region of the human NFKB1 gene 
was found to be associated with susceptibility to ulcerative colitis (Borm et al., 
2005). Hippocampal pyramidal neurons in mice lacking the p50 subunit of 
NF-κB (p50–/–) exhibit increased damage after exposures to excitotoxins 
(Yu et al., 1999; Kassed et al., 2002).

Antioxidant Enzymes, encoded by numerous genes in mammalian  systems, 
have been shown to be responsive to oxidants, although a systematic mecha-
nism for gene regulation by oxidative stress has not been elucidated. Oxidative 
stress has been shown to alter the expression of mammalian  antioxidant 
enzymes including superoxide dismutase (SOD),  glutathione peroxidase 
(GPx), ά;-glutamylcysteine synthetase, catalase,  glutathione S-transferase and 
quinone reductase (Amstad and Cerutti, 1990). SOD catalyses the dismutation 
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of superoxide radicals into hydrogen peroxide that glutathione peroxidase and 
catalase break down into water (Halliwell, 1994). Induction of antioxidants 
by oxidative stress may both function in intracellular signalling and serve to 
protect cells from further oxidant injury. Accordingly, an imbalance in anti-
oxidant mechanisms may influence  cellular sensitivity to free-radical damage 
and alter susceptibility to disease (Ames, 1983).

Antioxidant enzymes especially the inducible SOD enzyme has been 
shown to be elevated in individuals at risk of exposure to low doses of 
various stresses. Superoxide dismutases (SODs) are the major antioxidant 
enzymes that inactivate superoxide and thereby control oxidative stress as 
well as redox signaling.

There are three types of mammalian SODs: manganese SOD (MnSOD) 
on the mitochondria, copper-zinc SOD on the cytosol and extracellular 
SOD in extracellular compartments (Zelko et al., 2002). Cigarette  smokers 
(Kanehira et al., 2006), asbestos exposed workers (Kamal et al., 1992), 
 radiotherapy exposed patients (Vucic et al., 2006), and athletes have higher 
levels of SOD enzymes compared to controls (Elosua et al., 2003). Asthmatic 
Chinese patients were shown to have elevated erythrocyte SOD activities in 
comparison with healthy controls (Mak et al., 2006). Also the antioxidant 
enzyme SOD in samples from patients with malignant tumours revealed up to 
45-fold greater than that of controls (Yoshii et al., 1999; Soini et al., 2006).

MnSOD locus has been linked to the atherogenic lipoprotein  phenotype, 
i.e. the excess of  small dense LDL in humans (Allayee et al., 1998). 
Overexpression of  MnSOD has been shown to protect transgenic mice 
against myocardial ischaemia (Cheng et al., 1998) and in rabbits to 
reverse vascular dysfunction in carotid arteries without atherosclerotic 
changes, but not in vessels with atherosclerotic plaques (Zanetti et al., 
2001). Overexpression of  MnSOD inhibits in vitro oxidation of  LDL 
by  endothelial cells (Fang et al., 1998) and ox-LDL is able to induce the 
expression of  MnSOD in  macrophages (Kinscherf  et al., 1997). The apoE-
deficient mice lacking MnSOD had more severe atherosclerosis compared 
to the apoE-deficient mice (Ballinger et al., 2002). In addition, the signal 
sequence  polymorphism of the MnSOD gene has been associated with non-
familial dilated cardiomyopathy in Japanese subjects (Hiroi et al., 1999), but 
it has not been investigated earlier in human atherosclerosis. It is suggested 
that MnSOD has a protective role for in retinal capillary cell death and, 
ultimately, in the pathogenesis of  diabetes induced retinopathy (Kowluruet 
et al., 2006).

Extracellular SOD (ECSOD or SOD 3) is a major extracellular antioxidant 
enzyme. It distributed in the extracellular matrix of many tissues and especially 
blood vessels (Strålin et al., 1995). A fundamental property of ECSOD is its 
affinity, through its heparin-binding domain (HBD), for heparan sulphate 
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proteoglycans located on cell surfaces and in extracellular matrix (Sandström 
et al., 1992, 1993). It has been demonstrated that vascular effects of ECSOD 
require an intact HBD (Fattman et al., 2003). A common genetic variant 
with a substitution in the HBD (ECSOD(R213G) was reported recently to be 
associated with ischaemic heart disease. is a major extracellular antioxidant 
enzyme and it is suggested that human beings carrying ECSOD(R213G) are 
predisposed to vascular diseases (Chu et al., 2005)

Substitution of arginine-213 by glycine (R213G), which results from a 
C-to-G transversion at the first base of codon 213, is a common human 
gene variant in the HBD of ECSOD (Sandström et al., 1994). Plasma 
 concentrations of  ECSOD are increased greatly in the 2–5% of the 
 population that carries ECSODR213G (Adachi et al., 1996). This alteration 
in the HBD reduces affinity for heparin but does not affect the enzymatic 
activity of ECSOD. ECSOD affected individuals in Sweden, who did not 
have major phenotypic abnormalities, but there was a trend for increased 
triglycerides and body weight (Marklund et al., 1997). A recent large study 
in Denmark suggested a 2.3-fold increase in risk of ischaemic heart disease in 
heterozygotes carrying ECSODR213G, with a 9-fold increase after adjustment 
for plasma levels of ECSOD (Busse, 2001).

Glutathione peroxidase (GPX1), is an intracellular selenium-dependent 
enzyme that is ubiquitously expressed and detoxifies hydrogen and lipid 
peroxides plays a significant role in protecting cells from the oxidative stress 
induced by ROS. GPX1 levels are particularly responsive to fluctuations 
in selenium levels compared with other selenoproteins. Mice null for Gpx1 
and GPx2 exhibit severe ileocolitis at a young age and develop microflora-
 associated cancers in the lower gastrointestinal tract (Chu et al., 2004).

GPX1 is polymorphic at codon 198, resulting in either a proline or a  leucine 
at that position, and the frequency of the leu allele is strongly  associated with 
an increase in the risk for lung (Ratnasinghe et al., 2000), and possibly breast 
cancer (Hu et al., 2004). The identity of the amino acid at codon 198 (proline 
or leucine) has functional consequences with regard to level of enzyme  activity 
in response to increasing levels of selenium provided to cells in culture (Hu 
and Diamond, 2003). Loss of heterozygosity (LOH) occurs at the GPX1 locus 
 during the development of several cancer types, including those occurring in 
lung, breast, and head and neck (Moscow et al., 1994). In the case of head 
and neck cancers, GPX1 allelic loss was shown to occur in histopathologically 
normal tissue adjacent to tumours, indicating that loss at this locus may be an 
early event in cancer evolution (Hu et al., 2004).

Meanwhile, GPX1 codon 198 polymorphism was associated with an 
increased risk of lung cancer and individuals carrying the Pro/Leu or Leu/
Leu genotype of GPX1 were at a higher risk for lung cancer and were shown 
to have high urinary 8-OH-dG concentrations compared to the individuals 
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with the GPX1 Pro/Pro genotype. On the other hand, the polymorphism of 
the hOGG1 gene did not affect the lung cancer risk and the oxidative DNA 
damage (Lee et al., 2006)

Catalase enzyme is an endogenous antioxidant enzyme that  neutralizes 
ROS by converting H2O2 into H2O and O2. A −262C →T  polymorphism 
in the promoter region of the gene (CAT) is associated with risk of several 
conditions related to oxidative stress. It is plausible that the endogenous vari-
ability associated with this polymorphism plays a role in the host response to 
oxidative stress and progression to breast cancer (Ambrosone, 2000). Asthma 
patients due to polymorphism in the C allele of catalase gene at C-262T had 
elevated erythrocyte CAT activities in  comparison with healthy controls in 
Hong Kong (Mak et al., 2006).

BIOLOGICAL VARIABILITY IN DNA REPAIR CAPACITY

DNA repair processes restore the normal nucleotide sequence and DNA 
structure after damage. It assists in maintaining genomic integrity by  removing 
inappropriate bases and other possible deleterious lesions from DNA. Overlap 
among these pathways exists in terms of the types of  damage removed by 
each. The complex series of DNA repair pathways employ many different 
proteins. Numerous DNA repair mechanisms have been  identified: (i) site-
specific repair (ii) nucleotide excision repair (NER), (iii) base  excision repair, 
(iv) mismatch repair (MMR), (v) direct reversal of the damage, in which no 
incision is made in the backbone of the DNA (Bohr et al., 1987). An increased 
incidence of neoplasia is correlated with a defect in the repair or replication of 
damaged DNA in some human genetic diseases. Examples of such hereditary 
disorders include xeroderma pigmentosum, ataxia  telangiectasia, Fanconi’s 
anaemia, and Bloom’s syndrome (Fuss and Cooper, 2006). Several types of 
cancer have been linked with defects in all types of DNA repair pathways. For 
example, hereditary nonpolyposis colon cancer results from defects in MMR 
genes, and hereditary breast cancer is caused by mutations affecting the breast 
cancer associated proteins BRCA1 or BRCA2 that play a role in DSB repair by 
homologous recombination (Fuss and Cooper, 2006). Patients with multiple 
sclerosis were shown to exhibit reduced DNA excision reparation capacity in 
their peripheral blood  lymphocytes which correlated with the disease severity 
but not with its  duration (Moskaleva et al., 1988).

The biological consequences of unrepaired or misrepaired DNA  damage 
depend on the precise locations of the lesions. DNA lesions at  specific sites in 
the mammalian genome can lead to  mutation,  recombination, gene amplifica-
tion, translocation, and other  chromosomal abnormalities. These changes in 
turn may result in  malignant  transformation, faulty differentiation patterns, 
or cell death. Thus, it has become clear that damage to DNA at particular 
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loci can cause activation of the protooncogenes and inactivation of tumour 
 suppressor genes that may be implicated in subsequent tumourigenesis and 
age-related diseases (1). There is increasing evidence that human atherosclero-
sis is associated with damage to the suppressor gene p53 of both circulating 
cells, and cells of the vessel wall. DNA damage  produces a variety of responses, 
including cell senescence, apoptosis and DNA repair. Decreased endog-
enous levels of p53 promotes plaque formation in vascular muscle smooth 
cells and stromal cells by  promoting  apoptosis, while inhibiting apoptosis in 
macrophages, leading to atherosclerosis development (Mercer et al., 2005). 
Similarly, in rheumatoid arthritis, oxidative damage caused by inflamma-
tion appears to cause p53 mutations in synovium Most of the p53 mutations 
in RA are characterized by transition base changes (Inazuka et al., 2000). 
Furthermore, certain p53 mutations in RA are dominant negative and can 
suppress endogenous wild-type p53 function (Han et al., 1999). Inactivation of 
p53 protein can recapitulate many of the phenotypic changes observed in RA, 
such as increased  proliferation and invasion of synovial cells (Aupperle et al., 
1998; Pap et al., 2001). Elevated levels of DNA alkylation damage have been 
detected in  schistosome-infected bladders and are accompanied by an ineffi-
cient capacity of DNA repair mechanisms. Consequently, high frequency of 
G → A transition mutations were observed in the H-ras gene and at the CpG 
sequences of the p53 tumour suppressor gene (Badawi, 1996). It is suggested 
that the excess of transitions at CpG dinucleotides in squamous cell carcinoma 
induced by Bilharzial infections results from nitric oxide (NO) produced by 
the inflammatory response provoked by schistosomal eggs. NO could produce 
such mutations directly, by deamination of 5-methylcytosine, and indirectly, 
following conversion to nitrate, bacterial reduction to nitrite and endogenous 
formation of  urinary N-nitroso compounds. These produce O6-alkylguanines 
in DNA, leading to very high rates of G:C→A:T transitions, a process pos-
sibly augmented by inefficient repair of alkylated bases at CpG dinucleotides 
(Warren et al., 1995). DNA repair capacity decreases by ageing (Cabelof et al., 
2006) giving clue to the increased incidence of ageing associated diseases.

INDUCTION OF APOPTOSIS

Apoptosis or programmed cell death is a gene-regulated process in which a 
coordinated series of morphological changes such as nucleus and chromatin 
condensation, cell membrane blebbing and fragmentation of the cell into 
membrane-bound apoptotic bodies occurs, resulting in cell death (Barazzone 
and White, 2000). It is accepted that morphological changes observed  during 
programmed cell death are the consequence of an activation of caspases 
cascade (Green, 1998). At least two main signaling pathways have been 
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 postulated to participate in this process. The first one involves membrane 
receptors called death receptors (i.e. TNF receptor-1 and Fas/Apo-1) (Mak 
and Yeh, 1999; Hengartner, 2000), and the second one relies on the cell’s 
 ability to sense changes in the ratio between the protein levels of the members 
of the Bcl-2 family. Bcl-2 prevents apoptosis induced by a wide range of 
stimuli, suggesting that different pathways of transduction signals converge 
at this point (Adams and Cory, 1998; Zornig et al., 2001).

Membrane receptors include FAS (also known as TNFSF6, CD95, or 
APO-1), which is a cell surface receptor that plays a central role in apoptotic 
signaling in many cell types (Nagata and Goldstein, 1995). This receptor 
 interacts with its natural ligand FASL (also known as CD95L), a member of 
the tumour necrosis factor superfamily, to initiate the death signal  cascade, 
which results in apoptotic cell death (Reichmann, 2002). An immuno-
 privileged status for tumours is established via the FAS-mediated apoptosis 
of tumour-specific lymphocytes (Nagata and Goldstein, 1995). Decreased 
 expression of FAS and/or increased expression of FASL favors malignant 
transformation and progression [for a review, see (Muschen et al., 2000). 
In addition,  functional germline and somatic mutations in the FAS gene and 
perhaps also in the FASL gene that impair apoptotic signal transduction are 
associated with a high risk of cancer. Thus, the FAS/FASL system appears to 
have a role in the development and progression of cancer (Lee et al., 1999).

Mitochondria play a key role in the apoptotic pathway through the release 
of several factors from the intermembrane space to the cytoplasm, such as 
cytochrome C (Liu et al., 1996). It has been suggested that this  pathway 
could be regulated by the relative levels and subcellular distribution of Bcl-2 
family proteins. The antiapoptotic members (i.e. Bcl-2 or Bcl-XL) are mostly 
associated to the outer membrane of mitochondria and inhibit cytochrome 
C release. On the other hand, the proapoptotic molecules such as Bax, Bad, 
or Bid are cytosolic proteins; they translocate to the mitochondria and 
trigger cytochrome C release on apoptosis induction Several authors have 
identified a variety of proteins related with Bcl-2, such as Bax, Bak, Bid, and 
the different Bcl-X isoforms, which can either promote or prevent apoptosis 
(Cory, 1995).

Apoptosis plays an important role in sculpting the developing  organism 
and eliminating unwanted or potentially dangerous cells throughout life. 
Abnormal regulation of apoptosis is associated with a variety of  diseases. Cells 
that should die but do not can cause cancer and  autoimmune  diseases, whereas 
cells that should not die but do can cause stroke and  neurodegenerative disorders 
(Thompson, 1995). The adaptive increase in apoptosis that  accompanies the 
oncogene- activated dysregulation in  proliferation  selectively eliminates poten-
tially preneoplastic cells in  hyperplastic foci. Acquired  resistance to apoptosis 
appears to be a pivotal event in the transition to malignancy (Schulte-Hermann 
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et al., 1995). The homeostatic balance between cell proliferation and apoptosis 
in the  maintenance of constant cell numbers may provide a hormetic effect 
by minimizing the consequences of proliferation-related mutagenesis during 
tumour promotion (McDonnell, 1993; Meikrantz and Schlegel, 1995).

In conclusion, it has been long established that when organisms or cells are 
exposed to low levels of specific harmful physical or chemical agents, a beneficial 
physiologic effect is observed. Concurrently; exposure to  sublethal challenges of 
stress may rejuvenate the cell by repairing damage before the challenge and may 
provide transient protection against further damage from subsequent sublethal 
or lethal challenges with a different otherwise  harmful physical or chemical 
stressor. Due to the wide variation in individual responses to exogenous agents 
is believed to result from the great diversity in responsiveness to risk factors in 
the environment. Detectable gene  mutations and alterations in signal transduc-
tion pathways together with modified post-translational proteins offer valuable 
molecular biomarkers for occupational and environmental human biomonitor-
ing applied for the identification of potentially hazardous exposures before 
adverse health effects appear and allow the establishment of exposure limits in 
order to minimize the  likelihood of significant health risks. Concurrently, most 
of these elicited gene  expressions are also expressed in tissue transformation and 
 progression of tumours and are similar to the hallmarks used for cancer prog-
nosis. Some of these proteins represent protective mechanisms against different 
environmental stresses, while others amplify adaptation to environmental condi-
tions. The resultant balance between protective proteins and adaptive proteins 
seem to determine an individual likelihood to develop diseases.
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