
33 
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Abstract: The coefficient of restitution is mostly required for impact analysis in 
multibody dynamics. Using a multiscale simulation approach the coefficient 
can be computed on a fast time scale. Thereby modal models with local 
contact models proof to be efficient and accurate models for the simulations 
on the fast time scale. For many impact systems the coefficient of restitution is 
assumed to be deterministic, depending on essential parameters such as 
material, shape and initial collision velocity. In this paper impacts on beams 
are investigated numerically and experimentally. The investigated beam 
impacts feature multiple impacts, resulting in an uncertainty for the coefficient 
of restitution. 

1. INTRODUCTION 

Impacts occur in passive mechanical systems constraint by bearing with 
clearance, and in actively controlled mechanical systems like robots with 
colliding links. Such mechanical systems are often modeled as multibody 
systems to describe large nonlinear motions, and the impacts are treated by 
the coefficient of restitution, see e.g. Pfeiffer and Glocker [7] and Stronge 
[19]. The coefficient of restitution is considered as deterministic number 
depending on the material, the shape and the velocity of the colliding bodies 
see e.g. Goldsmith [3]. However, in experiments and simulations it was 
observed that for a sphere striking a beam the coefficient of restitution is 
uncertain due to multiple impacts resulting in random behavior. 
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2. IMPACTS IN MULTIBODY SYSTEMS 

The method of multibody systems allows the dynamical analysis of 
machines and structures, see References [8-10]. More recently contact and 
impact problems featuring unilateral constraints were considered too, see 
Pfeiffer and Glocker [7]. A multibody system is represented by its equations 
of motion as 

 ( ) ( , ) ( , ),+ =M y y k y y q y y&& & &  (1) 

where y(t) is the global position vector featuring f generalized coordinates, 
M the inertia matrix, k the vector of Coriolis and gyroscopic forces and q 
the vector of the applied forces. The continuous motion of the multibody 
system might be interrupted by collision. Collisions with non-zero relative 
velocity result in impacts and impact modeling is required.  

Using the instantaneous impact modeling the motion of the multibody 
system is divided into two periods with different initial conditions, see e.g.  
Glocker [2], Pfeiffer and Glocker [7] or Eberhard [1]. During impact the 
equations of motion (1) have to be extended by the impact force F which is 
assumed to act in normal direction to the impact points,  

 N( ) ( , ) ( , ) F.+ = +M y y k y y q y y w&& & &  (2) 

The vector wN projects the impact force from the normal direction of the 
impact on the direction of the generalized coordinates. Due to the 
assumption of infinitesimal impact duration, the velocity changes in a jump, 
whereas the position remains unchanged. The equation of motion during 
impact is then formulated on velocity level,  
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where the indices s and e mark the start and end of the impact, respectively. 
In the limit case e st t→  the quantities M and wN are constant and all but the 
impact forces vanish due to their limited amplitudes. However, the infinitely 
large impact force F yields a finite force impulse ∆P which results in the 
jump of the generalized velocities and the non-smooth behavior. The impact 
force F and, therefore, the impulse ∆P are still unknown. The coefficient  
of restitution e provides additional information for the assessment of  
the impulse. Using the kinetic coefficient of restitution due to Poisson, the 
impact duration is divided into a compression and a restitution phase. The 
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compression phase starts at time ts and ends with time tc , which is marked by 
the vanishing relative normal velocity. The restitution phase starts at time tc 
and ends at te . The kinetic coefficient of restitution is defined as the ratio of 
the impulses ∆Pc and ∆Pr during the compression and restitution of the 
impact, respectively.  An impact with e = 1 is called elastic and indicates no 
energy loss, whereas an impact with e = 0 is called plastic or inelastic and 
indicates maximal energy loss, resulting in a permanent contact. However, it 
should be noted, that the terms ‘elastic’ and ‘plastic’ describe here only the 
impact behavior and have little to do with the material behavior. As shown 
in Reference [13, 17] the impulse during the compression phase reads as  
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where Nsg& is the relative normal velocity of the contact points before impact. 
The total impulse during impact follows as 

 ( )c r c∆P=∆P +∆P = 1+e ∆P  (5) 

and using Equation (3) the generalized velocities after impact ey&  can be 
computed. In the case of more than one impact occurring simultaneously or 
a permanent contact opening due to impact, respectively, the corresponding 
equations have to be solved simultaneously resulting in linear comple-
mentarity problems (LCPs), see Pfeiffer and Glocker [7]. 

The impact modeling using Poisson’s coefficient of restitution is a very 
efficient method for treating impacts in multibody systems if the coefficient 
of restitution is known. The coefficient of restitution is usually found by 
experiments or it is known from experience. However, the coefficient of 
restitution may be evaluated numerically by additional simulations on a fast 
time scale, too, see References [11-13]. This results in a multiscale 
simulation approach. The simulation on the slow time scale is interrupted by 
an impact. Then, for the impact, a detailed simulation with deformable 
bodies is performed on a fast time scale including elastodynamic wave 
propagation and elastic-plastic material phenomena. The generalized co-
ordinates and velocities before impact are used as initial conditions for the 
simulations on the fast time scale. These simulations are limited to the 
impact duration and from the time-continuous impact force F the resulting 
impulse ∆P is computed and the kinetic coefficient of restitution follows as 
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see References [13, 17] for more details. The coefficient of restitution is now 
fed back to the slow time scale. Then, the generalized velocities ey&  after 
impact are computed using Equation (3-5). 

3. NUMERICAL MODELS 

The computation on the fast time scale requires numerical models which 
include wave propagation within the bodies, and elastic or elastic-plastic 
deformation of the contact region. First of all, a complete Finite Element 
(FE) model of the impacting bodies is used. A small overall element length 
is required to comprise the wave propagation in the bodies and an additional 
refinement is necessary for the modeling of the contact region, see Reference 
[14]. Thus, FE-models for impact analysis are excessively time consuming 
and not suitable for larger impact systems as found in engineering. 
Therefore, in a more time efficient numerical approach, impact processes are 
divided into two parts, a small contact region and the remaining body 
featuring wave propagation, see Reference [13, 17]. This procedure is also 

limited to a small region, while the wave propagation is a linear problem 
encompassing the entire body. Thus, combined models are developed in 
which the elastodynamic behavior of the impacting bodies is represented by 
a modally reduced model and the deformation of the contact region is 
presented by a local contact model based on FE-models of the contact 
region. The local contact model is than either concurrently computed or pre-
computed and then coupled with the reduced elastodynamic model of the 
impacting bodies, see References [12, 13, 15-17].  

The efficiency and consistency of the combined models is demonstrated 
for the impact of a steel sphere (radius=15mm) on aluminum rods 
(radius=10mm, length=1000mm) with initial velocity of 0.3 m/s. The rods 

in Table 1. It turns out clearly that the simulation results obtained from the 
different models agree very well. It is also obvious that the completely 
nonlinear FE model is very time consuming, especially when including 
elastic-plastic material behavior. Using a modal model with concurrently 
computed FE-contact the computation time is reduced by 40-60%. A 
tremendous decrease in the computation time is achieved using the modal 
model with pre-computed FE contact. However, it should be noted that the 
pre-computation of the force-deformation diagram is time consuming, too, 
especially for elasto-plastic material behavior. The computation time 
corresponds to about 15 impact simulations with the nonlinear FE model. 

called boundary approach. The contact is a nonlinear problem which is 

have elastic and elastic-plastic material behavior, respectively. The com- 
puted coefficients of restitution and computation times are summarized 
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Therefore, the benefit of the modal model with pre-computed FE-contact 
takes place especially when many impacts are investigated.  

Table 1. Comparison of numerical models for sphere to rod impact 
 coeff. of restitution computation time [s] 
model elastic plastic elastic plastic
A. complete nonlinear FE-model 0.633  0.481  462 937 
B. modal model+concurrently computed             

FE-contact 
0.631 0.477 285  354 

C. modal model+pre-computed FE-contact  0.632 0.477 0.04 0.05 

4. ESSENTIAL PARAMETERS FOR THE 

The coefficient of restitution depends not only on the material parameters 
but also strongly on the contact geometry, the body geometry and the initial 
velocity. Early experimental results for the evaluation of the coefficient of 
restitution are summarized in Goldsmith [3], more recent numerical and 

In Figure 1 the influence of the material properties and the initial velocity 
on the coefficient of restitution is presented for the impact of a steel sphere (rad-
ius 15mm) on two different aluminum rods (radius=10mm, length=1000mm). 
Rod 1 has a low yield stress of 205Mpa and rod 2 has a high yield stress of 
575Mpa. The sphere has an initial velocity in the range of 0.05-0.5m/s, the 
rods are initially in rest. For the experimental evaluation a test bench with 
two Laser-Doppler-Vibrometer is used, see Hu et al. [4, 5]. 

Figure 1. Impact of a hard steel sphere on two aluminum rods (left: low yield stress 205 MPa, 
right: high yield stress 575 MPa). 

COEFFICIENT OF RESTITUTION 

et al. [20], Zhang et al. [21] and References [11-17].  
experimental results are presented in Minamoto [6], Sondergard [18], Wu 
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It is clearly seen from simulations and experiments that for both impact 
systems the coefficient of restitution decreases with increasing initial 
velocity. For rod 1 the measured coefficients and the ones obtained from 
simulations with elastic-plastic material behavior agree very well. However 
they are significantly lower than coefficients obtained from simulations with 
purely elastic material behavior. For rod 2, which has a high yield stress, 
simulations with elastic and elastic-plastic material behavior show for the 
investigated velocity range nearly identical behavior and agree well with 
experimental results. In References [13, 15] the influence of plastification on 
the coefficient of restitution for repeated impacts is investigated for both 
rods.  

The influence of the shape of the bodies on the coefficient of restitution 
is investigated in Reference [11] for the impact of a steel sphere on four 
elastic aluminum bodies with equal mass but different shape. These are a 
compact cylinder, a half-circular plate, a long rod and a slender beam. 
Figure 2 shows the computed coefficients of restitution of these impact 
systems for the velocity range 0.025-0.5m/s. The computed coefficient of 
restitution for the cylinder is close to e=1 for the investigated velocity range. 
For the impact on the cylinder the transformation of initial kinetic energy 
into waves and vibrations can be neglected. From the simulations for the rod 
and half-circular plate it is seen that the coefficient of restitution decreases 
steadily with increasing initial velocity. This indicates an increase of energy 
transformation from the initial rigid body motion into waves and vibrations 
with increasing velocity. The transverse impact on the beam excited very 
strong vibration phenomena in the beam resulting in multiple successive 
impacts within a very short time period. In sharp contrast to the previous 
impact systems the beam impact shows no clear pattern but a strong 
uncertainty, see also Reference [17].  

Figure 2. Impact of a hard steel sphere on differently shaped aluminum bodies (□ compact 
cylinder, ◊ half circular plate, ○ rod, + beam). 
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5. UNCERTAINTY OF THE COEFFEICIENT  

OF RESTITUTION 

The impact on a beam features multiple impacts which are caused by the 
strong bending vibrations of the beam, resulting from the first impact. The 
multiple impacts are the source of the uncertainty of the coefficient of 
restitution. Since more than one successive impact occur within a short time 
period efficient numerical methods for impact simulation on the fast time are 
even more important than for single impacts.  

5.1 Comparison of Numerical Models 

A comparison of the simulation results using the different numerical 
models is presented in Figure 3 for the impact of a steel sphere 
(radius=15mm) with exactly the same initial velocity 0.2m/s on an elastic 
aluminum beam (radius=10mm, length=1000m). After the first impact the 
sphere still moves forward in its initial direction until a successive second 
impact occurs. This overall behavior is consistently observed in all 
simulations using the three different numerical models and shows the good 
overall agreement of the models. Moreover, it proves that the uncertainty is 
not a numerical problem. 

Figure 3. Comparison of numerical models for beam impact (A: complete FEM, B: modal+con-
currently computed FE-contact, C: modal+pre-computed FE-contact.  

Table 2 summarizes the coefficients of restitution and computation times 
of the simulations. This shows again the good agreement of the modal models 
with FE-contact and the complete FE-model. It turns out that the complete 
FE-model is very time consuming. By using modal models the computation 
times can be reduced significantly. Using the modal model with concur- 
rently computed FE-contact the computation time can be reduced by  97%.  

1. impact 

2. impact 

beam 

sphere 

1. impact 

2. impact 
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Using the modal model with pre-computed FE-contact the computation time 
can be reduced further, however the computation time for the force-
displacement diagram has to be considered, which takes in this case about 
1000s. This shows clearly, that for a larger and complex impact system, such 
as the transverse impact on a beam, the modal model with pre-computed FE-
contact is the most efficient approach.  

Table 2. Comparison of numerical models for sphere to beam impact 
model coeff. of 

restitution 
computation 

time [s] 
A. complete nonlinear FE-model 0.707 80564 
B. modal model+concurrently computed FE-contact 0.700 2422 
C. modal model+pre-computed FE-contact  0.717 16 

5.2 Experimental validation 

For the experimental validation of the simulation results an experimental 
setup, originally developed by Hu et al. [4, 5], was adapted to beam impacts, 
see Figure 4. The sphere and beam are suspended with thin Kevlar wires in a 
frame as pendula. The sphere is released by a magnet from a predefine 
height and it impacts on the beam along its symmetry line. Two Laser-
Doppler-Vibrometers are used for displacement and velocity measurement 
of sphere and beam in the central line of impact. 

    Figure 4. Experimental setup for sphere to beam impact. 

Figure 5 shows for the three initial velocities v = 0.276 m/s, v = 0.287m/s 
and v = 0.303m/s the measured and simulated displacement of sphere and 
beam, as well as the velocity of the sphere. The measurement and simulation 
show for all three initial velocities, that within a few milliseconds several 
impacts occur. Although the initial velocities chosen are close together, the 
impact response is quite different which is due to the multiple impacts. 
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Figure 5. Impact on beam with initial velocity v = 0.276m/s (top), v = 0.287m/s (middle) and v 

= 0.303 m/s (bottom). 

Figure 5 shows for all three velocities a very good agreement for the first 
impact as well as consistently a second impact after 4 ms. However, for the 
successive impacts significant differences occur resulting in an overall 
uncertainty.  

For the impact with an initial velocity v = 0.276 m/s the second impact 
yield only to a small velocity change. Therefore, after 5.2 ms a third impact 
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occurs, which results in a large velocity change of the sphere. In this case 
experiment and simulation agree very well. This is also reflected by the good 
agreement of the measured and simulated coefficients of restitution which 
are em = 0.664 and es = 0.687, respectively. 

The impact with the initial velocity v = 0.287 m/s shows in the simulation 
a much stronger second impact than in the experiment. This results in a very 
different behavior of the following motion. Consequently the coefficient of 
restitution computed from measurement and simulations differ strongly and 
are em = 0.620 and es = 0.334. 

For the impact with initial velocity v = 0.303 m/s the experiment proves 
that sphere is in rest after the second impact and a third impact occurs after 
5.7 ms. In the simulation the second impact is stronger as the one in the 
experiment. Thereby the sphere rebounds and no further impact occurs in the 
simulation. Measurement and simulation yield hereby nearly identical 
coefficients of restitution of em = 0.230 and es = 0.243.  

5.3 Analysis of the coefficient of restitution 

In Figure 6 simulated and measured coefficients of restitution are 
presented for 53 different initial velocities of the sphere. Due to the multiple 
impacts the coefficient of restitution depends strongly on the initial velocity, 
however, without showing a clear pattern but strong uncertainty, see 
Reference [17]. The coefficients of restitution are in the range e=0.07-0.73. 
Small differences of the simulated and measured motion of beam and sphere 
after the first impact result in very different behavior of the successive 
impacts. As a result, the investigated impacts show significant differences of 
the measured and simulated coefficients of restitution, for different initial 
velocities.  

For the simulated and measured impacts presented in Figure 6 the mean 
value of the initial velocity of the sphere is v 0.25=  and the standard 
deviation is v 0.0929σ = . The mean value of the simulated coefficients is 

se 0.3981=  and the standard deviation is s 0.2275σ = . This is in good 
accordance with the measured coefficients of restitution which have a mean 
value of me 0.3800= and a standard deviation of m 0.2125σ = . This 
statistical analysis shows that although large deviations between measured 
and simulated impacts may occur, the overall behavior is represented 
accurately by the numerical models. In Figure 6 the mean value of the 
measurements and deviation intervals are added. Thereby the areas A-D 
corresponds to the intervals represented by the mean values and the 
deviations 0.5 , , 1.5 , 2σ σ σ σ , respectively. However, it turns out that using 
this statistical approach the interval D, defined by m me e 2= ± σ , includes 
nonphysical negative values for the coefficient of restitution. This shows that 
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mechanical aspects and the simple statistical evaluation of the coefficient of 
restitution are contradicting for this uncertain mechanical system.  

In the right plot of Figure 6 the numbers of multiple impacts are indicated 
for simulation and measurements. It turns out that only for very low 
velocities one impact occur. For higher velocities 2, 3 or 4 successive 
impacts occur, however no relationship between the coefficient of restitution 
and the number of multiple impacts is obvious.  

6. CONCLUSION 

Measurements and simulations for the transverse impact of a steel sphere 
on an aluminum beam show multiple successive impacts within a very short 
time period, resulting in an uncertain behavior of the coefficient of 
restitution. For the evaluation of the numerical and experimental data a 
probabilistic approach using mean value and variance of the coefficient of 
restitution shows good overall agreement of simulation and measurement. 
However a simple statistical approach for describing the coefficient of 
restitution has its limitations in overcoming its uncertainty.  
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