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QUANTIFIERS IN FORMAL AND NATURAL
LANGUAGES

For a long time, the word ‘quantifier’ in linguistics and philosophy simply stood for
the universal and existential quantifiers of standard predicate logic. In fact, this use
is still prevalent in elementary textbooks. It seems fair to say that the dominance of
predicate logic in these fields has obscured the fact that the quantifier expressions
form a syntactic category, with characteristic interpretations, and with many more
members than ∀ and ∃.

Actually, when Frege discovered predicate logic, it was clear to him that the
universal and existential quantifiers were but two instances of a general notion
(which he called second level concept). That insight, however, was not preserved
during the early development of modern logic. It took quite some time before the
mathematical machinery behind quantification received, once more, an adequate
genera formulation. This time, the notion was called generalised quantifier; a first
version of it was introduced by Mostowski in the late 1950s. Logicians gradually
realised that generalised quantifiers were an extremely versatile syntactic and se-
mantic tool — practically anything one would ever want to say in any logic can
be expressed with them. The power of expression, properties and interrelations
of various logics with generalised quantifies is now a well established domain of
study in mathematical logic.

This is the mathematical side of the coin. The linguistic side looks a bit differ-
ent. Syntactically, there are many expressions one could place in the same category
as some and every: no, most, many, at least five, exactly seven, all but three, . . . .
These expressions — the determiners — occur in noun phrases, which in turn oc-
cur as subjects, objects, etc. in the NP–VP analysis of sentences usually preferred
by linguists. Logically, however, subject–predicate form had fallen into disrepute
since the breakthrough of predicate logic. So it was not obvious how to impose a
semantic interpretation on these syntactic forms — except by somehow rewriting
them in predicate logic. This may explain why the systematic study of quantifiers
in natural language is of a much later date than the one for mathematical language.

The starting-point of this study was when Montague showed that linguistic syn-
tax is, after all, no insurmountable obstacle to systematic and rigorous semantics.
Montague did not yet have the quantifiers in a separate category. But in 1981 Bar-
wise and Cooper united Montague’s insights with the work on generalised quan-
tifiers in mathematical logic in a study of the characteristics of natural language
quantification [Barwise and Cooper, 1981]. At about the same time, but inde-
pendently and from a slightly different perspective, Keenan and Stavi were inves-
tigating the semantic properties of determiner interpretations [Keenan and Stavi,
1986]. It became clear that, in natural language too, the quantifier category is quite
rich and semantically powerful. In the few years that have passed since then, the
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subject has developed considerably. In particular, van Benthem has discovered an
interesting logical theory behind the mechanisms of natural language quantifica-
tion — often with no direct counterpart for mathematical language [van Benthem,
1984a].

My main aim in this chapter is to give a comprehensive survey of the logic and
semantics of natural language quantification, concentrating on the developments in
the last five years or so. the basic tools are the generalised quantifiers from mathe-
matical logic. but it is the questions asked about quantifiers, not the methods used,
that distinguishes our present perspective on quantifiers from that of mathematical
logic.

The basic question facing anyone who studies natural language quantification
from a semantic viewpoint can be formulated as follows. Logically, the category of
quantifiers is extremely rich. For example, even on a universe with two elements,
there are 216 = 65536 possible (binary) quantifiers (the reader who finds this hard
to believe may wish to turn directly to Section 4.6 for the explanation). But, in
natural languages, just a small portion of these are ‘realised’ (512, according to
Keenan and Stavi). Which ones, and why? What are the constraints on deter-
miner interpretations in natural language? what are the properties of quantifiers
satisfying those constraints.

Most of this paper presents various answers to such questions. But we start,
in Section 1, with a selective history of quantifiers: from Aristotle via Frege to
modern generalised quantifiers. It will be seen that both Aristotle’s and Frege’s
contributions compare interestingly to the recent developments. That section also
gives a thorough introduction to generalised quantifiers, and to some logical issues
pertaining to them. In particular, the logical expressive power of monadic quanti-
fiers is discussed in some detail. Section 2 presents basic ideas of the Montague–
Barwise–Cooper–Keenan–Stavi approach to natural language quantification. A
number of examples of English quantifier expressions are also collected, as empir-
ical data for alter use. In Section 3, several constraints on quantifiers are formu-
lated and discussed and various properties of quantifiers are introduced. The con-
straints can also be seen as potential semantic universals. Section 4 then presents
various results in the theory of quantifiers satisfying certain basic constraints; re-
sults on how to classify them under various aspects, on how to represent them, on
their inferential behaviour and other properties. The paper ends with a brief fur-
ther outlook and two appendices, one on branching quantification and the other on
quantifiers as variables.

This chapter is concerned with the semantics of quantification. It examines cer-
tain precisely delimited classes of quantifiers that arise naturally in the context of
natural language. These classes are related in various ways to the (loosely de-
limited) class of natural language quantifiers, i.e. those that are denotations of
natural language determiners. I will make few definite claims about the exact na-
ture of this relationship, but I will discuss several tentative proposals. The idea is
to present the possibilities for determiner interpretation, and to give a framework
sufficiently general for serious discussion of natural language quantifiers, yet re-



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 225

stricted in significant ways compared with the generalised quantifier framework
of mathematical logic. (I also hope to make it clear that interesting logical issues
arise in the restricted framework (and sometimes only in that framework), and thus
that logic can fruitfully be inspired by natural language as well as by the language
of mathematics.)

So, except for a few rather straightforward things, I shall have little to say about
the syntax of quantification here. And except for an introductory overview, I will
not attempt to survey generalised quantifiers in mathematical logic. For more on
quantification and linguistic theory, cf. [Cooper, 1983] or [van Eijck, 1985]. A very
comprehensive survey of quantifiers in mathematical logic is given in [Barwise and
Feferman, 1985].

The semantic framework used here is that of classical model theory. It is simple,
elegant and well known. that it works so well for natural language quantification
too is perhaps a bit surprising. However, there are certain things it does not pretend
to handle, for example, intensional phenomena, vagueness, collectives, or mass
terms. So these subjects will not be taken up here. but then, they receive ample
treatment in other parts of this Handbook.

The logical techniques we need are usually quite elementary. the reader should
be used to logical and set-theoretic terminology, but, except on a few occasions,
there are no other specific prerequisites (the chapter by Hodges in this Handbook
gives a suitable background; occasionally, part of the chapter by van Benthem
and Doets will be useful). I have intended to make the exposition largely self-
contained, in the sense that (a) most proofs and arguments are given explicitly, and
(b) when they are not given, references are provided, but he reader should be able
to get a feeling for what is going on without going to the references. Naturally,
if these intentions turn out not to be realised, it does not follow that the fault lies
with the reader.

This is a survey, and most results are from the literature, although several are
new, or generalised, or proved differently here. I have tried to give reasonable
credit for known results.

1 BACKGROUND FROM ARISTOTELIAN TO GENERALISED
QUANTIFIERS

This section gives a condensed account of the development of what can be called
the relational view of quantifiers. As a chapter in the history of logic, it seems not
to be widely known, which is why I have included a subsection on Aristotle and a
subsection on Frege. My main purpose, however, is to introduce a precise concept
of quantifier sufficiently general to serve as a basis for what will follow. This is the
notion of a generalised quantifier from mathematical logic. In the last subsections,
I will also mention some of the things mathematical logicians do with quantifiers,
as a background to what linguistically minded logicians might do with them.
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1.1 Aristotle

Aristotle’s theory of syllogisms, for ages considered the final system of logic, is
not often seen as rather pointless formal exercise, whose main achievement is to
have hampered the development of logic for some two thousand years. But to
understand Aristotle’s contribution to logic one must distinguish his views from
those of his followers. It is a fact that most of his followers and commentators
were unable, for various reasons, to appreciate his logical insights (to take one
simple but important example the point of using variables).1 From the standpoint
of modern logic, on the other hand, these insights ought to be easily visible.

There is, however, one obscuring issue. According to widespread opinion, the
breakthrough of modern logic rests upon the rejection of a basic Aristotelian idea,
namely, that sentences have subject-predicate form. This was Russell’s view, ap-
parently vindicated by the absence of subject-predicate form in today’s standard
predicate logic. Hence, Aristotle’s logic seems to be built on a fundamental mis-
take.

If we set aside questions concerning the historical causes of the long standstill in
logic after Aristotle, there is, however, no necessary incompatibility between mod-
ern logic and subject-predicate form.2 It is quite feasible to give an adequate ac-
count of both relations and quantification while preserving subject-predicate form,
as we shall see in 2.3. Thus, although it is true that Aristotle’s logic could not ad-
equately account for these things, and thus was unable to express many common
forms of reasoning, this weakness is not necessarily tied to his use of subject-
predicate form.

In addition to matters of syntactic form, however, one ought to consider the
concepts Aristotle introduced with his logic, the questions he raised about it, and
the methods he used to answer them. Herein lies his greatest contribution.

Thousands of pages have been written on Aristotle’s logic, most of them about
irrelevant and futile matters (such as the order between the premisses in a syllo-
gism, why he didn’t mention the fourth figure, whether a valid syllogism can have
a false premiss — Aristotle himself had no doubts about this — , etc.). Readable
modern expositions, with references to the older literature, are Łukasiewicz [1957]
and Patzig [1959]. Below I wish to point, without (serious) exegetic pretensions,
to one important aspect of Aristotle’s logic.

The syllogistics is basically a theory of inference patterns among quantified
sentences. Here a quantified sentence has the form

(1) QXY,

1Actually, contemporaries of Aristotle, like Theophrastus, seem to have understood him rather well.
But the medieval reintroduction of Aristotle’s logic lost track of many important points. Even 19th
century commentators continue in the medieval vein; cf. [Łukasiewicz, 1957].

2About the historical causes Russell may well be right. Note that we are also setting aside here the
metaphysical claims of Russell’s logical atomism, according to which the logical form of sentences
mirror the structure of reality.
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where X,Y are universal terms (roughly 1-place predicate) and Q is one of the
quantifiers all, some, no, not all. In practice, Aristotle treated these quantifiers as
relations between the universal terms.3

Aristotle chose to study a particular type of inference pattern with sentences
of the form (1), the syllogisms. A syllogism has two premisses, one conclusion,
and three universal terms (variables). Each sentence has two different terms, all
three terms occur in the premisses, and one term the ‘middle’ one, occurs in both
premisses but not in the conclusion. It follows that the syllogisms can be grouped
into four different ‘figures’, according to the possible configurations of variables:

Q1Zy Q1Y Z Q1ZY Q1Y Z
Q2XZ Q2XZ Q2ZX Q2ZX
Q3XY Q3XY Q3XY Q3XY

Here the Qi can be chosen among the above quantifiers, so there are 44 = 256
syllogisms. As a matter of historical fact, Aristotle’s specification of the syllogis-
tic form was not quite accurate; he had problems with defining the middle term,
and his systematic exposition does not mention the fourth figure (although he in
practice admitted syllogisms of this form), but these are minor defects.

Now, the question Aristotle posed — and, in essence, completely answered —
can be formulated as follows:

For what choices of quantifiers are the above figures valid?

For example, of we in the first figure let Q1 = Q2 = Q3 = all, a valid syllogism
results (‘Barbara’, in the medieval mnemonic); likewise if Q1 = Q2 = no and
Q2 = all (‘Celarent’). Note that Aristotle’s notion of validity is essentially the
modern one: a syllogism is valid if each instantiation of X,Y,Z verifying the
premisses also verifies the conclusion (a slight difference is that Aristotle didn’t
allow the empty or the universal instantiation; this can be ignored here).

There are interesting variants of this type of question. Given some common
quantifiers, we can ask for their inference patterns, and try to systematise the an-
swer in some perspicuous way (axiomatically, for example). This is a standard
procedure in logic. But we can also turn the question around and ask which quan-
tifiers satisfy the patterns we found: only the ones we started with or others as
well? If our common schemes of inference characterise our common quantifiers,
we have one kind of explanation of the privileged status of the corresponding ‘log-
ical constants’, and one goal of a theory of quantifiers has been attained.

The latter question is somewhat trivialised in Aristotle’s framework, since there
were only four quantifiers. For example, the question of which quantifiers satisfy
the scheme:

QZY
QXZ
QXY

3He sometimes comes very close to an explicit statement; cf. the last pages of [Patzig, 1959].
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has the obvious answer: just all. But the question itself does not depend on the
quantifier concept you happen to use. In 4.1 we shall return to it (and in 4.5 to the
characterisation of our most common quantifiers), this time with infinitely many
quantifiers to choose from, and find some non-trivial answers.

Thus, not only did Aristotle introduce the relational concept of quantifiers, he
also asked interesting questions about it. His methods of answering these ques-
tions were axiomatic (for example, he derived all valid syllogisms from the two
syllogisms ‘Barbara’ and ‘Celarent’ mentioned above) as well as model-theoretic
(non-validity was established by means of counter-examples). Even from a mod-
ern point of view, his solution leaves only some polishing of detail to be desired.
Perhaps this finality of his logic was its greatest ‘fault’; it did not encourage appli-
cations of the new methods to, say, other inference patterns. Instead, his followers
managed to make a sterile church out of his system, forcing logic students to re-
hearse syllogisms far into our own century. But we can hardly blame Aristotle for
that.

It should be noted that outside of logic Aristotle studied quantifiers without
restriction to syllogistic form. For example, he made interesting observations on
sentences combining negation and quantification (cf. [Geach, 1972]).

We shall not pursue the fate of the relational view of quantifiers between Aris-
totle and Frege. Medieval logicians spent much time analysing quantified sen-
tences, but they were more or less prevented from having a concept of quantifier
by their insistence that quantifier words are syncategorematic, without indepen-
dent meaning (this view, incidentally, is still common). Later logicians applied
the mathematical theory of relations (converses, relative products, etc.) to give
explicit formulations of Aristotle’s relational concept, and to facilitate the proofs
of his results on syllogisms (cf. [DeMorgan, 1847] or, for a more recent account
[Lorenzen, 1958]). These methods were in general only applied to the quantifiers
in the traditional square of opposition and their converses. A systematic study of
quantifiers as binary relations did not appear until the 1980s (cf. Section 4.1).

all no

not all some

1.2 Frege

It is undisputed that Frege is the father of modern logic. He invented the language
of predicate calculus, and the concept of a formal system with syntactic formation
and inference rules. Moreover, his work was characterised by an exceptional the-
oretical clarity, greatly surpassing that of his contemporaries, and for a long time
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also his successors, in logic.
There is some difference of opinion, however, as to how ‘modern’ Frege’s con-

ception of logic was. According to Dummett [1973; 1981], we find in Frege, im-
plicitly if not explicitly, just that dualism between a syntactic (proof-theoretic) and
a semantic (model-theoretic) viewpoint which is characteristic of modern logic.
“Frege would have had within his grasp the concepts necessary to frame the notion
of completeness of a formalisation of logic as well as its soundness” [Dummett,
1981, p. 82] Dummett also traces the notion of an interpretation of a sentence, and
thereby the semantic notion of logical consequence, to Frege’s work.

This evaluation is challenged in [Goldfarb, 1979], a paper on the quantifier
linearly (modern) logic. Goldfarb holds the notion of an interpretation to be non-
existent in Frege’s logic: first, because there are no non-logical symbols to inter-
pret, and second, because the universe is fixed once and for all. The quantifiers
range over this universe, and the laws of logic are about its objects. furthermore,
the logicism of Frege and Russell prevented them, according to Goldfarb, from
raising any metalogical questions at all.

Although it takes us a bit beyond a mere presentation of Frege’s notion of quan-
tifier, it is worthwhile trying to get clear about this issue. The main point to be
made is, I think, that Frege was the only one of the logicians at the time who main-
tained a sharp distinction between syntax and semantics, i.e. between the expres-
sions themselves and their denotations. This fact alone puts certain metalogical
questions ‘within the reach’ of Frege that would have been meaningless to others.
Thus, one cannot treat Frege and Russell on a par here. Moreover, if one loses sight
of this, one is also likely to miss the remarkable fact that, while the invention of
predicate logic with the universal and existential quantifiers can also be attributed
to Peano and Russell, Frege was the only one who had a mathematically precise
concept of quantifier. This concept seems indeed to have gone largely unnoticed
among logicians, at least until the last decade or so; in particular, the inventors of
the modern generalised quantifiers do not seem to have been aware of it.

For this reason, Frege, but not Russell, has a prominent place in an historical
overview of the relational view of quantifiers — in fact, Russell’s explanations
of the meaning of the quantifiers are in general quite bewildering (for example,
[Russell, 1903, Chapter IV, Sections 59–65], or [Russell, 1956, pp. 64–75 and
230–231]). I will present Frege’s concept below, and then return briefly to the
issue of how questions of soundness and completeness relate to Frege’s logic.

1.2.1 Quantifiers as second level concepts

Let us first recall some familiar facts about Frege’s theoretical framework.4 All
entities are either objects or functions. These categories are primitive and cannot
be defined. Functions, however, are distinguished from objects in that they have

4More precisely, the system of Grundgesetze [1893]. The English translation of the first part of
this work by M. Furth is prefaced with an excellent introduction, where more details about Frege’s
conceptual framework can be found.
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(one or more) empty places (they are ‘unsaturated’). When the empty places are
‘filled’ with appropriate arguments a value is obtained. The value is always an
object, but the arguments can either be objects, in the case of first level functions,
or other functions: second level functions take first level functions as arguments,
etc. — no mixing of levels is permitted. All functions are total (defined for all
arguments of the right sort). They can be called unary, binary, etc. depending on
the number of arguments.5

Concepts are identified with functions whose values are among the two truth
values True and False. Thus they have levels and ‘arities’ just as other functions.

The meaningful expressions in a logical language (‘Begriffsschrift’) are simple
or complex names standing for objects or functions.6 Names have both a sense
(‘Sinn’) and a denotation (‘Bedeutung’); only the denotation matters here. there is
a strong parallelism between the syntactic and the semantic level: function names
also have empty places (marked by special letters) that can (literally) be filled with
appropriate object or function names. In particular, sentences are (complex) object
names, denoting truth values.

Complex function names can be obtained from complex object names by delet-
ing simple names, leaving corresponding empty places. For example, from the
sentence

23 is greater than 14

we obtain the first level function (concept) names

x is greater than 14,
23 is greater than y,
x is greater than y,

and also the second level

Ψ(23, 14).

Now, suppose the expression

(1) F (x)

is a unary first level concept name. Then the following is a sentence.7

(2) ∀xF (x).

5This notion of ‘arity’ does not tell us the number of arguments of the arguments, etc; for levels
grater than one; we will not need that here.

6Actually, Frege did not use “name” for expressions referring to functions. Instead he used “incom-
plete expression” and the like.

7Here I depart from Frege by (i) using modern quantifier notation, and (ii) using the same letter ‘x’
in (1) and (2). According to Frege, the variable in (1) just marks a place and does not really belong
to the concept name, whereas in (2) it is an inseparable part of a function name (cf. below). These
distinctions, while interesting, are not essential in the present context.
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According to Frege, (2) is obtained by inserting the concept name (1) as an argu-
ment in the second level concept name

(3) ∀xΨ(x).

(3) is a simple name in Frege’s logic. It denotes a unary second level concept,
namely, the function which, when applied to any unary first level function f(x),
gives the value True if f(x) has the value True for all its arguments, False other-
wise.8

This, of course, is a version of the usual truth condition for universally quanti-
fied sentences: (2) is true iff F (x) is true for all objects x. But Frege’s formulation
makes it clear that (3) denotes just one of many possible second level concepts, for
example,

(4) ¬∀x¬Ψ(x)

(5) ∀x(Φ(x) → Ψ(x)).

(4) is the existential quantifier. (5) is the binary second level concept of subordi-
nation between two unary first level concepts. Both can be defined by means of
(3) in Frege’s logic, and are thus denoted by complex names.

In a similar fashion, quantification over first level functions can be introduced
by means of third level concepts, and so on.

Summarising, we find that there is a well defined Fregean concept of quantifier:

Syntactically, (simple) quantifier names can be seen as variable-binding
operators (but see Note 7 on Frege’s use of variables). Semantically,
quantifiers are second level concepts.

If we let, in a somewhat un-Fregean way, the extension of an n-ary first level
concept be the class of n-tuples of objects falling under it, and the extension of an
n-ary second level concept the class of n-tuples of extensions of first level concepts
falling under it, then the extensions of the quantifiers (3)–(5) are

∀u = {X ⊆ U : X = U}(6)

∃u = {X ⊆ U : X �= ∅}(7)

alli = {〈X,Y 〉 : X ⊆ U&Y ⊆ U&Y ⊆ Y },(8)

where U is the class of all objects. Apart from the fact that the universe is fixed
here (and too big to be an element of a class), these extensions are generalised
quantifiers in the model-theoretic sense; cf. Section 1.4.

8Note that the quantifier (3) must be defined for all unary first level functions (not only for concepts),
since functions are total. As we can see, ∀xΨ(x) is false for arguments that ar enot concepts.
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1.2.2 Unary vs. binary quantifiers

Frege was well aware that the usual quantifier words in natural language stand for
binary quantifiers. For example, in ‘On Concept and Object’ he writes

. . . the words ‘all’, ‘any’, ‘no’, ‘some’ are prefixed to concept-words.
In universal and particular affirmative and negative sentences, we are
expressing relations between concepts; we use the words to indicate a
special kind of relation ([Frege, 1892, p. 48], my italics).

But he also found that these binary (Aristotelian) quantifiers could be defined by
means of the unary (3) and sentential connectives. This was no trivial discovery
at the time, and Frege must have been struck by the power and simplicity of the
unary universal quantifier. In his logical language he always chose it as the sole
primitive quantifier.

The use of unary quantifiers was to become a characteristic of predicate logic,
and the success of formalising mathematical reasoning in this logic can certainly be
said to have vindicated Frege’s choice. It does not follow from this, however, that
the same choice is adequate for formalising natural language reasoning. Indeed,
we will see later that unary quantifiers are unsuitable as denotations of the usual
quantifier words, and that, furthermore, it is simply not the case that all binary
natural language quantifiers can be defined by means of unary ones and sentential
connectives.

Such a preference for binary quantifiers in a natural language context is, as we
can see from the foregoing, in no way inconsistent with Frege’s view on quanti-
fiers.9

1.2.3 Logical truth and metalogic

Let us return to the DummettGoldfarb dispute about whether metalogical issues
such as completeness were in principle available to Frege. The usual notion of
completeness of a logic presupposes the notion of logical truth (or consequence),

9There may be deeper reasons for preferring binary quantifiers. For example, [Dummett, 1981]
regards Frege’s decision to use a unary quantifier as the fatal step which eventually led to paradox in
his system. This is because in the unary case we quantify over all objects, whereas binary quantifiers
can restrict the domain to that part of the universe denoted by the first argument (as we will see in
Section 2), thereby avoiding the need to consider a total universe [Dummett, 1981, p. 227].

This argument may point to one cause of Frege’s actual choice of an inconsistent system, but it is not
by itself conclusive against unary quantifiers. The lesson of the paradoxes is not necessarily that one
must not quantify over all objects. Indeed, the Tarskian account of the truth conditions for universally
quantified sentences is quite independent of the size of the universe, and logicians often quantify over
total domains, e.g. the domain of all sets in Zermelo–Fraenkel set theory, without fearing paradox. (It
is another matter that they,for ‘practical’ reasons, often prefer set domains when this is possible.) So
the above argument can only have force, I think, when combined with a general theory of meaning of
the type that Dummett advocates (and which in some sense rejects the Tarskian account). These deeper
issues in the theory of meaning will not be discussed here.
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i.e. truth in all models. But the latter notion was clearly not considered by Frege.
As Goldfarb remarks, he had no non-logical constants whose interpretation could
vary (it seems that he explicitly rejected the use of such constants; cf. Hodges’
chapter, section 17), nor did he consider the idea that the universe could be varied.
One universe was enough, namely, the universe U of all objects, and only simple
truth in U interested Frege.

However, the notion of truth in U is very close to the notion of logical truth. to
fix ideas, consider some standard version of higher-order logic (say, the logic Lω

presented in the chapter by van Benthem and Doets, Section 3.1). For the purposes
of the present discussion we may identify Frege’s logic with higher-order logic
without non-logical symbols.10 Then we can observe that Frege did not ‘miss’
any standard logical truths. For, each sentence ψ in Lω has an obvious translation
ψ∗ in Frege’s logic, obtained by ‘quantifying out’ the non-logical constants. For
example,

∀xPx→ Pa

translates as

∀X∀y(∀xXx→ Xy),

and similarly for higher-order sentences. It is evident that

(9) if ψ is logically true then ψ∗ is true in U.

A parenthetical observation is necessary here. Logical truth is often defined as
truth in all set models, instead of truth in all models, whether sets or not. The
latter notion is real logical truth, and it is with respect to this notion that (9) is
evident. As Kreisel has stressed, use of the former notion is only justified for
first-order logic, since there the two notions coincide (this follows from the usual
completeness proofs). For higher-order sentences, on the other hand, this is open;
cf. [Kreisel, 1967].

For first-order logic, there is a converse to (9), provided we disregard sentences
such as

∃x∃y(x �= y),

which have finite counter-examples but are still true in the infinite U :

THEOREM 1. Let M be any infinite class and ψ a first-order sentence. then ψ is
true in all infinite models iff ψ∗ is true in M .

10Frege’s logic, that is, not his whole system with its (inconsistent) principles of set existence (ab-
straction). The proposed identification slurs over some details, but is consistent with Frege’s idea that
logic is about a domain of objects (U ), upon which a structure of functions of different levels is built,
with no mixing between functions and objects, or between functions of different levels.
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Proof. (This proof uses some standard techniques of first-order model theory; they
can be found in [Chang and Keisler, 1973];; but will not be employed in the se-
quel.) From left to right this is similar to (9); if only set models are considered we
employ Kreisel’s observation mentioned above. For the other direction, suppose
that ¬ψ = ¬ψ(P, . . .) has an infinite model N = 〈N,R, . . .〉. Again by Kreisel’s
observation, we can assume that N is a set. Now distinguish two cases, depending
on whetherM is a set or not. IfM is a set, application of the Löwenheim–Skolem–
Tarksi theorem gives us a model M0 of ¬ψ with the same cardinality as M . Via
a bijection from M to M0,M0 is isomorphic to a model 〈M,S, . . .〉 of ¬ψ with
universe M . Thus, ∃X . . .¬ψ(x, . . .) is true in M , i.e. ψ∗ is false in M , as was to
be proved. Now suppose M is a proper class. Starting with N = N0 as before,
define uniformly for each ordinal α a model Nα such that Nα is a proper elemen-
tary extension of Nβ when β < α. The union M′ of all these is then a model
of ¬ψ (Tarski’s union lemma). Moreover, M ′ is a proper class, whence there is a
bijection from M to M ′. It follows as before that ψ∗ is false in M . �

Thus, in a sense it makes no difference for first-order logic if we have, as Frege
did, a fixed infinite universe (such as U ) and no non-logical constants. More pre-
cisely, it follows from the above that the true Π1

1 sentences of Frege’s logic corre-
spond exactly to the standard first-order logical truths on infinite models.

In conclusion, then, we have seen that notions such as completeness and sound-
ness were not directly available to Frege, since they presuppose a notion of logical
truth he did not have. But Dummett’s position is still essentially correct, I think:
Frege’s work does introduce a version of the dualism between model theory and
proof theory. For, Frege had the notion of truth, which he certainly did not con-
found with provability. Clearly he considered all theorems of his system to be
true. He did not, as far as we know, raise the converse question of whether all true
sentences are provable, but surely it was ‘within his grasp’. And for his logic, this
question turns out to be a version of the completeness question, as noted above.
Moreover, the answer is yes if we restrict attention to Π1

1 sentences (by the above
result and the completeness of first-order logic), no otherwise (higher-order logic
is not complete).

1.3 Mostowskian Quantifiers

As we know, Frege’s work was neglected in the early phase of modern logic, and
the rigor he attained, especially in semantics, was not matched for a long time. But
the language of predicate logic was powerful enough to be a success even in the
absence of a solid semantic basis. In the history of quantifiers, this period is mainly
interesting for its discussions on the role of quantification over infinite domains for
the foundation of mathematics, but that is not a subject here.

The idea of a mathematically sharp dividing line between syntax and semantics
began to reappear gradually in the 1920s, but not until Tarski’s truth definition in
1936 did the notion of truth (in a model) become respectable. Tarski’s truth con-
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ditions for universally and existentially quantified formulas treat ∀ and ∃ syncat-
egorematically, but it is natural to try some other quantifiers here, i.e. to consider
formulas

Qxψ

forQ other than ∀ and ∃. For example, it is clear what the truth conditions for ∃≥n

and ∃=n should look like. To get a general concept, however, we must treatQ non-
syncategorematically, i.e. we must have a syntactic category ‘quantifier’ with a
specified range of interpretations. Such a general concept appeared in [Mostowski,
1957].

Recall that Tarski defines the relation

M � φ[g],

(‘g satisfies φ in M′), where M is model, g an assignment of elements in M to
the variables, and φ a formula. When φ is ∀xψ or ∃xψ, this can be expressed as a
condition on the set

ψM,g,x = {a ∈M : M � ψ[g(a/x)]}.
Thus,

M � ∀xψ[g] ⇔ ψM,g,x = M,
M � ∃xψ[g] ⇔ ψM,g,x �= ∅,
M � ∃≥nxψ[g] ⇔| ψM,g,x |
 n.

A condition on subsets of M is, extensionally, just a set of subsets of M . So
Mostowski defines a (local) quantifier onM to be a set of subsets ofM , whereas a
(global) quantifier is a function(al) Q assigning to each non-empty setM a quanti-
fier QM on M . Syntactically, a quantifier symbol Q belongs to Q, such that Qxψ
is a formula whenever x is a variable and ψ is a formula, with the truth condition

M � Qxψ[g] ⇔ ψM,g,x ∈ QM .

Examples of such quantifiers are

∀m = {M},
∃M = {X ⊆M : X¬∅},
(∃≥n)M = {X ⊆M :| X |
 n},
(Qα)M = {X ⊆M :| X |
 ℵα}, (the cardinality quantifiers)
(QC)M = {X ⊆M :| X |=|M |}, (the Chang quantifier)
(QR)M = {X ⊆M :| X |>|M −X |} (Rescher’s ‘plurality quantifier’).

All of these satisfy the following condition:

ISOM If f is a bijection from M to M ′ then X ∈ Qm ⇔ f [X] ∈ QM ′ .

In fact, Mostowski included ISOM as a defining condition on quantifiers, express-
ing the requirement that ‘quantifiers should not allow us to distinguish between
element/of M /’ [1957, p. 13].
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1.4 Generalised Quantifiers

Rescher, introducing the quantifier QR, noted that QRxψ(x) expresses

(1) Most things (in the universe) are ψ,

but that the related (and more common)

(2) Most φs are ψ

cannot be expressed by means of QR [Rescher, 1962]. From our discussion of
Frege we recognise (2) a binary quantifier, most, giving, on each M , a binary
relation between subsets of M :

mostM = {〈X,Y 〉 ∈M2 :| X ∩ Y |> X − Y |}.
To account for this, the construction of formulas must be generalised. This was
noted by [Lindström, 1966], who introduced the concept of a generalised quanti-
fier, defined below.

(2) can be formalised as

most x, y(φ(x, ψ(y)).

Here the free occurrences of x(y) in φ(ψ) are bound by the quantifier symbol. In
fact, the choice of variables is arbitrary; we can write

most z, x(φ(x), ψ(x)),

or, more simply,

most x(φ(x), ψ(x)).

In this way Mostowskian quantifiers on M are generalised to n-ary relations
between subsets of M . A further generalisation is to consider relations between
relations on M . Here is an example:

Wr
M = {〈X,R〉 : X ⊆M&R ⊆M2&R wellorders X}

(The name of this quantifier will be explained later). The statement that (the set) φ
is wellordered by (the relation) ψ is formalised as

W rx, yz(φ(x), ψ(y, z))

(note that y and z are simultaneously bound in ψ).
Quantifiers are associated with types (finite sequences of positive numbers;

Mostowskian quantifiers have type 〈1〉, most has type 〈1, 1〉, and Wr has type
〈1, 2〉; the principle should be clear. We are now prepared for the following

DEFINITION 2. A (local) generalised quantifier of type 〈k1, . . . , kn〉 on M is
an n-ary relation between subsets of Mk1 , . . . ,Mkn , respectively, i.e. a subset of
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P (Mk1)×· · ·×P (Mkn). A (global) generalised quantifier of type 〈k1, . . . , kn〉 is
a function(al) Q which to each set M assigns a generalised quantifier QM of type
〈k1, . . . , kn〉 on M . To Q belongs a quantifier symbol Q (of the same type) with
the following rule: If φ1, . . . , φn are formulas and x̄1, . . . , x̄n are strings of distinct
variables of length k1, . . . , kn, respectively, then Qx̄1, . . . , x̄n(φ1, . . . , φn) is a
formula with the truth condition

M � Qx̄1 . . . x̄n(φ1, . . . , φn)[g] ⇔ 〈φM,g,x̄1
1 , . . . , φN,g,x̄n

n 〉 ∈ QM .

This definition expresses our final version of the relational view of quantifiers,
the one we will use in the sequel. It should be clear that, apart from the rela-
tivisation to an arbitrary universe M , the notion of a generalised quantifier (or a
Lindström quantifier as it is sometimes called) is essentially the same as Frege’s
notion of a second level concept.11

Most of the time we will restrict attention to quantifiers of type 〈1, 1, . . . , 1〉.
These are the monadic generalised quantifiers; we will usually call them just quan-
tifiers. We can then continue to talk about unary, binary, etc. quantifiers, when we
mean generalised quantifiers of type 〈1〉, 〈1, 1〉, etc.

Like Mostowski, Lindström included ISOM in the definition of generalised
quantifiers:

ISOM If f is a bijection from M to M ′ then 〈R1, . . . , Rn〉 ∈ QM

⇔ 〈f [R1], . . . , f [Rn]〉 ∈ QM ′ .

(If R is k-ary, f [R] = {〈f(a1), . . . , f(ak)〉 : 〈a1, . . . , ak〉 ∈ R}.)
Here are some further examples of generalised quantifiers:

allM = {〈X,Y 〉 ∈M2 : X ⊆ Y },
someM = {〈X,Y 〉 ∈M2 : X ∩ Y �= ∅},
IM = {〈X,Y 〉 ∈M2 :| X |=| Y |},
moreM = {〈X,Y 〉 ∈M2 :| X |>| Y |},
WM = {R ⊆M2 : R wellorders M}.

I is the Härtig quantifier, more is sometimes called the Rescher quantifier (al-
though Rescher only considered the quantifiers QR and most above). W is the
wellordering quantifier. The generalised quantifier Wr given before is the rela-
tivisation of W. This notion is defined as follows.

DEFINITION 3. If Q is of type 〈k1, . . . , kn〉, the relativisation of Q is the
generalised quantifier Qr of type 〈1, k1, . . . , kn〉 defined by

〈X,R1, . . . , Rn〉 ∈ Qr
M ⇔ 〈R1 ∩Xk1 , . . . , Rn ∩Xkn〉 ∈ QX

11Neither Mostowski nor Lindström seem to have been aware of Frege’s concept. there is, however,
a tradition within type theory which builds on Frege’s work, starting with Church’s logic of sense and
denotation (cf. [Church, 1951]). More recent works are, e.g. [?; Daniels and Freeman, 1978].
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(for all X ⊆M and Ri ⊆Mki).

Thus for X ⊆ M we can use Qr to express in M what Q says in X; this will
be made precise in 1.6. Note that all = ∀r, some = ∃r, and most = Qr

R.

1.5 Partially Ordered Prefixes

At this point it is appropriate to mention another generalisation of quantifiers, al-
though not directly related to the relational view. In standard predicate logic each
formula can be put in prenex form, i.e. with a linear prefix Q1x1 . . . Qnxn, where
Qi is either ∀ or ∃, in front of a quantifier-free formula. Henkin [1961] suggested a
generalisation of this to partially ordered or branching prefixes, e.g. the following

(1)

∀x− ∃y

φ(x, y, z, u)

∀z − ∃u
The prefix in (1) is called the Henkin prefix. The intended meaning of (1) is that
for each x there is a y and for each z there is a u such that φ(x, y, z, u), where
y and u are chosen independently of one another. To make this precise one uses
Skolem functions. (1) can then be written

(1′) ∃f∃g∀x∀zφ(x, f(x), z, g(z)).

The method of Skolem functions works for all prefixes with ∀ and ∃. For ex-
ample, the first-order

(2) ∀x∀z∃y∃uφ(x, y, z, u),

(3) ∀x∃y∀z∃uφ(x, y, z, u)

become

(2′) ∃f∃g∀x∀zφ( f(x, z), z, g(x, z)).

(3′) ∃f∃g∀x∀zφ(x, f(x), z, g(x, z)).

But the dependencies in (1′) cannot be expressed in ordinary predicate logic; some-
what surprisingly, the Henkin prefix greatly increases the expressive power, as we
shall see in 1.6.

Although branching quantification generalises another feature of ordinary quan-
tification than the one we have been considering here, it can in fact, be subsumed
under the relational view of quantifiers. To the Henkin prefix, for example, corre-
sponds the Henkin quantifier H of type 〈4〉, defined by

H = {R ⊆M4 : there are functions f, g on M such that
for all a, b ∈M, 〈a, f(a), b, g(b)〉 ∈ R}.

The formula (1) is then written, in the notation of 1.4,
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(1′′) Hxyzuφ(x, y, z, u).

Observe that branching was only defined for ∀ and ∃. Can we let other quanti-
fiers branch as well, and consider formulas such as

(4)

Q′x

φ(x, y)?

Q′′y

It is not immediate what this should mean. Compare the linear

(5) Q′xQ′′yφ(x, y);

this is true in M iff X = {a ∈ M : M � Q′′yφ[a, y]} is in Q′
M , and, for each

a ∈ M,M � Q′′yφ[a, y] iff Ya = {b ∈ M : M � φ[a, b]} is in Q′′
M . But the

idea with (4) is to evaluate the quantifiers independentlyof each other, and then it
is not clear which sets to look for in Q′

M and Q′′
M . Nevertheless, Barwise [1979]

shows that for certain Q′ and Q′′ a reasonable interpretation of (4) can be given,
and Westerståhl [1987] extends this to arbitrary Q′ and Q′′.

Branching quantification is not only of mathematical interest. It can be argued
that both the Henkin prefix and the form (4) (for certain non-first-order Q′ and
Q′′) occur essentially in natural languages. Barwise [1979] contains a good pre-
sentation of the issues involved here; a brief review will be given in Appendix
A.

1.6 Model-Theoretic Logics

The introduction of generalised quantifiers opens up a vast area of logical study.
Let EL (elementary logic) be standard predicate logic, and, if Qi are generalised
quantifiers for i ∈ I , let L(Qi)i∈I be the logic obtained from EL by adding the
syntactic and semantic rules for each Qi as in Definition 2. The study of such
model-theoretic logics is sometimes called abstract model theory.12 For a compre-
hensive survey of this field of mathematical logic the reader is referred to Barwise
and Feferman [1985], in particular the chapter [Mundici, 1985]. Below, just a few
examples of such logics and their properties will be given.

The expressive power of a logic is most naturally measured by the classes of
models its sentences can define. Define L � L′ (L′ is an extension of L) to mean
that for each sentence of L there is an equivalent sentence (i.e. one with the same
models) of L′. Clearly � is reflexive and transitive, and every logic L = L(Qi)i∈I

is an extension of EL. We write L ≡ L′ when L � L′ and L′ � L, and L < L′

when L � L′ and L′ �� L.13

12There are more general concepts of logic, used in abstract model theory. A comparison of various
abstract notions of a logic is given in [Westerståhl, 1976].

13This partial order concerns explicit power of expression, by single sentences. One can also consider
implicit strength (cf. Appendix B.3), or expressibility by sets of sentences.
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Since formulas are defined inductively, to prove that L(Qi)i∈I � L′ it suffices
to show that each Qi is definable in L′. For example, if Qi is of type 〈2, 1〉 it
suffices to show that the sentence

Qixy, z(P1xy, P2z)

is equivalent to a sentence in L′.
The inductive characterisation of formulas also gives the following result, which

explains why ISOM is normally assumed for generalised quantifiers in mathemat-
ical logic: if each Qi satisfies ISOM, then truth of sentences in L(Qi)i∈I is pre-
served among isomorphic models. In fact, the inductive proof of this gives slightly
more

PROPOSITION 4. If each Qi satisfies ISOM, φ is a formula in L(Qi)i∈I , f an
isomorphism from M1 to M2, and g an assignment in M1, then

M1 � φ[g] ⇔ M2 � φ[fg].

Here is the relative strength of some of the logics we have considered:

THEOREM 5. EL < L(Q0) < L(I) < L(more) < L(H).

The easiest part of the proof of this theorem is to show that one logic is an
extension of the previous one. That L(Q0) � L(I) follows from the equivalence

Q0xPx↔ ∃y(Py ∧ Ix(Px, Px ∧ x �= y))

(P is infinite iff removal of one element does not change its cardinality). That
L(I) � L(more) is obvious, and that L(more) � L(H) follows by the following
trick (due to Ehrenfeucht):

¬more x(P1x, P2x) ↔ ∃f(f is a 1–1 function from P1 to P2)
↔ ∃f∀x∀z(x = z ↔ f(x) = f(z)∧

∧P1x→ P2f(x))
↔ ∃f∃g∀x∀z(x = ↔ f(x) = g(z)∧

∧P1x→ P2f(x))
↔ Hxyzu(x = z ↔ y = u ∧

∧P1x→ P2y).

To prove that one logic is not an extension of another, one can either show
directly that some sentence in the first is not equivalent to any sentence in the
second, or, more indirectly, use properties of the two logics to distinguish them.
For example, the following well known properties of EL can sometimes be used:

1. The compactness property: If every finite subset of a set of sentences has
a model, the whole set has a model. Consider the following set of L(Q0)-
sentences:

{¬Q0x(x = x)} ∪ {∃�nx(x = x) : n = 1, 2, 3, . . .}.
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This set has no models, but each finite subset has one. So L(Q0) (and all its
extensions) is not compact. In particular, L(Q0) �� EL.

2. The Tarski property: If a sentence has a denumerable model it has an un-
countable model. Let φ be an EL-sentence saying that < is a discrete linear
ordering with a first element. Then the L(Q0)-sentence

(1) φ ∧ ∀x¬Q0y(y < x)

characterises the natural number ordering 〈N,<〉 (i.e. 〈M,R〉 is a model of
(1) iff it is isomorphic to 〈N,<〉). All models of (1) are denumerable, so
L(Q0) does not have the Tarski property.

3. The completeness property: The set of valid sentences is recursively enu-
merable. Adding to (1) sentences (of EL) defining addition and multiplica-
tion,and saying that 0 is the least element and x + 1 the immediate succes-
sor of x, we obtain a sentence θ which characterises the standard model of
arithmetic N = 〈N,<,+,×, 0, 1〉. Then, for every L(Q0)-sentence ψ in
this vocabulary,

N � ψ ⇔ θ → ψ is valid.

Thus, since the set of true arithmetical sentences is not recursively enumer-
able, L(Q0) is not complete. This time there is no immediate consequence
for extensions of L(Q0). For the extensions mentioned in Theorem 5, how-
ever, sentences characterising N can be constructed in a similar way, so they
are not complete either.

4. The Löwenheim property: If a sentence has an infinite model it has a denu-
merable model. It is not very difficult to show that L(Q0) in fact has the
Löwenheim property. But L(I) (and its extensions) does not: we can write
down a sentence of L(I) saying that < is a dense linear ordering without
endpoints, and that there is an element which does not have as many prede-
cessors s it has successors. In a model, the set of predecessors and the set
of successors of this element are infinite and of different cardinalities, so the
model must be uncountable. It follows, in particular, that L(I) �� L(Q0).

In the proof of Theorem 5, it only remains to show that L(I) is not an extension
of L(more), and that L(more) is not an extension of L(H). A convenient way
to prove the former will be given in 1.7. A proof of the latter can be found in
[Cowles, 1981].

Recall the definition of relativised quantifiers in Section 1.4.2. We say that
L = L(Qi)i∈I relativises, if

Lr = L((Qi)r)i∈I � L,
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i.e. if the relativisation of each Qi is definable in L. EL,L(Qα), L(I), L(most),
L(more) and L(H) all relativise. For example,

∀rx(Px, P1x) ↔ ∀x(Px→ P1x),
mostrx(Px, P1x, P2x) ↔ most x(Px ∧ P1x, P2x),
Hrv, xyzu(Pv, P1xyzu) ↔ Hxyzu((Px ∧ Pz) →

(Py ∧ Pu ∧ P1xyzu)).

L(QR), L(QC) and L(W), on the other hand, do not relativise (cf. Section 1.7).
As the above equivalences show, relativised quantifier symbols are used to make

relativised statements. This extends to all L-sentences. Define, for each L-formula
φ and each unary predicate symbol P , the relativised formula

φ(P )

In Lr inductively by letting φ(P ) = φ if φ is atomic, (¬ψ)(P ) = ¬ψ(P ), (ψ ∧
θ)(P ) = ψ(P ) ∧ θ(P ), and, when φ is quantified, beginning with Qi of type 〈2, 1〉,
say,

Qixy, (ψ, θ)(P ) = (Qi)rv, xy, z(Pv, ψ(P ), θ(P )).

φ(P ) expresses exactly what φ says about the universe restricted to (the deno-
tation of) P . We can formulate this precisely as follows. Call a subset X of the
universe of the model M universe-like if X �= ∅, the denotations of all individual
constants in the vocabulary for M are in X , and X is closed under the denotations
of all function symbols in the vocabulary. In that case, let M | X be the model
with universe X , and all the relations etc; in M restricted to X . Then it can be
shown by induction that if X is universe-like and φ is an L sentence,

(REL) (M,X) � φ(P ) ⇔ M | X � φ

(here we assume that P does not occur in φ and that it denotes X in (M ,X)).
If L relativises, all this can be done in L, since φ(P ) is then clearly equivalent

to an L-sentence.
So far we have only discussed particular logics and their properties. The most

exciting part of abstract model theory, however, concerns results relating various
properties of logics to each other, and results characterising certain logics in terms
of their properties. Most famous of these characterisations is still Lindström’s
theorem [1969], which characterises EL in terms of the four properties mentioned
above (for proofs, cf. [Flum, 1985], van Benthem and Doets or Hodges (both this
Handbook series).

THEOREM 6. If L is compact and has the Löwenheim property, then L ≡ EL.
Also, of L relativises, then (a) if L is complete and has the Löwenheim property
then L ≡ EL; (b) if L has the L’́owenheim and Tarski property then L ≡ EL.
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1.7 The Strength of Monadic Quantifiers

In general, it may be quite difficult to determine whether L � L′ or not, where
L and L′ are logics with generalised quantifiers. In the case of monadic quanti-
fiers, however, things become much easier. Since this case is what we shall mainly
be dealing with, I will devote the present subsection to developing some machin-
ery for comparing the expressive power of logics with monadic quantifiers. The
machinery will be applied in particular to the quantifiers more and most. I use
these quantifiers later to illustrate some important points concerning natural lan-
guage quantification, and it will then be instructive to have established their logical
properties.

This subsection is a bit more technical than the previous ones; I have written
out proofs of results that are new or not easily found in the literature (cf. the bib-
liographical note at the end). The reader can skip or glance through it now, and
return to it for a definition or a result that is used later.

From now on, when Q is an m-ary monadic quantifier, we will write simply

QMX1 . . . Xm,

instead of 〈X1, . . . , Xm〉 ∈ QM . Thus,

allMAB ⇔ A ⊆ B,
mostMAB ⇔ |A ∩B| > |A−B|,
moreMAB ⇔ |A| > |B|,

etc.
Let M = 〈M,A0, . . . , Ak−1〉 be a K-ary monadic structure (i.e. the Ai are

subsets of M , and the vocabulary consists of k unary predicate symbols). The
following terminology will be used her an in later sections. If X ⊆ M , let X0 =
X and X1 = M − X . If s is a function from {0, . . . , k − 1} to {0, 1}, i.e. if
s ∈ 2k, let

PM
s = A

s(0)
0 ∩ . . . ∩As(k−1)

k−1 .

{PM
s }s∈2k is a partition ofM , and, up to isomorphism, the number of elements in

these partition sets is all there is to say about M. In other words, if |PM
s | = |PM′

s |
for all s ∈ 2k, then M and M′ are isomorphic. Finally, let

UM
i ,

for 1 � i � 22k

, be all possible unions of the partition sets (including ∅), in some
fixed order.

If L is a logic, M a structure (not necessarily monadic), X ⊆ M, and a1, . . . ,
an ∈ M,X is said to be L-definable in M with parameters a1, . . . , an, if there is
an L-formula φ in the vocabulary of M such that

a ∈ X ⇔ M � φ[a, a1, . . . , an].
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The following is an almost immediate consequence of this definition and Propo-
sition 4:

LEMMA 7. If L satisfies ISOM, X is L-definable in M with parameters a1, . . . ,

an, and f is an automorphism on M (i.e. an isomorphism from M to M) with
f(ai) = ai, then f [X] = X .

If A,B are sets, A ⊕ B, the symmetric difference between A and B, is
(A−B) ∪ (B −A). We say that B is an X-variant of A, if A⊕B ⊆ X .

LEMMA 8. Suppose that L satisfies ISOM and that M is a monadic structure.
Then the L-definable sets in M with parameters a1, . . . , an are precisely the {a1,

. . . , an}-variants of the unions UM
i .

Proof. Clearly all these sets are also definable. Now suppose X is L-definable in
M from a1, a . . . , an. Then so isX ′ = X = {a1, . . . , an}. It suffices to show that
X ′ has the desired form. Let s1, . . . , sp be those s ∈ 2k for which X ′ ∩ Pm

s �= ∅.
Thus,

X ′ ⊆ PM
s1

∪ . . . ∪ PM
sp
.

Suppose X ′ is not and {a1, . . . , an}-variant of PM
s1

∪ . . . ∪ PM
sP

. Then, for some
i, there is a ∈ PM

si
−X ′ such that a �= a1, . . . , an. But, by the construction, there

is b ∈ PM
si

∩X; such that b �= a1, . . . , an. let f(a) = b, f(b) = a, and f(x) = x
when x �= a, b. Then f is an automorphism on M leaving a1, . . . , an fixed, so
f [X ′] = X ′, by Lemma 7. But this contradicts the fact that a ∈ f [X ′] −X ′. �

Now we restrict attention to logics with monadic quantifiers satisfying ISOM. For
simplicity, assume that L = L(Q), where Q is binary; the results below extend
immediately to logics L(Qo  → Qi)i∈I , with monadic Qi.

The quantifier rank of L-formulas is defined inductively as follows:

qr(φ = 0, if φ is atomic,
qr(¬φ) = qr(φ)
qr(φ ∧ ψ) = max(qr(φ), qr(ψ)),
qr(∃xφ) = qr(φ+ 1)
qr(Qx(φ, ψ)) = max(qr(φ), qr(ψ)) + 1.

we write

M ≡n,Q M′

to mean the same L(Q)-sentences of quantifier rank at most n are true in M and
M′. M =≡Q M′ (M and M′ are L(Q)-equivalent) if, for all n, M ≡n,Q M′.
Our main tool will be an equivalent but more workable formulation of the rela-
tion ≡n,Q. This is accomplished in the next definition. If a1, . . . , an ∈ M and
b1, . . . , bn ∈ M ′ we write (a1, . . . , an) !p (b1, . . . , bn) to mean that {〈ai, bi〉 :
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1 � i � n} is a partial isomorphism from M to M′ (i.e. ai = aj iff bi = bj , and
ai ∈ Am iff bi ∈ A′

m).
In what follows, M and M′ are k-ary monadic structures.

DEFINITION 9.

(a) X ≈n Y iff either |X| = |Y | < n or |X|, |Y | 
 n.

(b) M ≈n M′iff PM
s ≈n P

M′
s for all s ∈ 2k

(c) M ≈n,Q M ′ iff

(i) M ≈n M′

(ii) If (a1, . . . , an−1) !p (b1, . . . , bn−1),Xi,Xj are {a1, . . . , an−1}-
variants ofUM

i , UM
j , an Yi, Yj the corresponding {b1, . . . , bn−1}-variants

of UM′
i , UM′

j , then

QMXiXj ⇔ QM ′YiYj .

THEOREM 10. M ≡nQ M′ ⇔ M ≈n,Q M′.

Proof. ⇒: It is clear that (i) holds. As for (ii), let ψi(y, x1, . . . , xn−1), ψj(y, x1,
. . . , xn−1) be formulas whichL-defineXi,Xj in M with parameters a1, . . . , an−1).
Each ap belongs to exactly one PM

sp
; let this set be defined by θp(x). If QMXi,Xj ,

then

M � ∃x1, . . . , xn−1(θ1(x1) ∧ . . . ∧ θn−1(xn−1)∧
∧Qy(ψi(y, x1, . . . , xn−1), ψj(y, x1, . . . , xn−1))).

This sentence has quantifier rank n. Thus, it is also true in M′, whence there are
b′1, . . . , b

′
n−1 ∈M ′ such that b′p ∈ PM′

s′
p

and

M′ � Qy(ψi, ψj)[b′, . . . , b′n−1].

Let f map b′p on bp and leave everything else in M ′ as it is. It follows that f is an
automorphism on M′, so

M′ � Qy(ψi, ψj)[b1, . . . , bn−1].

but this means that QM ′Yi, Yj . The converse is similar.
⇐: We prove by (downward) induction over p � n that

(∗) If (a1, . . . , ap) !p (b1, . . . , bp) and qr(φ) � n−p, then M � φ[ai, . . . , ap] ⇔
M′ � φ[b1, . . . , bp].
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The case p = 0 gives the result. (∗) is clear for p = n. So suppose (∗) holds for
p, (a1, . . . , ap−1) !p (b1, . . . , bp−1) and qr(φ) = n − p + 1. We may suppose
that φ begins with a quantifier symbol. If this symbol is ∃, the result follows
easily from the induction hypothesis and the fact that M ≈n M′. So suppose φ
is Qx(ψ1, ψ2). Let ψM

i = {a ∈ M : M � ψi[a, a1, . . . , ap−1]}, i = 1, 2, and
similarly for ψM′

i . By Lemma 8, each ψM
i is an {a1, . . . , ap−1}-variant of some

union UM
ji

of partition sets.

CLAIM: ψM′
i is the corresponding {b1, . . . , bp−1}-variant of UM′

ji
.

The result follows immediately from the chain and (ii) above. The proof of the
claim is straightforward, using the induction hypothesis together with the fact that
M ≈n M′. �

As noted, the theorem extends to logics with several monadic quantifiers (satis-
fying ISOM). We use this in the next corollary. A k-ary quantifier Q is said to be
closed under ≈n,Q1...Qm if QMA0 . . . Ak−1 and 〈M,A0, . . . , Ak−1〉 ≈n,Q1,...,Qm

〈M ′, A′
0, . . . , A

′
k−1〉 implies QM′A′

0, . . . A
′
k−1.

COROLLARY 11. A monadic quantifier Q is definable in L(Q1, . . . ,Qm) if and
only if, for some natural number n,Q is closed under ≈n,Q1...Qm .

Proof.[outline] If Qis defined by a sentence φ in L(Q1, . . . ,Qm), i.e. if

QMA0, . . . , Ak−1 ⇔ 〈M,A0, . . . , Ak−1〉 � φ,

just let n be the quantifier rank of φ and use the theorem. Conversely, note that,
with a fixed finite vocabulary there are, up to logical equivalence, only finitely
many L(Q1, . . . ,Qm)-sentences of quantifier rank at most n. Now take the dis-
junction of all such sentences which are 1-complete n-descriptions of the models
〈M,A0, . . . , Ak−1〉 for which QMA0, . . . , Ak−1; this disjunction defines Q. �

We will now apply these results to some particular monadic quantifiers. First, note
the following special cases of Theorem 10:

1. M ≡n M′ ⇔ M ≈n M′,

2. If Q is first-order definable, then M ≡n,Q M′ ⇔ M ≈n M′.

Using this, one easily shows that quantifiers such as Qα,QC ,QR are not first-
order definable. Next, note that an {a1, . . . , an−1}-variant of UM

i has cardinality

 ℵα iff UM

i has cardinality 
 ℵα iff one of the partition sets in UM
i has car-

dinality 
 ℵα. Thus, when Q = Qα, we need only consider the partition sets
(not variants of unions of them) in Definition 9(c). This makes it easy to show,for
example, that if α �= β, L(Qα) and L(Qβ) have incomparable expressive power.

3. L(QR 	 L(I).
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Proof. By the theorem, it suffices to find, for each n structures 〈M,A〉 and〈M ′, A′〉
such that 〈M,A〉 ≡n,I 〈M ′, A′〉, (QR)MA, and ¬(QR)M ′A′. But this is easy.
For example, let |A| = 4n, |M − A| = 2n, |A′| = 2n, |M ′ − A; | = −4n. There
are just four unions of partition sets to consider in each structure, and it is easy to
verify that the conditions in Definition 9(c) are satisfied. �

4. “|A| is even” is not expressible in L(more).

Proof. For each n, choose M,M ′, A ⊆ M,A′ ⊆ M ′ such that |A| = 4n, |M −
A| = |M ′ − A′| = n, |A′| = 4n + 1. Then 〈M,A〉 ≈n,more 〈M ′, a′〉, so
〈M,A〉 ≡n,more 〈M ′, a′〉 by the theorem, but |A| is even and |A′| is odd. �

The following result is from Barwise and Cooper [1981]:

5. L(most) �� L(QR), i.e. L(QR) does not relativise.

Proof. Given n, choose 〈M,A0, A1〉, 〈M ′, A′
0, A

′
1〉 such that A0 ∩A1 = ∅, A′

0 ∩
A′

1 = ∅, |A0| = |A1| = n, |M | = 6n, |A′
0| = n, |A′

1| = n + 1, |M ′| = 6n + 2.
So ∅, A0, A1, A0 ∪ A1 all have cardinalities less than their complements, and
this continues to hold if n − 1 elements are ‘moved around’ in the model. The
same holds for M′, and it is then easy to see that M ≡n,QR

M ′. However,
¬mostM , A0 ∪A1A1 and mostM ′A′

0 ∪A′
1A

′
1. �

Similarly, we can prove that QC does not relativise. Note that only finite structures
have been used so far. The next and final application involves infinite structures.

6. L(Q0) �� L(most).

Proof. This time, choose 〈M,A〉, 〈M ′, A′〉 such that |M − A| = |M ′ − A′| =
n, |A| = ℵ0, and |A′| = 3n. Again, it is not hard to see that 〈M,A〉 ≈n,most

〈M ′, A′〉 (especially if we use the characterisation of ≈n,most given in Theorem
12 below), but A is infinite and A′ is finite. �

Finally, we shall consider more closely the relative expressive power of most
and more. Note first that the four properties of logics mentioned in Section 1.6 do
not enable us to distinguish between these two quantifiers: we saw that L(more)
does not have any of these properties, and similar arguments establish that neither
does L(most). For example, if we replace the second conjunct in the sentence
(1) in Section 1.6 by a sentence saying that, for each x (except the first) there is a
greatest element y < x with the property that most of the x-predecessors are not
predecessors of y, then we again obtain a characterisation of the natural number
ordering.

The next result characterises the relations ≡n,Q and ≡Q for monadic structures,
when Q is most or more.

THEOREM 12.
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(a) M ≡n,more M′ iff, whenever (a1, . . . , an−1) !p (b1, . . . , bn−1),Xi,Xj

are {a1, . . . , an−1}-variants of UM
i , UM

j and Yi, Yj the corresponding {b1,
. . . , bn−1}-variants of UM′

i , UM′
j , we have |Xi| > |Xj | ⇔ |Yi| > |Yj |.

(b) For ≡n,most we have the same condition, except that Xi,Xj(Yi, Yj) are
required to be disjoint.

(c) M =more M′ iff M ≡most M′ iff M ≡ℵ0 M′ and, for all s, t ∈ 2k,
|PM

s | > |PM
t od⇔ |PM′

s | > |PM′
t |.

Proof.

(a) This is Theorem 10, except that we must show that the condition on the
right hand side of the equivalence ((ii) in Definition 9 (c)) implies that
M ≈n M′. So suppose first |PM

s | < n. Suppose also that|PM′
s | �= |PM

s |,
say |PM′

s | < |PM
s | (the other case is similar). If PM′

s = {b1, . . . , br},
choose a1, . . . , ar ∈ PM

s and let Yi = ∅ = PM′
s − {b1, . . . , br} and

Yj = ∅. It follows from the condition that Xi = PM
s − {a1, . . . , ar} is

empty, contradicting our assumption. The case when |PM
s | 
 n is similar.

(b) From left to right, note that most allows us to compare the cardinalities of
disjoint sets X,Y ⊆ M : then |X| < |Y | iff mostMX ∪ Y X . In the other
direction, observe first that the argument in (a) above goes through under
the disjointness requirement. Moreover, the proof of Theorem 10 (⇐:) also
goes through under this requirement, since the formula most x(ψ1, ψ2) only
‘compares’ disjoint sets.

(c) Clearly M ≡more M′ implies M ≡most M′, which in turn implies the
rightmost condition in (c). Now suppose that condition holds; we must show
that, for all n,M ≈n,more M′. So take n, and suppose a1, . . . , an−1, b1,
. . . , bn−1,Xi,Xj , Yi, Yj are as in (a) above. We assume |Xi| > |Xj | and
show that , in this case, |Yi| > |Yj |; the other direction is similar.

Case 1: Xi and Xj are both finite. Then the partition sets in UM
i are finite and

thus have the same cardinality as the corresponding partition sets in UM′
i , since

M ≈n M′ for all n. Xi differs from UM′
i only by certain of the a1, . . . , an−1,

and Yi differs in the same way from UM′
i . Therefore, |Xi| = |Yi| and |Xj | = |Yj |,

and the conclusion follows.
Case 2: Xi and Xj are both infinite. Then |Xi| is the max of the cardinalities of

the partition sets making up UM
i ; say, |Xi| = |PM

s |, and similarly |Xj | = |PM
t |.

It then follows from the condition in (c) that |Yi| = |PM′
s | and |Yj | = PM′

t |. Since
|PM

s | > |PM
t | we have, again by the condition, |PM′

s | > |PM′
t |.

Case 3: Xi is infinite and Xj is finite. Arguing as in Cases 1 ad 2, we see that
Yi is infinite and Yj is finite. �
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Thus, the relations ≡most and ≡more coincide on monadic structures (but not the
relations ≡n,most and ≡n,more). Nevertheless, L(more) is more expressive than
L(most), even if we restrict attention to monadic structures, as the next result will
show. Another instance of the same phenomenon is given by the fact that

M ≡Q0 M′ ⇔ M ≡ M′

(this is an easy consequence of Theorem 10), but EL < L(Q0) (even on monadic
structures).

The following theorem holds in general, but it is also true if only monadic struc-
tures are considered.

THEOREM 13.

(a) L(most) < L(more).

(b) L(most) ≡ L(more) on finite structures.

(c) L(more) ≡ L(most,Q0).

Proof.

(a) Clearly L(most) � L(more). That L(more) �� L(most) follows from (6)
and Theorem 5.

(b) This follows from the fact that, ifA∩B is finite, then moreMAB ⇔ |A| >
|B| ⇔ |A−B| > |B −A| ⇔ mostMA⊕BA.

(c) We must show that L(more) � L(most,Q0). Take any M and A,B ⊆
M . IfA∩B is finite, moreMAB is expressed as in (B). IfA∩B is infinite,
then |A| = max(|A− B|, |A ∩ B|) and |B| = max)|B − A|, |A ∩ B|). It
follows that

|A| > |B| ⇔ |A−B| > |B −A|&|AB| > |A ∩B|,

and the right hand side of this is again expressible with most (since only
disjoint sets are compared). Moreover, Q0 allows us to distinguish the two
cases, in one sentence of L(bfmost,Q0).

�

This theorem tells us that the difference between L(more) and L(most) is
precisely that the former, but not the latter, can distinguish between infinite and
finite sets.

The results of this section allow us to extend Theorem 5 to the following picture:
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EL

L(I)

L(most)

L(more)

L(Q0)

L(QR)

L(H)

Here each logic is strictly stronger than its immediate predecessor(s), and logics
not on the same branch are incomparable.

REMARK 14. The only thing in the figure above not proved with the simple
methods used here is the fact that L(H) is strictly stronger than L(more). How-
ever, if we consider the logic Lpo, where not only the Henkin prefix but all par-
tially ordered prefixes with ∀ and ∃ are allowed, then it follows from (4) that
Lpo �� L(more). For,

|A| is even ⇔ ∃X ⊆ A(|X| = |A−X|),
which can be expressed as a Σ1

1 sentence, and is shown in [Enderton, 1970] and
[Walkoe, 1970] that all such sentences are expressible in Lpo.

Is ‘|A| is even |’ expressible in L(∗H)? More generally, is L(H) strictly
stronger than L(more) if we restrict attention to monadic structures/ I don’t know
the answer to these questions, but it may be noted that it follows from Theorem
12 and a result in [Lachlan and Krynicki, 1979] that ≡more and ≡H coincide for
monadic structures.

Bibliographical remark: The theorems in this section have not, to my knowledge,
appeared in the literature, although no doubt they belong to the folklore in some
circles. Most of the applications to particular logics are known, but it should be
noted that the methods used here are much more elementary than the ones that
have been used in the literature the proof of (5) in [Barwise and Cooper, 1981] is
an exception). For example, it is proved in [Hauschild, 1981] and [Weese, 1981]
that L(more) is strictly stronger than L(I) by establishing that these logics have
different properties w.r.t. the decidability of certain theories formulated in them.
The same result follows from the simple observation 93); in a sense, (3) gives
more, since it concerns monadic structures, whereas the theories just mentioned
use non-monadic languages.

2 NATURAL LANGUAGE QUANTIFIERS

A main objective of Montague’s PTQ [Montague, 1974] was to show that inten-
sional phenomena, such as quantification into intensional contexts, could be han-
dled rigorously with model-theoretic methods. But even if one completely dis-
regards the intensional aspects of PTQ, its approach to quantification was novel.
Although it had no category ‘quantifier’ or ‘determiner’, a general pattern is dis-
cernible from its treatment of the three quantifier expressions (every, a, and the)
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it in fact did account for. The basic idea is that quantifier expressions occur as
determiners in noun phrases. By the close correspondence between syntax and
semantics in Montague Grammar, this also determines the interpretation of such
expressions.

In this section, I will describe this idea in somewhat more detail, and its later
development in [Barwise and Cooper, 1981] and [Keenan and Stavi, 1986], within
the generalised quantifier framework of Section 1.

2.1 Determiners

Suppose that the expressions of the categories common noun (N ) and noun phrase
(NP ) have somehow been (roughly) identified.14 Since we are disregarding inten-
sions,the semantic types of these expressions are such that Ns are interpreted, in a
model M = 〈M, ‖ ‖〉 with universe M and interpretation function ‖ ‖, as subsets
of M an NP s as sets of subsets of M . Here are three examples from PTQ:

‖every man‖ = {X ⊆M : ‖man‖ ⊆ X},
‖a man| = {X ⊆M : ‖man‖ ∩X �= ∅},
‖the man‖ = {X ⊆M : |‖man‖| = 1&‖man‖ ⊆ X}.

Many NP s, like the above ones, are naturally regarded as the result of applying
a syntactic operator to Ns. We introduce the syntactic category determiner (DET)
for this sort of operator:

(DET) DETs form NP s from Ns.

This is a rough criterion, but, in a Montagovian framework, it is enough to fix
the syntax and semantics of determiners. In particular, DETs are interpreted as
functions from N denotations to NP denotations. For example,

‖every‖(A) = {X ⊆M : A ⊆ X},
‖a‖(A) = {X ⊆M : A ∩X �= ∅},
‖the‖(A) = {X ⊆M : |A| = 1&A ⊆ X}.

Another thing, of course, is to apply the criterion to identify simplex and com-
plex English DETs; we will return to this in Section 2.4.

2.1.1 Three apparent problems

As noted, the basic idea of the present Montague-style treatment of quantification
is this:

(Q) Quantifier expressions are DETs.

14We don’t need to assume that proper definitions of these categories exist, only that there is agree-
ment about them in a large number of cases.
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This may not yet seem very exciting, but note at least that it differs, syntactically as
well as semantically, from the standard predicate logic treatment of quantification.
The import of (Q) will become clear as we go along. For the moment, however,
let us look at a few apparent counter-instances to (Q) that come to mind.

I. In sentences like

(1) All cheered,

(2) Some like it hot,

(3) Few were there to meet him,

the words all, some, few are not applied to arguments of category N . Isn’t
the standard predicate logic analysis more plausible here? No, it is very
natural to assume that the DETs have ‘dummy’ arguments in these sentences
(what context-given interpretations); in this case (Q) still holds (cf. 2.4.5).

II. Words like something, everything, nothing, nobody, etc. look like quantifier
expressions but are certainly not DETs. We have two options here. The first
is to regard them as simplex NPs, denoting quantifiers of type 〈1〉 in the
sense of 1.4. They would then correspond (roughly) to the standard logical
∀ and ∃. The other option, which we will take here, is to regard them as
complex: something = some(thing), nothing = no(thing), etc.; i.e. obtained
by applying a DET to a (perhaps logical) N like thing. In this way, (Q) can
be maintained.

III. In 1.4 we defined the binary quantifier more. The word more, however, is
not a DET by our criterion; compare

(4) Some boys run,

(5) Most boys run,

(6) *More boys run.15

Still, more does occur in quantified sentences, for example,

(7) There are more girls than boys,

which in generalised quantifier notation becomes

(8) more x(girl(x), boy(x)).

15Even if there are contexts where (6) might be uttered, it is unreasonable to interpret more as an
independent DET: the standard of comparison is missing, and has to be supplied to get at the meaning.
So more in (6) would then stand for something like more than 10, more . . . than the number of girls,
etc. These are DETs by our criterion, but not the single more.
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This is an objection to (Q) that must be taken seriously. It involves (i) finding
a semantic distinction between the quantifiers more and, say, most, which
explains why one but not the other is a DET denotation; (ii) the analysis of
‘there are’-sentences; (iii) the semantics of words like more. These matters
will be taken up in Section 2.2.

2.1.2 Determiner interpretations as generalised quantifiers

Following Montague, we interpreted DETs as functions from subsets of the uni-
verse M to sets of such subsets. From now on, however, we return to the gener-
alised quantifier framework of Section 1, where quantifiers on M are relations
between subsets of M . Thus, to each n-place function D from (P (M))n to
P (P (M))n we associate the following (n+ 1)-ary quantifier on M :

QMA1 . . . AnB ⇔ B ∈ D(A1, . . . , An).

In what follows, DET interpretations will be such monadic quantifiers on the uni-
verse.

The functional interpretation of DETs emphasises similarity of structure be-
tween syntax and semantics, which is one of the characteristics of Montague
Grammar. From the present semantic perspective, however, relations turn out to
be easier to work with. But keep in mind that the relational approach increases the
number of arguments by one: n-place DETs will denote (n+1)-ary quantifiers (so
far we have only seen 1-place DETs, but cf. 2.2). It should also be noted that for
some semantic issues, the functional framework seems more natural; cf. [Keenan
and Moss, 1985].

Terminological Remark: The use of words ‘determiner’ and ‘quantifier’ is rather
shifting in the literature. Here, the idea is to use ‘determiner’ and ‘DET’ only
for syntactic objects, and ‘quantifier’ only for semantic objects. The extension of
‘quantifier’ was given in Section 1.4, and a criterion for DET-hood at the beginning
of 2.1.

2.1.3 Determiners as constants

In a Montague-style model M = 〈M, ‖ ‖〉, DETs are on a par with expressions of
other categories. Nothing in principle prevents, for example, that a determiner D
is interpreted as every in one model and as most in another. But there is usually no
point in allowing this generality. Moreover, there is a clear intuition, I think, that
determiners are constants. We therefore lay down the following methodological
postulate:

(MP) Simplex DETs are constants: each one denotes a fixed quantifier (modulo,
of course, lexical ambiguity, vagueness, etc.; cf. 2.4).
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(MP) allows us to dispense with the interpretation function for (simples) DETs
and to resume the notation from 1.4, using boldface letters for quantifiers: Q de-
notes Q, most denotes most, some denotes some, etc.

What about complex DETs? In case such a DET contains a non-constant ex-
pression, there seems to be a choice. We can either persist in treating them as con-
stants, or let their interpretation depend on the interpretation of the non-constant
expressions occurring in them. To take a simple example, consider some red. This
expression can be construed as giving an NP when applied to an N , thus can be
classified as a DET by our criterion. As a constant, it would denote the quantifier
defined by

some redMAB ⇔ A ∩B ∩ {a ∈M : a is (in fact) red} �= ∅,

for each universe M . As an expression consisting of a constant and a non-constant
symbol, i.e. of the form some P , it is interpreted in a model M as

‖some P‖AB ⇔ A ∩B ∩ ‖P‖ �= ∅.

Given M, this is a quantifier on M , but the expression does not denote a fixed
quantifier on each universe.

No doubt many readers will find the latter option more natural, but we need not
take a stand on this methodological issue here. Our model-theoretic machinery
provides adequate semantic objects for both cases, quantifiers, and quantifiers on
universes, respectively.

Note, however, that our decision to treat simplex DETs as constants does not
necessarily imply that they are logical constants. It can be argued that logicality
requires a lot more; this theme will be resumed in 3.4 and 4.4 (cf. also [Westerståhl,
1985a]). For example, the quantifier some red defined above is not logical, the
reason being that it violates the condition ISOM from 1.4.

In Appendix B we will indicate what happens if the postulate (MP) is dropped.

2.1.4 Global vs. local perspective

To study quantifiers from a global perspective means to concentrate on properties
which are uniform over universes. A typical example is first-order definability:
Q is first-order definable if there is some first-order sentence which defines it on
every universe. Sometimes, however, it is natural to take a local viewpoint: fix
a universe M and restrict attention to quantifiers on M . Then other definability
notions become interesting as well, involving parameters from M in an essential
way.

Our perspective here will be predominantly global. The main reason for this
is that global definitions and results are more general: they usually have an im-
mediate ‘local version’. The converse, however, does not hold. Quantifiers from
a local perspective are studied extensively in [Keenan and Stavi, 1986]. Some of
their results will be reviewed in Section 4.6.
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2.2 The Interpretation of Determiners

The basic quantifier postulate (Q) from 2.1.1 can be split into a syntactic and a
semantic part as follows:

(Qsyn) Quantifier expressions are DETs.

(Qsem) DETs denote (n+ 1)-ary quantifiers, n 
 1.

In contrast with standard predicate logic, there are no unary quantifiers on this
approach. And although some binary DET denotations (e.g. Montague’s every, a,
the) are definable in standard predicate logic, others are not: we saw in 1.7 that
most is an example. Consequently, EL is inadequate for formalising even the pure
quantificational part of natural languages.

However, (Q) is not yet quite satisfactory. In particular, we need to account for
the apparent counter-examples mentioned in 2.1.1, III. Nothing so far precludes
more from being a DET denotation.

The starting-point of a systematic study of natural language quantification was
the isolation, in [Barwise and Cooper, 1981], and independently in [Keenan and
Stavi, 1986] (although the latter paper was published much later, they were written
at about the same time), or a purely model-theoretic property characteristic of
those quantifiers that are DET denotations. This is the property of conservativity,
defined below (Barwise and Cooper used a different terminology, in terms of an
NP denotation living on a given set). Actually, the property (and the term) first
appeared in [Keenen, 1981], but in the two first-mentioned papers it was proposed
as a significant semantic universal for determiners (although with rather different
motivations; cf. below).

2.2.1 Conservativity

A binary quantifier Q is called conservative if the following holds:

(CONSERV) for all M and all A,B ⊆M,QMAB ⇔ QMA A ∩B.

It is easily checked that most is conservative, but more is not. As we will see in
2.4, practically all English DETs denote conservative quantifiers (a few possibly
doubtful cases will be noted).

CONSERV gives the first argument of Q a privileged role: only the part of B
which is common to A matters for whether QMAB holds or not. This seman-
tic difference between the arguments A and B matches the syntactic difference
between the corresponding expressions:
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Q A B

Conservativity is a very fruitful postulate, as well be seen in Sections 3 and 4.
Still, one may ask what, if any, is the idea or intuition behind it. As for Barwise
and Cooper, they seem to regard it mainly as a successful empirical generalisation.
Keenan and Stavi, on the other hand, give an interesting theoretical motivation:
they prove that, on a given (finite) universe M , the conservative quantifiers on
M are precisely those which can be generated from certain initial quantifiers by
means of a few natural closure operations; an exact statement (and proof) will be
given in Section 4.6. Yet another motivation, discussed in [Westerståhl, 1985a], is
that CONSERV is related to the notion of restricted domains of quantification: an
NP ‘restricts’ the universe to the denotation of the N ; this will be formulated in
Section 3.2.

CONSERV resolves the first doubt concerning (Q) expressed in 2.1.1, III. We
still have to deal with ‘there are’-sentences and with the semantics of more.

2.2.2 ‘there are’-sentences

Consider sentences such as

(1) There are no flowers,

(2) There are many patients waiting outside,

(3) There are some philosophers who like logic,

(4) There are a few errors in the text.

Without commitment to their syntactic form, let us write such sentences

(5) There are QMA,

where Q is the quantifier denoted by the DET and A is the set contributed, in a
model M, by the expression following the DET.16 There are in fact two questions
here. The first is to interpret quantified sentences of the form (5) in a way conso-
nant with the basic postulate (Q). The second concerns the fact that certain DETs
do not fit in (5): all, most, not all, for example. Is there a semantic explanation for
this phenomenon?

16The ‘hybrid’ form (5) is used in order to avoid discussion of the syntactic structure of “there
are”-sentences. This structure is quite varied, as already (1)–(4) indicate, and there may be divergent
opinions about it, but it still seems that (5) is semantically adequate in a large number of cases.
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We shall review the answers proposed by Barwise and Cooper to both of these
questions, first, because they show a way to handle ‘there are’-sentences, and sec-
ond, because this case can serve as a model of the kind of linguistic explanation
one may expect from the present theory of quantifiers.

The first proposal is simple: interpret (5) as

(6) QMAM .

This interpretation works in the sense that it gives (1)–(3) the right truth conditions.
Moreover, one can argue that it accounts for the idea that the phrase ‘there are’
serves to ascribe existence, i.e. the property that everything in the universe has, to
the rest of the sentence.

But why are some choices of Q apparently forbidden in (5)? First, a definition.
Call a DET strong, if its denotation, as a binary relation, is either reflexive or
irreflexive; otherwise the DET is weak. Now observe that the DETs that fit in (5)
are weak, whereas the exceptions are strong.17 This is still no explanation, but it
is a fact which may point to one. The next move is theoretical: we prove in our
theory that (6) is equivalent to

(7) QMAA;

this is actually an immediate consequence of CONSERV. It follows that

If Q is strong, (5) is either trivially true or trivially false.

Thus, the connection between the strong/weak distinction and our problem has
not merely been described; it has been explained, given the plausible assumption
that it is in general ‘strange’ to utter trivial truths or falsities.

This simple but instructive model of explanation shows the typical interplay
between linguistic facts, theoretical concepts, and results in the theory. Here the
results used were quite trivial,but this may not always be the case.

Let me hasten to add that the above by no means exhausts the many interest-
ing problems connected with ‘there are’-sentences. Moreover, Keenan and Stavi
[1986] argue against the explanation in terms of the strong/weak distinction; the
propose another semantic characterisation of the relevant class of determiners (a
detailed discussion of these matters can be found in [Keenan, 1989]). But it is the
type of explanation that I have tried to illustrate here.

2.2.3 (n+ 1)-ary conservative quantifiers

Now, what about more? We noted that

(8) There are more P than Q

(9) more x(Px,Qx).

17Actually, most, as we have interpreted it, is not reflexive, since mostmAA is false when A = ∅.
One remedy is to redefine it for this argument.
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Observe further that more P than Q is very naturally considered as NP, obtained
by applying the 2-place DET more . . . than to two Ns, and typically occurring in
sentences such as

(10) More men than women voted for Smith.

(10) means that the number of men who voted for Smith is greater than the number
of women who voted for Smith. So more . . . than denotes a ternary quantifier:

more . . . thanMA1A2B ⇔ |A1 ∩B| > |A2 ∩B|.
Other examples of such ternary quantifiers are

fewer . . . thanMA1A2B ↔ |A1 ∩B| < |A2 ∩B|,
as many . . . asMA1A2B ⇔ |A1 ∩B| = |A2 ∩B|.

We now see that (8) can be written as a generalisation of (5) to ternary quanti-
fiers:

(11) There are QMA1A2.

Furthermore, (11) can be interpreted on exactly the same principle as (5), namely,
as

(12) QmA1A2M .

For example, if P denotes A and Q denotes B, the interpretation of (8) is

more . . . thanMABM,

which is equivalent to

|A| > |B|
i.e. to

moreMAB,

as predicted. So the previous analysis of ‘there are’-sentences with binary quan-
tifiers extends naturally to ternary (in fact, (n + 1)-ary) quantifiers. (The reader
might wish to ponder whether the characterisation in terms of the strong/weak
distinction also generalises; cf. [Keenan, 1989]).

Finally, the notion of conservativity also extends to (n + 1)-ary quantifiers:
the set to which the V P denotation can be restricted is then the union of the n
denotations. We get the following general version of CONSERV for (n + 1)-ary
quantifiers:

(CONSERV) For all M and all A1, . . . , An, B ⊆M ,
QMA1 . . . AnB ↔ QmA1 . . . An(A1 ∪ . . . ∪ n) ∩B.
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It is easily verified that more . . . than, fewer . . . than, as many . . . as are all con-
servative, in contrast with the binary operator more.

In conclusion, our findings about the use of more do not contradict the basic
idea (Q), on the contrary, they support it. A final formulation of this idea goes as
follows (cf. the beginning of 2.2):

(Qsyn) Quantifier expressions are DETs.

(Qsem) n-place DETs denote (n+1)-ary conservative quantifiers, n 
 1.

We should perhaps note that there are other uses of more in determiners, for
example, more than ten or six or more. These are ordinary (complex) 1-place
DETs, and denote binary conservative quantifiers, just as (Qsem) predicts (cf. also
2.4.7).

2.3 Subject-Predicate Logic

As in Montague Grammar, Barwise and Cooper use an intermediate logical lan-
guage, called L(GQ), into which a fragment of English is translated. L(GQ) has
two unusual features;

(i) Quantified sentences have NP − V P form (subject-predicate form).

(ii) Quantifier symbols are not used as variable-binding operators.

The well-formed expressions in L(GQ) are of two kinds: formulas and set
terms. A set term is either a unary predicate symbol or an expression of the form

x̂[ψ],

where x is a variable and ψ a formula; in models, set terms denote subsets of
the universe. Variable-binding is done with the abstraction operator .̂ Quantifier
symbols are (certain) 1-place DETs and quantified formulas are of the form

(*) D(η)(δ),

whereD is a DET and η, δ are set terms. There are the usual atomic formulas, plus
formulas of the form η(t), where η is a set term and t an individual term, and the
formulas are closed under sentential connectives. DETs are interpreted as binary
conservative quantifiers; the truth condition for (*) in a model is then obvious.

The result is that logical form in L(GQ) corresponds more closely to syntactic
form in the fragment than usual. (*) can be said to have NP −vP form withD(η)
as the NP and δ as the V P (the formation rules actually give (*) this structure).
Another pleasant feature is that some unnecessary uses of bound variables are
avoided. For example,

(1) Some boys run
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is translated

(1′) some(boy)(run)

instead of the usual

(1′′) ∃x(boy(x) ∧ run(x)).

the example also shows that certain unnecessary sentential connectives in the
standard formalisation are avoided. In more complex cases, e.g. with transitive
verbs or relative clauses, L(GQ) must introduce variables and connectives (though
English often can avoid them): consider

(2) Most women who love Harry have a cat,

(2′) most (x̂[woman(x) ∧ love(x, Harry)])(x̂[a(cat)(ŷ[have(x, y)])]),

(2′′) most x(woman(x) ∧ love(x,Harry),∃y(cat(y) ∧ have(x, y))).

These examples should make it plausible that there is no deep difference be-
tween L(GQ) and the standard language for generalised quantifiers as in 1.4. In
fact, they are even syntactically intertranslatable in a rather obvious way. Still,
quantified formulas in L(GQ) have subject-predicate form. It is hard to avoid
the conclusion that the importance of the issue of whether subject-predicate form
occurs in logic has been greatly over-estimated, from Russell and onwards.

2.4 Some Natural Language Quantifiers

A quantifier Q will be called a (simple) natural language quantifier, if it is denoted
by some (simplex) natural language DET.

This notion is somewhat loose,but its serves our purposes. A more exact spec-
ification would presuppose, among other things, (i) that the class of DETs has
been more precisely delimited; (ii) that it has been decided how to treat complex
non-logical DETs (2.1.3); (iii) that a global or a local perspective has been chosen
(2.1.4). We may think of the notion of a natural language quantifier as having var-
ious parameters, which can be set at different values. It turns out that, for many
of the things we shall have to say about natural language quantifiers, the value of
these parameters is immaterial. This is why the above ‘loose’ notion is useful. And
in other cases, we will indicate how a particular observation on natural language
would depend on different parameter settings.

To take a first and crude example, consider the assertion that not all binary
quantifiers are natural language quantifiers. From a global perspective, or from a
local perspective with a given infinite universe M , this is true for cardinality rea-
sons: there are uncountably many binary quantifiers (onM ), but at most countably
many natural language quantifiers. But, even from a finite local perspective, the
assertion is true for another reason, namely, the conservativity universal (e.g. more
or moreM is not a natural language quantifier). The other parameter settings are



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 261

clearly irrelevant her, so the assertion is true however the parameters are set. An
example of an assertion whose truth does depend on the parameters is this: All
natural language quantifiers satisfy ISOM. We will see in section 3.3 that this is in
fact a candidate for a quantifier universal, but only under a certain delimitation of
the class of DETs.

In the remainder of this section, I will present a list of examples of natural lan-
guage quantifiers. Some of them will be used later on, but the list is also intended
to give the reader a feeling for the perhaps surprising richness of the class of natural
language quantifiers.

The method is simply to list the various English DETs, together with their se-
mantic interpretations (when these are not obvious). The DETs are selected by us-
ing the criterion for DET-hood in Section 2.1 as liberally as possible, but with some
‘common sense’ (standard co-occurrence criteria for constituenthood, etc.). Thus
I will be listing possible DETs — there may be syntactic, semantic, or method-
ological reasons for discarding several of them from a more definitive list. In fact,
some such reasons will be discussed in what follows.

The main sources for the list that follows are [Keenan and Stavi, 1986] and
[Keenan and Moss, 1985]. The reader is referred to these works for further exam-
ples, and for detailed arguments that most of the expressions listed really belong
to the category DET.

2.4.1 Some simplex DETs

(1) all, every, each, some, a, no, zero, most

(2) both, neither

(3) one, two, three, . . .

(4) many, few, several, a few

(5) the

(6) this, that, these, those

(7) more . . . than, fewer . . . than, as many . . . as

Here are some interpretations, a few of which have already been given

allMAB ⇔ everyMAB ⇔ eachMAB ⇔ A ⊆ B,
someMAB ⇔ aMAB ⇔ A ∩B �= ∅,
noMAB ⇔ zeroMAB ⇔ A ∩B = ∅,
mostMAB ⇔ |A ∩B| > |A−B|,
bothMAB ⇔ allMAB&|A| = 2,
neitherMAB ⇔ noMA&|A| = 2,
one = some,
twoMAB ⇔ |A ∩B| 
 2,
threeMAB ⇔ |A ∩B| 
 3, . . .
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So n is interpreted as at last n here, although it can be argued that it sometimes
means exactly n. As for (4)–(6), cf. 2.4.2–6 below. The denotation of the 2-place
DETs in (7) were given in 2.2.3.

2.4.2 Vague DETs

Vagueness in the sense of the occurrence of borderline cases (in some suitable
sense) pertains to DETs as well as to other expressions. We do not incorporate a
theory of vagueness here, but choose idealised precise versions instead.

Two examples of vague DETs are several and a few. Here one may, following
Keenan and Stavi, stipulate that

several = three,
a few = some.

2.4.3 Context-dependent DETs

The DETs many and few are not only vague but also context-dependent in the sense
that the ‘standard of comparison’ may vary with the context. For example, in

(8) Many boys in the class are right-handed,

(9) Lisa is dating many boys in the class,

some ‘normal’ standard for the least number considered to be many is used,but
probably different standards in the two cases. Even within one sentence different
standards may occur, as in the following example (due to Barbara Partee):

(10) Many boys date many girls.

Other, complex, DETs with a similar behaviour are, for example,

a large number of, unexpectedly few, unusually many.

Westerståhl [1985a] discusses various interpretations of many. Basically, there
are two possible strategies. Either one excludes this type of DETs from extensional
treatments such as the present one (this is what Keenan and Stavi do), or one tries
to capture what many might mean in a fixed context (this is the approach of Barwise
and Cooper). Here are some suggestions for the second strategy:

many1
MAB ⇔ |A ∩B| 
 k|M | (0 < k < 1),

many2
MAB ⇔ |A ∩B| 
 k|A| (0 < k < 1),

many3
MAB ⇔ |A ∩B| 
 (|B|/|M |)|A|.

many1 relates the standard to the size of the universe: in a universe of 10, 5 may
be many, but not in a universe of 1000. many2 is a frequency interpretation: the
number ofAs that areB, compared to the total number ofAs, is at least as great as
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a ‘normal’ frequency of Bs, given by k. In both cases, k has to be supplied by the
context. But in many3, the ‘normal’ frequency of Bs is just the actual frequency
of Bs in the universe.

Notice that many1 and many3 make essential reference to the universe of the
model. As we shall see, this is in contrast with most other natural language quanti-
fiers. Also notice that many3 is not conservative. Since the conservativity univer-
sal is so central, this observation gives a (methodological) argument for discarding
many3 as an interpretation of many.

As for few, we may simply interpret it as not many.

2.4.4 Ambiguous DETs

Ambiguity in the sense of a small number of clearly distinguishable meanings of a
DET is another phenomenon than context-dependence. We have already noted that
the DETs one, two, three, . . . may be ambiguous with respect to the quantifiers at
least n and exactly n. Another possibly ambiguous DET is most: it can be argued
that aside from the interpretation we have given, most can also mean something
like almost all; cf [Westerståhl, 1985a].

The fact that certain DETs may be ambiguous is not a problem in the present
context, as long as we make sure to include each of their interpretations among the
natural language quantifiers.

2.4.5 Pronominal DETs

Most 1-place DETs can occur without their N arguments, as was noted in 2.1.1.
Such DETs may be called pronominal. The natural analysis of sentences with
pronominally occurring DETs is that the argument (or the set it denotes) is given
by the context. So

All cheered

is interpreted as

allMX‖cheered‖,
where the set X is provided by the context. The use of such context sets is studied
further in [Westerståhl, 1985b].

The only non-pronominal 1-place DETs encountered so far are, as the reader
can check,

a, every, no, the.

Moreover, DETs taking two or more arguments are never pronominal, it seems.
Note that the pronominal all and the non-pronominal every denote the same

quantifier. So pronominality is not a semantic property of DETs in the present
framework.
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2.4.6 Definites

By the simple definites we shall understand here

(i) the definite article the,

(ii) the simple possessives, like John’s, Susan’s, my, his, their,

(iii) the demonstratives: this, that, these, those.

We have already given an interpretation for the:

theMAB ⇔ allMAB&|A| = 1.

This is the singular the, as in

(11) The boy is running.

For a sentence like

(12) The boys are running

we must use instead

thepl
MAB ⇔ allMAB&|A| > 1.

Thus the is ambiguous on this analysis. Demonstratives can be interpreted sim-
ilarly; there we have singular and plural forms and thus no ambiguity. but the
simple possessives exhibit the same ambiguity as the:

(13) John’s car is clean,

(14) John’s cars are clean

can be interpreted, respectively, with the quantifiers

John’sMAB ↔ allMPJohn ∩AB&|PJohn ∩A| = 1,
John’sMAB ↔ allMPJohn ∩AB&|PJohn ∩A| > 1,

where PJohn is the st of things possessed by John; a possession relation is then
supposed to be given in the model. there are also relational uses of possessives,
where the relation is given explicitly, as in

(15) John’s friends are nice.

Here it is doubtful whether John’s applies to an N , and thus whether it is a DET in
our sense. (In any case, the truth condition for sentences like (15) can be given by

John’spl
MRB ⇔ allMRJohnB&|RJohn| > 1,

where R is a binary relation on M and Ra = {b ∈ M : Rab} — here we have a
generalised quantifier of type 〈2, 1〉.)
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We see that the definites come with a number condition, concerning the number
of elements in a certain set. It is also possible to let sentences with definites pre-
suppose that the number condition is satisfied, instead of making them false when
it isn’t, as we did above. This could be effected by extending the model-theoretic
framework to allow partial quantifiers the, thepl, John’s, John’spl would then be
undefined when the number condition is not met. We return to this in 3.7.

2.4.7 Complex DETs with definites

There are several ways to construct complex DETs with definites in English, in
particular with partitive constructions. I will present a rather uniform way of inter-
preting such DETs. The starting-point is the observation that one function of the
simple definites is to indicate the occurrence of context sets (cf. 2.4.5). For simple
possessives, this is usually the set of things possessed by the individual (it may also
be a subset of this set). But also the and the demonstratives need context sets to
make the interpretation come out right. For example, in (11) or (12) we are usually
not talking about the set of all boys in the universe M (as the interpretations given
in 2.4.6 would have us believe), but a context-given subset of it (in the singular
case, this set has one element).

Consider sentences (with DETs as indicated) like

(16) Some of the seven men survived,

(17) Most of John’s few books were stolen.

We interpret these on the following scheme:

(18) (Q1 of Def Q2) BC ⇔ Q1X ∩BC&Q2X ∩BM ,

where Q1,Q2 are quantifiers and Def is a simple definite with X as associated
context set (the subscript ‘M ’ is omitted for readability). note that the second
conjunct in (18) can be written, as in 2.2.2,

There are Q2X ∩B,
expressing the condition that, in (17), John’s books were few, and, in (16) that the
set of men under consideration has (exactly?) seven elements.

Some other constructions with definites can be obtained as special cases of (18).
We define

(19) Def Q2)BC ⇔ (all of Def Q2)BC,

(20) (Q1 of Def)BC ⇔ (Q1 of Def all)BC
⇔ Q1X ∩BC (by (19) with Q2 = all),

(21) DefBC ⇔ (all of Def)BC
⇔ allX ∩BC (by (20) with Q1 = all).
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(19) takes care of complex DETs such as

the five, these few, John’s several, etc.

(20) deals with partitives such as

some of Susan’s, many of these, at least five of the, etc.

And (21) returns to the simple definites: the truth conditions are essentially the
same as in 2.4.6, except that context sets are mentioned.

(18)–(21) can be seen to give the right truth conditions for sentences of these
forms, except that we have, for readability, omitted the number conditions belong-
ing to these interpretations: in (18) and (20) a plural condition, i.e. that |X ∩B| >
1, should be added, and in (19) and (21) the cases with singular and plural condi-
tions should be distinguished (syntactically they are distinguished by the singular
or plural form of the N denoting B).

More complicated DETs with definites can be treated along similar lines. For
example, there are DETs which quantify over the possessor a in a simple posses-
sive

a’sBC ⇔ allPa ∩BC
(we continue to leave out the number condition, and assume for simplicity, in the
rest of this subsection, that everything is in the plural). One example is with DETs
like

some students’, most boys’, several girls’, etc.,

as in

(22) Some students’ books were stolen.

The interpretation of these DETs is given by

(23) (Q1A’s)C ⇔ Q1A{a ∈M : a’sBC}.
Another example is with iterated definites. Here is one scheme, which generalises
(20):

(24) (Q1 of Def A’s)BC ⇔ Q − 1X ∩A{a ∈M : a’sBC}
(we could have generalised (18) similarly, but examples of this form seem rare).
This covers DETs like

most of the students’, some of these boys’, three of John’s cars’, etc.

It could be argued that a sentence like

(25) Most of the students’ books were stolen
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is ambiguous; then (24) gives the sense where most takes students as argument,
whereas the sense where it takes books as arguments is given by

(24) (Q1 of DEF A’s)BC ⇔ allX ∩A{a ∈M : (Q1 of a’s)BC}.

As before, if the is replaced by John’s in (25), X = PJohn (or a subset of it) n
(24) and (26). Also as before, we get DETs like

the students’ those boys’, Susan’s cars’, etc.

as a special case of (24):

(27) (Def A’s)BC ⇔ (all of DefA’s)BC,

and similarly for DETs like

the five students’, those few boys’, Susan’s two cars’, etc.

We have given uniform truth conditions for a number of sentences with complex
DETs by proposing a semantics for the DET constructions involved there. This is
one task of a theory of natural language quantification. Another is to describe
and if possible explain the restrictions that often belong to such constructions (cf.
2.2.2).

Consider, for example, the construction in (18). One can see that only pronom-
inal DETs can be in the Q1 position here. As for the Def position, the definites,
and no others, will work. And there are restrictions on Q2 too: e.g. most, all, ev-
ery, no, some sound strange here. This last restriction can actually be explained by
combining the Barwise and Cooper explanation of the restrictions on ‘there are’-
sentences (2.2.2) with the plural condition holding for (18): the exceptions will
then once more be those quantifiers making the truth condition trivial. This and
other restrictions at work here are discussed further in [Westerståhl, 1985b].

There is one notable feature of the constructions with definites given here: al-
though the analysis is compositional, it does not use the quantifiers taken to inter-
pret the simple definites in 2.4.6. The function of simple definites was merely to
provide context sets. If our analysis is viable, it opens the possibility to leave out
the definites from the class of DETs, i.e. to treat them as not denoting quantifiers.
This move has in fact been viewed desirable for independent reasons which I will
not discuss here. My point is merely that such a move can be accommodated in
the present quantifier framework.

Likewise, it is not strictly necessary to regard the constructions in this subsec-
tion as giving new DETs and thereby new natural language quantifiers. Instead, the
definitions (18)–(21), (23)–25), (27) could be seen as uniform truth conditions for
sentences involving (among other things) quantifiers Q1 and Q2, but not as defin-
ing new quantifiers. the class of natural language quantifiers will then become
correspondingly smaller.
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If, on the other hand, these constructions are regarded as quantifier definitions,
it should be noted that they always yield conservative quantifiers, provided Q1 and
Q2 are conservative.

Clearly we have merely scratched the surface of the many problems pertaining
to the analysis of definites, possessives, partitives, etc. It seems, however, that the
present quantifier framework can be applied quite fruitfully to these well known
linguistic questions; cf. for example [Keenan and Stavi, 1986; Partee, 1984a;
Partee, 1984b; Thijsse, 1983].

2.4.8 Numerical DETs

There are many variations of the simplex numerical DETs one, tow, three, . . . , e.g.

at least five, at most five, exactly five, five or more, between five and
ten, more than five, fewer than five, infinitely many, at most finitely
many, an even number of, an infinite number of, every other, every
third, around ten, almost ten, nearly ten, approximately ten, . . . ;

the interpretations are more or less obvious. A particular group of numerical ex-
pressions is

half, more than half, less than half, at least half, not more than half,
two thirds, at least two thirds, . . .

These are not really DETs by our criterion (they don’t apply to Ns), but if a phrase
of the form of Def is appended to hem (after half, the of is optional), the resulting
expressions are quite similar to those in (20): more than half of the, two thirds of
John’s, not more than half of these, . . . . the interpretation give in (20) fits well
here,but to use it we must have suitable quantifiers Q1 available. Thus, it seems
reasonable, even if the above expressions are not DETs, to include the quantifiers

at least m/n AB ⇔ |A ∩B| 
 m/n|A|
(n > m > 0) among the natural language quantifiers (Boolean combinations of
these will then give the other quantifiers needed here).

2.4.9 Comparative DETs

The words more, fewer, less, . . . can be used in DETs for comparison with a fixed
number or proportion, as in 2.4.8. We also have the 2-place simplex DETs more
. . . than, fewer . . . than, etc. Some complex variants of these are

more than twice as many . . . as, less than half as many . . . as, etc.

Keenan and Stavi discuss other comparative DETs, e.g. those in

(28) More male than female students stayed home,
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(29) More students attended than stayed home,

(30) More students attended than teachers who stayed home;

the respective 1-place DETs are italicised. That they are putative DETs follows
by our criterion (nothing prevents a 1-place DET from being syntactically discon-
tinuous!). However, it is also possible to analyse (28)–(30) with the 2-place more
. . . than: rewrite them as

(28′) More male students than female students stayed home,

(29′) there are more students who attended than students who stayed home,

(30′) there are more students who attended than teachers who stayed home.

The last two ‘there are’-sentences are then treated as in 2.2.3.
These examples illustrate nicely that more than one structural analysis of an

NP is often possible. Since no semantic ambiguity is involved here, one would
like to make a choice. For a further illustration, consider

(31) More men than women voted for Smith,

(31′) More men than women voted for Smith.

(31) uses more . . . than, whereas (31′) uses the 1-place more than women. but this
latter DET is not conservative, as one easily sees, so we have a good reason to
prefer (31). The DETs in (18)–(30), on the other hand, are all conservative. For
example,

more than stayed homeMAB ⇔
⇔ |A ∩B| > |A ∩ ‖stayed home‖|
⇔ |A ∩ (A ∩B)| > |A ∩ ‖stayed home‖|
⇔ more than stayed homeMAA ∩B.

Still, there are reasons to prefer (28′)–(30′). One is that they are simpler and more
uniform. Another will be given in Section 3.3.

Keenan and Stavi also consider comparatives with definites, such as

more of John’s than of Susan’s, fewer of the male than of the female,
etc.

These can be dealt with, if one wishes, by combining the simplex 2-place compar-
atives with the treatment of definites in 2.4.6 an d2.4.7; we omit details.

2.4.10 “Only”

Consider the sentence

(32) Only women voted for Smith.
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If only is a DET here, its interpretation is

onlyMAB ↔ B ⊆ A.18

This is not a conservative quantifier (indeed, onlyMAA∩B is trivially true for all
A,B). So let us look for alternatives. Now, only can modify many other things
besides Ns, e.g. NPs:

(33) Only Susan voted for Smith.

An alternative analysis is then to treat women in (32) as a full em NP (a ‘bare
plural’); then only is not a DET at all.

there are also complex DETs with only. Consider the following example (es-
sentially from Keenan and Stavi):

(34) Only liberal students voted for Smith.

This sentence is three ways ambiguous: (i) as an answer to ‘Which students voted
for Smith?’; (ii) as an answer to ‘Which liberals voted for Smith?’; and (iii) as an
answer to ‘Who voted for Smith?’. Writing (34) in the form only ABC, we can
represent its three meanings as

(i) only ABC ⇔ B ∩ C ⊆ A,

(ii) only ABC ⇔ A ∩ C ⊆ B,

(iii) only ABC ⇔ C ⊆ A ∩B.

There are various possibilities here. One is to treat only as a 2-place DET with
three possible interpretations, as in (i)–(iii). One readily verifies that (i) and (ii),
but not (iii), are conservative. Or, if one wants to analyse (34) with a 1-place DET,
we have, in case (i),

only liberalMAB ⇔ A ∩B ⊆ ‖liberal‖;

in case (ii),

only . . . studentsMAB ⇔ A ∩B ⊆ ‖student‖
(but only . . . students isn’t really a DET since it applies to an adjective); and in case
(iii) the ordinary only, as in (32). Again, the first two are conservative, but not the
third.

Only can also combine with numerical expressions, as in

(35) Only five students voted for Smith.

18One may argue that (32) also says that some women voted for Smith. We ignore the possible
existence implications of only here, but they could easily be added without affecting the discussion.
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This time, there is no analysis with a 2-place DET, and there are just two possible
meanings: (i) as an answer to ‘How many students voted?’; and (ii) as an answer
to ‘How many voted?’. So, writing (35) as only five AB, we get

(i) only five AB ⇔ exactly fiveMAB,19

(ii) only five AB ⇔ exactly fiveMAB&B ⊆ A.

In case (ii), only five would be a non-conservative DET, but it is more natural to
treat only as an NP -modifier here. In case (i), on the other hand, only five works
fine as a conservative DET. Here one would like to see a uniform treatment of
DETs of the form

(36) only Q;

we have already seen that only ‘transforms’ n into exactly n, but when Q is a
definite, things get more complicated, as the reader can check by considering the
example

(36) Only John’s students voted for Smith

(three possible readings). Also, one would like to explain the restrictions on Q in
(36). For example, a few, between five and ten, around ten are fine, but not several,
all, most.

These are just a few hints about some phrases with only, and nothing like a
uniform semantics analysis. For further discussion, cf. Keenan and Stavi [1986],
Rooth [1984; 1985].

2.4.11 Exception DETs

This term is used by Keenan and Stavi for DETs like

all but three, all but at most five, all but finitely many, . . .

As for interpretations, we have

all but threeMAB ↔ |A−B| = 3,
all but at most fiveMAB ⇔ |A−B| � 5,
all but finitely manyMAB ⇔ A−B is finite.

The construction all but Q apparently obeys certain restrictions — we will return
to these in 3.4. It can create ambiguities similar to the ones discussed for only in
2.4.10; cf.

(38) All but five liberal students voted for Smith.

19There is also the idea that five is unexpectedly few here. It would be possible to add fewMAB as
a further condition.
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There are also exception DETs with proper names and with definites:

every but John, no but John, every but John’s, all but the liberal, . . .

Some of these are discontinuous

(39) Every student but John voted for Smith,

(40) Every car but John’s was stolen,

(41) Every book but this (one) was returned.

If we were to treat proper names as definites in the sense of 2.4.7, i.e. as providing
suitable sets (in this case: the unit set of the denoted individual), we could interpret
these on the uniform scheme

(42) every but DEFMAB ⇔ |X ∩A| = 1 &
& everyMA−XB& noMA ∩XB,

where, in (39), X = {John}, and, in (40), X = PJohn; note that e.g. (39) says that
John is a student, that he didn’t vote for Smith, but that all other students voted for
Smith. Note also that (42) gives conservative quantifiers.

2.4.12 Boolean combinations

First, negation, as in

not every, not all, not many, note more than five, not fewer than there,
not more than half (of the), . . .

The semantics of negated quantifiers is obvious,

(not Q)M ⇔ ¬QMAB,

but not cannot stand in front of all DETs: e.g. not some, not most, not at most five
are not well-formed. It is not clear that there is a semantic explanation for this. An
interesting question, however, is whether the class of natural language quantifiers
is closed under negation. For example, even though not most is not a DET, we can
express the intended quantifier with another DET:

¬ mostMAB ⇔ |A ∩B| � |A−B|
⇔ |A ∩B| � 1/2|A| (on finite sets, of course)
⇔ not more than half (of the)MAB

Likewise, we have ¬(at most five) = more than five. But there are other cases
which seem more doubtful, for example, the exception DETs: what DET would
express the negation of all but three or every but John? We return to this question
in 3.4.

As for conjunction and disjunction, we have
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some but not all, some but not many, most but not all, at least five and
at most ten, either exactly five or more than ten, neither less than five
nor more than ten, John’s but not Susan’s, neither John’s nor Susan’s,
both John’s and Susan’s, . . . .

Again the semantics is clear. It is tempting to claim that any two 1-place DETs
can in principle be conjoined with and or or (another matter is that many such
conjunctions and disjunction would be long and cumbersome, express trivial or
otherwise ‘strange’ quantifiers, etc.) n-place DETs for n > 1 are discontinuous,
which makes the claim less plausible in this case.20 But the class of binary natural
language quantifiers would, if the claim is correct, be closed under conjunction
and disjunction.

Boolean operators can also be used to create n-place DETs for n > 1, e.g. the
2-place

every . . . and, some . . . or,

as in

(44) Every businessman and lawyer knows this,

(45) Some mother or father will react

Note that (43) is ambiguous. In general, there are two possible readings of sen-
tences of the form QA and/or BC:

(45) Q1A and BC ↔ QA ∩BC,
Q2A and BC ↔ QAC &QBC

(46) Q1A or BC ↔ QA ∪BC,
Q2A or BC ↔ QAC ∨QBC

In the one sense of (43) we have the ordinary every applied to the complex N
businessman and lawyer, and in the other we have every2 applied to the two Ns
businessman and lawyer. Of course, it is not absolutely necessary to use 2-place
DETs here, since the interpretations are definable with 1-place DETs. For several
arguments that 2-place DETs are in fact the natural choice, and for more examples,
we refer to Keenan and Moss [1985].

We may note that

(47) every2A and BC ⇔ every1A or BC,

(48) some1A or BC ⇔ some2A or BC.

(47) explains why the second reading of (43) can also be expressed by

20We had a few examples of discontinuous 1-place DETs too, e.g. every but John, and here the claim
is more dubious. But note that in all these cases, an alternative analysis was proposed, which eliminates
the need for the DETs in question.
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(49) Every businessman or lawyer knows this.

(48) explains why (44) isn’t in fact ambiguous.
The same method as above can be used to create n-place DETs for all n > 1;

cf.

(50) Every professor and assistant and secretary and student has a key.

This 4-place DET would be interpreted by a 5-ary quantifier similarly to (45) (the
second reading seems to be preferred here, which again is manifested in the fact
that and can be replaced by or in (50)).

3 QUANTIFIER CONSTRAINTS AND SEMANTIC UNIVERSALS

A natural way to approach the class of natural language quantifiers is to study the
effect of linguistically motivated constraints, such as conservativity, on the class
of all quantifiers. These constraints are related to semantic universals, i.e. general
statements about semantic interpretation true for all natural languages. In this sec-
tion we discuss some such constraints; a number of possible semantic universals
will be noted along the way.

3.1 The Restriction to Monadic Quantifiers

In Section 2 we tacitly assumed that natural language quantifiers are monadic, i.e.
of type 〈1, 1, . . . , 1〉. Is there some reason natural language should not employ
non-monadic generalised quantifiers like those used in mathematical logic?

Towards an answer to this, recall first that generalised quantifiers are second-
order properties or relations (cf. 1.2.1 and 1.4). Thus, any sentence which at-
tributes, say, a (second-order) property to a (first-order) property can in principle
be formalised as a quantified sentence. For example, consider

(1) Red is a colour.

Even in our extensional framework we could define a quantifier C of type 〈1〉 by

CM = {X ⊆M : X is the extension in M of some colour}.
So CM would contain the set of all blue things in M , the set of all red things in
M , etc. Then (1) can be formalised as

(2) Cx red(x),

which is true in a model M iff the set which red denotes in M is (the extension of)
a colour. This quantifier is monadic, but a similar story could be told for properties
of binary relations, i.e. generalised quantifiers of type 〈2〉.

But from our perspective, (2) is clearly an unreasonable formalisation of (1). It
is useful to understand why. Compare (2) with
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(3) ∃x red(x),

which formalises

(4) Something is red.

There is a match in logical form between (3) and (4),21 which is lacking between
(1) and (2). Roughly, the difference is that some and colour are of completely
different syntactic categories (some is an operator and colour is a predicate). In a
natural language context, such matching appears to be essential. It is now always
essential in mathematical contexts; cf. the quantifier W, where

WxyPxy

expresses that

P is a wellordering.

These remarks are really just another way of putting our basic idea that, in
natural language, quantifier expressions are DETs. So the question is this: are there
DETs denoting non-monadic quantifiers? Put differently, are there DETs whose
corresponding quantifier symbols bind more than one variable in the succeeding
formula(s)?

The following example was suggested by Hans Kamp:

(5) Most lovers will eventually hate each other.

This sentence makes good sense,22 and, looking closely, one sees that it does not
talk about the set of people who love and are loved by someone, but instead about
pairs23 of people who love each other: most such pairs will end up as pairs whose
members hate each other. In other words, (5) is not equivalent to

(6) Most people who love and are loved by someone will eventually hate and be
hated by everyone (or someone) they love.

This follows from the observation that one person may belong to different ‘loving
pairs’; using this it is easy to construct models where (5) and (6) (in either version)
differ in truth value.24

21The match would be even better if we had used the binary some instead of the usual existential
quantifier.

22Other similar sentences are harder to make sense of, for example,

Most schoolboys tease each other.

Is this about pairs of schoolboys, or does it mean that most schoolboys tease some other schoolboy,
or most other schoolboys, . . . ? The problem seems to be that schoolboy denotes a set but each other
indicates a relation.

23I take the pairs to be ordered, but this doesn’t really matter.
24In other cases equivalence would obtain. Consider, for example,

Most twins like each other.

Since everyone is the twin of at most one other person, there are as many individual twins as there are
ordered twin pairs, and thus the same proportion of ‘liking’ twin pairs as that of twins who like their
other twin.
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In the terminology of Section 1.4 we would formalise (5) as

(7) most(2)xy(love∗(x, y), will eventually hate∗(x, y)),

where R∗(x, y) means R(x, y) ∧R(y, x) and

most(2)M = {〈R1, R2〉 : R1, R2 ⊆M2&
&|R1 ∩R2| > |R1 −R2|},

a generalised quantifier of type 〈2, 2〉.
Another suggestion to use quantification over pairs instead of individuals ap-

pears in Fenstad et al. [1987]. They consider sentences like

(8) Every boy who owns a dog kicks it.

There is a question as to the meaning of this, but the preferred reading appears to
be that every boy who owns a dog kicks every dog he owns; in other words, using
the binary every and some,

(9) every x(boy(x)∧ some y (dog(y), owns(x, y)),
every y(dog(y)∧ owns (x, y) beats(x, y)).

The traditional problem here has been to get (9) (or something equivalent to it)
from a compositional analysis of (8); note that it refers back to a dog, but does not
correspond to a bound variable in (9)! Fenstad et al. propose a way to do this;
their analysis (whose details need not concern us here) leads, essentially, to the
formalisation

(10) every(2)xy(boy(x)∧ dog(y)∧ owns(x, y), beats(x, y))

where every(2) denotes the type 〈2, 2〉 generalised quantifier

(11) every(2)
M = {〈R1, R2〉 : R1, R2 ⊆M2&R1 ⊆ R2}.

Note that (10) and (9) are equivalent. (Note also, however that, as Johan van
Benthem has pointed out, this analysis does not seem to work for all quantifiers:
consider

(12) Most boys who own a dog kick it.

Here, the sentence obtained from (9) by replacing the first occurrence of every with
most is not equivalent to the sentence obtained from (10) by replacing every(2) with
most(2). Moreover, the former sentence appears to give the preferred reading.25)

A third and final example that could be construed as quantification over pairs in
natural language is branching quantification as discussed in Section 1.5. To take
an example from Barwise [1979], consider

25Consider a situation with two boys, one of whom owns and kicks two dogs, the other owning,
but not kicking, one dog. The formalisation with most(2) would be true in this case, which seems
counter-intuitive.
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(13) Most boys in my class and most girls in your class know each other.

The preferred reading of this sentence (which has a conjoined NP) can be for-
malised as

(14)
most x boy-in-my-class(x)

know∗(x, y),
most y girl-in-your-class(y)

where this is taken to mean that there is a subset X of the boys in my class, con-
taining most of these boys, and a subset Y of the girls in your class, containing
most of those girls, such that if a ∈ X and b ∈ Y then a knows∗b (cf. Appendix
A).

(14) involves branching of the ordinary monadic most. But, as noted in 1.5, it
is possible to ‘simulate’ branching of two (or more) quantifiers by means of one
generalised quantifier. That generalised quantifier will be non-monadic — in the
present case, it has type 〈1, 1, 2〉, since it relates two sets (the set of the boys and
the set of the girls) and one binary relation (know∗).

What can be concluded from these examples? Two things should be noted. The
first is that the logical power of expression increases if the constructions in the
examples are included. Consider the logic L(most(2)). It is easy to see that most
is expressible in this logic, so L(most � L(most(2)). But the converse does not
hold; the following result was pointed out by Per Lindström:

THEOREM 15. L(most) < L(most(2)) (even on finite models).

Proof. [Cf. Section 1.7] Given a natural number d, choose two finite models M=
〈M,A0, A1, A2〉 and M′ = 〈M ′, A′

0, A
′
1, A

′
2〉 such that the Ai(A′

i) are pairwise
disjoint sets whose union is M(M ′), and, if |A0| = k, |A1| = m, |A2| = n, then
|A′

0| = k − 1, |A′
1| = m, |A′

2| = n, and

(a) (k − 1)m � n < km,

(b) k < m < n and k,m− k, n−m > 2d.

Now, consider the sentence

most(2)xy((P0x ∧ P1y) ∨ (P2x ∧ x = y), P0x ∧ P1y).

In M, this expresses that

km > n

(note that P2x ∧ x = y denotes {(a, a) ∈ M2 : a ∈ A2}, whose cardinal is n).
Likewise, it expresses in M′ that (k − 1)m > n, so, by (a), it is true in M but
false in M′. On the other hand, using (b) and Theorem 10 it is easily seen that
M ≡d,most M′. Thus, since d was arbitrary, L(most(2)) �� L(most). �
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The same holds for the branching of most. Let Lb(most) be the logic which
extends L(most) by allowing formulas of the form (14), interpreted as indicated
for that example. It can be shown that ‘|A| is even’ is expressible in Lb(most).
Thus, by (4) in Section 1.7, we get the

THEOREM 16. L(most) < Lb(most) (even on finite models).

The second observation to make, however, is that there are clear senses in which
the non-monadic quantification considered here is reducible to monadic quantifi-
cation. Thus, branching maybe seen as a linguistic construction on its own, making
monadic quantifiers as arguments. And as for the first two examples, most(2) is
really just the old most applied to the new universe M2:

most(2)M = mostM2 ,

and similarly for every(2). Here we have lifted a relation on sets to a relation on
binary relations. In general, any k-ary monadic quantifier Q can be lifted to any
n > 1: define Q(n), of type 〈n, n, . . . , n〉 by letting, for all R1, . . . , Rk ⊆Mn,

〈R1, . . . , Rk〉 ∈ Q(n)
M ⇔ QMnR1, . . . , Rk.

In view of the foregoing discussion we have a possible semantic universal of
the form

(U1) Natural language quantifiers are either monadic or reducible to monadic
quantifiers,

where ‘reducible’ may be specified along the lines suggested above.
NB. This universal has been challenged recently, however, in [Keenan, 1987].

He considers sentences like

(15) Every boy read a different book

and shows that, although this may seem as simple iteration of two monadic quan-
tifiers, the truth conditions for (15) cannot be so obtained, nor can they be obtained
by branching or lifting monadic quantifiers. For further discussion of this matter,
cf. also [van Benthem, 1987b]. In what follows, however, we will restrict attention
to monadic quantifiers.

3.2 The Universe of Quantification

Recall the definition of conservativity for an (n+ 1)-ary quantifier Q:

CONSERV QMA1 . . . An, B ⇔ QMA1 . . . An, (A1 ∪ . . . ∪An) ∩B
(for all M and all A1, . . . , An, B ⊆ M ; we will usually omit this). We have put
a comma before ‘B’ here to indicate that ‘QMA1, . . . An’ corresponds to the NP
and ‘B’ to the V P . CONSERV says that the V P denotation can be restricted to
(the union of) the N denotation(s). Another way to put this is
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(*) IfB andC have the same intersections with all theAi, then QMA1 . . . An, B ⇔
QMA1 . . . An, C.

It is easily checked that CONSERV and (*) are equivalent conditions.
It is almost true that CONSERV restricts the universe of quantification to (the

union of) the first (n) argument(s); cf. the discussion in 2.2.1. But not quite: the
DET denotation may depend essentially on the universe M . The following condi-
tion, which we formulate for arbitrary n-ary quantifiers, expresses the requirement
of ‘universe-independence’ for quantifiers (‘EXT’ for ‘extension’):

EXT If A1, . . . , An ⊆M ⊆M ′

then QMA1 . . . An ⇔ QM ′A1 . . . An.

This has nothing to do with CONSERV; rather, it is a strengthening of the pos-
tulate, discussed in 2.1.3; that quantifier expressions are constants. For example,
EXT excludes a quantifier which is allM when M has fewer than 10 elements and
someM otherwise. But together with CONSERV, EXT gives the exact sense in
which DETs can be said to restrict the universe of quantification:

UNIV QMA1 . . . An, B ⇔
QA1∪...∪An

A1 . . . An, (A1 ∪ . . . ∪An) ∩B.
It is an easy exercise to show

PROPOSITION 17. UNIV is equivalent to CONSERV + EXT.

Some further discussion of universe-restriction can be found in Westerståhl
[1985a; 1983].

CONSERV and EXT are related to the logician’s notion of relativisation (Sec-
tions 1.4 and 1.6). Let us first note

PROPOSITION 18. If Qi satisfies EXT for i ∈ I , then L(Qi)i∈I relativises.

Proof. Since EXT implies that

(Qi)rx(Px, P1x, . . . , Pnx) ↔
↔ Qix(Px ∧ P1x, . . . , Px ∧ Pnx)

is valid. �

If in addition CONSERV holds we can say more: the binary quantifiers satisfying
CONSERV and EXT are precisely the relativized ones. Moreover, the sentences (in
any logic) with two unary predicate symbols which satisfy CONSERV and EXT (in
the obvious sense) are precisely the ones equivalent to the relativised sentences.
This is the content of the next result:

THEOREM 19.

(a) A binary quantifier Q satisfies CONSERV and EXT iff Q = (Q′)r, for some
unary Q′.
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(b) A sentence φ(P1, P2) with two unary predicate symbols in a logic L satisfies
CONSERV and EXT iff it is equivalent to ψ(P1), for some L-sentence ψ.

Proof. We prove (b); (a) then follows (it is also easily proved directly). Recall the
basic property of relativised sentences from 1.6, in this case, with M= 〈M,A,B〉,

(REL) 〈M,A,B〉 � ψ(P1) ⇔ 〈A,A ∩B〉 � ψ.

From this it is immediate that ψ(P1) satisfies CONSERV and EXT. Conversely, if
φ(P1, P2) satisfies CONSERV and EXT, let ψ = φ(x = x, P2).

Then

〈M,A,B〉 � ψ(P1) ⇔ 〈A,A ∩B〉 � ψ (REL)
⇔ 〈A,A,A ∩B〉 � φ(P1, P2) (by def. of ψ)
⇔ 〈M,A,B〉 � φ(P1, P2) (by UNIV).

�

The interest of (b) is that it relates a semantic notion (CONSERV and EXT) to a
syntactic property of sentences — a typical sort of logical result.

Notice that, for unary quantifiers, CONSERV makes no sense, and EXT, al-
though it can be formulated, is not true for e.g. the standard universal quantifier ∀.
This is another aspect of the advantage of binary quantifiers. Any unary quantifier
can be replaced by a binary one (its relativisation) which does (at least) the same
work and has the additional property of restriction the universe of quantification to
the first argument. As Theorem 19 shows, this moves give us all the binary quan-
tifiers with that property, in particular, it gives us all the binary natural language
quantifiers (provided (U2) and (U3) below hold).

For n-ary quantifiers with n > 1, it is also possible to secure CONSERV and
EXT by raising the number of arguments, though not quite as simply as when
n = 1. The next proposition surveys the possibilities.

PROPOSITION 20. Let QQ be an n-ary quantifier. then

(i) there is an (n+1)-ary quantifier Q′ satisfying CONSERV such that QMA1 . . .

An ⇔ Q′
MA1 . . . An,M ;

(ii) there is an (n+2)-ary quantifier Q′′ satisfying EXT such that QMA1 . . . An ⇔
Q′′

MA1 . . . An,M ;

(iii) there is an (n + 1)-ary quantifier Q+ satisfying both CONSERV and EXT
such that QMA1 . . . An,⇔ Q+

MA1 . . . AnM,M .

Proof.

(i) Define Q′
MA1 . . . An, B ⇔ QMA1 . . . An∩B . . . An∩B. The verification

of CONSERV is immediate.
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(ii) Let Q′′
MA1 . . . An, B ⇔ QBA1 ∩B . . . An ∩B; again EXT is immediate.

(iii) Define Q′′ as in (ii), and then form Q+ from Q′′ as in (i); the result follows
from (i) and (ii).

�
For the record, we formulate the semantic universals corresponding to CON-

SERV and EXT:

(U2) Natural language quantifiers are conservative.

(U3) Natural language quantifiers satisfy EXT.

We saw in 2.4 that the few apparent exceptions to (U2) could be accounted for by
reasonable methodological decisions (2.4.3, 2.4.9–10). As for (U3), the only ex-
ceptions found were certain interpretations of context-dependent DETs like many.
For example, if

QMAB ⇔ |A ∩B| 
 1/3|M |,
Q violates EXT. Again, it is mainly a methodological question whether one wants
to allow this kind of context-dependence or not.

3.3 Quantity

The condition ISOM, repeated below, was formulated for generalised quantifiers
of any type 〈k1, . . . , kn〉:
ISOM If f is a bijection from M to M ′

then QMR1 . . . Rn ⇔ QM ′f [R1] . . . f [Rn].

The idea is that Q does not distinguish between different elements of the universe,
or even across two universes. This requirement, which is a version of what is some-
times called topic-neutrality, can be formulated for arbitrary syntactic categories
(cf. [van Benthem, 1983b]). It is a general requirement of logical constants.

For monadic quantifiers, ISOM has a particularly conspicuous formulation.
Roughly, it says that quantifiers deal only with quantities. The latter assertion
can be made precise with the terminology from Section 1.7 as follows:

QUANT If M= 〈M,A0, . . . , Ak−1〉, M′ = 〈M ′, A′
0, . . . , a

′
k−1〉, and |PM

s | =
|PM′

s | for all s ∈ 2k, then QMA0 . . . Ak−1 ⇔ QM ′A′
0 . . . A

′
k−1.

This means that the truth value of QMA0 . . . Ak−1 depends only on wk quantities,
namely, the number of elements in the partition sets.

A bijection from M to M ′ splits into bijections of the respective partition sets,
and, conversely, bijections between these sets can be joined to one from M to M ′.
Thus we have that
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PROPOSITION 21. ISOM and QUANT are equivalent (for a monadic Q).

If we consider only one universe M in ISOM (letting M ′ = M ), and thus
permutations on M , we get a slightly weaker version, called PERM.26 From a
local perspective on quantifiers (2.1.4), PERM is the natural notion. Our global
condition EXT, however, says that the choice of universe is unimportant. Indeed,
it is straightforward to prove

PROPOSITION 22. Under EXT, ISOM and PERM are equivalent.

All the simplex DETs from 2.4.1–3 denote quantitative quantifiers. To see this,
it is sufficient to check that the defining conditions can be expressed as conditions
on the cardinalities of the relevant sets. For example, allMAB ⇔ |A − B| =
0, someMAB ⇔ |A ∩B| �= 0,mostMAB ⇔ |A ∩B| > |A−B|,bothMAB ⇔
|A−B| = 0&|A∩B| = 2,many2

MAB ⇔ |A∩B| 
 k(|A∩B|+ |A−B|), etc.
As for complex DETs, there are just a few of the constructions in 2.4.6–12

which yield non-quantitative quantifiers. One example is DETs with fixed adjec-
tive phrases, or similar expressions, such as more male than female, some red, only
liberal. We saw, however, that sentences with such expressions can also be inter-
preted using only quantitative quantifiers (2.4.9–10). Another major example are
the possessives, either simple ones such as John’s, or complex constructions with
possessives. The quantifier John’s from 2.4.6 violates ISOM since the ownership
relation need not be preserved under permutations of the objects in the universe.
For example, John may own two white shirts but no red tie, even though it is pos-
sible to permute the shirts and the ties, and the white things and the red things in a
one-one fashion. Then

John’s shirts are white

is true, but not

John’s ties are red,

as ISOM would require.
In 2.4.7, we mentioned an alternative analysis of definites, and thus in particular

of possessives. Under this analysis, one can dispense with quantifiers denoted by
simple possessives, also in various complex constructions. Quantitative quantifiers
would suffice, it seems, for all of these constructions (the same holds for every but
John (2.4.11), another counter-instance to ISOM). It would then be possible to
propose the following rather appealing universal:

(U4) Natural language quantifiers are quantitative.

If one does not want to take this methodological step, on the other hand, one
will settle for the more modest

(U4′) Simple natural language quantifiers are quantitative.

26To get a ‘quantity version’ of PERM, let M ′ = M in QUANT.



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 283

3.4 Logical Quantifiers, Negations and Duals

Whichever version of the last universal one prefers, the following class of quanti-
fiers is a natural object of study:

DEFINITION 23. If n-ary quantifier (n > 1) is logical then it satisfies CONSERV,
EXT and QUANT.

The terminology is meant to suggest that these three requirements are necessary
for logicality; further conditions will be discussed in 4.4.

For binary quantifiers, logicality means that the truth value of AMAB depends
only on the two numbers |A−B| and |A ∩B|:
PROPOSITION 24. A binary quantifier Q is logical iff, for all M,M ′ and all
A,B ⊆ M and A′, B′ ⊆ M ′, |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|
implies that QMAB ⇔ QM ′A′B′.

Proof. If Q is logical and |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|,
then, by QUANT, QAAA ∩ B ⇔ QA′A′A′ ∩ B′, and so, by UNIV (Proposition
17), QMAB ⇔ QM ′A′B′. Conversely, if the right-hand side of the equivalence
holds, QUANT is immediate. Take M and A,B ⊆ M and let M ′ = A′ = A and
B′ = A ∩B. Thus, QMAB ⇔ QAAA ∩B, i.e. UNIV holds. �

This means that a logical binary relation between sets can be replaced by a bi-
nary relation between cardinal numbers; we exploit this in 4.2. Proposition 24
can be generalised to n-ary logical quantifiers: QUANT transforms an n-ary Q
to a relation between 2n cardinal numbers, and CONSERV + EXT eliminate the
dependence of two of these.

The class of logical quantifiers has some nice closure properties. It is straight-
forward to verify that if Q1 and Q2 are CONSERV and EXT (QUANT), then so are
A1 ∧ Q2,Q1 ∨ Q2, and ¬Q1. Thus,

PROPOSITION 25. For each n > 1, the class of n-ary logical quantifiers is
closed under the usual Boolean operations.

In a natural language context, there are also inner Boolean operations. We
noted in 2.4.12 that from a binary Q one can construct two (n + 1)-ary inner
conjunctions:

Q∧1
M A1 . . . An, B ⇔ QMA1 ∩ . . . ∩AnB,

Q∧2
M A1 . . . An, B ⇔ QMA1B& . . .&QMAnB.

Inner disjunctions Q∨1 and Q∨2 are defined similarly. As for negation, we make
the

DEFINITION 26. If Q is (n + 1)-ary, the inner negation of Q is the quantifier
Q¬, defined by

(Q¬)MA1 . . . AnB ⇔ QMNA1 . . . An,M −B.
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Also, the dual of Q Q̆, is the quantifier ¬(Q¬)(= (¬Q)¬).

Outer and inner negation correspond to sentence negation and VP negation,
respectively; cf.

Not many boys are lazy,
Many boys are not lazy,

with the respective truth conditions

(¬many)M‖boy‖ ‖lazy‖,
(many¬)M‖boy‖ ‖lazy‖.

PROPOSITION 27. The class of logical quantifiers is closed under inner con-
junctions and disjunctions (both kinds), and inner negation (hence also duals).

Proof. This is again a routine check; let us take one case and verify that Q¬
satisfies EXT if Q satisfies CONSERV and EXT. Suppose A1, . . . , An, B ⊆ M ⊆
M ′. Then

(Q¬)MA1 . . . An, B ⇔ QMA1 . . . An,M −B
⇔ QMA1 . . . An, (A1 ∪ . . . ∪An) −B (CONSERV)
⇔ QM ′A1 . . . An, (A1 ∪ . . . ∪An) −B (EXT)
⇔ QM ′A1 . . . An,M

′ −B (CONSERV)
⇔ (Q¬)M ′A1 . . . An, B.

�

It should be noted that other inner negations than VP negation do not preserve
logicality. For example, if we define,for a binary Q,

Q∗
MAB ⇔ QMM −AB,

then CONSERV will not be preserved.
The following propositions list some de Morgan-like laws for inner Boolean

operations on quantifiers:

PROPOSITION 28.

(a) (¬Q)∧1 = ¬(Q∧1), (¬Q)∧2 = ¬(Q∨2),

(b) (¬Q)∨1 = ¬(Q∨1), (¬Q)∨2 = ¬(Q∧2),

(c) (Q1 ∧ Q2)¬ = Q1¬ ∧ Q2¬,

(d) (Q1 ∨ Q2)¬ = Q1¬ ∨ Q2¬,

(e) (Q∧i)¬ = (Q¬)∧i(i = 1, 2),

(f) (Q∨i)¬ = (Q¬)∨i(i = 1, 2),
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In 2.4.12 we considered the suggestion that the class of binary natural language
quantifiers is closed under (outer) conjunction and disjunction, i.e. that the follow-
ing universal holds:

(U5) If Q1 and Q2 are binary natural language quantifiers then so are Q1∧Q2

and Q1 ∨ Q2.

The case of negation was more doubtful. In the table opposite, some examples
of DETs for negations and duals in English are given. ‘-’ means that it seems hard
to find a DET, simplex or complex, denoting the negation or dual in question. Of
course these quantifiers are always expressible by some suitable paraphrase, but
the question here is whether there are determiners denoting them.

This table suggests certain questions. When is the (inner or outer) negation of a
simple quantifier again simple? Barwise and Cooper have several proposals here,
e.g. that the negations of the cardinal quantifiers at least n and exactly n re never
simple, and that if a language has a pair of simple duals, that pair consists of every
and some; cf. also 3.6.

Here we shall look a bit closer at the ‘-’ signs for the binary quantifiers in the
table. Note that if these signs are correct, the class of binary natural language
quantifiers is not closed under inner or outer negation. Discussing this question
will give us an occasion to look at some typical issues, and to introduce a few
useful notions. The purpose, as usual, is to illustrate problems and ideas, rather
than making definite empirical claims.

Table 1.

Q ¬Q Q¬ ˘Q

some no not every every
every not every no some
no some every not every
most at most half less than half at least half
many few - all but a few
infinitely many at most finitely many - all but finitely many
(at least) n less than n - all but less than n
at most n more than n all but at most n -
(exactly) n not exactly n all but n -
more . . . than at most as many . . . as - -
fewer . . . than at least as many . . . as - -

Note first that part of what Table 1 claims is that certain expressions of the form
all but Q are anomalous. Thus, while all but five, all but at most five, all but finitely
many are fine, all but at least five, all but not exactly five, all but (infinitely) many
are not. It might be claimed that the anomaly in the latter cases is pragmatic rather
than semantic. I will not argue about this directly, but instead try to see if there
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are in fact significant semantic differences between the normal and the anomalous
cases.

Exception DETs of the form all but Q (cf 2.4.11) are interpreted on the scheme

(1) all but Q = Q¬.

When is Q¬ a natural language quantifier? Before trying to give some answers to
this, we need to introduce a new concept.

DEFINITION 29. A binary quantifier Q is VP-positive (VP-negative) if, for all
M,M ′ and all A,B ⊆ M,A′B′ ⊆ M ′ such that A ∩ B = A′ ∩ B′(A − B =
A′ −B′),QMAB ↔ QM ′A;B′.27

As the terminology indicates, VP-positivity means that Q amounts solely to a
condition on the VP denotation (intersected with the N denotation, since we as-
sume CONSERV), whereas a VP-negative quantifier reduces to a condition on the
complement of the VP denotation. For example, some, no, many,28 few, infinitely
many, at least n, at most n, exactly n are VP-positive, whereas every, not every,
all but n, all but at most n are VP-negative. most, at least half, and other ‘pro-
portional’ quantifiers are neither VP-positive nor VP-negative, and the same holds
for the interpretations of the definites (because of the number condition on the N
denotation; cf. 2.4.6–7).

For a conservative Q, VP-positivity (-negativity) is related to inner and outer
negation as follows:

(2) Q is VP-positive (-negative) ⇔¬Q is VP-positive (-negative)
⇔ Q¬ is VP-negative (-positive).

The next result, essentially due to Barwise and Cooper shows that VP-positivity
is in fact a simple relational property of quantifiers. A binary quantifier is symmet-
ric if it is symmetric as a relation, i.e. iff for all M and all A,B ⊆M ,

QMAB ⇒ QMBA.

PROPOSITION 30. If Q satisfies CONSERV and EXT the following are equiva-
lent:

(a) Q is VP-positive.

(b) Q is symmetric.

(c) QMAB ↔ QMA ∩BA ∩B (for all M and all A,B ⊆M ).

27V P -positivity is related to the notions of existential and cardinal quantifiers in [Keenan and Stavi,
1986]. In fact, under CONSERV, V P -positivity is equivalent to existentiality, and cardinality is equiv-
alent to V P -positivity +QUANT.

28This is for many1(2.4.3); many2 is neither V P -positive nor V P -negative.



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 287

Proof. (a) ⇒ (b): Suppose QMAB. Let A′ = B and B′ = A. Thus A ∩ B =
A′ ∩B′, so, by VP-positivity, QMAB′, i.e. QMBA.

(b)⇒ (c): Suppose Q is symmetric. Then QMAB ⇔ QMAA∩B (CONSERV)
⇔ QMA ∩BA (symmetry) ⇔ QMA ∩BA ∩B (CONSERV).

(c) ⇒ (a): If (c) holds andA∩B = A′∩B′, whereA,B ⊆M andA′, B′ ⊆M ′,
then QMAB ⇔ QMA∩BA∩B ⇔ QMA′∩B′A′∩B′ ⇔ QM ′A′∩B′A′∩B;
(by EXT) ⇔ AM ′A′B′ (by (c)). �

The following corollary is easy using (2):

COROLLARY 31. Under CONSERV and EXT the following are equivalent:

(a) Q is VP-negative.

(b) Q¬ is symmetric.

(c) QMAB ⇔ QMA−B∅.

From our list of English DETs in 2.4, it appears much easier to find VP-positive
quantifiers than VP-negative ones. Moreover, it seems that for each DET giving
a condition on the complement of the VP denotation, there is another DET giving
the same condition on the VP denotation itself. For example, if the first DET is of
the form all but q, the corresponding positive condition is given by Q, and if the
first DET is every or not every, the second is no or some, respectively. This lets us
propose the following universal:

(U6) If Q is a VP-negative natural language quantifier, then Q¬ is also a natural
language quantifier.

A related observation is that when Q denotes a VP-negative quantifier, the form
all but Q is not allowed: all but every, all but not every, all but all but five, etc. are
ruled out. The reason, one imagines, is that this would be a very cumbersome way
of expressing a ‘double VP negation’, which in any case is equivalent to the more
easily expressed positive condition.

(U6) gives one (partial) answer to our question about when Q¬ is a natural
language quantifier. But, to return to Table 1, the most interesting case concerns
VP-positive quantifiers: all the ‘-’ signs (for binary quantifiers) are examples of
failure of Q¬ to be a natural language quantifier for VP-positive Q. What, then, is
wrong with a DET such as all but at least five?

Here is one suggestion: sentences of the form all but Q A B imply the exis-
tence of As that are B (in contrast with all A B). More precisely, let us say that a
quantifier Q has existential import, if

(3) for sufficiently large A (and M ), QMAB ⇒ somemAB.
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(3) holds for all but five, all but at most five, all but finitely many, etc., but
fails for (at least five)¬, (not exactly five)¬, (infinitely many)¬, etc. E.g.

(at least five)¬MAB ⇔ |A−B| 
 5,

so for each A with at least five elements, we have (at least five)¬MA∅ but not
someMA∅. Note that the qualification ‘for sufficiently large A’ is necessary: all
but at most fiveMAB implies someMAB only when |A| > 5, and all but finitely
manyMAB implies someMAB only when A is infinite.

What condition on Q corresponds to the fact that Q¬ has existential import/ For
VP-positive quantifiers, the answer is as follows. Call Q bounded, if

(4) there is an n such that for allM and allA,B ⊆M,QMAB ⇒ |A∩B| � n.

PROPOSITION 32. Suppose Q is VP-positive and satisfies CONSERV and EXT.
Then Q¬ has existential import iff Q is bounded.

Proof. If Q is bounded by n, then |A| > n&Q¬MAB ⇒ |A| < n&|A − B| �
n ⇒ A ∩ B �= ∅, so (3) holds for Q¬. On the other hand, if Q is not bounded,
it follows from proposition 30 that there are arbitrarily large A (and M ) such that
QMAA. But this means that Q¬MA∅, so (6) fails for Q¬. �

From these observations it is tempting to suggest the universal: for VP-positive
Q,Q¬ is a natural language quantifier only if Q is bounded. But this would be
premature. The universal concerns arbitrary quantifiers Q¬, whereas the above
discussion concerned the interpretations of DETs of the form all but Q′. In fact,
there is a simple counter example to this universal: some is VP-positive, some¬ =
not every is a natural language quantifier, but some is not bounded!

Of course we cannot require in the universal that Q¬ be the interpretation of
a DT all but Q′; that would make Q¬ trivially a natural language quantifier! But
all is not lost: it seems that if we require Q to be non-simple, the universal holds;
possibly, the simple some was the only counter-example.

What about the converse statement, i.e. if Q is bounded, does it follow that Q¬
is a natural language quantifier? Here we can say something more definite:

PROPOSITION 33. If Q is logical, VP-positive, and bounded, then Q is a finite
disjunction of quantifies of the form exactly n.

(The proof is best postponed until Section 4.2.) Thus if Q is as in this proposi-
tion, Q is clearly a natural language quantifier, and so is Q¬, which by Proposition
28 is a finite disjunction of quantifiers of the form all but n.

Some of the last observations are collected in the following tentative universal:

(U7) If Q is a VP-positive, non-simple, logical quantifier,then Q¬ is a natural
language quantifier iff Q is bounded.

This universal, then, would be an explanation of the empty spaces (for the bi-
nary quantifiers) in Table 1.



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 289

3.5 Non-Triviality

Call an n-ary quantifier Q trivial on M, if QM is either the empty or the universal
n-ary relation on P (M). Consider the condition

NONTRIV Q is non-trivial on some universe.

Quantifiers violating NONTRIV are not very interesting: either any sentence
beginning with a DET denoting such a quantifier (satisfying EXT) is true in each
model, or any such sentence is false in each model. Nevertheless, natural language
permits the construction of such DETs, for example, at least zero, fewer than zero,
at least ten and at most nine, more than infinitely many, as pointed out in [Keenan
and Stavi, 1986]. But the following universal seems true:

(U8) Simple natural language quantifiers satisfy NONTRIV.

Note that the NONTRIV quantifiers are not closed under Boolean operations:
for any Q, the quantifier Q ∨ ¬Q is trivial on every universe.

NONTRIV requires a very modest amount of ‘activity’ of Q; a stronger variant
is

ACT Q is non-trivial on each universe.

ACT holds for many natural language quantifiers, but there are exceptions even
among the simple ones, e.g. both, two, three, four, . . . (if M has less than 4 ele-
ments fourMAB is always false).

van Benthem [1984a] considers an even stronger requirement of activity, called
‘variety’, for binary quantifiers. Here is a generalisation to (n+ 1)-ary quantifiers:

VAR For allM and allA1, . . . , An ⊆M such thatA1∩. . .∩An �= ∅, there
are B1, B2 ⊆ M such that QMA1, . . . , An, B1 and ¬QMA1, . . . ,
An, B2.

In the binary case, we could say that VAR transfers the requirement of activity to
each non-empty first argument. For quantifiers satisfying CONSERV and EXT, this
seems a reasonable strengthening of ACT.

Clearly,

VAR ⇒ ACT ⇒ NONTRIV;

the implications cannot be reversed: an example of a (logical) quantifiers satisfying
ACT but not VAR is

QMAB ⇔ |A| = 1.

Note that this does not seem to be a natural language quantifier. In fact, inspection
of the DETs in 2.4 shows that the ACT ones — e;g; some, no, all, not all, most,
more . . . than, fewer . . . than, every . . . and/or, some . . . and/or (both interpreta-
tions) — also satisfy VAR. So one may propose

(U9) Natural language quantifiers satisfying ACT also satisfy VAR.
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3.6 Monotonicity

The monotonicity behaviour of a quantifier A concerns the preservation of other
truth value of QMA1 . . . , An when the arguments are decreased or increased. For
simplicity, we shall only consider binary quantifiers here, although many of the
definitions and results below can easily be extended to (n+ 1)-ary quantifiers.

DEFINITION 34. A binary quantifier Q is

MON ↑, if QMAB&B ⊆ B′ ⇒ QMAB′,
MON ↓, if QMAB&B′ ⊆ B ⇒ QMAB′,
↑MON, if QMAB&A ⊆ A′ ⇒ QMA′B,
↓MON, if QMAB&A′ ⊆ A⇒ QMA′B.

Also, Q is RIGHT MON (LEFT MON) if it is MON↑ or MON↓ (↑MON or ↓MON),
and Q is ↑MON↑ if it is both MON↑ and ↑MON; similarly for ↑MON↓, ↓MON↑,
and ↓MON↓.

Barwise and Cooper call RIGHT MON monotonicity, ↑MON persistence and ↓MON
anti-persistence.

Many natural language quantifiers have simple monotonicity properties. The
four types of double monotonicity are exemplified by the square of the opposition:

↓ MON ↑ all no ↓ MON ↓

↑ MON ↓ not all some ↑ MON ↑

Other doubly monotone quantifiers are at least n, infinitely many, which are
↑MON↑, and at most n, at most finitely many, only liberal (cf 2.4.10), which
are ↓MON↓. most is MON↑ but not LEFT MON, as is easily seen, and the same
holds for simple definites like the and John’s (as defined in 2.4.6). Of the inter-
pretations of any from 2.4.3, many1 is ↑MON↑, many2 is MON↑ but not LEFT
MON, and many3 is neither LEFT nor RIGHT MON. Other examples of neither
LEFT nor RIGHT MON quantifiers are exactly n, all but n, between five and ten.

The monotonicity behaviour of Q determines that of its negations and dual:

PROPOSITION 35.

(a) Outer negation reverses the direction of both RIGHT and LEFT MON.

(b) Inner negation reverses RIGHT MON but preserves LEFT MON.

(c) Dual-formation preserves RIGHT MON but reverses LEFT MON.

For example, from the monotonicity behaviour of one column of Table 1, we can
infer that of all the other columns (for the binary quantifiers).
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For doubly monotone quantifiers, we have the following pleasing result from
van Benthem [1983c]. The proof is a nice demonstration of the strength and flexi-
bility of the quantifiers constraints we are using.

THEOREM 36 (van Benthem). Under CONSERV and VAR, the only doubly
monotone quantifiers are those in the square of opposition.

Proof. Suppose Q is ↓ MON ↓. We prove that Q = no; the theorem then follows
from Proposition 35. Take a universe M and A,B ⊆ M . First assume that A ∩
B = ∅. We claim that there is C such that QMAC. This is immediate from VAR
if A �= ∅; otherwise, note that QM∅∅ holds by ↓ MON ↓ and the fact that Q is
non-trivial on M . By MON ↓ it then follows that QMA∅, i.e. QMAA∩B. Thus,
by CONSERV, QMAB. Conversely, suppose that QMAB holds. By ↓ MON ↓,
QMA∩BA∩B. But then QMA∩BC holds for all C ⊆M , since, for any such
C, it suffices (by CONSERV) to show QMA ∩ BA ∩ B ∩ C, and this holds by
MON ↓. Hence, VAR tells us that A ∩B = ∅, and the proof is finished. �
For logical quantifiers, we can replace double monotonicity by LEFT MON:

THEOREM 37 (van Benthem). The only logical and LEFT MON quantifiers sat-
isfying VAR are the ones in the square of the opposition.

A convenient method to prove this for finite universes (the case van Benthem
considers) will be given in 4.2; actually, the result holds for all universes. Note the
use of VAR here; without it, room is left for many other LEFT MON quantifiers, as
is clear from the examples above.

Barwise and Cooper propose several universals involving monotonicity. One of
them is the following:

(U10) Simple binary natural language quantifiers are either RIGHT MON or con-
junctions of RIGHT MON quantifiers.

Note that exactly n (which probably is simple) is the conjunction of the RIGHT
MON at least n and at most n. This and other examples of neither LEFT nor
RIGHT MON quantifiers suggest a weaker notion of monotonicity, which well be
called continuity:

DEFINITION 38. A binary quantifier Q is

RIGHTCONT, if QMAB&QMAB′′&
&B ⊆ B′ ⊆ B′′ ⇒ QMAB′,

LEFTCONT, if QMAB&QMA′′B&
&A ⊆ A′ ⊆ A′′ ⇒ QMA;B.

Let us further call a quantifier STRONG RIGHT (LEFT) CONT if both it and its
outer negation are RIGHT (LEFT) CONT. We have

RIGHT(LEFT)MON ⇒
→ STRONG RIGHT (LEFT) CONT ⇒
⇒ RIGHT(LEFT)CONT.
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None of the implications can be reversed: for example, exactly n is RIGHT (and
LEFT) CONT, but not STRONG RIGHT (or LEFT) CONT.

Thijsse [1983] observes that the property of quantifiers identified in (U10) is in
fact RIGHT CONT:

PROPOSITION 39. A binary quantifiers is RIGHT CONT iff it is the conjunction
of a MON ↑ and a MON ↓ quantifier.

The proof is similar to the proof of Proposition 41(b) below.
Our use of the conservativity constraint on binary quantifiers gives the right and

the left arguments quite different roles, so it is not surprising that right monotonic-
ity and left monotonicity are very different properties. This is clear from Theorem
37, and will become even more apparent in Section 4.3. A further illustration of
the difference is afforded by the following model-theoretic characterisation of the
left monotonicity properties. Note first that any quantifier Q can be identified with
a class of structures: in the binary case,

Q = {〈M,A,B〉 : QMAB}.
Call such a class sub-closed (ext-closed) if it is closed under substructures (ex-
tensions), and inter-closed if, whenever two structures, one a substructure of the
other, are in Q, then so is every structure ‘between’ these two. It is straightforward
to verify that

PROPOSITION 40. Under CONSERV and EXT, a binary quantifier is sub-closed
(ext-closed, inter-closed) iff it is ↓ MON (↑ MON,LEFT CONT).

For first-order definable quantifiers, the semantic property of being subclosed has a
well known syntactic counterpart, namely, definability by a universal sentence (cf.
[Chang and Keisler, 1973, p. 128]). Thus, among first-order definable quantifiers
satisfying CONSERV and EXT, the ↓ MON ones are precisely those definable by
universal sentences. Corresponding results for ↑ MON and LEFTCONT quantifiers
follow from the previous proposition and

PROPOSITION 41. For any binary quantifier Q,

(a) Q is ext-closed ⇔ ¬Q is sub-closed,

(b) Q is inter-closed ⇔ Q = Q′ ∧ Q′′, for some sub-closed Q′ and some
ext-closed Q′′.

Proof. (a) is obvious. As for (b), a conjunction of the sort indicated is clearly
inter-closed. Conversely if Q is inter-closed, define

Q′
MAB ⇔ QM ′A′B′, for some extension 〈M ′, A′, B′〉 of 〈M,A,B〉,

Q′′
MAB ⇔ QM ′A′B′, for some substructure 〈M ′, A′, B′〉 of 〈M,A,B〉;

then Q′ and Q′′ are as desired. �
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Another syntactic characterisation of monotonicity from first-order logic is the
following. Call a sentence φ(P ), containing the unary P among its non-logical
symbols, upward monotone (in P ), if

φ(P ) ∧ ∀x(Px→ P ′x) → φ(P ′)

is valid, and similarly for downward monotonicity. For example, sentences defin-
ing LEFT or RIGHT MON quantifiers will be monotone in certain predicate sym-
bols. An occurrence of P in φ is said to be positive (negative), if it is within the
scope of an even (odd) number of negations, when → and ↔ have been elimi-
nated. The next result is well known from first-order model theory (the proof is
an application of Lyndon’s interpolation theorem; cf. [Chang and Keisler, 1973, p.
90]).

PROPOSITION 42. A first-order sentence φ(P ) (which may contain other pred-
icate symbols but no function or constant symbols) is upward (downward) mono-
tone iff it is equivalent to a sentence where P occurs only positively (negatively).

Monotonicity properties have been quite useful in describing and explaining
linguistic phenomena; cf. [Barwise and Cooper, 1981; Keenan and Stavi, 1986],
and, in connection with so-called polarity items, [Ladusaw, 1979; Zwarts, 1986].
We will have several further uses of monotonicity in Section 4. In mathematical
logic, monotone quantifiers have been studied in model theory and recursion the-
ory. The beginnings of the model theory for montone quantifiers will be given in
Appendix B; further information can be found in [Barwise and Feferman, 1985].
On the more recursion-theoretic side, cf. for example, [Aczel, 1975] and [Barwise,
1978], and the references therein.

3.7 Partial and Definite Quantifiers

In 2.4.6 we mentioned that the number conditions belonging to the definites have
been taken to indicate that the corresponding quantifiers are partial. This is the
approach of Barwise and Cooper, who furthermore identify a semantic property
of partial quantifiers, called definiteness, characteristic of the interpretation of the
definites.29

Consider (in this subsection) binary quantifiers which are partial in the first
argument (i.e. for certainA,QMAB may be undefined for allB). For example, the
partial quantifier the coincides with the total the when |A| = 1, but is undefined
when |A| �= 1.

DEFINITION 43. Q is definite, if, for all M and all A ⊆ M for which Q is
defined, there is a non-empty set BA such that, for all B ⊆M , QMAB ⇔ BA ⊆
B.

The simple definites of 2.4.6 all have this property, when treated as partial quan-
tifiers: e.g. for the, BA = A (or BA = X ∩ A for some context set X), and for

29They consider (the singular) the, both, and DETs of the form the n, but not possessives.
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John’s, BA = PJohn ∩ A. That the use of partial quantifiers is necessary here
follows from

PROPOSITION 44. Under CONSERV, no definite quantifier is total.

Proof. This follows from the fact that a definite and conservative quantifier must
be undefined for A = ∅: suppose Q is defined for ∅ and consider B∅ that exists
by definiteness. Since B∅ ⊆ B∅ we have QM∅B∅ and thus, by CONSERV,
AM∅∅. But then B∅ ⊆ ∅, by definiteness, contradicting the stipulation that B∅

is non-empty. �

In view of this proof it is natural to weaken the requirements in Definition 43
slightly. Call Q universal, if it is as in 43, except that B∅ is allowed to be empty
(i.e. that BA is required to be non-empty only when A is). All definite quantifiers
are universal, but not conversely, since all is universal. This is indeed the prime
example of a universal quantifier, as the next result shows.

THEOREM 45. Suppose Q is logical. Then Q is universal iff Q = all whenever
defined.

Proof. If Q coincides with all whenever defined it is clearly universal (with BA =
A). Conversely, suppose Q is universal and defined for A. We need to show that
BA = A. If A = ∅ we get BA = ∅ just as in the proof above. Suppose, then,
that A �= ∅. then BA �= ∅ by universality. Also, BA ⊆ A; this follows from
CONSERV, since QMABA, whence QMAA ∩ BA, and thus BA ⊆ A ∩ BA by
universality. Now assume that BA �= A. Take a ∈ BA and a′ ∈ A − BA. Let
f be a function which permutes a and a′ but leaves everything else in M as it is.
By ISOM, QMf [A]f [BA], i.e. QMA(B − {a}) ∪ {a′}. Thus, by universality,
BA ⊆ (BA − {a}) ∪ {a′}. But this contradicts a ∈ BA. �

Thus the logical universal quantifiers, and in particular the definite ones, are just
partial versions of all. This is one reason to restrict attention to total quantifiers,
as we have done in preceding sections and shall continue to do in what follows.
Another reason is that partial quantifiers make the model theory more cumber-
some, and that many results for total quantifiers can rather easily be extended to
the partial case by inserting phrases of the form ‘whenever . . . is defined’ in suit-
able places.

Note finally that even if partial quantifiers are admitted in principle,, the alter-
native treatment of definites suggested in 2.4.7 makes it possible to propose the
universal.

(U11) Natural language quantifiers are total,

while still preserving the intuition that statements involving definites lack truth
value when the corresponding number conditions are not met.
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3.8 Finite Universes

Many DETs more or less presuppose that the N and VP denotations under con-
sideration are finite sets. Examples are more than half, 30 percent of, many, but
also DETs like most, more . . . than, fewer . . . than, where the interpretations we
gave actually work for infinite sets as well. It seems that in many natural language
contexts we can make the blanket assumption

FIN Only finite universes are considered.

For DETs like infinitely many or all but finitely many, on the other hand, infinite
models seem to be needed. So our strategy will be to keep track of those results that
need FIN and those that don’t. Interestingly, it turns out that FIN is a very natural
constraint for the quantifier theory in the next section, in the sense that it simplifies
results and proofs. Most of the results have generalisations to the case when FIN
is dropped, but the added information does not appear to be very exciting from a
natural language point of view.

This should be contrasted with the situation in mathematical logic. There in-
finite sets are crucial, and finite models are often just a nuisance. Consider the
effect FIN would have in classical model theory. Most standard methods of con-
structing models (compactness, ultraproducts, etc.) would become ineffective, and
many of the usual logical questions would become pointless. For example, the four
properties of logics mentioned in Section 1.6 lose their interest. This is clear for
the Tarski and the Löwenheim property, and for compactness and completeness it
follows from

PROPOSITION 46. Under FIN, no logic is compact or complete.

Proof. Under FIN, the set {∃≥nx(x = x) : n = 1, 2, . . .} has no model, does EL
(and hence all its extensions) fail to be compact. The statement about completeness
follows from a result by Trakhtenbrot, by which the set of all finitely valid EL-
sentences (i.e. the set of valid sentences under FIN) is not recursively enumerable.
For any logic L = L(Qi)i∈I , this set is the intersection of the set of finitely valid
L-sentences with the (recursive) set of EL-sentences. It follows that the set of
finitely valid L-sentences is not recursively enumerable. �

Some standard logical questions remain, though. For example, we may still
compare the power of expression of various logics under FIN, though some of the
facts may change: we showed in 1.7 that L(most) < L(more) in general, but that
L(most) ≡ L(more) under FIN. Likewise, definability issues are affected by FIN;
for example, all but finitely many is not first-order definable in general, although
it is trivially first-order definable under FIN.

It should be noted, however, that the main definability results in Section 1.7
(Theorem 10 and Corollary 11) continue to hold in the presence of FIN.
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4 THEORY OF BINARY QUANTIFIERS

Binary quantifiers are the most common ones in natural language; they are also
the most manageable relations, and we restrict attention to them from now on. A
similar study of (n + 1)-ary quantifiers appears quite feasible, cf. [Keenan and
Moss, 1985]. The important step is abandoning unary quantifiers: most of the
results in this section have no counterpart for the unary case.

If nothing else is said, we assume in what follows that all quantifiers involved
are logical and satisfy NONTRIV. Other constraints, such as ACT, VAR and FIN,
will be stated explicitly.

As a consequence of the assumption that EXT holds, we can often skip reference
to the universe M , and write

QAB

instead of QMAB. More precisely, let QAB mean that, for some M such that
A,B ⊆M,QMAB. EXT then guarantees that this is well defined.

Most of the results in 4.1–5 below originate from [van Benthem, 1984a; van
Benthem, 1983c].

4.1 Relational Behaviour

We have already encountered standard properties of binary relations, such as
(ir)reflexivity (2.2.2) and symmetry (3.4), in the context of natural language quan-
tification. A first start in quantifier theory is to exploit this perspective systemati-
cally. As we shall see, this turns out to be both rewarding in itself and useful for
other purposes. Here are a few common properties of relations, and some quanti-
fiers exemplifying them:

One project is to find informative characterisations of (logical) quantifiers hav-
ing such properties. As for symmetry, two useful equivalent formulations were
given in Proposition 30. To deal with the other properties, we first state a

LEMMA 47. If QAB holds, there exists B′ such that QAB′ and QB′A.

Proof. Choose B′ such that A ∩ B = B′ ∩ A and |A− B| = |B′ − A| (this may
require extending the original universe, which is permitted by EXT. Since QAB,
we get QAB′ by CONSERV, and then QB′A by QUANT. �

Note the use of logicality here; the lemma fails if any of CONSERV, EXT, or
QUANT are dropped. The following corollary is immediate (since we are assuming
NONTRIV):

COROLLARY 48 (van Benthem). There are no asymmetric quantifiers.

A characterisation of antisymmetry is also forthcoming.

COROLLARY 49. Q is antisymmetric iff QAB ⇒ A ⊆ B.
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Table 2.

Property Definition Examples

symmetry QAB ⇒ QBA some, no, at least n, at most n,
exactly n, between n and m

antisymmetry QAB&QBA ⇒ A = B all
asymmetry QAB ⇒ ¬QBA -
reflexivity QAA all, at lest half, all but finitely many
quasireflexivity QAB � QAA some, most, at least n
weak reflexivity QAB ⇒ QBB some, most, at least n
quasiuniversality QAA ⇒ QAB no, not all, all but n
irreflexivity ¬QAA not all, all but n
linearity QAB ∨ QBA ∨ A = B not all
transitivity QAB&QBC ⇒ QAC all, but finitely many
circularity QAB&QBC ⇒ QCA -
euclidity QAB&QAC ⇒ QBC -
antieuclidity QAB&QCB ⇒ QAC ?

Proof. If the condition holds, Q is clearly antisymmetric. Conversely, if Q is
antisymmetric and QAB holds, take B′ as in the proof of Lemma 47. Thus A =
B′ by antisymmetry, and |A−B| = |B′ −A| = 0, i.e. A ⊆ B. �

This also gives a characterisation of linearity, since Q is linear iff ¬Q is antisym-
metric. As to the reflexivity properties and quasiuniversality, their main interest is
in combination with other properties, as we shall see. The following consequences
of Lemma 47 may nevertheless be noted:

COROLLARY 50. Weak reflexivity implies quasireflexivity.

This leaves only the properties in Table 2 involving three set variables. The ‘-’
signs here are explained by the following results from van Benthem [1984a].

THEOREM 51 (van Benthem). There are no Euclidean quantifiers.

We omit the proof, but show how to obtain the following corollary with the aid
of Lemma 47

COROLLARY 52 (van Benthem). There are no circular quantifiers.

Proof. Suppose Q is circular. If QAB, take B′ as in Lemma 47. By circularity,
QAA. Thus, QAB ⇒ QAA&QAB ⇒ QBA (again by circularity), i.e. Q
is symmetric. But it is easy to see that a circular and symmetric quantifier is
Euclidean, contradicting the theorem. �
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Actually, some of these results, e.g. Corollary 48 and Theorem 51, were first pro-
posed as semantic universals, based on empirical evidence (Frans Zwarts). Only
later was it realised that they are consequences of more fundamental properties of
quantifiers. This provided a first illustration of the potential usefulness of quanti-
fier theory for linguistic explanation.

We left a question mark for antieuclidity in Table 2. Here is an example though:
QAB ⇔ |A| = n. The following result from [Westerståhl, 1984] explains the
situation.

THEOREM 53. Q is antiEuclidean iff QAB ⇒ QAC (for all A,B,C).

Two corollaries follow easily:

COROLLARY 54. Q is antiEuclidean iff there is a class X of cardinal numbers
such that QAB ⇔ |A| ∈ X .

COROLLARY 55 (Zwarts). Under VAR there are no antiEuclidean quantifiers.

Thus antiEuclidean quantifiers put no condition at all on the second argument,
i.e. the VP denotation. It seems safe to conclude that there are no antiEuclidean
natural language quantifiers.

Finally, consider transitivity. Here are some examples of transitive quantifiers:

(a) all, all but finitely many,

(b) alleAB ⇔ ∅ �= A ⊆ B (all with existential import; cf. 3.4)

(c) allnAB ⇔ A ⊆ B ∨ |A| < n (n 
 1; note that all1 = all)

(d) any antiEuclidean quantifier (by Theorem 53)

(e) QAB ⇔ (A ⊆ B&|A| 
 5) ∨ |A| = 3.

Let us check (e): suppose QAB and QBC. In case |A| = 3 we get QAC au-
tomatically, so suppose A ⊆ B&|A| 
 5. But then |B| �= 3, so we must have
B ⊆ C&|B| 
 5, whence A ⊆ C&|A| 
 5, i.e. QAC. �

The following characterisation of transitivity from [Westerståhl, 1984] depends
essentially on FIN. It shows that (e) above is in a sense the typical case. If X,Y
are sets of natural numbers, let X < Y mean that every number in X is smaller
than every number in Y ; this is taken to hold trivially if X or Y are empty.

THEOREM 56 (FIN). Q is transitive iff there are sets X,Y of natural numbers
such that X < Y and QAB ⇔ |A| ∈ X ∨ (A ⊆ B&|A| ∈ Y ).

The proof combines a result from [van Benthem, 1984a] with techniques that
will be introduced in 4.2 below. Note that the transitive all but finitely many fails
to satisfy the condition in the theorem, if infinite universes are allowed. The next
corollary shows that VAR has drastic effects on transitivity.

COROLLARY 57 (FIN). Under VAR the only transitive quantifiers are all and
alle.
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Proof. This follows from the observation that VAR implies that either X = ∅ and
Y = N , or X = {0} and Y = N = {0} in the theorem. �

Having thus looked at single properties of quantifiers, we can go on to combi-
nations of such properties. For example, using Theorem 51 and Proposition 30 we
obtain the

COROLLARY 58. No quantifiers are both

(a) symmetric and transitive,

(b) symmetric and antiEuclidean,

(c) symmetric and (ir)reflexive,

(d) quasiuniversal and reflexive.

Reflexivity often has strong effects in combination with other properties. Note
that, if Q is reflexive, A ⊆ B ⇒ QAB (by CONSERV). From this and Corollary
49 we immediately get

COROLLARY 59. The only reflexive and antisymmetric quantifier is all.30

Furthermore, it is not hard to see that reflexivity together with the condition in
Theorem 56 implies that, for some n 
 1,X = {0, . . . , n− 1} and Y = {k : k 

n}. This gives

COROLLARY 60 (van Benthem (FIN)). The only reflexive and transitive quanti-
fies are alln, for n 
 1.

Again, all but finitely many is a counterexample if FIN is dropped.

COROLLARY 61 (FIN). Under ACT, the only reflexive and transitive quantifier
is all.

Proof. Suppose that Q = alln, for some n 
 2. Let M be a universe with exactly
one element. It follows that Q is trivial on M , contradicting ACT. �

The next result connects our simple properties of relations with the monotonicity
properties of Section 3.6.

THEOREM 62 (Zwarts).

(a) If Q is reflexive and transitive, then Q is ↓ MON ↑.

(b) If Q is symmetric, then

(i) Q is quasireflexive iff Q is MON ↑,

(ii) Q is quasiuniversal iff Q is MON ↓.

30Actually, only CONSERV is needed for this result [van Benthem, 1984a].
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Proof. We prove (a); (b) is similar. If QAB and A′ ⊆ A, then QA′;A, by
reflexivity and CONSERV, and hence QA;B by transitivity. Similarly, if QAB
and B ⊆ B′, then QBB′ and hence QAB′. �

From this and Theorem 36 we get the following variant of Corollary 61.

COROLLARY 63. Suppose that Q satisfies CONSERV and VAR (but not neces-
sarily EXT or QUANT), and is reflexive and transitive. Then Q = all.

Proof. It suffices to note that neither Theorem 36 nor Theorem 62 uses EXT or
QUANT. �

Instead of characterising properties in terms of which quantifiers satisfy them, one
may turn the question around and ask for characterisations of our most common
quantifiers in terms of their properties. For the quantifier all and its variants, such
characterisations were in fact obtained in Corollaries 57, 59–61, and 63. We end
by giving a corresponding result for some. Let, for each cardinal κ, someκ be the
quantifier at least κ, i.e.

someκAB ⇔ |A ∩B| 
 κ

(so some1 = some).

THEOREM 64 (van Benthem). Q is symmetric and quasireflexive iff Q = someκ,
for some κ 
 1.

A proof will be given in Section 4.2. The following corollary is obtained simi-
larly to Corollary 61.

COROLLARY 65. Under ACT, the only symmetric and quasireflexive quantifier
is some.

4.2 Quantifiers in the Number Tree

By Proposition 24, each binary logical quantifier Q can be identified with a binary
relation between cardinal numbers. We use the same notation for this relation,
which is thus defined by

(1) Qxy ⇔ for some A,B with |A−B| = x and |A ∩B| = y,QAB.

Inversely, given any binary relation Q between cardinal numbers, we get the cor-
responding logical quantifier by

(2) QAB ⇔ Q|A−B| |A ∩B|.
With (1) and (2) we can switch back and forth between a set-theoretic and a
number-theoretic perspective on quantifiers. The latter perspective is the subject
of the present subsection.
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Here are the number-theoretic versions of a few well known quantifiers:

all xy ⇔ x = 0,
no xy ⇔ y = 0,
somenxy ⇔ y 
 n,
allnxy ⇔ y = 0 ∨ x+ y < n,
most xy ⇔ y < x,
infinitely many xy ⇔ y is infinite,
all but finitely many xy ⇔ x is finite.

Properties of quantifiers also have their number-theoretic versions. In the case
of universal properties, such as those in Table 2, there is a simple translation
from the set-theoretic to the number-theoretic framework. Details can be found
in [Westerståhl, 1984]; here we just consider a few examples. If two sets A,B are
involved, let x correspond to |A − B|, y to |A ∩ B|, and z to |B − A|. Then, for
example,

(3) quasireflexivity is the property: Qxy ⇒ Q0x+ y (for all x, y),

(4) symmetry is the property: Qxy ⇒ Qzy (for all x, y, z), or, equivalently,
Qxy ⇔ Q0y (for all x, y);

the last equivalence follows from Proposition 30 (it is also easy to see directly).
Sometimes proofs are simpler to carry out in the number-theoretic framework.

This holds for several of the results in 4.1, in particular Theorems 53 and 56. As
an illustration, we give the following

Proof.[of Theorem 64] Let κ be the least cardinal x such that Q0x, κ exists, by
NONTRIV and (4). Also, κ > 0; otherwise, for any x, y, we get Qy0 (from Q00
by (4)), whence Q0y (by (3)), and so Qxy (by (4)), contradicting NONTRIV. We
claim that Q = someκ. Clearly, Qxy implies y 
 κ, by 94). Conversely, given
x, y such that y 
 κ, take x′ such that κ + x′ = y. By (4) and the definition of
κ,Qx′κ. Thus, by (3), Q0x′ + κ i.e. Q0y so Qxy by (4). �

An operation that becomes nicely represented in the number-theoretic framework
is inner negation, since we have

PROPOSITION 66. (Q¬)xy ⇔ Qyx.

The number-theoretic perspective becomes particularly attractive if FIN is as-
sumed. Quantifiers are then subsets of N2. N2 can be represented as a number
tree, where each point (x, y) has two immediate successors (x+1, y) and x, y+1),
which in turn are the immediate predecessors of the point (x+ 1, y + 1):31

31Without FIN one may represent logical quantifiers as subsets of Card2 (Card = the class of car-
dinal numbers). This is not as easy to visualise as N2. For example, diagonals and columns get mixed
up:(0,ℵ0), (1,ℵ0), . . . are in the column given by ℵ0, but also in the diagonal {(x, y) : x + y = ℵ}.
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(3,0) (2,1) (1,2) (0,3)

(2,0) (1,1) (0,2)

(0,1)(1,0)

(0,0)row x− |A−B|

column y = |A ∩B|

diagonal x+ y = |A|

Quantifiers and their properties can be visualised in the number tree, and proofs
can often be carried out directly in it. For an illustrative example, the reader is
invited to carry out the above proof of theorem 64 in the number tree (assuming
FIN). Note that symmetry (quasi-reflexivity) means that if a point is in Q then so
are all the points on the column (so is the rightmost point on the diagonal) though
it. Another illustration, also left to the reader, is the proof of Proposition 33 in the
number tree.

When representing a quantifier Q in the tree it is often practical to write a ‘+’
on the points in Q and a ‘-’ on the other points. For example,

+
- +

- - +
- - - +

- - - - +

-
- +

- + -
- + - -

- + - - -

-
- +

- - +
- - + +

- - - + +
all exactly one most

With this technique we can give our non-triviality conditions the following per-
spicuous formulations (we assume FIN for the rest of this subsection):

(5) NONTRIV ⇔ there is at least one + and one -in the tree,

(6) ACT ⇔ there is at least one + and one - in the top triangle (0,0),(1,0), (0,1),

(7) VAR ⇔ there is at least one +and one - on each diagonal (except (0,0)).

This illustrates that VAR is a much stronger assumption than ACT, i.e. that the
universal (U9) in 3.5 really has content.

Monotonicity properties turn out to be particularly suited to number tree rep-
resentation. Beginning with the RIGHT monotonicity properties, we can easily
verify that

(8) MON ↑⇔ each + fills the diagonal to its right with +s,

(9) MON ↓⇔ each + fills the diagonal to its left with +s,
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(10) RIGHT CONT ⇔ between two +s on a diagonal there are only +s.

Also observe that STRONG RIGHT CONT, i.e. RIGHT CONT for both Q and
¬Q, amounts to (10) together with the same condition with ‘+’ replaced by ‘-’. It
follows that

(11) STRONG RIGHT CONT ⇔ on each diagonal there is at most one change of
sign.

The LEFT monotonicity properties can be illustrated as follows:

(x, y)

(x′, y′)

(x, y)
(x, y)

↓ MON ↑ MON LEFT CONT

I.e. if (x, y) (and (x′, y′)) is in Q then so are all the points in the shaded area.
Working in the number tree, we can introduce several variants of the above

monotonicity properties. Define ↑c MON , ↓c MON ,LEFT cCONT , and
STRONG LEFTc CONT by replacing in (8)–(11), respectively ‘diagonal’ with ‘col-
umn’, and do the same for ↑r MON , ↓r MON ,LEFT rCONT , and STRONG
LEFTr CONT, replacing ‘diagonal’ with ‘row’. The terminology is motivated by
the fact that

(12) ↑c MON ⇔ (QAB&A′ ⊆ A&A ∩B = A′ ∩B ⇒ QA′B),

and similarly for the other properties; in other words, they are as the previous
LEFT properties, only we keep A∩B fixed in the ‘c’ case, and A−B fixed in the
‘r’ case. To make the intuitive picture clear, her is yet another way to illustrate the
downward monotone properties we have so far encountered:

MON ↓ ↓c MON ↓r MON ↓ MON

In the tree it is easy to check whether particular quantifiers have such properties.
For example, it is clear from the above illustrations that most is MON ↑ and ↓c

MON, but not ↓r MON. It is also clear that

(13) ↑ MON ⇔↑c MON& ↑r MON,

(14) ↓ MON ⇔↓c MON& ↓r MON.

The corresponding statement for CONT fails, however (as can also be seen from
the tree).
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An interesting application of ‘tree techniques’ is given in [van Benthem, 1983c]
to an idea in [Barwise and Cooper, 1981] concerning how hard it is (psycholog-
ically) to ‘process’ (verify or falsify) quantified statements. Barwise and Cooper
speculated that quantifiers with monotonicity properties were easier to process and
would therefore be preferred in natural language. Now, verifying a sentence of the
form all AB in a universe with n elements takes n observations, and falsifying it
takes at least 1 observation. If we look at most AB instead (and suppose that n is
even for simplicity), the least possible number of observations it takes to verify it
is n/2 + 1, and the corresponding number for falsification is n/2. In both cases
the sum is n + 1. This holds for many basic quantifiers, but not all: e.g. exactly
one AB requires n observations for verification and 2 for falsification.

van Benthem defines, with reference to the number tree, Q to be of minimal
count complexity if, on each universe with n elements (this corresponds to the finite
top triangle of the tree with the diagonal x + y = n as base), there is a minimal
confirmation pair (x1, y1) and a minimal refutation pair (x2, y2)(xi + yi � n)
such that every pair (x, y) on the diagonal x+ y = n is determined by them:

x 
 x1&y 
 y1 ⇒ Qxy,
x 
 x2&y 
 y2 ⇒ ¬Qxy

One can verify that x1 + y1 + x2 + y2 = n+ 1, and thus that all and most are of
minimal count complexity, but not exactly one.

Now consider the very strong continuity property:

SUPER CONT =df STRONG RIGHT CONT&
&STRONG LEFT cCONT&
&STRONG LEFT rCONT .

In other words, SUPER CONT means that there are no changes of sign in any of
the three main directions in the number tree. It can be seen that the SUPER CONT
quantifiers are precisely those determined by a branch in the tree (which can start
anywhere on the edges; not necessarily at the top) with the property that, going
downward, it always contains one of the immediate successors of each point on it:

The connection with count complexity is now the following:

THEOREM 67 (van Benthem). (FIN) Under ACT, Q is of minimal count com-
plexity iff it is SUPER CONT.

The proof of this consists simply in showing that the two combinatorial descrip-
tions give the same tree pattern.
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From the above description of SUPER CONT one also obtains the following
results:

PROPOSITION 68. SUPER CONT ⇒ RIGHT MON.32

PROPOSITION 69. There are uncountably many SUPER CONT logical quanti-
fiers (even under FIN).

What is the relation between SUPER CONT and LEFT CONT? Using the tree
it is easy to see that neither property implies the other. In the next subsection
we shall find, moreover, that there are only countably many LEFT CONT logical
quantifiers, under FIN.

4.3 First-order Definability and Monotonicity

We shall prove a theorem characterising the first-order definable quantifiers in
terms of monotonicity, under FIN. The most general form of the result has noth-
ing directly to do with logicality, so we begin by assuming that Q is an arbitrary
k-ary quantifier (K 
 1). We noted in 3.6 that Q can be identified with the class
of structures 〈M,A0, . . . , Ak−1〉 such that QMA0, . . . , Ak−1, and we defined the
properties of being sub-closed, ext-closed, and inter-closed for classes of struc-
tures.

The key to the result is the following lemma from [van Benthem, 1984a]:

LEMMA 70 (van Benthem). (FIN) Suppose K is a class of (finite) structures
which is definable in EL by a set of monadic universal sentences. Then K is defin-
able already by one such sentence.

THEOREM 71. (FIN) Q is first-order definable iff there are interclosed quanti-
fiers Q1, . . . ,Qm satisfying ISOM such that Q = Q1 ∨ . . . ∨ Qm.

Proof. Suppose first Q is a disjunction of this kind. By Proposition 41, each Qi

can be written ¬Q′
i ∧ Q′′

i , where Q′
i and Q′′

i are sub-closed. Moreover, it easily
follows from the proof of that proposition that both Q′

i and Q′′
i satisfy ISOM if

Qi does. Thus it will suffice to show that every sub-closed quantifier satisfying
ISOM is first-order definable. Assume, then, that Q has these properties. Un-
der FIN, any class of structures closed under isomorphism is definable by a set
of EL-sentences, by a standard argument: a finite structure can be completely de-
scribed (up to isomorphism) by one EL-sentence, and the relevant set consists of
all negated descriptions of models not in the class. If the class is in addition sub-
closed, a variant of this argument shows that the sentences can be taken universal
(one takes the negations of the existentially quantified diagrams of structures not in
the class).33 Since in our case the class is also monadic, Q is first-order definable
by Lemma 70.

32This does not need FIN.
33This observation is also from [van Benthem, 1984a]. For the notion of a diagram, cf. [?, p. 68].



306 DAG WESTERSTÅHL

Now suppose Q is definable by an EL-sentence ψ = ψ(P0, . . . , Pk−1). By
Corollary 11 (with L = EL), there is a natural number n such that Q is closed
under the relation ≈n (cf. Section 1.7). Consider sentences expressing conditions

|PM
s | = i,

for some i < n, or

|PM
s | 
 n.

It follows that any conjunction of such sentences where s runs through all the
functions from k to 2, is a complete description of a model 〈M,A0, . . . , Ak−1〉,
as far as Q is concerned. There are finitely many such descriptions, and ψ must
be equivalent to the disjunction of all complete descriptions of structures in Q.
Moreover, each disjunct defines a quantifier, which, by the form of the definition,
is easily seen to be inter-closed. Since any EL-definable quantifier satisfies ISOM,
the theorem is proved. �

Returning now to the case of binary logical quantifiers, we get from the theorem
and Proposition 40 that

COROLLARY 72. (FIN) If Q is binary and logical, then Q is first-order definable
iff Q is a finite disjunction of LEFT CONT (binary and logical) quantifiers.

There is a simpler direct proof of the corollary. This is because we can work
in the number tree. In one direction, it suffices to show that ↑ MON quantifiers
are first-order definable. If Q is ↑ MON, each point in Q generates an infinite
downward triangle. From a given triangle within Q, only finitely many steps can
be taken towards the edges of the tree. It follows that Q is a finite union of such
triangles,

and therefore clearly first-order definable. The proof in the converse direction,
using Corollary 11, also becomes simpler in the number tree.

Corollary 72 shows, once more, that the LEFT monotonicity properties are
much stronger than the RIGHT ones, due to the special role CONSERV gives to
the left argument of a quantifier. In particular, there are only denumerably many
LEFT CONT logical quantifiers (under FIN); this should be contrasted with Propo-
sition 69.
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Note that FIN is essential here. For example, at most finitely many is ↓ MON
but not definable by any first-order sentence (or set of such sentences).34

Definability results such as these have not only logical interest: they also tell us
something about the extent to which a certain logic — first order logic in this case
— is adequate for natural language semantics. Of course, we knew already that
first-order logic is not adequate, e.g. by the non-definability of most, but Corollary
72 places such isolated facts in a wider perspective.

The results here concern definability in the set-theoretic framework for quan-
tifiers. What about number-theoretic definability (for logical quantifiers, under
FIN)? Here we should consider formulas φ(x, y) in some suitable arithmetical
language, containing at least the individual constant 0 and the unary successor
function symbol S (and hence the numerals 0 = 0,1 = S0,2 = SS0, etc.). Then
φ defines Q iff, for all m,n,

Qmn⇔ 〈N, 0, S, . . .〉 � φ(m, n).

Examples of definable quantifiers, some of which in languages with the relation
< or the operation +, were given at the beginning of Section 4.2. Now which
arithmetical definability notion corresponds to first-order definability in the set-
theoretic sense? Notice first that even the simple formula

x = y

defines a non-first-order definable quantifiers, namely, exactly half. However, let
the pure number formulas be those formulas in the language {0, S} obtained from
atomic formulas of the form

x = n

by closing under Boolean connectives. Clearly every pure number formula with
variables among x, y defines a first-order definable quantifier. But also conversely,
for it can be seen by inspecting more closely the proofs of Theorem 71 and Corol-
lary 72 that every first-order definable quantifier is in fact a Boolean combination
of quantifiers of the form at most n and all but at most n, and the former, for
example, is defined by the pure number formula

y = 0 ∨ . . . ∨ y = n.

Thus, we have the

COROLLARY 73. (FIN) Q is first-order definable iff Q is arithmetically defined
by some pure number formula.

This of course raises new definability questions. Which quantifies are defined
by arbitrary formulas in {0, S}? Which are defined by formulas in {0, S,+}? It

34Michał Krynicki has observed (private communication) that, without FIN, LEFTCONT quantifiers
are definable in logic with the cardinality quantifiers Qα (Section 1.3).
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can be seen that most belongs to the second, but not the first, class. These ques-
tions are studied in connection with computational complexity in van Benthem
[1985; 1987a]. He shows, among other things, that the second class of quantifiers
mentioned above consists precisely of those computable by a push-down automa-
ton (under FIN). He also characterises the first-order definable quantifiers compu-
tationally, namely, as those computable by a certain type of finite-state machine.
This illustrates another aspect of the interest of definability questions: classifica-
tion of quantifiers w.r.t. various notions of complexity. For the relevant definitions,
and for several other interesting results along the same lines, we must refer to the
two papers by van Benthem mentioned above.

4.4 Logical Constants

Clearly not all the 2ℵ0 logical quantifiers deserve the title logical constant. We
have already presented conditions that severely restrict the range of quantifiers.
For example, LEFT MON plus VAR leaves only the quantifiers in the square of op-
position (3.6). But there is no immediate reason why these two constraints should
apply to logical constants. In this subsection, we look at some conditions which
can be taken to have an independent connection with logical constanthood.

One idea seems natural enough, namely, that quantifiers that are logical con-
stants should be simple natural language quantifiers (Section 2.4). Thus, the se-
mantic universals holding for simple quantifiers apply to them. It follows that they
should be logical (i.e. obey CONSERV, EXT, and QUANT) and satisfy NONTRIV
and RIGHT CONST (by (U10) and Proposition 39).

As for constraints specifically related to logical constanthood, we will concen-
trate on one rather strong property often claimed to be characteristic of logical
constants, namely, that they do not distinguish cardinal numbers. The idea is that
such distinctions belong to mathematics, not logic. We will consider two rather
different ways of making this idea precise.

FIN is used in what follows, so that we can argue in the number tree. It is possi-
ble, however, to generalise the results (with suitable changes) to infinite universes.

The first version of the above idea goes back to Mostowski [1957], although he
only applied it to the infinite cardinalities. Given QAB, the relevant cardinality
here is that of the universe, or in our case, by CONSERV and EXT, that of A. We
must of course separate 0 from the other cardinalities, since distinguishing non-
zero numbers from 0 is precisely what basic quantifiers such as some and all do.
With these observations, we can transplant Mostowski’s idea to the finite case as
follows:

DEFINITION 74. Suppose m,n > 0. Q does not distinguish m and n if

(a) Qm0 ⇔ Qn0,

(b) Q0m⇔ Q0n,
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(c) if x1 + y1 = m and x2 + y2 = n, where xi, yi > 0, then Qx1y1 ⇔ Qx2y2.

For example, at least k does not distinguish any m,n < k, but distinguishes all
m,n for which at least one is 
 k.

Note that no restriction at all is put on the point (0, 0). To avoid trivial compli-
cations n the next result, we shall restrict attention to the number tree minus (0, 0)
(we write ‘−0’ to indicate this). Also, we replace, in this subsection, NONTRIV
by the slightly stronger condition that in the tree minus(0, 0), there is at least one
+ and one −.

It is not surprising that the present logicality constraint has rather drastic effects
on the range of quantifiers:

THEOREM 75 (FIN, −0). Suppose that Q does not distinguish any pair of non-
zero natural numbers and satisfies RIGHT CONT. Then Q is one of the quantifiers
some, no, all, not all, and some but not all.

Proof. There are four possible patterns for the top triangle minus (0, 0).
Case 1: ++. By the cardinality property and RIGHT CONT, this puts a + every-
where, contradicting (our present version of) NONTRIV. Case 2: +−. Then the
left edge will have only +, and the right edge only −. For the remaining interior
triangle, there are two possibilities, giving either no or not all. Case 3: −+. This
is symmetric to Case 2 an gives some and all. Case 4: −−. Besides the trivial
case with only −, there is the case with + in the interior triangle and − on both
edges, i.e. some but not all. �

We may note that VAR, or STRONG RIGHT CONT, will exclude some but not
all, but it is not clear that we have to assume any of these. (On the other hand, it
could be argued that one interpretation of the DET some, especially when focused
or stressed, is some but not all.)

The second version of the requirement that logical constants do not distinguish
cardinal numbers is from [van Benthem, 1984a]. Here the idea is that no point in
the tree is special: you always proceed downward in the same way. Proceeding one
step downward can be regarded as a thought experiment, whereby one, givenA and
B, adds one element to A−B or A∪B. The condition is then that the outcome is
uniform in the tree, i.e. that it does not depend on the number of elements in these
sets (the point (0, 0) need not be excluded here, although it can be):

UNIF The sign of any point in the tree determines the sign of its two immediate
successors.

THEOREM 76 (van Benthem (FIN)). The UNIF and RIGHT CONT quantifiers
are precisely some, no, all, not all and the quantifiers |A| is even and |A| is odd.

Proof. Again a simple tree argument suffices. There are eight top triangles to con-

sider; let us look at two. First consider
−− +. Here the − successors are determined,

but for the right + successor there is a choice, and we get two patterns
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-
- +

- + -
- + - +

-
- +

- + +
- + + +

The first of these is excluded by RIGHT CONT, and the second is some.

Now consider the top triangle
+− −. Here the −successors are either both −

or both +. In the first case we get only − in the rest of the tree, contradicting
NONTRIV. In the second case we get |A| is even. the other cases are similar. �

The last two quantifiers in the theorem are not natural language quantifiers and
should be excluded somehow. The following slight strengthening of NONTRIV
would suffice:

NONTRIV∗ On some diagonal in the tree, there is at least one + and at least one
−.

In fact, it seems that we may safely replace NONTRIV by NONTRIV∗ in the uni-
versal (U8) in 3.5.

It is interesting that these two quite different implementations of the idea that
logical constants are insensitive to changes in cardinal number give so similar re-
sults. There are of course other ideas than cardinal insensitivity on which one can
base constraints for logical constanthood. Further ideas and results in this direc-
tion can be found in van Benthem [1984a; 1983c]. For example, he shows that
by slightly weakening UNIF one can obtain, in addition to the quantifiers in the
square of opposition, most, not most, least (i.e. least AB ⇔ |A∩B| < |A−B|),
not least, and no others, as logical constants. The number tree is an excellent
testing ground for experiments in this area.

4.5 Inference Patterns

The universal properties of quantifiers we have considered can be seen as inference
schemes for quantified sentences:

QAB

QBA

(symmetry)

QAB
QBC

QAC

(transitivity)

QAB
QAC

QBC etc.

(euclidity)

There are also schemes with fixed quantifiers, such as
QAB
all BC
QAC

(MON↑).
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In 4.1 we answered some questions of the type: which quantifiers satisfy infer-
ence scheme S? This is familiar from Aristotle’s study of syllogisms, cf. Section
1.1. Aristotle aimed at systematic survey, and he answered the question for all
schemes of a certain form.

EXAMPLE. Consider schemes with 2 premisses, 1 conclusion (all of the form
QXY with distinct X,Y ), at most 3 variables, and 1 quantifier symbol. There
are 6 possibilities for each formula in a scheme, and hence, up to notional vari-
ants (permutations of the variables), 63/3! = 36 possible schemes. Identifying
schemes that differ only by the order of the premisses, and deleting the trivially
valid schemes whose conclusion is among the premisses, 15 schemas will remain.
Then, it can be shown, using Lemma 47 and Theorems 51–53, that for logical
quantifiers these reduce to symmetry, transitivity, anti-euclidity, and the following
property which we may call weak symmetry:

QAB
QBC

QBA

(ignoring unsatisfiable schemes, such as euclidity). Weak symmetry is strictly
weaker than symmetry; a number-theoretic characterisation of it can be found in
[Westerståhl, 1984].

Thus, there are no other schemes than these (of the present form), and the results
of 4.1 (e.g. Corollary 54 and Theorem 56) give us a pretty good idea of which
quantifiers satisfy them.

EXAMPLE. Aristotelian syllogisms. The schemes are as in the first example,
except that there are 3 quantifier symbols, and that one variable (the ‘middle term’)
is required to occur in both premisses but not in the conclusion. Aristotle solved
this problem in the special case that quantifiers are taken among some, all, no, not
all. In the general case of logical quantifiers the solution is of course much more
complicated.

The last example indicates that systematic survey of all possible cases is not nec-
essarily an interesting task. In this subsection we shall consider a more specific
problem: given the well known inference schemes for basic quantifiers such as
some and all, are these quantifiers determined by the schemes, or are the schemes,
as it were inadvertently, satisfied by other quantifiers as well?

The logical interest of such questions should be clear. They concern the ex-
tent to which the syntactic behaviour of logical constants determine their semantic
behaviour. Negative results will tell us that inference rules of a certain type under-
determine semantic interpretation — a familiar situation in logic. Positive results,
on the other hand, can be viewed as a kind of completeness or characterisation
theorems.35

35One analogy is with the usual completeness theorems in logic, relating provability to truth in mod-
els. Or, one may think of the extent to which axiomatic characterisations of a relation (say) determine
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These questions are also related to deeper issues in the philosophy of language,
namely, whether the ‘concrete manifestations’ of linguistic expressions determine
their meaning; cf. post-Wittgensteinian discussions of meaning and use, or Quine’s
idea on the indeterminacy of translation, or the debate on whether the meaning of
logical constants are given by their introduction rules, and more generally on the
relation between meaning and proofs (in the context of classical vs. intuitionistic
logic; cf. [Prawitz, 1971; Prawitz, 1977; Dummett, 1975]).

Clearly, inference patterns concern the ‘concrete’ side of language, whereas
model theory deals with abstract entities. It would seem that results which relate
these two perspectives may be of interest regardless of one’s position on the deeper
philosophical issues.

A first observation is that the content of our question depends crucially on which
kind of inference scheme one allows, i.e. on the choice of inferential language. We
will look at two such languages here, with quite different properties. But then point
is illustrated even more clearly by the following

EXAMPLE. Let the inferential language be predicate logic with the (binary) quan-
tifiers some and all (this is not essential; we could use ∀ and ∃ instead). The stan-
dard rules for some, but with an arbitrary quantifier symbol Q in place of some,
can be formulated as follows;

(1)
φ(t)ψ(t)

Qx(φ(x), ψ(x))

φ(x) ∧ ψ(x) → θ

Qx(φ(x), ψ(x)) → θ
(x not free in θ).

Q satisfies a rule of this type if, for each model M and each sequence ā of individ-
uals from M , if the premisses are true in (M, ā) (with Q interpreted as QM ), then
so is the conclusion. But then it is practically trivial that

(2) Q satisfies the rules (1) iff Q = some.

For suppose Q satisfies (1). Take anyM . We must show that QMAB ⇔ A∩B �=
∅. If a ∈ A∩B then P1x and P2x are true in 〈M,A,B, a〉, and hence, by the first
rule, so is Qx(P1x, P2x), i.e. QMAB holds. If, on the other hand, A ∩ B = ∅,
let θ be a logically false sentence and b any element of M . Then P1x ∧ P2x → θ
is true in 〈M,A,B, b〉, and thus also Qx(1x, P2x) → θ, by the second rule. So
Qx(P1x,2 x) is false in the model, i.e. QMAB does not hold. (Similar remarks
apply to all.)

Why does the inferential language of this example trivialise the question of whether
the rules characterise the quantifiers? One suggestion might be that rules like (1)
are circular (in some sense to be specific) as explanations of meaning. In any
case, we shall now define two other inferential languages, ILsyll and ILboole, for
which the problem has non-trivial solutions. These languages have no individual

an intended interpretation (e.g. questions of categoricity). Since the relations in the present case are
basic logical constants, a third analogy suggests itself: characterisations of EL, such as Lindström’s
theorem (Section 1.6).
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variables, only set variables. Most of the inference schemes we have seen so far
can be expressed in them. The idea to pose the present charaterisation problem
for quantifiers was introduced in [van Benthem, 1984a] and the results on ILsyll

below are from [van Benthem, 1983c].

DEFINITION of ILsyll.

(a) Syntax: Elementary schemes in ILsyll are of the form QAB or ¬Q′AB,
where A,B, . . . are the set variables and Q,Q′, . . . quantifier symbols. A
scheme in ILsyll is either an elementary scheme or has the form

(a) φ1 ∧ . . . ∧ φn → θ1 ∨ . . . ∨ θk,

where φi and θj are elementary schemes.

(c) Semantics: Suppose ψ is a scheme in ILsyll with quantifier symbols among
Q1, . . . , Qm, and with p set variables. For any quantifiers Q1, . . . ,Qm, a
(Q1, . . . ,Qm)-model (for ψ)is a model M = 〈M,A0, . . . , Ap−1〉, where
Qi is interpreted as Qi

M . We say that

(Q1, . . . ,Qm) satisfies the scheme ψ,

if ψ is true (in the obvious sense) in all (Q1, . . . ,Qm)-models. Similarly,
(Q1, . . . ,Qm) satisfies a set Ψ of ILsyll-schemes if it satisfies each element
of Ψ. Finally, the syllogistic theory of (Q1, . . . ,Qm) is

Thsyll(Q1, . . . ,Qm) = {ψ : (Q1, . . . ,Qm) satisfies ψ}.

This definition just gives more formal versions of notions we have been using
all along. For example, all the properties in Table 2 (4.1), except antisymmetry
and linearity, can be expressed in ILsyll (these two would be expressible if we
had allowed quantifier constants above). That a quantifier Q satisfies a scheme
just means that the scheme expresses a valid inference rule for Q. For example,
Qsatisfies

QAB → QBA

just in case Q is symmetric. Note that more than one quantifier symbol may occur
in a scheme. For instance, the scheme

Q1AB ∧Q2CA→ Q1CB

is satisfied by the pair (no, all) (this is the syllogistic inference ‘Celarent’; cf.
Section 1.1).

DEFINITION of ILboole.
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(a) Syntax: As for ILsyll, except that elementary schemes now have the form
QXY or ¬Q′XY , where X,Y are (Boolean) combinations of set variables
with the symbols ∩,∪, and −.

(b) Semantics: As before, where the Boolean symbols have their usual meaning.

Examples of schemes in ILboole but not in ILsyll are

QAB →AA A ∩B,
QAA∩ B → QAB,
QAB →QA ∩B A ∩B,

QA ∩B A ∩B → QAB;

the first two together express CONSERV, and the other two are (together) equiva-
lent to symmetry.

There is one last

DEFINITION 77. Let Ψ be a set of schemes in ILsyll (or ILboole), in the quanti-
fier symbols Q1, . . . , Qm. Let Q1, . . . ,Qm be quantifiers. We say that

Ψ determines (Q1, . . . ,Qm),

if (a) (Q1, . . . ,Qm) satisfies Ψ, and (b) no other sequence of m quantifiers sat-
isfies Ψ. Also, (Q1, . . . ,Qm) is determined in ILsyll (ILboole), if some set of
schemes in ILsyll (ILboole) determines (Q1, . . . ,Qm).

Note that if (Q1, . . . ,Qm) is determined in ILsyll (ILboole),, it is determined
by the set Thsyll(Q1, . . . ,Qm)(Thboole(Q1, . . . ,Qm)).

As an example, consider the set consisting of two ILsyll-schemes expressing
symmetry and quasireflexivity. some satisfies this set, but, by Theorem 64, the set
does not determine some. The obvious question is then whether some larger set
determines some i.e. whether some is determined in ILsyll. A negative answer
follows from the next theorem.

We assume FIN from now on (but see the comments at the end). The quantifiers
somen and alln were defined in Section 4.1.

THEOREM 78 (van Benthem). Thsyll (some, all) is satisfied precisely by the
pairs (somen, alln), for n 
 1.

Thus not even (some, all) is determined in ILsyll. That some (or all) is not
determined follows immediately, since Thsyll(some) ⊆ Thsyll(some, all).

This theorem is an immediate consequence of the next two theorems, which
give additional information about the pair (some, all).

THEOREM 79 (van Benthem). Thsyll(some, all) = Thsyll(somen, alln) for
n 
 1.

For the next result, let Φ consist of the ILsyll-schemes saying that Q1 is sym-
metric and quasireflexive and that Q2 is reflexive and transitive, plus the following
schemes:
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(4) Q1AB ∧Q2AC → Q1BC,

(5) ¬A1AA→ Q2AB.

THEOREM 80 (van Benthem). If (Q1,Q2) satisfies Φ, then, for some n 
 1,Q1 =
somen and Q2 = alln.

The proof uses Theorem 64 and Corollary 60, which tells us that Q1 = somem

and Q2 = allk, for some m, k. It can then be seen that (4) implies that k � m,
and (5) that m � k.

As to the proof of Theorem 79, we shall indicate the basic technique that is
used. The first step is reformulation. Note that the negation of a scheme of the
form (3) is equivalent to

φ1 ∧ . . . ∧ φn ∧ ¬θ1 ∧ . . . ∧ ¬θk,

i.e. that negated schemes are (equivalent to) conjunctions of elementary schemes.
Since

ψ ∈ Thsyll(Q1, . . . ,Qm) ⇔ ¬ψ has no (Q1, . . . ,Qm) − model,

we are done if any (some, all)-model for a negated scheme can be transformed
into a (somen, alln)-model for the scheme and vice versa.

Now let M = 〈M,A0, . . . , Ap−1〉 be a (some, all)-model for ¬ψ. Each con-
junct in ¬ψ expresses either that a set of the form Ai ∩Aj or Ai −Aj is empty, or
that it is non-empty. Each Ai ∩Aj or Ai −Aj can be written uniformly as a union
of partition sets of the form PM

s (cf. Section 1.7). The two types of condition
expressed are thus

(a) x = x1 + x2 + . . . > 0,

(b) x = x1 + x2 + . . . = 0,

where x is the cardinal of Ai ∩ Aj (or A−Aj) and the xk are the cardinals of the
relevant partition sets. Now add n − 1 new elements to each non-empty partition
set. This gives a model M+〈M+, A+

0 , . . . , A
+
p−1〉, where the conditions (a) and

(b) are transformed into

(a+) x+ = X+
1 ,+x

+
2 + . . . 
 n,

(b+) x+ = x+
1 +X+

2 + . . . = 0.

But then it is easy to check that M+ is a (somen, alln)-model of ¬ψ.
Note that this method does not work if we start with a (somen, alln)-model and

want to get a (somen+1, alln+1)-model, say. For example, with n = 3, we may
have

x = x1 + x2 < 3
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with x1 = x2 = 1; then adding 1 gives

x+ = x+
1 + x+

2 
 4,

which means that the schemes of the form ¬Q1AiAj will not be preserved.
Nevertheless, by an ingenious elaboration of this technique, van Benthem shows

that a (somen+1, alln+1)-model can in fact always be obtained, and, combining
this with yet another construction, he also shows how to obtain a (some,all)-model
from a (somen, alln)-model.

In view of these negative results about ILsyll, it is natural to ask if there is
a stronger inferential language where the basic logical constants are determined.
Indeed, ILboole is such a language. First observe that in ILboole it is sufficient
to look at one of the quantifiers some and all. This follows from the next, easily
verified, proposition.

PROPOSITION 81.

(a) Q is determined in ILsyll iff ¬Q is determined in ILsyll.

(b) Q is determined in ILboole iff Q¬ is determined in ILboole iff (Q, Q̆) is
determined in ILboole.

We therefore concentrate on some. Let Φ0 consist of schemes saying that Q is
symmetric and quasireflexive, plus the following ILboole-scheme:

(vi) ¬QAA ∧ ¬QBB → ¬QA ∪B A ∪B
THEOREM 82. Φ0 determines some.

Proof. Clearly some satisfies these schemes. Now suppose Q is any (logical)
quantifier satisfying Φ0. As before, the first two schemes imply that Q = somen

for some n 
 1. Since Q satisfies (6), we also have

|A| < n&|B| < n⇒ |A ∪B| < n

(for all sets A,B). But this means that n = 1. �

Now let us look at the other somen in KLboole. From the last result, Thboole

(some) �= Thboole(somen) when n > 1. The proof technique for ILsyll works for
ILboole as well — indeed, it works better since conditions on (the cardinal number
of) any Boolean combinations of A0, . . . , Ap−1 can be expressed there. We thus
get a somen-model from a some-model as before. In fact, even from a some2-
model we get a somen-model with this method: adding n − 2 to each non-empty
partition set transforms

(a) x = x1 + x2 + . . . 
 2,

(b) x = x1 + x2 + . . . < 2
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into

(a)+ x+ = x+
1 + x+

2 + . . . 
 n,

(b)+ x+ = x+
1 + x+

2 + . . . < n,

since at most one xi in (b) is non-zero. This gives us

THEOREM 83. Thboole(somen) ⊆ Thboole(some2) ⊆ Thboole(some), for n >
2.

No such method works if we start with a somem-model with m > 2, however.
This was pointed out by Per Lindström: in fact, we have the

THEOREM 84.

(a) Thboole(somen+1) �⊆ Thboole(somen), for n 
 2.

(b) On the other hand, if m 
 n2 then thboole(somem) ⊆ Thboole(somen).

Proof.

(a) the case n = 3 will give the general idea. Let ¬ψ be a negated scheme in
ILboole expressing the conditions

(7)
x1 + x2 + x3 
 k, x1 + x+ 4 < k, x2 + x4 < k, x3 + x4 < k,
x4 + x5 + x6 
 k, x1 + x5 < k, x2 + x5 < k, x3 + x5 < k,

x1 + x6 < k, x2 + x6 < k, x3 + x6 < k,

when Q is interpreted as somek (6 partition sets are needed, so a negated
scheme with 3 set variables suffices). First note that for k = 3, (7) is satisfied
when all the xi are 1. Thus ¬ψ has a some3-model. But (7) cannot be true
when k = 4. For, the first two conditions would give an xi(1 � i � 3)
and an xj(4 � j � 6) which both are 
 2, and this contradicts one of the
remaining conditions. So ¬ψ has no some4-model.

(b) Suppose m 
 n2, and take k such that (k − 1)n � m < kn. It follows that
n � k, and hence that k(n− 1) � (k − 1)n < m. Now, given conditions

(a) x = x1 + x2 + . . . 
 n,

(b) x = x1 + x2 + . . . � n− 1,

multiply all the xi by k. Then, x+ 
 m in (a)+ and x+ < m in (B)+; this
gives the desired somem-model.

�

As to the converse inclusions, we have the

THEOREM 85. Thboole(somen) �⊆ Thboole(somem), for 1 � n < m.
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Proof. Generalising (6), we can write a scheme in ψ in ILboole with n + 1 set
variables which expresses∧

|Ai1 ∪ ∪ . . . Ain
| < K ⇒ |A1 ∪ . . . ∪An+1| < k

(here the conjunction is taken over all subsets of {1, . . . , n + 1} with exactly
n elements), when Q is interpreted as somek. Then somen satisfies ψ. For
otherwise, there are sets A1, . . . , An+1 such that |A1 ∪ . . . ∪ An+1| 
 n and
|Ai1 ∪ . . . ∪Ain

| < n for 1 � i1, . . . in � n+ 1. it follows that, for all i,

Ai �⊆
⋃
j �=i

Aj .

So in every Ai there is an element not in the other Aj . But this means that |A1 ∪
. . . ∪An| 
 n, a contradiction.

Now let m < n. Choose pairwise disjoint A1, . . . , An+1 such that |A1| =
m − n and |Ai| = 1 for 1 < i � n + 1. Then, if 1 � i1, . . . , in � n + 1, the
cardinal of Ai1 ∪ . . . ∪ Ain

is either n or m − 1, i.e. in both cases < m, whereas
|A1 ∪ . . . ∪An+1| = m. So somem does not satisfy ψ. �

Summarising, we find once more that some behaves in a significantly different
way than somen for n > 1 (and similarly for all):

COROLLARY 86. Of the quantifiers somen, only some is determined in ILboole.

Proof. some is determined, by Theorem 82. Further, if Ψ determines somen, then,
by Theorem 83,

Ψ ⊆ Thboole(somen) ⊆ Thboole(some).

Thus some satisfies Ψ, and it follows that n = 1. �

As for the quantifiers satisfying Thboole(somen), it follows from our results here
that they are all of the form somek with k � n, that some, some2, and somen are
always among them, but that somen−1 never is if n > 3.

The results in this subsection depend on FIN. For ILboole, the proof technique
works without FIN, but the facts are different. More precisely, with the previous
methods one easily proves

THEOREM 87. For each infinite cardinal κ, Thboole(some) = Thboole ( in-
finitely
many) = Thboole(someκ).

Thus, as one would expect, some is not determined in ILboole without FIN.
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4.6 Local Perspective

Let M be a fixed finite universe, with n elements. We can then study local quanti-
fiers on M ,with much the same aim as before: of all these quantifiers, which ones
are ‘realised’ in natural language?

Most of our global constraints have local versions. CONSERV is the same as
before (with M fixed), and so are the monotonicity properties of 3.6 and the rela-
tional properties of 4.1. ISOM reduces to the local PERM (3.3). But one constraint
which lacks a local version is EXT. As a consequence, results not depending on
EXT have more or less immediate local versions, but when EXT is used, such ver-
sions may be harder to get. For example, Theorem 36 on double monotonicity
holds locally as well, whereas Corollary 48 on the non-existence of asymmetric
quantifiers, which uses EXT, fails: QMAB ⇔ A = M&B = ∅ is an asymmetric
quantifier on M , satisfying CONSERV and PERM. Suitably modified versions of
Corollary 48 and similar results do exist, however, cf. [Westerståhl, 1983].

One advantage of a local and finite perspective is that the effects of constraints
such as CONSERV and PERM can be assessed in a rather perspicuous way, namely,
by the number of quantifiers they allow. here are some examples for binary quan-
tifiers on M :

Table 3.

number of no constraints CONSERV CONSERV & CONSERV

quantifiers on VP-positivity & MON↑
M under

no constraints 2w4n

23n

22n

?

when n = 2 65536 512 16 108

PERM 2(
n+3
3 ) 2(

n+2
2 ) 2(

n+1
1 ) (n+ 2)!

when n = 2 1024 64 8 24

There is a simple uniform calculation for the first three entries in both rows of
this table (these and other calculations have appeared in [Higginbotham and May,
1981; Keenan and Stavi, 1986; Keenan and Moss, 1985; van Benthem, 1984a;
Thijsse, 1983]). Consider a pair (A,B), with A,B ⊆M , as a function f from M
to {0, 1}2 : f(x) = (1, 1) if x ∈ A∩B, f(x) = (0, 1) if x ∈ B−A, etc. There are
4n such functions and hence 24n

quantifiers on M . CONSERV means that B − A
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can be assumed to be empty, removing the value (0, 1), and reducing the number
of functions to 3n. By Proposition 30, CONSERV + VP-positivity means that only
the pairs (A,A) need be considered, reducing the number of functions to 2n.

Under PERM, QM is a relation between 4 numbers whose sum is n. To choose
such numbers is essentially to put n indistinguishable objects in 4 (distinguished)
boxes; there are (n+3

3 ) ways to do this, by standard combinatorics. As before,
addition of CONSERV or CONSERV + VP-positivity reduces the number of boxes
to 3 and 2, respectively.

PERM and CONSERV are defined for k-ary quantifiers on M(k 
 2), and the
above calculations extend straightforwardly to this case: just replace ‘4’ by ‘2k’
(= the number of partition sets induced by (A0, . . . , Ak−1)), ‘3’ by ‘2k − 1’, and
‘2’ by ‘2k − 2’ (in the exponent) in the first two columns of Table 3.

The value (n+ 1)! for Perm + CONSERV + MON↑ can be obtained by looking
in the number tree for M , i.e. the number tree restricted to pairs (x, y) such that
x + y � n. But the corresponding value without PERM is unknown:36 [Thijsse,
1983] shows that a calculation of this appears to require an explicit calculation
of the number of anti-chains in P (M); the latter is an unsolved mathematical
problem. Thijsse’s paper contains several further counting results for quantifiers
under various constraints (e.g. the number 108 for the case |M | = 2), and so does
the paper by Keenan and Moss.

It is rather amazing at first sight that there are 65536 possible quantifiers on
a universe with only two elements. The strength of the conservativity universal
appears clearly from Table 3, which indicates that counting quantifiers is not just
pleasant combinatorics — see the papers by Keenan and Stavi and Keenan and
Moss for linguistic applications of such counting results.

Another distinguishing feature of the local perspective on quantifiers is that
new definability issues arise here. Suppose certain DET denotations are given in
M , and likewise denotations of other expressions: proper names, common nouns,
transitive and intransitive verbs, etc. (we may think of a model M being given, not
just a universe). Suppose further that we have identified certain constructions in
natural language which can be interpreted as operations producing new quantifiers

36Editors’ note. The problem indicated is known as Dedekind’s problem: give a nice formula
(closed-form expression) for the number of anti-chains in P (M) (or, equivalently, the number of
monotone Boolean functions of n variables). As far as I know, the problem is still unsolved. These
so-called Dedekind numbers form sequence A000372 in the On-line Encyclopaedia of Integer Se-
quences, http://www.research.att.com/∼njas/sequences/: 2, 3, 6, 20, 168, 7581, 7828354,
2414682040998, 56130437228687557907788

The problem also pops up in areas such as tiling and graph colouring. Upper and lower bounds are
known (and important for computational purposes), as well as its asymptotic behaviour. The number
is well defined and it is rather easy to write a program that calculates the numbers — given sufficient
resources. Before 1990 I checked the number for n = 7 on a simple PC (one of the values reported
in the literature, viz. 2414682040998, turned out to be correct), shortly before 2000 the value for n=8
was calculated. (vide link). FYI: the listed number 108 arises as the product of powers of Dedekind
numbers: 213261, where the exponents are binomial coefficients.

The Editors are grateful to E. Thijsse for this information.
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from given denotations. We can then ask which quantifiers can be generated from
the given denotations by means of these operations. Such generated quantifiers are
‘realised’ in a definite sense; in fact, if the operations and the starting-point were
chosen wisely, one may expect each generated quantifier to be denoted by some
complex DET expression (relative to M).

This approach is pursued in [Keenan and Stavi, 1986]. We will present one of
their main results, which shows that conservativity is a crucial invariant here. Let
CONSERVM be the class of binary quantifiers on M . Also if K is any class of
binary quantifiers on M , let B(K) be the smallest class containing K which is
closed under conjunction, disjunction, and inner and outer negation. Finally, for
each a ∈M , define the quantifiers Sa on M by

SaAB ⇔ a ∈ A ∩B.
Keenan and Stavi argue that each Sa can be taken as a basic, initially given

quantifier. For, if b is an individual in M who owns a and nothing else, i.e. if
Pb = {a} (cf. Section 2.4.6), then

b’s one or moreMAB ⇔ Pb ∩A ⊆ B&|Pb ∩A| 
 1
⇔ SaAB.

Note that the Sa are conservative (but PERM fails), and that, to regard them as
given, we also need each element of M to be given (by proper names or other
means), and enough ownership relations to guarantee that for each a in M there
is a b in M such that Pb = {a}. these are not implausible assumptions, and the
Boolean operations are natural enough.37

THEOREM 88 (Keenan and Stavi). Suppose K ⊆ CONSERVM and that Sa ∈
K for a ∈M . Then B(K) = CONSERVM .

Proof. We know from 3.4 that Boolean operations preserve conservativity, so
B(K) ⊆ CONSERVM . Now let Q be any element of CONSERVM . We then have

QAB ⇔ QA A ∩B
⇔ ∃X∃y ⊆ X(QXY ∧X = A ∧ Y = A ∩B)
⇔

∨
X ⊆ Y ⊆M

&QXY

(X = A ∧ Y = A ∩B).

Note that the last disjunction is finite. It only remains to show that each disjunct
can be generated from the Sa by Boolean operations. We claim that each disjunct
is equivalent to the conjunction of

37Cf. [Keenan and Stavi, 1986] for the plausibility of the assumptions. Unlike Keenan and Stavi, I
have included inner negation in the closure operations, but this can be avoided at the cost of adding a
variant of Sa (namely, b’s zero or more, when Pb = {a}) to the initial quantifiers. In 3.4 I expressed
some doubts as to the closure of natural language quantifiers under inner or outer negation. These
doubts do not affect Theorem 88, however, for, in the proof, we only apply inner and outer negation to
the quantifiers Sa, and, as Keenan and Stavi show, ¬Sa and Sa¬ are expressible with familiar DETs.
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(1)
∧

a∈Y SaAB,

(2)
∧

a∈X−y(Sa¬)AB,

(3)
∧

a∈M−X(¬SaAB = S̆aAB).

For, (1) expresses that Y ⊆ A∩B, (2) thatX−Y ⊆ A−B, and (3) thatA∩B ⊆ X
and A − B ⊆ X , and it is easily verified that the conjunction of these expresses
that X = A ∧ Y = A ∩B. �

By this theorem, precisely the conservative quantifiers on M are generated from
certain basic ones by Boolean operations. This lends new significance to the con-
servativity universal (U2). By (U2) and the theorem, precisely these quantifiers on
M are ‘realised’, in the sense of being denoted by DETs (relative to a model; cf.
also note 38).

Note that the complex DET expression resulting from the proof of the theorem
depends crucially on M . That is, conservative quantifiers, such as most, will get
different ‘definitions’ on different universes, and there is in general no way of giv-
ing a global definition working for all universes. Keenan and Stavi prove a theorem
(the ‘Ineffability Theorem’) to the effect that no fixed DET expression, containing
symbols for simplex DETs, K-place predicates, adjectives, NP s and prepositions,
can be made to denote, by varying the interpretation of these symbols, an arbitrary
conservative quantifier on an arbitrary universe. The reason is that the number of
possible denotations of such expressions grows slower with |M | = n than 23n

.38

5 PROBLEMS AND DIRECTIONS

A basic theme of this paper has been to point to natural language as a source for
logical investigation. This theme is by no means limited to quantifiers. Thus, one
main direction for further study is extension to other categories. Some of the con-
straints we have studied can be transferred to other categories, and new constraints
emerge. A typical trans-categorical constraint is ISOM, which has significant ef-
fects in most categories. For instance [Westerståhl, 1985a] shows that, for relations
between individuals, ISOM leaves essentially just Boolean combinations with the
identity relation, and [van Benthem, 1983b] proves that, for arbitrary operations
on subsets of the universe, ISOM leaves precisely the operations whose values are
Boolean combinations of the arguments. For further results in this area, and for
a broad assessment of the present approach to logical semantics, the reader is re-
ferred to [van Benthem, 1986],which also lists several topics for further research,
both in the quantifier area and beyond, complementing the brief suggestions given
below.

38This makes heavy use of the universal (U4′) that simplex DETs denote PERM quantifiers:
2(n+1)(n+2)/2 grows slower than w3n

. Without (Ur′), a simplex DET symbol could denote any
conservative quantifier on any M .
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Within the area of quantifiers there is, to begin with, the whole field of the syn-
tax of various constructions with DETs, and of how to treat them semantically.
We have mentioned (Section 2) constructions with only, the treatment of definites,
of partitives, and of ‘there are’-sentences, to take just a few examples. The pa-
pers [Keenan and Stavi, 1986; Keenan and Moss, 1985] provide ample evidence
that these linguistic questions may be fruitfully pursued from the present model-
theoretic perspective.

Another linguistic concern is the search for universals. As we have seen, uni-
versals can be used as basic theoretical postulates, or they can appear as empirical
generalisations, sometimes amenable to explanation by means of other principles.
the list of universals in Section 3 was not meant to be complete, and some of the
formulations were quite tentative. Further proposals can be found in the papers by
Barwise and Cooper and by Keenan and Stavi.

The use of semantic theory to explain linguistic facts, such as the privileged
status of certain constants, the restrictions on various syntactic constructions, or
the discrepancies between possible and actual interpretations of expressions of a
certain category, can most likely be carried a lot further. Recall, for example, the
discussion after Table 1 in 3.4. Other similar questions are easily found. Why are
there so few simple VP-negative quantifiers? Why so few simple MON ↓ ones?
Why isn’t not every a simple natural language quantifier (like the other quantifiers
in the square of opposition)? Such questions may warrant psychological consid-
erations, but van Benthem’s analysis of the ‘count complexity’ in 4.2 shows that
simple model theory may be useful even in this context.

In connection with the last remark, it should be mentioned that van Benthem
[1985; 1987a] carries the study of computational complexity in semantics much
further. He shows (cf. the end of Section 4.3) that the well known complexity hier-
archies of automata theory are eminently suitable for classification of quantifiers.
Moreover, these investigations carry the promise of a new field of computational
semantics, which, in addition to questions of logical and mathematical interest, has
applications to language learning and to mental processing of natural language.

On the logical side of quantifier theory, many further questions suggest them-
selves. One natural direction is generalisation by weakening the assumptions. For
example:

(a) Drop EXT. This allows for ‘universe-dependent’ quantifiers, such as some
of the interpretations of many in 2.4.3. Some hints on how this admission
affects the theory can be found in [Westerståhl, 1983].

(b) Drop QUANT. If possessives are allowed, this is a natural move. One can
then replace QUANT(ISOM) by postulates of quality, requiring closure un-
der ‘structure-preserving’ bijections. Other new constraints can also be for-
mulated for this case, which is studied in [van Benthem, 1983b].

(c) Allow ternary quantifiers, or arbitrary n-ary ones (n 
 2). We did this in
Section 3 for the basic concepts, but the corresponding generalisation of the
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theory in Section 4 is by no means straight-forward; cf. [Keenan and Moss,
1985].

Dropping CONSERV, on the other hand, does not seem fruitful (except for
purely logical issues such as definability; cf. Section 4.3). (a)–(c) are not (only)
generalisations for their own sake, but linguistically motivated. The next generali-
sation is more mathematical:

(d) DROP FIN. Many of the results using FIN can in fact be generalised, as
we have noted from time to time. Two apparent exceptions were the results
on transitivity, Theorem 56 and Corollary 60 (without VAR; cf. Corollary
63). Are there generalisations of these to infinite universes? But perhaps
these generalisations lead in the wrong direction. It could be that FIN, or
some similar constraint, is an essential characteristic of natural language
quantification (cf Section 3.8). In any case, the assessment of some minimal
model-theoretic means for handling ‘natural language infinity’ appears to
be an interesting task. Some results in this direction can be found in [van
Deemter, 1985].

But, even without generalising, the type of logical study conducted in Section 4
can be pursued further. The properties in 4.1 were chosen in a rather conventional
way; there may be more interesting properties of relations to study. Definabil-
ity questions need not be confined to first-order definability — as we saw in 4.3,
arithmetical definability is a natural concept in the realm of (logical) quantifiers.

A particularly interesting aspect of definability concerns the expressive power
of natural language. Various global notions of definability may be used here, e.g.
definability from given quantifiers. There is also the local definability question
mentioned in 4.6: of the possible denotations of expressions of a certain cate-
gory, which ones are ‘generated’ in a given model? The conservativity theorem of
Keenan and Stavi gives one answer, for DET denotations. Perhaps NP denotations
are even more interesting; this aspect of expressive power is studied in [Keenan
and Moss, 1985], where several results on which NP denotations are obtainable
from quantifiers with certain properties (conservative, logical, VP-positive, etc.)
are proved.

The study of inferential languages from Section 4.5 gives rise to a number of
logical questions. This appears to be a recent field, though related to well-known
questions on the correlation between a proof-theoretic and a model theoretic per-
spective on logic.39 Note that the results of 4.5 depend crucially on our use of bi-
nary quantifiers instead of unary ones. As for particular questions, one would like
to know which quantifiers are determined in these languages. Are any (non-trivial)
quantifiers determined in ILsyll? Are any quantifiers besides those in the square of

39Zucker [1978] adopts a point of view similar to the present one. There seems to be a connection
between his notion of a quantifier being implicitly definable and our notion of it being determined, even
though the settings are different.
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opposition determined in ILboole? One can also pose ‘finiteness’ (compactness)
questions, e.g. if Q is determined by Ψ, is Q by necessity determined by a finite
subset of Ψ? This may of course be a trivial question, depending on the answer to
the first two. Another compactness question is: if every finite subset of Ψ is sat-
isfied by some quantifier (or sequence of quantifiers), must Ψ itself be satisfiable?
Actually, this question can be seen to have a negative answer for ILboole, but the
case of ILsyll seems open. Other inferential languages could also be considered.
In general, one would like to have a better understanding of what is required of a
good inferential language. An obvious extension of ILsyll and ILboole, however,
is to add some and all as constants. This allows, e.g. monotonicity properties to be
expressed in ILsyll, and the logical questions are reopened.

In this connection we should also mention an application of the present theory
outside the domain of quantifiers: [van Benthem, 1984b] analyses conditional
sentences If X then Y as relations between sets ‖X‖ and ‖Y ‖ (of possible worlds,
situations, etc.), i.e. as binary quantifiers, an obtains several interesting results for
the logic of conditionals.

Finally, all of the logical questions mentioned so far presuppose the classical
model-theoretic framework we have used in this paper. If one wants to treat such
linguistically interesting phenomena as plurals, collective quantification (as op-
posed to the distributive quantification we have studied; cf. sentences such as
five boys lifted the piano), or mass terms (with new determiners such as much
or a little), this framework has to be extended. From a natural language point of
view, such extension seems imperative. For some steps taken in these directions,
cf. e.g. [van Benthem, 1983b; Hoeksema, 1983; Link, 1987; Lønning, 1987a;
Lønning, 1987b]. An even more radical change would be the switch from the
traditional ‘static’ model theory to a dynamic view on interpretation, e.g. along the
lines suggested in [Kamp, 1981] or [Barwise and Perry, 1983]. It would be pleas-
ant if the insights gained from the present quantifier perspective were preserved in
such a transition. But, however that may be, standard model-theoretic semantics
has already, I think, proved unexpectedly useful for a rich theory of quantifiers,
and this theory is in turn a fair illustration of the possibilities of a logical study
which starts not from mathematics but from natural language.

APPENDIX

A BRANCHING QUANTIFIERS AND NATURAL LANGUAGE

This appendix presents a brief summary of the main issues related to occurrence
of branching quantification (Section 1.5) in natural language. A more detailed
presentation is given in [Barwise, 1979].

Let us say, somewhat loosely, that a sentence exhibits proper branching if its
formalisation requires a partially ordered quantifier prefix which is not equivalent
to a linear one. There has been some debate over the following question:
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(I) Does proper branching occur in natural languages?

The debate started with the claim in [Hintikka, 1973] that proper branching
occurs in English. Here is the most well known of his examples:

(1) Some relative of each villager and some relative of each townsman hate each
other.

The idea is that (1) should be analysed with the Henkin prefix. Arguing that the
branching reading of (1) is preferred over linear versions requires a detailed and
quite complicated analysis of what we actually mean when using such a sentence,
and not all linguists agreed with Hintikka. In [Barwise, 1979], where the main
arguments are summarised, it is argued that the most natural logical form of (1)
does involve a branching reading, but one which is equivalent to a linear one, so
that this branching is not proper. But the answer to (I) does not necessarily depend
on sentences like (1). Barwise, who was sympathetic to Hintikka’s general claim
argued that with other quantifiers that ∀ and ∃ one can find clearer examples of
proper branching. One of his examples was

(2) Most boys in your class and quite a few girls in my class have all dated each
other.

It seems that (2) does not mean the same as

(3) Most boys in your class have dated quite a few girls in my class

or

(4) Quite a few girls in my class have dated most boys in your class.

The preferred reading of (2) is stronger than both of these: it says that there is a
set X containing most boys in your class and a set Y containing quite a few girls
in my class, such that any boy in X and any girl in Y have dated each other. Note
that X and Y are independent of each other. This is a branching reading, which
is (provably) not equivalent to any linear sentence in L(most, quite a few). We
could formalise (2) as

(5)

most x boy(x)

have dated each other(x, y).

quite a few y girl(y)

Barwise pointed out that the above truth definition for such sentences gives the
desired reading when, as in the present case, both quantifiers are MON ↑, and gave
a similar (but different) truth condition for the case when both are MON ↓. He also
noted that sentences of this form with one MON ↑ and one MON ↓ quantifier are
anomalous.
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(6) Few of the boys in my class and most girls in your class have dated each
other.

Even though it seems perfectly grammatical, (6) makes no sense, and this may
be explained by means of the monotonicity behaviour of the quantifiers involved.
Further discussion of the circumstances under which it makes sense to branch two
quantifiers can be found in [Westerståhl, 1987].

For another example, van Benthem has noted that we can have proper branching
with certain first-order definable quantifiers that are not monotone. Consider

(7) Exactly one boy in your class and exactly one girl in my class have dated
each other.

The meaning of (7) is clear and unambiguous, and it is easily seen that (7) is not
equivalent to any of its ‘linear versions’ (or to their conjunction). (Note that we
are talking about prefixes with exactly one here; it is in this sense the branching is
proper, even though (7) is clearly equivalent to a (linear) first-order sentence.)

In conclusion, it seems that there are good arguments for an affirmative answer
to (I). Then, one may ask:

(II) What are the consequences for the ‘logic of natural language’ of the occur-
rence of proper branching?

One of the aims of Hintikka’s original paper was to use the occurrence of proper
branching to give lower bounds of the complexity of this logic. From 1.5 and
1.6 it should be clear that logic with the Henkin quantifier has many affinities
with second-order logic. In fact, it can be shown that the set of valid sentences
with the Henkin quantifiers, or with arbitrary partially ordered prefixes ∀ and ∃, is
recursion-theoretically just as complex as the set of valid second-order sentences,
and this is an extremely complicated set. It is tempting to conclude that natural
language is at least as complicated. This last inference, however, is not unprob-
lematic. The result about second-order logic depends crucially on the fact that
second-order variables vary over all subsets (relations) of the universe. In a natu-
ral language context, on the other hand, it may be reasonable to restrict the range
of these variables, and thus to alter the strength of the resulting logic. More on
these issues can be found in the chapter by van Benthem and Doets in this Hand-
book. Some other types of consequences of the occurrence of proper branching
are discussed in [Barwise, 1979].

In addition to the principled questions (I) and (II), there is also the more prag-
matical:

(III) Should branching quantification be used more extensively in the analysis of
logical and linguistic form?

Both Hintikka and Barwise suggest that in many cases a branching reading may
be preferable regardless of whether the branching is proper or not: the actual order
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between two (or more) quantifier expressions in a sentence sometimes seems irrel-
evant, syntactically and semantically, and a logical form where these expressions
are unordered is then natural. Certain syntactic constructions appear to trigger
such branching readings, in particular, conjoined noun phrases with a reciprocal
object (each other). An even more extensive use of branching is proposed in [van
Benthem, 1983a]: he suggests using branching instead of ‘substitution’ to explain
certain well-known scope ambiguities with ∀ and ∃; cf. also [van Eijck, 1982].
There seem to be a lot of interesting possibilities in this field.

B LOGIC WITH FREE QUANTIFIER VARIABLES

Quantifier symbols have been constants in this paper (cf. Section 2.1.3). What
happens if they are treated as free variables instead, or, more precisely, as symbols
whose interpretation varies with models? From a logical perspective at least, this
is a natural question. Some answers are reviewed in this appendix.

To fix ideas, consider a language LQ, of standard first-order logic with one
binary quantifier symbol Q added (for simplicity; we could have added several
monadic quantifier symbols, and a fixed (countable) vocabulary of other non-
logical symbols. LQ is a language for logics like L(most), except that this time Q
does not denote a fixed quantifier. Instead, a model is now a pair (M,q), where M
is as before and q is a binary quantifier on M . Such models are often called weak
models (since nothing in particular is required of q). Truth (satisfaction) in (M,q)
is defined in the obvious way, with Q interpreted as q. A valid sentence is thus
true regardless of the interpretation of Q (and other non-logical symbols). Here is
a trivial example:

Qx(x �= x, ψ) → (∃xφ ∨Qx(φ, ψ))

(where φ, ψ only have x free). Are there non-trivially valid sentences in LQ? This
is answered below.

B.1 The Weak Logic

Add to a standard axiomatisation of first order logic the axioms

(1) Qx(φ(x), ψ(x)) ↔ Qy(φ(y), ψ(y)
(y free for x in φ(x), ψ(x))

(2) ∀x(φ1 ↔ φ2) → (Qx(φ1, ψ) → Qx(φ2, ψ))

(3) ∀x(φ1 ↔ φ2) → (Qx(Ψ, φ1) → Qx(ψ, φ2))

(the last two are extensionality axioms for Q).Call this the weak logic. Provability
(from assumptions) is defined as usual, the deduction theorem holds, and the ax-
iomatisation is obviously sound. The following completeness theorem goes back
to [Keisler, 1970]:
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THEOREM 89. If Σ is a consistent set of sentences in the weak logic, then Σ has
a weak model.

Proof.[Outline] A slight extension of the usual Henkin-style proof suffices. Extend
Σ to Σ′ by witnessing existentially quantified sentences and then to a maximally
consistent Γ. Let M consist of the usual equivalence classes [c] of new individual
constants, and interpret relation and constant symbols as usual. For each ψ(x)
with at most x free, let ψ(x)Γ = {[c] ∈M : Γ � ψ(c)}. Then define q as follows:

qAB ⇔ there are φ, ψ such that φΓ =, ψΓ = B, and Γ � Qx(φ, ψ).

One then shows that, for all sentences θ,

(M,q) � θ ⇔ Γ � θ
by a straight-forward inductive argument, using (1)–(3) and properties of Γ when
θ is of the form Qx(φ, ψ). �

COROLLARY 90. The weak logic is complete, compact, and satisfies the down-
ward Löwenheim–Skolem theorem.

B.2 Axiomatisable Properties of Quantifiers

By the last results, if all weak models are allowed, no ‘unexpected’ new valid
sentences appear. However, it may be natural to restrict the interpretation of Q
to, say, conservative quantifiers, or transitive and reflexive ones, or MON ↑ ones.
Such properties are second-order, and hence in general not directly expressible
in LQ. Nevertheless, in many cases the resulting logic is still axiomatisable, by
adding the obvious axioms to the weak logic.

Let P be a property of q expressible by a universal second-order sentence

(4) ∀X1, . . . ,∀XnΨ((X1, . . . , Xn),

where theXi are unary set variables and Ψ is inLQ (with theXi acting as predicate
symbols). Let the corresponding set of LQ-sentences, ΣP , consist of the universal
closures of all formulas obtained by replacing all occurrences of X1, , . . . , Xn in
Ψ by LW -formulas φ1, . . . , φn. For example, ΣCONSERV and ΣMON↑ consist,
respectively, or universal closures of formulas of the form

Qx(φ, ψ) ↔ Qx(φ, φ ∧ ψ),
Qx(φ, ψ) ∧ ∀x(ψ → θ) → Qx(φ, θ),

Let KP be the class of models (M,q) such that q satisfies P . Clearly,

(5) (M,q) ∈ KP ⇒ (M,q) � ΣP ,
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but the converse fails in general. To KP corresponds a logic, which we write
L(KP ), where truth and validity is as for the weak logic, except that models are
restricted to KP . then is L(KP ) axiomatised by ΣP ? A sufficient condition is
given below.

A subset A of M is called (M,q)-definable, if, for some LQ-formula ψ and
some finite sequence b̄ of elements of M,a ∈ A ⇔ (M,q) � ψ[a, b̄]. Consider
the following property of P :

(*) If (M,q) � ΣP then there is a q′ satisfying P which agrees with q on the
(M,q)-definable sets.

we need one more definition: (M′,q′) is an elementary extension of (M,q), in
symbols, (M,q) < (M′,q′), if M′ is an extension of M and, for all LQ formulas
ψ and all finite sequences b̄ of elements of M, (M,q) � ψ[b̄] ⇔ (M′,q′) � ψ[b̄].
Now a straightforward induction proves the

LEMMA 91. If q and q′ agree on the (M,q)-definable sets, then (M,q) <

(M,q′).

From this Lemma and Theorem 89 we immediately obtain the

THEOREM 92. If (*) holds for P then each set of LQ-sentences consistent with
ΣP in the weak logic has a model in KP . Hence, L(KP ) is complete, compact,
and satisfies the Löwenheim–Skolem theorem.

Instances of this result appear, for example, in [Keisler, 1970; Broesterhuizen,
1975; Sgro, 1977; Makowski and Tulipani, 1977; Barwise, 1978]. To see its utility
we consider some examples.

EXAMPLE. Given (M,q), let Md be the set of (M,q)-definable subsets of
M , and let Qd − Q ∩ (Md)2. If (M,q) � ΣP then, since P is universal, qd

satisfies P on Md. In some cases, Qd actually satisfies P on the whole of P (M),
i.e. (*) holds with Q′ = qd. This is true for all the properties of quantifiers in
Table 2 (Section 4.1), except reflexivity, quasiuniversality and linearity, as is easily
checked. So, for example, the logic L(KP ), where P is the property of being a
strict partial order (irreflexive and transitive), is axiomatisable.

EXAMPLE. P = strict linear order. If (M,q) � ΣP , let Q∗ be any strict linear
order on P (M) = Md, and let q′ = qd + q∗ (order type addition). Then Q′

is a strict linear order coinciding with q on Md, so L(KP ) is axiomatisable. As
similar construction can be used to show that each of the three properties left over
in the preceding example is axiomatisable.

EXAMPLE. P = MON ↑. If (M,q) � ΣMON↑, define q′ by: q′AB ⇔ for some

C ∈ Md, C ⊆ B and qAC. Since q is MON ↑,q′ agrees with q on Md. Also,
q′ is MON ↑ (on all subsets of M ). Other monotonicity (or continuity) properties
can be treated similarly.
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EXAMPLE. P = CONSERV. If (M,q) � ΣCONSERV, let q′AB ⇔ qAA∩B.
Again, the verification that (*) holds is immediate.

EXAMPLE. In the following mathematical example, q is unary, and satisfies P
iff q− = P (M) = q is a proper, non-principal ideal in P (M), i.e. iff for all
A,B ⊆ M , (i) A,B ∈ q− ⇒ A ∪ B ⊆ q−; (ii) A ∈ q−&B ⊆ A ⇒ B ∈ q−;
(iii) M �∈ q−; (iv) {a} ∈ q− for all a ∈ M . In L(KP ), Qxψ can be read
‘for many x in the (infinite) universe, ψ’. Now suppose (M,q) � ΣP . Then
qd− = Md − qd is a proper, non-principal ideal in Md. Also, qd− generates a
proper, non-principal ideal q′− in P (M): let A ∈ q′− ⇔ A ⊆ B1 ∪ . . . ∪ Bn,
for some B1, . . . , Bn ∈ qd−. Then (*) holds for q′ = P (M) − q′−, so L(KP ) is
axiomatisable. L(KP ) is studied in [Bruce, 1978], mainly as a mains for obtaining
results about the logic L(Q1) where Q1 is the quantifier ‘for uncountably many’.

Note that even though axiomatisability comes rather easily in these examples,
other properties, such as interpolation, unions of chains, etc. may be much harder
an require new methods (cf. [Bruce, 1978]).

C A NON-AXIOMATISABLE PROPERTY

In view of the above examples, one may ask if the property of quantity is also
axiomatisable. After all, PERM is a universal second-order property (with a bi-
nary relation variable in addition to the unary set variables), and a corresponding
ΣPERM can be found much as before. However, L(KPERM) is a rather strong
logic, and not axiomatisable. The reason is, roughly, that it can express that two
sets have different cardinalities. For example, if (M,q) ∈ KPERM, and qMA is
not equivalent to qMB, it follows that either |A| �= |B| or |M − A �= |M − B|.
This is used in the following result, which is due to [Yasuhura, 1969].

THEOREM 93. Then natural number ordering, 〈N,<〉, is characterisable in
L(KPERM) in the sense that there is an LQ-sentence θ such that 〈M,R〉 is iso-
morphic to 〈N,<〉 iff, for some q satisfying PERM, (〈M,R〉,q) � θ.

Proof. Let θ be the conjunction of a sentence saying that < is a linear ordering
with immediate successors and a first but not last element, and the sentence

∀x∀y(‘y is the successor of x’ →
¬(Qz(z = z, z < x) ↔ Qz(z = z, z < y))).

If (〈M,R〉,q) � θ, where q satisfies PERM, it is easy to see that for each a ∈
M, |Ma| < |Ma+1| (where Ma is the set of predecessors to a), and thus that
〈M,R〉 is isomorphic to 〈N,<〉. Conversely, if the quantifier q on N is defined
by qAB ⇔ A = N&|B| is even, then PERM holds and (〈N,<〉,q) � θ. �

As in Section 1.6, we obtain the

COROLLARY 94. L(KPERM) is neither complete nor compact.
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Väänänen [1979] extends these results to show that, in terms of implicit defin-
ability (definability with extra non-logical symbols), L(KPERM) is equivalent to
the logic L(I) (cf. 1.6), and that its set of valid sentences is very complicated: it is
neither Π′1

1 nor Σ′1
1 in the analytical hierarchy.

The above theorem and corollary extend, with the same proof, to the logic
L(KPERM+CONSERV). They also extend to logical quantifiers. To see this,
note that in this appendix we have used local quantifiers in our models, for which
ISOM or EXT have no immediate meaning. An alternative procedure would be to
consider models of the form (M,Q), where Q is a global quantifier, and interpret
Q as QM on such a model. It is then easy to check that, for each model (M,q) in
KPERM+CONSERV, there is a logical quantifier Q such that QM = q. From this
it follows that a sentence is valid in (L(QPERM+CONSERV) iff it is valid when
Q varies over arbitrary logical quantifiers.

Let us remark, finally, that the results of this appendix depend on the fact that
the usual universal and existential quantifier constants occur in LQ. Anapolitanos
and Väänänen [1981] show that, if we drop these, and also drop identity, then
L(KPERM) becomes axiomatisable; actually it becomes decidable.
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