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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the first edition and there have been great changes
in the landscape of philosophical logic since then.

The first edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the first edition as ‘the best starting point
for exploring any of the topics in logic’. We are confident that the second
edition will prove to be just as good!

The first edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983–1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading figures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and artificial in-
telligence. It shows that the first edition is very close to the mark of what
was needed. Two topics were not included in the first edition, even though

vii



viii

they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

• a chapter on non-monotonic logic

• a chapter on combinatory logic and λ-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and λ-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, fibring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the effective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, fifteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and artificial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a specification and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange benefits with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
artificial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!

PREFACE TO THE SECOND EDITION



PREFACE TO THE SECOND EDITION ix

such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based effective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors and readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Springer for their continuing support for the Handbook.

Dov Gabbay
King’s College London
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WALTER CARNIELLI, MARCELO E. CONIGLIO AND
JOÃO MARCOS

LOGICS OF FORMAL INCONSISTENCY

1 INTRODUCTION

1.1 Contradictoriness and inconsistency,
consistency and non-contradictoriness

In traditional logic, contradictoriness (the presence of contradictions in a
theory or in a body of knowledge) and triviality (the fact that such a the-
ory entails all possible consequences) are assumed inseparable, granted that
negation is available. This is an effect of an ordinary logical feature known as
‘explosiveness’: According to it, from a contradiction ‘α and ¬α’ everything
is derivable. Indeed, classical logic (and many other logics) equate ‘consis-
tency’ with ‘freedom from contradictions’. Such logics forcibly fail to dis-
tinguish, thus, between contradictoriness and other forms of inconsistency.
Paraconsistent logics are precisely the logics for which this assumption is
challenged, by the rejection of the classical ‘consistency presupposition’.
The Logics of Formal Inconsistency, LFIs, object of this chapter, are the
paraconsistent logics that neatly balance the equation:

contradictions + consistency = triviality

The LFIs have a remarkable way of reintroducing consistency into the non-
classical picture: They internalize the very notions of consistency and in-
consistency at the object-language level. The result of that strategy is the
design of very expressive logical systems, whose fundamental feature is the
ability to recover all consistent reasoning right on demand, while still allow-
ing for some inconsistency to linger, otherwise.

Paraconsistency is the study of contradictory yet non-trivial theories.1

The significance of paraconsistency as a philosophical program which dares
to go beyond consistency lies in the possibilities (formal, epistemological
and mathematical) to take profit from the distinctions and contrasts be-
tween asserting opposites (either in a formal or in a natural language) and
ensuring non-triviality (in a theory, formal or not). A previous entry [Priest,
2002] in this Handbook was dedicated to paraconsistent logics. Although
partaking in the same basic views on paraconsistency, our approach is ori-
ented towards investigating and exhibiting the features of an ample and
very expressive class of paraconsistent logics — the above mentioned LFIs.

1Paraconsistency has the meaning of ‘besides, beyond consistency’, just as paradox
means ‘besides, beyond opinion’ and ‘paraphrase’ means ‘to phrase in other words’.

D.M. Gabbay and F. Guenthner (eds.),
1–

c© 2007 Springer.

Handbook of Philosophical Logic, 2nd Edition,
Volume 14,

1

93.



2 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

Moreover, our chapter starts from clear-cut abstract definitions of the terms
involved (triviality, consistency, paraconsistency, etc.) and analyzes both
proof-theoretical and model-theoretical aspects of LFIs, insisting on their
special interest and hinting about their near ubiquity in the paraconsistent
realm.

Once inconsistency is locally allowed, the chief value of a useful logical
system (understood as a derivability formalism reflecting some given the-
oretical or pragmatical constraints) turns out to be its capability of doing
what it is supposed to do, namely, to set acceptable inferences apart from
unacceptable ones. The least one would ask for is, thus, that the system
does separate propositions (into two non-empty classes, the derivable ones
and the non-derivable) or, in other words, that it be non-trivial. Therefore,
the most fundamental guiding criterion for choosing theories and systems
worthy of investigation, as suggested by [Jaśkowski, 1948], [Nelson, 1959]
and [da Costa, 1959], and extended in [Marcos, 2005c], should indeed be
their abstract character of non-triviality, rather than the mere absence of
contradictions.

The big challenge for paraconsistentists is to avoid allowing contradic-
tory theories to explode and derive anything else (as they do in classical
logic) and still to reserve resources for designing a respectful logic. For that
purpose they must weaken their logical machinery by abandoning explosion
in order to be able to draw reasonable conclusions from those theories, and
yet come up with a legitimate logical system. A current trend in logic has
been that of internalizing metatheoretical notions and devices at the object-
language level, in order to build ever more expressive logical systems, as in
the case of labeled deductive systems, hybrid logics, or the logics of prov-
ability. The LFIs constitute exactly the class of paraconsistent logics which
can internalize the metatheoretical notions of consistency and inconsistency.
As a consequence, despite constituting fragments of consistent logics, the
LFIs can canonically be used to faithfully encode all consistent inferences.
We will in this chapter present and discuss these logics, illustrating their
uses, properties and representations.

Most of the material for the chapter is based on the article [Carnielli
and Marcos, 2002], which founds the formal distinctions between contradic-
toriness, inconsistency and triviality, which we here utilize. In some cases
we correct here the definitions and proofs presented there. Another central
reference is the book [Marcos, 2005], where most of the examples and pro-
posals hereby defended may be found, in extended form. The LFIs, central
topic of the present chapter, are carefully introduced in Subsection 3.1. All
necessary concepts and definitions showing how we approach the property
of explosion and how this reflects on the principles of logic will be found in
Section 2. Subsection 1.2 serves as vestibular to the more technical sections
that follow.

The main LFIs are presented in Sections 3 and 4. One of their primary
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subclasses, the C-systems, is introduced as containing those LFIs in which
consistency may be expressed as a single formula of the object language.
Moreover, the dC-systems are introduced as those C-systems in which this
same formula may be explicitly expressed in terms of other more usual con-
nectives (see Definition 32). In Section 3 we study in detail a fundamental
example of LFI, the logic mbC, where consistency is rendered expressible
by means of a specific new primitive connective. This logic is compared to
the stronger logic C1 (cf. [da Costa, 1963] and [da Costa, 1974]), a logic
of the early paraconsistent vintage. We provide Hilbert-style axiomatiza-
tions, as well as bivaluation semantics and adequate tableau systems for
mbC and C1. Additionally, adequate possible-translations semantics are
proposed for mbC.

LFIs are typically based on previously given consistent logics. The fun-
damental feature enjoyed by classically-based LFIs of being able to recover
classical reasoning (despite constituting themselves deductive fragments of
classical logic) is explained in Subsection 3.6.

In Section 4 we extend the logic mbC by adding further axioms which
permit us to talk about inconsistency and consistency in more symmetric
guises inside the logic. A brief study of the thereby obtained logics follows,
extending the results obtained in Section 3.

Section 5 explores additional topics on LFIs. In Subsection 5.1 some
fundamental dC-systems are studied. Particular cases of dC-systems are
da Costa’s logics Cn, 1 ≤ n < ω, Jaśkowski’s logic D2, and all usual normal
modal logics (under convenient formulations). Conveniently extending the
previously obtained LFIs it is possible to introduce a large family of such
logics by controlling the propagation of consistency (cf. Subsection 5.2).
This procedure adds flexibility to the game, allowing one to propose tailor-
suited LFIs; we illustrate the case by defining literally thousands of logics,
including an interesting class of maximal logics in Subsection 5.3. We end
this subsection by a brief note on the possibilities of algebraizing LFIs, in
general, concluding a series of similar notes and results to be found along
the paper, dedicated especially to the difficulties surrounding the so-called
replacement property, the metatheoretical result that guarantees equivalent
formulas to be logically indistinguishable.

Section 6 examines some perspectives on the research about Logics of
Formal Inconsistency. The chapter ends by a list of axioms and systems
given in Section 7.

It goes without saying that the route we will follow in this chapter cor-
responds not only to our preferences on how to deal with paraconsistency,
but it brings also a personal choice of topics we consider to be of special
philosophical and mathematical relevance.
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1.2 The import of the Logics of Formal Inconsistency

Should the presence of contradictions make it impossible to derive anything
sensible from a theory or a logic where such contradictions appear, as the
classical logician would maintain? Or are there maybe situations in which
contradictions are at least temporarily admissible, if only their wild behavior
can somehow be controlled? The theoretical and practical relevance of such
questions shows paraconsistency to be a bold programme in the foundations
of formal sciences. As time goes by, the problems and methods of formal
logic, traditionally connected to mathematics and philosophy, can more and
more be seen to affect and influence several other areas of knowledge, such
as computer science, information systems, formal philosophy, theoretical
linguistics, and so forth. In such areas, certainly more than in mathemat-
ics, contradictions are presumably unavoidable: If contradictory theories
appear only by mistake, or are due to some kind of resource-boundedness
on computers, or depend on an altered state of reality, contradictions can
hardly be prevented from at least being taken into consideration, as they
often show up as gatecrashers. The pragmatic point thus is not whether
contradictory theories exist, but how to deal with them.

Regardless of the disputable status of contradictory theories, it is hard
to deny that they are, in many cases, quite informative, it being desirable
to establish well-reasoned judgements even when contradictions are present.
Consider, for instance, the following situation (adapted from [Carnielli and
Marcos, 2001a]) in which you ask a yes-no question to two people: ‘Does
Jeca Tatu live in São Paulo?’ Exactly one of the three following distinct
scenarios is possible: They might both say ‘yes’, they might both say ‘no’, or
else one of them might say ‘yes’ while the other says ‘no’. Now, it happens
that in no situation you can be sure whether Jeca Tatu lives in São Paulo
or not (unless you trust one of the interviewees more than the other), but
only in the last scenario, where a contradiction appears, you are sure to
have received wrong information from one of your sources.

A challenge to any study on paraconsistency is to oppugn the tacit as-
sumption that contradictory theories necessarily contain false sentences.
Thus, if we can build models of structures in which some (but not all)
contradictory sentences are simultaneously true, we will have the possibility
of maintaining contradictory sentences inside a given theory and still be
able, in principle, to perform reasonable inferences from that theory. The
problem will not be that of validating falsities, but rather of extending our
notion of truth (an idea further explored, for instance, in [Bueno, 1999]).

In the first half of the last century, some authors, including �Lukasiewicz
and Vasiliev, proposed a new approach to the idea of non-contradiction,
offering interpretations to formal systems in which contradictions could
make sense. Between the 1940s and the 60s the first systems of paracon-
sistent logic appeared (cf. [Jaśkowski, 1948], [Nelson, 1959], and [da Costa,
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1963]). For historical notes on paraconsistency we suggest [Arruda, 1980],
[D’Ottaviano, 1990], [da Costa and Marconi, 1989], the references mentioned
in part 1 of [Priest et al., 1989] and in section 3 of [Priest, 2002], as well
as the book [Bobenrieth-Miserda, 1996] and the prolegomena to [Marcos,
2005].

Probably around the 40s, time was ripe for thinking about the role of
negation in different terms: The falsificationism of K. Popper (cf. [Popper,
1959]) supported the idea (and stressed its role in the philosophy of science)
that falsifying a proposition, as an epistemological step towards refuting
it, is not the same as assuming the sentence to be false. This apparently
led Popper to think about a paraconsistent-like logic dual to intuitionism
in his [Popper, 1948], later to be rejected as somehow too weak as to be
useful (cf. [Popper, 1989]). But it should be remarked that Popper never
dismissed this kind of approach as nonsensical. His disciple D. Miller in
[Miller, 2000] in fact argues that the logic for dealing with unfalsifiedness
should be paraconsistent.2 Another recent proposal by Y. Shramko also de-
fends the paraconsistent character of falsificationism (cf. [Shramko, 2005]).

When proposing his first paraconsistent logics (cf. [da Costa, 1963]) da
Costa’s intuition was that the ‘consistency’ (which he dubbed ‘good behav-
ior’) of a given formula would not only be a sufficient requisite to guarantee
its explosive character, but that it could also be represented as an ordinary
formula of the underlying language. For his initial logic, C1, he chose to rep-
resent the consistency of a formula α by the formula ¬(α∧¬α), and referred
to this last formula as a realization of the ‘Principle of Non-Contradiction’.

In the present approach, as in [Carnielli and Marcos, 2002], we introduce
consistency as a primitive notion of our logics: The Logics of Formal In-
consistency, LFIs, are paraconsistent logics that internalize the notions of
consistency and inconsistency at the object-language level. In this chapter
we will also study some significative subclasses of LFIs, the C-systems and
dC-systems based on classical logic (and da Costa’s logics Cn will be shown
to constitute but particular samples from the latter subclass).

It is worth noting that, in general, paraconsistent logics do not validate
contradictions nor, equivalently, invalidate the ‘Principle of Non-Contradic-
tion’, in our reading of it (cf. the principle (1) in Subsection 2.1). Most
paraconsistent logics, in fact, are proper fragments of (some version of)
classical logic, and thus they cannot be contradictory.

Clearly, the concept of paraconsistency is related to the properties of a
negation inside a given logic. In that respect, arguments can be found in
the literature to the effect that ‘negations’ of paraconsistent logics would
not be proper negation operators (cf. [Slater, 1995] and [Béziau, 2002a]).
Béziau’s argument amounts to a request for the definition of some mini-

2Indeed, Miller even proposes that the logic C1 of da Costa’s hierarchy could be used
as a logic of falsification.
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mal ‘positive properties’ in order to characterize paraconsistent negation
as constituting a real negation operator, instead of something else. Slater
argues for the inexistence of paraconsistent logics, given that their negation
operator is not a ‘contradictory-forming functor’, but just a ‘subcontrary-
forming one’, revisiting and extending an earlier argument from [Priest and
Routley, 1989]. A reply to the latter kind of criticism is that it is as con-
vincing as arguing that a ‘line’ in hyperbolic geometry is not a real line,
since, through a given point not on the line, the ‘parallel-forming functor’
does not define a unique line.3 In any case, this is not the only possible
counter-objection, and the development of paraconsistent logic is not de-
terred by this discussion. Investigations about the general properties of
paraconsistent negations include [Avron, 2002], [Béziau, 1994] and [Lenzen,
1998], among others. Those studies are surveyed in [Marcos, 2005c], where
also a minimal set of ‘negative properties’ for negation is advanced as a new
starting point for a unifying study of negation.

2 WHY’S AND HOW’S: CONCEPTS AND DEFINITIONS

2.1 The principles of logic revisited

Our presentation in what follows is situated at the level of a general theory
of consequence relations. Let ℘(X) denote the powerset of a set X. As
usual, given a set For of formulas, we say that � ⊆ ℘(For) × For defines
a (single-conclusion) S-consequence relation over For (where S stands for
standard) if the following clauses hold, for any choice of formulas α and β,
and of subsets Γ and ∆ of For (formulas and commas at the left-hand side
of � denote, as usual, sets and unions of sets of formulas):

(Con1) α ∈ Γ implies Γ � α (reflexivity)
(Con2) (∆ � α and ∆ ⊆ Γ) implies Γ � α (monotonicity)
(Con3) (∆ � α and Γ, α � β) implies ∆,Γ � β (cut)

So, an S-logic L will here be defined simply as a structure of the form
〈For,�〉, containing a set of formulas For and an S-consequence relation �
defined over this set. An additional useful property of a logic is compact-
ness, defined as:

(Con4) Γ � α implies Γfin � α, for some finite Γfin ⊆ Γ (compactness)

We will assume that the language of every logic L is defined over a proposi-
tional signature Σ = {Σn}n∈ω, where Σn is the set of connectives of arity n.
We will also assume that P = {pn : n ∈ ω} is the set of propositional

3In hyperbolic geometry the following property, known as the Hyperbolic Postulate,
holds good: For every line l and point p not on l, there exist at least two distinct lines
parallel to l that pass through p.
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variables (or atomic formulas) from which we freely generate the algebra
For of formulas using Σ. Along most of the present paper, the least we
will suppose on a logic is that its consequence relation satisfies the clauses
defining an S-consequence.

Another usual property of a logic is structurality. Let ε be an endomor-
phism in For, that is, ε is the unique homomorphic extension of a mapping
from P into For. A logic is structural if its consequence relation preserves
endomorphisms:

(Con5) Γ � α implies ε(Γ) � ε(α) (structurality)

In syntactical terms, structurality corresponds to the rule of uniform sub-
stitution or, alternatively, to the use of schematic axioms and rules.

Any set Γ ⊆ For is here called a theory of L. A theory Γ is said to be
proper if Γ �= For, and a theory Γ is said to be closed if it contains all of
its consequences, that is, for a closed theory Γ we have Γ � α iff α ∈ Γ, for
every formula α. If Γ � α for all Γ, we will say that α is a thesis (of L).

Unless explicitly stated to the contrary, we will from now on be working
with some fixed arbitrary logic L = 〈For,�〉 where For is written in a
signature containing a unary ‘negation’ connective ¬ and � satisfies (Con1)–
(Con3) and (Con5).

Let Γ be a theory of L. We say that Γ is contradictory with respect to ¬,
or simply contradictory, if it satisfies:

∃α(Γ � α and Γ � ¬α)

(The formal framework to deal with this kind of metaproperties can be
found in [Coniglio and Carnielli, 2002].) For any such formula α we may
also say that Γ is α-contradictory.

A theory Γ is said to be trivial if it satisfies:

∀α(Γ � α)

Of course the theory For is trivial, given (Con1). We can immediately
conclude that contradictoriness is a necessary (but, in general, not a suffi-
cient) condition for triviality in a given theory, since a trivial theory derives
everything.

A theory Γ is said to be explosive if:

∀α∀β(Γ, α,¬α � β)

Thus, a theory is called explosive if it trivializes when exposed to a pair of
contradictory formulas. Evidently, if a theory is trivial, then it is explosive
by (Con2). Also, if a theory is contradictory and explosive, then it is trivial
by (Con3).
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The above definitions may be immediately upgraded from theories to log-
ics. We will say that L is contradictory if all of its theories are contradictory,
that is:

∀Γ∃α(Γ � α and Γ � ¬α)

In the same spirit, we will say that L is trivial if all of its theories are trivial,
and L is explosive if all of its theories are explosive.

Because of the monotonicity property (Con2), it is clear that an S-logic
L is contradictory / trivial / explosive if, and only if, its empty theory is
contradictory / trivial / explosive.

We are now in position to give a formal definition for some logical prin-
ciples as applied to a generic logic L:

Principle of Non-Contradiction (L is non-contradictory)

∃Γ∀α(Γ � α or Γ � ¬α) (1)

Principle of Non-Triviality (L is non-trivial)

∃Γ∃α(Γ � α) (2)

Principle of Explosion (L is explosive)

∀Γ∀α∀β(Γ, α,¬α � β) (3)

The last principle is also often referred to as Pseudo-Scotus or Principle of
Ex Contradictione Sequitur Quodlibet.4

It is clear that the three principles are interrelated:

THEOREM 1.
(i) A trivial logic is both contradictory and explosive.
(ii) An explosive logic fails the Principle of Non-Triviality if, and only if, it
fails the Principle of Non-Contradiction. �

The logics disrespecting (1) are sometimes called dialectical. However,
the immense majority of the paraconsistent logics in the literature (includ-
ing the ones studied here) are not dialectical. Indeed, they usually have
non-contradictory empty theories, and thus their axioms are non-contra-
dictory, and their inference rules do not generate contradictions from these
axioms. All paraconsistent logics which we will present here are in some
sense more careful than classical logic, once they extract less consequences
than classical logic extracts from the same given theory, or at most the

4In fact, single-conclusion logics as those we work with here cannot see the differ-
ence between Pseudo-Scotus and Ex Contradictione, but those principles can be sharply
distinguished in a multiple-conclusion environment. Moreover, in such an environment,
several forms of triviality, or overcompleteness, may be very naturally set apart (cf. [Mar-
cos, 2005c] and [Marcos, 2007a]).
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same set of consequences, but never more. The paraconsistent logics stud-
ied in the present chapter (as most paraconsistent logics in the literature)
do not validate any bizarre form of reasoning, and do not beget contradic-
tory consequences if such consequences were already not derived in classical
logic.

2.2 Paraconsistency: Between inconsistency and triviality

As mentioned before, some decades ago, Stanis�law Jaśkowski ([Jaśkowski,
1948]), David Nelson ([Nelson, 1959]), and Newton da Costa ([da Costa,
1963]), the founders of paraconsistent logic, proposed, independently, the
study of logics which could accommodate contradictory yet non-trivial the-
ories. For da Costa, a logic is paraconsistent5 with respect to ¬ if it can
serve as a basis for ¬-contradictory yet non-trivial theories, that is:

∃Γ∃α∃β(Γ � α and Γ � ¬α and Γ � β) (4)

Notice that, in our present framework, the notion of a paraconsistent logic
has, in principle, nothing to do with the rejection of the Principle of Non-
Contradiction, as it is commonly held. On the other hand, it is intimately
connected to the rejection of the Principle of Explosion. Indeed, Jaśkowski
defined a ¬-paraconsistent logic as a logic in which (3) fails, that is:

∃Γ∃α∃β(Γ, α,¬α � β) (5)

Using (Con1) and (Con3) it is easy to prove that (4) and (5) are equiva-
lent ways of defining a paraconsistent logic. Whenever it is clear from the
context, we will omit the ¬ symbol and refer simply to paraconsistent logics.

It is very important to observe that a logic where all contradictions are
equivalent cannot be paraconsistent. To understand that point it is con-
venient first to make precise the concept of equivalence between sets of
formulas: Γ and ∆ are said to be equivalent if

∀α ∈ ∆(Γ � α) and ∀α ∈ Γ(∆ � α)

In particular, we say that two formulas α and β are equivalent if the sets
{α} and {β} are equivalent, that is:

(α � β) and (β � α)

We denote these facts by writing, respectively, Γ 
� ∆, and α 
� β. The
equivalence between formulas is clearly an equivalence relation, because
of (Con1) and (Con3). However, the equivalence between sets is not, in

5As a matter of fact, this appellation would be coined only in the 70s by the Peruvian
philosopher Francisco Miró Quesada.
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general, an equivalence relation, unless the following property holds in L:

(Con6) [∀β ∈ ∆(Γ � β) and ∆ � α] implies Γ � α (cut for sets)
Logics based on consequence relations that respect clauses (Con1), (Con2)
and (Con6) will here be called (single-conclusion) T -logics (where T stands
for Tarskian).

REMARK 2. (i) In logics defined by way of a collection of finite-valued
truth-tables or by way of Hilbert calculi with schematic axioms and fini-
tary rules, (Con1)–(Con6) all hold good. This is the case of most logics
mentioned in the present paper.
(ii) (Con1) and (Con6) guarantee that 
� defines an equivalence relation
over sets of formulas.
(iii) Condition (Con3) follows from {(Con1), (Con2), (Con6)}. Indeed, sup-
pose that (a) ∆ � α and (b) Γ, α � β. By (Con1) we can further assume
that (c) ∆,Γ � γ, for every γ ∈ Γ. But if we apply (Con2) to hypothesis
(a) it follows that (d) ∆,Γ � α. Using (Con6) on (c), (d) and (b) it follows
that ∆,Γ � β.
(iv) Condition (Con2) follows from {(Con1), (Con6)}. Indeed, suppose that
(a) ∆ � α and (b) ∆ ⊆ Γ. From (b) and (Con1), we conclude that (c) Γ � δ,
for all δ ∈ ∆. Then, using (Con6) on (c) and (a) it follows that Γ � α.
(v) Condition (Con3) follows from {(Con1), (Con6)}. To check that, com-
pose (iii) and (iv).
(vi) Condition (Con6) does not follow from {(Con1), (Con2), (Con3)}. In-
deed, consider for instance the logic LR = 〈R,�〉 such that R is the set of
real numbers, and � is defined as follows:

Γ � x iff x ∈ Γ, or x = 1
n for some n ∈ N, n ≥ 1, or

there is a sequence (xn)n∈N contained in Γ such that
(xn)n∈N converges to x.

It is easy to see that LR satisfies (Con1), (Con2) and (Con3). But (Con6)
is not valid in LR. Indeed, take Γ = ∅, ∆ = { 1

n : n ∈ N, n ≥ 1} and α = 0.
Then the antecedent of (Con6) is true: Every element of ∆ is a thesis,
and ∆ contains the sequence ( 1

n )n∈N, which converges to 0. However, the
consequent of (Con6) is false: 0 is not a thesis of LR.
Observe, by the way, that in LR the relation 
� between sets of formulas
is not transitive: Take ∆ as above, and consider ∆0 = {0} and ∆1 = {1}.
Then ∆0 
� ∆ and ∆ 
� ∆1, but it is not the case that ∆0 
� ∆1, because
∆1 �� 0.

Do remark that, as a particular consequence of the above items, T -logics
may be seen as specializations of S-logics. �

Most logics we will study in the present paper are natural examples of
T -logics. For many proofs that will be presented below, however, the as-
sumption of an S-logic will suffice.
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THEOREM 3. Let L be a T -logic. Then, in case all contradictions are
equivalent in L, it follows that L is not paraconsistent.

Proof. Take an arbitrary set Γ in L. Suppose that all contradictions are
equivalent, that is, for arbitrary α and β, {α,¬α} 
� {β,¬β}. Then, using
(Con2), Γ∪{α,¬α} is β-contradictory for an arbitrary β, and in particular
Γ, α,¬α � β. �

By contrapositive reasoning, the above theorem may be rephrased as
stating the following: If a T -logic L is paraconsistent, then there exist pairs
of non-equivalent contradictions in L.

DEFINITION 4. The logic L is called consistent if it is both explosive and
non-trivial, that is, if L respects both (3) and (2). L is called inconsistent,
otherwise. �

Paraconsistent logics are inconsistent, in that they control explosiveness,
but they can do so in a variety of ways. Trivial logics are also inconsistent,
by the above definition. What distinguishes a paraconsistent logic from a
trivial logic is that a trivial logic does not disallow any inference: It accepts
everything. As a consequence of the above definition of consistency, a third
equivalent approach to the notion of paraconsistency may be proposed, par-
allel to those from definitions (4) and (5):

A logic is paraconsistent if it is inconsistent yet non-trivial. (6)

The compatibility of paraconsistency with the existence of some suitable
explosive or trivial proper theories makes some paraconsistent logics able to
recover classical reasoning, as we will see in Section 3.6. We will from now
on introduce some specializations on the above definitions and principles.

A logic L is said to be finitely trivializable when it has finite trivial
theories. Evidently, if a logic is explosive, then it is finitely trivializable.
Non-explosive logics might be finitely trivializable or not.

A formula ξ in L is a bottom particle if it can, by itself, trivialize the
logic, that is:

∀Γ∀β(Γ, ξ � β)

A bottom particle, when it exists, will here be denoted by ⊥. This notation
is unambiguous in the following sense: Any two bottom particles are equiv-
alent. If in a given logic a bottom particle is also a thesis, then the logic
is trivial — in which case, of course, all formulas turn out to be bottom
particles.

The existence of bottom particles inside a given logic L is regulated by
the following principle:

Principle of Ex Falso Sequitur Quodlibet

∃ξ∀Γ∀β(Γ, ξ � β)(L has a bottom particle) (7)
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As it will be seen, the existence of logics that do not respect (3) while still
respecting (7) (as all LFIs of the present chapter) shows that ex contra-
dictione does not need to be identified with ex falso, contrary to what is
commonly held in the literature.

The dual concept of a bottom particle is that of a top particle, that is, a
formula ζ which follows from every theory:

∀Γ(Γ � ζ)

We will denote any fixed such particle, when it exists, by � (again, this
notation is unambiguous). Evidently, given a logic, any of its theses will
constitute such a top particle (and logics with no theses, like Kleene’s 3-
valued logic, have no such particles). It is easy to see that the addition of a
top particle to a given theory is pretty innocuous, for in that case Γ,� � α
if and only if Γ � α.

Henceforth, a formula ϕ of L constructed using all and only the variables
p0, . . . , pn will be denoted by ϕ(p0, . . . , pn). This formula will be said to de-
pend only on the variables that occur in it. The notation may be generalized
to sets, and the result is denoted by Γ(p0, . . . , pn). If γ0, . . . , γn are formulas
then ϕ(γ0, . . . , γn) will denote the (simultaneous) substitution of pi by γi in
ϕ(p0, . . . , pn) (for i = 0, . . . , n). Given a set of formulas Γ(p0, . . . , pn), we
will write Γ(γ0, . . . , γn) with an analogous meaning.

DEFINITION 5. We say that a logic L has a supplementing negation if
there is a formula ϕ(p0) such that:

(a) ϕ(α) is not a bottom particle, for some α;

(b) ∀Γ∀α∀β(Γ, α, ϕ(α) � β) �
Observe that the same logic might have several non-equivalent supplement-
ing negations (check Remark 43).

Consider a logic having a supplementing negation, and denote it by ∼.
Parallel to the definition of contradictoriness with respect to ¬, we might
now define a theory Γ to be contradictory with respect to ∼ if it is such
that:

∃α(Γ � α and Γ � ∼α)

Accordingly, a logic L could be said to be contradictory with respect to ∼
if all of its theories were contradictory with respect to ∼. Obviously, by
design, no logic can be ∼-paraconsistent, or even ∼-contradictory, if ∼ is a
supplementing negation, and a logic that has a supplementing negation must
satisfy the Principle of Non-Contradiction with respect to this negation.
The main logics studied in this paper are all endowed with supplementing
negations. The availability of some specific supplementing negations makes
some paraconsistent logics able to easily emulate classical negation (see
Subsection 3.6).



LOGICS OF FORMAL INCONSISTENCY 13

Here we may of course introduce yet another variation on (3):

Supplementing Principle of Explosion

L has a supplementing negation (8)

Supplementing negations are very common. We will show here some
sufficient conditions for their definition. The presence of a convenient im-
plication in our logics is often convenient so as to help explicitly internalizing
the definition of new connectives.

DEFINITION 6. We say that a logic L has a deductive implication if there
is a formula ψ(p0, p1) such that:

(a) ψ(α, β) is not a bottom particle, for some choice of α and β;

(b) ∀α∀β∀Γ(Γ � ψ(α, β) implies Γ, α � β);

(c) ψ(α, β) is not a top particle, for some choice of α and β;

(d) ∀α∀β∀Γ(Γ, α � β implies Γ � ψ(α, β)). �
Inside the most usual logics, condition (b) is usually guaranteed by the
validity of the rule of modus ponens, while condition (d) is guaranteed by
the so-called ‘deduction theorem’ (when this theorem holds). Obviously,
any logic having a deductive implication will be non-trivial, by condition
(a).

THEOREM 7. Let L be a non-trivial logic endowed with a bottom particle
⊥ and a deductive implication →.
(i) Let ¬ be some negation symbol, and suppose that it satisfies:

(a) Γ,¬α � α→ ⊥;
(b) Γ,¬α→ ⊥ � α.

Then, this ¬ is a supplementing negation.
(ii) Suppose, otherwise, that the following is the case:

(c) α→ ⊥ �� ⊥, for some formula α.
Then, a supplementing negation may be defined by setting ¬α def

== α→ ⊥.
Proof. Item (i). By hypothesis (a) and the properties of the bottom and
the implication, we have Γ, α,¬α � β. Now, suppose ¬α defines a bottom
particle, for any choice of α. Then, by the deduction theorem, Γ � ¬α→ ⊥,
for an arbitrary Γ. Thus, by (b) and (Con3), Γ � α. But this cannot be
the case, as L is non-trivial.
Item (ii) is a straightforward consequence of the above definitions, and we
leave it as an exercise for the reader. �

One might also consider the dual of a supplementing negation:

DEFINITION 8. We say that a logic L has a complementing negation if
there is a formula ψ(p0) such that:
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(a) ψ(α) is not a top particle, for some α;

(b) ∀Γ∀α(Γ, α � ψ(α) implies Γ � ψ(α)).
We say that L has a classical negation if it has some (primitive or defined)
negation connective that is both supplementing and complementing. As a
particular consequence of this definition, it can be easily checked that for
any classical negation � the equivalence (��α 
� α) will be derivable. �

Yet some other versions of explosiveness can here be considered:

DEFINITION 9. Let L be a logic, and let σ(p0, . . . , pn) be a formula of L.
(i) We say that L is partially explosive with respect to σ, or σ-partially
explosive, if:

(a) σ(β0, . . . , βn) is not a top particle, for some choice of β0, . . . , βn;

(b) ∀Γ∀β0 . . . ∀βn∀α(Γ, α,¬α � σ(β0, . . . , βn)).

(ii) L is boldly paraconsistent if there is no σ such that L is σ-partially ex-
plosive.

(iii) L is said to be controllably explosive in contact with σ, if:

(a) σ(α0, . . . , αn) and ¬σ(α0, . . . , αn) are not bottom particles,
for some choice of α0, . . . , αn;

(b) ∀Γ∀α0 . . . ∀αn∀β(Γ, σ(α0, . . . , αn),¬σ(α0, . . . , αn) � β). �
EXAMPLE 10. A well-known example of a logic that is not explosive
but is partially explosive, is provided by Kolmogorov & Johánsson’s Min-
imal Intuitionistic Logic, MIL, obtained by the addition to the positive
fragment of intuitionistic logic (see Remark 29 below) of some weak forms
of reductio ad absurdum (cf. [Johánsson, 1936] and [Kolmogorov, 1967]).
In this logic, the intuitionistically valid inference (Γ, α,¬α � β) fails, but
(Γ, α,¬α � ¬β) holds good. This means that MIL is paraconsistent, but
not boldly paraconsistent, as all negated propositions can be inferred from
any given contradiction. A class of (obviously non-boldly) paraconsistent
logics extending MIL is studied in [Odintsov, 2005]. �

The requirement that a paraconsistent logic should be boldly paraconsis-
tent was championed by [Urbas, 1990]. The class of boldly paraconsistent
logics is surely very natural and pervasive. From now on, we will be making
an effort, as a matter of fact, to square our paraconsistent logics into this
class (check Theorems 20, 38 and 130).

Most paraconsistent logics studied in this chapter are also controllably ex-
plosive (check, in particular, Theorem 79, but a particularly strong counter-
example may be found in Example 17).

We should observe that conjunction may play a central role in relating
contradictoriness and triviality.
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DEFINITION 11. A logic L is said to be left-adjunctive if there is a
formula ψ(p0, p1) such that:

(a) ψ(α, β) is not a bottom particle, for some α and β;

(b) ∀α∀β∀Γ∀γ(Γ, α, β � γ implies Γ, ψ(α, β) � γ). �
The formula ψ(α, β), when it exists, will often be denoted by (α∧β), and

the sign ∧ will be called a left-adjunctive conjunction (but it will not nec-
essarily have, of course, all properties of a classical conjunction). Similarly,
we can define the following:

DEFINITION 12. A logic L is said to be left-disadjunctive if there is a
formula ϕ(p0, p1) such that:

(a) ϕ(α, β) is not a top particle, for some α and β;

(b) ∀α∀β∀Γ∀γ(Γ, ϕ(α, β) � γ implies Γ, α, β � γ). �
In general, whenever there is no risk of misunderstanding or of misiden-

tification of different entities, we might also denote the formula ϕ(α, β),
when it exists, by (α∧β), and we will accordingly call ∧ a left-disadjunctive
conjunction. Of course, a logic can have just one of these conjunctions, or
it can have both a left-adjunctive conjunction and a left-disadjunctive con-
junction without the two of them coinciding. In natural deduction, clause
(b) of Definition 11 corresponds to conjunction elimination, and clause (b)
of Definition 12 corresponds to conjunction introduction.

It is straightforward to prove the following:

THEOREM 13. Let L be a left-adjunctive logic. (i) If L is finitely triv-
ializable (in particular, if it has a supplementing negation), then it has a
bottom particle. (ii) If L respects ex contradictione, then it also respects ex
falso. �
EXAMPLE 14. The ‘pre-discussive’ logic J proposed in [Jaśkowski, 1948],
in the usual signature of classical logic, is such that:

Γ �J α iff ♦Γ �S5 ♦α,

where ♦Γ = {♦γ : γ ∈ Γ}, ♦ denotes the possibility operator, and �S5

denotes the consequence relation defined by the well-known modal logic S5.
It is easy to see that (α,¬α �J β) does not hold in general, though (α ∧
¬α) �J β does hold good, for any formulas α and β. This phenomenon can
only happen because J is left-adjunctive but not left-disadjunctive. Hence,
Theorem 13 still holds for J, but this logic provides a simple example of a
logic that respects the Principle of Ex Falso Sequitur Quodlibet (7) but not
the Principle of Ex Contradictione Sequitur Quodlibet (3). �

The literature on paraconsistency (cf. section 4.2 of [Priest, 2002]) tra-
ditionally calls non-adjunctive the logics failing left-disadjunctiveness. In
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the present paper, conjunctions that are both left-adjunctive and left-dis-
adjunctive will be called standard.

3 LFIS AND THEIR RELATIONSHIP TO CLASSICAL LOGIC

3.1 Introducing LFIs and C-systems

From now on, we will concentrate on logics which are paraconsistent but
nevertheless have some special explosive theories, as those discussed in the
last section. With the help of such theories some concepts can be studied
under a new light — this is the case of the notion of consistency (and its
opposite, the notion of inconsistency), as we shall see. This section will
introduce the Logics of Formal Inconsistency as the paraconsistent logics
that respect a certain Gentle Principle of Explosion, to be clarified below.
By way of motivation, we start with a few helpful definitions and concrete
examples.

Given two logics L1 = 〈For1,�1〉 and L2 = 〈For2,�2〉, we will say that
L2 is a (proper) linguistic extension of L1 if For1 is a (proper) subset of
For2, and we will say that L2 is a (proper) deductive extension of L1 if �1

is a (proper) subset of �2. Finally, if L2 is both a linguistic extension and a
deductive extension of L1, and if the restriction of L2’s consequence relation
�2 to the set For1 will make it identical to �1 (that is, if For1 ⊆ For2, and
for any Γ∪{α} ⊆ For1 we have that Γ �2 α iff Γ �1 α) then we will say that
L2 is a conservative extension of L1 (and similarly for proper conservative
extensions). In any of the above cases we can more generally say that L2
is an extension of L1, or that L1 is a fragment of L2. These concepts
will be used here to compare a number of logics that will be presented.
Most paraconsistent logics in the literature, and all of those studied here,
are proper deductive fragments of classical logic written in a convenient
signature.

REMARK 15. From here on, Σ will denote the signature containing the
binary connectives ∧, ∨, →, and the unary connective ¬, such that P =
{pn : n ∈ ω} is the set of atomic formulas. By For we will denote the set of
formulas freely generated by P over Σ.

In the same spirit, Σ◦ will denote the signature obtained by the addition
to Σ of a new unary connective ◦ to the signature Σ, and For◦ will denote
the algebra of formulas for the signature Σ◦. �
DEFINITION 16. A many-valued semantics for a set of formulas For will
here be any collection Sem of mappings vk: For �� Vk , called valuations,
where the set of truth-values in Vk is separated into designated values Dk

(denoting the set of ‘true values’) and undesignated values Uk (denoting the
set of ‘false values’), that is, Vk is such that Vk = Dk ∪ Uk and Dk ∩ Uk =
∅, for each v ∈ Sem. A (truth-preserving single-conclusion) many-valued
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entailment relation |=Sem ⊆ ℘(For) × For can then be defined by setting,
for every choice of Γ ∪ {α} ⊆ For:

Γ |=Sem α iff, for every v ∈ Sem, v(α) ∈ D whenever v(Γ) ⊆ D.
A nice general abstract result can be proven to the effect that a consequence
relation characterizes a T -logic (recall Subsection 2.2) if, and only if, it
is determined by a many-valued entailment relation (check [Marcos, 2004;
Caleiro et al., 2005a], and the references therein). A distinguished class of
many-valued semantics that will be much explored in the present paper,
starting from Subsection 3.3, is the class of semantics in which D and U
are fixed singletons (representing ‘truth’ and ‘falsity’) throughout every v ∈
Sem. Those semantics are now known as bivaluation semantics.

A very usual particular class of many-valued semantics is the class of
truth-functional semantics, which include those many-valued semantics such
that V, D and U are fixed sets of truth-values throughout every v ∈ Sem,
and such that the truth-values are organized into an algebra similar to the
algebra of formulas, that is, for every κ-ary connective in the signature Σ
that defines For there is a corresponding κ-ary operator over V, where κ
is the cardinality of V. In case κ < ω we say that we are talking about a
finite-valued truth-functional logic.

We will often present truth-functional T -logics below simply in terms of
sets of truth-tables and corresponding designated values defining the be-
havior of the connectives from the signature, and take it for granted that
the reader assumes that and understands how those tables characterize an
entailment relation |=, defined as above. Not all logics, and not all para-
consistent logics, have truth-functional semantics, though. Partially explo-
sive paraconsistent logics such as MIL (check Example 10) provide indeed
prime examples of logics that are not characterizable by truth-functional
semantics, neither finite-valued nor infinite-valued (for a discussion on that
phenomenon, check [Marcos, 2007b], and the references therein).

Some useful generalizations of truth-functional semantics include non-
deterministic semantics and possible-translations semantics based on truth-
functional many-valued logics (presented below, starting from Subsection
3.4). �
EXAMPLE 17. Consider the logic presented by way of the following truth-
tables:

∧ 1 1/2 0

1 1 1/2 0
1/2

1/2
1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1
1/2 1 1/2

1/2

0 1 1/2 0

→ 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1 1

¬
1 0

1/2
1/2

0 1

where both 1 and 1
2 are designated values. Pac is the name under which this

logic appeared in [Avron, 1991] (Section 3.2.2), though it had previously
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appeared, for instance, in [Avron, 1986], under the denomination RM e⊃
3 ,

and, even before that, in [Batens, 1980], where it was called PIs. The
logic Pac conservatively extends the logic LP by the addition of a classical
implication. LP is an early example of a 3-valued paraconsistent logic with
classic-like operators for a standard conjunction and a standard disjunction,
and it was introduced in [Asenjo, 1966] and investigated in [Priest, 1979].

In Pac, for no formula α it is the case that α,¬α �Pac β for all β. So,
Pac is not a controllably explosive logic. A classical negation for Pac would
be illustrated by the truth-table:

∼
1 0

1/2 0
0 1

However, it should be clear that such a negation is not definable in Pac.
Indeed, any truth-function of this logic having only 1

2 ’s as input will also
have 1

2 as output. As a consequence, Pac has no bottom particle (and
this logic also cannot express the consistency of its formulas, as we shall
see below). Being a left-adjunctive logic as well, Pac is, consequently, not
finitely trivializable. �

EXAMPLE 18. In adding to Pac either a supplementing negation as
above or a bottom particle, one obtains a well-known conservative extension
of it, obviously still paraconsistent, but this time a logic that has some
interesting explosive theories: It satisfies, in particular, principles (7) and
(8) from the previous subsection. This logic was introduced in [Schütte,
1960] for proof-theoretical reasons and independently investigated under the
appellation J3 in [D’Ottaviano and da Costa, 1970] as a ‘possible solution
to the problem of Jaśkowski’. It also reappeared quite often in the literature
after that, for instance as the logic CLuNs in [Batens and De Clercq, 2000].
In [D’Ottaviano and da Costa, 1970]’s first presentation of J3, a ‘possibility
connective’ ∇ was introduced instead of the supplementing negation ∼. In
[Epstein, 2000] this logic was reintroduced having also a sort of ‘consistency
connective’ ◦ (originally denoted by c©) as primitive. The truth-tables of ∇
and ◦ are as follows:

∇ ◦
1 1 1

1/2 1 0
0 0 1

The expressive and inferential power of this logic was more deeply explored
in [Avron, 1999] and in [Carnielli et al., 2000]. The latter paper also explores
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the possibility of applying this logic to the study of inconsistent databases
(for a more technical perspective check [de Amo et al., 2002]), abandoning
∼ and ∇ but still retaining ◦ as primitive. This logic (renamed LFI1 in
the signature Σ◦) has been argued to be appropriate for formalizing the
notion of consistency in a very convenient way, as discussed below. It is
worth noticing that ∼α and ∇α may be defined in LFI1 as (¬α ∧ ◦α) and
(α ∨ ¬◦α), respectively. Alternatively, ◦α def

== (¬∇α ∨ ¬∇¬α). A complete
axiomatization for LFI1 is presented in Theorem 127. �

EXAMPLE 19. Paraconsistency and many-valuedness have often been com-
panions. In [Sette, 1973] the following 3-valued logic, alias P1, was studied:

∧ 1 1/2 0

1 1 1 0
1/2 1 1 0
0 0 0 0

∨ 1 1/2 0

1 1 1 1
1/2 1 1 1
0 1 1 0

→ 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1 1

¬
1 0

1/2 1
0 1

where 1 and 1
2 are the designated values. The truth-table of the consistency

connective ◦ as in Example 18 can now be defined via ◦αdef
==¬¬α∨¬(α∧α).

The logic P1 has the remarkable property of being controllably explosive
in contact with arbitrary non-atomic formulas, that is, the paraconsistent
behavior obtains only at the atomic level: α,¬α � β, for arbitrary non-
atomic α. Moreover, another property of this logic is that � ◦α holds
for non-atomic α. Those two properties are in fact not related by a mere
accident, but as an instance of Theorem 79. A complete axiomatization for
the logic P1 is presented in Theorem 127. �

We had committed ourselves to present paraconsistent logics that would
be boldly paraconsistent (recall Definition 9(ii)). The logics from Exam-
ples 18 and 19 can indeed be seen to enjoy this property:

THEOREM 20. LFI1 and P1 are boldly paraconsistent. And so are their
fragments.
Proof. Assume Γ �� σ(p0, . . . , pn) for some appropriate choice of formulas.
In particular, by (Con2), it follows that �� σ(p0, . . . , pn). Now, consider
a variable p not in p0, . . . , pn. Let p be assigned the value 1

2 , and ex-
tend this assignment to the variables p0, . . . , pn so as to give the value 0 to
σ(p0, . . . , pn). It is obvious that, in this situation, p,¬p �� σ(p0, . . . , pn). �

Paraconsistent logics are tools for reasoning under conditions which do
not presuppose consistency. If we understand consistency as what might
be lacking to a contradiction for it to become explosive, logics like LFI1
and P1 are clearly able to express the consistency (of a formula) at the
object-language level. This feature will permit consistent reasoning to be
recovered from inside an inconsistent environment.
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In formal terms, consider a (possibly empty) set ©(p) of formulas which
depends only on the propositional variable p, satisfying the following: There
are formulas α and β such that

(a) ©(α), α � β;
(b) ©(α),¬α � β.

We will call a theory Γ gently explosive (with respect to ©(p)) if:

∀α∀β(Γ,©(α), α,¬α � β).

A theory Γ will be said to be finitely gently explosive when it is gently
explosive with respect to a finite set ©(p).

A logic L will be said to be (finitely) gently explosive when there is
a (finite) set ©(p) such that all of the theories of L are (finitely) gently
explosive (with respect to ©(p)). Notice that a finitely gently explosive
theory is finitely trivialized in a very distinctive way.

We may now consider the following ‘gentle’ variations on the Principle of
Explosion:

Gentle Principle of Explosion

L is gently explosive with respect to some set ©(p) (9)

Finite Gentle Principle of Explosion

L is gently explosive with respect to some finite set ©(p) (10)

For any formula α, the set ©(α) is intended to express, in a specific sense,
the consistency of α relative to the logic L. When this set is a singleton,
we will denote by ◦α the sole element of ©(α), and in this case ◦ defines a
consistency connective or consistency operator. It is worth noting, however,
that ◦ is not necessarily a primitive connective of the signature of L. In fact,
several logics that will be studied below (namely, the so-called ‘direct dC-
systems’, see Definition 32) present ◦ as a connective that is defined in terms
of other connectives of a less complex underlying signature.

The above definitions are very natural, and paraconsistent logics with a
consistency connective are in fact quite common. One way of seeing that is
through the use of a classic-like (in fact, intuitionistic-like) disjunction:

DEFINITION 21. We say that a logic L has a standard disjunction if there
is a formula ψ(p0, p1) such that:

(a) ψ(α, β) is not a bottom particle, for some α and β;

(b) ∀α∀β∀Γ∀∆∀γ(Γ, α � γ and ∆, β � γ implies Γ,∆, ψ(α, β) � γ);

(c) ψ(α, β) is not a top particle, for some α and β;

(d) ∀α∀β∀Γ∀γ(Γ, ψ(α, β) � γ implies Γ, α � γ and Γ, β � γ).
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In natural deduction, clause (b) corresponds to disjunction elimination, and
clause (d) to disjunction introduction. The reader can now easily check that:

THEOREM 22. (i) Any non-trivial explosive theory / logic is finitely gen-
tly explosive, supposing that there is some formula α such that ¬α is not
a bottom particle. (ii) Any left-adjunctive finitely gently explosive logic
respects ex falso. (iii) Let L be a logic containing a bottom particle ⊥, a
standard disjunction ∨, an implication → respecting modus ponens and a
negation ¬ such that there exists some formula α satisfying:
(a) α, (¬α→ ⊥) �� ⊥;
(b) ¬α, (α→ ⊥) �� ⊥.
Then L defines a consistency operator ◦α def

== (α→ ⊥) ∨ (¬α→ ⊥). �
We now define the Logics of Formal Inconsistency as the paraconsistent

logics that can ‘talk about consistency’ in a meaningful way.

DEFINITION 23. A Logic of Formal Inconsistency (LFI) is any gently
explosive paraconsistent logic, that is, any logic in which explosion, (3),
does not hold, while gentle explosion, (9), holds good. �

In other words, a logic L is an LFI (with respect to a negation ¬) if:

(a) ∃Γ∃α∃β(Γ, α,¬α �� β), and

(b) there exists a set of formulas ©(p) depending exactly on the proposi-
tional variable p such that ∀Γ∀α∀β(Γ,©(α), α,¬α � β).

Besides the 3-valued paraconsistent logics presented in the above exam-
ples, we will study in this chapter several other paraconsistent logics based
on different kinds of semantics. Many will have been originally proposed
without a primitive consistency connective, but, being sufficiently expres-
sive, they will often be shown to admit of such a connective. Examples
of that phenomenon were already presented above, for the cases of LFI1
and P1. Another interesting and maybe even surprising example of that
phenomenon is provided by Jaśkowski’s Discussive Logic D2 (cf. [Jaśkowski,
1948] and [Jaśkowski, 1949]), the first paraconsistent logic ever to be intro-
duced as such in the literature:

EXAMPLE 24. Let Σ♦ be the extension of the signature Σ obtained by the
addition of a new unary connective ♦, and let For♦ be the corresponding
algebra of formulas. Let �S5 be the consequence relation of modal logic
S5 over the language For♦. Consider a mapping ∗: For �� For♦ such
that:

1. p∗ = p for every p ∈ P;
2. (¬α)∗ = ¬α∗;
3. (α ∨ β)∗ = α∗ ∨ β∗;
4. (α ∧ β)∗ = α∗ ∧ ♦β∗;
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5. (α→ β)∗ = ♦α∗ → β∗.

Given Γ ⊆ For, let Γ∗ denote the subset {α∗ : α ∈ Γ} of For♦. For any
Γ ⊆ For♦ let ♦Γ = {♦α : α ∈ Γ}. Jaśkowski’s Discussive logic D2 is
defined over the signature Σ as follows: Γ �D2 α iff ♦(Γ∗) �S5 ♦(α∗), for
any Γ ∪ {α} ⊆ For. Equivalently, D2 may be introduced with the help
of the pre-discussive logic J (recall Example 14), by setting Γ �D2 α iff
Γ∗ �J α

∗. With such definitions, D2 can easily be seen to be non-explosive
with respect to the negation ¬, that is, D2 is paraconsistent (with respect
to ¬). Consider now the following abbreviations defined on the set For
(here, α ∈ For):

� def
== (α ∨ ¬α);

⊥ def
== ¬�;

�α def
== (¬α→ ⊥);

�α def
== ¬�¬α;

◦α def
== (�α→ �α).

It is an easy task to check now (say, using a Kripke semantics or tableaux
for the logic S5) that in D2 the formulas � and ⊥ denote top and bottom
particles, respectively, and ◦ behaves as a consistency operator (giving rise
to gentle explosion). �
THEOREM 25.
(i) Classical logic is not an LFI.

(ii) Pac (see Example 17) is also not an LFI.

(iii) LFI1 (see Example 18) is an LFI.

(iv) P1 (see Example 19) is an LFI.

(v) Jaśkowski’s Discussive Logic D2 (see Example 24) is an LFI.

Proof. For item (i), note that explosion, (3), holds classically.

To check item (ii), let p be an atomic formula and let ©(p) be the set of all
formulas of Pac that depend only on p. The valuation from the truth-table
that assigns 1

2 to p and 0 to q is a model for ©(p), p,¬p but it invalidates
gentle explosion (on q).

For item (iii), take consistency to be expressed in J3 by the connective ◦,
as intended, that is, take ©(α) = {◦α}. Obviously, ©(α), α,¬α � β holds.
Take now a valuation from the truth-table that assigns 1 to p and notice
that ©(p), p �� β. Finally, take a valuation that assigns 0 to p and notice
that ©(p),¬p �� β.

To check item (iv), again take consistency to be expressed in P1 by ◦ and
note that p,¬p �� q, for atomic and distinct p and q.

Item (v) may be verified directly from the definitions in Example 24. �
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In accordance with definition (6) from Subsection 2.2, paraconsistent
logics are the non-trivial logics whose negation fails the ‘consistency pre-
supposition’. Some inferences that depend on this presupposition, thus,
will necessarily be lost. However, one might well expect that, if a sufficient
number of ‘consistency assumptions’ are made, then those same inferences
should be recovered. In fact, the LFIs are intended to be exactly the logics
that can internalize this idea. To be more precise, and following [Marcos,
2005e]:

REMARK 26. Consider a logic L1 = 〈For1,�1〉 in which explosion holds
good for a negation ¬, that is, a logic that satisfies, in particular, the rule
(α,¬α �1 β). Let L2 = 〈For2,�2〉 now be some other logic written in
the same signature as L1 such that: (i) L2 is a proper deductive fragment
of L1 that validates inferences of L1 only if they are compatible with the
failure of explosion; (ii) L2 is expressive enough so as to be an LFI, there-
fore, in particular, there will be in L2 a set of formulas ©(p) such that
(©(α), α,¬α �2 β) holds good; (iii) L1 can in fact be recovered from L2 by
the addition of ©(α) as a new set of valid schemas / axioms. These con-
straints alone suggest that the reasoning of L1 might somehow be recovered
from inside L2, if only a sufficient number of ‘consistency assumptions’ are
added in each case. Thus, typically the following Derivability Adjustment
Theorem (DAT) may be proven (as in [Marcos, 2005e]):

∀Γ∀γ∃∆(Γ �1 γ iff ©(∆),Γ �2 γ).

The DAT shows how the weaker logic L2 can be used to ‘talk about’ the
stronger logic L1. The essential intuition behind such theorem was empha-
sized in [Batens, 1989], but an early version of that very idea can already be
found in [da Costa, 1963] and [da Costa, 1974] (check our Theorem 112). On
those grounds, LFIs are thus proposed and understood as the non-trivial
inconsistent logics that can recover consistent inferences through convenient
derivability adjustments. We will come back to this idea in Subsection 3.6
and Theorems 96, 112 and 113. �

To get a bit more concrete, and at the same time specialize from the
broad Definition 23 of LFIs, we introduce now the concept of a C-system.

DEFINITION 27. Let L1 and L2 be two logics defined over signatures
Σ1 and Σ2, respectively, such that Σ2 extends Σ1, and Σ2 contains a unary
negation connective ¬ that does not belong to Σ1. We say that L2 is a
C-system based on L1 with respect to ¬ (in short, a C-system) if:

(a) L2 is a conservative extension of L1,
(b) L2 is an LFI (with respect to ¬), such that the set ©(p) is a singleton
{◦p}, that is, consistency may be defined as a formula ϕ(p) in L2,6

6In particular, ϕ(p) could be of the form �(p) for � a unary connective of Σ2.
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(c) the non-explosive negation ¬ cannot be defined in L1,
(d) L1 is non-trivial. �

All C-systems we will be studying below are examples of non-contra-
dictory ¬-paraconsistent logical systems. Furthermore, they are equipped
with supplementing negations and bottom particles, and they are based on
classical propositional logic (in a convenient signature which includes an
explicit connective for classical negation). Accordingly, they will all respect
Principles (1), (2), (7), (8) and (9), but they will obviously disrespect (3).

As it will be seen in the following, the hierarchy of logics Cn, 1 ≤ n <
ω (cf. [da Costa, 1963] or [da Costa, 1974]) provide clear illustrations of
C-systems based on classical logic, provided that each Cn is presented in
an extended signature including a connective for classical negation. The
cautious reader should bear in mind that Cω (cf. Definition 40 below), the
logic proposed as a kind of ‘limit’ for the hierarchy is not a C-system, not
even an LFI. The real deductive limit for the hierarchy, the logic CLim,
is an interesting example of a gently explosive LFI that is not finitely so,
and it was studied in [Carnielli and Marcos, 1999]. The next definition will
recall the hierarchy Cn, 1 ≤ n < ω, in an axiomatic formulation of our own:

DEFINITION 28. Recall, once more, the signature Σ from Remark 15.
For every formula α, let ◦α be an abbreviation for the formula ¬(α ∧ ¬α).
The logic C1 = 〈For,�C1〉 may be axiomatized by the following schemas of
a Hilbert calculus:

Axiom schemas:
(Ax1) α→ (β → α)

(Ax2) (α→ β) → ((α→ (β → γ)) → (α→ γ))

(Ax3) α→ (β → (α ∧ β))

(Ax4) (α ∧ β) → α

(Ax5) (α ∧ β) → β

(Ax6) α→ (α ∨ β)

(Ax7) β → (α ∨ β)

(Ax8) (α→ γ) → ((β → γ) → ((α ∨ β) → γ))

(Ax9) α ∨ (α→ β)

(Ax10) α ∨ ¬α
(Ax11) ¬¬α→ α

(bc1) ◦α→ (α→ (¬α→ β))
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(ca1) (◦α ∧ ◦β) → ◦(α ∧ β)

(ca2) (◦α ∧ ◦β) → ◦(α ∨ β)

(ca3) (◦α ∧ ◦β) → ◦(α→ β)

Inference rule:

(MP)
α, α→ β

β

In general, given a set of axioms and rules of a logic L, we write Γ �L α
to say that there is proof in L of α from the premises in Γ. The subscript
will be omitted when obvious from the context. If Γ is empty we say that
α is a theorem of L.

The logic C1 is a LFI such that ©(p) = {◦p} = {¬(p ∧ ¬p)}. We shall
see that axioms (bc1), and (ca1)–(ca3) can be stated in a new fashion by
taking ◦ as a primitive connective instead of as an abbreviation. From
these new axioms different logics will emerge. Moreover, since it is possible
to define a classical negation ∼ in C1 (namely, ∼α = ¬α ∧ ◦α), this logic
may be rewritten in an extended signature which contains ∼ as a primitive
connective (and adding the obvious axioms identifying ∼α with ¬α ∧ ◦α),
and so it is easy to see that C1 (presented in the extended signature) is a
C-system based on classical logic (see Remark 29 below).

Let α1 abbreviate the formula ¬(α∧¬α), and αn+1 abbreviate the formula
(¬(αn ∧ ¬αn))1. Then, each logic Cn of the hierarchy {Cn}1≤n<ω may be
obtained by assuming ©(p) = {p1, . . . , pn}. This is equivalent, of course, to
setting ◦α def

== α1 ∧ . . .∧αn in axioms (bc1) and (ca1)–(ca3). It is immediate
to see that every logic Cn is an LFI. Moreover, by considering the definable
classical negation ∼ as a primitive connective, each Cn (presented in the
extended signature) is a C-system based on classical logic. It is well known
that each Cn properly extends each Cn+1. �
REMARK 29. Let the signature Σ+ denote the signature Σ without the
symbol ¬, and For+ be the corresponding ¬-free fragment of For. Positive
classical logic, from now on denoted as CPL+, may be axiomatized in the
signature Σ+ by axioms (Ax1)–(Ax9), plus (MP). Classical propositional
logic, from now on denoted by CPL, is an extension of CPL+ in the signa-
ture Σ, where ¬ is governed by two dual axioms, (Ax10) and the following
‘explosion law’:

(exp) α→ (¬α→ β)

That axiomatization should come as no surprise, if you only recall the notion
of a classical negation from Definition 8. Clearly, for any logic L extending
CPL+ a (primitive or defined) unary connective � of L is a classical negation
iff the schemas (α ∨ �α) and (α→ (�α→ β)) are provable.
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CPL is also the minimal consistent extension of C1. Indeed, an alter-
native way of axiomatizing CPL is by adding ◦α to C1 as a new axiom
schema, and (exp) then follows from (bc1) and this new axiom, by (MP).
On the other hand, positive intuitionistic logic may be axiomatized from
CPL+ by dropping (Ax9).

As mentioned above, C1 may be considered as a deductive fragment of
CPL (in the signature Σ), whereas CPL may be considered as a deductive
fragment of C1 in the signature Σ∼ obtained from Σ by adding a symbol
∼ for classical negation, and where ¬ denotes the paraconsistent negation
of C1.

As it is well known (cf. [Mendelson, 1997]), any logic having (Ax1) and
(Ax2) as axioms, and modus ponens (MP) as its only primitive inference
rule has a deductive implication.7

In any logic endowed with a deductive implication, the Principle of Ex-
plosion, (3), and the explosion law, (exp), are interderivable. So, for any
such logic, if paraconsistency is to be obtained, (exp) must fail.

As usual, bi-implication ↔ will be defined here by setting (α ↔ β) def
==

((α → β) ∧ (β → α)). Note that, in the presence of a deductive implica-
tion →, � (α ↔ β) if, and only if, α � β and β � α, that is, iff α and β are
equivalent. Nevertheless, the equivalence of two formulas, in the logics we
will study here, does not necessarily guarantee that these formulas may be
freely inter-substituted for each other, as we shall see below. �

Recall that the definition of a C-system (Definition 27) mentioned LFIs
in which the set ©(p) could be taken as a singleton. The easiest way of
realizing this intuition is by extending the original language of our logics so
as to count from the start with a primitive connective ◦ for consistency.

REMARK 30. Recall the signature Σ◦ from Remark 15. Consider the
following (innocuous, but linguistically relevant) extension of CPL that
presupposes all formulas to be consistent, obtained by the addition of the
following new axiom:

(ext) ◦α
In practice, this will constitute of course just another version of CPL in
a different signature, where any formula of the form ◦α is assumed to be
a top particle. This logic, which we will here call extended classical logic
and denote by eCPL, will come in handy below when we start building
C-systems based on classical logic. �

Sometimes our Logics of Formal Inconsistency can dismiss the new consis-
tency connective (by replacing it by a formula built from the other connec-
tives already present in the signature). Before defining this class of logics,

7This is not always true, though, for logics extending (Ax1), (Ax2) and (MP) by the
addition of new primitive inference rules.
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it is convenient to make a little detour and present a fundamental notion
that will have a role to play in several parts of this chapter, namely, the
concept of translation between logics.

DEFINITION 31. Let L2 and L1 be logics with sets of formulas For2 and
For1, respectively. A mapping t: For2 �� For1 is said to be a transla-

tion from L2 to L1 if, for every set Γ ∪ {α} of L2-formulas,

Γ �L2 α implies t(Γ) �L1 t(α).

Here, t(Γ) stands for {t(γ) : γ ∈ Γ}.
If ‘implies’ is replaced by ‘iff’ in the definition above, then t is called a

conservative translation. See [da Silva et al., 1999], [Coniglio and Carnielli,
2002] and [Coniglio, 2005] for a general account of translations and conser-
vative translations. �

Now, having the notion of translations at hand, the special kind of C-
systems mentioned above is defined as follows:

DEFINITION 32. Let L2 be a C-system with respect to ¬, based on a
logic L1, and let ϕ(p) represent the formula schema with respect to which L2
is gently explosive, that is, such that ϕ(α) represents in L2 the consistency
of the formula α with respect to the non-explosive negation ¬. Where Σ2

represents the signature of the logic L2, let cnt[ϕ(p)] represent the set of
connectives involved in the formulation of ϕ(p). Let Σ′ be any signature
obtained by dropping from Σ2 all the connectives that appear in cnt[ϕ(p)],
that is, Σ′ is a restriction of the signature of L2 in which consistency can
no more be expressed in the same way as in the original logic L2. Now, in
case it is still possible to express the consistency of the formulas of L2 with
the help of the remaining connectives in Σ′ � Σ2, say, by way of a set of
formulas ϕ′(p) over Σ′, then we say that L2 is a dC-system based on L1
(or simply a dC-system). So, dC-systems are C-systems with respect to
some negation and some consistency schema ϕ(p) where it is also possible
to express consistency alternatively by way of a formula ϕ′(p) such that
ϕ(p) and ϕ′(p) have no common structure, that is, such that cnt[ϕ′(p)] ∩
cnt[ϕ′(p)] = ∅. This is typically the case when ϕ(p) has the form ◦(p),
where ◦ is a primitive unary connective of Σ2, but where, at the same
time, ◦ can be explicitly defined by way of the connectives in Σ2 \ {◦} (see
examples below). In that case we say that L2 is a direct dC-system based
on L1 (or simply a direct dC-system). As we will see below, there are
dC-systems that are not direct (they will from here on be called indirect).
In those indirect dC-systems, consistency cannot be expressed by a unary
connective ◦, primitive or defined, but only by way of a complex formula ϕ,
depending on a single variable.

DEFINITION 33. Let Σ be the signature of an indirect dC-system L, and
consider the direct dC-system L′ defined over the signature Σ′, such that:
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(a) L′ is a conservative extension of L obtained by the addition of a new
unary connective ◦, that is, such that Σ′ = Σ ∪ {◦} (so, in particular, the
consistency of a formula α can be expressed in L′ exactly as in L, namely,
by way of the formula ϕ(α));
(b) L′ is an LFI with respect to ◦ ∈ Σ′, and a C-system with respect to
some ¬ ∈ Σ (so, in particular, the consistency of α can also be expressed in
L′ by way of the formula ◦α);
(c) In L′ the connective ◦ plays the same role as the formula ϕ plays in
L, more specifically, there is a translation � : ForL′ �� ForL respecting
the following clauses:
(c.1) t(p) = p, for p a propositional variable
(c.2) t(�(α1, . . . , αn)) = �(t(α1), . . . , t(αn)), for every n-ary connective �
in Σ′ distinct from ◦, and for any choice of formulas α1, . . . , αn from ForL′

(c.3) t(◦α) = ϕ(t(α)), for any formula α in ForL′

In a case like this we may say that the direct dC-system L′ corresponds to
the indirect dC-system L. Indirect dC-systems appear typically when we
are talking about C-systems for which the replacement property fails to such
an extent that it might turn out to be impossible to give an explicit definition
of the consistency connective in terms of other, more usual connectives.
(Examples follow below.) �

The next example and the subsequent theorem will show that dC-systems
are even more ubiquitous than one might initially imagine.

EXAMPLE 34. Let Σ♦� be the signature obtained by the addition of the
new unary connectives ♦ and � to the signature Σ, where the connectives ∧,
∨, → and ¬ of Σ are interpreted as in classical logic and the new connectives
are interpreted as usual in normal modal logics. So, ♦α (respectively, �α)
will be true in a given world iff α is true in some (respectively, any) world
accessible to the former. The most obvious degenerate examples of normal
modal logics are characterized by frames that are such that every world can
access only itself or no other world. As shown in [Marcos, 2005e], inside
any non-degenerate normal modal logic, a paraconsistent negation � may
be defined by setting �α def

== ♦¬α, and a consistency connective may be
defined by setting ◦α def

== α→ �α.
Conversely, take the signature Σ◦, and interpret the primitive negation ¬

now over Kripke structures so as to make it behave exactly like the above
connective �, that is, an interpretation such that, for worlds x and y of a
model M with an accessibility relation R:

|=M
x ¬α iff (∃y)(xRy and �|=M

y α).

Moreover, let the consistency connective be interpreted in such a way that:

|=M
x ◦α iff |=M

x α implies (∀y)(if xRy then |=M
y α).



LOGICS OF FORMAL INCONSISTENCY 29

Then, in the present case, one can still redefine the previous connectives of
Σ♦�. Indeed, one can define a bottom ⊥ by setting ⊥ def

== α∧(¬α∧◦α), for an
arbitrary formula α, and then define a classical negation ∼ by setting ∼α def

==

α → ⊥. The original modal connectives can finally be defined by setting
♦α def

== ¬∼α and �α def
== ∼¬α.

The above arguments show that any non-degenerate normal modal logic
may be naturally reformulated in the signature of an LFI. In that sense,
modal logics are typically paraconsistent, and could be recast as the study
of paraconsistent negations (instead of operators such as � and ♦). �
THEOREM 35.
(i) LFI1 (see Example 18) is a C-system (based either on CPL+ or on
CPL), but not a dC-system.

(ii) P1 (see Example 19) is a direct dC-system.

(iii) The logics Cn, 1 ≤ n < ω, (see Definition 28) are all direct dC-systems.

(iv) Jaśkowski’s Discussive Logic D2 (see Example 24) is a direct dC-
system.

(v) The normal modal logics from Example 34 are all direct dC-systems.

Proof. For item (i), observe first that LFI1 is a C-system based on clas-
sical logic. Indeed, the binary connectives of LFI1 all behave classically:
All axioms of CPL+ are validated by the 3-valued truth-tables of LFI1,
and (MP) preserves validity. Second, as we already know, the classical
negation ∼ can be defined in LFI1. Third, the connective ◦ expresses con-
sistency in LFI1, and the latter logic is indeed a conservative extension
of Pac obtained exactly by the addition of that connective. Similarly, the
non-explosive negation ¬ of LFI1 can easily be seen not to be definable, in
LFI1, from the truth-tables of the classical connectives. Finally, recall from
Theorem 25 that Pac is not an LFI, and observe that ◦ is not definable
from the other connectives of LFI1. Items (ii)–(v) were already explained
when the corresponding logics were introduced. �

The first examples of indirect dC-systems will appear only in Theo-
rems 106 and 110, as well as Remark 111.

All LFIs studied from the next subsection on, unless explicit mention to
the contrary, are C-systems based on classical logic, and can therefore be
axiomatized starting from CPL+.

3.2 Towards mbC, a fundamental LFI

Before introducing our weakest LFI based on classical logic, we will intro-
duce a very weak non-gently explosive paraconsistent logic.

Do bear in mind, from Remark 29, that ¬ in CPL was axiomatized by
the addition to CPL+ of two dual clauses, (Ax10) and (exp).
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DEFINITION 36. The paraconsistent logic PI, investigated in [Batens,
1980], extends CPL+ in the signature Σ (see Remark 29) by the addition
of (Ax10). In other words, PI is axiomatized by (Ax1)–(Ax10) and (MP)
(recall Definition 28). �
It is worth noting that, due to (Ax8), (Ax10) and to the fact that PI has
a deductive implication (recall Definition 6), one can count on the classical
proof strategy known as proof-by-cases:

THEOREM 37. If (Γ, α �PI β) and (∆,¬α �PI β) then (Γ,∆ �PI β). �
Here are some other important properties of PI :

THEOREM 38. (i) PI is boldly paraconsistent.
Moreover, for any boldly paraconsistent extension L of PI :
(ii) Reductio ad absurdum is not a valid rule, i.e. rules such as:
(∆, β �L α) and (Π, β �L ¬α) implies (∆,Π �L ¬β), and
(∆,¬β �L α) and (Π,¬β �L ¬α) implies (∆,Π �L β)
cannot obtain.
(iii) If the implication → is still a deductive implication (recall Definition 6),
contraposition is not a valid rule, i.e. rules such as:
Γ, α→ β �L ¬β → ¬α
Γ, α→ ¬β �L β → ¬α
Γ,¬α→ β �L ¬β → α
Γ,¬α→ ¬β �L β → α
cannot obtain.

Proof. For item (i), note that PI has a deductive implication and is a
fragment of both Pac and P1. Indeed, the axioms of PI are all validated by
the truth-tables of Pac and by the truth-tables of P1, and (MP) preserves
validity. Recall that those 3-valued extensions of PI were already proven to
be boldly paraconsistent in Theorem 20.
For item (ii), let ∆ = Π = {α,¬α}. Then, by reductio, the logic would be
partially explosive.
For item (iii), using the properties of the deductive implication, we have
that γ �L α → γ. Then again, by contraposition, the logic would turn out
to be partially explosive. �

As we will soon see (check Theorem 48), the upgrade of non-gently ex-
plosive logics into LFIs will help remedy the above mentioned deductive
weaknesses, so typical of paraconsistent logics in general.

Here again, using the fact that PI is a deductive fragment of Pac, it can
also be easily checked that:

THEOREM 39. The logic PI :
(i) does not have a supplementing negation, nor a bottom particle;
(ii) is not finitely trivializable;
(iii) is not an LFI. �
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Before proceeding, this seems to be a convenient place to mention some
logics that live very close to PI :

DEFINITION 40. The logic Cmin (cf. [Carnielli and Marcos, 1999]) is
obtained from PI by the addition of ¬¬α → α as a new axiom. The
logic Cω (cf. [da Costa, 1963]) is obtained from Cmin by dropping (Ax9).
Finally, the logic CAR (cf. [da Costa and Béziau, 1993]) is obtained from
PI by adding α→ (¬α→ ¬β) as a new axiom. �

Finally, here are some other important facts about PI :

THEOREM 41.
(i) PI does not prove any negated formula (that is, any formula of the
form ¬δ).
(ii) No two different negated formulas of PI are equivalent, that is, if
¬α 
�PI ¬β then α = β.

Proof. Item (i) was already proven in [Carnielli and Marcos, 1999] for
Cmin. Item (ii) was proven in [Urbas, 1989] for Cω, and the proof may be
easily adapted for PI. �

As we saw in Theorem 39(iii), PI is not an LFI. We will now make
the most obvious upgrade of PI that will turn it into an LFI, endowing it
with the most straightforward axiomatic version of the principle (10), the
so-called Finite Gentle Principle of Explosion:

DEFINITION 42. Recall the signature Σ◦ from Remark 15 and the logic
PI from Definition 36. The logic mbC is obtained from PI , over Σ◦, by the
addition of the following axiom schema:

(bc1) ◦α→ (α→ (¬α→ β))

In other words, mbC is axiomatized by (Ax1)–(Ax10) plus (MP) (recall
Definition 28), but now over the signature Σ◦, together with the extra axiom
(bc1), above. �

Notice that a particular form of axiom (bc1) had already been consid-
ered in Definition 28, but there ◦α was considered as an abbreviation for
¬(α ∧ ¬α), instead of a primitive connective. We recall that the intended
reading of ◦α is ‘α is consistent’. As we shall see, in general, ◦α is logically
independent from ¬(α ∧ ¬α).

If �mbC denotes the consequence relation of mbC, then we obtain, by
(MP), the following:

◦α, α, ¬α �mbC β (11)

Rule (11) may be read as saying that ‘if α is consistent and contradictory,
then it explodes’. Clearly, this rule amounts to a realization of the Finite
Gentle Principle of Explosion (10), as in our formulation of da Costa’s Cn

(Definition 28), with the difference that now ◦ is a primitive unary connec-
tive and not an abbreviation depending on conjunction and negation.
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REMARK 43. It is easy to define supplementing negations in mbC. Con-
sider first a negation � set by �α def

== (¬α ∧ ◦α). Notice that, as a particular
instance of Theorem 13(i), ⊥β

def
== (β ∧ �β) defines a bottom particle, for

every β. Consider next a negation ∼β set by ∼βα
def
== α → ⊥β . Clearly,

∀α∀γ(α, �α �mbC γ) and ∀β∀α∀γ(α,∼βα �mbC γ). In Remark 70, the
semantic tools of Subsection 3.4, granting sound and complete possible-
translations interpretations for mbC, will help us showing that neither ∼βα
nor �α are always bottom particles. Moreover, these supplementing nega-
tions will in fact be seen to be inequivalent: though �α derives ∼βα, the
converse is not true. While ∼β defines a classical negation, � fails to be
complementing (the latter facts will be proven in Remark 70).

From now on, we will simply write ⊥ and ∼ to refer to any of the con-
nectives ⊥β and ∼β defined above. Despite ⊥β and ⊥γ , as well as ∼βα
and ∼γα, being equivalent for every β, γ and α, they cannot be freely in-
tersubstituted (check the end of Remark 29). It will be often useful, in
this paper, to consider our C-systems to be written from the start in an
extended signature containing both the non-explosive negation ¬ and the
classical negation ∼, to be set as in the above definition. �
THEOREM 44. mbC is an LFI. In fact, it is a C-system based on CPL.

Proof. Note that mbC is indeed a fragment of LFI1 and of P1, and in
Theorem 25 the latter were shown to be LFIs. Moreover, we now know from
rule (11) that the principle (9) holds in mbC (in fact its finite form (10)
already holds). By design, we also know that mbC contains CPL+, and ¬
cannot be defined in the latter logic. Thus, mbC is a C-system based on
CPL+ such that ©(p) = {◦p}. To check that mbC can also be seen as a
C-system based on full CPL one might notice that mbC extends CPL in a
signature with two negations (as in the preceding remark). This extension
must be conservative, given that CPL is well-known to be maximal with
respect to the trivial logic. �

So, mbC may be considered as a deductive fragment of CPL, provided
that CPL is presented as eCPL in the signature Σ◦. On the other hand,
taking into account the signature Σ◦∼ obtained from Σ◦ by adding a symbol
∼ for the classical negation ∼α = α → ⊥ of mbC (recall Remark 43), and
where ¬ denotes the paraconsistent negation, CPL is a deductive fragment
of mbC such that mbC is a C-system based on CPL, provided that the
obvious axioms defining ∼ in terms of the other connectives of Σ◦ are added
to mbC.

REMARK 45. In spite of the term ‘Logics of Formal Inconsistency’, we
have mentioned but a consistency connective ◦ this far. But mbC can also
count on the dual inconsistency connective •. To define it, in general, one
might make use of a classical negation, such as the negation ∼ defined in
the above remark, and set •α def

== ∼◦α. �
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The logic mbC inherits the main properties of the positive fragment
of PI (such as those properties of the standard conjunction, the standard
disjunction and the deductive implication), but above we have seen that the
former logic is much richer than the latter. As another illustration of this
fact, from Theorem 44 and Remark 43 we can immediately see that none
of the claims from Theorem 39 are any longer valid in mbC. Furthermore,
the claims of Theorem 41 also do not hold good for mbC:

THEOREM 46.
(i) There are in mbC theorems of the form ¬δ, for some formula δ.
(ii) There are formulas α and β in mbC such that α �= β, α and β are
equivalent, and ¬α and ¬β are also equivalent.

Proof. (i) Consider any bottom particle ⊥ of mbC. Then (⊥ �mbC ¬⊥)
and (¬⊥ �mbC ¬⊥), thus �mbC ¬⊥, by Theorem 37.
(ii) Take α and β to be any two syntactically distinct bottom particles. �

Even if, differently from PI, mbC does have negated theorems, it does
not have consistent theorems:

THEOREM 47. There are in mbC no theorems of the form ◦δ.
Proof. Use the classical truth-tables over {0, 1} for ∧,∨,→ and ¬, and
pick for ◦ a truth-table with value constant and equal to 0. �

The price to pay for paraconsistency is that we necessarily lose some the-
orems and inferences dependent on the ‘consistency presupposition’. This
has been illustrated, for instance, in Theorem 38, where PI and its ex-
tensions (satisfying certain assumptions) were shown to lack some usual
classical proof strategies such as reductio and contraposition. This loss in
inferential power can be remedied in the LFIs exactly by adding convenient
consistency assumptions at the object-language level, as advanced in Re-
mark 26. Indeed, some restricted forms of those rules may be proven in
mbC:

THEOREM 48. The following reductio rules hold good in mbC:

(i) (Γ �mbC ◦α) and (∆, β �mbC α) and (Λ, β �mbC ¬α)
implies (Γ,∆,Λ �mbC ¬β)

(ii) (Γ �mbC ◦α) and (∆,¬β �mbC α) and (Λ,¬β �mbC ¬α)
implies (Γ,∆,Λ �mbC β)

The following contraposition rules hold in mbC:

(iii) ◦β, (α→ β) �mbC (¬β → ¬α)

(iv) ◦β, (α→ ¬β) �mbC (β → ¬α)

(v) ◦β, (¬α→ β) �mbC (¬β → α)

(vi) ◦β, (¬α→ ¬β) �mbC (β → α) �



34 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

The last theorem is an instance of a more general phenomenon: Any
classical rule may be recovered within our C-systems based on classical
logic (check the discussion about that at Subsection 3.6).

Intuitively, a contradiction might be seen as a sufficient condition for in-
consistency. Indeed, here are some properties that relate the new connective
of consistency to the more familiar connectives of CPL+:

THEOREM 49. In mbC the following hold good:

(i) α,¬α �mbC ¬◦α
(ii) α ∧ ¬α �mbC ¬◦α
(iii) ◦α �mbC ¬(α ∧ ¬α)

(iv) ◦α �mbC ¬(¬α ∧ α)

The converses of these rules are all failed by mbC.

Proof. Items (i)–(iv) are easy consequences of the restricted forms of re-
ductio from Theorem 48.

In order to prove the second half of the theorem, consider the truth-tables
of P1 (Example 19), but substitute the truth-table for negation, ¬, by the
3-valued truth-table for classical negation, ∼, to be found in Example 17.
Then, mbC is sound for this set of truth-tables, and so it is enough to
prove the failure of the converse rules using these same truth-tables. For
instance, the rule ¬(¬α ∧ α) � ◦α, converse to rule (iv), is failed if we put
an atom p in the place of the schema α and pick a valuation v such that
v(p) = 1

2 . Indeed, observe that the above described set of truth-tables will
make v(¬p) = 0, thus v(p ∧ ¬p) = 0 and v(¬(p ∧ ¬p)) = 1, while they
will also make v(◦p) = 0, providing a counter-model for this inference that
is nevertheless sound for mbC. (Alternative counter-models, in terms of
possible-translations semantics, will be offered in Example 69.) �

The last result hints to the fact that paraconsistent logics may easily have
certain unexpected asymmetries. That’s what happens, for instance, with
da Costa’s C1. As we shall see, the converse of (iii) holds good in C1, while
the converse of (iv) fails, so that ¬(α∧¬α) and ¬(¬α∧α) are not equivalent
formulas in C1. Other even more shocking examples of asymmetries are the
following:

THEOREM 50. In mbC:
(i) (α ∧ β) 
�mbC (β ∧ α) holds good,
but ¬(α ∧ β) 
�mbC ¬(β ∧ α) does not hold.

(ii) (α ∨ β) 
�mbC (β ∨ α) holds good,
but ¬(α ∨ β) 
�mbC ¬(β ∨ α) does not hold.

(iii) (α ∧ ¬α) 
�mbC (¬α ∧ α) holds good,
but ¬(α ∧ ¬α) 
�mbC ¬(¬α ∧ α) does not hold.
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(iv) γ ∨ ¬γ is a top particle, thus (α ∨ ¬α) 
�mbC (β ∨ ¬β) holds good.
But ¬(α ∨ ¬α) 
�mbC ¬(β ∨ ¬β) does not hold.

(v) The equivalence α 
�PI (¬α→ α) holds good,
but ¬α 
�mbC ¬(¬α→ α) does not hold.

Proof. Using PI it is easy to prove the first halves of each item.
Items (i) to (iii). In order to check that none of the other halves hold, we

can use again the truth-tables of P1 (Example 19), but redefining (1∧ 1
2 ) =

(1 ∨ 1
2 ) = 1

2 .
For item (iv), use the truth-tables of LFI1 (Example 18), and take a

valuation v such that v(p) �= v(q) and v(p), v(q) ∈ {1, 1
2}. For item (v), use

again the truth-tables of P1, and consider v(p) = 1
2 . �

REMARK 51. The last theorem illustrates the failure of the so-called
replacement property. This property states that, for any choice of formulas
α0, . . . , αn, β0, . . . , βn and of formula ϕ(p0, . . . , pn):

(RP) (α0 
� β0) and . . . and (αn 
� βn) implies
ϕ(α0, . . . , αn) 
� ϕ(β0, . . . , βn)

For example, from α 
� β one would immediately derive ¬α 
� ¬β,
using (RP). But this does not hold for mbC. Recall, by the way, that
α 
�mbC β amounts to �mbC α↔ β, given the definition of bi-implication
and the presence of a deductive implication in mbC. Logics enjoying (RP)
are called self-extensional in [Wójcicki, 1988]. Paradigmatic examples of
such logics are provided by normal modal logics. �

We will show below that various other classes of LFIs fail the replacement
property (see Theorems 52, 81 and 133).

A natural question here is whether our logics can be upgraded so as to
restore the interesting property (RP) inside the paraconsistent territory. To
ensure that (RP) is obtainable in extensions of PI in the signature Σ, it is
enough to add the rule:

(EC) ∀α∀β((α 
� β) implies (¬α 
� ¬β))

In [Urbas, 1989] paraconsistent extensions of Cω (see Definition 40) enjoy-
ing the rule (EC) are shown to exist. The argument may be easily adapted
to several extensions of PI, but it does not follow for many other such ex-
tensions, as it will be shown below. In [da Costa and Béziau, 1993], the
logic CAR (see Definition 40) was introduced as an extension of PI where
(RP) holds good. But CAR is not an LFI, and it is not boldly paracon-
sistent, being partially explosive exactly as the Minimal Intuitionistic Logic
MIL from Example 10. To obtain the replacement property in extensions
of mbC, in the signature Σ◦, a further rule is needed, namely:

(EO) ∀α∀β((α 
� β) implies (◦α 
� ◦β))
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Before ending this subsection, let us quickly survey some results on the
possible validity of (RP) in paraconsistent extensions of mbC, or in some
of its fragments:

THEOREM 52. The replacement property (RP) cannot hold in any para-
consistent extension of mbC in which:

(i) ◦��α holds, for some given classical negation �; or
(ii) ¬(α→ β) � (α ∧ ¬β) holds.

The replacement property (RP) cannot hold in any left-adjunctive paracon-
sistent extension of PI in which:

(iii) (α ∧ β) 
� ¬(¬α ∨ ¬β) holds.
The replacement property (RP) cannot hold in any left-adjunctive paracon-
sistent logic in which:

(iv) ¬(α ∧ ¬α) holds and (α ∧ ¬α) 
� ¬¬(α ∧ ¬α).

Proof. Assume that (i) holds good. Since � is a classical negation, α 
� ��α
and then, by (RP), we infer that ◦α 
� ◦��α. But ◦��α is a theorem of
the given logic, by hypothesis, then ◦α is a theorem. From (bc1), the logic
turns out to be explosive with respect to the original primitive negation ¬.
Now, assume that (ii) holds good. Consider the supplementing negation
∼α = (α → ⊥) for mbC, where ⊥ = (p0 ∧ (¬p0 ∧ ◦p0)), proposed in
Remark 43. This negation was shown to be classical. Then, ¬∼α � (α∧¬⊥),
by hypothesis, and so ¬∼α � α, using (Ax4). Since α,∼α � β for every α
and β, then ¬∼α,∼α � β for every α and β, that is, the logic is controllably
explosive in contact with ∼p. In particular, ¬∼∼α,∼∼α � β for every α
and β. But α 
� ∼∼α for a classical negation and so, using (RP), we may
conclude that ¬α 
� ¬∼∼α and then ¬α, α � β for every β. In other words,
the logic will be explosive, not paraconsistent (with respect to the original
negation ¬).
Assume next that (iii) holds good. Since (¬α∨¬¬α) is a theorem of PI, then
¬(¬α∨¬¬α) 
� ¬(¬β∨¬¬β), for every α and β, by (RP). By hypothesis we
infer that (α∧¬α) 
� (β ∧¬β). So, by the rules of a standard conjunction,
we conclude in particular that α,¬α � β.
Finally, assume that (iv) holds good. Since ¬(α ∧ ¬α) is a theorem, by
hypothesis, then ¬¬(α ∧ ¬α) 
� ¬¬(β ∧ ¬β) for every α and β, by (RP).
Then, again by hypothesis, we have that (α ∧ ¬α) 
� (β ∧ ¬β). The result
follows now as in item (iii). �

With the help of Theorem 52(ii) it is easy to see, for instance, that
Jaśkowski’s D2 (recall Example 24) fails the replacement property. This
feature was used in [Marcos, 2005b] to show that this logic is not ‘modal’ in
the current usual sense of the word, in spite of its very definition in terms
of a double translation into the modal logic S5.

REMARK 53. To obtain paraconsistent extensions of mbC validating both
(EC) and (EO) is a perfectly feasible task. Examples of such logics were
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already offered in Example 34: Notice indeed that axiom (bc1) and rules
(EC) and (EO) are all satisfied by the minimal normal modal logic K, thus
also by any of its normal modal extensions. �

3.3 Bivaluation semantics for mbC

At the beginning of their historical trajectory, most C-systems were intro-
duced exclusively in proof-theoretical terms (see, for a survey, [Carnielli
and Marcos, 2002]). Later on, many of them were proven not to be char-
acterizable by finite-valued truth-tables (such results are generalized here
in Theorems 121 and 125). If we add to this the frequent failure of the
replacement property and the consequent difficulty in characterizing those
same logics by way of usual Kripke-like modal semantics, it will seem clear
that semantic presentations for many of our present C-systems will have to
rely upon some alternative kinds of semantics.

There are of course many examples of paraconsistent logics with adequate
finite-valued semantics. Several 3-valued samples of such logics were already
mentioned above in Examples 17, 18 and 19), and many more will be pre-
sented below in Section 5.3. Additionally, many examples of paraconsistent
logics with a modal semantics were also mentioned above, in Example 34.
However, we have already seen that a logic such as mbC, our weakest LFI
based on classical logic, fails the replacement property. Moreover, as a
particular consequence of Theorem 121, mbC will also be seen not to be
finite-valued. What kind of semantics can we attach to such a logic, thus?

The first examples of adequate non-truth-functional bivalued semantics
were proposed in [da Costa and Alves, 1977] in order to provide interpreta-
tions for some historically distinguished C-systems, those in the hierarchy
Cn, 1 ≤ n < ω (check Definition 28). Such decidable semantics are now
known to be a particular case of a more general semantic presentation, called
‘dyadic’ (check Subsection 3.5 and [Caleiro et al., 2005a]). We will show in
the following how a simple characteristic (non-truth-functional) adequate
bivaluation semantics may be attached to the logic mbC. This example
will help in clarifying the connections with other semantic presentations,
as well as in devising relevant open problems towards obtaining a theoreti-
cal framework for further investigation in the foundations of paraconsistent
logic. In the next subsection, we will endow mbC with the much richer
semantics of possible-translations. This new semantics, as we shall see, not
only gives an interpretation to contradictory situations, but it also offers an
explanation for the existence of conflicting scenarios.

DEFINITION 54. Let 2 def
== {0, 1} be the set of truth-values, where 1 denotes

the ‘true’ value and 0 denotes the ‘false’ value. An mbC-valuation is any
function v: For◦ �� 2 subject to the following clauses:

(v1) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1;
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(v2) v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1;
(v3) v(α→ β) = 1 iff v(α) = 0 or v(β) = 1;
(v4) v(¬α) = 0 implies v(α) = 1;
(v5) v(◦α) = 1 implies v(α) = 0 or v(¬α) = 0. �
For a collection Γ ∪ {α} of formulas of mbC, Γ �mbC α means, as usual
(recall Definition 16), that α is assigned the value 1 for every mbC-valuation
that assigns value 1 to the elements of Γ.

REMARK 55. Given clause (v5) in the above definition of a bivaluation
semantics for mbC, it is clear that this logic does not admit of a trivial
model, that is, that there is no v such that v(α) = 1 for every formula α.
In particular, given a trivial theory Γ of mbC, for every mbC-valuation v,
then there must be some γ ∈ Γ such that v(γ) = 0 (and thus v(¬γ) = 1, by
clause (v4)). This observation reveals a typical semantical feature of LFIs.
Indeed, other non-gently explosive paraconsistent logics might well allow
for such trivial models. For instance, the logic Pac (Example 17), despite
being maximal relative to classical logic (cf. [Batens, 1980]), does admit of
such a model: Consider indeed v(α) = 1

2 , and recall that 1
2 is a designated

value. �
The soundness proof for mbC with respect to mbC-valuations is imme-

diate:

THEOREM 56. [Soundness] Let Γ∪{α} be a set of formulas in For◦. Then:
Γ �mbC α implies Γ �mbC α.
Proof. Just check that all axioms of mbC assume only the value 1 in any
mbC-valuation, and that (MP) preserves validity. �

In order to prove completeness it is convenient to prove first some aux-
iliary lemmas. Let ∆ ∪ {α} be a set of formulas in For◦. We say that a
theory ∆ is relatively maximal with respect to α in mbC if ∆ ��mbC α and
for any formula β in For◦ such that β �∈ ∆ we have ∆, β �mbC α. The
usual Lindenbaum-Asser argument (cf. [Béziau, 1999]) shows that inside
any compact S-logic — such as mbC — every non-trivial theory may be
extended into a relatively maximal theory:

LEMMA 57. Let L be a compact S-logic over a signature Σ̂. Given some
set of formulas Γ and a formula α such that Γ ��L α, then there is a set
∆ ⊇ Γ that is relatively maximal with respect to α in L.
Proof. Consider an enumeration {ϕn}n∈N of the formulas in ForL, and a
chain ∆n, n ∈ N, of theories built as follows:

∆0 = Γ

∆n+1 =

{
∆n ∪ {ϕn}, if ∆n, ϕn ��L α

∆n, otherwise

Let ∆ =
⋃

n∈N
∆n. We will show that ∆ is relatively maximal with respect
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to α in L. First of all, notice that, by an easy induction over the above
chain, we can conclude that ∆n ��L α, for every n ∈ N. Moreover, ∆ ��L α.
Indeed, if that was not the case, by compactness there would be some finite
∆fin ⊆ ∆ such that ∆fin �L α. But then, using cut, there would be some
∆m ⊇ ∆fin such that ∆m �L α, and that is impossible. Now, consider some
β �∈ ∆. That β must be such that β = ϕn, for some n. Thus β �∈ ∆n+1,
given reflexivity and ∆n+1 ⊆ ∆. So, ∆n+1 = ∆n and ∆n, β �L α, by
construction. Once ∆n ⊆ ∆, we are bound to conclude by monotonicity
that ∆, β �L α. �

We can also prove that:

LEMMA 58. Any relatively maximal set of formulas is a closed theory.
Proof. Given a set of formulas ∆ that is relatively maximal with respect
to a formula α, we have to check that ∆ �mbC β iff β ∈ ∆. From right to
left is obvious by reflexivity. From left to right, given some β �∈ ∆ we have
that (a) ∆ ��mbC α and (b) ∆, β �mbC α, since ∆ is relatively maximal
with respect to α. But then, from (a) and (b) we conclude, using cut, that
∆ ��mbC β. �

LEMMA 59. Let ∆ ∪ {α} be a set of formulas in For◦ such that ∆ is
relatively maximal with respect to α in mbC. Then:

(i) (β ∧ γ) ∈ ∆ iff β ∈ ∆ and γ ∈ ∆.

(ii) (β ∨ γ) ∈ ∆ iff β ∈ ∆ or γ ∈ ∆.

(iii) (β → γ) ∈ ∆ iff β �∈ ∆ or γ ∈ ∆.

(iv) β �∈ ∆ implies ¬β ∈ ∆.

(v) ◦β ∈ ∆ implies β �∈ ∆ or ¬β �∈ ∆.

Proof. The closure guaranteed by Lemma 58 will be used to prove each of
the above items.
Item (i) is proven from closure, axioms (Ax3), (Ax4), (Ax5) and (MP).
Item (ii) follows from closure, axioms (Ax6), (Ax7), (Ax8) and (MP).
Item (iii) from closure, (ii), axioms (Ax1), (Ax9) and (MP).
Item (iv) from closure, axiom (Ax10) and (MP).
For item (v), suppose β ∈ ∆ and ¬β ∈ ∆. Then, from closure, (bc1) and
relative maximality, we conclude that ◦β �∈ ∆. �

COROLLARY 60. The characteristic function of a relatively maximal set
of formulas in mbC defines an mbC-valuation.
Proof. Let ∆ be a set of formulas relatively maximal with respect to α and
define a function v: For◦ �� 2 such that, for any formula β in For◦,
v(β) = 1 iff β ∈ ∆. Using the previous lemma it is easy to see that v
satisfies clauses (v1) to (v5) of Definition 54. �
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THEOREM 61. [Completeness] Let Γ ∪ {α} be a set of formulas in For◦.
Then: Γ �mbC α implies Γ �mbC α.

Proof. Given a formula α in For◦ such that Γ ��mbC α one may, by
the Lindenbaum-Asser argument, extend Γ to a set ∆ that is relatively
maximal with respect to α. As ∆ ��mbC α, then α �∈ ∆, because of (Con1).
By Corollary 60, the characteristic function v of ∆ is an mbC-valuation
such that, for any β ∈ ∆, v(β) = 1, while v(α) = 0. So, ∆ �mbC α, and in
particular Γ �mbC α. �

Using the bivaluation semantics for mbC, we obtain easy semantical
proofs of several remarkable features of mbC (see Theorem 64 below).
Previous to do this, we need to show how it is possible to construct an
mbC-valuation satisfying a given set of requirements.

DEFINITION 62. Let the mapping �: For◦ �� N denote the complexity
measure defined over the signature Σ◦, by: �(p) = 0, for p ∈ P; �(ϕ#ψ) =
�(ϕ) + �(ψ) + 1, for # ∈ {∧,∨,→}; �(¬ϕ) = �(ϕ) + 1; and �(◦ϕ) = �(ϕ) + 2.

�
LEMMA 63. Let v0: P ∪ {¬p : p ∈ P} �� 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exists an mbC-
valuation v: For◦ �� 2 extending v0, that is, such that v(ϕ) = v0(ϕ) for
every ϕ ∈ P ∪ {¬p : p ∈ P}.

Proof. We will define the value of v(ϕ) while doing an induction on the
complexity �(ϕ) of a formula ϕ ∈ For◦. Thus, we begin by setting v(ϕ) =
v0(ϕ) for every ϕ ∈ P ∪ {¬p : p ∈ P}, and v(p#q) is defined according to
clauses (v1)–(v3) of Definition 54, for # ∈ {∧,∨,→} and p, q ∈ P. This
completes the definition of v(ϕ) for every ϕ ∈ For◦ such that �(ϕ) ≤ 1.
Suppose now that v(ϕ) has been defined for every ϕ ∈ For◦ such that
�(ϕ) ≤ n (for n ≥ 1) and let ϕ ∈ For◦ such that �(ϕ) = n + 1. If ϕ =
(ψ1#ψ2) for # ∈ {∧,∨,→} then v(ϕ) is defined according to (v1)–(v3). If
ϕ = ¬ψ then we define v(ϕ) = 1, if v(ψ) = 0, and v(ϕ) is defined arbitrarily,
otherwise. Finally, if ϕ = ◦ψ then v(ϕ) = 0, if v(ψ) = v(¬ψ) = 1, and v(ϕ)
is defined arbitrarily otherwise. It is clear that v is an mbC-valuation that
extends the mapping v0. �

THEOREM 64. The connectives ∧,∨ and → are not interdefinable as in
the classical case. Indeed, the following rule holds good in mbC:

(i) (¬α→ β) � (α ∨ β),

but none of the following rules hold in mbC:

(ii) (α ∨ β) � (¬α→ β);
(iii) ¬(¬α→ β) � ¬(α ∨ β);
(iv) ¬(α ∨ β) � ¬(¬α→ β);
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(v) (α→ β) � ¬(α ∧ ¬β);
(vi) ¬(α ∧ ¬β) � (α→ β);
(vii) ¬(α→ β) � (α ∧ ¬β);
(viii) (α ∧ ¬β) � ¬(α→ β);
(ix) ¬(¬α ∧ ¬β) � (α ∨ β);
(x) (α ∨ β) � ¬(¬α ∧ ¬β);
(xi) ¬(¬α ∨ ¬β) � (α ∧ β);
(xii) (α ∧ β) � ¬(¬α ∨ ¬β).

Proof. (i) Let v be an mbC-valuation such that v(α ∨ β) = 0. Then
v(α) = 0 = v(β) and so v(¬α) = 1. Therefore v(¬α) = 1 and v(β) = 0,
that is, v(¬α → β) = 0. This shows that (¬α → β) �mbC (α ∨ β). The
result for �mbC follows from Theorem 61.
(ii) Consider a mapping v0: P ∪ {¬p : p ∈ P} �� 2 such that v0(p0) =
1 = v0(¬p0), v0(p1) = 0 and v0(ϕ) is defined arbitrarily otherwise. Let v be
an mbC-valuation extending v0 (check the Lemma 63). Then v(p0∨p1) = 1
but v(¬p0 → p1) = 0. This shows that (p0 ∨ p1) ��mbC (¬p0 → p1). The
result for �mbC follows from Theorem 56.
The remainder of the proof is analogous. �

EXAMPLE 65. The first LFI ever to receive an interpretation in terms of
bivaluation semantics was the logic C1 of Example 28 (cf. [da Costa and
Alves, 1977]). The original set of clauses characterizing the C1-valuations
is the following:

(vC1) v(α1 ∧ α2) = 1 iff v(α1) = 1 and v(α2) = 1;

(vC2) v(α1 ∨ α2) = 1 iff v(α1) = 1 or v(α2) = 1;
(vC3) v(α1 → α2) = 1 iff v(α1) = 0 or v(α2) = 1;
(vC4) v(¬α) = 0 implies v(α) = 1;
(vC5) v(¬¬α) = 1 implies v(α) = 1;
(vC6) v(◦β) = v(α→ β) = v(α→ ¬β) = 1 implies v(α) = 0;
(vC7) v(◦(α#β)) = 0 implies v(◦α) = 0 or v(◦β) = 0, for # ∈ {∧,∨,→},

where, as usual, ◦α abbreviates the formula ¬(α ∧ ¬α). �

3.4 Possible-translations semantics for LFIs

Notwithstanding the fact that the completeness proof by means of bival-
uations for LFIs is simple to obtain, this semantics does not do a good
job in explaining intrinsic singularities of such logics. In particular, it is
not obvious right from the definition of the bivaluation semantics for mbC
(Definition 54) that this logic is decidable. A decision procedure can be
obtained with some further effort, however, by adapting the well-known
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procedure of truth-tables, or ‘matrices’, into a procedure of ‘quasi matri-
ces’ (check for instance [da Costa and Alves, 1977] and [da Costa et al.,
1995]). At any rate, bivaluation semantics may be very useful as a techni-
cal device that helps in simplifying the completeness proof with respect to
possible-translations semantics that we present in this subsection, as well as
in defining two-signed tableaux for our logics, as it will be illustrated in the
next section. Possible-translations semantics were introduced in [Carnielli,
1990]; for a study of their scope and for formal definitions related to them
check [Marcos, 2004]. Of course, the notion of translation between a logic
L1 and a logic L2 is essential here (recall Definition 31).

Consider now the following 3-valued truth-tables, where T and t are the
designated values:

∧ T t F

T t t F

t t t F

F F F F

∨ T t F

T t t t

t t t t

F t t F

→ T t F

T t t F

t t t F

F t t t

¬1 ¬2 ◦1 ◦2

T F F t F

t F t F F

F T t t F

In order to provide interpretations to the connectives of mbC by means
of possible-translations semantics one should first understand these truth-
tables. The truth-value t may be interpreted as ‘true by default’, or ‘true
by lack of evidence to the contrary’, and T and F are, as usual, ‘true’
and ‘false’. The truth-tables for conjunction, disjunction and implication
never return the value T , so, in principle, one is never absolutely sure about
the truth-status of some compound sentences. There are two distinct in-
terpretations for negation, ¬, and for the consistency operator, ◦. The
basic intuition is the idea of multiple scenarios concerning the dynamics of
evaluation of propositions: One may think that there are two kinds of situ-
ations concerning non-true propositions with respect to successive moments
of time. In the first situation, a true-by-default proposition is treated as
a true proposition with respect to the negation ¬1. In the other situation,
one can consider the case in which the negation of any other value than
‘true’ becomes true-by-default — this is expressed by the negation ¬2. On
what concerns the consistency operator ◦, the first interpretation ◦1 only
considers as true-by-default the ‘classical’ values T and F , while ◦2 assigns
falsehood to every truth-value.

The above collection of truth-tables, which we call M0, will be used
to provide the desired semantics for mbC. Now, considering the algebra
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ForM0 of formulas generated by P over the signature of M0, let’s define
the set Tr0 of all mappings ∗: For◦ �� ForM0 subjected to the following
restrictive clauses:
(tr0) p∗ = p, if p ∈ P;

(tr1) (α#β)∗ = (α∗#β∗), for all # ∈ {∧,∨,→};

(tr2) (¬α)∗ ∈ {¬1α
∗,¬2α

∗};

(tr3) (◦α)∗ ∈ {◦1α
∗, ◦2α

∗, ◦1(¬α)∗}.
We say the pair PT0 = 〈M0,Tr0〉 is a possible-translations semantical
structure for mbC. If �M0 denotes the consequence relation in M0, and
Γ∪{α} is a set of formulas of mbC, the associated PT-consequence relation,
|=pt0 , is defined by setting:

Γ |=pt0 α iff Γ∗ �M0 α
∗ for all translations ∗ in Tr0.

We will call possible translation of a formula α any image of it through some
mapping in Tr0. One can immediately check the following:

THEOREM 66. [Soundness] Let Γ∪{α} be a set of formulas of mbC. Then
Γ �mbC α implies Γ |=pt0 α.
Proof. It is sufficient to check that the (finite) collection of all possible
translations of each axiom produces tautologies in the truth-tables of M0

and that all possible translations of the rule (MP) preserve validity. The
verification is immediate, and we leave it as exercise to the reader. �

As a corollary of the above result, we see that each mapping in Tr0

defines in fact a translation (recall Definition 31) from mbC to the logic
defined by M0.

In order to prove completeness, now, our strategy will be to show that
each mbC-valuation v determines a translation ∗ and a 3-valued valuation
w defined in the usual way over the truth-tables of M0 such that, for every
formula α of mbC,

w(α∗) ∈ {T, t} iff v(α) = 1

and thus rely on the completeness proof for the bivaluation semantics of
mbC.

Recall the definition of complexity �(α) of a formula α ∈ For◦ introduced
in Definition 62. The following result comes from [Marcos, 2005f]:

THEOREM 67. [Representability] Given an mbC-valuation v there is a
translation ∗ in Tr0 and a valuation w in M0 such that, for every formula
α in mbC:

w(α∗) = T implies v(¬α) = 0; and

w(α∗) = F iff v(α) = 0.
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Proof. For p ∈ P define the valuation w as follows:

w(p) = F if v(p) = 0;
w(p) = T if v(p) = 1 and v(¬p) = 0;
w(p) = t if v(p) = 1 and v(¬p) = 1.

Such w can be homomorphically extended to the algebra ForM0 . We define
the translation mapping ∗ as follows:

1. p∗ = p, if p ∈ P;

2. (α#β)∗ = (α∗#β∗), for # ∈ {∧,∨,→};

3. (¬α)∗ = ¬1α
∗, if v(¬α) = 0 or v(α) = v(¬¬α) = 0;

4. (¬α)∗ = ¬2α
∗, otherwise;

5. (◦α)∗ = ◦2α
∗, if v(◦α) = 0;

6. (◦α)∗ = ◦1(¬α)∗, if v(◦α) = 1 and v(¬α) = 0;

7. (◦α)∗ = ◦1α
∗, otherwise.

Note that the mapping ∗ is well-defined, given the definition of mbC (see
Definition 54). The proof is now done by induction on the complexity
measure �(α) of a formula α. Details are left to the reader. �

THEOREM 68. [Completeness] Let Γ ∪ {α} be a set of formulas in mbC.
Then Γ |=pt0 α implies Γ �mbC α.

Proof. Suppose that Γ |=pt0 α, and suppose that v is an mbC-valuation
such that v(Γ) ⊆ {1}. By Theorem 67, there is a translation ∗ and a 3-valued
valuation w such that, for every formula β, w(β∗) ∈ {T, t} iff v(β) = 1.
From this, w(Γ∗) ⊆ {T, t} and so w(α∗) ∈ {T, t}, because Γ |=pt0 α. Then
v(α) = 1. To wit: For every mbC-valuation v, v(Γ) ⊆ {1} implies v(α) = 1.
Using the completeness of mbC with respect to mbC-valuations we obtain
that Γ �mbC α as desired. �

It is now easy to check validity for inferences in mbC, as shown in the
following example.

EXAMPLE 69. We will prove that ◦α �mbC ¬(¬α ∧ α) using possible-
translations semantics. We have that, for any translation ∗ in Tr0,

(◦α)∗ ∈ {◦1(α∗), ◦2(α∗), ◦1¬1(α∗), ◦1¬2(α∗)},
(¬(¬α ∧ α))∗ ∈ {¬i(¬j(α∗) ∧ α∗) : i, j ∈ {1, 2}}.

Let ∗ be a translation in Tr0, w be a valuation in M0, and D = {T, t}.
Let x = w(α∗), y = w((◦α)∗) and z = w((¬(¬α ∧ α))∗), and suppose that
y ∈ D; this rules out the translation (◦α)∗ = ◦2(α∗) because ◦2(x) �∈ D. In
order to prove that z ∈ D we have the following cases:

1. (◦α)∗ = ◦1(α∗). Then ◦1(x) ∈ D, thus x ∈ {T, F}.
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(a) x = T . Then ¬j(x) = F (j ∈ {1, 2}) and so ¬i(¬j(x) ∧ x) ∈ D
for i, j ∈ {1, 2}.

(b) x = F . Then (¬j(x)∧x) = F (j ∈ {1, 2}) and so ¬i(¬j(x)∧x) ∈
D for i, j ∈ {1, 2}.

2. (◦α)∗ = ◦1¬1(α∗). Then ◦1¬1(x) ∈ D, thus ¬1(x) ∈ {T, F} and
z = ¬i(¬1(x) ∧ x).
(a) ¬1(x) = T . Then x = F and the proof is as in (1b).

(b) ¬1(x) = F . In this case the proof is as in (1a).
3. (◦α)∗ = ◦1¬2(α∗). Then, given ◦1¬2(x) ∈ D, we have ¬2(x) ∈ {T, F}

and z = ¬i(¬2(x) ∧ x). From the truth-table for ¬2 we obtain that
¬2(x) = F , and the proof is as in (1a).

This proves the desired result. On the other hand, we may prove that
the converse ¬(¬α ∧ α) �mbC ◦α is not true in mbC, as announced in
Theorem 49. Using the same notation as above for a given translation ∗ in
Tr0 and a valuation w in M0, it is enough to consider α as a propositional
variable p, and choose ∗ and w such that x = F , and (◦α)∗ = ◦2(α∗). Then
z ∈ D and y = F . For yet some other counter-models to that inference, take
x = t, (¬(¬α ∧ α))∗ = ¬2(¬2(α∗) ∧ α∗) and (◦α)∗ ∈ {◦1(α)∗, ◦1(¬2α)∗}. �

Possible-translations semantics offer an immediate decision procedure for
any logic L that is complete with respect to a possible-translations seman-
tical structure PT = 〈M,Tr〉 where M is decidable (and this is the case
here, where M is a finite-valued logic) and Tr is recursive. Indeed, given
a formula α, if we wish to decide whether it is a theorem of L, it is suf-
ficient to consider the (in this case finitely many) possible translations of
α, and to check each translated formula using the corresponding semantics
of the target logics (in the present case, defined by sets of 3-valued truth-
tables). Questions on the complexity of such decision procedures could be
readily answered by taking into account the complexity of translations and
of the semantics of the target logics. This is a problem of independent in-
terest, since it is immediate to see that the decision procedure of mbC is
NP-complete, as one might expect: Indeed, there exists a polynomial-time
conservative translation from CPL into mbC, as illustrated in Theorem 74
below.

One can also use possible-translations semantics to help proving impor-
tant properties about the logics in question.

REMARK 70. Recall from Remark 43 the two explosive negations repre-
sented by �α def

== (¬α ∧ ◦α) and ∼α def
== α→ (p0 ∧ (¬p0 ∧ ◦p0)). Recall again,

also, the notion of a classical negation from Definition 8. Now, while it is
easy to check that ∼ defines a classical negation in mbC (the reader can, as
an exercise, check that both (α ∨ ∼α) and (α→ (∼α→ β)) are provable /
validated by mbC), it is also straightforward to check that � is not a com-
plementing negation. Indeed, to see that α and �α can be simultaneously



46 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

false, take some bottom particle ⊥ = p∧ � p and notice that w(⊥∗) = F , for
any valuation w in M0 and any translation ∗ in Tr0. Consider now some
translation such that (◦p) = ◦2p. In that case, w((� ⊥)∗) = F , for any w.
Then, while ⊥ |=pt0 � ⊥ certainly holds good, it is not the case that |=pt0 � ⊥.
Notice moreover that, while �α |=pt0 ∼α, we have that ∼α �|=pt0 �α. �

We trust the above features to confirm the importance of possible-trans-
lations semantics as a philosophically apt and computationally useful se-
mantical tool for treating not only Logics of Formal Inconsistency but
also many other logics in the literature. An remarkable particular case
of possible-translations semantics is the so-called non-deterministic seman-
tics (cf. [Avron and Lev, 2005]), proposed as an immediate generalization
of the notion of a truth-functional semantics (for comparisons between pos-
sible-translations semantics and non-deterministic semantics see [Carnielli
and Coniglio, 2005]). A 3-valued non-deterministic semantics for the logic
mbC may be found in [Avron, 2005a] (where this logic is called B).

3.5 Tableau proof systems for LFIs

In this section we will use a very general method to obtain adequate tableau
systems for mbC and for C1. The method introduced in [Caleiro et al.,
2005b] (check also [Caleiro et al., 2005a]) permits one to obtain an adequate
tableau system for any propositional logic which has an adequate semantics
given through the so-called ‘dyadic valuations’. Such bivaluations have, as
usual, values in 2 = {0, 1} (or, equivalently, in {T, F}), and are axiomatized
by first-order clauses of a certain specific form, explained below.

Briefly, suppose that there is a set of clauses governing a class of bivalu-
ation mappings v: For �� 2 of the form

(v(ϕ1) = Q1, . . . , v(ϕn) = Qn) 	 (S1| · · · |Sk)

where n ≥ 0 and k ≥ 0 and, for every 1 ≤ i ≤ k,

Si = (v(ϕi
1) = Qi

1, . . . , v(ϕi
ri

) = Qi
ri

),

with Qi, Q
i
j ∈ {T, F} (1 ≤ j ≤ ri) and ri ≥ 1. If n = 0 then (v(ϕ1) =

Q1, . . . , v(ϕn) = Qn) is just �; if k = 0 then (S1| · · · |Sk) is ⊥. Commas ‘,’
and bars ‘|’ denote conjunctions and disjunctions, respectively, and ‘	’ de-
notes implication. Examples of axioms for bivaluations that may be put in
this format are provided by the clauses that characterize mbC-valuations
(cf. Definition 54) and also by those provided by the characteristic bivalua-
tion semantics of da Costa’s C1 (cf. Example 65). For instance, clause (v5)
of Definition 54 clearly has the required form:

(v5) v(◦α) = T 	 (v(α) = F | v(¬α) = F )

whereas clause (v3) may be split into three clauses of the required form:
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(v3.1) v(α→ β) = T 	 (v(α) = F | v(β) = T );
(v3.2) v(α) = F 	 v(α→ β) = T ;
(v3.3) v(β) = T 	 v(α→ β) = T .

It will be convenient in what follows to keep the more complex formulas on
the left-hand side of the implication; we thus substitute (v3.2) and (v3.3)
by:

(v3.4) v(α→ β) = F 	 (v(α) = T, v(β) = F )

The next step in the algorithm described in [Caleiro et al., 2005b] is to
‘translate’ every clause of the dyadic semantics into a tableau rule by in-
terpreting an equation ‘v(ϕ) = Q’ as a signed formula Q(ϕ) (recalling that
Q ∈ {T, F}). Thus, a clause as above is transformed in a (two-signed)
tableau rule of the form:

Q1(ϕ1), . . . , Qn(ϕn)

� . . . �

Q1
1(ϕ1

1) Qk
1(ϕk

1)

...
...

Q1
r1

(ϕ1
r1

) Qk
rk

(ϕk
rk

)

By transforming each clause of the dyadic semantic valuation into a tableau
rule, we obtain a tableau system for the given logic. In order to ensure
completeness of the tableau system, it is necessary to consider two extra
axioms for the bivaluation semantics:

(DV1) (v(ϕ) = T, v(ϕ) = F ) 	 ⊥;
(DV2) � 	 (v(ϕ) = T | v(ϕ) = F ).

Axioms (DV1) and (DV2) guarantee that the mapping respecting them is
a bivaluation v: For �� 2 . The translation of axiom (DV1) gives us the
usual closure condition for a branch in a given tableau. On the other hand,
(DV2) gives us the following branching tableau rule, Rb:

T (ϕ) | F (ϕ)

As a consequence, the resulting tableau system loses the ‘analytic’ character.
Fortunately, in many important cases this branching rule can be eliminated
or at least it can have its scope of application restricted to formulas of a
certain format.
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We apply next the above technique to obtain an adequate tableau sys-
tem for the logic mbC, based on the bivaluation semantics presented in
Definition 54.

EXAMPLE 71. We define an adequate tableau system for mbC as follows:

F (¬X)
T (X)

T (◦X)
F (X) | F (¬X) T (X) | F (X)

T (X1 ∧X2)
T (X1), T (X2)

F (X1 ∧X2)
F (X1) | F (X2)

T (X1 ∨X2)
T (X1) | T (X2)

F (X1 ∨X2)
F (X1), F (X2)

T (X1 → X2)
F (X1) | T (X2)

F (X1 → X2)
T (X1), F (X2) �

Observe that, except for the branching rule Rb, all other rules are analytic
in the sense that the consequences are always less complex than the premises
(recall that, as in Definition 62, �(◦α) = �(α) + 2 and �(¬α) = �(α) + 1),
and they contain in each case only subformulas of the premise. The results
proven in [Caleiro et al., 2005b] guarantee that the tableau system defined
above is sound and complete for mbC.

Another nice application of the techniques described above is the defini-
tion of a tableau system for the historical dC-system C1 (see Definition 28).

EXAMPLE 72. Recall from Example 65 the characteristic bivaluation se-
mantics for the logic C1. Those clauses of course may be formally rewritten
as axioms of a dyadic semantics, using ‘|’, ‘	’ and ‘,’. Using the above
described method it is immediate to define a complete tableau system asso-
ciated to these axioms. Consider indeed all the rules of the tableau system
for mbC in Example 71 — except for the rule concerning ◦, since it does
not correspond to any axiom of a C1-valuation — and add the following
further rules:

T (¬¬X)
T (X)

F (◦(X1#X2))
F (◦X1) | F (◦X2)

T (◦X2), T (X1 → X2), T (X1 → ¬X2)
F (X1)

where # ∈ {∧,∨,→} and ◦X abbreviates the formula ¬(X∧¬X). Compar-
ing this tableau system with the one defined in [Carnielli and Lima-Marques,
1992], we notice that the present system does not allow for loops. Although
the looping rules proposed in the latter paper often permit one to obtain
somewhat conciser tableau proofs, what we have here is a generic method
that automatically generates a complete set of tableau rules (though not
necessarily the most convenient one). �
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It is worth reinforcing that the branching rule Rb is essential, above, in
order to obtain completeness. This rule is not strictly analytic, but it can be
bounded in certain cases so as to guarantee the termination of the decidable
tableau procedure. In particular, the variables occurring in the formula X
must be contained in the finite collection of variables in the tableau branch.

EXAMPLE 73. Consider the tableau system for C1 given in Example 72
and let γ be the formula ¬(p∧(¬p∧◦p)), where p is a propositional variable.
The formula γ is a thesis of C1. However, it is easy to see that no C1-tableau
for the set {F (γ)} can close without using the rule Rb. We show below a
closed tableau for {F (γ)} that uses Rb twice.

F (γ)
T (p ∧ ¬p ∧ ◦p)

T (p)
T (¬p)
T (◦p)

|
� �

T (p→ p) F (p→ p)
| T (p)

� � F (p)
T (p→ ¬p) F (p→ ¬p)
F (p) T (p)

F (¬p) �

This example suggests that, in general, it is not possible to eliminate Rb

if one wishes to obtain completeness. This holds even in case the tableau
system satisfies the subformula property, as in Example 73. In certain cases
Rb can be eliminated if we have, for instance, looping rules as in [Carnielli
and Lima-Marques, 1992]. For the case of C1 the tableau system treated in
the latter paper uses the looping rule:

T (¬X)
F (X) | F (◦X)

,

while our present formulation has no rule for analyzing T (¬X).

3.6 Talking about classical logic

When attempting to compare the inferential power of two logics, one often
finds difficulties because those logics might not be ‘talking about the same
thing’. For instance, mbC is written in a richer signature than that of
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CPL, and so these two logics might seem hard to compare. However, as we
have seen in Remark 30, it is possible to linguistically extend CPL by the
addition of a consistency-like connective. The ‘classical truth-tables’ for this
connective, however, will be such that ◦(x) = 1 for every x. Clearly, despite
being gently explosive, the resulting logic eCPL does not define an LFI,
given that it is not paraconsistent. It is, indeed, a consistent logic (recall
Definition 4). Now, mbC may be characterized as a deductive fragment
of eCPL, because all axioms of mbC are validated by the truth-tables of
eCPL. Since mbC is a fragment thus of (an alternative formulation of)
classical logic, we can conclude that mbC is a non-contradictory and non-
trivial logic. On the other hand, however, we will show in this subsection
that there are several ways of encoding each inference of CPL within mbC.

First of all, recall the DATs from Remark 26, the Derivability Adjust-
ment Theorems that described how the LFIs could be used to recover con-
sistent reasoning by the addition in each case of a convenient number of
consistency assumptions. In particular, in logics such as mbC, C-systems
based on classical logic, it should be clear how classical reasoning may be
recovered. For each classical rule that is lost by paraconsistency, such as
reductio and contraposition in items (ii) and (iii) of Theorem 38, there is
an adjusted version of the same rule that is gained, as illustrated in Theo-
rem 48. Indeed, it is now easy to give a semantical proof that:

∀Γ∀γ∃∆(Γ �eCPL γ iff ◦(∆),Γ �mbC γ).

Now, besides the DATs, there might well be other more direct ways of recov-
ering consistent reasoning from inside a given LFI. We will in the following
show how this can be done through the use of a conservative translation
(recall Definition 31), without the addition of further assumptions to the
set of premises of a given inference.

Except for negation and for the consistency connective, all other connec-
tives of mbC have a classic-like behavior. The key for the next result will
be, thus, to make use of the classical negation ∼ that can be defined within
mbC (cf. Remark 70) by setting ∼α def

== α→ (p0 ∧ (¬p0 ∧ ◦p0)), in order to
recover all classical inferences.

THEOREM 74. Let For◦ be the algebra of formulas for the signature Σ◦

of mbC. There is a mapping t1: For �� For◦ that conservatively trans-
lates CPL inside of mbC, that is, for every Γ ∪ {α} ⊆ For:

Γ �CPL α iff t1(Γ) �mbC t1(α).

Proof. Define the mapping t1 recursively as follows:

1. t1(p) = p, for every p ∈ P;

2. t1(γ#δ) = t1(γ)#t1(δ), if # ∈ {∧,∨,→};

3. t1(¬γ) = ∼t1(γ).
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Since both CPL and mbC are compact and have a deductive implication,
and considering that t1 preserves implications, it suffices to prove that:

�CPL α iff �mbC t1(α)

for every α ∈ For.
That �CPL α implies �mbC t1(α) is an easy consequence of the fact

that ∼ is a classical negation within mbC and from the definition of the
translation mapping t1. Let’s now check that �mbC t1(α) implies �CPL α.
Consider the classical truth-tables for the classical connectives, and define
◦(x) = 1 for all x. Then ¬α and ∼α take the same value and so t1(α) and
α take the same value in this semantics. Therefore, if t1(α) is a theorem of
mbC then t1(α) is valid for the above truth-tables and so α is valid using
classical truth-tables. Thus, α is a theorem of CPL, by the completeness
of classical logic. �

In view of the last theorem, and as it was already mentioned, it is clear
that mbC (originally defined as a deductive fragment of eCPL) can also be
seen as an extension of CPL, if we employ an appropriate signature which
contains two symbols for negation: ∼ for the classical one, and provided ¬
for the paraconsistent one, provided that the axioms defining ∼ in terms of
the other connectives are added to the new version of mbC.

In what follows, and in stronger logics than mbC, we will see yet other
ways of recovering classical inferences inside our LFIs (check Theorems 96,
112 and 113).

4 A RICHER LFI

4.1 The system mCi, and its significance

In Remark 45 we have mentioned the possibility of defining in mbC an
inconsistency connective that is dual to its native consistency connective.
This could be done by setting •α def

== ∼◦α, where ∼α def
== α→ (β ∧ (¬β ∧◦β))

(for an arbitrary β) is a classical negation. Now, how could we enrich
mbC so as to be able to define the inconsistency connective by using the
paraconsistent negation instead of the classical ∼, that is, by setting •α def

==

¬◦α? This is exactly what will be done in this subsection by extending
mbC into the logic mCi. In fact, mCi will reveal to be a logic that can be
presented in terms of either ◦ or • as primitive connectives. Moreover, •α
and ¬◦α will be inter-translatable, and the same will happen with ◦α and
¬•α, as proven in Theorem 98.

From Theorem 49(i) we know that α ∧ ¬α �mbC ¬◦α. The converse
property (which does not hold in mbC) will be the first additional axiom
we will add to mbC in upgrading this logic. On the other hand, we wish
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that formulas of the form ¬◦α ‘behave classically’, and we wish to obtain
in fact a logic that is controllably explosive in contact with formulas of the
form ¬n◦α, where ¬0α

def
== α and ¬n+1α

def
== ¬¬nα. Any formula of the form

¬n◦α would thus be assumed to ‘behave classically’, and {¬n◦α,¬n+1◦α}
would be an explosive theory. This desideratum leads us into considering
the following (cf. [Marcos, 2005f]):

DEFINITION 75. The logic mCi is obtained from mbC (recall Defini-
tion 42) by the addition of the following axiom schemas:
(ci) ¬◦α→ (α ∧ ¬α)
(cc)n ◦¬n◦α (n ≥ 0)
To the above axiomatization we add the definition by abbreviation of an
inconsistency connective • by setting •α def

== ¬◦α. �
Notice that ¬◦α and (α ∧ ¬α) are equivalent in mCi. Clearly every

set {¬n◦α,¬n+1◦α} is explosive in mCi, in view of (bc1) and (cc)n. This
expresses the ‘classical behavior’ of formulas of the form ◦α (with respect to
the paraconsistent negation). In other words, a formula α in general needs
the extra assumption ◦α to ‘behave classically’, but the formula ◦α and its
iterated negations will always ‘behave classically’. In Theorem 78 below we
will see that ¬•α is equivalent to ◦α, and in Definition 97, further on, we
will introduce a new formulation of mCi that introduces • as a primitive
connective. Notice in that case how close is the bond that is established here
in between inconsistency and contradictoriness by way of the paraconsistent
negation.

We can immediately check that the equivalence in mCi between ¬◦α
and (α ∧ ¬α) is in fact logically weaker than the identification of ◦α and
¬(α ∧ ¬α) assumed in C1 (recall also Theorem 49(iii)–(iv)) since the latter
formula implies the former, in mCi, but the converse is not true.

THEOREM 76. This rule holds good in mCi:
(i) ¬◦α �mCi (α ∧ ¬α),

but the following rules do not hold:
(ii) ¬(α ∧ ¬α) �mCi ◦α;
(iii) ¬(¬α ∧ α) �mCi ◦α.

Proof. Item (i) is obvious. In order to prove that (ii) and (iii) do not
hold in mCi, observe that mCi is sound for the truth-tables of LFI1 (see
Examples 17 and 18), where 0 is the only non-designated value. Then it
is enough to check that (ii) and (iii) have counter-models in such a truth-
functional semantics. �

It should be clear that, even though in mCi there is a formula in the
classical language For (namely, the formula (α∧¬α)) that is equivalent to
a formula that expresses inconsistency (the formula •α), there is no formula
in the classical language that can express consistency in mCi. We also have
the following:
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THEOREM 77. (i) ¬(α∧¬α) and ¬(¬α∧α) are not top particles in mCi.
(ii) ◦α and ¬◦α are not bottom particles.
(iii) The schemas (α→ ¬¬α) and (¬¬α→ α) are not provable in mCi.

Proof. Items (i), (ii) and the first part of item (iii) can be checked using
again the truth-tables of P1, enriched with the (definable) truth-table for ◦
(Example 19), and using the fact that mCi is sound for such a semantics.
For the second part of item (iii) one could use for instance the bivaluation
semantics of mCi (see Example 90). �

It is straightforward to check the following properties of mCi:

THEOREM 78. The following rules hold good in mCi:
(i) ¬¬◦α �mCi ◦α;
(ii) ◦α �mCi ¬¬◦α;
(iii) ◦α,¬◦α �mCi β;
(iv) (Γ, β �mCi ◦α) and (∆, β �mCi ¬◦α) implies (Γ,∆ �mCi ¬β).

Proof. For item (i), from ¬¬◦α and ◦α we obviously prove ◦α in mCi.
On the other hand, from ¬¬◦α and ¬◦α we also prove ◦α in mCi, because
◦¬◦α and (bc1) are axioms of mCi. Using proof-by-cases we conclude that
¬¬◦α �mCi ◦α. The other items are proven similarly. Notice in particular
how items (i) and (ii) together show that ¬•α 
�mCi ◦α holds good. �

Item (ii) of Theorem 77 and item (iii) of Theorem 78 guarantee that mCi
is controllably explosive in contact with ◦p0 (recall Definition 9(iii)). In fact,
the following relation between consistency and controllable explosion can be
checked:

THEOREM 79. Let L be a non-trivial extension of mCi such that the
implication (involving the axioms of mCi) is deductive (recall Definition 6).
A schema σ(p0, . . . , pn) is provably consistent in L if, and only if, L is
controllably explosive in contact with σ(p0, . . . , pn).

Proof. If �L ◦σ(α0, . . . , αn) then, by axiom (bc1),

Γ, σ(α0, . . . , αn),¬σ(α0, . . . , αn) �L β

for any choice of Γ and β.
Conversely, assume that Γ, σ(α0, . . . , αn),¬σ(α0, . . . , αn) �L β for any Γ

and β. Since, from (ci), we have that ¬◦σ(α0, . . . , αn) �L (σ(α0, . . . , αn) ∧
¬σ(α0, . . . , αn)), then it follows that ¬◦σ(α0, . . . , αn) is a bottom particle.
As in the proof of Theorem 46(i) (using here the fact that the original
implication of mCi is still deductive in L), we get �L ¬¬◦σ(α0, . . . , αn).
By Theorem 78(i), we conclude that �L ◦σ(α0, . . . , αn). �

Complementing the versions of contraposition mentioned in Theorem 48,
we have:
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THEOREM 80. Here are some restricted forms of contraposition introduced
by mCi:

(i) (α→ ◦β) �mCi (¬◦β → ¬α);
(ii) (α→ ¬◦β) �mCi (◦β → ¬α);
(iii) (¬α→ ◦β) �mCi (¬◦β → α);
(iv) (¬α→ ¬◦β) �mCi (◦β → α).

Proof. Item (i). By axiom (cc)0, ◦◦β is a theorem of mCi. The result now
follows from Theorem 48(iii). The other items are proven similarly. �

On the other hand, properties such as (◦α→ β) �mCi (¬β → ¬◦α) do not
hold; this can easily be checked after Corollary 93, to be established below.
Notice how the above theorem opens yet another way for the internalization
of classical inferences, as discussed in Subsection 3.6.

Recall now the replacement property (RP) discussed in Remark 51. We
had already proven in Theorem 52 that (RP) cannot hold in certain para-
consistent extensions of mbC. On what concerns its possible validity in
paraconsistent extensions of mCi, we can now prove that:

THEOREM 81.
(i) The replacement property (RP) is not enjoyed by mCi.

The replacement property (RP) cannot hold in any paraconsistent extension
of mCi in which:

(ii) ¬(¬α ∧ ¬β) �mbC (α ∨ β) holds; or
(iii) (¬α ∨ ¬β) �mbC ¬(α ∧ β) holds.

Proof. (i) Consider again the first set of truth-tables (with the same set of
designated values) used in the proof of Theorem 50.
(ii) Consider the supplementing negation �α = (¬α∧◦α) for mCi proposed
in Remark 43. By Theorem 78 this last formula is equivalent to (¬α∧¬¬◦α).
In Theorem 94, this negation will be shown to behave classically inside this
logic. But then, ¬�α � α∨¬◦α, by hypothesis, and so ¬�α � α, using axiom
(ci), proof-by-cases and conjunction elimination. The rest of the proof now
follows exactly like in Theorem 52(ii).
Finally, for item (iii), recall that, from (Ax10), (¬α ∨ ¬¬α) is a theorem of
mCi. But then, by hypothesis, ¬(α ∧ ¬α) would also be a theorem. From
Theorem 49(ii) and replacement it follows that ¬¬◦α is provable, and by
Theorem 78(i) this results in ◦α being provable. Thus, the resulting logic
would be explosive. �

In the case of the logic mbC, we have called the reader’s attention to the
fact that the validity of (RP) required the validity of rules (EC) and (EO)
(see the end of Subsection 3.2). Interestingly, now in mCi we can check
that (EC) is enough:

THEOREM 82. In extensions of mCi the validity of:

(EC) ∀α∀β((α 
� β) implies (¬α 
� ¬β))
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guarantees the validity of:

(EO) ∀α∀β((α 
� β) implies (◦α 
� ◦β)).

Proof. Suppose (α 
� β). By (EC) we have that (¬α 
� ¬β), and from
these two equivalences we conclude that (α ∧ ¬α) 
� (β ∧ ¬β). But from
Theorems 49(ii) and 76(i) we have that ¬◦γ 
�mCi (γ ∧ ¬γ), so we have
that ¬◦α 
� ¬◦β. By Theorem 80(iv) we conclude then that ◦α 
� ◦β. �

Suppose now we considered the addition to mCi of a stronger rule than
(EC), in order to ensure replacement:

THEOREM 83. Consider the following rule:

(RC) ∀α∀β((α � β) implies (¬β � ¬α)).

Then, the least extension L of mCi that satisfies (RC) and proof-by-cases
collapses into classical logic.

Proof. From the axioms of mCi we first obtain ¬◦α �L α, and ¬◦α �L ¬α.
By (RC) and Theorem 78(i) we then get ¬α �L ◦α and ¬¬α �L ◦α. But
then, using proof-by-cases, we conclude that �L ◦α, that is, all formulas are
consistent. The result now follows, as usual, from Remark 29. �

Notice that our paraconsistent formulations of the normal modal logics
from Example 34 do not extend the logic mCi (contrast this with Remark 53
about mbC). As we said at the beginning of this subsection, an inconsis-
tency connective • can often be defined from a consistency connective ◦ by
taking ∼◦, where ∼ is a classical negation. The definition of an inconsis-
tency connective by taking ¬◦ is an innovation of mCi over mbC, and it is
typical in fact of most LFIs from the literature, as the ones we will be study-
ing in the rest of this chapter. The reader should not think though that the
latter class of C-systems has any intrinsic advantage over the former. This
far, it only seems to have more often met the intuitions of the working para-
consistentists, for some reason or another — or maybe by pure coincidence.
At any rate, the distinction between the two classes is only made clear in a
framework such as the one set in the present study, where consistency and
inconsistency are taken as (primitive or defined) connectives in their own
right.

4.2 Other features of mCi

In this subsection we will extend to mCi the results obtained for mbC in
Subsections 3.3, 3.4, 3.5 and 3.6, that is, we will introduce a bivaluation
semantics, a possible-translations semantics and a tableau system for mCi.
Finally, we will exhibit some novel conservative translations from classical
logic into mCi.
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We begin by a brief description of a bivaluation semantics for mCi, in the
same manner as it was done in Subsection 3.3 with mbC. The plan of action
is similar to that of mbC, and we just outline the main points of departure.
First of all, we should remark that, as a consequence of Theorem 121, to
be proven at Subsection 5.2, the logic mCi cannot be characterized by any
finite-valued set of truth-tables, and that gives an extra motivation for the
semantics presented in the following.

DEFINITION 84. An mCi-valuation is an mbC-valuation v: For◦ �� 2
(see Definition 54) respecting, additionally, the following clauses:

(v6) v(¬◦α) = 1 implies v(α) = 1 and v(¬α) = 1;
(v7.n) v(◦¬n◦α) = 1 (for n ≥ 0). �

The semantic consequence relation obtained from mCi-valuations will be
denoted by �mCi. It is easy to prove soundness for mCi with respect to
mCi-valuations.

THEOREM 85. [Soundness] Let Γ∪{α} be a set of formulas in For◦. Then:
Γ �mCi α implies Γ �mCi α. �

The completeness proof is similar to that of mbC, but obviously substi-
tuting �mCi for �mbC. Analogously, given a set of formulas ∆∪{α} in For◦

we say that ∆ is relatively maximal with respect to α in mCi if ∆ ��mCi α
and for any formula β in For◦ such that β �∈ ∆ we have ∆, β �mCi α.
As in Lemma 58, relatively maximal theories are closed. An analogue to
Lemma 59 can immediately be checked:

LEMMA 86. Let ∆∪ {α} be a set of formulas in For◦ such that ∆ is rela-
tively maximal with respect to α in mCi. Then ∆ satisfies properties (i)–(v)
of Lemma 59, plus the following:

(vi) ¬◦β ∈ ∆ implies β ∈ ∆ and ¬β ∈ ∆.

(vii) ◦¬n◦β ∈ ∆. �
COROLLARY 87. The characteristic function of a relatively maximal the-
ory of mCi defines an mCi-valuation. �
THEOREM 88. [Completeness w.r.t. bivaluation semantics] Let Γ∪{α} be
a set of formulas in For◦. Then Γ �mCi α implies Γ �mCi α. �

We can obtain a version of Lemma 63 for mCi, that is, it is always
possible to define an mCi-valuation from a given specification of the values
of the literals.

LEMMA 89. Let v0: P ∪ {¬p : p ∈ P} �� 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exists an mCi-
valuation v: For◦ �� 2 extending v0, that is, such that v(ϕ) = v0(ϕ) for
every ϕ ∈ P ∪ {¬p : p ∈ P}.

Proof. The proof is analogous to that of Lemma 63. Thus, we will define
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the value of v(ϕ) while doing an induction on the complexity �(ϕ) of ϕ ∈
For◦. Let v(ϕ) = v0(ϕ) for every ϕ ∈ P ∪ {¬p : p ∈ P}, and define
v(p#q) according to clauses (v1)–(v3) of Definition 54, for # ∈ {∧,∨,→}
and p, q ∈ P. So, v(ϕ) is defined for every ϕ ∈ For◦ such that �(ϕ) ≤ 1.
Assume that v(ϕ) was defined for every ϕ ∈ For◦ such that �(ϕ) ≤ n (for
n ≥ 1) and let ϕ ∈ For◦ such that �(ϕ) = n + 1. If ϕ = (ψ1#ψ2) for
# ∈ {∧,∨,→} then v(ϕ) is defined using the corresponding clause from
(v1)–(v3). If ϕ = ¬ψ then there are two cases to analyze:
(a) ψ = ¬k◦α, for some α ∈ For◦ and k ≥ 0. Then we define v(ϕ) = 1 iff
v(ψ) = 0.
(b) ψ �= ¬k◦α, for every α ∈ For◦ and every k ≥ 0. Then we define
v(ϕ) = 1, if v(ψ) = 0, and v(ϕ) is defined arbitrarily, otherwise.
Finally, if ϕ = ◦ψ then we set v(ϕ) = 0 iff v(ψ) = v(¬ψ) = 1.

It is easy to see that v is an mCi-valuation that extends v0. �

EXAMPLE 90. With the help of Lemma 89, the bivaluation semantics for
mCi may be used to show, for instance, that ¬¬α → α is not a thesis of
this logic. Indeed, fix p ∈ P and consider the mapping

v0: P ∪ {¬q : q ∈ P} �� 2

such that v(q) = 0 and v(¬q) = 1 for every q ∈ P. From the proof of
Lemma 89 we know that there exists an mCi-valuation v: For◦ �� 2
extending v0 such that v(¬¬p) = 1. Then v(¬¬p → p) = 0 and so ��mCi

(¬¬p→ p). By Theorem 85, it follows that ��mCi (¬¬p→ p). �
Next, as it was done in Subsection 3.4 with the logic mbC, we can also

provide an alternative semantics for mCi in terms of possible-translations
semantics.

Consider the collection M1 of 3-valued truth-tables formed by the truth-
tables of M0, introduced in Subsection 3.4, but now considering just one
consistency operator called ◦3 instead of ◦1 and ◦2, presented by the truth-
table:

◦3

T T

t F

F T

Again, T and t are the designated values. In M1, the only truth-value that
is not consistent is t. If ForM1 denotes the algebra of formulas generated
by P over the signature of M1, let’s consider the set Tr1 of all functions
∗: For◦ �� ForM1 respecting the clauses (tr0)–(tr2) on translations in-
troduced in Subsection 3.4, plus the following clauses:
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(tr3)1 (◦α)∗ ∈ {◦3α
∗, ◦3(¬α)∗};

(tr3)2 if (¬α)∗ = ¬1α
∗ then (◦α)∗ = ◦3(¬α)∗;

(tr4)1 (¬n+1◦α)∗ = ¬1(¬n◦α)∗.

We say the pair PT1 = 〈M1,Tr1〉 is a possible-translations semantical
structure for mCi. If �M1 denotes the consequence relation in M1, and
Γ ∪ {α} is a set of formulas of mCi, the PT1-consequence relation, |=pt1 ,
is defined as:

Γ |=pt1 α iff Γ∗ �M1 α
∗ for all ∗ ∈ Tr1.

We leave to the reader the proof of the following easy result:

THEOREM 91. [Soundness] Let Γ∪{α} be a set of formulas of mCi. Then
Γ �mCi α implies Γ |=pt1 α. �

The completeness proof follows the same lines than the one obtained for
mbC (cf. [Marcos, 2005f]).

THEOREM 92. [Representability] Given an mCi-valuation v there is a
translation ∗ in Tr1 and a valuation w in M1 such that, for every formula α
in mCi:

w(α∗) = T implies v(¬α) = 0; and

w(α∗) = F iff v(α) = 0.

Proof. The proof is similar to that of Theorem 67, but now defining
(◦α)∗ = ◦3(¬α)∗ if v(¬α) = 0, and (◦α)∗ = ◦3α

∗ otherwise. Finally, set
(¬n+1◦α)∗ = ¬1(¬n◦α)∗. Details are left to the reader. �

COROLLARY 93. [Completeness w.r.t. possible-translations semantics]
Let Γ∪{α} be a set of formulas in mCi. Then Γ |=pt1 α implies Γ �mCi α.

In Remark 43 we have defined two supplementing negations for mbC,
� and ∼, and in Remark 70 we have shown that only one of them, namely ∼,
was classical in mbC. Now we can use the possible-translations semantics
of mCi to check that in this logic the two negations produce equivalent
formulas:

THEOREM 94. Given a formula α, the formulas �α and ∼α are equivalent
in mCi. As a result, � defines a classical negation in mCi.

Proof. Notice that, using the above possible-translations semantics for
mCi, the formulas � p and ∼p produce exactly the same truth-tables. �

Now, using the general techniques introduced in [Caleiro et al., 2005b]
we can easily obtain an adequate tableau system for mCi, in the same way
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that was done for mbC in Subsection 3.5. Thus, in view of the bivaluation
semantics for mCi stated in Definition 84 from the bivaluation semantics
for mbC, it is enough to define the following:

DEFINITION 95. We define a tableau system for mCi by adding to the
tableau system for mbC introduced in Example 71 the following rules:

T (¬◦X)
T (X), T (¬X) T (◦¬n◦X)

(for n ≥ 0) �

Finally, let’s talk again about classical logic. In Theorem 74 of Subsec-
tion 3.6 we have seen how CPL can be encoded inside mbC through a
conservative translation. Clearly, that same translation works for mCi. We
will now show how it is possible to encode eCPL inside mCi, in a similar
fashion.

THEOREM 96. Let For◦ be the algebra of formulas for the signature Σ◦

of mCi. Consider any mapping t2: For◦ �� For◦ such that:

1. t2(p) = p, for every p ∈ P;

2. t2(γ#δ) = t2(γ)#t2(δ), if # ∈ {∧,∨,→};

3. t2(¬γ) ∈ {∼t2(γ), � t2(γ)};

4. t2(◦γ) = ◦◦t2(γ).

Then, t2 is a conservative translation from eCPL to mCi.

Proof. The proof is almost identical to that of Theorem 74. The only novel
clause is 4, but it is clear how it works (recall axiom (cc)0). �

4.3 Inconsistency operator as primitive

Up to now we have concentrated almost exclusively on the formal notion
of consistency; formal inconsistency has appeared only derivatively, defined
with the help of a classical or of a paraconsistent negation. It is equally
natural, however, to provide alternative axiomatizations for the logic mCi
or its close relatives starting from a primitive inconsistency connective. We
will now show how to do this in two different ways, one in terms of ◦ and
•, and the other in terms of • alone.

Let Σ• and Σ◦• be the extensions of the signature Σ (recall Remark 15)
obtained by the addition, respectively, of a new unary connective • and
of two unary connectives ◦ and •. Let For• and For◦• be the respective
algebras of formulas. The idea of axiomatizing mCi just in terms of •
involves the assumption that •α means ¬◦α while ¬•α means ◦α. As a
consequence, axiom schemas (bc1), (ci) and (ci)n should adopt the following
forms:
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(bc1)′ ¬•α→ (α→ (¬α→ β))

(ci)′ •α→ (α ∧ ¬α)

(cc)′n ¬•¬n•α (n ≥ 0)

This leads to the following definition:

DEFINITION 97. The logic mCi• defined over signature Σ• is defined
by the axiom schemas (Ax1)–(Ax10) (recall Definition 28) plus the axiom
schemas (bc1)′, (ci)′ and (cc)′n (for n ≥ 0) introduced above, together with
(MP). �

The next result will demonstrate to which extent mCi and mCi• are
‘the same logic’. Since these logics are written in distinct signatures, an
appropriate way of comparing them is by way of (some very strict and
specific) translations.

THEOREM 98.
(i) Let + : For◦ �� For• be a mapping defined as follows:

1. p+ = p if p ∈ P;

2. (α#β)+ = (α+#β+) where # ∈ {∧,∨,→};

3. (¬◦α)+ = •α+;

4. (¬α)+ = ¬α+ if α �= ◦β for every β;

5. (◦α)+ = ¬•α+.

Then, the mapping + is a translation from mCi to mCi•, that is, for every
Γ ∪ {α} ⊆ For◦:

Γ �mCi α implies Γ+ �mCi• α
+.

(ii) Let − : For• �� For◦ be a mapping defined as follows:

1. p− = p if p ∈ P;

2. (α#β)− = (α−#β−) where # ∈ {∧,∨,→};

3. (¬•α)− = ◦α−;

4. (¬α)− = ¬α− if α �= •β for every β;

5. (•α)− = ¬◦α−.

Then, the mapping − is a translation from mCi• to mCi, that is, for every
Γ ∪ {α} ⊆ For•:

Γ �mCi• α implies Γ− �mCi α
−.
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Proof. Item (i). Suppose that Γ �mCi α. By induction on the length of a
derivation in mCi of α from Γ, it can be easily proven that Γ+ �mCi• α

+.
There are just three cases that deserve some attention. These cases occur
when α ∈ For◦ is an instance of an axiom in mCi but α+ is not an instance
of an axiom in mCi•. These three cases are: (1) α = ◦◦γ → (◦γ → (¬◦γ →
δ)) for γ, δ ∈ For◦; (2) α = (◦γ ∨¬◦γ); and (3) α = ¬◦◦γ → (◦γ ∧¬◦γ). In
case (1), α+ = ¬•¬•γ+ → (¬•γ+ → (•γ+ → δ+)), which is not an instance
of an axiom in mCi•. However, it is immediate to see that α+ is a theorem
of mCi•, because of axioms (bc1)′, (ci)′ and by the deduction theorem.
Indeed, •γ+ �mCi• (γ+ ∧ ¬γ+) and ¬•γ+, (γ+ ∧ ¬γ+) �mCi• δ

+, therefore
¬•¬•γ+,¬•γ+, •γ+ �mCi• δ

+. Using the deduction theorem it then follows
that �mCi• α

+. In case (2), α+ = (¬•γ+ ∨ •γ+), which is not an axiom
of mCi•, yet it can be easily checked to be a theorem of mCi•. In case
(3), α+ = •¬•γ+ → (¬•γ+ ∧ •γ+). This is not an axiom, but it can be
easily proven in mCi•. Indeed, by (cc)′1, (bc1)′, the deduction theorem and
proof-by-cases it follows that ¬¬•δ �mCi• •δ holds in mCi•, for every δ.
Using this, (ci)′, properties of the standard conjunction and the deduction
theorem, it follows that α+ is a theorem of mCi•.
Item (ii). The proof is entirely analogous to that of item (i). �

The fact that both logics are inter-translatable means that mCi encodes
mCi• and vice-versa. Moreover, we could take the combined logic mCi◦•

defined over Σ◦• by putting together all the axiom schemas of mCi and
mCi•, plus (MP) (technically, mCi◦• can be obtained as the fibring of
mCi and mCi•; see, for instance, the entry on fibring [Caleiro et al., 2005]
in this Handbook). It is also possible to show that the logic mCi◦• is a
conservative extension of both mCi and mCi•. The following result is easy
to check:

THEOREM 99. Let α be a formula in For◦•. Then
◦α 
�mCi◦• ¬•α and ¬◦α 
�mCi◦• •α. �

However, as yet another witness to the fact that the replacement property
(RP) (see Remark 51) is not enjoyed by these logics, it is not difficult to see
(say, by means of bivaluations) that, in general, the following is true, for
α ∈ For◦ and β ∈ For•:

α ��mCi (α+)−, (α+)− ��mCi α, α ��mCi◦• α+, α+ ��mCi◦• α

β ��mCi• (β−)+, (β−)+ ��mCi• β, β ��mCi◦• β−, β− ��mCi◦• β.

The corresponding bivaluation semantics, possible-translations semantics
and tableau procedures for the versions of mCi in the above signatures can
be easily implemented and we will not annoy the reader with details.
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4.4 Enhancing mCi in dealing with double negations

In this subsection we will see what happens when the logics mbC and mCi
are further extended with axioms dealing with doubly negated formulas,
namely:

(cf) ¬¬α→ α

(ce) α→ ¬¬α
Note that (cf) has already appeared as (Ax11) in Definition 28. From
item (iii) of Theorem 77 we know that neither (ce) nor (cf) is provable in
mCi. Adding such axioms makes the negation of this logic a bit closer
to classical negation. Moreover, we will see that adding them helps in
simplifying the axiomatic presentations of the resulting logics, and it also
has a nice consequence for the interaction of negation with the connectives
for consistency and inconsistency.

DEFINITION 100. Consider the signature Σ◦. Recall the axiomatizations
of mbC and mCi from Definitions 42 and 75. Then:

1. bC is axiomatized as mbC plus (cf).
2. Ci is axiomatized as mCi plus (cf).
3. mbCe is axiomatized as mbC plus (ce).
4. mCie is axiomatized as mCi plus (ce).
5. bCe is axiomatized as bC plus (ce).
6. Cie is axiomatized as Ci plus (ce). �

It is easy to check that:

THEOREM 101.
(i) ◦α �Ci ◦¬α;
(ii) •¬α �Ci •α;
(iii) ◦¬α �mCie ◦α;
(iv) •α �mCie •¬α. �
Using the latter result one might provide a simpler and finitary axioma-

tization for the logic Ci (thus also for Cie):

THEOREM 102. The logic Ci may be obtained from mbC by adding the
axiom schemas (ci) (see Definition 75) and (cf) (Subsection 4.4), to wit:

(ci) ¬◦α→ (α ∧ ¬α)
(cf) ¬¬α→ α

Proof. Let � be the consequence relation of the logic obtained from mbC
by adding the axiom schemas (ci) and (cf). Of course � ⊆ �Ci. In order
to prove the converse, it is enough to prove that � ◦¬n◦α (that is, axiom
schema (cc)n) holds good for every formula α and every natural number n.
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For n = 0 note that ◦α, α,¬α � ◦◦α, by (bc1), and ¬◦α � α ∧ ¬α, by (ci).
In particular ¬◦◦α � ◦α∧¬◦α, thus ¬◦◦α � ◦◦α. But ◦◦α � ◦◦α and then
proof-by-cases gives us

(∗) � ◦◦α.
Now, by (ci) again, we have that ¬◦¬α � ¬α∧¬¬α and then ¬◦¬α � ¬α∧α,
by (cf). Using (bc1) we obtain ◦α, α,¬α � ◦¬α and so ◦α,¬◦¬α � ◦¬α.
Since ◦α, ◦¬α � ◦¬α then proof-by-cases gives us ◦α � ◦¬α for every α, as
in Theorem 101(i). In particular,

(∗∗) ◦¬n◦α � ◦¬n+1◦α
for every n ≥ 0 and every α. Using (∗) and (∗∗), it is now immediate to
obtain (cc)n by induction on n. �

As regards semantic presentations, in view of Theorem 121 (see Subsec-
tion 5.2), we know that the logics from Definition 100 are not characterizable
by a collection of finite-valued truth-tables. However, it is straightforward
to endow these new systems with adequate bivaluation semantics, using the
methods from previous sections. Indeed:

THEOREM 103. Axiom (cf) corresponds to the following clause on the
definition of a bivaluation semantics:
(v8) v(¬¬α) = 1 implies v(α) = 1.
Similarly, axiom (ce) corresponds to:
(v9) v(α) = 1 implies v(¬¬α) = 1. �

Accordingly, one can now prove, for instance, that Ci is sound and com-
plete for the class of bivaluations v: For◦ �� 2 satisfying clauses (v1)–
(v5) of Definition 54 plus clause (v6) of Definition 84 and clause (v8) of
Theorem 103.

The next useful result concerning the definability of bivaluations for the
systems introduced in Definition 100 can be obtained. The proof is done by
appropriately adapting the proofs of Lemmas 63 and 89.

LEMMA 104. Let v0: P ∪ {¬p : p ∈ P} �� 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exist bivaluations
extending v0, for each one of the logics introduced in Definition 100.
Proof. We only prove the case for Ci. Thus, given v0, define v(ϕ) = v0(ϕ)
for every ϕ ∈ P ∪ {¬p : p ∈ P}, and v(p#q) is defined according to clauses
(v1)–(v3) of Definition 54, for # ∈ {∧,∨,→} and p, q ∈ P. Suppose that
v(ϕ) was defined for every ϕ ∈ For◦ such that �(ϕ) ≤ n (for n ≥ 1) and let
ϕ ∈ For◦ such that �(ϕ) = n + 1. If ϕ = (ψ1#ψ2) for # ∈ {∧,∨,→} then
we use clauses (v1)–(v3) to define v(ϕ). If ϕ = ◦ψ then define v(ϕ) = 0 iff
v(ψ) = v(¬ψ) = 1.
Finally, suppose that ϕ = ¬ψ. If v(ψ) = 0 then define v(ϕ) = 1. On the
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other hand, if v(ψ) = 1 then there are three cases to analyze:
(a) ψ = ◦α, for some α ∈ For◦. Then, define v(ϕ) = 0.
(b) ψ = ¬α, for some α ∈ For◦, such that v(α) = 0. Then we define
v(ϕ) = 0.
(c) In any other case, v(ϕ) is defined arbitrarily.
It is straightforward to check that v is a Ci-valuation extending v0. The
proof for the other systems is entirely analogous, and we leave the details
to the reader. �

We can also obtain adequate tableaux for these systems, as in previous
sections. Possible-translations semantics for bC, Ci, bCe and Cie may be
found in [Marcos, 2005f]. These four logics were exhaustively studied in
[Carnielli and Marcos, 2002]. Non-deterministic semantics for these logics
can be found in [Avron, 2005a].

5 ADDITIONAL TOPICS ON LFIS

5.1 The dC-systems

As we have seen in Theorem 98, the formulas •α and ¬◦α have the same
meaning (up to translations) in mCi. Moreover, we also know from Theo-
rem 49(i) and axiom (ci) that the formulas •α and (α ∧ ¬α) are equivalent
in mCi. However, as we know from Theorem 76, the formulas ¬•α and
¬(α ∧ ¬α) are not equivalent, nor are the formulas ¬¬•α and ¬¬(α ∧ ¬α),
and so on.

It seemed only natural, thus, to consider extensions of mCi in which the
meaning of statements involving • (and also ◦) may be recast in terms of the
other connectives, by means of translations or of explicit definitions. This
maneuver led us to the class of LFIs known as dC-systems, in which the
new connective of consistency may be dismissed from the beginning, and
replaced by a formula built from the other connectives already present in
the signature (recall Definition 32).8 The logic Cil, to be defined below, is
an example of this strategy.

DEFINITION 105. The logic Cil, defined over the signature Σ◦, is ob-
tained from Ci by the addition of the following axiom schema:

(cl) ¬(α ∧ ¬α) → ◦α

Other logics may be obtained in a similar fashion, such as the logic Cile,
defined by the addition of (ce) to Cil (recall Subsection 4.4). �

8The reader is invited to adapt Definition 32 to deal also with the inconsistency
operator, and to logics defined over signatures Σ• and Σ◦•.
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By the very definition of Cil, it is clear there cannot be a paraconsistent
extension of Cil in which the schema ¬(α∧¬α) is provable. There are, how-
ever, other paraconsistent extensions of Ci, such as LFI1 (see Example 18
and Theorem 127) or extensions of bC such as all non-degenerate normal
modal logics extending the system KT (recall Example 34), in which the
schema ¬(α ∧ ¬α) is indeed provable.

It can be checked that Cil is in fact an indirect a dC-system based on
classical logic:

THEOREM 106. The logic Cil may be defined over Σ by identifying ◦α
with ¬(α ∧ ¬α). More precisely: Let Cil c© be the logic over Σ defined
by axiom schemas (Ax1)–(Ax11) (see Definition 28), rule (MP), plus the
following axiom schema:

(bc1)′′ ¬(α ∧ ¬α) → (α→ (¬α→ β))

Let � : For◦ �� For be a mapping defined as follows:

1. p� = p if p ∈ P;

2. (α#β)� = (α�#β�) where # ∈ {∧,∨,→};

3. (¬α)� = ¬α�;

4. (◦α)� = ¬(α� ∧ ¬α�).

Then, the mapping � is a translation from Cil to Cil c©, that is, for every
Γ ∪ {α} ⊆ For◦:

Γ �Cil α implies Γ� �Cil c© α�.

On the other hand, Cil is a conservative extension of Cil c©, that is, for
every Γ ∪ {α} ⊆ For:

Γ �Cil c© α iff Γ �Cil α.

As a consequence of the above, the following holds good, for every Γ∪{α} ⊆
For◦:

Γ �Cil α implies Γ� �Cil α
�.

Proof. The proof follows the lines of the proof of Theorem 98, and there
is just one further critical case to analyze: Any axiom of Cil of the form
α = ¬(γ ∧ ¬γ) → ◦γ is translated as α� = ¬(γ� ∧ ¬γ�) → ¬(γ� ∧ ¬γ�),
which is not an axiom of Cil c©, but it is obviously a theorem of Cil c©. This
shows that � is a translation from Cil to Cil c©.

Consider now a set Γ ∪ {α} ⊆ For. Observe that every axiom of Cil c©

different from (bc1)′′ is an axiom of Cil. On the other hand, it is easy to
see (using the deduction theorem) that (bc1)′′ is a theorem of Cil. Hence,
by induction on the length of a derivation in Cil c© of α from Γ it follows
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that, if Γ �Cil c© α then Γ �Cil α. Conversely, if Γ �Cil α then Γ� �Cil c© α�,
since � is a translation from Cil to Cil c©. But, if β ∈ For then β� = β, so
Γ �Cil c© α. This shows that Cil is a conservative extension of Cil c©. The
rest of the proof is straightforward. �

The above theorem shows that Cil c© is a direct dC-system, just as much
as Cil is an indirect one (recall Definitions 32 and 33). Observe that (bc1)′′

was already introduced in Definition 28 as axiom (bc1). Thus, the logic
Cil c© is obtained from C1 by the elimination of axioms (ca1)–(ca3) (or,
equivalently, C1 is obtained from Cil c© by adding axiom schemas (ca1)–
(ca3); see Definition 108 and Remark 109). The formula schema ¬(α∧¬α)
played an important role in the original construction of the logics Cn, and it
has often been identified with the so-called ‘Principle of Non-Contradiction’.
Notice, however, that such an identification is not possible with our present
definition of this principle (Principle (1) in Subsection 2.1).

There is no consensus in the literature on what concerns the status of the
schema ¬(α ∧ ¬α) inside paraconsistent logics. Its validity has been criti-
cized by some (see, for instance, [Béziau, 2002a]). A good technical reason
for expecting this schema to fail is connected to the possible consequent
failure of the replacement property, as predicted in Theorem 52(iv). On the
other hand, the proposal of paraconsistent logics in which this schema does
not hold has also been criticized, as for instance in [Routley and Meyer,
1976], where the authors claim that, for dialectical logics (i.e. for logics dis-
respecting our version of the Principle of Non-Contradiction), not only do
we usually have that ¬(α ∧ ¬α) is a theorem, but that feature does not
conflict with other logical truths of such logics. On our approach, the whole
controversy seems artificial and ill-advised. It might well be just a ster-
ile offspring of the misidentification of the Principle of Explosion and the
Principle of Non-Contradiction: In general, only the former should worry a
paraconsistent logician, the latter being a much less demanding and a very
often strictly observed principle (check the ensuing discussion in section 3.8
of [Carnielli and Marcos, 2002]).

Using (bc1) and (cl), every theorem of the form ◦(α∧¬α) can be proven.
In the presence of axiom (cf), as in Theorem 101(i), this allows one to
prove, in Cil, every theorem of the form ◦¬n(α ∧ ¬α). This feature was to
raise protests by some authors (see for instance [Sylvan, 1990]), according
to whom it makes no sense to declare contradictions (case n = 0 in the
above formula) to be provably consistent.

With respect to semantics, Theorem 125 (see Subsection 5.2) proves that
the logics Cil and Cil c© are not characterizable by a collection of finite-
valued truth-tables. Of course, we can obtain a bivaluation semantics for
Cil c© by considering mappings v: For �� 2 satisfying axioms (v1)–(v4)
of Definition 54, plus the following:

(v10) v(¬(α ∧ ¬α)) = 1 implies v(α) = 0 or v(¬α) = 0;
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(v11) v(¬¬α) = 1 implies v(α) = 1.

In the case of Cil, one may consider bivaluations v: For◦ �� 2 that
satisfy axioms (v1)–(v5) of Definition 54, plus (v6) (see Definition 84) and
(v11). Of course, a result analogous to Lemma 104 can be stated and proven
for the logics Cil and Cil c©. At this point it should be obvious to the reader
how the tableaux for these logics would look like.

If the reader has still not gotten used to the frequent failure of the re-
placement property, he might be surprised with the following asymmetry
allowed by the logic Cil. The consistency operator ◦α is equivalent in Cil
to the formula ¬(α ∧ ¬α) (cf. Definition 105) and consequently the logic
resulting from the addition of ¬(α∧¬α) to Cil is no longer paraconsistent.
On the other hand:

THEOREM 107. The logic resulting from the addition of ¬(¬α ∧ α) to
Cil is still paraconsistent, and so the operator ◦ cannot be alternatively
expressed by the formula ¬(¬α ∧ α).

Proof. The first collection of truth-tables from the proof of Theorem 50
provides a model of Cil plus ¬(¬α∧α). The same collection of truth-tables
show that there are atomic formulas p and q such that ¬(¬p∧ p), p,¬p take
designated values, while q does not: Just assign the value 1

2 to p and 0 to q.
�

The above asymmetry has been sharply pointed out in Theorem 4 of
[Urbas, 1989] for the case of the logic C1 which is, as we mentioned before,
an extension of Cil c© (see also Remark 109). This asymmetry remained
hidden for a long time within the realm of the logics Cn. Indeed, the first
decision procedure offered for the logic C1 in terms of quasi matrices, in [da
Costa and Alves, 1977], was mistaken exactly in assuming ¬(α ∧ ¬α) and
¬(¬α ∧ α) to be equivalent formulas.

Some natural alternatives to (cl) can immediately be considered:

(cd) ¬(¬α ∧ α) → ◦α;

(cb) (¬(α ∧ ¬α) ∨ ¬(¬α ∧ α)) → ◦α.

(RG) β 
� α ∧ ¬α implies ¬β 
� ¬(α ∧ ¬α)

Clearly, the addition to Ci of the axiom (cd) instead of the axiom (cl),
would produce a logic in which the asymmetry pointed out in Theorem 107
is inverted. That inconvenient can be solved if the axiom (cb) is added
instead, as that move produces a logic in which both ¬(α∧¬α) and ¬(¬α∧α)
express consistency. However, that will not make the difficulties about the
replacement property, (RP), go away. In fact, the equivalence of similar
more complex formulas would not be guaranteed by (cb): It can be shown
for instance that formulas such as ¬(α∧ (α∧¬α)) and ¬((α∧¬α)∧α) are
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not automatically equivalent, even though (α ∧ (α ∧ ¬α)) and ((α ∧ ¬α) ∧
α) are equivalent on any C-system based on (positive) classical logic. As
pointed out in [Carnielli and Marcos, 2002], a way of solving that specific
predicament without necessarily going as far as establishing the validity of
(RP) is simply by adding the rule (RG). Of course, dC-systems with full
(RP) are clearly available, as it has been illustrated by the modal logics
proposed in Example 34, all of which extend the fundamental C-system
mbC (recall Remark 53).

It should be clear that each dC-system can in principle generate an infi-
nite number of other dC-systems, if one applies to it the same strategy as
that of the Cn logics, for 1 ≤ n < ω (cf. Definition 28), namely, if one simply
requires stronger and stronger conditions to be met in order to establish the
consistency of a formula.

5.2 Adding modularity: Letting consistency propagate

Given a class of consistent formulas, an important issue is to understand
how this consistency propagates towards simpler or more complex formu-
las. As we have seen in Theorem 101, the addition to mCi of axioms or
rules controlling the behavior of doubly negated formulas reflects directly
on the propagation of consistency through negation. As we will see in this
subsection, one can in fact produce interesting variations on the recipe that
constructs LFIs by directly controlling the way consistency propagates.

DEFINITION 108.
(i) The logic Cia is obtained by the addition of the following axiom schemas
to Ci (see Definition 100):

(ca1) (◦α ∧ ◦β) → ◦(α ∧ β);
(ca2) (◦α ∧ ◦β) → ◦(α ∨ β);
(ca3) (◦α ∧ ◦β) → ◦(α→ β).

(ii) The logic Cila is obtained by the addition of the axiom schema (cl) to
Cia or, equivalently, of the axioms (ca1)–(ca3) to Cil (see Definition 105).
Using axioms (cd) or (cb) instead of (cl) one might similarly define the logics
Cida or Ciba. Adding axiom (ce) to those systems one might define the
logics Cilae, Cidae and Cibae. �
REMARK 109. It is worth insisting that the only difference between Cila
and the original formulation of C1 (recall Definition 28) is that the connec-
tive ◦ in C1 was not taken as primitive, but ◦α, originally denoted as α◦,
was assumed from the start to be an abbreviation of the formula ¬(α∧¬α).
A transformation to that same effect is done by the translation � from The-
orem 106. However, it should be noted that there are formulas α ∈ For◦

such that α and α� are not equivalent in Cila. On the other hand, C1 coin-
cides with Cila c©, the logic obtained from Cil c© (see again Theorem 106)
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by adding axioms (ca1)–(ca3). In other words, Cila is obtained from C1 by
adding the consistency operator ◦ to the signature as well as the obvious
axioms stating the equivalence between the formulas ◦α and ¬(α∧¬α). In
the terminology of Definition 33, we may say that Cila corresponds to C1.
For the other logics in the hierarchy Cn, 1 ≤ n < ω, the formula ◦α abbre-
viates more and more complex formulas, or sets of formulas, as it can be
seen in Definition 28. �

The logics Cila and C1 are not exactly coincident since they are defined
over distinct signatures. However, they are related by means of translations
in the same way as Cil and Cil c© were so related (recall Theorem 106). In
other terms, Cila is an indirect dC-system, while C1 is a direct dC-system,
as the theorem below shows.

THEOREM 110. Let � : For◦ �� For be the translation mapping de-
fined as in Theorem 106. Then � is a translation from Cila to C1, that is,
for every Γ ∪ {α} ⊆ For◦,

Γ �Cila α implies Γ� �C1 α
�.

On the other hand, Cila is a conservative extension of C1, that is, for every
Γ ∪ {α} ⊆ For,

Γ �C1 α iff Γ �Cila α.

As a consequence of this, the following holds, for every Γ ∪ {α} ⊆ For◦:

Γ �Cila α implies Γ� �Cila α
�.

Proof. An easy extension of the proof of Theorem 106. In fact, taking into
account that C1 coincides with Cila c© (recall Remark 109) and also the
fact that axioms (ca1)–(ca3) of Definition 108 are translated by � in terms
of the homonymous axioms of Definition 28, the proof is immediate. �

REMARK 111. Consider the logic Cl obtained from Cil by removing axiom
(ci). In other words, Cl is defined by axiom schemas (Ax1)–(Ax11) (see
Definition 28), (cl) (see Definition 105), plus (MP). Let Cil c© be the logic
defined in Theorem 106. It is easy to check, though, that the results in
Theorem 106 are still valid if we uniformly substitute Cl for Cil. The logic
Cla, studied in [Avron, 2005b], may now be obtained from Cl by adding
axiom schemas (ca1)–(ca3) of Definition 108, and the proof of Theorem 110
is still valid if if we uniformly substitute Cla for Cila.9 However, according
to Definition 33, we can say that Cila corresponds to C1, but we cannot
say the same about the C-system Cla. �

Taking into account the new axioms from Definition 108, it is easy to
prove in Cia the following particular version of a Derivability Adjustment

9We thank Arnon Avron for pointing this fact to us.
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Theorem (recall Remark 26 and compare the following with what was said
at the beginning of Subsection 3.6):

THEOREM 112.
Let Π denote the set of atomic formulas occurring in Γ ∪ {α}.
Then, Γ �CPL α iff there is some ∆ ⊆ Π such that ◦(∆),Γ �Cia α.

Proof. Recall that CPL may be axiomatized by (Ax1)–(Ax11), (MP) and
the ‘explosion law’: (exp) α → (¬α → β). Consider some Γ ∪ {α} ⊆ For
such that Γ �CPL α. By induction on the length n of a derivation in CPL
of α from Γ it will be proven that ◦(∆),Γ �Cia α for some ∆ ⊆ Π. If n = 1
then either α ∈ Γ or α is an instance of an axiom of CPL. In the first case the
proof is trivial. In the second case, there is just one case in which α is not an
axiom of Cia, namely, when α is an instance δ → (¬δ → β) of (exp). Let ∆
be the set of propositional variables occurring in δ. Then, by Theorem 101(i)
and by (ca1)–(ca3), it is easy to prove (by induction on the complexity of δ)
that ◦(∆) �Cia ◦δ. On the other hand, from (bc1) and (MP) it follows that
◦δ �Cia α. Thus ◦(∆),Γ �Cia α, where ∆ ⊆ Π. Suppose now that α follows
from β and β → α by (MP), in the last step of a given derivation in CPL of α
from Γ. By induction hypothesis, ◦(∆1),Γ �Cia β and ◦(∆2),Γ �Cia β → α
for some ∆1,∆2 ⊆ Π. Thus ◦(∆1), ◦(∆2),Γ �Cia α, by (MP). But of course
◦(∆1) ∪ ◦(∆2) = ◦(∆1 ∪ ∆2), so we have that ◦(∆1 ∪ ∆2),Γ �Cia α, and
that concludes the first half of the proof.

Conversely, suppose now that Γ∪{α} ⊆ For is such that ◦(∆),Γ �Cia α
for some ∆ ⊆ Π. If Γ ��CPL α then there exists a classical valuation v such
that v(Γ) ⊆ {1} and v(α) = 0. Extend v to For◦ by putting v(◦β) = 1 for
every β ∈ For◦. Then v is a model for Cia such that v(◦(∆) ∪ Γ) ⊆ {1},
therefore v(α) = 1, a contradiction. Thus Γ �CPL α. �

As pointed out already in [da Costa, 1963] and [da Costa, 1974], the same
result holds good for any logic Cn, assuming in each case the appropriate
definition of ◦α.

Recalling that eCPL is just the classical propositional logic CPL plus
the axiom schema ◦α, we may also propose the following alternative way of
recovering classical reasoning inside our present LFIs:

THEOREM 113. Consider the mapping t3: For◦ �� For◦ , recursively
defined as follows:

1. t3(p) = ◦p, for every p ∈ P;

2. t3(γ#δ) = (t3(γ)#t3(δ)), if # ∈ {∧,∨,→};

3. t3(�γ) = �t3(γ), if � ∈ {¬, ◦}.

Then t3 conservatively translates eCPL inside of Cia.
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Proof. Using compactness, the deduction theorem, and the definition of
t3, it is enough to prove that �eCPL α iff �Cia t3(α) for every α in For◦.

We first prove from left to right. Given a formula α(p1, . . . , pn) in For◦,
then t3(α) = α(◦p1, . . . , ◦pn). From this, using axioms (ca1)–(ca3), axiom
(cc)n (Definition 75) and Theorem 101(i) it is not hard to prove by induction
on the complexity �(α) of α that �Cia ◦t3(α) for every α ∈ For◦. Observe
that, if β is an axiom of eCPL different from (exp) (see Remark 29) then
t3(β) is a theorem of Cia. On the other hand, if β = δ → (¬δ → γ) is
an instance of (exp) then t3(β) = t3(δ) → (¬t3(δ) → t3(γ)), and the lat-
ter is provable in Cia from (bc1) and ◦t3(δ). Thus, t3(β) is a theorem of
Cia. Note also that any application of modus ponens in eCPL is trans-
formed into an application of modus ponens in Cia. Consequently, given
a derivation α1, . . . , αn = α of α in eCPL, the finite sequence of formulas
t3(α1), . . . , t3(αn) = t3(α) may be transformed into a derivation of t3(α) in
Cia. This shows that �eCPL α implies �Cia t3(α).

In order to prove the converse, consider the definition of an adequate bi-
valuation semantics for Cia, adding to the clauses of a bivaluation semantics
for Ci (see Definition 84) the clause (vC7) of Example 65. Now, given an
eCPL-valuation v, consider the mapping v′: P ∪ {¬p : p ∈ P} �� 2 such
that v′(p) = 1 for every p ∈ P, and v′(¬p) = 1 iff v(p) = 0. Define now
v′(◦p) = 1 iff v′(¬p) = 0, and extend v′ homomorphically to the remaining
formulas in For◦ using the truth-tables for eCPL. That is, for formulas
other than p, ¬p and ◦p (for p ∈ P) the mapping v′ is defined as a classical
valuation and moreover satisfies v′(◦α) = 1 for every non-atomic α. It is
easy to see that this v′ is indeed a Cia-valuation. An induction on the com-
plexity �(α) of α shows that v(α) = v′(t3(α)) for every α ∈ For◦. Finally,
suppose that ��eCPL α. Then, there is some eCPL-valuation v such that
v(α) = 0. But then, by the above argument, there is some Cia-valuation v′

such that v′(t3(α)) = 0 and so ��Cia t3(α). �

Straightforward adaptations of the above argument show that the same t3
acts as a conservative translation between eCPL and all logics defined in
item (ii) of Definition 108. So, in order to perform ‘classical inferences’
within such logics (and even within C1, in view of Theorem 110), it suffices
to translate every atomic formula p into ◦p.

Axioms (ca1)–(ca3) of Definition 108 describe a certain form of propa-
gation of consistency through conjunction. There are several other sensible
ways of allowing consistency or inconsistency to propagate. For instance, it
also makes sense to think of propagation of consistency through disjunction:

DEFINITION 114.
(i) The logic Cio is obtained by the addition to Ci of the axiom schemas:

(co1) (◦α ∨ ◦β) → ◦(α ∧ β);

(co2) (◦α ∨ ◦β) → ◦(α ∨ β);
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(co3) (◦α ∨ ◦β) → ◦(α→ β).

(ii) The logic Cilo is obtained by the addition to Cio of the axiom schema (cl)
or, equivalently, by the addition of axioms (co1)–(co3) to Cil (see Defini-
tion 105). �

The logic Cilo c©, the version of Cilo over signature Σ (using Cil c© in-
stead of Cil, see Theorem 106), was introduced in [Béziau, 1990] and was
studied under the name C+

1 in [da Costa et al., 1995]. As in Definition 108,
several other logics may be defined extending Cio by tinkering with axioms
(cf), (cb) and (ce).

Obviously, C+
1 is a deductive extension of C1. Its characteristic weaker

requirement to obtain consistency of a complex formula, namely, the consis-
tency of at least one of its components, reflects in the following immediate
stronger result:

THEOREM 115.
If Γ �Cio ◦β for some subformula β of α, then Γ �Cio ◦α. �

An argument similar to the one presented in the proof of Theorem 113
will show again that the same t3 defines also a conservative translation
between eCPL and the logics presented in Definition 114.

On what concerns the interdefinability of the binary connectives with the
help of our primitive paraconsistent negation (compare with Theorem 64),
one can now count on the following extra rules:

THEOREM 116.
In Cia the following holds good:

(ix) ¬(¬α ∧ ¬β) �Cia (α ∨ β).
In Cio the following hold good:

(vi) ¬(α ∧ ¬β) �Cio (α→ β);
(vii) ¬(α→ β) �Cio (α ∧ ¬β);
(xi) ¬(¬α ∨ ¬β) �Cio (α ∧ β). �
From Theorem 116(vii) and Theorem 52(ii) we can conclude that the

replacement property (RP) (recall Remark 51) does not hold for any exten-
sion of Cio. However, a restricted form of this property may be recovered,
in this specific case:

REMARK 117. Say that a logic L allows for replacement with respect
to ≈ when p1 ≈ p2 is a formula depending on the variables p1 and p2 such
that, for every formula ϕ(p0, . . . , pn) and formulas α0, . . . , αn, β0, . . . , βn:

(RRP) (�L α0 ≈ β0) and . . . and (�L αn ≈ βn) implies
�L ϕ(α0, . . . , αn) ≈ ϕ(β0, . . . , βn).

Any such formula, when it exists, will be called a congruence of L. Notice
that, for our present logics, full replacement holds exactly when ↔ is a
congruence. �
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In the case of C1 (and, not surprisingly, also of Cia), it has been shown in
[Mortensen, 1980] that no congruence exists distinct from the ‘trivial’ one,
namely, the identity between formulas. The situation is different though in
the case of Cio and its deductive extensions:

THEOREM 118. A congruence in Cio can be defined by setting α ≈ β
def
==

(α↔ β) ∧ (◦α ∧ ◦β).

Proof. A semantic proof for Cilo was offered in Theorem 3.21 of [da Costa
et al., 1995]. A similar argument, adapted for Cio, can be found in Fact 3.81
of [Carnielli and Marcos, 2002]. �

On what concerns the semantic presentation of the above logics, the
following Theorems 121 and 125 exhibit sufficient conditions for showing
that several of the logics mentioned so far fail to be characterizable by
finite-valued truth-tables.

The first widely applicable theorem on non-characterizability by finite-
valued truth-tables proceeds as follows. Consider the signature Σ◦. Recall
from Definition 28 that α1 denotes the formula ¬(α∧¬α) and αn+1 abbre-
viates the formula ¬(αn ∧ ¬αn) for n ≥ 1. Consider, additionally, α0 def

== α

for every α in For◦. Finally, set δ(m) def
== (

∧
0≤i<m δi) → δm for δ ∈ For◦

and m ≥ 1.

LEMMA 119. Any set M of n-valued truth-tables for which positive classi-
cal logic (CPL+) or some deductive extension thereof is sound must validate
all formulas of the form δ(m), for m > n.

Proof. The case n < 2 is obvious, for then M must be an adequate set of
truth-tables for the trivial logic. The other cases are easy consequences of
the Pigeonhole Principle of finite combinatorics and of the cyclic character
of the composition of finite functions. Indeed, if M is n-valued, for some
finite n, the truth-table determined by a formula δn must be identical to
the truth-table of at least one among the formulas δ0, . . . , δn−1. But in that
case, using classical properties of conjunction and implication, it follows
that δ(m), and consequently δ(m), is valid according to M. �

The above lemma can be found at [Avron, 2007b]. The next result comes
from [Marcos, 2005f].

LEMMA 120. No formula of the form δ(m) is derivable in the logic Ciae.

Proof. Consider, for n ∈ N, the following sets Mn of infinitary truth-tables
that take the truth-values from the ordinal ω + 1 = ω ∪ {ω}, where ω (the
set of natural numbers) is the only undesignated truth-value:

x ∧ y =

{
0, if x = n and y = n+ 1
max(x, y), otherwise



74 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

x ∨ y = min(x, y)

x→ y =


ω, if x ∈ N and y = ω

y, if x = ω and y ∈ N
0, if x = ω = y

max(x, y), otherwise

¬x =


ω, if x = 0
0, if x = ω

x+ 1, otherwise
◦x =

{
0, if x ∈ {0, ω}
ω, otherwise

It is clear, on the one hand, that Ciae is sound for each Mn. On the other
hand, M2m+1 falsifies the formula δ(m + 1). Indeed, consider an atomic
sentence p in the place of δ and consider a valuation v such that v(p) = 1.
It follows then that v(pi) = 2i+ 1, for 0 ≤ i ≤ m, yet v(pm+1) = ω. But in
that case v(δ(m+ 1)) = ((2m+ 1) → ω) = ω. �

THEOREM 121. No LFI lying in between CPL+ and Ciae is finite-valued.

Proof. Suppose that L is a logic defined over Σ◦ lying in between CPL+

and Ciae such that L has an adequate finite-valued truth-functional se-
mantics with, say, m truth-values. By Lemma 119 the formula δ(m+ 1) is
valid with respect to this semantics and so it is a theorem of L. But then
δ(m+ 1) would be a theorem of Ciae, contradicting Lemma 120. �

The previous result, albeit very general, does not cover cases of uncharac-
terizability by finite-valued truth-tables for logics satisfying the axiom (cl),
for the truth-tables presented in Lemma 120 provide counter-models to this
axiom. Here is, however, a similar argument that works fine in the latter
case.

DEFINITION 122. Let Cl− be the logic defined over the signature Σ◦ and
obtained from Cl (see Remark 111) by removing axiom schemas (Ax10)–
(Ax11). In other words, Cl− is characterized by axiom schemas (Ax1)–
(Ax9) (see Definition 28), (bc1) (see Definition 42), (cl) (see Definition 105),
and the rule (MP). �

Let δij , for i, j �= 0, denote the formula ¬(pi ∧ ¬pj) ∧ (pi ∧ ¬pj), and let
δ[n] denote the disjunctive formula

∨
1≤i<j≤n(δij → pn+1) for n ≥ 1. Then:

LEMMA 123. Any set of n-valued truth-tables that is sound for the logic
Cl− must validate all formulas of the form δ[m] for m > n.

Proof. Use the Pigeonhole Principle and the fact that

(¬(α ∧ ¬α) ∧ (α ∧ ¬α)) → β

may be derived from axioms (bc1), (cl) and the deduction theorem. �



LOGICS OF FORMAL INCONSISTENCY 75

LEMMA 124. No formula of the form δ[n] is derivable in the logic Cilae.

Proof. Use again the truth-tables in Lemma 120, but now simplify the
table of conjunction as follows:

x ∧ y =

{
0, if y = x+ 1
max(x, y), otherwise

It is routine to check that these truth-tables are sound for Cilae. Consider
next a valuation v such that v(pi) = i, for i ≤ n, and v(pn+1) = ω. Then
v(δij) = j+2 and so v(δij → pn+1) = ((j+2) → ω) = ω (for 1 ≤ i < j ≤ n).
Thus v(δ[n]) = ω. �

THEOREM 125. No LFI lying in between Cl− and Cilae is finite-valued.

Proof. Analogous to the proof of Theorem 121, but now using formulas
δ[n], Lemma 123 and Lemma 124. �

REMARK 126. A somewhat stronger version of Theorem 125 has recently
been proven in [Avron, 2005b], where all logics in between Cl− and Cilae
are shown not to be characterizable even with the use of finite-valued non-
deterministic truth-tables.

The logic Cibae (Definitions 108), an obvious extension of Cila, received
an adequate interpretation in terms of possible-translations semantics in
[Carnielli, 2000] and in [Marcos, 1999]. In the latter study, all the other
logics from Definitions 108 and 114 have also received adequate possible-
translations semantics. In [Avron, 2007a; Avron, 2005c; Avron, 2007b], even
larger families of related logics have recently been given interpretations in
terms of non-deterministic semantics, in a modular way. �

We end this subsection with an axiomatization of two important 3-valued
LFIs through the regulation of their ability to propagate inconsistency.

THEOREM 127. The logic LFI1 described in Example 18 is axiomatized
by adding to Cie (check Definition 100) the following axiom schemas:

(cj1) •(α ∧ β) ↔ ((•α ∧ β) ∨ (•β ∧ α))

(cj2) •(α ∨ β) ↔ ((•α ∧ ¬β) ∨ (•β ∧ ¬α))

(cj3) •(α→ β) ↔ (α ∧ •β)

where, as usual, •α is an abbreviation for ¬◦α. The logic P1 described
in Example 19 is axiomatized by adding to Ci (check Definition 100) the
following schema:

(cz) ◦α (for α non-atomic) �
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In the last theorem, note that (cz), in fact, consists of five axiom schemas,
one for each connective in the signature Σ◦, that is, (cz) is equivalent to
the conjunction ◦(¬α) ∧ ◦(α ∧ β) ∧ ◦(α ∨ β) ∧ ◦(α→ β) ∧ ◦(◦α). The logic
P1 describes an extreme case of propagation of consistency into complex
formulas, where no premises are needed so as to guarantee their consistency.

5.3 LFIs that are maximal fragments of CPL

The paper [da Costa, 1974] suggested a list of ‘natural’ features that a
paraconsistent logic should enjoy. One of these is that a paraconsistent
logic should contain the most part of the schemas and rules of the classical
propositional logic which do not interfere with paraconsistency. Following
[Marcos, 2005d], one way of implementing this feature would be by requir-
ing paraconsistent logics to be, in some specific sense, maximal deductive
fragments of classical logic.

The following notion of maximality among logics may be used to analyze
how close we are to having ‘most of classical logic’ inside paraconsistent
systems:

DEFINITION 128. Let L1 and L2 be two logics written in the same
signature. Then, L2 is said to be maximal relative to L1 if:
(i) L1 is an extension of L2;
(ii) if �L1 α but �L2 α, then the logic obtained from L2 by adding α as a
new axiom schema coincides with L1.
When L1 is clear from the context, we simply say that a logic L2 satisfying
conditions (i) and (ii) is maximal. �

This notion of maximality is quite common in the literature.10 It is
well known, for instance, that each �Lukasiewicz’s logic �Lm, for m > 2, is
maximal relative to CPL if and only if (m − 1) is a prime number. Also,
CPL is maximal relative to the trivial logic, a logic in which all formulas
are provable. On the other hand it is also well known that intuitionistic
logic is not a maximal fragment of CPL, and there exists indeed an infinite
number of intermediate logics between them. On what concerns the main C-
systems presented this far, only the logic LFI1 and the logic P1, described
in Examples 18 and 19, and Theorem 127, are maximal relative to CPL, or
relative to eCPL, the extended version of CPL introduced at the beginning
of Subsection 3.6. In particular, the logic C1 (or, equivalently, Cila c© —
recall Remark 109), despite being the strongest logic introduced by da Costa
on his first hierarchy of paraconsistent logics, is properly extended by P1

10Other notions of ‘maximality’ exist, such as the idea of defining maximal subsets of
the classical entailment, considering not only valid formulas but valid inferences. That
approach fails monotonicity, though, and the consequent ‘maximal fragments’ of classical
logic do not define thus T -logics nor S-logics. We will make no development in the
present paper in that direction, and choose rather to refer to the competent sources, such
as [Batens, 1989] and [Batens, 1989].
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and fails thus to be maximal with respect to classical logic. Therefore, none
of the logics Cn presented in [da Costa, 1974] respects the requirement of
containing the most part the schemas of classical logic, a requirement that
may be found in that very same paper. Such an observation, in fact, is
true also about the stronger logic called C+

1 (or Cilo c©), introduced after
Definition 114.

Now we explore the intuitions underlying the 3-valued maximal C-systems
P1 and LFI1 showing how to generate a large class of related 3-valued
maximal paraconsistent logics. Looking for models for contradictory and
non-trivial theories, we start with non-trivial interpretations under which
both some formula α and its negation ¬α would be simultaneously satisfied.
A natural choice lies in the many-valued domain, more specifically in logics
presented in terms of finite-valued truth-tables. Since we want to preserve
classical theses as much as possible, the values of the connectives with clas-
sical (0 and 1) inputs will have classical outputs. Suppose we just introduce
then an intermediate third value 1

2 , besides true (1) and false (0), fixing
D = {1, 1

2} as the set of designated values. Then there are two possible
classic-like truth-tables for a negation validating α and ¬α simultaneously,
for some α, namely:

¬
1 0

1/2
1/2 or 1

0 1

With respect to the other connectives of the signature Σ (since we try to
keep them as classical as possible), we add now the following higher-level
classic-like requirements:

(C∧) (x ∧ y) ∈ D iff x ∈ D and y ∈ D;
(C∨) (x ∨ y) ∈ D iff x ∈ D or y ∈ D;
(C→) (x→ y) ∈ D iff x �∈ D or y ∈ D.

The above constraints leave us with the following options:

∧ 1 1/2 0

1 1 1/2 or 1 0
1/2

1/2 or 1 1/2 or 1 0
0 0 0 0

∨ 1 1/2 0

1 1 1/2 or 1 1
1/2

1/2 or 1 1/2 or 1 1/2 or 1
0 1 1/2 or 1 0

→ 1 1/2 0

1 1 1/2 or 1 0
1/2

1/2 or 1 1/2 or 1 0
0 1 1/2 or 1 1
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This yields 23 options for conjunctions, 25 options for disjunctions, 24 op-
tions for implications, and, as stated above, 21 options for negations, adding
up to 213 (= 8, 192) possible logics to deal with, in the signature Σ. Of
course, not all those logics are necessarily ‘interesting’. We can upgrade
each of those logics into an LFI by considering the signature Σ◦• and adding
the following tables for consistency and inconsistency operators:

◦ •
1 1 0

1/2 0 1
0 1 0

This means that the consistent models are the ones characterized by classical
valuations, and only those. Notice that, in the above truth-tables, ◦ can be
defined by setting ◦α def

== ¬•α or, alternatively, • can be defined by setting
•α def

== ¬◦α.

DEFINITION 129. Fix Σ as any one among the signatures Σ◦, Σ• or Σ◦•.
The collection of logics over Σ defined by the above truth-tables, with des-
ignated values D = {1, 1

2}, will be called 8Kb. Each logic in this collection
makes up a choice as to which truth-table for negation, for conjunction, for
disjunction and for implication it will adopt. �

Clearly, every logic in 8Kb is a fragment of eCPL, the extended classical
propositional logic, if we consider in eCPL the usual definition of the in-
consistency connective as the negation of the consistency connective. Note
also that the logic Pac (see Example 17) does not belong to 8Kb, because
it cannot define the connectives ◦ and •. On the other hand, its conserva-
tive extension LFI1 contains those connectives, and as a matter of fact the
latter logic belongs to 8Kb. The 3-valued logic P1 also belongs to 8Kb, and
we already know that these two logics are axiomatizable by the addition of
suitable axioms to the axiomatization of Ci (see Theorem 127). As shown
in [Marcos, 2000], this same method may be extended to the whole 8Kb:

THEOREM 130. (i) Every logic in 8Kb is an axiomatic extension of Cia.
(ii) All the logics in 8Kb are distinct from each other, and they are all
maximal relative to eCPL.
(iii) All the logics in 8Kb, and their fragments, are boldly paraconsistent.�

It is just a combinatorial divertissement to check the following facts:

THEOREM 131. All the 8, 192 logics in 8Kb are C-systems based on CPL
and extending Cia (cf. Definition 108). Out of these, 7, 680 are in fact
dC-systems, being able to define ◦ and • in terms of the other connectives
(all being, therefore, maximal relative to CPL, and not only to eCPL).
Of these, 4, 096 are able to define ◦α as ¬(α ∧ ¬α), and so all of them
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do extend C1 (that is, Cila c©). Of the 7, 680 logics which are dC-systems,
1, 680 extend Cio (cf. Definition 114), and 980 of the latter are able to define
◦α as ¬(α∧¬α), and so all these 980 logics extend C+

1 (that is, Cilo c©). �

REMARK 132. The reader should bear in mind that, in view of Defini-
tion 27, if we want to prove that a given logic L2 is a C-system based on
another logic L1, we might have to adjust its signature Σ2 by adding defin-
able connectives so as to guarantee that it will extend the signature Σ1 of
L1 (as it was done, for instance, in the proof of Theorem 44). In contrast
to this, in view of Definition 128, if we want to prove that L2 is maximal
relative to a logic L3, it might be necessary to adjust the signatures of both
logics so that they coincide. Such signature adjustments are tacitly assumed
in the statements of Theorems 130 and 131. So, in more practical terms,
in order to prove that a given logic L in 8Kb is a C-system based on CPL
we ought to add to its signature a new symbol for a (definable) classical
negation. On the other hand, in order to prove that L is maximal relative
to classical logic we had better assume in general that the latter logic is
presented as eCPL, using the signature Σ◦ of Remark 15. In case L is a
dC-system, then it will suffice to consider classical logic presented as CPL,
and write L in the signature Σ, letting ◦ and • be introduced, in each case,
by their circumstantial definitions. �

The replacement property (RP) had already been shown to fail for our
foremost logic samples from the 8Kb. Indeed, the proof of items (iv) and
(v) of Theorem 50 showed that both LFI1 and P1 fail (RP). This negative
feature may be generalized, as shown in [Marcos, 2000]:

THEOREM 133. (RP) cannot hold in any of the logics in 8Kb.

Proof. This is true in general for any extension of Cia, as we may conclude
from Theorem 81(ii) and Theorem 116(ix). To complete the proof, recall
Theorem 130(i).

You will also be able to check the above result, alternatively, using
the classical negation below, whose truth-table could already be found in
Example 17 (check also Theorem 134), together with the result in Theo-
rem 52(a)(i). �

As a consequence of Theorem 133 the logics in 8Kb are not suitable to
an algebraization by means of a direct Lindenbaum-Tarski-style procedure.
However, the following results guarantee that all of them are algebraizable
in the sense of Blok-Pigozzi (cf. [Blok and Pigozzi, 1989]).

THEOREM 134. Each one of the logics in 8Kb defines the following truth-
table for classical negation and at least one of the two congruences below:
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∼
1 0

1/2 0
0 1

≡ 1 1/2 0

1 1 0 0
1/2 0 1/2 or 1 0
0 0 0 1

Proof. It is possible to define ⊥ either as (α∧ (¬α∧◦α)) or as (◦α∧¬◦α),
for any formula α. Then, we can define ∼α either as (¬α ∧ ◦α) or as
(α → ⊥). One of the above congruences (α ≡ β) can always be defined by
((α↔ β)∧(◦α↔ ◦β)). In case we prefer to have ( 1

2 ≡ 1
2 ) = 1, we can assure

that we define this specific congruence by setting (α �� β) def
== ∼∼(α ≡ β).

�

The following theorem generalizes a result obtained in [Lewin et al., 1990]
for the logic P1:

THEOREM 135. All the logics in 8Kb are Blok-Pigozzi algebraizable.

Proof. Consider ∆(p0, p1) = {(p0 ≡ p1)} or ∆ = {(p0 �� p1)}, where ≡
and �� are defined as in the proof of the Theorem 134. Consider the sets

δ(p0) = {((p0 → p0) → p0)}, ε(p0) = {(p0 → p0)}

and check that the corresponding algebraizability conditions of [Blok and
Pigozzi, 1989] are satisfied. �

On what concerns the expressibility spectrum of the class 8Kb and of the
distinguished logics P1 and LFI1, the following results can be checked:

THEOREM 136.
(i) The truth-tables of P1 can be defined inside of any of the logics in 8Kb.
(ii) All the truth-tables in 8Kb can be defined inside of LFI1.

Proof. Item (i). Fix some logic L belonging to 8Kb. Let ∧,∨,→,¬, ◦ and
• be its primitive connectives, and let ∼ be the classical negation defined
inside L as in Theorem 134. Then, the P1-negation of a formula α may be
defined in L as ∼∼¬α. The P1-conjunction of some given formulas α and β
may be defined in L either as ∼∼(α ∧ β) or as (∼∼α ∧∼∼β). A definition
in the same vein applies to both disjunction and implication. Note that the
truth-tables in L for the connectives ◦ and • already coincide with those
of P1.
Item (ii). A proof of this property may be found in [Avron, 1999]. A
constructive proof may be found in [Marcos, 1999] and [Carnielli et al.,
2000]. �
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COROLLARY 137. (i) The logic P1 can be conservatively translated into
any of the logics in 8Kb. (ii) Any of the logics in 8Kb can be conservatively
translated into LFI1. �

As argued in [Avron, 1991], the logic LFI1 has several properties that
justify its role as one of the most ‘natural’ 3-valued paraconsistent logics.
Theorem 136(ii) and Corollary 137(ii) show already how linguistically and
deductively expressive this logic is.

A last note on algebraization. We had the chance in several occasions
above to witness how replacement fails for many of our LFIs. This often
makes it difficult to provide algebraic counterparts, in the usual sense, for
those logics. However, it is interesting to observe that a kind of algebraic
treatment for some wilder C-systems has been proposed and studied, for
instance, in [Carnielli and de Alcantara, 1984] and [Seoane and de Alcantara,
1991] (for a partial survey, check the section 3.12 of [Carnielli and Marcos,
2002]). Additionally, an approach for algebraizing LFIs based on an idea
similar to that of a possible-translations structure was presented in [Bueno-
Soler et al., 2004] and [Bueno-Soler and Carnielli, 2005].

6 CONCLUSIONS AND FURTHER PERSPECTIVES

In this final part of this chapter we recall some definitions and results ob-
tained and described above, and point to some interesting new problems
and research directions connected to what has been presented.

From Section 3 on, some of the possibilities for the formalization and
understanding of the relationship between the concepts of consistency, in-
consistency, contradictoriness and triviality were explored at a very general
and abstract level. Assuming that consistency could be expressed inside
some paraconsistent logics, and assuming furthermore that the consistency
of a given formula would legitimate its explosive character (that is, as-
suming (9), a so-called Gentle Principle of Explosion), we have presented
in Subsection 3.1 a general definition of a Logic of Formal Inconsistency,
LFI (Definition 23). To actualize that definition (in a finitary way), we
have started our study from the logic mbC, a very weak C-system based
on classical logic (recall Definition 42), constructing all the remaining C-
systems as extensions of mbC. Some specific extensions of mbC illustrated
a subclass of the C-systems in which the connectives ‘◦’ for consistency and
‘•’ for inconsistency are expressible by means of other connectives. The
members of this class were called dC-systems (recall Definition 32).

We briefly recall some consequences of our approach to formal (in)consis-
tency: There are consistent and inconsistent logics. The inconsistent ones
may be either paraconsistent or trivial, but not both. Let us say that a the-
ory has non-trivial models only if these models do not assign designated val-
ues to all formulas. Thus, the theories of a consistent logic have non-trivial
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models if and only if they are non-contradictory. Paraconsistent logics will
tipically have non-trivial models for some of their contradictory theories.
Paraconsistent logics may even have some trivial models among those mod-
els that satisfy contradictions. Such trivial models, however, cannot exist
if the paraconsistent logics we are talking about are gently explosive, that
is, if they constitute Logics of Formal Inconsistency. For each formula α of
a logic L, the consistency ◦α of α consists in the information that should
be added to an α-contradictory theory in order to make it explosive, and
consequently trivial. If the answer is ‘nothing needs to be added’, then α is
already consistent in L. This implies that, as expected, a logic is consistent
if all of its formulas may be asserted to be consistent.

It will be clear now to the reader that there are many more examples of
C-systems besides the logics Cn of da Costa and other logics axiomatized
in a more or less similar fashion. The general idea is to express consis-
tency and inconsistency inside a logic, at its object-language level. This
approach allows us to collect in a single class of LFIs logics as diverse as
the Cn, P1, J3 (renamed LFI1), and Jaśkowski’s ‘discussive’ paraconsis-
tent logic D2 (cf. Example 24). Even normal modal logics in a convenient
signature can be very naturally regarded as dC-systems. This bears on
the relationship between negations and modalities, which reflects upon the
possibilities of defining paraconsistent negations in modal environments, as
studied by [Vakarelov, 1989], [Došen, 1986], [Béziau, 2002b], [Marcos, 2005e]
and [Marcos, 2005b].

The fact that so many logics with diverse motivations and technical fea-
tures may be recast as a dC-systems paves the way for an interesting ques-
tion: To check whether other logics in the literature on paraconsistent logics
could be characterized as C-systems, or, in general, as LFIs. Another re-
lated question is the following: How to enrich a given paraconsistent logic
in order to turn it into an LFI? This was done by the logic LFI1 (also
known as CLuNs, or J3) with respect to the logic Pac (see Example 18).
Consider now the 3-valued closed set logic studied in [Mortensen, 1995].
This logic consists of LFI1’s truth-tables of conjunction and of disjunction,
plus the truth-table of negation of P1, where 0 is the only non-designated
value. A consistency connective ◦ can then be defined via ◦α def

== ¬¬(α∨¬α).
The addition of an appropriate truth-table for implication would enrich the
closed-set logic, and the resulting system would most certainly belong to
the collection 8Kb of 3-valued maximal paraconsistent logics (recall Defini-
tion 129). But in that case, what would be the topological or set-theoretical
significance of these new connectives?

The question of the duality between intuitionistic-like and paraconsistent
logics, not explored in this chapter, is also worth mentioning. The concept
of dual-intuitionism was already seized in the 40s by K. Popper, cf. [Pop-
per, 1948], more or less at the same time as paraconsistency was being en-
gendered. More recently, dual-intuitionism and dual-paraconsistency have
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been studied, for example, in [Sylvan, 1990], [Urbas, 1996] and [Brunner
and Carnielli, 2005]. The logics that are dual to paraconsistent are some-
times called ‘paracomplete’ (cf. [Loparić and da Costa, 1984]). Exploring
the issue of duality, a natural question that appears concerns the notions
that are dual to consistency and inconsistency, notions that one might dub
‘determinedness’ and ‘undeterminedness’. Some initial explorations in that
direction, and the related Logics of Formal Undeterminedness, may be found
in [Marcos, 2005e].

Apparently, in the 40s, defenders of dual-intuitionism and paraconsis-
tency independently realized that there should be a logic for general rea-
soning from hypotheses, accepting in certain cases some propositions and
their negations as true (in the case of paraconsistency), or retaining some
propositions and their negations as unfalsified (in the case of falsification-
ism). Indeed, there seems to be some common grounds connecting paracon-
sistency and the falsificationist program in Philosophy of Science, and that
line of research seems worth pursuing. Similarly, paracomplete logics could
have a contribution to make for the study of verificationism in science. The
logical approach to such questions has recently been vindicated by studies
such as [Shramko, 2005].

Applications of LFIs to yet other fields in philosophy seem promising. In
[Costa-Leite, 2003] some possibilities of employing the connectives of con-
sistency and inconsistency for the understanding of (and new regards on)
epistemological problems related to the paradox of knowability are investi-
gated. In [Marcos, 2005a] the use of a consistency-like modal connective for
the modelling of the metaphysical notion of essence is tackled, and in that
environment inconsistency turns out to mean a mere sort of ‘accident’.

Another important issue concerns the incompleteness results in Arith-
metic. Recall that Gödel’s incompleteness theorems are based on the iden-
tification of ‘consistency’ and ‘non-contradictoriness’. What would be the
consequences if we started instead from the general notion of consistency
hereby proposed (recall Definition 4)? Would it still be possible to repro-
duce Gödel’s arguments? Quite possibly, his arguments would be rescued at
the cost of assuming consistency (in our sense) of several formulas represent-
ing assumptions that would then become more explicit, and consequently
open to debate. In the same spirit, it should be interesting to analyze the
combination of LFIs with Modal Logics of Provability. In [Boolos, 1996],
consistency is intended as a kind of opposite to the notion of provability.
Using this idea, if the negation of a formula cannot be proven, then it is con-
sistent with whatever else might be proven; a still weaker notion, connected
to ‘logical independence’, would be to consider a formula to be consistent
when neither this formula nor its negation can be proven. The insinuated
exchange between Logics of Formal Inconsistency and Logics of Provability,
in fact, seems attractive and deserves further research.

As it has been noted in the literature, it seems that most interesting prob-
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lems related to paraconsistency appear already at the propositional level.
It is possible though to extend a given propositional paraconsistent logic
to higher orders using combination techniques such as fibring, if only we
choose the right abstraction level to express our logics. See, for instance,
[Caleiro and Marcos, 2001], where the logic C1 is given a first-order version
which coincides with the original one from [da Costa, 1963]. Another inter-
esting possibility that involves first-order versions of paraconsistent logics in
general, and especially of first-order LFIs, is the investigation of consistent
yet ω-inconsistent theories (also related to Gödel’s theorems).

Some other items for future research, already hinted at along the present
text, are the following. From Theorem 79 we know that, in extensions of
mCi, the formulas causing controllable explosion (Definition 9(ii)) coincide
with the provably consistent formulas, that is, theorems of the form ◦α.
On the other hand, mbC does not have provably consistent formulas (see
Theorem 47). So, is the logic mbC (see Definition 42) not controllably
explosive? On another trail, we have seen that there are extensions of
mbC for which the replacement property holds good (see Remark 53), and
we have seen that to find extensions of mCi with that same property all
one needs to do is to devise logics that respect a certain rule (EC) (see
Subsection 3.2 and Theorem 82). Can we circumvent negative results such
as Theorems 52 and 81 and find interesting extensions of mCi enjoying the
replacement property (RP)? At any rate, turning the attention to extensions
of mbC that do not extend mCi but that do enjoy (RP) is a feasible
enterprise (recall Remark 53), and it seems indeed to be a very attractive
one, still to be further developed. On yet another direction, what other uses
could we give to our semantical tools (valuations and possible-translations
semantics)? The results about uncharacterizability by finite-valued truth-
tables in Theorems 121 and 125 are very powerful and widely applicable,
but they cannot help us in proving that logics such as Cioe do not have
adequate finite-valued truth-tables. Can we find other flexible and wide-
ranging similar results to the same effect?11

Finally, we have started our work in this chapter from a traditional ab-
stract perspective. We have soon though shown that alternative semanti-
cal and proof-theoretical approaches were possible. In particular, we have
given a few illustrations of a general method that permits us to deal with
C-systems in terms of tableaux. The first wide-ranging method to such an
effect was sketched in [Carnielli and Marcos, 2001b]. A more general method
to obtain tableau procedures for logics endowed with a certain type of two-
valued (even non-truth-functional) semantics was introduced in [Caleiro et
al., 2005b]. These techniques have been used here in Subsections 3.5 and 4.2
so as to obtain new adequate tableau systems for the logic C1, as well as for

11It came to our notice that the problem concerning Cioe has recently been solved in
[Avron, 2007b], where in fact all logics in between Cl− and Ciboe are shown not to be
characterizable with the use of finite-valued non-deterministic truth-tables.
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mbC and mCi. The possibility of further exploring and refining this kind
of approach seems promising for applications of LFIs in database theory
(see Example 18), an area of research critically sensible to the presence of
contradictions.

7 LIST OF AXIOMS AND SYSTEMS

We list here all the main principles, axioms and systems studied throughout
the chapter, indicating the place where they were introduced in the text.

Principles

(1) Principle of Non-Contradiction : Subsection 2.1
(2) Principle of Non-Triviality : Subsection 2.1
(3) Principle of Explosion, or Pseudo-Scotus, or Ex Contradictione
Sequitur Quodlibet : Subsection 2.1
(4) Paraconsistent logic (first definition) : Subsection 2.2
(5) Paraconsistent logic (second definition) : Subsection 2.2
(6) Paraconsistent logic (third definition) : Subsection 2.2
(7) Principle of Ex Falso Sequitur Quodlibet : Subsection 2.2
(8) Supplementing Principle of Explosion : Subsection 2.2
(9) Gentle Principle of Explosion : Subsection 3.1
(10) Finite Gentle Principle of Explosion : Subsection 3.1

Axioms, Rules and Metaproperties

(Ax1)–(Ax11) : Definition 28
(bc1) : Definition 28, Definition 42
(bc1)′ : Subsection 4.3
(bc1)′′ : Theorem 106
(ca1)–(ca3) : Definition 28, Definition 108
(cb) : Subsection 5.1
(cc)n : Definition 75
(cc)′n : Subsection 4.3
(cd) : Subsection 5.1
(ce) : Subsection 4.4
(cf) (= (Ax11)) : Subsection 4.4
(ci) : Definition 75
(ci)′ : Subsection 4.3
(cj1)–(cj3) : Theorem 127
(cl) : Definition 105
(co1)–(co3): Definition 114
(Con1)–(Con6) : Subsection 2.1
(cz) : Theorem 127
(EC) : Subsection 3.2
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(EO) : Subsection 3.2
(exp) : Remark 29
(ext) : Remark 30
(MP) modus ponens : Definition 28
(RC) : Theorem 83
(RG) : Subsection 5.1
(RP) Replacement Property : Remark 51
(RRP) : Remark 117

Systems

8Kb : Definition 129
bC : Definition 100
bCe : Definition 100
C1 (= Cila c©) : Definition 28
C+

1 (= Cilo c©) : Definition 114
Cn, 1 < n < ω : Definition 28
CAR : Definition 40
Ci : Definition 100
Cia : Definition 108
Ciba : Definition 108
Cibae : Definition 108
Cida : Definition 108
Cidae : Definition 108
Cie : Definition 100
Cil : Definition 105
Cil c© : Theorem 106
Cila : Definition 108
Cila c© (= C1) : Remark 109
Cilae : Definition 108
Cile : Definition 105
Cilo : Definition 114
Cilo c© (= C+

1 ) : Definition 114
Cio : Definition 114
Cl : Remark 111
Cl− : Definition 122
Cla : Remark 111
Cω : Definition 40
Cmin : Definition 40
CPL : Remark 29
CPL+ : Remark 29
D2 : Example 24
eCPL : Remark 30
J : Example 14
J3 : Example 18
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LFI1 : Example 18, Theorem 127
M0 : Subsection 3.4
M1 : Subsection 4.2
mbC : Definition 42
mbCe : Definition 100
mCi : Definition 75
mCi• : Definition 97
mCi◦• : Subsection 4.3
mCie : Definition 100
MIL : Example 10
P1 : Example 19, Theorem 127
Pac : Example 17
PI : Definition 36
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Studia Societatis Scientiarun Torunesis, Sectio A, I(5):57–77, 1948. Translated as



LOGICS OF FORMAL INCONSISTENCY 91

‘A propositional calculus for inconsistent deductive systems’ in Logic and Logic Philos-
ophy, 7:35–56, 1999, Proceedings of the Stanis�law Jaśkowski’s Memorial Symposium,
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temów dedukcyjnych sprzecznych. Studia Societatis Scientiarun Torunesis, Sectio A,
I(8):171–172, 1949. Translated as ‘On the discussive conjunction in the propositional
calculus for inconsistent deductive systems’ in Logic and Logic Philosophy, 7:57–59,
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JON WILLIAMSON

CAUSALITY

1 INTRODUCTION

Perhaps the key philosophical questions concerning causality are the follow-
ing:

• what are causal relationships?

• how can one discover causal relationships?

• how should one reason with causal relationships?

This chapter will focus on the first two questions. The last question is
equally important — of course we need to know the best way to make
predictions, perform diagnoses and make strategic decisions — but in the
absence of a well-entrenched mathematical calculus of causality, the answers
given to the last question tend to depend on the answers provided to the
first two questions.

Standard responses to the first, ontological question are surveyed in §2,
while the second, epistemological question is dealt with in §3. I advocate
a position I call epistemic causality which is sketched in §4, and which is
compared to the positions of Judea Pearl in §5 and Huw Price in §6.1

2 THE NATURE OF CAUSALITY

There are three varieties of position on causality. One can argue that
the concept of causality is of heuristic use only and should be eliminated
from scientific discourse: this was the tack pursued by Bertrand Russell,
who maintained that science appeals to functional relationships rather than
causal laws.2 Alternatively one can argue that causality is a fundamen-
tal feature of the world and should be treated as a scientific primitive —
this claim is usually the result of disillusionment with purported philosoph-
ical analyses, several of which appeal to the asymmetry of time in order
to explain the asymmetry of causation, a strategy that is unattractive to
those who want to analyse time in terms of causality. Or one can maintain

1Epistemic causality motivates an answer to the last question, how should one reason

with causal relationships? The ensuing formalism is presented in detail in [Williamson,

2004].
2[Russell, 1913]. Russell later modified his views on causality, becoming more tolerant

of the notion.
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that causal relations can be reduced to other concepts not involving causal
notions. This latter position is dominant in the philosophical literature,
and there are four main approaches which can be described roughly as fol-
lows. The mechanistic theory, discussed in §2.1, reduces causal relations
to physical processes. The probabilistic account (§2.2) reduces causal rela-
tions to probabilistic relations. The counterfactual account (§2.3) reduces
causal relations to counterfactual conditionals. The agent-oriented account
(§2.4) reduces causal relations to the ability of agents to achieve goals by
manipulating their causes.3

2.1 Mechanisms

The mechanistic account of causality aims to understand the physical pro-
cesses that link cause and effect, interpreting causal statements as saying
something about such processes. Proponents of this type of position include
Wesley Salmon4 and Phil Dowe.5 They argue that a causal process is one
that transmits6 or possesses7 a conserved physical quantity, such as energy-
mass, linear momentum or charge, from start (cause) to finish (effect).

The mechanistic account is clearly a physical interpretation of causality,
since it identifies causal relationships with physical processes. Such a notion
of cause relates single cases, since only they are linked by physical processes,
although causal regularities or laws may be induced from single-case causal
connections.

The main limitation of this approach is its rather narrow applicability:
most of our causal assertions are apparently unrelated to the physics of
conserved quantities. While it may be possible that physical processes
such as those along which quantities are conserved could suggest causal
links to physicists, such processes are altogether too low-level to suggest
causal relationships in economics, for instance. One could maintain that
the economists’ concept of causality is the same as that of physics and is
reducible to physical processes,8 but one would be forced to accept that the
epistemology of such a concept is totally unrelated to its metaphysics. This
is undesirable: if the grounds for knowledge of a causal connection have lit-
tle to do with the nature of the causal connection as it is analysed then one
can argue that it cannot be the causal connection that we have knowledge

3See the introduction to [Sosa and Tooley, 1993] for more discussion on the variety of

interpretations of causality.
4[Salmon, 1980], [Salmon, 1984], [Salmon, 1997], [Salmon, 1998].
5[Dowe, 1993], [Dowe, 1996], [Dowe, 1999], [Dowe, 2000], [Dowe, 2000b].
6[Salmon, 1997] §2.
7[Dowe, 2000b] §V.1.
8This was the tack Salmon took in connection with his earlier theory that conceived of

causal processes as involving the transmission of marks rather than conserved quantities.

See [Salmon, 1998], page 206.
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of, but something else.9 On the other hand one could keep the physical ac-
count and accept that the economists’ causality differs from the physicists’
causality. But this position faces the further questions of what economists’
causality is, and why we think that cause is a single concept when in fact it
isn’t. These problems clearly motivate a more unified account of causality.

2.2 Probabilistic Causality

Probabilistic causality has a wider scope than the mechanistic approach:
here the idea is to understand causal connections in terms of probabilistic
relationships between variables, be they variables in physics, economics or
wherever. There is no firm consensus among proponents of probabilistic
causality as to what probabilistic relationships among variables constitute
causal relationships, but typically they appeal to the intuitions behind the
Principle of the Common Cause: if two variables are probabilistically de-
pendent then one causes the other or they are effects of common causes
which screen off the dependence (i.e. the two variables are probabilistically
independent conditional on the common causes). Indeed Hans Reichenbach
applied the Principle of the Common Cause to an analysis of causality, as
a step on the way to a probabilistic analysis of the direction of time.10

Similarly Patrick Suppes argued that causal relations induce probabilistic
dependencies and that screening off can be used to differentiate between
variables that are common effects and variables that are cause and effect.11

However, both these analyses fell foul of a number of criticisms,12 and more
recent probabilistic approaches adopt Causal Dependence (cause and direct
effect are probabilistically dependent conditional on the effect’s other direct
causes) and the Causal Markov Condition (each variable is probabilistically
independent of its non-effects, conditional on its direct causes) as necessary
conditions for causality, together with other less central conditions which are
sketched in §3.13 Sometimes Causal Dependence is only implicitly adopted:
the causal relation may be defined as the smallest relation that satisfies the
Causal Markov Condition, in which case Causal Dependence must hold.

Probabilistic causality is normally applied to repeatably-instantiatable
rather than single-case variables — in principle either is possible, as long as
the chosen interpretation of probability handles the same kind of variables.
Invariably causality is interpreted as a physical, mind-independent concept.

9See [Benacerraf, 1973] for a parallel argument in mathematics.
10[Reichenbach, 1956].
11[Suppes, 1970].
12See [Salmon, 1980b], §§2-3
13See [Pearl, 1988], [Pearl, 2000], [Spirtes et al., 1993], [McKim and Turner, 1997] and

[Korb, 1999]. Note that the concept of direct cause does not require that causal chains be

discrete. It is merely presumed that Causal Dependence or the Causal Markov Condition

will hold where the direct causes are taken to be a set of causes that are sufficiently close

to the effect, with one direct cause per causal chain that leads to the effect.
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The chief problem that besets probabilistic causality is the dubious sta-
tus of the probabilistic conditions to which the account appeals. While
the conditions seem intuitive and might be expected to hold much of the
time there are clear cases where they fail. The Principle of the Common
Cause and the Causal Markov Condition are widely acknowledged to fail in
certain cases that crop up in quantum mechanics, but they also fail more
generally wherever probabilistic dependencies are induced by non-causal re-
lationships: where variables are semantically, logically or mathematically
related, or they are related by non-causal physical laws (as in the quan-
tum mechanics case) or boundary conditions.14 Causal Dependence fails
for instance where an event must be caused by one of two equally effica-
cious physical processes: if a machine can be activated by precisely one of
two fully reliable power supplies, then the choice of power supply will not
change the probability of its direct effect, the machine being activated.15 Of
course it is not good enough for a probabilistic analysis of causality if the
defining connection between probability and causality admits exceptions —
we are left with the question as to how causality is to be analysed in the
exceptional cases.

2.3 Counterfactuals

The counterfactual account, developed in detail by David Lewis,16 reduces
causal relations to subjunctive conditionals: C is a direct cause of E if
and only if (i) if C were to occur then E would occur (or its chance of
occurring would be significantly raised) and (ii) if C were not to occur
then E would not occur (or its chance of occurring would be significantly
lowered). The subjunctive conditionals (called counterfactual conditionals
if the antecedent is false) are in turn given a semantics in terms of possible
worlds: ‘if C were to occur then E would occur’ is true if and only if (i)
there are no possible worlds in which C is true or (ii) E holds at all the
possible worlds in which C holds that our closest to our own world. So
causal claims are claims about what goes on in possible worlds that are
close to our own.17

Lewis’s counterfactual theory was developed to account for causal rela-
tionships between single-case events (which can be thought of as single-case
variables which take the values ‘occurs’ or ‘does not occur’), and the causal
relation is intended to be mind-independent and objective.

Many of the difficulties with this view stem from Lewis’ reliance on pos-
sible worlds. Possible worlds are not just a dispensable façon de parler for

14These counterexamples are explained in detail in [Williamson, 2004], §4.2.
15[Williamson, 2004] §7.3.
16[Lewis, 1973].
17Lewis modified his account in [Lewis, 2000], but the changes made have little bearing

on our discussion. See [Lewis, 1986b] for Lewis’ account of causal explanation.
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Lewis, they are assumed to exist in just the way our world exists. But we
have no physical contact with these other worlds, which makes it hard to see
how their goings-on can be the object of our causal claims and hard to see
how we discover causal relationships. Moreover it is doubtful whether there
is an objective way to determine which worlds are closest to our own if we
follow Lewis’ suggestion of measuring closeness by similarity — two worlds
are similar in some respects and different in others and choice or weighting
of these respects is a subjective matter. Causal relations, on the other hand,
do not seem to be subjective. Instead of analysing causal relations, of which
we have at least an intuitive grasp, in terms of subjunctive conditionals and
ultimately possible worlds, which many find mysterious, it would be more
natural to proceed in the opposite direction. Thus we might be better-off
appealing to causality to decide whether E would (be more likely to) occur
were C to occur,18 and depending on the answer we could then say whether
a world in which C and E occurs is closer to our own than one in which C
occurs but E does not.

2.4 Agency

The agency account, whose chief recent proponents are perhaps Huw Price
and Peter Menzies,19 analyses causal relations in terms of the ability of
agents to achieve goals by manipulating their causes. According to this
account, C causes E if and only if bringing about C would be an effective
way for an agent to bring about E. Here the strategy of bringing about C
is deemed effective if a rational decision theory would prescribe it as a way
of bringing about E. Menzies and Price argue that the strategy would be
prescribed if and only if it raises the ‘agent probability’ of the occurrence
of E.20 (The events they consider are single-case.)

Menzies and Price do not agree as to the interpretation of these proba-
bilities: Menzies maintains that they are chances, while Price seems to have
a Bayesian conception.21 Consequently it is not entirely clear whether they
view causality as a physical or mental notion. On the one hand they claim
that there would be causal relations without agents,22 while on the other
they say, ‘we would argue that when an agent can bring about one event
as a means to bringing about another, this is true in virtue of certain basic
intrinsic features of the situation involved, these features being essentially

18See [Pearl, 2000], chapter 7, for an analysis of counterfactuals in terms of causal

relations. [Dawid, 2001] argues that counterfactuals are irrelevant and misleading for an

analysis of causality.
19[Price, 1991], [Price, 1992], [Price, 1992b], [Menzies and Price, 1993].
20[Menzies and Price, 1993].
21[Menzies and Price, 1993] pg. 190.
22[Menzies and Price, 1993] §6.
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non-causal though not necessarily physical in character’,23 and maintain
that the concept of cause is a ‘secondary quality’, relative to human re-
sponses or capacities.24 From this relativity one might expect cause to be
subjective, but they say that causation is significantly more objective than
other secondary quantities like colour or taste.25 We shall examine Price’s
views on these matters in more detail in §6.

The main problems that beset the agency approach are inherited from
those faced by the probabilistic and counterfactual approaches. First, the
agency approach assumes a version of Causal Dependence for agent prob-
abilities — we saw in §2.2 that this condition does not always hold.26 Of
course, where a causal connection is not accompanied by probabilistic de-
pendence, such as in the power supply example of §2.2, bringing about a
cause is not a good strategy for bringing about its effects. Second, the
agency account appeals to subjunctive conditionals27 (C causes E if and
only if, were an agent to bring about C, that would be a good strategy
for bringing about E) and so qualms about the utility of a counterfactual
account can equally be applied to the agency approach.

3 DISCOVERING CAUSAL RELATIONSHIPS

Different views on the nature of causality lead to different suggestions for
discovering causal relationships. The mechanistic view of causality, for ex-
ample, leads naturally to a quest for physical processes, while proponents
of probabilistic causality prescribe searching for probabilistic dependencies
and independencies.

However there are two very general strategies for causal discovery which
cut across the ontological positions. Whatever view one holds on the na-
ture of causality, one can advocate either hypothetico-deductive or inductive
discovery of causal relationships. Under a hypothetico-deductive account
(§3.1) one hypothesises causal relationships, deduces predictions from the
hypothesis, and then tests the hypothesis by seeing how well the predictions
accord with what actually happens. Under an inductive account (§3.2), one
makes a large number of observations and induces causal relationships di-
rectly from this mass of data. We shall discuss each of these approaches

23[Menzies and Price, 1993] pg. 197.
24[Menzies and Price, 1993] pp. 188,199.
25[Menzies and Price, 1993] pg. 200.
26In fact the version assumed by the agency approach does not restrict attention to

direct causes and does not demand that dependence be conditional on the effect’s other

causes. This type of dependence condition is rarely advocated since it faces a wider range

of counterexamples than Causal Dependence in the form used here — see the references

given in §2.2.
27[Menzies and Price, 1993] §5.
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in turn in this chapter, and give an overview of some recent proposals for
discovering causal relationships.

3.1 Hypothetico-Deductive Discovery

According to the hypothetico-deductive account, a scientist first hypothe-
sises causal relationships and then tests this hypothesis by seeing whether
predictions drawn from it are borne out. The testing phase may be influ-
enced by views on the nature of causality: a causal hypothesis can be sup-
ported or refuted according to whether physical processes are found that
underlie the hypothesised causal relationships, whether probabilistic conse-
quences of the hypothesis are verified, and whether experiments show that
by manipulating the hypothesised causes one can achieve their effects.

Karl Popper was an exponent of the hypothetico-deductive approach.
For Popper a causal explanation of an event consists of natural laws (which
are universal statements) together with initial conditions (which are single-
case statements) from which one can predict by deduction the event to be
explained. The initial conditions are called the ‘cause’ of the event to be
explained, which is in turn called the ‘effect’.28 Causal laws, then, are just
universal laws, and are to be discovered via Popper’s general scheme for
scientific discovery: (i) hypothesise the laws; (ii) deduce their consequences,
rejecting the laws and returning to step (i) if these consequences are fal-
sified by evidence. Popper thus combines what is known as the covering-
law account of causal explanation with a hypothetico-deductive account of
learning causal relationships.

The covering-law model of explanation was developed by Hempel and
Oppenheim29 and also Railton,30 and criticised by Lewis.31 While such a
model fits well with Popper’s general account of scientific discovery, neither
the details nor the viability of the covering-law model are relevant to the
issue at stake: a Popperian hypothetico-deductive account of causal discov-
ery can be combined with practically any account of causality and causal
explanation.32 Neither does one have to be a strict falsificationist to adopt
a hypothetico-deductive account. Popper argued that the testing of a law
only proceeds by falsification: a law should be rejected if contradicted by
observed evidence (i.e. if falsified), but should never be accepted or regarded
as confirmed in the absence of a falsification. This second claim of Popper’s

28[Popper, 1934] §12.
29[Hempel and Oppenheim, 1948].
30[Railton, 1978].
31[Lewis, 1986b] §VII.
32Even Russell’s eliminativist position of [Russell, 1913], in which he argued that talk

of causal laws should be eradicated in favour of talk of functional relationships, ties in

well with Popper’s logic of scientific discovery. Both Popper and Russell, after all, drew

no sharp distinction between causal laws and the other universal laws that feature in

science.
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has often been disputed, and many argue that a hypothesis is confirmed
by evidence in proportion to the probability of the hypothesis conditional
on the evidence.33 Given this probabilistic measure of confirmation — or
indeed any other measure — one can accept the hypothesised causal rela-
tionships according to the extent to which evidence confirms the hypothesis.
Thus the hypothetico-deductive strategy for learning causal relationships is
very general: it does not require any particular metaphysics of causality,
nor a covering-law model of causal explanation, nor a strict falsificationist
account of testing.

Besides providing some criterion for accepting or rejecting hypothesised
causal relationships, the proponent of a hypothetico-deductive account must
do two things: (i) say how causal relationships are to be hypothesised; (ii)
say how predictions are to be deduced from the causal relationships.

Popper fulfilled the latter task straightforwardly: effects are predicted as
logical consequences of laws given causes (initial conditions). The viability
of this response hinges very closely on Popper’s account of causal explana-
tion, and the response is ultimately inadequate for the simple reason that
no one accepts the covering-law model as Popper formulated it: more re-
cent covering-law models are significantly more complex, coping with chance
explanations.34

Popper’s response to the former task was equally straightforward, but
perhaps even less satisfying:

my view of the matter, for what it is worth, is that there is no
such thing as a logical method of having new ideas, or a logical
reconstruction of this process. My view may be expressed by
saying that every discovery contains ‘an irrational element’, or
‘a creative intuition’35

Popper accordingly placed the question of discovery firmly in the hands of
psychologists, and concentrated solely on the question of the justification of
a hypothesis.

The difficulty here is that while hypothesising may contain an irrational
element, Popper has failed to shed any light on the rational element which
must surely play a significant role in discovery. Popper’s scepticism about
the existence of a logic need not have precluded any discussion of the act of
hypothesising from a normative point of view: both Popper in science and
Pólya in mathematics remained pessimistic about the existence of a precise
logic for hypothesising, yet Pólya managed to identify several imprecise
but important heuristics.36 One particular problem is this: a theory may
be refuted by one experiment but perform well in many others; in such

33See [Howson and Urbach, 1989], [Earman, 1992].
34[Railton, 1978] for example.
35[Popper, 1934] pg. 32.
36[Polya, 1945], [Polya, 1954], [Polya, 1954b].
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a case it may need only some local revision, to deal with the domain of
application on which it is refuted, rather than wholesale rehypothesising.
Popper’s account says nothing of this, giving the impression that with each
refutation one must return to a blank sheet and hypothesise afresh. The
hypothetico-deductive method as stated neither gives an account of the
progress of scientific theories in general, nor of causal theories in particular.

Any hypothetico-deductive account of causal discovery which fails to
probe either the hypothetico or the deductive aspects of the process is
clearly lacking. These are, in my view, the key shortcomings of Popper’s
position. I shall try to shed some light on these aspects when I present a
new type of hypothetico-deductive account in §4.5. For now, we shall turn
to a competing account of causal discovery, inductivism.

3.2 Inductive Learning

Francis Bacon developed a rather different account of scientific learning.
First one makes a large amount of careful observations of the phenomenon
to be explained, by performing experiments if need be. One compiles a table
of positive instances (cases in which the phenomenon occurs),37 a table of
negative instances (cases in which the phenomenon does not occur)38 and
a table of partial instances (cases in which the phenomenon occurs to a
certain degree).39

We have chosen to call the task and function of these three
tables the Presentation of instances to the intellect. After the
presentation has been made, induction itself has to be put to
work. For in addition to the presentation of each and every
instance, we have to discover which nature appears constantly
with a given nature or not, which grows with it or decreases with
it; and which is a limitation (as we said above) of a more general
nature. If the mind attempts to do this affirmatively from the
beginning (as it always does if left to itself), fancies will arise and
conjectures and poorly defined notions and axioms needing daily
correction, unless one chooses (in the manner of the Schoolmen)
to defend the indefensible.40

Thus Bacon’s method consists of presentation followed by induction of
a theory from the observations. It is to be preferred over a hypothetico-
deductive approach because it avoids the construction of poor hypotheses
in the absence of observations, and it avoids the tendency to defend the
indefensible:

37[Bacon, 1620] §II.XI.
38[Bacon, 1620] §II.XII.
39[Bacon, 1620] §II.XIII.
40[Bacon, 1620] §II.XV.
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Once a man’s understanding has settled on something (either
because it is an accepted belief or because it pleases him), it
draws everything else also to support and agree with it. And if
it encounters a larger number of more powerful countervailing
examples, it either fails to notice them, or disregards them, or
makes fine distinctions to dismiss and reject them, and all this
with much dangerous prejudice, to preserve the authority of its
first conceptions.41

Note that while Bacon’s position is antithetical to Popper’s hypothetico-
deductive approach, it is compatible with Popper’s falsificationism — indeed
Bacon claims that ‘every contradictory instance destroys a conjecture’.42

The first step of the inductive process, exclusion, involves ruling out a se-
lection of simple and often rather vaguely formulated conjectures by means
of providing contradictory instances.43 The next step is a first harvest ,
which is a preliminary interpretation of the phenomenon of interest.44 Ba-
con then produces a seven-stage process of elucidating, refining and testing
this interpretation — only the first stage of which was worked out in any
detail.45

Present-day inductivists claim that causal relationships can be inferred
algorithmically from experimental and observational data, and that suit-
able data would yield the correct causal relationships. Usually, but not
necessarily, the data takes the form of a database of past cases: a set V of
repeatably instantiatable variables are measured, each entry of the database
D = (u1, . . . , uk) consists of an observed assignment of values to some subset
Ui of V . Such an account of learning is occasionally alluded to in connection
with probabilistic analyses of causality and has been systematically inves-
tigated by researchers in the field of artificial intelligence, including groups
in Pittsburgh,46 Los Angeles47 and Monash,48 proponents of a Bayesian
learning approach,49 and computationally-minded psychologists.50

These approaches seek to learn various types of causal model. The sim-
plest type of causal model is just a causal graph (i.e. a directed acyclic graph
in which nodes correspond to variables and there is an arrow from one node

41[Bacon, 1620] §I.XLVI.
42[Bacon, 1620] §II.XVIII.
43[Bacon, 1620] §§II.XVIII-XIX.
44[Bacon, 1620] §II.XX.
45[Bacon, 1620] §§II.XXI-LII.
46[Spirtes et al., 1993], [Scheines, 1997], [Glymour, 1997], [Mani and Cooper, 1999],

[Mani and Cooper, 2000], [Mani and Cooper, 2001].
47[Pearl, 2000], [Pearl, 1999].
48[Dai et al., 1997], [Wallace and Korb, 1999], [Korb and Nicholson, 2003].
49[Heckerman et al., 1999], [Cooper, 1999], [Cooper, 2000], [Tong and Koller, 2001],

[Yoo et al., 2002].
50[Waldmann and Martignon, 1998], [Waldmann, 2001], [Tenenbaum and Griffiths,

2001], [Glymour, 2001], [Hagmayer and Waldmann, 2002].
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to another if the former directly causes the latter) which shows only qualita-
tive causal relationships. A causal net is slightly more complex, containing
not only a qualitative causal graph but also quantitative information, the
probability distribution p(ai|par i) of each variable Ai conditional on its
parents Par i, the direct causes of Ai in the graph. A structural equation
model is a third type of causal model — this can be thought of as a causal
graph together with an equation for each variable in terms of its direct cause
variables, Ai = fi(Par i, Ei), where fi is some function and Ei is an error
variable.

The mainstream of these inductivist AI approaches have the following
feature in common. In order that causal relationships can be gleaned from
statistical relationships, the approaches assume the Causal Markov Condi-
tion.51 A causal net contains the Causal Markov Condition as an inbuilt
assumption; in the case of structural equation models the Causal Markov
Condition is a consequence of the representation of each variable as a func-
tion just of its direct causes and an error variable, given the further assump-
tion that all error variables are probabilistically independent.

The inductive procedure then consists in finding the class of causal mod-
els — or under some approaches a single ‘best’ causal model — whose
probabilistic independencies implied via the Causal Markov Condition are
consistent with independencies inferred from the data. Other assumptions
are often also made, such as minimality (no submodel of the causal model
also satisfies the Causal Markov Condition), faithfulness (all independen-
cies in the data are implied via the Causal Markov Condition), linearity (all
variables are linear functions of their direct causes and uncorrelated error
variables), causal sufficiency (all common causes of measured variables are
measured), context generality (every individual possesses the causal rela-
tions of the population), no side effects (one can intervene to fix the value
of a variable without changing the value of any non-effects of the variable)
and determinism. However these extra assumptions are less central than
the Causal Markov Condition: approaches differ as to which of these ex-
tra assumptions they adopt and the assumptions tend to be used just to
facilitate the inductive procedure based on the Causal Markov Condition,
either by helping to provide some justification of the inductive procedure
or by increasing the purported efficiency or efficacy of algorithms for causal
induction.52

The brunt of criticism of the inductive approach tends to focus on the
Causal Markov Condition and the ancillary assumptions outlined above. I

51There are inductive AI methods that take a totally different approach to causal

learning, such as that in [Karimi and Hamilton, 2000] and [Karimi and Hamilton, 2001],

and [Wendelken and Shastri, 2000]. However, non-Causal-Markov approaches are well in

the minority.
52See Chapter 8 of [Williamson, 2004] for a more detailed overview of inductive algo-

rithms for causal discovery.
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have already mentioned the difficulties that beset the Causal Markov Con-
dition; in cases where this condition fails the inductive approach will simply
posit the wrong causal relationships. It is plain to see that the ancillary
conditions are also very strong and these face numerous counterexamples
themselves. The proof, inductivists claim, will be in the pudding. However,
the reported successes of inductive methods have been questioned,53 and
these criticisms lend further doubt to the inductive approach as a whole
and the Causal Markov Condition in particular as its central assumption.54

Unfortunately neither Popper’s hypothetico-deductive approach nor the
recent inductivist proposals from AI offer a viable account of the discovery
of causal relationships. Popper’s hypothetico-deductive approach suffers
from underspecification: the hypothesis of causal relationships remains a
mystery and Popper’s proposals for deducing predictions from hypotheses
were woefully simplistic. On the other hand, the key shortcoming of the
inductive approach is this: given the counterexamples to the Causal Markov
Condition the inductive approach cannot guarantee that the induced causal
model or class of causal models will tally with causality as we understand it
— the causal models that result from the inductive approach will satisfy the
Causal Markov Condition, but the true causal picture may not. While this
objection may put paid to the dream of using Causal Markov formalisms for
learning causal relationships, an alternative formalism may yet ground the
inductive approach. In §4.5 we shall see that the inductive and hypothetico-
deductive approaches can be reconciled by using new inductive methods as
a way of hypothesising a causal model, then deducing its consequences and
restructuring the model if these are not borne out.

4 EPISTEMIC CAUSALITY

In this section I shall sketch my own view of causality, epistemic causality .
A more detailed exposition can be found in [Williamson, 2004].

As I see it, current theories of causality suffer from over-compartmental-
isation. Current theories analyse causality in terms of just one of the indi-
cators of causal relationships — mechanisms, probabilistic dependencies or
independencies, counterfactuals or agency considerations — to the expense
of the others. While one indicator may be more closely connected with
causality than the others, our causal beliefs are clearly based on several
indicators, not exclusively on one. It seems that if we are to understand

53[Humphreys and Freedman, 1996], [Humphreys, 1997], [Freedman and Humphreys,

1999], [Woodward, 1997].
54See [Dash and Druzdzel, 1999], [Hausman, 1999], [Hausman and Woodward, 1999],

Part Three of [Glymour and Cooper, 1999], [Lemmer, 1996], [Lad, 1999], [Cartwright,

1997], [Cartwright, 1999] and [Cartwright, 2001] for further discussion of the inductive

approach.
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the complexity of causality we must focus on our causal beliefs and the role
these indicators have in forming them.

Epistemic causality focusses on causal beliefs. It provides an account of
causal beliefs in informal causal reasoning (§4.1), as well as a more formal
account of how we ought to determine causal beliefs (§4.2). It takes causality
to be an objective notion (§4.3) yet primarily a mental construct (§4.4). And
it provides an account of the discovery of causal relationships (§4.5).

4.1 Informal Causal Reasoning

Why do we have causal beliefs? The answer to this fundamental question,
according to the epistemic view, is based on the following doctrines:

Convenience It is convenient to represent the world in terms of cause and
effect.

Explanation Humans think in terms of cause and effect because of this
convenience, not because there is something physical corresponding to
cause which humans experience.

It is convenient to represent the world in terms of cause and effect be-
cause a causal representation, if correct, enables us to make successful causal
inferences: it allows us to make correct predictions, correct diagnoses and
successful strategic decisions. Correct predictions and diagnoses are possi-
ble since, typically, cause and direct effect are probabilistically dependent.
Successful strategic decisions are possible since, typically, manipulating a
cause is a good way of changing its direct effects. (Note that here it is
enough that these associations are typical ; on the other hand an analysis of
causality in terms of these associations would be flummoxed by the existence
of counterexamples.)

It is clear why the convenience of causality explains our having causal
beliefs: successful causal reasoning has survival value. It doesn’t take us
long as babies to learn that crying brings us food. The value of correctly
predicting the effect of a fault in a power plant, correctly diagnosing an
ulcer, or successfully manipulating the economy is equally apparent.

The Explanation thesis divorces causal beliefs from any physical, mind-
independent notion of causality. While one might remain agnostic as to
whether there are physical causal relationships, one might instead adopt
an anti-physical position, claiming that in the interests of ontological par-
simony one should reject physical causality. I leave the selection of an
appropriate stance here entirely open.

4.2 Formal Causal Reasoning

The starting-point of a more formal account of causal beliefs is to ask how
one might determine a directed acyclic causal graph Cβ that depicts the
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causal beliefs that an agent ought to adopt on the basis of her background
knowledge β.

Arguably Cβ should be compatible with background knowledge β, but
should otherwise be as non-committal as possible. The agent’s causal beliefs
should include those causal claims warranted by her background knowledge
but no unwarranted causal claims. Since each arrow in a causal graph makes
a causal claim, Cβ should be a graph that contains fewest arrows, from all
those graphs that are compatible with β.

Thus we need to determine which graphs are compatible with background
knowledge β. Given the above discussion of informal causal reasoning it
seems natural to suppose that a causal graph that is compatible with β
should be a good causal representation of β, in the sense that its causal
claims should represent any predictive, diagnostic and strategic relationships
that can be gleaned from β. We can explicate this thought by insisting that
the causal graph include an arrow from A to B if:

• A and B represent non-overlapping physical events (so A and B are
the kinds of things that might be causally related, rather than seman-
tically, logically or mathematically related),55

• B is strategically dependent on A: intervening to change A can change
the probability of B, when B’s other direct causes are controlled for,

• this dependence is not otherwise accounted for by the agent’s back-
ground knowledge or other beliefs, and

• the inclusion of this arrow is not inconsistent with other background
knowledge. It is here that the other various indicators of causality get
taken into account: for instance if it is known that there is no physical
mechanism linking A with B, or if it is known that A only occurs after
B, then the agent should not deem A to be a direct cause of B.

In sum then, the agent’s causal belief graph Cβ should be a graph, from
all those that are compatible with β in the sense outlined above, that has
fewest arrows.

Given this concept of a causal causal belief graph, it is not hard to see
that the Causal Markov Condition and the Principle of the Common Cause
will hold when Cβ contains an arrow for each strategic dependency, and that
Causal Dependence will hold if furthermore each arrow in Cβ corresponds to
a strategic dependency. In this latter case Cβ will be a minimal graph satis-
fying the Causal Markov Condition. We thus have a qualified justification
of the three controversial principles that connect causality and probability,
and a qualified justification of inductive methods for causal learning that
infer a minimal graph satisfying the Causal Markov Condition.

55In fact this is too strict. A causal graph can also feature as a cause or effect — see
[Williamson, 2004], Chapter 10.
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4.3 The Objectivity of Causality

Clearly a primary desideratum of any theory of causality is that it account
for the apparent objectivity of causal notions: causal claims do not appear
to be arbitrary, a matter of personal opinion. It might be thought that
epistemic causality, focussing as it does on causal beliefs, suffers in this
respect. On the contrary, epistemic causality leads to an objective concept
of cause as we shall see now.

The word ‘objectivity’ is routinely used to mean many different things,
but the meaning most relevant to discussions of causality is lack of arbitrari-
ness. It is important that causal claims are not arbitrary in a pathological
way. Note that objectivity in this sense is a matter of degree: if any set of
causal claims is correct then causality is fully subjective; at the other end
of the scale if only one set of causal claims is correct then causality is fully
objective; degree of objectivity increases as arbitrariness, i.e. the proportion
of causal claims that are correct, decreases. We shall be interested in two
points on this scale:

Epistemic Objectivity If two agents with the same background knowl-
edge disagree as to causal relationships then at least one of them must
be wrong.

Full Objectivity If two agents disagree as to causal relationships then at
least one of them must be wrong.

The causal belief graph Cβ that an agent ought to adopt on the basis
of background knowledge β is epistemically objective (rather, close to epis-
temically objective: there may be more than one minimal graph compatible
with β, but there tends to be little room for subjectivity).

Note that epistemic objectivity is enough for the requirements of sci-
ence. Sciences demand that disagreements should be resolvable on the basis
of current background knowledge in the scientific literature: if there is a
disagreement as to whether or not the claim that smoking causes cancer
is warranted by current evidence, at least one party should be wrong, for
otherwise arbitrariness would render such debates pointless.

Philosophical preconceptions require more though — something close to
full objectivity. Intuitively there is a fact of the matter as to what causes
what, and if indeed causality is fully objective, a theory of causality should
be able to capture this characteristic. The standard way of explaining full
objectivity of a scientific concept is to suppose that the concept refers to
something physical and mind-independent. Then if there is disagreement
as to claims about the concept, the correctness of these claims are decided
on the basis of their truth when taken as claims about physical reality.

But projecting a concept onto the physical world is not the only way
to account for its full objectivity. Full objectivity can also be generated
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from epistemic objectivity. A (close to) fully objective causal graph C∗ can
be interpreted as Cβ∗ , the causal belief graph one ought to adopt on the
basis of some ultimate background knowledge β∗. This is the ultimate belief
interpretation of causality.

What constitutes ultimate background knowledge? There are two possi-
ble approaches here.

One might choose β∗ to be limiting background knowledge, to which
an agent’s background knowledge tends as time progresses. Now different
agents’ knowledge might be expected to tend to different limits, so one
needs to distinguish a special agent. When C.S. Peirce wanted to analyse
truth as the limit of belief, he chose science as the agent whose beliefs are
privileged.56 In our context we might take β∗ to be the limit of scientific
inquiry. The difficulties with this suggestion are (i) that science is not unan-
imous: different scientific parties and different scientific theories contradict
each other, making it difficult to extract a consistent body of knowledge
from science at any particular time, and (ii) that scientific knowledge is
no longer considered to be accumulative: science undergoes revolutions,
radical changes in scientific knowledge, and thus it is by no means clear
that scientific knowledge will tend to a fixed limit. A further problem with
this general strategy stems from the way it ties causality very closely to
a particular agent (science or whomsoever): if the agent had been differ-
ent, her background knowledge may have been very different, in which case
her limiting beliefs and thus causality itself would be very different. This
seems counter-intuitive. Under the epistemic account, a causal model is a
convenient way of representing the world. While causal relations might be
expected to depend on the contingencies of the world, they should not be
expected to depend on non-epistemic contingencies of a particular agent.

A natural alternative strategy is to consider the characterising feature of
causality, its convenience, and choose β∗ that optimises the convenience of
C∗ = Cβ∗ . (This approach corresponds to William James’ analysis of truth:
‘The true is the name of whatever proves itself to be good in the way of be-
lief.’57) Now causal beliefs will provide the most convenient representation
of the world if they are based on the fullest knowledge of the world, i.e. if β∗

contains knowledge of all the indicators of causality. Thus we can take β∗

to consist of knowledge of all probabilities, physical mechanisms, temporal
relations, non-causal inducers of probabilistic dependencies (semantic, logi-
cal and mathematical relationships, non-causal physical laws and boundary
conditions) and so on. This strategy has the advantages that β∗ is well
defined (as long as the indicators of causality can be delimited) and that
causality is not tied to a particular agent — indeed causality is not tied
even to there being any agents.

56[Peirce, 1877].
57[James, 1907] 30.
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We see then how epistemic causality can provide the (close to epistemic)
objectivity required for science and the (close to full) objectivity required
to satisfy our intuitions about causality.

4.4 What Causality Is

To summarise, epistemic causality provides both an account of causal beliefs
and of a fully objective notion of causality. It deals with the causal beliefs
an agent ought to adopt on the basis of her background knowledge, and
considers causality itself to be the causal beliefs that an agent ought to
adopt on the basis of full knowledge of the indicators of causality.

In that sense causality is a mental notion, not a physical notion. This
mental metaphysics for causality stands shoulder to shoulder with causal
epistemology: the causal relation is just an ultimate set of causal beliefs.
Moreover the anti-physical version of epistemic causality makes the further
claim that this is the only notion of cause — there is no such thing as
physical causality.

But causality is not mental in any degenerate psychologistic sense. Causal-
ity does not depend on the mind of any particular agent — it is a normative
notion and causal relations are as mind-independent as the laws of logic.
Causality is not subject to the whim of an agent: a rational agent can ex-
ercise little or no choice when she forms her causal beliefs; there is little or
no arbitrariness as what the correct causal relationships are. Causality is
objective.

Note that although epistemic causality can be construed as a subjunc-
tive theory, claiming that were an agent to know β and were she rational
then she would believe Cβ , it does not suffer from the problems that beset a
counterfactual analysis of causality. This is because its subjunctive condi-
tional claims are not given a semantics in terms of possible worlds — instead
a theory of rational causal belief is developed to explicate their meaning.
Thus worries about possible worlds do not translate into worries about the
claims of epistemic causality.

4.5 Discovery of Causal Relationships

Epistemic causality breaks the barriers between the hypothetico-deductive
and inductive accounts of discovering causal relationships.

On the one hand epistemic causality advocates an inductive approach to
causal discovery. Given observations β, epistemic causality prescribes an
algorithmic way of generating a causal theory Cβ . This is a different induc-
tive approach to the causal-Markov methods most widely advocated today,
but as I have argued in §3.2, those methods are based on questionable as-
sumptions, and (§4.2) the epistemic causality approach explains the special
cases where causal-Markov methods work.
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On the other hand epistemic causality is hypothetico-deductive: a causal
theory Cβ is at best a tentative hypothesis, a set of beliefs, and needs testing
before it can become entrenched as causal knowledge. Moreover epistemic
causality provides a way of filling in the gaps of a hypothetico-deductive
approach. The hypothetico phase is no mystery — we have an account of
how a hypothesis Cβ can be determined by knowledge of the indicators of
causality.58 The deductive phase is no mystery either: we test a causal hy-
pothesis by the inverse mapping from causality to indicators. ¿From a causal
relation we can predict a strategic dependency, the existence of a physical
mechanism, a temporal relation, and so on, and the causal hypothesis is
confirmed to the extent that those predictions are borne out.

5 PEARL’S DETERMINISM

In this section I shall compare epistemic causality with the position recently
advocated by Judea Pearl, a pioneer of one of the inductive approaches for
discovering causal relationships discussed in §3.2.

It is important to note that Pearl’s recent views (as of 2000) differ sig-
nificantly from his original conception of causality (of 1988).

Pearl’s original position stressed the convenience of causality and had
much in common with epistemic causality:59

We take the position that human obsession with causation, like
many other psychological compulsions, is computationally moti-
vated. Causal models are attractive mainly because they provide
effective data structures for representing empirical knowledge —
they can be queried and updated at high speed with minimal ex-
ternal supervision.60

However, Pearl then changed his mind about causality altogether:

Ten years ago, when I began working on Probabilistic Reasoning
in Intelligent Systems (1988), I was working within the empiri-
cist tradition. In this tradition, probabilistic relationships con-
stitute the foundations of human knowledge, whereas causality
simply provides useful ways of abbreviating and organizing in-
tricate patterns of probabilistic relationships. Today, my view
is quite different. I now take causal relationships to be the fun-
damental building blocks both of physical reality and of human

58Machine learning techniques can be used here to automate the generation of a hypoth-

esis from a database of observations in conjunction with other background knowledge.

See [Stankovski et al., 2001] for an analogous proposal.
59Epistemic causality is compared to Pearl’s early views in [Williamson, 2004], §9.4.
60[Pearl, 1988] 383.
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understanding of that reality, and I regard probabilistic relation-
ships as but the surface phenomena of the causal machinery that
underlies and propels our understanding of the world.61

Thus Pearl’s new view is that causality is mind-independent and physical,
not to be understood in terms of convenience of belief after all:

. . . causal relationships are more “stable” than probabilistic rela-
tionships. We expect such difference in stability because causal
relationships are ontological, describing objective physical con-
straints in our world, whereas probabilistic relationships are
epistemic, reflecting what we know or believe about the world.
Therefore, causal relationships should remain unaltered as long
as no change has taken place in the environment, even when our
knowledge about the environment undergoes changes.62

Interestingly, here Pearl appears to be invoking a physical notion of cause
in order to account for the objectivity of causality. As I have pointed out
in §4.3, this move is by no means necessary — equally one can account for
objectivity by taking an epistemic approach. While for epistemic causality
causal beliefs may change as knowledge changes, the induced fully objective
notion of cause is independent of any particular agent’s knowledge.

Pearl’s recent view is that causal models are structural equation models
(introduced in §3.2). Pearl’s new account thus not only embraces physical
causality, but also universal determinism:

causal relationships are expressed in the form of deterministic,
functional equations, and probabilities are introduced through
the assumption that certain variables in the equations are un-
observed. This reflects Laplace’s (1814) conception of natural
phenomena, according to which nature’s laws are deterministic
and randomness surfaces owing merely to our ignorance of the
underlying boundary conditions.63

Pearl subsequently describes his reasons for preferring a deterministic ap-
proach to his more stochastic 1988 approach which took causal models to
be causal nets rather than structural equation models:64

First, the Laplacian conception is more general. Every stochas-
tic model can be emulated by many functional relationships
(with stochastic inputs), but not the other way around; func-
tional relationships can only be approximated, as a limiting case,

61[Pearl, 2000] xiii-xiv.
62[Pearl, 2000] 25.
63[Pearl, 2000] 26.
64See also [Pearl, 2000], 31.
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using stochastic models. Second, the Laplacian conception is
more in tune with human intuition. The few esoteric quantum
mechanical experiments that conflict with the predictions of the
Laplacian conception evoke surprise and disbelief, and they de-
mand that physicists give up deeply entrenched intuitions about
locality and causality. Our objective is to preserve, explicate,
and satisfy — not destroy — those intuitions.

Finally, certain concepts that are ubiquitous in human discourse
can be defined only in the Laplacian framework. We shall see,
for example, that such simple concepts as “the probability that
event B occurred because of event A” and “the probability that
event B would have been different if it were not for event A” can-
not be defined in terms of purely stochastic models. These so-
called counterfactual concepts will require a synthesis of the de-
terministic and probabilistic components embodied in the Lapla-
cian model.65

While functional models may be desirable and appropriate in many cir-
cumstances, it seems perverse to develop a theory of causality that is incon-
sistent with indeterminism when indeterminism is advocated by our best
scientific theories. Far better, in my view, to develop an account of causal-
ity that is consistent with indeterminism but to use deterministic functional
models where possible. This is one of the advantages of epistemic causality
over Pearl’s later position: it leaves open the choice of model. According
to epistemic causality, an agent’s causal belief graph is purely qualitative,
involving neither probabilistic relationships nor deterministic functional re-
lationships. But this does not stop one from quantifying the causally con-
nections using either type of relationship if it is appropriate to do so. Clearly
an account that does not restrict one to appealing to just probabilistic rela-
tionships or to just deterministic relationships (i) is more general than either
the purely stochastic or the purely deterministic approach, (ii) satisfies the
demands of science as well as intuition, and (iii) can support Pearl’s seman-
tics for counterfactuals wherever deterministic models are appropriate.

Pearl’s advocacy of the Causal Markov Condition is another point that
sets it apart from epistemic causality. Because Pearl uses only structural
equation models and assumes that the error variables are probabilistically
independent, the Causal Markov Condition follows.66 There are three diffi-
culties with this justification. First it depends on the acceptance of universal
determinism which, as we have seen, is problematic. Second, no independent
argument is given for the assumption that error variables are independent.
Pearl merely points out the utility of this assumption: it yields the Causal

65[Pearl, 2000] 26-27.
66[Pearl, 2000] Theorem 1.4.1.
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Markov Condition and thereby agrees with the Principle of the Common
Cause and the properties that ensue.67

Third, there are the counterexamples to the Causal Markov Condition
referred to in §2.2. Pearl attempts to salvage the condition by arguing that
counterexamples either belong to quantum mechanics (in which case they
are ignorable for practical purposes) or they can be explained away by in-
voking latent variables (dummy variables that act as common causes).68

However, the first response is undesirable both because the quantum do-
main is becoming increasingly important for technology (there is already
considerable interest in applications of quantum computation and quantum
cryptography), and because as yet it is just a matter of conjecture that
quantum indeterminacy fails to infect the macroscopic world. The second
response fails because while introducing latent variables can salvage the in-
dependencies posited by the Causal Markov Condition, the condition itself
often still fails since it is often the case that a causal interpretation of a
latent variable remains implausible (analogously if A and B are probabilis-
tically dependent but neither causes the other, then the Principle of the
Common Cause requires both that there be variables that render A and B
independent, and that these variables are interpretable as common causes of
A and B, not just dummy variables).69 Pearl also claims that the continuing
interest in probabilistic analyses of causality, which often invoke the Causal
Markov Condition or an equivalent, lends weight to the condition: ‘The
intellectual survival of probabilistic causality as an active philosophical pro-
gram for the past 30 years attests to the fact that counterexamples to the
Markov condition are relatively rare and can be explained away through
latent variables.’70 This is rather flimsy evidence though: the history of
philosophy is littered with failed attempts (lasting longer than 30 years) to
produce a viable version of an initially attractive analysis.

Epistemic causality takes a different view. It accepts that counterexam-
ples to the Causal Markov Condition do arise, but as we saw in §4.2, the
condition demonstrably holds in certain special cases. This justifies a qual-
ified use of Pearl’s methods for causal reasoning and causal discovery (but
not his ontology).

I have argued, then, that Pearl need not have changed his mind about
the nature of causality in order to produce an objective notion of cause:
epistemic causality, which does yield objectivity, can be viewed as close to
Pearl’s early approach. Moreover the unqualified adoption of deterministic
causal models and the Causal Markov Condition leads to a formalism that
is at best a first approximation to the complexity of causality. Epistemic
causality aims to capture that complexity.

67[Pearl, 2000] 61.
68[Pearl, 2000] 62.
69[Williamson, 2004] §4.2.
70[Pearl, 2000] 62-63.
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6 PRICE’S PRAGMATISM

Huw Price, a proponent of the agency theory discussed in §2.4, has devel-
oped an interesting ‘perspectival’ conception of causality that is based on
pragmatism.

While pragmatism is normally associated with Peirce’s and James’ at-
tempts to analyse truth in terms of belief (alluded to in §4.3), Price delin-
eates his pragmatism as follows:71

A third form of pragmatism, and the one that interests me here,
is the view that a philosophical account of a problematic no-
tion — that of causation itself, for example — needs to begin
by playing close attention to the role of the concept concerned
in the practice of the creatures who use it. Indeed, the need
to explain the use of a notion in the lives of ordinary speak-
ers is often the original motivation for an account of this kind.
Causal notions and their kin are ubiquitous in the everyday talk
of ordinary people. Pragmatists argue that we cannot hope to
explain this anthropological fact if we begin where metaphysics
traditionally begins, at the level of the objects themselves — if
we ask what causation is, if we begin by looking for something
for causation to be, which will explain all these uses. Instead,
pragmatists think, we need to start with the practise of using
such notions, and to ask what role such notions play in the lives
of the creatures concerned — why creatures like us should have
come to describe the world in these causal terms.72

The last sentence portrays pragmatism as the rather uncontroversial method-
ological claim that philosophical investigation of a problematic notion should
start with an investigation of its use. Indeed epistemic causality takes prac-
tice (the convenience of causal representations) as a starting point and only
then develops a more formal account of causality and of what causality
is. However, there is more to Price’s pragmatic account of causality than
this advice as to where to begin. Price maintains that not only should one
not start by asking what causality is, one should not ask what causality is
at all — this is the wrong question and one should instead focus on how
causal notions are used. (Epistemic causality, in contrast, makes no such
claim; indeed it provides an account of what causality is.) On the other
hand Price does narrow down what causality is. For Price causality is per-
spectival : causal models are viewed from an agent’s standpoint,73 but are
projected onto the world,74 and like fictions the perspectival aspect may not

71[Price, 2003] describes the relationship between his form of pragmatism and truth.
72[Price, 2001] 105.
73[Price, 2004] §3.1.
74[Price, 2004] §3.2.
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be obvious to the agent:75

Perhaps causal asymmetry isn’t really in the world at all, but
the appearance that it is is a product of our own standpoint.
Perhaps it is like the warmth that we see when we look at the
world through rose-tinted spectacles.76

Yet Price’s notion of causality is not mental:

let me emphasise that pragmatism about causation is not the
view that when we talk of causation we are talking about our-
selves, in whole or in part.77

I simply want to emphasise that the view is not . . . that talk of
causation is talk about agents or agency, but rather the . . . doctrine
that we don’t understand the notion of causation — as philoso-
phers, as it were — until we understand its origins in the lives
and practice of agents such as ourselves.78

This is another point of difference between Price’s pragmatism and epis-
temic causality. Epistemic causality is a mental notion, in the sense that
talk about causality is talk about what agents ought to believe. Since
Price’s conception of causality is not mental, his view is not analogous to
the Bayesian view that probability is rational degree of belief.79 In con-
trast, epistemic causality is analogous to this view: just as an agent ought
to adopt a certain probability function as a representation of her degrees
of belief, she ought to adopt a certain directed acyclic graph as a represen-
tation of her causal beliefs.80 Moreover just as David Lewis viewed fully
objective probabilities as those degrees of belief an agent ought to adopt
were she to know everything relevant,81 so too epistemic causality views
a fully objective notion of cause as those causal beliefs an agent ought to
adopt were she to know everything relevant.82

Note though that epistemic causality does not imply that if there were
no agents there would be no causation — for epistemic causality causal
beliefs are idealised, the beliefs that an agent ought to adopt, which remain
well-defined in the absence of agents. Price concurs on this point:

If the concept of causation is essentially tied to our experience as
agents, as my kind of . . . pragmatism maintains, then of course

75[Price, 2004] §3.3.
76[Price, 1996] 153.
77[Price, 2001] 107.
78[Price, 2001] 107.
79[Price, 2001] 107.
80[Williamson, 2004] §9.10.
81[Lewis, 1980].
82[Williamson, 2004] §9.9.
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the concept would not arise in a world without agents. But this
does not make it appropriate to say that if there had been no
agents there would have been no causation. Pragmatism does
not conflict with realism in that sense.83

On the other hand Price goes on to argue that only an extremely weak form
of realism remains tenable:

This view simply takes the existence claims of science at face
value, and rejects any ‘additional’ metaphysical or philosophical
viewpoint from which it would really make sense to ask ‘Do these
things (electrons, for example) really exist?’ The key to weak
realism is a rejection of a standpoint for ontology beyond that
of science.84

As Price acknowledges this is not much of a realist position:

I am following convention in calling this view a species of realism.
However, it is also instructive to see the view as rejecting the
traditional realist-antirealist debate altogether, at least as that
debate arises within the empiricist tradition.85

Epistemic causality is less radical. For epistemic causality the question
of whether causal relations exist in the physical world does make sense;
different varieties of epistemic causality (agnosticism and anti-physicalism)
give different answers to this question.

Price advocates his ‘weak realism’ on the basis of the following problem
with the more usual ‘strong realism’:

the main argument for strong realism about theoretical entities
goes in terms of inference to explanatory causes. But this reason
simply takes the notion of causation for granted, and therefore
can’t be applied in support of realism about causation. In this
context, the supposed role of inference to the best explanation
is epistemological — it is supposed to justify a belief in the
reality of entities of a certain kind. My point is that such an
attempt at justification would be viciously circular in the case
of causation itself, in virtue of the fact by the realist’s own lights,
the inference presupposes realism about explanatory causes.86

Note though that while Price does identify a potential problem for the view
that causality is a physical relation, a dismissal of strong realism leaves

83[Price, 2001] 108.
84[Price, 2001] 112.
85[Price, 2001] 112.
86[Price, 2001] 113-114.
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several tenable views — Price’s own weak realism (a rejection of the realism-
antirealism question) but also the anti-physical and agnostic varieties of
epistemic causality — none of which appeal to inference to the best causal
explanation. So Price’s argument does not on its own decide between weak
realism and epistemic causality.

A rather counter-intuitive relativity of the agency notion of causality
might provide one deciding factor:

Suppose that the world had developed in such a way that we
had fewer manipulative abilities and skills than we actually pos-
sess but that we still applied our concept of causation roughly
in conformity with the agency approach. In this case the ref-
erence of the expression ‘relation between events such that an
actual agent could manipulate one event as a means to bringing
about the other’ would have been fixed on different relations,
even though our way of fixing the reference would have been the
same.87

Thus the agency theory possesses a form of subjectivity: agents with dif-
ferent capacities may rationally disagree about causal relationships. This
looks to be a problem not just across possible worlds but across agents in
this world. Just as the capacities of a human, a robot and a Venus fly
trap differ, so too would causality-for-a-human, causality-for-a-robot and
causality-for-a-Venus-fly-trap. Such subjectivity is attributable to Price’s
view of causality as a secondary quality, like colour:

we shall take as our reference point a simple version of the or-
thodox dispositional theory, namely the view that to be red is
to be disposed to look red to a normal observer under standard
conditions. This embodies the insight that colour is a secondary
quality, defining the colour concept in terms of human capacities
and responses. . . . Our claim is simply that the agency theory
correctly portrays causation as something analogous to a sec-
ondary quality — as a secondary quality, in fact, on a suitably
extended understanding of that notion.88

However, while the subjectivity of colour does not clash strongly with in-
tuition, causality does intuitively seem to be objective. Menzies and Price
reply to this objection as follows:

Our response is to accept that this kind of relativity is a con-
sequence of the theories concerned, but to deny that it is unto-
ward. We make two main points in support of this conclusion.

87[Menzies and Price, 1993] 199.
88[Menzies and Price, 1993] 188-189.
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The first, as usual, is that the characteristic of causation thus
identified is already a non-problematic feature of colour and the
other classical secondary qualities. It is something we live with
in those cases, and may be expected to accommodate ourselves
to in the case of causation. Secondly, however, we want to point
out that there is an important difference of degree between the
two cases. As we shall explain in a moment, it turns out that
causality is very much less sensitive than colour, say, to the ac-
cidents of the human situation. In this we find a basis for the
intuition that causation is significantly more ‘objective’ than
the usual secondary qualities — an intuition with which we thus
concur.89

Although the subjectivity of the agency theory of causality may be more
limited than that of the dispositional theory of colour, and although some
philosophers may be able to bite the bullet and live with the subjectivity,
one can avoid the subjectivity altogether. Epistemic causality does not
define causality in terms of agents’ capacities and is not subjective in this
problematic respect. Thus the objectivity of causality provides a reason to
prefer epistemic causality over the agency account.

In sum, Price’s objection to strong realism about causality need not force
one to adopt his rather radical rejection of the realism-antirealism debate.
Epistemic causality, which views causality as mental rather than physical,
remains a contender. Moreover epistemic causality might be preferred over
Price’s agency theory, since the latter notion of causality suffers from rela-
tivity to the capacity of agents.

7 CONCLUDING REMARKS

We have seen that contemporary theories tend to explain causality in terms
of just one of its indicators, in particular physical mechanisms, probabilis-
tic relationships, functional relationships, counterfactual relationships or
agency considerations. These approaches then find it hard to explain how all
the other indicators can have a bearing on our causal judgements. However,
by looking first at causal beliefs and the ways in which they are constrained
by knowledge of these indicators, one can account for the complexity of
causality. Moreover the ensuing approach, epistemic causality, provides an
account of the objectivity of causality and an answer to fundamental ques-
tions about what causality is and how we can discover causal relationships.

There are a couple of philosophical concerns one might have with epis-
temic causality, to do with circularity.

89[Menzies and Price, 1993] 199-200.
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The first concern is that the characterisation of epistemic causality might
be circular. Epistemic causality provides an ultimate belief interpretation
of a fully objective notion of cause. Thus causality is characterised in terms
of causal beliefs. But if causal beliefs are beliefs about causality then the
relationship between causality and causal beliefs is circular.

While this argument is valid, it does not tell against epistemic causal-
ity, for two reasons. First and foremost, epistemic causality provides an
independent route to causal beliefs: in §4.1 causal beliefs are characterised
independently of ultimate belief causality, in terms of knowledge of strategic
dependencies, mechanisms, temporal relations, and so on.90 Second, epis-
temic causality does not claim that causal beliefs are beliefs about causality.
For epistemic causality, causal beliefs are a type of belief, not necessarily
beliefs about anything in particular: ‘causal’ modifies ‘beliefs’ and does not
specify an object of the beliefs. The claim that causal beliefs are beliefs
about ultimate belief causality is in any case implausible: it is simply im-
plausible to suggest that when Audrey believes that smoking causes cancer,
she believes that were she to know about all the relevant indicators she
ought to believe that smoking causes cancer. This latter point is perhaps
more obvious when made regarding the Bayesian view of probability that
is analogous to epistemic causality. Here the terminology ‘degrees of be-
lief’ is used for ‘probabilistic beliefs’ while ‘chance’ is used for ‘probability’:
degrees of belief are a type of belief and are not beliefs about chances. If
they were beliefs about chances, then an ultimate belief characterisation of
chance in terms of degrees of belief (such as that of Lewis) would be cir-
cular. But in any case it is implausible to suggest that when Bill believes
that England will win the cricket to degree 0.8, he believes that were he to
know the entire history of the world and all history-to-chance conditionals
he would believe that England will win the cricket to degree 0.8.

The second worry is that the relationship between epistemic causality and
its indicators might be circular. According to epistemic causality, causal
beliefs depend on knowledge of the multifarious indicators of causality. If
these indicators are themselves reducible to causal notions then it is natural
to suspect circularity. For example, we might want to understand temporal
direction in terms of causality — but how can this be possible if temporal
knowledge helps delimit the causal relation? In contrast, if we simply reduce
causality to counterfactuals then an account of temporal direction in terms
of causality is more obviously non-circular.

In fact though, epistemic causality leaves open the question of which

90[Williamson, 2004] §9.8 deals with the case in which positive causal knowledge can

constrain causal beliefs. In that case causal beliefs can depend upon ultimate belief

causality. But there is no circularity there either, because ultimate belief causality is

characterised in terms of causal beliefs relative to background knowledge that includes

all knowledge of strategic dependencies, mechanisms and so on, but that does not include

knowledge of ultimate causal relations.
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reductive relationships obtain amongst its indicators. Epistemic causality
offers a functional explanation of causality in terms of its convenience, and a
characterisation of the causal relation in terms of rational beliefs, but not a
reductive analysis of causality in terms of its indicators. Consider an analogy
in medicine. When a condition is poorly understood, one may posit a syn-
drome and characterise it in terms of its indicators. For example, Tourette’s
syndrome is characterised (implicitly defined) in terms of involuntary tics
and uncontrollable verbalisation, in particular the use of obscene language
and the tendency to repeat uttered words. No commitment is made as to
what actually causes what — indeed the causal picture regarding Tourette’s
syndrome is still unclear. As long as the characterisation of the syndrome
latches onto something objective, it will suffice for diagnosis and treatment.
Similarly, a characterisation of causality that latches onto something objec-
tive can offer a way of handling causality without presupposing relationships
amongst its indicators: temporal direction can be a good indicator of causal
direction whether or not the former is reducible to the latter.91

Thus epistemic causality offers a powerful alternative to the standard
accounts of causality, yet one that is compatible with a range of philosophical
agendas.92

Jon Williamson
University of Kent
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DOROTHY EDGINGTON

ON CONDITIONALS∗

The ability to think conditional thoughts is a basic part of our mental equipment.
A view of the world would be an idle, ineffectual affair without them. There’s
not much point in recognising that there’s a predator in your path unless you also
realise that if you don’t change direction pretty quickly you will be eaten.

Happily, we handle ifs with ease. Naturally, we sometimes misjudge them,
and sometimes don’t know what to think. But we know what it would take to
be in a position to think or say that B if A, what would count for or against such
judgements, how they affect what we should do and what else we should think.
They cause us no undue practical difficulty.

The theory of this practice is another story. Judged by the quality and inten-
sity of the work, theorising about conditionals has flourished in recent years —
bold, fertile ideas developed with ingenuity and rigour, hitherto unnoticed phe-
nomena observed and explained, surprising results proved. But consensus has not
emerged. Not just about details, but about fundamentals, almost everything is at
issue. Is a unified theory possible, or are there irreducibly different kinds of ‘if’?
If the latter, what marks the distinction between kinds, and which examples belong
together? Is the core of a theory a thesis about what makes a conditional statement
true? Those who suppose so dispute about the kind of truth conditions involved;
others think it is a mistaken presumption that conditionals are part of fact-stating
discourse, evaluable in terms of truth. Given these disputes, it is unsurprising that
there are disagreements about which inference patterns involving conditionals are
valid. There is even dissent about the logical form of conditionals: we are already
theorising when we represent a conditional as a particular mode of combining two
simpler propositions into one, and this representation has been questioned.

1 ONE THEORY OR TWO?

1.1

Something must be said at the outset about the classification of conditionals into
kinds, for some theories address one kind, some another. Traditionally, ‘indicative
conditionals’ have been distinguished from ‘subjunctive conditionals’ or ‘coun-
terfactuals’ (these latter terms being used interchangeably). Some works concern
conditionals of these forms:

(1a) If the gardener didn’t do it, the butler did;

(1b) If the gardener doesn’t do it, the butler will.

∗The original version of this paper appeared in Mind, 104, 414, April 1995, pp. 235–329. It is
reprinted here with the Editor’s permission. Section 10 has been rewritten and Section 9.3 substantially
revised. Elsewhere footnotes have been added concerning recent work.
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For instance, W. V. Quine, in Methods of Logic, writes ‘the contrafactual condi-
tional is best dissociated from the ordinary conditional in the indicative mood...
We shall not recur to it here’ [1952, p. 21]. Other works concern those like

(1c) If the gardener had not done it, the butler would have;

(1d) If the gardener were not to do it, the butler would do it.1

For instance, David Lewis’s Counterfactuals. ‘I cannot claim to be giving a theory
of conditionals in general’, he says.

‘There are different kinds of conditionals’ can be taken as an innocuous remark,
inevitably true. But the traditional distinction is less between two species of a
genus, than between two genera, requiring separate treatment. This can surprise,
for, it would seem, the sample sentences above could each be used to express the
same conditional thought on different occasions. Changing the example: we are
arguing about whether, if you eat this apple, you will be ill. You throw it away in
disgust. Our argument continues unabated — about whether you would have been
ill if you had eaten it. We do not appear to have changed the topic of debate. Just
before throwing it away, you say ‘If I were to eat it, . . . ’; someone who left our
company earlier says later on ‘I’m convinced that if he ate the apple, he was ill’.
The bipartite approach needs some explanation.

Part of the explanation is, I think, historical. ‘Contrary-to-fact’ or ‘subjunctive’
conditionals first surfaced as a problem in the philosophy of science, for the at-
tempt by logical empiricists to regiment scientific language using Frege’s powerful
new logic — to do for science what Frege and Russell had done for mathematics.
At the heart of this logic is a treatment of the conditional of remarkable simplicity
and clarity: a conditional is true if and only if it is not the case that it has a true
antecedent and a false consequent.2 When it came to analysing dispositional pred-
icates like ‘soluble’ and ‘fragile’, a different kind of conditional made its presence
felt. Being fragile is being such as to break if dropped. Frege’s analysis cannot
be used here; for it cannot explain why, if the vase is not dropped at a particular
time, that doesn’t settle whether the vase is fragile at that time — whether it would
break if it were dropped. Rudolf Carnap’s ‘Testability and Meaning’ [Carnap,
1936] was a valiant attempt to deal with this problem in terms of Fregean logic.
Domesticating the non-Fregean conditional became a major problem.

If a theory fits some but not all of the data, the lesson might be that the data are
not amenable to uniform treatment; it might equally be that we need a better theory.
But there is more to be said in favour of dualism about conditionals, independently

1Throughout this section the letters a–d, following the numbers, indicate the form of the conditional.
2See Frege’s Begriffsschrift, Section 5 [Frege, 1960, pp, 5–6]; his letter to Husserl translated in

Frege [1980, p. 69]; and his ‘Introduction to Logic’ in Frege [1979, p. 186]. (In the latter two passages,
which are comments on the first, Frege explains the conditional as I did above. In the Begriffsschrift he
has ‘affirmed’ and ‘denied’ in place of ‘true’ and ‘false’ [Frege, 1960], p. 5. It is difficult to interpret
this plausibly. On the following page he has ‘to be affirmed’ and ‘to be denied’, which, in the context,
can more plausibly be interpreted as ‘true’ and ‘false’.)
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of prior theoretical commitment. Ernest Adams [1970] made the point with this
striking pair of examples:

(2a) If Oswald didn’t kill Kennedy, someone else did;

(2c) If Oswald hadn’t killed Kennedy, someone else would have.

Everyone who knows of Kennedy’s assassination agrees with (2a); many such
people dissent from (2c). Take someone who thinks Oswald did it, acting alone.
‘But what is the case if he didn’t do it?’ gets one answer. ‘But what would have
been the case if he hadn’t done it?’ gets a different answer. (Like any good philo-
sophical example, this is no isolated case. Once you grasp its structure, you have a
recipe for constructing indefinitely many such pairs, which I shall call ‘OK cases’.)
‘Therefore there really are two different sorts of conditional’, says Lewis [1973, p.
3], commenting on this phenomenon, ‘not a single conditional that can appear as
indicative or as counterfactual depending on the speaker’s opinion about the truth
of the antecedent’. Here is how one might fill out the argument for this conclusion.
Consider the two past-tense sentences:

O: Oswald didn’t kill Kennedy

S: Someone else killed Kennedy

and consider the sentence frames:

If it is the case that..., it is the case that...

If it were the case that..., it would be the case that...3

Substitute the two sentences in the two sentence frames, and you have regimen-
tations of (2a) and (2c). Replace each sentence frame by a symbol to be written
between the sentences, say ‘→’, and ‘�’, respectively. So we have ‘O → S ’,
‘O� S ’. One may accept ‘O→ S ’ yet reject ‘O� S ’. So ‘→’ and ‘�’ don’t
mean the same. QED.

This argument for two meanings of ‘If. . . ’ is resistible. Our regimentations
may have misrepresented the syntactic structure of the two sentences. Even when
a single sentence has a true and a false reading, it does not follow that one of its
semantic components is ambiguous. Consider

The Prime Minister has never been a woman.

That has a true and a false reading, but it is a case of syntactic, rather than semantic,
ambiguity: the sentence may be read as structured in different ways, though each
of its components has a uniform meaning. Or consider

3Lewis [1973, pp. 2–3], explains the counterfactual connective in terms of this second sentence
frame.
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I could have been in New York today; but I can’t, now, be in New
York today.

This is not an example of an ambiguity in a modal term: something was possible,
which is no longer possible.

This last example is instructive. V. H. Dudman4 has convinced many that (2c):
‘If Oswald hadn’t killed Kennedy, someone else would have’ is simply the past
tense of

(2b) If Oswald doesn’t kill Kennedy, someone else will.

‘Would have’ is the past tense of ‘will’, as ‘could have’ is the past tense of ‘can’;
the verb forms in the antecedents typically indicate that they concern a time earlier
than the consequents.5

The analysis of the counterfactual as a past-tense indicative could be a step in
the direction of monism. If we can explain how the evaluation of a conditional
depends on time, we can explain the OK cases without multiplying senses of ‘if’.
But this is not the moral drawn by Dudman and others. They remain dualists, and
retain the view that (2a) and (2c) are different kinds, but maintain that (2b) has
been wrongly classified: it is of a kind with (2c), not with (2a).6

The OK phenomenon does not support this new line, however, for it can be
used to drive a wedge between future indicatives and counterfactuals as well as
past ones. You think that such-and-such will happen. You can distinguish the
questions: ‘But what if it doesn’t?’ (i.e., what if you’re wrong in thinking it will?);
and ‘But what if it were not going to?’ (retaining your belief that it will). For
instance, there are two prisoners, Smith and Jones. We have powerful evidence
that one of them will try to escape tonight. Smith is a docile, unadventurous chap,
Jones just the opposite, and very persistent. We are inclined to think that it is Jones
who will try to escape. We have no reason to accept:

(3c) If Jones were not to try to escape tonight, Smith would.

However, we could be wrong in thinking that it is Jones who will escape:

(3b) If Jones doesn’t try to escape tonight, Smith will.

Another example: I’m being chased through enemy territory, and a warning light
on my (eccentric) car indicates that either I am about to run out of fuel, or the

4See e.g. Dudman [1983; 1984a; 1988; 1989]. Adams [1975], Ayers [1965] and Ellis [1984] also
treat the ‘counterfactual’ as a past tense conditional.

5This is not how Dudman would put it. He does not care for the terms ‘antecedent’ and ‘consequent’
[Dudman, 1986; Dudman, 1988].

6See [Dudman, 1984], [Smiley, 1984], [Bennett, 1988], [Mellor, 1993].
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radiator is about to boil over. I’m pretty sure it’s the fuel. Bother! If I hadn’t been
going to run out of fuel, I would get away. Of course, I could be wrong about the
fuel. But then, if I don’t run out of fuel, the radiator will boil over.

The difference marked by the OK cases seems to be the traditional one. But it
may be more like the difference between mature cheddar and freshly-made cheddar
than the difference between chalk and cheese. As time passes but relevant infor-
mation stays the same, ‘If he eats the apple,. . . ’, ‘If he were to eat it,. . . ’, ‘If he ate
it,. . . ’ and ‘If he had eaten it,. . . ’ may all express the same conditional thought.
But the passing of time may bring new relevant information: ‘If he ate it, it did
him no harm; but if he had eaten it, he would have been ill’. Further argument will
have to wait on whether this difference can be explained within a unified account
of ‘if’.

1.2

The terminology for the traditional distinction is less than satisfactory. For those
who accept the distinction, this is a minor irritant; for those who don’t, it is a
symptom of confusion. Lewis says ‘You may justly complain that my title “Coun-
terfactuals” is too narrow for my subject. I agree, but I know better. . . . The title
“Subjunctive Conditionals” would not have delineated my subject properly [ei-
ther]’ [Lewis, 1973, pp. 3–4]. Long before, Roderick Chisholm announced that he
would use ‘subjunctive’ and ‘contrary-to-fact’ interchangeably, although they were
not coextensive. ‘Neither term is adequate’ [Chisholm, 1946, p. 482]. Michael Ay-
ers complained that it was ‘as if he had said that some mammals are not carnivores
and some carnivores are not mammals, but he wished to talk of an important class
of animal to which ... he would refer indiscriminately as mammals and as car-
nivores’ [Ayers, 1965, p. 348]. Jonathan Bennett’s ‘Farewell to the Phlogiston
Theory of Conditionals’ [1988] also argues that the terminological inadequacy is
a sign that our theories are in bad shape.

A true counterfactual may have a true antecedent and consequent, according to
accepted usage. Consider ‘If you had dropped it, it would have broken’. ‘You’re
right — I did drop it, and it broke, but I did such a marvellous repair job, you never
could tell’. Still, the idea behind the name is that counterfactuals are for talking
about unrealised possibilities — we use them when we think the antecedent is
false. But there is one important use of the ‘counterfactual’ form which does not
fit this pattern. Alan Ross Anderson [1951] gave the example of a doctor’s saying
‘If he had taken arsenic, he would have shown just these symptoms [those which
he in fact shows]’. The doctor could not convey the same thing with ‘If he took
arsenic, he is showing just these symptoms’. This is no one-off example: ‘A bus is
coming.’ ‘How do you know?’ (for we can’t see the oncoming traffic). ‘People in
line are picking up their bags and inching forward — and that’s what they would be
doing if a bus were coming.’ (Not: that’s what they are doing if a bus is coming.)
These cases are important as ingredients in ‘inference to the best explanation’ and
in Bayesian reasoning: which hypothesis H is such that what we do observe is
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what we would expect to observe, if H were true?
(Conversely, it is sometimes the indicative which is needed to express disbelief

in the antecedent: ‘If he took arsenic, he’s showing no signs’. Not: ‘If he had taken
arsenic, he would be showing no signs’.)

Would ‘Subjunctive Conditionals’ have been a better title for Lewis’s book?
Dudman [1988] and Bennett [1988] argue that the ‘had been’ and ‘would’ are a
matter of tense, not mood. They quote grammarians who pour scorn on the idea
that the subjunctive has any serious use in English. Grammarians are no more
prone to unanimity than philosophers, however: Fowler’s Modern English Usage
gives the examples

If he heard, he gave no sign (heard and gave past time); and If he
heard, how angry he would be! (heard and would be, not past time,
but utopia, the realm of non-fact or the imaginary); the first heard is
indicative, the second subjunctive. [Fowler, 1965, p. 597].

Even if this is right, we lack a good explanation of why some conditionals require
this mood and others forbid it. Further illumination is unlikely in advance of some
theorising. It will cause less confusion and no greater offence if I stick to the
labels ‘indicative’ and ‘counterfactual’ when discussing theories addressing one
or the other side of the traditional divide.

2 TRUTH CONDITIONS OF THE FIRST KIND

2.1

There are conditional questions, commands, expressions of wish, etc., as well as
conditional statements; but we follow the methodology of mainstream philosophy
of language if we assume that an understanding of fact-stating discourse is our
first task. Put counterfactuals aside. Assume that the conditional is a device for
constructing a proposition, apt for truth, out of two component propositions, apt
for truth. And it is a systematic device: if you understand any conditional, you un-
derstand every conditional whose components you understand. Still following the
mainstream, assume that understanding a sentence is knowing under what circum-
stances it would be true. Understanding a sub-sentential meaningful component
is knowing what contribution it makes to the truth conditions of the sentences in
which it occurs. Some such components are used to construct complex sentences
out of simpler sentences. Let M be: Mary went to Paris. Let J be: John went to
Paris. Consider

(1a) It is not the case that M;
(1b) It is possible that, probable that, important that, relevant that M;
(2a) M and J, M or J;
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(2b) M before J, M because J.

(l a) and (2a) are operators with a peculiarly simple property: in any possible
circumstance, the truth value of the complex sentence is fixed by the truth value(s)
of the simple sentence(s). Thus we write truth tables, showing the truth value of
the whole for different possible combinations of the truth values of the parts; they
are the truth-functional sentence operators. (1b) and (2b) lack this simple property.
The truth values of the parts are not always sufficient to determine the truth value of
the whole. They are non-truth-functional sentence operators. We need to examine
the thesis that ‘if’ is truth-functional.

2.2

There are signs of it in ancient times, and it is sometimes called the Philonian
conditional after Philo of Megara of the 4th century BC, but it is to Frege that we
owe its role in current thinking about conditionals. It is a cornerstone of his system
of logic, taken up enthusiastically by Russell (who called it ‘material implication’),
Wittgenstein and the logical positivists, and is now found in every logic book. It
is the first theory of the conditional that students of philosophy encounter. And it
has many defenders. We have already seen the one-liner: ‘If A then B’ is true if
and only if it’s not the case that A is true and B is false. It is thus equivalent to
¬(A&¬B) and to ¬A ∨ B. ‘A ⊃ B’ has, by stipulation, these truth conditions. The
substantive question is whether this is an adequate rendering of ‘If A, B’.

It is easy to see that if ‘if’ is truth-functional, this is the right truth-function to
assign it. For no one doubts7 that a conditional is sometimes true when the truth
values of its components are (true, true), or (false, true), or (false, false). Given
truth-functionality, it follows that it is always true in these circumstances — for the
truth-values of the components fix the truth value of the whole. Take a conditional
which is true come what may, for example ‘If Mary and John are both in Paris, then
Mary is in Paris’. The components are such that it is impossible that it has a true
antecedent and false consequent. But the other three combinations are possible,
and whichever obtains, the conditional is true. Given truth-functionality, it follows
that whenever one of these three combinations obtains, a conditional is true.

2.3

But is ‘if’ truth-functional? There are powerful arguments that it must be. No
one denies that ‘If A, B’ entails ¬(A&¬B), which is equivalent to ¬A ∨ B. If
the converse entailment holds, the truth-functional account is right. Getting the
negation signs in more digestible places, the issue is equivalent to whether (i)
A ∨ B entails ‘If ¬A, B’; or (ii) ¬(A&B) entails ‘If A,¬B’.8 But surely they do!

7No one who speaks of truth for conditionals at all, that is.
8(i) Let A = ¬C. Then A ∨ B entails ‘If ¬A, B’ iff ¬C ∨ B entails ‘If ¬¬C, B’, i.e. ‘If C, B’ (given

double negation elimination); (ii) Let B = ¬D; then ¬(A&B) entails ‘If A,¬B’ iff ¬(A&¬D) entails
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Knowing just that at least one of the propositions, A, B, is true, is enough to in-
fer that if A is not true, B is true; and (ii) knowing just that A and B are not
both true is enough to infer that if A is true, B is not. For example: (i) having
eliminated all but two suspects, I’m sure that either the gardener or the butler did
it. So, if the gardener didn’t do it, the butler did (water the aspidistra, that is);
(ii) knowing that Mary and John were not both there, I infer that if Mary was
there, John was not.

Putting the matter the other way round, suppose A ∨ B did not entail ‘If ¬A, B’
(but the propositions are compatible). Then these are two distinct possibilities:

A ∨ B ‘If ¬A, B’
1. T T
2. T F

Suppose you are certain that one of these two possibilities obtains — but minimally
so: you have eliminated ¬A&¬B, nothing more. This would not be enough for
certainty that if ¬A, B because the possibility at line 2 would be compatible with
your information. But, we have seen above, minimal certainty that A∨B is enough
for certainty that if ¬A, B. Only the truth-functional truth conditions get this right:
any stronger truth conditions get this wrong.

Again, here is a little proof of one of the crucial entailments. We make three
assumptions: (i) ¬(A&B); (ii) A; (iii) B. We derive a contradiction. So, keeping as-
sumptions (i) and (ii), we derive ¬B. So, by Conditional Proof, keeping assumption
(i), we derive ‘If A, ¬B’.

2.4

So what’s the snag? Well, it seems strange to say that the falsity of ‘She ate the
apple’, is sufficient for the truth of ‘If she ate the apple, she was ill’, as it is on this
account. (¬A entails ¬(A&¬B) for any B; let B be: she was ill). And this kind
of example is the source of a catalogue of oddities. But perhaps it seems strange
for the following reason. When we consult our intuitions about the inference from
‘She didn’t eat the apple’, we imagine ourselves certain of that premiss. Then
we don’t have any serious use for a conditional that begins ‘If she ate the apple’.
If a theory which serves us well most of the time has the consequence that all
such uninteresting conditionals are true, perhaps we can and should live with that
consequence. It is too much — or maybe too little — to expect our theories to
match ordinary usage perfectly. Perhaps, in the interests of simplicity and clarity,
we should replace ‘if’ with ‘⊃’.

We should not. The unacceptability of the inference from ¬A to ‘If A, B’
emerges most clearly in the context of beliefs which are less than certain. The
problem was invisible to Frege and Russell (among many others): their main tar-

‘If A,¬¬D’, i.e. ‘If A,D’. (Intuitionist worries about double negation elimination can be waived by
assuming that the propositions are decidable.)
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get was mathematical reasoning; holding beliefs on less-than-certain grounds was
not in their main line of business. The worst defects of the truth-functional condi-
tional don’t show up in mathematics.

I shall use ‘think that’, ‘believe’ and ‘disbelieve’ in such a way as not to imply
certainty. If you believe P, and disbelieve C, and there is a simple, decidable,
valid argument from P to C, your beliefs are irrational. I have in mind things like:
believing that something is square but disbelieving that it has 4 sides; believing
that John and Mary are in Paris but disbelieving that John is in Paris. If P entails
C, there is no way that P can be true without C being true. If the entailment is
obvious, you should not be more confident that P is true than you are that C is
true.

When I think, but am not certain, that ¬P, it is not at all uninteresting or unim-
portant to contemplate what is true if P. For example, (i) I think that my husband
isn’t home yet. But if he is, he’ll be worried about where I am. So I should try
to phone. Compare (ii): I think that the Queen isn’t home yet (at Buckingham
Palace, that is). But if she is, she’ll be worrying about where I am. So I should try
to phone. The first thoughts are sane enough, the second a sign of madness. Not
so on the truth-functional account. Suppose, having read in the newspaper of her
day’s engagements, I’m about 90% certain that the Queen isn’t at home yet (¬Q);
then I must be at least 90% certain that at least one of the propositions {¬Q,W}
is true, i.e. at least 90% certain that ¬Q∨W, i.e. at least 90% certain that if she
is at home, she is worrying about my whereabouts (on the truth-functional read-
ing of that thought). Someone who believes ¬Q, but disbelieves ‘If Q,W’ (on this
reading) is making an Incredibly Gross Logical Error. For to disbelieve Q⊃W, i.e.
¬(Q&¬W), is to believe its negation, Q&¬W. How can anyone be so stupid as to
believe Q&¬W yet disbelieve Q, i.e. believe ¬Q?

Contrary to this account, any sane ordinary subject not on intimate terms with
royalty, who thinks the Queen isn’t home yet, rejects the conditional ‘But if she is,
she’ll be worried about where I am’. We do not use conditionals as this account
would have it. But that empirical observation is not the main point, which is this:
we would be intellectually disabled without the ability to discriminate between
believable and unbelievable conditionals whose antecedents we think are unlikely
to be true. The truth-functional account deprives us of this ability: to judge A
unlikely is to commit oneself to the probable truth of A⊃B.

2.5

In his William James lectures, ‘Logic and Conversation’, delivered in 1967, H. P.
Grice defended the truth-functional account, emphasising the importance of dis-
tinguishing the false from the misleading-but-true (see [Grice, 1989]). There are
many ways of speaking the truth yet misleading your audience, given the standards
to which you are expected to conform in conversation. One way is to say some-
thing weaker than some other relevant thing you are in a position to say. Consider
disjunctions. I am asked where John is. I’m sure he’s in the bar, and I know he
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never goes near libraries. Inclined to be unhelpful but not wishing to lie, I say
‘He’s either in the bar or in the library’. My hearer naturally concludes that this is
the most precise information I am in a position to give, and also concludes from
the truth (let us assume) that I told him ‘If he’s not in the bar he’s in the library’.
The conditional, like the disjunction, according to Grice, is true provided he is in
the bar, but misleadingly asserted on that ground.

Again: ‘You won’t eat those and live’, I say of some wholesome and delicious
mushrooms — knowing that you will now leave them alone, deferring to my ex-
pertise. I told no lie — for indeed you don’t eat them — but of course I misled
you. (Lewis [1976, p. 143] uses this example.)

Grice drew attention, then, to situations in which a person is justified in be-
lieving a proposition, which would nevertheless be an unreasonable thing for the
person to say, in normal circumstances. His lesson was salutary in many areas
of philosophy: the oddity of remarking under normal conditions of observation
(e.g.) ‘The pillar-box seems red to me’, does not show that that sentence is false,
or truth-value-less, or meaningless in that context.9 The remark is true, but mis-
leading unless you have a reason for doubting that it is red. Grice also explains
correctly the behaviour of disjunctions and negated conjunctions. Believing that
John is in the bar, I can’t consistently disbelieve the proposition ‘He’s either in the
bar or in the library’; if I have any epistemic attitude to that proposition, it should
be one of belief, however inappropriate it is for me to assert it. Similarly for ‘You
won’t eat those and live’ when I believe you won’t eat them. But the difficulties
with the truth-functional conditional cannot be explained away in terms of what is
an inappropriate conversational remark. They arise at the level of belief. Believ-
ing that John is in the bar does not make it logically impermissible to disbelieve ‘if
he’s not in the bar he’s in the library’. Believing you won’t eat them, I may without
irrationality disbelieve ‘if you eat them you will die’. Believing that the Queen is
not at home, I may without irrationality reject the claim that if she’s home, she will
be worried about my whereabouts. As facts about the norms to which people defer,
these claims can be tested.10 But, to reiterate, the main point is not the empirical
one. We need to be able to discriminate believable from unbelievable conditionals
whose antecedent we think false. The truth-functional account does not allow us
to do this.

P. F. Strawson [1986] argues that if Grice is right about indicative condition-
als, his thesis should be, and could be, extended to counterfactuals. He gives the
examples:

Remark made in the summer of 1964: ‘If Goldwater is elected, then
9Austin, Ryle, Wittgenstein and others were prone to argue in this way about various important

philosophical concepts. The first chapter, ‘Prolegomena’, of [Grice, 1989] discusses many examples.
10I am not talking about cases where you are certain that the antecedent is false, which are difficult

to assess; but about cases where you think, but are not completely certain, that the antecedent is false.
A good enough test is to take a co-operative subject, who understands that you are merely interested

in what she believes, as opposed to what would be a reasonable remark to make; and note which
conditionals she assents to.



ON CONDITIONALS 137

the liberals will be dismayed’.

Remark made in the winter of 1964: ‘If Goldwater had been elected,
then the liberals would have been dismayed’.

and comments that ‘the least attractive thing that one could say about the difference
between these two remarks is that . . . “if . . . then. . . ” has a different meaning in one
remark from the meaning which it has in the other’ (p. 230).

Strawson suggests that the Gricean story can be extended to the second remark.
For, if it is made in a context in which it is known that the antecedent is false
(or equally, if the form of the remark conventionally suggests that the antecedent
is false), then, on the hypothesis that it is truth-functional, the hearer is bound
to look for some other point to its utterance, and will conclude that the speaker
must have just the sort of grounds for it which would have made the first remark
reasonable in a context in which the truth-value of the antecedent is not known. All
counterfactuals with false antecedents are true; but Grice can explain why some are
reasonable things to say, some are not, in terms of principles of good conversation.

Strawson gives no hint that he expects the reader to contrapose: to find the story
unbelievable for counterfactuals, and so to weaken its credibility for indicatives
too,11 but this reading is compatible with his conclusion. The truth and meaning
of a conditional have now become quite divorced from what matters about it.

Here is a story. English* is identical to English except in one respect which
will become clear. It has the word ‘dog’, and names for various breeds of dog.
One breed, however, lacks a name. Speakers habitually call dogs of this breed
‘Labradors’. But ‘Labrador’ really means the same as ‘dog’. If you called a poodle
a Labrador, this would not be false, but it would be misleading. For you could have
said ‘poodle’; or, if less specificity is called for, there is the word ‘dog’, which is
shorter and easier to say than ‘Labrador’. Hence, speakers tend not to call other
breeds ‘Labradors’. So the word is quite useful, for when it is used, your audience
is likely to cotton on and realise that you aren’t speaking of a dog of another breed,
but of this nameless one.

The story is incredible. Words mean what people use them to mean, given the
distinctions they need to make. Even if ‘Labrador’ originally meant ‘dog’, nothing
can prevent its coming to perform a more useful role in the language, the name for
the nameless breed. Something like this is what Strawson has in mind when he
concludes: ‘Only in the specially protected environment of a treatise on logic can
“⊃” keep its meaning pure’ (p. 242).12

11Some post-Dudman readers have already been converted to the view that these forward-
looking ‘indicatives’ behave like ‘counterfactuals’ (see fn. 5 for references). Then change
Strawson’s example. X: ‘If he ate the apple, he was ill’. Y: ‘He didn’t eat it’.
X: ‘Well then, if he had eaten it, he would have been ill’.

12My shaggy dog story is a little unfair. Truth conditions for conditionals are problematic, in a way
that naming breeds of dog is not. We could be driven to the Gricean manoeuvre as the alternative least
at odds with the facts. But it does show that a consistent Gricean story is not necessarily a believable
one.
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2.6

Frank Jackson has a different defence of the truth-functional account.13 He claims
that there is a special convention governing the assertability of an indicative con-
ditional: it is not enough simply to believe that its truth conditions are satisfied;
this belief must be robust with respect to the antecedent, that is, it must be that you
would not abandon belief in the conditional if you were to discover the antecedent
to be true. This ensures that an assertable conditional is fit for modus ponens. This
condition is not satisfied if you believe A ⊃ B solely on the grounds that ¬A. If you
discovered that A, you would abandon your belief that A ⊃ B rather than conclude
that B.

The details of this defence require the notion of conditional probability to be dis-
cussed below (Section 5), and I shall return to Jackson later (Section 9.1). On the
face of it, the shift from questions of assertability based on general conversational
propriety, to questions of assertability based on a specific convention governing
conditionals, leaves the objection to Grice untouched. Jackson speaks of ‘the need
to facilitate conversational exchanges’ [Jackson, 1980, p. 133]. But this doesn’t
appear to be where the problem with ‘⊃’ lies: there is no evidence that one believes
a conditional whenever one believes the corresponding material implication, and
then is prepared to assert it only if some further condition is satisfied.

2.7

Our investigation of the truth-functional conditional leaves us with a
conundrum. In Section 2.3 we argued that only truth-functional truth conditions
could explain why knowing just A∨B was enough to conclude that if ¬A, B; any
stronger truth conditions would demand more, and so would not license this infer-
ence. In Section 2.4 we argued that the truth-functional account had intolerable
consequences, and we have not seen a way to make them tolerable. There is a
solution to this conundrum, but it lies ahead.

3 EARLY THEORIES OF COUNTERFACTUALS

3.1

These deserve a mention, for the problems they raise live on. Counterfactuals
appeared to be connected not only with dispositional properties but with laws of
nature. Laws, it seemed, have counterfactual implications, accidentally true gener-
alizations don’t. If we understood counterfactuals, this might illuminate the notion
of law. And conversely. Leaving the problem ‘What is a law?’ for another day,
perhaps counterfactuals can be explained as law-governed conditionals. This was

13See Jackson [1979; 1980; 1987]; Lewis adopts Jackson’s defence [Lewis, 1986, pp. 152–156],
having previously [1976, pp. 142–145] supported Grice.
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tried by Chisholm [1946], and Nelson Goodman [1947], reprinted as chapter 1 of
Fact, Fiction and Forecast. Take Goodman’s example,

If the match had been struck, it would have lit.

Its truth, it seemed, requires there to be a law, and facts about the match and
its situation (it was dry, there was oxygen, etc.), from which, together with the
assumption that it was struck, we can deduce that it lit. A theory of the following
shape emerges:

A counterfactual conditional ‘A→C’ is true if and only if there is a
conjunction of truths T which include a law of nature [and satisfy
condition X] such that A&T entails C.

X is a place-holder for the difficult bit. In fact, the match was not struck, and did
not light. Assuming that it was struck involves supposing that some things which
are actually true were not true. For instance, the match remained motionless and
untouched on the table. True, but this wouldn’t have been true if it had been struck,
so we need to forget about that fact, in considering what would have happened
if it had been struck. But we need to rely upon other things which are actually
true, remaining true if the match had been struck, for instance, the fact that it was
dry. What distinguishes those facts we may rely upon, from those which we may
not, when we make a counterfactual supposition? Using Goodman’s name for
the problem, which facts are cotenable with the assumption that the antecedent is
true? (Then the square bracket reads ‘and are cotenable with A’.) Goodman defines
cotenability thus:

B is cotenable with A iff it is not the case that if A had been true, B
would not have been true. [1955, p. 15]

But now circularity looms: we need cotenability to define counterfactuals and
counterfactuals to define cotenability. Consider:

(1) If the match had been struck, it would have lit (S → L).

(2) If the match had been struck, it would not have been dry (S → ¬D).

Suppose (1) is true and (2) is false. How does the theory deliver this result? With
(1), there is a derivation from the assumption that S, together with a law, and facts
such as it was dry (D), to the conclusion that L. But with (2), there is a derivation
from the assumption that S , together with the same law, and facts such as it didn’t
light (¬L), to the conclusion that it was not dry. The asymmetry must lie in which
facts are cotenable with the assumption that it was struck. (1) is true because
the match was dry (D), and this is cotenable with the assumption that S ; (2) is
false because, although the match did not light (¬L), this is not cotenable with the
assumption that it was struck. Applying the definition of cotenability, these claims
amount to:
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It’s not the case that if the match had been struck it would not have
been dry [¬(S→¬D)].

It is the case that if the match had been struck it would have lit [S→L].

Now the circularity is blatant. Why is ‘S→L’ true but ‘S→¬D’ false? Because
‘S→¬D’ is false and ‘S→L’ is true.

Goodman decided that he had reached a dead end. There have been some at-
tempts at escape routes, but no general solution to the problem.14 Of course, we
have an intuitive grasp of what is cotenable with a counterfactual assumption. But
then, we have an intuitive grasp of counterfactuals. Goodman was after an expli-
cation of that intuitive grasp which did not presuppose it.

3.2

I turn to a different criticism of this approach to counterfactuals (so assume that the
problem of cotenability has been solved — or understand that notion intuitively).
Is the connection with laws of nature as tight as it requires? Consider:

If I’d known you were coming, I’d have baked a cake;

If the Labour Party had won, the pound would have fallen;

If you had asked me yesterday, I would have accepted.

Confidence in counterfactuals about our own or others’ behaviour, for instance,
does not require us to settle the difficult philosophical question whether there are
laws of nature from which, together with cotenable facts, the consequent is de-
ducible from the antecedent. But on this account, the counterfactuals stand or fall
with the answer to this question. Here is a perfectly ordinary use of a counterfac-
tual: ‘They’re not at home; for the lights are off, and if they had been at home,
the lights would have been on’. You might believe this counterfactual even if you
are sure that their sitting in the dark is not inconsistent with the laws of nature plus
relevant facts. But on this theory, if you are sure that the consequent doesn’t follow
from laws etc., you should be sure that the counterfactual is false: it deserves zero
credibility.

Many of the counterfactuals we accept, about matches, human behaviour, etc.,
may be roughly on a par with

(3) If you had tossed this (fair) coin ten (or a hundred) times, it would have
landed heads at least once.

First, assume indeterminism. Then, on the law-governed account (3) is plainly
false: there is no way of deducing consequent from antecedent by law. If you

14Bennett [1984] surveys the later literature on the notion of cotenability, pp. 85–8. See also [Ben-
nett, 2003], chapter 20.



ON CONDITIONALS 141

know the facts, you know it is certainly false. It deserves zero credibility, and in
this respect is indistinguishable from ‘If you had tossed the coin ten (or a hundred)
times, it would have landed heads every time’. Indeed, it is no more believable
than

(4) If you had tossed the coin, it would have turned into a giraffe.

Second, assume determinism. Now, you didn’t toss the coin. Nor was it possible
for you to do so, given the laws and the past, under determinism. But assume you
had tossed it. The antecedent of (3) specifies a type of event that can be realised
in many different ways, and the consequent will be sensitive to exactly how you
had tossed it. Not all instances of tossing will bring the consequent out true, by
the deterministic laws. Again, (3) is plainly false, on this account, and deserves
no more credibility than (4).15 A theory of counterfactuals should explain why,
though (3) is not certain, it is plausible and credible while (4) is not.

The coin is merely an illustration of a general difficulty. For many of the things
that happen, the disjunction, indeterminism or fine-tuned determinism, is the safest
of bets. If we accept it, and the ‘law-governed’ account of counterfactuals, there
is some risk that all contingent counterfactuals whose consequents are at all spe-
cific, whose antecedents are not unutterably long and whose consequents are not
formulated specifically in terms of chances, turn out false. The explanatory and in-
ferential use we make of such counterfactuals as ‘If Mary had asked John to do the
shopping, he would have done it’, ‘If I had climbed over the wall, the dog would
have attacked me’, ‘If Bill had been in London, he would have been in touch’
would be vitiated.

4 POSSIBLE WORLDS SEMANTICS

4.1

With Saul Kripke’s semantics for modal logic [Kripke, 1963] came the revival of
the philosopher’s dream, a possible world. It is a promising tool for the eluci-
dation of non-truth-functional sentential connectives. It is certainly useful in the
formulation and clarification of modal thought. And it is natural to turn to it for an
elucidation of conditionals, which, on the face of it, are about possible situations.
In the late 1960s David Lewis, Robert Stalnaker and Richmond Thomason devel-
oped closely related theories, Stalnaker and Thomason for conditionals in general,

15On one interpretation of Davidson’s anomalous monism, (see ‘Mental Events’ in [Davidson,
1980]) counterfactuals with mental content will be like (3) under determinism. ‘If you had invited
me, I would have accepted’. Events of these mental kinds can be instantiated in various physical ways,
and it is under physical descriptions that they instantiate laws. It may be that the laws guarantee a
physical realisation of the consequent for many but not for all physical realisations of the antecedent.
(There are no strict laws statable in mental terms.) In such a case we would want the counterfactual to
come out as probable but not certain, while on Goodman’s account it comes out as certainly false.
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with only pragmatic differences between indicatives and counterfactuals, Lewis
just for counterfactuals. The opening sentence of Lewis’s Counterfactuals gives
the gist:

‘If kangaroos had no tails, they would topple over’ seems to me to
mean something like this: in any possible state of affairs in which
kangaroos have no tails, and which resembles our actual state of af-
fairs as much as kangaroos having no tails permits it to, the kangaroos
topple over. [Lewis, 1973, p. 1]

Stalnaker says:

Consider a possible world in which A is true, and which otherwise
differs minimally from the actual world. ‘If A, then B’ is true (false)
just in case B is true (false) in that possible world. [Stalnaker, 1968,
pp. 33–34]

Between Stalnaker and Lewis, there are differences in formulation, and some sub-
stantive differences, but also a difference in aim. Stalnaker’s project is less ambi-
tious. He does not expect there to be an informative analysis of ‘A-world which
differs minimally from the actual world’ which could be specified independently
of judgements about what would have been true if A were true. Lewis seeks a
genuine analysis of counterfactuals in terms which do not presuppose them.16

Similarity to the actual world plays the role in these theories which cotenability
plays in Goodman’s. Goodman’s truth conditions, in possible-world jargon, have
the form: ‘A → C’ is true iff in any possible world in which A is true and X is
satisfied, C is true. For Lewis and Stalnaker the problem of specifying X is the
problem of deciding which worlds are closest to actuality.

Similarity is, of course, vague. Comparing cities, or faces, or worlds, there may
be no determinate answer to the question: is A more similar to B than C is? But
equally, there may be no determinate answer to the question: what would have
happened if A had been true? Lewis’s aim is to analyze one vague notion in terms
of another. On the other hand, similarity is not so vague as to be useless. Often,
clear judgements can be made about the comparative overall similarity of cities,
people, etc., or of how lifelike as opposed to fantastical is a novel or a film.

16The analysis of counterfactuals is, for Lewis, part of a larger picture: causation is to be analyzed
in terms of counterfactuals, mental states defined as occupants of causal roles, semantic facts obtain
in virtue of mental states... His name for the project is ‘Humean Supervenience’, ‘all there is to the
world is a vast mosaic of local matters of particular fact, just one little thing and then another’ [Lewis,
1986, p. ix]. By assuming that there are other possible worlds besides this one, he hopes to be able to
reconcile most of what we believe in with an austere view of the fundamental nature of our world.

Lewis’s theory of counterfactuals is much more widely accepted than his theory of the nature of
possible worlds. I shall say nothing about the latter.
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4.2

Lewis’s truth conditions for counterfactuals are as follows:

(i) If A is true in no possible world, A� C is vacuously true.

(ii) A� C is non-vacuously true if and only if some A&C-world is closer to
the actual world than any A&¬C-world. ‘In other words, a counterfactual
is non-vacuously true iff it takes less of a departure from actuality to make
the consequent true along with the antecedent than it does to make the an-
tecedent true without the consequent’. [Lewis, 1979, p. 164]

If there is a unique closest A-world, A � C is true iff C is true at the closest A-
world. But there may not be: (a) there may be no A-worlds at all, in which case the
counterfactual is vacuously true; (b) there may be ties for first place, and C may be
true in some but not all of the closest. The literature abounds with examples like:

If Bizet and Verdi were compatriots, Bizet would be Italian;

If Bizet and Verdi were compatriots, Verdi would be French.

If the closest Bizet-and-Verdi-compatriot worlds contain some in which Bizet was
Italian and some in which Verdi was French, then, on Lewis’s account, both these
counterfactuals are false. (Here he differs from Stalnaker, for whom they have
no determinate truth value.) (c) Perhaps there is no closest A-world because for
any A-world there is a closer one. Consider a conditional of the form ‘If I were
taller than I am, C’. Consider a world in which I am an inch taller; then there
is a closer world in which I am half an inch taller; and so on, ad infinitum. For
Lewis, the conditional is true iff some taller-& -C-world is closer than any taller-&
-¬C-world. This has the mildly embarrassing consequence that, given that some
differences in height are too small to be detectable, ‘If I were taller than I am, no
one would know the difference’ comes out as incontrovertibly true. Again, suppose
you are a little taller than me, say half an inch taller. Then ‘If I were taller, I would
still be shorter than you’ also comes out absolutely certainly and obviously true;
whereas, ‘Well, maybe, but not necessarily’ is a common response to this thought.
This example is not very interesting in itself (one like it is mentioned by Lewis in
his case against the assumption that there must be a closest A-world); but it serves
to illustrate a question to which we shall return: why put all your eggs in the closest
baskets?

4.3

Lewis calls the counterfactual a ‘variably-strict conditional’. There is the material
conditional, A ⊃ B; there is the strict conditional, �(A ⊃ B) — in all possi-
ble worlds, A ⊃ B; we could define weaker strict conditionals with reference to
some subset of possible worlds, e.g. all those with our laws of nature; but for the
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counterfactual, the degree of strictness depends on the antecedent: we depart from
the actual world enough to include some A-world; throughout some ‘A-permitting
sphere’ of possible worlds, A ⊃ B is true. This explains some curious logical prop-
erties of counterfactuals. For example, a piece of masonry falls from the cornice
of a building, narrowly missing a worker. The foreman says: ‘If you had been
standing a foot to the left, you would have been killed; but if you had (also) been
wearing your hard hat, you would have been all right’; i.e. he says

S � K; but (S &H)� ¬K.

Strengthening of the antecedent fails for counterfactuals: the nearest S-worlds are
K-worlds; but the nearest S&H-worlds are ¬K-worlds.

Failures of strengthening are failures of transitivity; for (S &H) � S is obvi-
ously true; yet we have S � K true and (S &H) � K false. Other failures of
transitivity can be constructed, for instance:

(2) If Brown had been appointed, Jones would have resigned immediately after-
wards;

(1) If Jones had died before the appointment was made, Brown would have been
appointed; but not:

(3) If Jones had died before the appointment, Jones would have resigned imme-
diately after the appointment.17

Departing from reality enough to get Brown appointed has Jones resigning. De-
parting from it further, to get Jones dead, has Brown appointed. On this reading,
(3) does not follow.

It helped to get you to read (2) before (1); if (1) had come first you might
have said, after reading (2), ‘But not if he was dead!’. Crispin Wright [1983] has
argued that the same possible worlds should be in play throughout a single piece of
reasoning or discourse (see also [Lowe, 1990]). When they are, transitivity holds.
Wright’s intuition is mirrored in Lewis’s semantics by the validity of

A� B; (A&B)� C; so A� C.

This restricted transitivity prevents the first premiss from being ‘further out’ than
the second. Wright holds that the ‘A&’ is, as it were, silent, always contextually
implied, in the second premiss. Against Wright, the building foreman’s remarks
above, violating transitivity as they do, constitute a single, pointful piece of dis-
course; and one can believe both premisses about Brown and Jones. Naturally, if
one says something of the form ‘If A then B and if B then C’, there is presumed to
be some point in this utterance, and the most natural one (other than that of produc-
ing a philosophical counterexample) is that the hearer is being asked to conclude
that if A then C. But Lewis need not deny that.

17This example comes from Adams [1965].
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It is not as though we should have a bad conscience about all the times we have
used or accepted transitive reasoning. First, if the conditionals involved are neces-
sary or a priori, as in maths, logic and sometimes in philosophy, the reasoning does
not fail. In other cases the test is whether the second premiss, B � C, survives
the addition of A to the antecedent — survives conversion into ‘If B [still assuming
A], then C’. If it does, the conclusion follows. And it usually does. Wright hypoth-
esises that we always read the second premiss that way. So the same sentence as
second premiss will have a different content in different arguments. I don’t think
there is a deep issue here: we could go Wright’s way and save transitivity at the
price of increasing ambiguity or context-dependence. But the strengthening case
suggests we need not.

There are also failures of contraposition. Stalnaker’s example [Stalnaker, 1968,
p. 39]:

If the US had halted the bombing, North Vietnam would not have
agreed to negotiate;

but not: If North Vietnam had agreed to negotiate, the US would not
have halted the bombing.

And Conditional Proof fails. ‘¬(A&B); A; therefore ¬B’ is a valid argument form;
but ‘¬(A&B); therefore A � ¬B is invalid. Let A be ‘She was hit by a bomb
yesterday’ and B be ‘She was injured yesterday’; it does not follow from the falsity
of A&B that if she had been hit by a bomb, she would not have been injured, i.e.
that in the closest possible world in which she was hit by a bomb, she was not
injured.

4.4

Laws of nature are not mentioned in Lewis’s truth conditions. But he can explain
why they loom large in judgements about counterfactuals. Laws of nature are
important truths which say much about the character of the world. In general, the
difference between two worlds with the same laws will be less than the difference
between two worlds with different laws. If, in assessing counterfactuals, we stick
as close to the actual world as the specified difference allows, it follows that we
tend to consider worlds with the same laws as ours. Thus Lewis explains the
connection Goodman took as primitive. And, prima facie, he will have no difficulty
with examples like ‘If I’d known you were coming I’d have baked a cake’. There is
no requirement that the consequent be derivable from the antecedent and premisses
including laws.

‘Though similarities and differences in laws have some tendency to outweigh
differences or similarities in particular facts, I do not think they invariably do so’,
says Lewis [1973, p. 75]. His reason is as follows. A tree blows over, destroying
the roof of a house. Suppose our world is deterministic, at least with respect to the
causal chains connected to these events. Consider
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If the tree hadn’t blown over, the roof would be intact.

Now consider two possible worlds in which the tree didn’t blow over. In w1 the
laws are exactly the same as in the actual world. By hypothesis, the relevant laws
are deterministic. Then, as the tree didn’t blow over, something earlier must have
been different, and something earlier still, and so on, back to the beginning of time.
This different history has further forward consequences, and w1, at t, the time in
question, is staggeringly different from the actual world.

The history of w2 is just like the actual world until just before t. Then there is
a small, inconspicuous, violation of law — a ‘tiny miracle’ (relative to the laws of
the actual world), and the tree stays upright.

Which of these two worlds is most like the actual world? Surely w2, the one
which does not obey exactly our laws. Lewis writes ‘Laws are very important, but
great masses of particular fact count for something too. . . . I therefore proceed on
the assumption that the preeminence of laws. . . is a matter only of degree’ [Lewis,
1973, p. 75].

This is the beginning of an apparent difficulty for Lewis’s account.18 His single
guiding principle behind counterfactual judgements is overall similarity to the ac-
tual world. In opting for w2 rather than w1, we keep the past in line, at the price
of a ‘small miracle’. But the future of the actual world is very different from the
future of w2. Why not purchase future similarity at the price of another small mir-
acle which destroys the roof despite the tree remaining upright? Consider w3: like
w2, its history is just like the actual world to just before t. A small miracle prevents
the tree from falling over. But in w3 another small miracle — e.g., a lightning
bolt — destroys the roof. Its future is very similar to the actual world’s — some
inhabitants are killed, the family is homeless and impoverished, and further dire
consequences ensue. Back in w2, the family continues its peaceful existence, quite
unlike what happens in the actual world. w2, not w3, is the way things would have
been if the tree hadn’t blown over. But w3, not w2, is (arguably) the more similar
to the actual world — for a reason apparently symmetric with Lewis’s reason to
prefer w2 to w1.

The difficulty is general. It is often the case that if something had happened
which didn’t, the world would have been very different. Suppose Hitler had died
in infancy. Then things would have been quite different in the 1930s and 1940s.
But consider the world most similar to the actual world in which Hitler died in
infancy. (Here, if you prefer, just focus on the time between antecedent and conse-
quent.) That may be one in which some other child grew up to occupy a virtually
identical Hitler-like role. Not that that would have happened, mind you. Imagine
two films in which Hitler died in infancy. One of them has a non-Hitler doing all
the kinds of thing Hitler did. It strikes you as remarkably like the actual world,
almost indistinguishable from the newsreels. The other strikes you as a very plau-

18Lewis mentioned the problem [Lewis, 1973, p. 76]. It was pursued in two reviews of Counterfac-
tuals, [Bennett, 1974] and [Fine, 1975].
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sible account of how the world would have been without Hitler — rather different.
Judgements of similarity go one way, judgements about counterfactuals, the other.

Lewis replied to this objection, by specifying which aspects of similarity matter
most, on the ‘standard resolution of vagueness’ for counterfactuals. These are the
criteria:

(1) It is of the first importance to avoid big, widespread, diverse violations of
law.

(2) It is of the second importance to maximize the spatio-temporal region through-
out which perfect match of particular fact prevails.

(3) It is of the third importance to avoid even small, localized, simple violation
of law.

(4) It is of little or no importance to secure approximate similarity of particular
fact, even in matters which concern us greatly. [Lewis, 1979, pp. 47–48]

To see how these work, return to the tree. We are still operating under the assump-
tion of determinism. There was not perfect symmetry between Lewis’s case for w2

over w1, and my case for w3 over w2. In w2 the past is exactly the same as in the
actual world. In w3, the future is approximately the same as in the actual world;
but I did not imagine that the second miraculous disaster would make the world
exactly as it actually is, with the tree blown over. It would take a massive miracle
to secure perfect reconvergence to the actual world, and (1) rules out similar fu-
tures at that price. By (2), we prefer w2 to w1 as Lewis requires. w3 has two tiny
miracles, w2 only one, so, by (3), w2 is to be preferred to w3, despite the greater
approximate similarity of particular fact in w3, which, by (4), counts for ‘little or
nothing’. We get the right answer: the most similar world, by these criteria, is the
one that would have happened.

Lewis is not a determinist, and in a Postscript to this article [Lewis, 1986, pp.
58–65], he discusses what happens when we drop that assumption. A theory of
counterfactuals should not require determinism. Suppose there was some chance
that the tree would not blow over. So no small miracle is required to keep the
past in line in worlds in which it did not. Lewis puts most effort into arguing
that we should discount worlds in which, although the tree doesn’t blow over, a
‘quasi-miracle’ secures perfect reconvergence to the actual world. Even if this has
a non-zero chance of happening, such peculiar things19 don’t happen in worlds
similar to ours, he claims. Let us grant him this. But he is too cavalier about the
possibility, which also has a non-zero chance of occurring, of getting the worlds
approximately back in line again. He says:

19A quasi-miracle is not just a very improbable event. Very improbable events happen in this world
and those like it. ‘What makes a quasi-miracle is. . . the remarkable way in which the chance outcomes
seem to conspire to produce a pattern [like]. . . the monkey at the typewriter [producing] a 950-page
dissertation on. . . anti-realism’ [Lewis, 1986, p. 60].



148 DOROTHY EDGINGTON

The thing to say about approximate convergence remains the same.
Even if approximate convergence is cheap — and even if it is cheaper
still when it can be had without even a little miracle — still we can say
that it counts for little or nothing, so it is not the case that if Nixon had
pressed the button, there would have been approximate convergence
to our world, and no holocaust.20 [Lewis, 1986, p. 59].

Suppose there was a tiny chance at t (but no later than t) of (e.g.) a lightning bolt
destroying the roof. It didn’t happen: if the tree hadn’t blown over, the roof would
have been intact. But now w2 and w3 minus their miracles, and with the same
stretch of identical pasts, are equally suitable by criteria (1)–(3). If approximate
similarity counts for nothing, we have a tie, and have been given no guidance on
choosing between them. If approximate similarity counts for something, albeit
little rather than nothing, then, arguably, the wrong world (w3) wins. Similarly for
the Nixon example.

Consider Kennedy’s assassination. Suppose Oswald did it, acting alone, and
that if he hadn’t, no one else would have. Consider some possible worlds in which
Oswald had last-minute fright and did not shoot. Ex hypothesi, no one else even
thought of shooting Kennedy. But the crowd contained people carrying guns and
not averse to using them who couldn’t stand the man: assume, what may well be
true, that it was consistent with the laws of nature and the past that someone else
act on a sudden impulse to shoot. Again we have two possible worlds in which
Oswald didn’t do it, not distinguished by Lewis’ s criteria (1)–(3), one of which
is what would have happened; the other, in which someone else shoots, the more
approximately similar to ours. If this counts for nothing, a tie; if it counts a little,
similarity takes us in the wrong direction.

Should it be ‘little’ or ‘nothing’? Lewis [1986, p. 48] isn’t sure. Many examples
suggest that approximate similarity counts for something: ‘If I had bet on heads, I
would have won’; ‘If I had bought these shares last year, I would be rich today’;
‘If I had left 5 minutes earlier, I would have avoided the accident’; these do rely on
approximate similarity to the actual world after the divergence from perfect match
needed to get the antecedent true. There are countless examples like these. To say
‘nothing’ is to deny the truth of any counterfactual like ‘If I had got out of bed one
minute earlier, the result of the Swedish election would have been no different’.
The example which tempts Lewis to say ‘nothing’ is due to Pavel Tichy [1976]:
when Fred goes out, if the weather is bad, he always wears his hat; if the weather is
fine, it’s a random 50–50 whether he wears his hat. In fact the weather is bad, and
he wears his hat. Consider ‘If the weather had been fine, he would have worn his
hat’. The fine-weather world in which he does so is more like the actual world than
the fine-weather world in which he does not, but the counterfactual is not clearly
true.

It is not difficult to spot the difference between Tichy’s example and the earlier
ones. The weather is not causally independent of whether Fred wears his hat:

20This is the example, first used by Fine [1975], in terms of which Lewis conducts this discussion.
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fine weather reduces the chance from 100% to 50%. By contrast, my getting out
of bed is causally independent of the Swedish election, my buying shares has a
negligible effect on their price, etc. But Lewis does not allow himself access to the
notion of causation in analyzing counterfactuals, for they are to be used to analyze
causation [Lewis, 1973a, pp. 159–72]. His difficulty here generates further doubt
about whether the notion of similarity alone, however tailored, will yield the right
judgements about what would have been true if A had been true. Another doubt
about Lewis’s criteria was raised by John Pollock (mentioned by Bennett [1984, p.
68]): I leave my coat in a restaurant at noon, and return for it at midnight. A steady
stream of potential coat-thieves have passed it by, but it is still there. By Lewis’s
criterion (2) above, (p. 147), ‘If my coat had been stolen this p.m. it would have
been stolen very close to midnight’ comes out true.

4.5

Lewis’s elaborated theory has the effect that we stick to the laws of the actual
world at times later than the antecedent-time, t, when we evaluate counterfactuals,
and actual facts at times later that are unimportant at best. (We exclude worlds
with ‘quasi-miracles’ as well: this doesn’t concern me.). Recall that unless the
consequent is true in all closest antecedent-worlds, the counterfactual is false. Now
Lewis’s theory is in the same position as Goodman’s (see above, Section 3.4). If
the consequent is true in almost all close antecedent-worlds, the counterfactual is
false, and deserves zero credibility. Again,

(3) If you had tossed the coin ten times, it would have landed heads at least
once,

is no more worthy of belief than

(4) If you had tossed the coin ten times, it would have turned into a giraffe.

If indeterminism is rife, almost all counterfactuals about what would happen if you
had struck the match, invited me for dinner, etc., turn out false. And if determinism
is true but fine-grained, while there is no way that the antecedent could have come
about, given the laws and the past, the laws won’t guarantee the consequent for any
old small miracle getting the antecedent true — maybe the vast majority of ‘close’
ways of instantiating the antecedent will guarantee the consequent but the odd one
won’t. Then again, all such counterfactuals are false. Contingent counterfactu-
als, except those with very unspecific consequents (‘If you had tossed the coin, it
would have landed’, perhaps), or consequents about chances, or unutterably long
antecedents, will come out false.

Suppose we want the result that someone who knows the relevant facts (be
they indeterministic or fine-grained deterministic) should be almost, but not quite,
certain that (3). Then we should want something along these lines: a measure of
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the credibility of a counterfactual is the proportion of close A-worlds in which C is
true. But it is not clear what the truth of a counterfactual like (3) would consist in.

Where there is a tie for closeness and the consequent is true in some but not
all closest antecedent worlds, Stalnaker makes the conditional indeterminate —
neither determinately true nor determinately false [Stalnaker, 1981, p. 87]. This
is more promising from the point of view of the previous paragraph, for it is com-
patible with a counterfactual like (3) being ‘almost true’; whereas, for Lewis, it is
‘flatly, determinately false’ [Lewis, 1981, p. 331].

4.6

There is a related difficulty for Stalnaker and Lewis, mentioned on p. 252 above
(why put all your eggs in the closest basket?). Suppose, on the right account of
closeness, a B-world wins among antecedent-worlds, but ¬B-worlds are only a
hair’s breadth behind (as it were). A wins the election. If he hadn’t, it would take
minimally less departure from actuality for B to win than for C to win. For Lewis
and Stalnaker, ¬A� B is clearly true. It is not even true that C might have won if
A hadn’t, on either of Lewis’s readings of ‘might have’ [Lewis, 1986, pp. 63–64].
If we find it more acceptable to say that it is only probable that B would have won
if A hadn’t, we are taking a probability distribution over close ¬A-worlds, which
is consonant with how, I suggest, we should react to (3). I turn to a theory of
uncertain conditional judgements.

5 CONDITIONAL UNCERTAINTY

5.1

You may be sure that B if A, but often you will be less than sure (e.g. that the
patient will recover if he has the operation). There are different degrees of uncer-
tainty. You may be nearly sure, fairly sure, think it more likely than not, less likely
than not, down to being certain that it’s not the case that B if A. The same goes
for propositions in general. Our capacity for a spectrum of epistemic attitudes to-
wards a proposition is important in our deliberations about what to do, and what
else to think. Often certainty is unachievable, and near-certainty is nearly as good.
One application of the theory of probability is to provide a ‘logic of partial be-
lief’ as Ramsey called it in his 1926 paper ‘Truth and Probability’ [1931, p. 166].
The theory has its own way of expressing conditional uncertainty — you don’t
get far in the study of probability without meeting the ‘conditional probability of
B given A’. In his 1929 paper ‘General Propositions and Causality’ Ramsey sug-
gested that deliberation about whether if A, B fits the probabilistic model [Ramsey,
1931, pp. 246–47]. In the 1960s and 1970s several philosophers sought illumina-
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tion about conditionals from this source.21

Any theory of conditionals has consequences for less-than-certain judgements.
Something is proposed of the form: ‘If A, B’ is true iff A∗B.22 If a clear-headed per-
son, free from confusions of a logical, linguistic or referential sort, can be nearly
sure that A ∗ B yet far from sure that if A, B, or vice versa, then this is strong ev-
idence against the proposal. I am not suggesting that a competent user of ‘if’ has
figured out the correct theory of conditionals. But if a theory states an equivalence
between items of belief to which competent users stably, incorrigibly and unhesi-
tatingly take different attitudes (and their practice serves them well), then, on the
face of it, the theory is wrong. At best, it has a lot of explaining to do of massive
error; and it is hard to see what would convince us, in a case like ‘if’, that the
people are wrong and the theory is right.

We have already seen this pattern of argument at work:

(1) Proposal: ‘If A, B’ is true iff A ⊃ B, i.e. ¬A ∨ B. Objection: suppose I’m
90% certain that ¬A, hence 90% certain that a sufficient condition for the
truth of the right hand side is satisfied, yet 0% certain that if A, B. (Let A
be ‘The Queen is at home’ and B be ‘She’s worrying about me’. See pp.
135–135 above.) If the proposal were correct, I would be guilty of gross
irrationality. But I am not, so the proposal is incorrect.

(2) Proposal: a counterfactual ‘A → B’ is true iff B is deducible from A + laws
of nature + suitable facts. Objection: (a) I may be highly sceptical about
whether ‘The lights are on’ is deducible from ‘They are at home’ + laws of
nature etc., yet close to certain that if they had been at home, the lights would
have been on. (b) I am sure that it is not the case that ‘The coin landed heads
at least once’ is deducible from ‘The coin was tossed ten times’ + laws of
nature etc. Yet I am close to certain that if it had been tossed ten times, it
would have landed heads at least once. (See above, pp. 140–141.)

(3) Proposal: a counterfactual ‘A � B’ is true iff B is true at all closest A-
worlds. Objection: (a) take the coin example. I am sure that (even if de-
terminism is true) it’ s not the case that the consequent is true at all closest
antecedent-worlds (but only in the vast majority of them). Yet I am close to
certain that if the coin had been tossed ten times, it would have landed heads
at least once. (b) I am certain that a world in which I am taller than I actually
am and still shorter than you is closer to the actual world than any world in
which I am taller than I actually am but not shorter than you. But I am less
than certain that if I had been taller, I would still have been shorter than you.

21Richard Jeffrey [1964] published an abstract of a paper on this theme. Ernest Adams, [1965; 1966;
1975] has done most to develop this line of thought. See also Brian Ellis [1973] and Robert Stalnaker
[1970] for early work on this idea.

22Not every theory must take this form. Our present interest is in those which do.
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Some degree of uncertainty is the norm for the contingent conditionals we meet
every day. It is not a peripheral objection to a theory that it gets uncertain judge-
ments wrong. Can we find a substitution for A ∗ B which is immune to this objec-
tion? To find out, we must first turn to the logic of less-than-certain judgements.

5.2

Extend the term ‘belief’ to include partial belief. If we idealise by expressing a
person’s degree of belief23 in a proposition as a number between 1 (for certainty
that it’s true) and 0 (for certainty that it’s false),24 then it can be shown that satis-
fying the principles of probability theory is a requirement of consistency25 upon a
person’s degrees of belief. Call ‘a partition’ a set of propositions which are mu-
tually exclusive and jointly exhaustive — not more than one of them can be true,
and it must be that one of them is true. The claim that degrees of belief behave
like probabilities is the claim that your degrees of belief in the members of a par-
tition should sum to 1. Some consequences of this claim:26 (1) Your degree of
belief in ¬A should be one minus your degree of belief in A (because {A,¬A} is a
partition). (2) If you recognise that A and B are incompatible, then your degree of
belief in A ∨ B should be the sum of your degrees of belief in A and in B (because
{A, B,¬A&¬B} and {A ∨ B,¬A&¬B} are both partitions). (3) Your degree of be-
lief in A should be the sum of your degrees of belief in A&B and A&¬B (because
{A,¬A} and {A&B, A&¬B,¬A} are both partitions). (4) If you recognise that A
entails B, then your degree of belief in A should not be greater than your degree of
belief in B. (Write ‘b(-)’ for your degree of belief in (-). Recognising that A entails
B, you have b(A&¬B)= 0. So b(A) = b(A&B), by (3). b(B) = b(A&B) + b(¬A&B)
≥ b(A).) (5) If you recognise that A and B are logically equivalent, you should have
the same degree of belief in each (from (4)).

A partition slices up a space of possibilities. It is convenient to represent appli-
cations of the Partition Principle by pictures, as in Figure 1.

The rectangles are of height 1. The internal horizontal lines represent how

23I now think ‘degree of belief’ is not the best name for one’s degree of closeness to certainty, given
that ‘belief’ also has an entrenched ‘absolute’ use such that one definitely does not believe something
which one judges to be, say 40% likely. The technical term ‘credence’ is to be preferred for degree of
closeness to certainty. However, I have not altered the text.

24For many things that come in degrees, it is a useful idealisation to represent degrees numerically.
For then we can use relations between numbers (arithmetic) in our theory of relations between degrees.
This — often in physics as well as in philosophy — represents the phenomena as more precise than
they really are. Such is the nature of idealisations — but their utility is beyond doubt. The test of the
adequacy of an idealisation is that it deliver results of the right order of magnitude.

25Consistency is not the only virtue of a set of partial beliefs. But it is all that concerns us here, in
investigating the logical relations between degrees of belief.

26Here I assume that A and B are bivalent propositions. It will be important later that we need not
assume this. We could allow for truth-value gaps, indeterminate or intermediate values, provided we
read ‘¬’ as ‘It is not true that’ rather than ‘It is false that’.
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b(A) + b(¬A) = 1 A and B in-
compatible
b(A ∨ B) =
b(A) + b(B)

b(A) = b(A&B)
+b(A&¬B)

A entails B
b(B) ≥ b(A)

A and B
equivalent
b(A) = b(B)

Figure 1.

you divide your belief between the possibilities, in accordance with the Partition
Principle.

The other ‘fundamental law of probable belief’ introduces the idea of a condi-
tional probability:

(CB) Degree of belief in (p and q) = degree of belief in p × degree of
belief in q given p [Ramsey, 1931, p. 181].

This was not an innovation. Thomas Bayes, in an essay published posthumously
in 1763, has as Proposition 3 ‘The probability that two. . . events will both happen
is. . . the probability of the first, [multiplied by] the probability of the second on the
supposition that the first happens’ [Bayes, 1940, p. 378], (my italics). The Fourth
Principle of Laplace’s Essai philosophique sur les probabilités (Laplace, 1795, in
[Laplace, 1951, p. 14]) is the same.27 The notion of a conditional probability
— the probability that B on the supposition that A — plays a big role in many
applications of the theory of probability. Now ‘on the supposition that A’ and
‘given A’ would appear to be mere stylistic variations on ‘if A’. So, it would seem,
CB states a logical relation which should hold between your degrees of belief in
B if A, A&B, and A. Again writing ‘b’ for ‘your degree of belief in’, it may be
rewritten

b(B if A) = b(A&B)/b(A).

27Nor was it an innovation to think of probabilities as degrees of epistemic uncertainty. The title of
Bernoulli’s famous work (1713) is Ars Conjectandi — the art of conjecturing. What was new was the
argument that degrees of belief have the structure of probability.
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Call this ‘The Thesis’.
Examples of CB at work: your degree of belief in A&B is not in general deter-

mined by your degrees of belief in A and in B. Suppose you have degrees of belief
1/2 in each of the following: heads on toss 1 (H1); tails on toss 1 (T1); not tails
on toss 1 (¬T1); and heads on toss 2 (H2); yet b(H1&T1) = 0, b(H1&¬T1) = 1/2,
b(H1&H2) = 1/4. The difference lies not in your degrees of belief in the conjuncts,
but in the facts that b(T1 if H1) = 0, b(¬T1 if H1) = 1, b(H2 if H1) = 1/2. Each
case is an instance of b(A&B) = b(A) x b(B if A).

Another illustration: the examiner is to select at random one of five topics for
the exam. You are around 90% certain that Jim will pass if one of the three Nice
Topics is selected, but only about 30% certain that he will pass if a Nasty Topic
(conditionals or probability) is selected. How confident should you be that he will
pass? Well, the 60% chance of a Nice Topic divides into: Nice Topic and Pass
(90% of 60%); Nice Topic and Not Pass (10% of 60%). The 40% chance of a
Nasty Topic divides into Nasty and Pass (30% of 40%); Nasty and Not Pass (70%
of 40%). The probability that he will pass is the probability of (Nice Topic and
Pass) plus the probability of (Nasty Topic and Pass) which is (90% of 60%) +
(30% of 40%) = 54% + 12% = 66%.

40 %

60 %

28 %¬P

12 %P

6 %¬P

54 %P©

§

These examples used the word ‘if’, naturally enough, in accordance with the
Thesis. When we come to compare the Thesis with rival accounts of ‘if’, we can-
not hijack the word. The standard notation for ‘the probability of B given A’, un-
derstood according to CB, is ‘p(B|A)’. Stressing the interpretation of probability as
degree of belief, we may write ‘b(B|A)’. The standard notation (which I will use)
is potentially misleading, we shall see, and would be better rendered ‘cp(B|A)’,
‘cb(B|A)’. More perspicuous still, perhaps, would be ‘pA(B)’, or ‘bA(B)’. For your
present cb(B|A) is your degree of belief in B, not in your present belief distribution,
b, but in a hypothetical belief distribution, bA, derived from your actual distribu-
tion, b, by assuming that A — eliminating the ¬A-possibilities — and keeping the
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relative probabilities of all the A-possibilities unchanged.

1

¬A

¬B

B
A

b

1

¬B

B
A

bA

In the pictures, let b(A) = 0.5, b(A&B) = 0.4 and b(A&¬B) = 0.1. bA(B) =
b(A&B)/b(A) = 0.8. (Note, the Partition Principle applies to bA as much as to
b : bA(B) + bA(¬B) = 1; if B and C are incompatible, bA(B ∨C) = bA(B) + bA(C),
etc.)

So we have a substantive Thesis about what it is for you to be more or less con-
fident that B if A. You assume A. Under that assumption, you judge it more or less
likely that B. And this judgement is equivalent to your judgement of the relative
likelihood of A&B and A. Your degree of belief in an unconditional proposition,
that it will rain tomorrow, is proportional to your relative confidence in rain as
opposed to no rain: if you think it 9 times more likely that it will rain than that
it will not, your degree of belief in rain is 0.9. Your conditional degree of belief
that the party will be cancelled (C) if it rains (R), is proportional to your relative
confidence in R&C as opposed to R&¬C: if you think it 9 times more likely that
it will rain and the party will be cancelled, than it is that it will rain and the party
won’t be cancelled, your degree of belief that it will be cancelled if it rains is 0.9.
If you are sure that B if A, e.g. that it has 4 sides if it’s square, then b(A&B) = b(A)
and b(A&¬B) = 0; your degree of belief in ¬B if A is 0. You are nearly sure to
the extent that b(A&B) and b(A) are close, and b(A&¬B) is a small fraction of b(A)
and of b(A&B).

Ramsey suggested the Thesis:

If two people are arguing ‘If p will q?’ and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge and
arguing on that basis about q; ... they are fixing their degrees of belief
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in q given p. [Ramsey, 1931, p. 247]

5.3

Further features of conditional degrees of belief need comment.
(1) The ratio b(A&B)/b(A) is not defined when b(A)= 0. It is plausible that

the indicative conditional is used only if the antecedent is taken as an epistemic
possibility, as not certainly false, by the speaker (thinker) — at least for the sake of
argument, at least temporarily, at least to co-operate with her audience. So this is,
in the first instance, an exercise in understanding indicative conditionals. Certainty
being a vague and shifty notion,28 there are few things that you cannot take as
an epistemic possibility, as all the famous sceptical hypotheses show. Descartes
searched for such things, and his findings lend some support to this restriction on
indicative conditionals. A conditional may begin ‘If I had not existed’, or ‘If I
don’t exist tomorrow’. ‘If I did not exist yesterday’ may get off the ground in the
context of a discussion of scepticism; but there is no thought which begins ‘If I
don’t exist now’: this is a non-starter.

Adams [1975, Ch. 4] and Brian Skyrms [1981; 1994] suggest (in slightly differ-
ent ways) that the Thesis can be extended to counterfactuals, along the following
lines: confidence in the counterfactual expresses the judgement that it was proba-
ble that B given A, at a time when A had non-zero probability, even if it no longer
does; and even if you do not now have a high degree of belief in B given A.

Probabilities change with time, as live possibilities get eliminated. Think of
your favourite thriller: the hero is doomed, escapes with amazing luck, victory
seems assured when luck switches to the villain. You bet on 3 heads in a row.
Your probability of winning is 1

8 . After one toss, your probability of winning has
changed — it is either 1

4 or 0, depending on the outcome of the first toss. We make
judgements about what was probable — was to be expected, was to be expected if
we assume such-and-such — as well as about what is probable.

If the Thesis applies to indicative conditionals, an extension to counterfactuals
is prima facie desirable. The close links between conditional judgements of the
different forms strongly suggest that what makes you confident that (e.g.) you will
be ill if you eat the apple, also makes you confident, after you have thrown it away,
that you would have been ill if you had eaten it — the conditional probability of
illness given eating was high. Returning to another example (p. 132 above), the
doctor observes certain symptoms. Her degree of belief that the patient has these
symptoms is roughly 1; and the assumption that the patient took arsenic has no
effect on it: she thinks that if the patient took arsenic, he has these symptoms; and
if the patient didn’t take arsenic, he has these symptoms. But she thinks that the
conditional probability of symptoms given arsenic was high, while the conditional
probability of symptoms given no arsenic was low; that is, she thinks it was likely

28I mean, there is no sharp context-free distinction between certainty and its near neighbours.
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that the patient would get these symptoms, given that he took arsenic; and was
unlikely that he would get these symptoms, given that he did not take arsenic. She
infers from these judgements that the patient probably took arsenic. Returning to
yet another example: I can think it was improbable, before the killing that anyone
other than Oswald would kill Kennedy. I agree with the judgement which, before
the killing, would be expressed by ‘If Oswald doesn’t do it, no one else will’. But,
in the light of what is now known, I am sure that someone else did it if Oswald
didn’t.

But this is looking ahead. We shall restrict attention to indicatives for the time
being.

(2) In mathematical expositions of probability one reads ‘p(B given A) =df

p(A&B)/p(A) (provided p(A) � 0), and some philosophers (for example, Lewis
[1976, p. 133]) follow suit. A mathematical exposition will start with a com-
plete probability distribution over a partition — an assignment of numbers to the
members or ‘worlds’,29 which sum to 1. The probability of any (unconditional)
proposition is the sum of the probabilities of the worlds in which it is true. The
distribution determines p(A) and p(A&B), in terms of which p(B|A) is defined.
This is fine mathematically, but it is at best misleading in epistemic applications
of the theory; for it suggests that you need to have determined b(A) and b(A&B) in
order to arrive at b(B given A). That would prevent us from working out b(A&B)
from b(A) and b(B|A). In the example of the exam (p. 154) — hardly untypical
in structure — we ended up with a partition, constructed from the inputs b(nice),
b(pass|nice) and b(pass|not nice). Ramsey’s multiplication rule, CB, would col-
lapse into the identity, b(A&B) = b(A&B), using this ‘definition’. Also, we often
have a degree of belief in B given A when we have not determined what we think
about A. One important case is when I am deliberating about what to do: A has the
form ‘I do x’, and B is a possible consequence of doing x. It would be absurd to
hold that I have to figure out how likely it is that I will do x, before I can arrive at
a judgement b(B|A).

The natural order of human thinking is not the same thing as the most
elegant order of mathematical exposition.30 Humans are not endowed with com-
plete belief-distributions over the finest partitions they need to consider. They need
to work out some degrees of belief (as the need arises) in terms of others which
are more readily accessible. b(B|A) can be accessible en route to b(A&B), and can

29It is convenient to think of the elements of a partition — the finest distinctions among possibilities
which are needed for the purpose at hand — as ‘worlds’. They are not ultimate possibilities — not
complete ways the world might be, however. We are not capable of thinking of possibilities in complete
detail. They are what Kripke calls ‘mini-worlds’ in the Preface to Naming and Necessity, [Kripke, 1972,
pp. 16–18].

30Russell, in the introduction to the second edition of Principia Mathematica, takes the reduction of
all truth-functions to the Sheffer stroke to be ‘the most definite improvement... during the past fourteen
years [since the first edition]’ [Russell and Whitehead, 1962, p. xiii]. But ‘Neither (neither P nor P)
nor (neither Q nor Q)’ is hardly epistemically more basic than ‘P and Q’. Nor could one come by the
truth that 2+2 = 4 via the theorem to that effect in Volume 2 of Principia Mathematica.
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be accessible when b(A) is not (for humans, fortunately, are capable of supposing).
The same must be said of another ‘definition’: A and B are probabilistically inde-
pendent iff p(A) = p(A given B). This does not prevent me from judging that rain
in China tomorrow is independent of my finishing this paper next week without
having first decided what these probabilities, conditional and unconditional, are
and then noticing that they are equal. Whether we see epistemic probability theory
as the logic of uncertainty (as I do) or as the mechanics of cognition (as some do)
it does not work ‘from the bottom up’:31 judgements of independence constrain
judgements of unconditional and conditional probability and judgements of condi-
tional probability fix ratios of unconditional probabilities.32 It is perfectly possible
to operate with the constraint that (unless or until something should change my
mind) b(A&B) = 0.9b(A) in advance of settling b(A). The Thesis says that doing
so is tantamount to being 90% certain that if A, B. The thought process behind this
judgement: assume A; under that assumption, I’m 90% certain that B.

A ratio can be determinate whose numerator and denominator are not. I look
at my speedometer, which tells me, in its inscrutable way, that I am now doing
30 miles per hour. ‘Now’ refers not to a dimensionless instant, but to a short but
indeterminate stretch of time. Velocity is distance divided by time. We do not
have to resolve the indeterminacy of the time — for however we do so, the ratio is
fixed (within limits) and meaningful. Conditional degree of belief is an interesting
concept to the extent that the ratios are stable fixtures of a belief system, which can
be settled independently of b(A) and b(A&B).33

(3) A feature of the Thesis to which some people object34 is that belief that
A&B is sufficient for belief that B if A. The Thesis shares this feature with the
truth-functional conditional, and with Stalnaker’s possible-worlds analysis of in-
dicative conditionals: if you believe A&B, you believe a sufficient condition for
the truth of A⊃B; and you believe that the A-world which differs minimally from
the actual world — viz., the actual world itself — is a B-world. Still, it is com-
monly complained, conditionals with parts which are mutually irrelevant, like ‘If
Napoleon is dead, Oxford is in England’ are not acceptable, or even, false.

Our interest in conditionals centres on the case where we’re not sure whether
A, not sure whether B, but the supposition that A has some bearing on whether
B. I’m not sure whether Jim will pass, but pretty sure that if a Nice Topic comes
up he will pass. But let us consider the consequences of the Thesis for the less
interesting cases. First, suppose you are already sure that A. Then supposing that

31Think of a ‘world’ as a state-description. Suppose there are six logically independent propositions
to be considered in a given problem. The 64 state-descriptions (or lines of a truth table) of 6 conjuncts
form a partition. ‘From the bottom up’ means that we start by assigning probabilities to these.

32Pearl [1988] does much to make the theory computationally tractable as the mechanics of cogni-
tion, by giving beliefs about independencies a fundamental role.

33D. H. Mellor [1993] dismisses the ratio as an account of conditional belief on the grounds that b(B
if A) can exist when b(A) does not. This is an over-reaction. No defender of the Thesis thinks b(A)
must be fixed before b(B if A).

34For instance Mellor [1993], Pendlebury [1989], and Read [1995].
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A changes nothing: your belief distribution b already rules out ¬A, and so is the
same as bA. Your degree of belief in any proposition, B, on the assumption that A,
is simply your degree of belief in B. So, if you are already sure that B as well as A,
you are sure that B if A. Most instances of this kind will be of no interest. But it
is too much to ask that all acceptable conditionals be interesting. It is enough that
you do not doubt that B is true, on the assumption that A is.

Suppose you think that B is true. It does not follow that for any supposition, A,
you will believe that B if A. For A might be the sort of supposition which would
undermine your belief that B. But if you consider A to be irrelevant to B, the sup-
position that A leaves your belief that B undisturbed. For instance, I believe that
the match will be cancelled; for all the players have flu. I believe that the match
will be cancelled whether or not it rains. I think it will be cancelled if it rains, and
I think it will be cancelled if it doesn’t rain. (Saying ‘The match will be cancelled
if it rains’ is likely to be misleading in this situation. To reject Grice’s defence of
the truth-functional conditional is not to reject wholesale the Gricean thought that
you can mislead your audience by expressing a belief, when there is something
more appropriate you could have said.) On the other hand, although I believe that
the match will be cancelled, I don’t believe that if the players make a very speedy
recovery the match will be cancelled. For that supposition does unsettle my belief.

Mellor [1993] defends a close cousin of the Thesis, but jettisons this feature: he
does not, he says, accept ‘If France is big, Egypt is hot’ (although he is certain of
both conjuncts). ‘I am not at all disposed to infer Egypt’s heat from France’s size’
(pp. 247–8). Being disposed to infer B from A is one way he characterises accept-
ing a conditional, which he elaborates: ‘In other words, fully to accept ... ‘If P,
Q’ is to be disposed fully to believe Q if I fully believe P’. He also endorses Ram-
sey’s explanation of conditional degrees of belief in terms of conditional bets: ‘My
choice of odds for. . . a conditional bet [on Q, conditional upon P] I take to measure
the degree of belief I now believe I am disposed to have in Q if I fully believe P’
(p. 234, fn. 5). But if betting tests work at all, they will show Mellor believing ‘If
France is big, Egypt is hot’. A conditional bet is a bet on the consequent, which
is called off if the antecedent is false. He is sure, in this case, that the antecedent
is true, and hence that the bet won’t be called off. It is, in his eyes, equivalent to
a bet on the consequent. His choice of odds will reflect his belief that the conse-
quent is true, and his belief that it is true if the antecedent is. So Mellor does not
have a consistent position on this issue. Elsewhere in his argument, Mellor says
he accepts, speaking of a visibly blue bird, ‘If that’s a canary, it’s not yellow’ (p.
245). So, I think, he should. But he is no more (or less) disposed to infer ‘It’s
not yellow’ from ‘It’s a canary’ than he is to infer ‘Egypt is hot’ from ‘France is
big’. On a liberal interpretation, ‘to accept a conditional is to be disposed to infer
consequent from antecedent’ does apply here. Your other beliefs must, in general,
be appealed to in these inferences. But then, if Q is one of your other beliefs, Q
follows from the assumption that P together with your other beliefs.

Relevance is a context-dependent matter. Any two logically independent propo-
sitions are mutually relevant in some contexts, and mutually irrelevant in others.
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Thomson [1990] has the example of someone coming home saying ‘If there’s
a book on my coffee table, two Great Danes arrived at Paddington Station this
morning’ — and tells a story in which the remark is apposite. The relevance of
the symptoms to the question whether I have the disease ceases after more direct
tests have been carried out. The relevance of antecedent to consequent in a con-
tingent conditional ceases when the truth value of the consequent is established by
perception. A defender of the Thesis (or the truth-functional conditional, or Stal-
naker’s conditional) will claim that questions of relevance belong to the pragmatics
of communication. This is, I think, what Lewis calls a ‘spoils to the victor’ issue:
if the best overall theory allows that there are boring but acceptable conditionals
with mutually irrelevant parts, so be it. If not, not.

(4) It would be wrong to read ‘It is probable that B given A’ as ‘If A, then (it is
probable that B)’. This would be like the so-called ‘modal fallacy’ — of reading
‘If he’s sitting down, then necessarily, he’s not standing up’ with ‘necessarily’
qualifying the consequent rather than the whole thought. The modal fallacy has
the consequence that all truths are necessary truths: if A, then necessarily A. And
in this context it has the consequence that all probabilities are 1 or 0. For the
probability of A given A is 1, and the probability of A given ¬A is 0. If we read
this: if A, then p(A) = 1; if ¬A, then p(A) = 0; then, granted A∨¬A, we could
validly derive that p(A) = 1 or p(A) = 0. ‘I’m sure that A if A’ does not have the
consequence that if A (is true), then I’m sure that A (is true).

It is less of a howler to think of your degree of belief in B given A as the degree
of belief you would have in B if you were certain that A. This is typically correct,
but not invariably so. For there are all sort of ways you might learn that A. You
think the match will light if struck. You learn that it is being struck. Typically, you
then think it will light. But not if you learn that it is being struck at the bottom of
a swimming pool.

Admittedly, in this last example, you did not expect it to be struck in this way,
or else you wouldn’t have thought it would light if struck. So perhaps thinking that
B if A is being presently disposed to believe B if you learn that A. Mellor [1993]
suggests this.35 But this won’t quite do either — there is one particular kind of
counterexample:

If Reagan was in the pay of the KGB, we’ll never find out.

Suppose Reagan was in the pay of the KGB; then, I judge, it’s likely that we’ll
never find out. But if I were to learn that he was in the pay of the KGB, I would not
think it likely that we’ll never find out! Nor, pace Mellor, am I presently disposed
to believe the consequent on learning the antecedent. What the example shows is
that supposing that something is true is not always equivalent to supposing you
know it’s true, or pretending you’re certain that it’s true.36

35Mellor does not call this a judgement of conditional probability, reserving that name for something
he distinguishes from it and rejects. See fn. 33 above.

36W. V. O. Quine [1966, pp. 22–3], makes this distinction in his solution to the surprise examination
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‘The probability that (your degree of belief in) B on the supposition that A’
is intelligible as it stands: these further attempts to gloss it are unsuccessful and
unnecessary.

Another idiom comes in handy. Take the special case where you have a parti-
tion, fine enough for the problem at hand, of equally likely alternatives, or ‘worlds’.
The probability of an unconditional proposition (A,¬A, A&B, etc.) is the propor-
tion of worlds in which it is true. The probability of B given A is the proportion
of A-worlds which are B-worlds. (The proportion of A&B-worlds is the proportion
of A-worlds, multiplied by the proportion of A-worlds which are B-worlds.) If we
drop the simplifying assumption that each alternative is equally likely, we have to
replace ‘proportion’ by ‘weighted proportion’, where the weights are the probabil-
ities of the worlds. Just focusing on a single probability distribution, we can stick
to the simpler idiom by artificially subdividing the weightier worlds into slimmer
ones, indistinguishable for the purposes at hand, until each proposition is true at
some number of equally likely worlds.37 We mirror the structure of conditional
and unconditional probabilities by the phrases ‘proportion of A-worlds which are
B-worlds’ and ‘proportion of worlds which are A-worlds’.

6 THE BOMBSHELL38

6.1

At the beginning of Section 5 we considered a form of objection to various pro-
posed truth conditions for conditionals: that a clear-headed person could have less
confidence in the conditional than in the satisfaction of the proposed truth condi-
tion, or vice versa. At the end of Section 5.1 we asked: can we find a truth condi-
tion which is immune from this objection? We turned to a theory of uncertainty,
and arrived at the Thesis: a logical relation which governs your degrees of belief
in B if A, A&B, and A. Can we find truth conditions for conditionals39 which fit
the Thesis? Take any two logically independent propositions, e.g. ‘Ann is in Paris’
and ‘Bill is in Paris’; call them A and B; suppose you have a conditional degree of
belief in B given A. Which truth conditions (if any) are such that your degree of
belief in their obtaining must match your conditional degree of belief in B given
A? Can we find a proposition X such that, in any consistent belief distribution over
the relevant propositions in which b(A)�= 0,

paradox. Examples like this are due to Thomason (see [van Fraassen, 1980, p. 503]). This example is
Lewis’s [Lewis, 1986, p. 155].

37To the diagram on p. 155, superimpose as many equally-spaced horizontal lines as you need to get
each member of the partition true in some number of elements of the resulting partition of equally-likely
‘worlds’.

38So described by Bas Van Fraassen [1976, p. 273]; and by Stalnaker in a letter to Van Fraassen
published therein, p. 302.

39We are concerned here with indicative conditionals (see pp. 156–157 above). The possibility of
extending the Thesis to counterfactuals is discussed in Section 10.
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b(X) = b(B given A) [henceforth, the Equation]

so that we may say, consistently with the Thesis, ‘If A, B’ is true if and only if X?
There can be different epistemic attitudes to the same proposition. We seek

an X such that b(X) and b(B|A) = b(A&B)/b(A) cannot coherently come apart:
an interpretation such that for all consistent distributions of belief over the rele-
vant domain,40 b(X) = b(A&B)/b(A). In a given belief distribution, there may of
course be a proposition C (or several such propositions) which you believe to the
same degree as you believe B given A. But if someone else, or you in a different
information state, may consistently think C more, or less, likely than B given A, C
is not the X we seek.

The bombshell is that no proposition at all satisfies the Equation. If we stick
by the Thesis, we must not think of conditionals as propositions, as truth bearers.
If belief that if A, B fits the Thesis, it is nonsense even to say things of the form
“ ‘If A, B’ is true if and only if, if A, B”. Your degree of belief that B is true, on
the supposition that A is true, cannot be consistently and systematically equated to
your degree of belief that something is true, simpliciter.

Some pre-bombshell writings foretold this result. Gilbert Ryle [1950] recom-
mended thinking of conditionals as ‘inference tickets’ rather than statements. John
Mackie [1973, p. 93] construed saying ‘If A, B’ as asserting that B within the scope
of the supposition that A, and said this view ‘abandons the claim that conditionals
are in a strict sense statements,. . . that they are in general simply true or simply
false’. Adams [1965, pp. 169–170; 1966, pp. 265–266] expressed doubts about
the application of truth to conditionals, and developed a logic for conditionals
construed in accordance with the Thesis.

But there was no strong reason for holding that there must be an opposition
between (e.g.) asserting that B under the supposition that A, and saying something
true. Indeed, it was (and is) hard to see how there could be an opposition: must
there not be a distinction between when it is right, and when it is wrong, to assert
that B under the supposition that A, which will yield a notion of truth and falsity?

Stalnaker [1968] fully endorsed Ramsey’s account of conditional belief: add the
antecedent hypothetically to your stock of beliefs, and consider whether you be-
lieve the consequent under that hypothesis. He sought appropriate truth conditions
to match:

Now we have found an answer to the question, ‘How do we decide
whether or not we believe a conditional statement?’ the problem is
to make the transition from belief conditions to truth conditions; that
is, to find a set of truth conditions for statements of conditional form
which explains why we use the method we do use to evaluate them.
The concept of a possible world is just what we need to make this
transition, since a possible world is the ontological analogue of a stock

40I shall take the qualification ‘in which b(A) � 0’ for granted except when it is specially important.
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of hypothetical beliefs. The following set of truth conditions, using
this notion, is a first approximation to the account I shall propose:

Consider a possible world in which A is true, and which otherwise
differs minimally from the actual world. ‘If A, then B’ is true (false)
just in case B is true (false) in that possible world. [Stalnaker, 1968,
pp. 33–34]

This was the first appearance in print of the ‘nearest possible world’ approach
to conditionals, and it was designed to provide the ‘ontological analogue’ of the
Thesis. Stalnaker left probabilistic considerations aside in this introductory paper,
announcing in a footnote (n. 17, p. 43) that these would be elaborated subsequently
[Stalnaker, 1970]. But they were in the background. The same footnote refers to
Adams [1966], who had shown, for instance, that there are plausible counterex-
amples to transitivity, strengthening and contraposition, and that this was to be
expected for conditionals which satisfied the Thesis. (The logic Adams developed
on the basis of the Thesis is discussed below in Section 7.2.) Stalnaker gave his
own counterexamples to these inference patterns [Stalnaker, 1968, pp. 38–39],
and formulated a logic which is identical to Adams’ over their common domain.
(Adams’ logic is restricted to sentences in which ‘if’, if it occurs at all, occurs as
the main connective. Stalnaker’s is not so restricted: once we have truth condi-
tions, we have something which embeds naturally in longer sentences.)

Coincidence in logic does not guarantee coincidence in interpretation. But Stal-
naker’s attitude to interpretation was minimalist. He did not expect a reductive
analysis of ‘if’ in terms of a substantive notion, ‘minimally different A-world’.
Rather, we should think of the ‘minimally different A-world’ as the world that will
be actual if A is. He later described his conditional propositions as ‘a projection of
epistemic strategy onto the world’ [Stalnaker, 1984, p. 119].

Allan Gibbard [1981, p. 211] describes it as ‘little more than a coincidence’
that Adams’ and Stalnaker’s logics agree. In one way it is no coincidence: each
is motivated by the same notion of conditional belief, which Stalnaker’s truth con-
ditions were intended to fit. Nor is it so surprising that the rich framework of
possible-worlds semantics, in the hands of someone as expert as Stalnaker in its
manipulation, should yield the right structure. With agreement in logic, and no
leverage on the semantics independently of the notion of conditional belief, Stal-
naker’s claim, to have identified the proposition whose belief conditions fit the
Thesis [Stalnaker, 1970, p. 107, p. 120], had an irrefutable air. So it came as a
bombshell when Lewis, at the 1972 meeting of the Canadian Philosophical Asso-
ciation, refuted it, proving that there is no proposition at all such that your degree
of belief in its truth systematically matches your degree of belief in B given A
[Lewis, 1976; 1986a]. A conditional degree of belief is not equivalent to a degree
of belief that [something or other] is true.
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6.2

There are four bombshells coming up. Here is the base result. There is no propo-
sition X such that p(X) = p(B|A) in all probability distributions in which these are
defined. (A probability distribution is an assignment of non-negative numbers to
the members of a partition which sum to 1.)

Suppose there is such an X. We first show something of the logical relationships
between X and A: X is (a) compatible with A, and (b) compatible with ¬A, but (c)
not entailed by ¬A, i.e., X may or may not be true if ¬A is true.

Proofs, in reverse order: (c) There are probability distributions in which p(¬A)
is high and p(B|A) low (e.g., let p(¬A) = 0.9; p(A&B) = 0.01; p(A&¬B) = 0.09.
p(B|A) = 0.1.) So there are probability distributions in which p(¬A) is high and
p(X) [= p(B|A)] low. So ¬A cannot entail X: if it did, X would be true throughout
the ¬A-worlds, and could not be less probable than p(¬A). So, in some ¬A-worlds,
X is not true.

Similarly: (b) there are probability distributions in which p(B|A) is high and
p(A) is low; hence in which p(X) is high and p(A) is low. So X cannot entail A : X
must be true in some ¬A-worlds. And a parallel argument will show that (a) X
cannot entail ¬A : X must be true in some A-worlds. There is nothing surprising
in these facts. Now to the main part of the proof:

(i) p(B|A) depends only on how probabilities are distributed in the A-worlds
(the part of the partition in which A is true). Fix p(A) and p(A&B), and
p(B|A) is fixed.

(ii) Any proposition X which satisfies the Equation must be true in some but not
all ¬A-worlds, and true in some A-worlds, as was shown. So p(X) depends
not only on how probabilities are distributed in the A-worlds, but also on
how they are distributed in the ¬A-worlds.

(iii) There are distinct probability distributions which agree in all assignments in
the A-worlds, but disagree in assignments in the ¬A worlds. They will agree
on p(A&B) and p(A), and hence on p(B|A). And they will agree on p(A&X).
But they will disagree on p(¬A&X). As p(X) = p(A&X) + p(¬A&X), they
will disagree on p(X). So there are distributions in which p(B|A) � p(X).
End of proof.41

We can illustrate the proof by taking Stalnaker’s conditional (‘A > B’) for X.
We get a partition of logical possibilities of the following shape.

41A sketch of a proof along these lines is given by I. Carlstrom and C. Hill [1978], in their review of
Adams [1975].
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A B A > B p1 p2

1. T T T 0.4 0.4
2. T F F 0.1 0.1
3. F T 0.4 0.1
4. F F 0.1 0.4

(Note: (a) If A is true, the minimally different A-world is the actual world; this
explains the top two lines; (b) if A is false, then, whatever the truth value of B, it
may or may not be the case that the minimally different A-world is a B-world. This
explains lines 3 and 4. (c) Appearances to the contrary, we need not assume that
the proposition X (here A > B) is necessarily either true or false. What is at issue is
whether there is a proposition the probability of whose truth is, in all distributions,
p(B|A). We can leave open whether, whenever it is not true, it is false. Hence we
could construe, here and below ‘F’ as ‘not true’, and ‘¬’ as ‘It is not true that’.)

On the right we have two probability functions over the partition. They agree in
the A-worlds. In each p(B|A) = 0.4/0.5 = 0.8. In the first, p1(A > B) = 0.4+0.4 =
0.8 = p1(B|A). In the second, p2(A > B) = 0.4 + 0.1 = 0.5 � p2(B|A).

Does the base result refute Stalnaker’s claim? An argument that it does would
be this. We have above four clearly specified possibilities, one and only one of
which will obtain, like a 4-horse race. Allow background information to vary.
Any probability distribution over four such possibilities might represent a not-
irrational belief distribution in some state of background information. (A crude
illustration: as I ponder the four possibilities above, an Oracle tells me ‘I’ll give
you a hint: either 2 or 3 is the true one’. Accepting the hint, I divide my belief
equally between 2 and 3. If I am certain that the Oracle spoke truly, my b(B|A)
and b(A>B) are respectively 0 and 0.5. If I am nearly certain that the Oracle is
right, they are close to these numbers.) This argument will be blocked if it can be
shown, in a non-question-begging way, that for some probability distributions (the
conflicting ones) there is no state of information in which they would represent a
reasonable belief-distribution. I do not know any such argument.

But there is an interpretation of Stalnaker which is immune to the base re-
sult. He could be interpreted as stipulating that, as well as satisfying the par-
tition principle, belief distributions involving conditional propositions and their
parts must satisfy the Thesis: p2 is to be ruled out from the class of consistent
belief-distributions. This fits with Stalnaker’s image of a conditional proposition
as a ‘projection of epistemic strategy onto the world’. The fallacy in the argument
above was, I suppose, to take ‘conditional proposition’ too realistically: there are
no facts about ‘nearest A-worlds’ independently of our epistemic strategies.

The stipulation is consistent for a single conditional in a single belief distri-
bution. But stipulations have consequences. This one has untenable ones when
we consider the original conditional in different belief distributions (as Lewis
showed); it also has untenable consequences for other conditionals in the same
belief distribution (as Stalnaker himself showed).
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6.3

Here is a simplified and relatively informal version of Lewis’s proof (1976). The
proof involves an initial belief distribution, which is ex hypothesi reasonable, in
which b(A&B) and b(A&¬B) are both non-zero. We find out how it must change
(given the Equation) if the believer were to learn certain things, and deduce what it
must have been like in the first place for such changes to be rationally permissible.
For this last part we need a principle about belief revision. I shall appeal to the
following principle, which is weaker than Lewis’s, a consequence of his, but all
that he needs:

(RP) If a person rationally has a non-zero degree of belief in C&D;
and then learns C for certain, and nothing else of relevance, it is al-
ways rational for him to continue to have a non-zero degree of belief
in D.

Contraposing the principle: if learning C for certain renders impermissible any
degree of belief in D other than 0, then b(C&D) cannot rationally be other than 0
before you learnt C.

First, suppose the person were to learn for certain that B, and nothing else of
relevance. In the new distribution b′ that would result, b′(B) = 1. As his original
b(A&B) � 0, b′(A) � 0 (by RP). So b′(B|A) = b′(A&B)/b′(A) = 1. So b′(X) = 1,
and b′(¬X) = 0. So, by RP, in the former distribution, it is not rationally permissi-
ble to have a non-zero degree of belief in B&¬X. (If it were, learning B would not
force ¬X to zero.)

Second, suppose the person were to learn for certain that ¬B , and nothing
else of relevance. In the new distribution b′′ which would result, b′′(B) = 0.
As b(A&¬B) was non-zero, b′′(A) � 0. So b′′(B|A) = b′′(A&B)/b′′(A) = 0.
So b′′(X) = 0. By the same reasoning as above, this means that in his original
distribution b, b(¬B&X) must have been 0. For if it were not, learning just ¬B
would not force him to assign 0 to X.

We have proved that in any reasonable belief distribution in which
b(A&B) and b(A&¬B) are non-zero, b(B&¬X) = 0 and b(¬B&X) = 0. It is an
elementary consequence of these two facts that b(B) = b(X). [b(B) = b(B&X);
and b(X) = b(B&X).] So, in any such distribution, b(B) = b(X) = b(B|A). But this
is absurd! Take any three-way partition e.g. [C&D,C&¬D,¬C] and a distribution
of belief which is positive (e.g. 1

3 ) for each member b(C&D)/b(C) = 1
2 , b(C&D) =

1
3 , b((C&D)|C) � b(C&D). Yet this example satisfies Lewis’s initial conditions;
b(C&(C&D)) and b(C&¬(C&D)) are both positive. The absurdity may be stated
roughly thus: take any two propositions such that the first does not entail the sec-
ond; learning that one is true has no relevance to how much you should believe the
other.42

42Anthony Appiah [1986] objected to Lewis’s proof, claiming that it is never reasonable to have a
degree of belief of strictly 1 in a contingent proposition. Lewis [1986a] gave a new proof which does
not require that assumption.
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6.4

Van Fraassen [van Fraassen, 1976] objected that it is unreasonable to assume that
the sentence ‘If A, B’ be interpreted as the same proposition in different belief
distributions. He labelled this assumption Lewis’s ‘metaphysical realism’ (p. 252).
The label is hardly fair in this context: the assumption amounts only to the claim
that we can take different epistemic attitudes to a proposition without changing the
subject (see Lewis [1976, p. 138]). Replying by letter to Van Fraassen in 1974
[1976, pp. 303–304], Stalnaker produced his own version of the bombshell. It is
described by Gibbard [1981, pp. 219–220]. We do not need to invoke different
belief distributions to derive an absurdity, at least for Stalnaker’s proposed truth
conditions. He shows that if, in some distribution, b(A > B) = b(B|A), then
there exist, in the same distribution, two further propositions, C and D, such that,
demonstrably, b(C > D) � b(D|C).

Here again, on the left, is a partition for Stalnaker’s conditional

A B A > B b C D E C>D
1. T T T 0.25 T F F F
2. T F F 0.25 T T F T
3. F T 0.25 F F T F
4. F F 0.25 T F F F

Consider a belief distribution which assigns 0.25 to each line, and so satisfies the
Equation: b(A > B) = b(B|A) = 0.5. (Any numbers other than zeros which satisfy
the Equation will do. I just pick the easiest.) Let E be ¬A&(A > B): E is the
proposition true just at line 3. Let C be ¬E. C is the proposition true at lines 1, 2
and 4. Let D be A&¬B. D is true just at line 2. Now b(D|C) = 1

3 [line 2 (0.25)
divided by the sum of lines 1, 2 and 4 (0.75)]. What about C>D? It is true at line
2 (because its antecedent and consequent are); false at lines 1 and 4 (because its
antecedent is true and its consequent false). What about line 3? Stalnaker shows
that C > D and E are incompatible. So C > D is false at line 3. So it is true just
at line 2. So b(C > D) = 0.25 � b(D|C). Why are C > D and E incompatible? C
has the form (A ∨ (¬A&G)) [I abstract from the structure of G]. So C > D has the
form (A ∨ (¬A&G) > (A&¬B)). This implies A > ¬B,43 while E implies A > B.
For consistent A, A > B and A > ¬B are incompatible on Stalnaker’s logic and
semantics.

Admittedly, ‘C>D’ is a somewhat contrived proposition. But its existence is

43A proof that C > D entails A > ¬B, in terms of Stalnaker’s semantics: C > D says that the
nearest (A∨ (¬A&G))-world is an (A&¬B)-world. Suppose that’s true. Now the nearest (A∨ (¬A&G)-
world is either an A-world or a ¬A-world. Suppose it’s a ¬A-world. Then the conditional says it’s
an (A&¬B) world. Contradiction. So the nearest (A ∨ (¬A&G)-world must be an A-world. Go to the
nearest A-world. It will be the nearest (A ∨ (¬A&G) world. So it’s an A&¬B-world. So it’s a ¬B
world. So A > ¬B. (The proof, of course, can be done formally in Stalnaker’s logic. The only not
entirely trivial steps involve (1) the incompatibility of A > B and A > ¬B, for consistent A; and (2) that
((A > C) ∨ (B > C)) follows from ((A ∨ B) > C).)
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forced upon us by the assumption that there are truth conditions compatible with
the Thesis. (It’s not easy to get your mind round the Gödel sentence, either.)44

6.5

The following argument yields, I believe, a diagnosis of the trouble. Let us exam-
ine the relationship between b(B given A) and b(A ⊃ B). There are two special
cases in which they must be equal: (1) you are certain that A&¬B is false (but not
certain that A is false); then b(B given A) and b(A ⊃ B) are both 1; (2) you are
certain that A; then b(B given A) = b(A ⊃ B) = b(B). These cases apart, in all
belief distributions b(B given A) < b(A ⊃ B).

The easiest way to see this is to compare how much b(B|A) and b(A ⊃ B) differ
from certainty. Here is a partition. Adjusting the positions of the inner horizontal
lines will represent different belief distributions over it.

A

1

¬A

A&B

A&¬B

The amount by which A ⊃ B differs from certainty is simply the proportion of
the whole assigned to A&¬B: writing ‘u’ for ‘the uncertainty of’, u(A ⊃ B) =
(1 − b(A ⊃ B)) = b(A&¬B). The amount by which b(B|A) differs from certainty
is the proportion of A which is assigned to A&¬B : u(B|A) = (1 − b(B|A)) =
b(A&¬B/b(A)). Now, b(A&¬B) is a greater proportion of b(A) than it is of the
whole — except when b(A&¬B) = 0, or b(A) = 1. Hence b(B|A) is more uncertain
than b(A ⊃ B), except in these two special cases, where they are equal. If ¬A is
large, A&¬B must be small; but A&B may be smaller still, in which case b(B|A) is

44A more general proof that, within a single belief distribution, not all conditional probabilities can
be probabilities of the truth of a proposition, is given by Alan Hájek [1989; 1994].
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low but b(A ⊃ B) is high. An example of the difference: how likely is it that if this
(fair) die lands an even number, it will land 6? b(six given even) = 1

3 , b(even ⊃ six)
= b(not even, or six) = 2

3 : if it lands 1, 3, 5 or 6, the truth-functional conditional is
true.

When we try to equate b(B|A) with a degree of belief in a proposition, b(X), we
find we have incompatible requirements upon it:

(1) Clearly, A ⊃ B doesn’t entail X. (If it did, one could not coherently have a
higher degree of belief in A ⊃ B than in X; but in general, b(A ⊃ B) >
b(B|A) = b(X).) So there are possible situations in which A ⊃ B is true and X
is not true. Hence, someone with just enough information to be certain that A ⊃ B
does not have enough information to be certain that X: ruling out just those situa-
tions in which A ⊃ B is false, i.e. ruling out just A&¬B, leaves open the possibility
that A ⊃ B is true and X is not.

(2) But, on the contrary, by the first special case, ruling out just A&¬B is enough
for b(B|A) = 1 = b(X). Contradiction.

The principle appealed to in (1) is:

If C does not entail D (if there are possible situations in which C is
true and D is not true), then certainty that C is consistent with less-
than-certainty that D.

Here is a putative objection: let D be ‘I am certain that C’. C does not entail ‘I
am certain that C’. But, it might be held, certainty that C is inconsistent with less-
than-certainty that I am certain that C. Now, either we do not have infallible access
to our own epistemic states, or we do. If we don’t, we have no counterexample:
being less-than-certain that I’m certain is not incompatible with being certain. If
we do, we restrict the principle to beliefs about whose truth uncertainty is possible.
Uncertainty about conditionals is possible, so my use of the principle survives.

More generally: the only possible source of trouble for the principle, as far as
I can see, will come from beliefs about one’s own epistemic state (trouble akin to
Moore’s paradox: p and I don’t believe that p). Provided that conditionals about
matches, kangaroos, Ann’s and Bill’s whereabouts, etc. are not propositions about
the believer’s mental state, the use of the principle stands.

If we accept this principle, the above argument throws some light on the puzzle
which arose at the end of Section 2, p. 138. Two prima facie desirable properties
of indicative conditional judgements:

(i) Minimal certainty that A∨B (ruling out just ¬A&¬B) is enough for certainty
that if ¬A, B; changing the negation sign, minimal certainty that ¬A ∨ B
(ruling out just A&¬B) is enough for certainty that if A, B.

(ii) It is not necessarily irrational to disbelieve A yet disbelieve that if A, B.

The truth-functional account satisfies (i) but not (ii). Stronger truth conditions may
satisfy (ii), if they allow that the conditional may be false when A is false. But they
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cannot satisfy (i): for any stronger truth condition, ruling out just A&¬B leaves
open the possibility that ‘If A, B’ is not true. The Thesis satisfies both (i) and
(ii): (i) ruling out just A&¬B makes b(B|A) = 1. Yet (ii) it is possible to have
b(¬A) high yet b(B|A) low. So it is incompatible with both truth-functional truth
conditions, and stronger-than-truth-functional truth conditions.

We may generalize. Take any proposition. Either it is entailed by ¬(A&¬B), or
it is not. If it is, it will satisfy (i) but not (ii) (when substituted for ‘if A, B’). If it is
not, it may satisfy (ii), but cannot satisfy (i). Conditional judgements interpreted
according to the Thesis satisfy both (i) and (ii). So they cannot be interpreted as
belief in any proposition.

How does the Thesis achieve what belief in no proposition can? Well, suppose
A&¬B has been ruled out. This is enough for certainty that B given A, not because
some proposition or other is true whenever A&¬B is false; but because B is true in
all the worlds that concern the question whether B if A — the A-worlds. What goes
on in the ¬A-worlds has nothing whatever to do with thoughts about how likely it
is that B given A. A high degree of belief in ¬A is consistent with a low degree of
belief in B given A, not because some proposition is false in some ¬A-worlds; but
because the fact that b(¬A) is high has no bearing at all on whether most, or the
most probable, A-worlds are B-worlds.

6.6

Anyone interested in the concept of truth should take note of this result. It is an
empirical question how well the Thesis fits our practice of assessing conditionals,
and it is a deeper question whether, and if so why, it is a good practice if it does.
But — to say the least — there could be people who use ‘if’ this way. The result
tells us that they do not use ‘if’ to express propositions, evaluable in terms of
truth. A previously unnoticed test for the applicability of the concept of truth
has presented itself: if judgements of a given type are subject to uncertainty, do
uncertain judgements of this type fit the structure appropriate to uncertainty about
truth bearers? Someone may object that this whole theory of uncertainty, based on
the structure of probability, is wrong. Then it is incumbent upon him or her to give
an alternative theory of the logic of uncertainty. It is too important a phenomenon
— as it applies to conditionals, and as it applies to other judgements — to ignore.

7 IS TRUTH NECESSARY?

7.1 Compounds

Could it be that the mistake philosophers have made, in trying to understand con-
ditionals, is to treat them as part of fact-stating discourse — as representing the
world as being a certain way — and that this is not their function? If so, pressing
questions arise. What are we doing when we say or think that if A, B, if not saying
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or thinking that this is how things are? What do we aim at, if not to state or think
the truth? What is it to be right or wrong in so saying or thinking? How are we
to understand the role of conditionals in arguments, if not in terms of preserving
truth? And there is the question Lewis raises:

I have no conclusive objection to the hypothesis that indicative condi-
tionals are non-truth-valued sentences. . . I have an inconclusive objec-
tion, however: the hypothesis requires too much of a fresh start. It bur-
dens us with too much work still to be done, and wastes too much that
has been done
already. . . [W]hat about compound sentences that have conditionals as
constituents? We think we know how the truth
conditions for compound sentences of various kinds are
determined by the truth conditions of constituent subsentences, but
this knowledge would be useless if any of these subsentences lacked
truth conditions. Either we need new semantic rules for many famil-
iar connectives and operators when applied to indicative condition-
als. . . or else we need to explain away all seeming examples of com-
pound sentences with conditional constituents. [1976, pp. 141–142].

Too much of the ship would need rebuilding, says Lewis. However, the particular
plank on which he rests his case is far from sound. We do think we know how
the truth conditions of compound sentences of various kinds are determined by the
truth conditions of constituent subsentences. But this knowledge is useless when it
comes to conditional subsentences. We do not have a satisfactory general account
of sentences with conditional constituents. This may be because we have not yet
figured out the truth conditions of conditionals. Or it may be because they don’t
have any.

First, the truth-functional account45 gives bizarre results for compounds of con-
ditionals. For example,

Either, if the Queen is at home she is worrying about me, or, if the
Queen is not at home she is worrying about me

is a tautology; so, if I reject the first disjunct, I must (on this account) accept the
second. And the following argument is valid if we treat ‘if’ truth-functionally:

If God does not exist, then it’s not the case that if I pray my prayers
will be answered. I do not pray. Therefore God exists.

Second, the attempts by Grice and Jackson to explain away the seemingly para-
doxical features of truth-functional conditionals, focus exclusively on what more

45Lewis holds that indicative conditionals have truth-functional truth conditions, and accepts Jack-
son’s account of their assertability conditions. See the Postscript to ‘Probabilities of Conditionals and
Conditional Probabilities’ [Lewis, 1986, pp. 152–156].
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is needed to justify the assertion of ‘If A, B’, beyond the belief that the truth condi-
tion is satisfied. They are silent about the occurrence of conditionals, unasserted,
as constituents of longer sentences. Jackson is explicit on this point. ‘It simply
doesn’t follow from the fact that I give (A → B) truth conditions that I must find,
say, [(A→ B)→C]. . . a meaningful sentence’ [1987, p. 129]. That is, it is compat-
ible with his account of conditionals as (a) having truth-functional truth conditions
and (b) being subject to a special rule of assertability, that unasserted conditionals
are meaningless. If we want to give them meaning, we have more work to do.

Third, non-truth-functional truth conditions also have controversial consequences
for compounds of conditionals. Stalnaker adopts as a logical truth the Law of Con-
ditional Excluded Middle: (if A, B) or (if A,¬B). Lewis admits that there is much
to be said for this — he calls it ‘[t]he principal virtue and the principal vice of Stal-
naker’s theory’ [Lewis, 1973, p. 79] but thinks there is more to be said against it.46

Another controversy is whether ‘If A, then if B then C’ is equivalent to ‘If A and B,
then C’. We do treat these forms as interchangeable, it seems. But on Stalnaker’s
semantics (or Lewis’s for counterfactuals) neither entails the other. Consider (1) ‘If
it rains or snows tomorrow, and it doesn’t rain tomorrow, it will snow tomorrow’.
That, it is agreed, is unassailable. Now consider (2) ‘If it rains or snows tomorrow,
then if it doesn’t rain tomorrow, it will snow’. We read that in the same way — just
as trivial. But on Stalnaker’s semantics (2) may well be false. If snow is a far-out
possibility, and rain a close-in possibility, then in all the closest worlds in which it
rains or snows, it rains but doesn’t snow. Then, the closest world in which it rains
or snows (viz. rains) may be such that the closest world to it in which it doesn’t
rain, it doesn’t snow either. So for Stalnaker ‘If it rains or snows tomorrow, then if
it doesn’t rain, it won’t snow’ may be true.

This is somewhat counterintuitive. However, maintaining the equivalence of
(1) and (2) also exacts a price: modus ponens for conditionals with conditional
consequents. I accept, as trivial, ‘If it rains or snows, then if it doesn’t rain, it will
snow’. I accept that it will rain or snow (because I am nearly certain that it will
rain). But I deny that if it doesn’t rain it will snow (because I’m virtually certain
that if it doesn’t rain, it won’t snow either).47

Turning from particular theories to the phenomena themselves, let’s first con-
sider disjunctions of conditionals. ‘Or’ is a very useful word, especially when it
connects things we can be uncertain about, for often we can be confident that A or
B, while not knowing which. We can be uncertain about conditionals. Yet ‘Either
(if A, B) or (if C, D) — but I don’t know which’ is a form of thought that is virtu-
ally uninstantiated. An agile mind will leap to the challenge and instantiate it —

46Lewis’s remark is about the tenability of this law for counterfactuals.
Stalnaker does not think that there always must be a closest A-world. When B is true in some but

not all of the closest, he holds that each disjunct is indeterminate but the disjunction determinately true.
The analogue is the treatment of vague terms such that an object may be not determinately red, nor
determinately orange, but determinately either red or orange [Stalnaker, 1981].

47Examples like this are the topic of Vann McGee’s ‘A Counterexample to Modus Ponens’ [McGee,
1985]. The phenomenon is mentioned by Adams [1975, p. 33].
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but once you’ve seen the results, you see why we have no use for such thoughts.
‘Either if I go out I’ll get wet, or if I turn the television on I’ll see cricket (I don’t
know which).’ That’s not too hard to interpret: if it’s raining and I go out I’ll get
wet; if it’s not raining and I turn the television on, I’ll see cricket; and of course,
it’s either raining or it isn’t. (The disjunction of conditionals has disappeared.)
Others need more background: ‘Either, if you open box A, you’ll get ten pounds,
or, if you open box B, you’ll get a button, I don’t know which.’ If Fred is in a good
mood he has put ten pounds in box A and twenty pounds in box B. If Fred is not in
a good mood he has put a paper clip in box A and a button in box B ... . Again, the
disjunction of conditionals is an exceedingly bad way to convey the information
you have, and once the necessary background is filled in the disjunction belongs
elsewhere. On the other hand, our genuine need for disjunctions shows up natu-
rally inside a conditional: ‘If A, then either B or C (I don’t know which)’. Some
apparent disjunctions of conditionals are no such thing: ‘Either we’ll have fish, if
John arrives, or we’ll have left-overs, if he doesn’t’.

Turn to negations. If someone makes a remark, e.g. ‘It will rain’, you may
disagree in two ways, one stronger than the other. You may say ‘No it won’t’; or
you may say ‘I wouldn’t be so sure’. In the first case, you assert the negation of the
first statement; in the second, you are prepared to assert neither it nor its negation.
Similarly, if someone says ‘If it rains, they will be delayed’, you may disagree in
two ways. If you disagree strongly, you will say ‘No, if it rains, they won’t be
delayed’. Or again, you may go less far, and express uncertainty about whether
they will be delayed if it rains. If the analogy holds, then A is to ¬A as ‘If A, B’
is to ‘If A, ¬B’. And ‘It’s not the case that if A, B’ has no clear established sense
distinguishable from this.

Conditionals in antecedents of other conditionals are also problematic. Gibbard
suggests [Gibbard, 1981, pp. 234–238] that we have no general way of decoding
them, and some cannot be deciphered; for example ‘If Kripke was there if Straw-
son was, then Anscombe was there’. If someone utters a sentence of this form, we
do our best to interpret it by ad hoc strategies. For instance, we can sometimes
identify, in context, the obvious basis, D, for an assertion of ‘If A, B’, and inter-
pret ‘If (B if A), then C’ as ‘If D then C’:‘If the light will go on if you press the
switch, the electrician has called’ (If the power is on, the electrician has called).
Michael Dummett ([1973, pp. 351–354]; see also [1992, pp. 171–172]), suggests
that some may be understood as saying ‘If you accept that B if A, you must surely
accept this’: ‘If John should be punished if he took the money, then Mary should
be punished if she took the money’.

Consider the schema,

‘If A, B’ is true if and only if, if A, B.

It makes two claims:

If (if A, B), then ‘If A, B’ is true.

If not (if A, B), then ‘If A, B’ is not true.
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If negation of conditionals, and conditional antecedents, are ill-understood, so is
the schema,48 as Dummett comments [Dummett, 1992, p. 171]: ‘we do not know
how to interpret this, because it is not our normal practice to apply negation to an
entire conditional statement’; and ‘we have hardly any use, in natural language, for
conditional sentences ... in which the antecedent is itself a conditional, and hence
we cannot grasp the content of the principle’.

Conditionals do not go into truth-functional contexts, or into each other, easily,
then. (Appiah [1985, pp. 205–210] argues likewise.) Those we do understand,
e.g. conditionals in consequents, we understand as equivalent to sentences without
embedded conditionals. The facts square at least as well with the hypothesis that
conditionals do not have truth values as with the hypothesis that they do. (In Sec-
tion 9.4 I examine some creative attempts to develop a language with compounds
of conditionals which satisfy the Thesis.)

7.2 Validity

Turn to the question of the validity of arguments which involve conditionals. An-
other reason for disinclination to rebuild the ship might be put: ‘Validity is the
necessary preservation of truth. Conditionals occur in valid arguments. So con-
ditionals must have truth values’. This conception of validity may be too narrow,
independently of conditionals. There are valid arguments involving moral judge-
ments, but it is controversial whether moral judgements have truth values. Legal
experts spend their lives deriving consequences from laws, yet it’s not obvious that
laws have truth values.

Adams [1966; 1975, Ch. 2], gives an account of validity for arguments involv-
ing conditionals which conform to the Thesis. His method is far from ad hoc: it
teaches us something about classical validity too. He shows that classical, truth-
preserving valid arguments are, in a special sense to be made precise, probability-
preserving. And this property can be generalized to apply to arguments with condi-
tionals. The valid ones are those which, in the required sense, preserve probability
or conditional probability.

Begin with valid arguments which don’t contain conditionals. We use them in
arguing from contingent premisses which are often believed with less than cer-
tainty. The question arises: how certain can we be of the conclusion of the ar-
gument, given that we think, but are not sure, that the premisses are true? Call
the uncertainty of a proposition one minus its probability. Adams shows this: if
(and only if) the argument is valid, then in no probability distribution does the un-
certainty of the conclusion exceed the sum of the uncertainties of the premisses.
Thus, if I have a valid argument with two premisses each at least 99% probable,
this guarantees that the conclusion is at least 98% probable. In this sense, valid
arguments are probability-preserving. (They are not probability preserving in a

48Wright [1992, pp. 12–20] argues in this way (not in connection with conditionals) that the schema
has more substance than might appear at first blush.
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different, stronger sense: the probability of the conclusion can be less than the
probability of each individual premiss. The Lottery Paradox shows this vividly.
We can’t expect that much. The conclusion can inherit a risk of falsehood from
each premiss, and hence be less probable than each. Still, Adams’ result vindicates
deductive reasoning from uncertain premisses, provided they are not too uncertain
and there are not too many of them.)

This is an independently useful and important consequence of classical validity,
then. Now Adams extends this idea to arguments containing conditionals. Take
a language with ‘and’, ‘or’, ‘not’, and ‘if’ — but with ‘if’ occurring only as the
main connective in a sentence. (Thus we put aside compounds of conditionals.)
Take any argument formulated in this language. Consider any probability distri-
bution over the sentences in the argument which assigns non-zero probability to
the antecedents of all conditionals, that is, any assignment of numbers to the non-
conditional sentences which conforms to the Partition Principle, and an assignment
of numbers to the conditional sentences which conforms to the Thesis: p(B if A) =
p(A&B)/p(A). Extend the term ‘uncertainty’ to cover conditional uncertainty: the
uncertainty of ‘If A, B’ is one minus p(A&B)/p(A). Define a valid argument as one
such that there is no probability function in which the uncertainty of the conclusion
exceeds the sum of the uncertainties of the premisses. And a nice logic emerges
— the same as that given by Stalnaker [1968], restricted to simple conditionals.
For example, if p(A) = 0.9 and p(B) if A) = 0.9, we can show that the lower limit
for p(B) is 0.81 (modus ponens has a slightly higher lower limit for the conclusion
than can be guaranteed in general).

We saw above (p. 168) that in all distributions, p(A ⊃ B) ≥ p(B|A). Take an
argument with conditionals among the premisses but a non-conditional conclusion.
Suppose it is valid if we interpret ‘if’ truth functionally. Then it is also valid in this
probabilistic sense — if the conclusion follows from the weaker A⊃B premiss, it
follows from the stronger ‘If A, B’. But not all truth-functionally valid arguments
with conditional conclusions remain valid: the premisses may entail the weaker
A⊃B yet not entail ‘If A, B’.

Conditional Proof fails. For example, (1) ‘¬(A&B); A; so ¬B’ is valid, but (2)
‘¬(A&B); so, if A, ¬B’ is not.

Probabilities can be modelled by proportions, and I shall use them to illustrate
the structure behind these facts. (1) If almost everything is A, and almost nothing
is A&B, it follows that almost nothing is B. Indeed, if 99% of the things in question
are A, and only 1% are A&B, so that 99% are ¬(A&B), it follows that at most 2%
are B, at least 98% are ¬B. That’s the structure behind the validity of the first case.
(2) Suppose that 99% of the things are neither A nor B, and the remaining 1% are
A&B. Thus, 99% are ¬(A&B) but every A is B — 0% of the As are ¬B. That’s the
structure behind the invalidity of the second case.49 (Ann and Bill are inseparable.

49Proportions provide just a model — a structural isomorphism. If you imagine the space of possi-
bilities divided up into enough equally probable little bits, or ‘worlds’, you can translate the model to
‘almost all worlds are A-worlds’, etc.
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I can believe that it’s not the case that Ann-and-Bill are there, without believing
that if Ann is there, Bill isn’t.)

All the departures from truth-functional validity can be traced to the failure of
conditional proof. In the following list, the inference on the left is valid, its partner
on the right, derivable by a step of conditional proof, is not.

Valid Invalid
(l) A;B 	 A A 	 If B, A
(2) A∨B; ¬A 	 B A ∨ B 	 If ¬A,B
(3) ¬(A&B); A 	 ¬B ¬(A&B) 	 If A, ¬B
(4) If A, B; if B, C; A 	 C If A, B; if B, C 	 If A, C
(5) If A, B; ¬B 	 ¬A If A, B 	 If ¬B, ¬A

Models like the above will show this.
Here is one reason why the arguments on the right seem valid: if you are 100%

certain of the premisses — if you give them probability or conditional probabil-
ity 1 — you must give the conclusion probability or conditional probability 1.
The counterexamples depend crucially upon at least one premiss being, however
slightly, less than certain. Where uncertain premisses are not at issue — in math-
ematics, say — these inference forms won’t let us down. (Analogy: if all As are
B and all Bs are C, then all As are C; but we can have all As are B, almost all Bs
are C, yet all As are ¬C.) We could call an argument ‘valid’ if it satisfied this Cer-
tainty criterion, and thus reinstate the arguments on the right. But, in arguing about
contingent matters, 100% certainty for our premisses is rare; moreover, it is hard
to distinguish from its near neighbours. Knowing that an argument is ‘valid’ in
this sense would be of little use: it would guarantee nothing about what we should
think about the conclusion when our premisses are only a hair’s breadth away from
certainty.

7.3 Speech Acts

‘What am I doing, when I say, or think, that if A, B, if not saying (thinking) that
something is the case?’ As far as thinking goes, the idea of believing that B under
the supposition that A, of having a conditional belief, of believing something given
a hypothesis — Ramsey’s idea — is, I hope, clear enough. Here I focus on saying.

Someone asks me who will win the Boat Race. I say ‘Oxford will win’. I
express a belief. But I speak about the world. If I say ‘If the water is calm, Oxford
will win’, I express a conditional belief; but it is implausible that that is all I do:
I also speak about the world — about the Boat Race — albeit conditionally. The
answer which fits the Thesis best is this: I make a conditional assertion. My high
degree of belief that Oxford will win if the water is calm, amounts to thinking (the
water is calm and Oxford will win) is much more likely than (the water is calm and
Oxford won’t win). I take myself to be in a position (ceteris paribus) to assert that



ON CONDITIONALS 177

Oxford will win, not categorically, but conditionally upon the water being calm.50

Any kind of speech act can be performed unconditionally or conditionally.
There are conditional questions, commands, promises, agreements, offers, etc.,
as well as conditional assertions. Any kind of propositional attitude can occur
within the scope of a supposition. There are conditional beliefs, desires, hopes,
fears, etc. ‘If he phones, what shall I say?’; ‘If he phones, hang up immediately’;
‘I want to speak to him if he phones’; ‘If he phones, I hope you won’t be rude’.
It is overwhelmingly plausible that the clause, ‘if he phones’, does the same job
in conditional statements, commands, questions, promises, expressions of wish,
etc.; and hence that a theory of conditionals should be applicable to more than
conditional statements.

This is quite a severe test. Try applying Stalnaker’s theory to conditional com-
mands. Interpret ‘If it rains, take your umbrella’ as ‘In the closest possible world
in which it rains, take your umbrella’. Now suppose I have forgotten your com-
mand or alternatively am inclined to disregard it. However, it doesn’t rain. In the
closest worlds in which it does rain, though, I don’t take my umbrella. So, on
Stalnaker’s analysis, I have disobeyed you. Similarly for conditional promises: on
this analysis, I could break my promise to go to the doctor if the pain gets worse,
even if the pain gets better. This is wrong: conditional commands and promises
are not requirements on my behaviour in other possible worlds.

We have already seen that conditional belief is not belief in the truth functional
conditional. Nor are conditional commands or expressions of desire, commands
etc. that the truth-functional conditional be true. ‘If you write the article, submit
it to Mind.’ Now ‘Either you won’t write the article, or submit it to Mind’ is a
non-starter, not even grammatical.51 Construed as a command to make the truth-
functional conditional true, it amounts to the command ‘Either don’t write the
article, or submit it to Mind’. But I am not urging that: you could easily make

50Ceteris paribus. Some people interpret the Thesis as an account of when a conditional sentence is
assertable: a conditional is assertable to the extent that b(B given A) is high. Adams did in his early
writings, but not in his book [Adams, 1975] or subsequently. Appiah [1985] does, as do Lewis and
Jackson (see Section 9.1). I do not. I interpret it as an account of belief that B if A, to various degrees.
Firstly, whether a sentence is assertable depends on all sorts of Gricean contextual factors, which have
to be put aside for an account in terms of assertability. Secondly, both for an unconditional claim
(Oxford will win) and a conditional one (they’ll win if the water is calm), how high b(B) or b(B|A) has
to be for an assertion unqualified by ‘probably’, or ‘I think’, is a context-dependent matter. Thirdly,
this may be a question not just of how close to certain one is, but of the nature and prominence of this
uncertainty. Dudman [1992] says we don’t assert ‘I won’t win the lottery’ or ‘if I buy a ticket I won’t
win’, even if our chance of winning is one in fifty million. Lowe [1995] says likewise. I’m not sure
whether they are right, but if they are this has no bearing on the Thesis as I understand it, the claim that
someone who knows the chance has a high degree of belief that she won’t win/won’t win if she buys a
ticket.

If no uncertainty is compatible with unqualified assertion we should assert very little. We do assert,
unqualified, many things, conditionally or otherwise, where there is more than a chance of one in fifty
million that our expectations will be thwarted.

51The grammatical fact that conditionals have a main and a subordinate clause fits the view that they
are used to do whatever the main clause does, but conditionally.
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that true in ways which would please me least of all. Turn the example into an
expression of desire: ‘If you write the article (W), I want you to submit it to Mind
(S)’. The conditional desire amounts to a preference for W&S over W&¬S . It does
not amount to a preference for ¬W∨S over W&¬S .52 For although W&¬S is less
desirable than W&S ,it may be very much more desirable than ¬W, which, alas, is
a far from implausible way that ¬W ∨ S could be true.

The claim that we use if-sentences to make conditional assertions is made by
von Wright [1957, p. 131], and is mentioned by Quine [1952]. Quine says:

Now under what circumstances is a conditional true? Even to raise
this question is to depart from everyday attitudes. An affirmation of
the form ‘if p then q’ is commonly felt less as an affirmation of a con-
ditional than as a conditional affirmation of the consequent. If, after
we have made such an affirmation, the antecedent turns out true, then
we consider ourselves committed to the consequent, and are ready
to acknowledge error if it proves false. If on the other hand the an-
tecedent turns out to have been false, our conditional affirmation is as
if it had never been made. [1952, p. 19]

As it stands, this last sentence is absurd. It is not absurd if we delete the word
‘conditional’ from it. It is not absurd to hold that I do not count as having made
an assertion unless the antecedent is true. But it is absurd to say it is as if I had
not made a conditional assertion — as if I had said nothing at all. I say to you
‘If you press that switch, there will be an explosion’. As a consequence, you
don’t press it. Had I said nothing at all, let us suppose you would have pressed
it. A disaster is avoided, as a result of this piece of linguistic communication. It
is not as if nothing had been said. This is no objection to the idea that I did not
(categorically) assert anything. For let us suppose that I am understood as having
made a conditional assertion of the consequent. My hearer understands that if she
presses it, my assertion of the consequent has categorical force; and, given that
she takes me to be trustworthy and reliable, if it does acquire categorical force, it
is much more likely to be true than false. So she too acquires reason to think that
there will be an explosion if she presses it, and hence a reason not to press it.

Dummett, like Quine, misrepresents the notion of a conditional assertion when
he says it is ‘as if [someone] had handed his hearers a sealed envelope marked
‘Open only in the event that...’ .’ [Dummett, 1992, p. 115]. If it were like that,
modus tollens would be impossible, as Dummett points out. Whereas, on the lines
of the example above, we can explain why someone infers that ¬A when he knows
that B is false and a trustworthy person has just asserted B conditionally upon
A. Elsewhere [Dummett, 1973, p. 341ff], Dummett is sensitive to the difference
between ‘no (categorical) assertion has been made’ and ‘nothing has been said’.
It’ s not just that the sealed-envelope interpretation cannot be true of our use of
conditionals. There is something intrinsically absurd in the idea that understanding

52That is, it does not entail this preference; although it is compatible with it.
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a sentence should require you, in certain circumstances, to behave as though it had
not been said. ‘We cannot lay down a convention that no one is to be influenced’
(op. cit. p. 342). I undertake to care for your children if you die. Even if you don’t
die, my conditional undertaking has consequences for you and for me.

It is the analogue of the mistaken, sealed-envelope interpretation for conditional
commands that leads Dummett to say that a conditional imperative where the an-
tecedent is in the agent’s power ‘must... be interpreted as a command and to make
the material conditional true’ [Dummett, 1973, p. 340]; see also [1959, pp. 8–9].
A child is told ‘If you go out, wear your coat’. If he cannot find his coat, he stays
in, in order to comply with the command. On my interpretation, if the child can’t
find his coat, he has a choice between disobeying the command, and behaving in
such a way that no categorical command has been made (not: behaving as though
nothing had been said). If he wishes not to disobey, he must stay in. Dummett
claims that there is no distinction between not disobeying a conditional command,
and obeying it. But other examples make this implausible. If, in the emergency
ward, you’re told ‘If the patient is still alive in the morning, change the drip’, and
you smother the patient, you can hardly claim to have merely carried out an order.

A conditional assertion ‘If A, B’ is an assertion of B when A is true, and an
assertion of nothing when A is false. It is natural then, to say my conditional
assertion is true if A and B are both true, and false if A is true and B is not, and
has no truth value when A is false. This is compatible with the Thesis, provided
we interpret this assignment of truth values with care. Belief that if A, B is not
belief that it is true. For it is true only if A&B, and we may believe that if A, B
without believing that A&B. Nor is it belief that it is not false. For it is not false
provided that ¬(A&¬B), i.e. A ⊃ B; and we can believe that it is not false without
believing that if A, B. Belief that if A, B is a conditional belief that it is true given
that it has a truth value — belief that it is true given that it is either true or false.
Now my degree of belief that ‘If A, B’ is true, given that it has a truth value, is just
b(A&B)/b(A), as it should be. (The bombshell is avoided because belief that if A,
B is not belief that something is true.) For a proposition assumed to be either true
or false, your degree of belief that it is true given that it has a truth value, is your
degree of belief that it is true. So our proposal is not ad hoc. It has as a special
case that for a bivalent proposition, to believe it is to believe that it is true.

In making conditional assertions, we do not aim at truth (for we don’t assert
them only if we believe A&B); nor do we aim at avoiding falsity (for we don’t
assert them whenever we believe ¬(A&¬B)); our aim is that they be true given that
they have a truth value — that if it turns out that A, we get B as well, rather than
¬B.

Dummett [1959, pp. 10–14] rightly says that giving a truth table for a statement
with three values, T, F, and X, gives you little guidance as to how the statement is
to be used. Does the speaker intend to rule out X (as in the case of empty names),
or not? On the conditional, Dummett says ‘[the speaker] is not taken as having
misused the statement or misled his hearers if he envisages it as a possibility that
that case will arise in which he is said not to have made a statement true or false’
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(p. 11). That is correct, but it does not follow that for conditionals X is really a
species of truth, as Dummett claims (p. 12). There is a difference between the
claim that I may use this statement correctly when the antecedent is false, and the
claim that whenever the antecedent is false, I have used the statement correctly.

The ‘true, false, neither’ classification does not yield an interesting 3-valued
logic or a promising treatment of compounds of conditionals (for it is not a case
of there being some ‘designated’ value or values). It helps only in minor ways.
It allows us to say that a conditional is straightforwardly false if its antecedent is
true and the consequent false; and that it is straightforwardly true if the antecedent
and consequent are both true. There is nothing comparably straightforward to say
when the antecedent is false.

An unconditional assertion, e.g. that John is in London, can be right by good
luck, or wrong by bad luck: my reasons can be good yet I’m wrong, my reasons
can be bad yet I’m right. Or I can have no reasons, yet guess, or have a hunch that
John is in London. Likewise for a conditional assertion, that John is in London
if Mary is. Mackie [1973, p. 107] has a father saying to a child ‘If you put your
finger through the bar [of the monkey’s cage], it will be bitten off’. The child does
so nevertheless. In one scenario, the monkey pays no attention, but a bird swoops
down and bites off the finger. The conditional assertion was true, for an unexpected
reason. In another scenario, the monkey is about to bite when a rock falls, squashes
the cage and kills the monkey. The assertion was false, for an unexpected reason.
If it is plausible that a conditional assertion, like an unconditional one, can be right
or wrong by luck, this is an argument against those who insist that the antecedent
must be ‘relevant’ to the consequent (see pp. 34–37). And it adds plausibility to
the feature of the Thesis to which such people object: belief that A&B is sufficient
for belief that B if A. If, as you believe, A&B is true, so is your assertion of B on
the condition that A.53

8 OBJECTIVITY AND ITS LIMITS

8.1

The truth values permitted by the notion of conditional assertion are little more
than epiphenomenal — they don’t significantly change the picture we had without
them. We need more objectivity for conditionals than they provide, it will be
complained: we need an account of how a conditional can be right, or wrong, even
if its antecedent is false. ‘If that lump of sugar is placed in water, it will dissolve’
is true, it will be said; ‘If that lump of granite is placed in water, it will dissolve’
is false, even if neither is placed in water. Yet more decisive, ‘If it’s square, it has

53I became more aware of the relevance of other conditional speech acts on reading Michael Fire-
stone’s thesis, ‘The Meaning of “If” ’ (Australian National University). Michael Woods’ [1997] also
treats ‘simple conditionals’ as conditional assertions; he too has a careful examination of the different
conditional speech acts.
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4 sides’ and ‘If it’s square, it has 5 sides’ are (surely!) true and false respectively,
even if the object in question is not square. Or consider my conditional assertion
of ‘If you press the button, there will be an explosion’. You don’t press it. We hold
a post mortem, trying to establish whether there would have been an explosion if
you had pressed it (NB). It could end with ‘You see, I was right’, or with ‘You
were wrong — there would have been no explosion if I had pressed it’.

From what we have seen so far, the Thesis need not rule out there being an
objectively correct thing to think about whether B if A. The right degrees of belief
that it has 4 sides/5 sides given that it’s square are 1 and 0 respectively. In the case
of the sugar lump and the granite, the right degrees of belief (in normal cases —
putting aside super-saturation and the like) are at least very close to 1 and 0. 90%
of the red balls in this bag have black spots. You are to shake it, put your hand
in, and pick a ball. There is a right degree of belief that the ball you pick will
have a black spot if it’s red. For the best opinion about whether you’ll be cured
if you have this operation, ask the best doctor you can find. The chance that the
chemical substance will emit dangerous radiation if stored underground, will be
best estimated by a chemist or physicist. You read in the newspaper that if you
eat garlic, you are less likely to get heart disease. You watch the weather forecast.
And so on. We all have the idea of a right, or at least a better, opinion. That is,
we have the idea of objective probability — or at least the idea that some degrees
of belief are worth more than others. An expert is someone who has acquired
good judgement in a given area — and moreover, has access to more relevant
information than the rest of us, in that area. An expert is someone whose advice
we do well to heed, in forming our own beliefs and plans for action.54

Prima facie, there is room for an account of objectively correct conditional
thoughts. It doesn’t follow that they have truth conditions. The following has
been suggested.55

‘If A, B’ is true iff the objective probability of B given A is sufficiently
high.

This is not compatible with the Thesis, and is independently objectionable. (I do
not object to the fact that the truth condition is vague.) Presumably, in a context,
either there is some number less than 1 which is sufficiently high; or there is some
number greater than 0 which is not sufficiently high; or (most likely) both. Take
an example where objective probabilities are relatively easy to estimate — balls in
bags, say. Call the proposed truth condition S. First suppose 0.9, say, is sufficiently
high, and I am certain that the objective probability of B given A is 0.9. My degree
of belief in B given A is 0.9. According to the Thesis, I am 90% confident that if A,
B. But I am certain that S , hence, certain that the conditional is true. By the truth
condition, I am 100% confident that if A, B. (The truth condition has the additional

54Adams is no subjectivist about probability. A section of his book [Adams, 1975] is entitled ‘A
motive for wanting to arrive at correct probability estimates’.

55See Simon Blackburn ([Blackburn, 1986], pp. 213-5); Michael Woods [1997]; and the suggestion
crops up orally from time to time.
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embarrassing consequence that the truth of ‘If A, B’ is compatible with the truth
of A&¬B.) Second, suppose some number greater than 0 is not sufficiently high
— 0.5 say. Suppose that I am certain that the objective probability of B given
A is 0.5, and so have degree of belief 0.5 that B given A. By the Thesis, I am
50% confident that if A, B. Now I am certain that S is false, hence certain that the
conditional is false. By the truth condition, I am 0% confident that if A, B. (The
truth condition also has the consequence that the truth of A&B is compatible with
the certain falsity of ‘If A, B’. Not everyone minds that. I think it’s wrong for me
to say ‘It is certainly false that, if you approach, the dog will bite’, when I know
that the objective conditional probability of its biting, given that you approach, is
0.5; and further, to admit no error when you approach and are bitten — to stick
to my judgement that the conditional was certainly false. But not everyone agrees
with me.56

If we are to have objective values, we need values intermediate between truth
and falsity. But there is an obstacle to objective values — to there being a right
thing to think — to which I now turn.

8.2

Gibbard [1981, pp. 231–232] presented an argument for the Thesis and against
truth for indicative conditionals, which threatens to wipe out objectivity along with
truth. This is its structure as I see it. (1) If two statements are compatible, so that
they can both be true, a person may consistently believe both of them simultane-
ously. (2) For consistent A, and any B,
people do not simultaneously believe both ‘If A, B’ and ‘If A, ¬B’ (unless by
oversight), nor consider it permissible to do so; rather, to accept ‘If A, B’ is to
reject ‘If A, ¬B’. (This accords with the Thesis: if b(B|A) is high, b(¬B|A) is low.
It also accords with Stalnaker’s truth conditions but not with the truth-functional
account.) So, by (1) ‘If A, B’ and ‘If A, ¬B’ can’t both be true: if they could, why
shouldn’t someone readily accept both? But (3) one person X can have impeccable
reasons for believing ‘If A, B’, while another person Y has impeccable reasons for
believing ‘If A, ¬B’; (a) the situation is symmetric: there is no reason to prefer X’s
belief to Y’s, or vice versa; no case can be made for saying just one of the beliefs
is false; (b) neither of them is making any sort of mistake; each is rational, and
bases his judgement on known truths; no case can be made for saying both beliefs
are false. So: they can’t both be true, they can’t both be false, and it can’t be that
just one of them is true. Truth and falsity are not suitable terms of assessment for
conditionals.

Gibbard’s much-discussed example is the Sly Pete Story. It concerns a poker
game. Jack saw that Pete had the losing hand, and believes ‘If Pete called, he lost’.
Zack knows that Pete, the cheat, knew the contents of his opponent’s hand, and

56Pendlebury [1989], Read [1995] and others argue that the truth of A&B is compatible with the
falsity of ‘If A, B’.
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that Pete always plays to win. He believes ‘If Pete called, he won’. In fact, Pete
didn’t call. Once they learn this, neither has any use for a thought beginning ‘If
Pete called’.

Gibbard’s example is perhaps not perfectly symmetric, and some have argued
that Jack’s belief is better than Zack’s. Pendlebury [1989, p. 182] claims that from
the God’s eye point of view, Jack’s conditional is the true one. This points, at best,
to an imperfection of the example. Here is a boring, perfectly symmetric one. In
a game, (1) all red square cards are worth 10 points, and (2) all large square cards
are worth nothing. X caught a glimpse as Z picked a card and saw that it was
red. Knowing (1), he believes ‘If Z picked a square card, it’s worth 10 points’.
Y, seeing it bulging under Z’s jacket, where Z is keeping it out of view, knows
it’s large. Knowing (2), he believes ‘If Z picked a square card, it’s worth nothing.
(Someone who knows all the relevant facts knows it isn’t square, and has no use
for a conditional beginning ‘If it’s square’.)

There is little hope for objectively correct opinion, if one person can have a
completely adequate reason to accept ‘If A, B’, and reject ‘If A, ¬B’, while another
has a completely adequate reason to do precisely the opposite. It is not as though, if
either had more information, he would know what to think. If he had more relevant
information, he would know that ¬A, and have no use for either conditional, ‘each
of which is a ticket for an intellectual journey starting at a place where he knows
he will never be’ [Bennett, 1988, p. 520].

How widespread is the Gibbard phenomenon? Gibbard [1981, pp. 226–229]
thinks there are two kinds of conditionals: ‘epistemic’ ones, which satisfy the
Thesis, and are subject to this phenomenon, paradigms of which are past-tense
indicatives; and ‘nearness conditionals’, to be treated à la Stalnaker, which are
not subject to the phenomenon, paradigms of which are subjunctive conditionals.
Future-tense indicatives can function as either (p. 228). I don’t think conditionals
divide in this way. For any contingent conditional, the world may be such that the
Gibbard phenomenon can arise. Here is another example.

Suppose there are two vaccines against a certain disease, A and B. Neither is
completely effective against the disease. Everyone who has A and gets the disease
gets a side effect S. Everyone who has B and gets the disease doesn’t get S. Having
both vaccines is, however, completely effective against the disease (though not
many people have both). These scientific facts are known. X knows that Jones
has had A, and says ‘If Jones gets the disease, he’ll get S’. Y knows that Jones has
had B, and says ‘If he gets the disease, he won’t get S’. (If Jones is meanwhile run
over by a bus and killed, these can go counterfactual: ‘If he had got the disease,
he would have got S’, ‘If he had got the disease, he wouldn’t have got S’. But
counterfactuals are to be put aside until Section 10.) In all these cases, if the full
story is known, the conditionals become useless. For instance, the doctor giving
Jones B says ‘I can’t guarantee that you won’t get the disease, but if you do, you
won’t get S’. ‘But I’ve already had A’, says Jones. ‘Oh well, then, you won’t get
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the disease (the question of what will happen if you do doesn’t arise)’.57

Now let us change the initial story slightly. Everyone who has just A and gets
the disease, gets S. Everyone who has just B and gets the disease, doesn’t get S.
Few people have both. Of those who do, very few — say 0.01% — get the disease
(whereas about 1% of those who have just A, or just B, get the disease). Anyone
who has both vaccines and gets the disease has a 50% chance of getting S. These
are known facts. As before, X knows that Jones has had A. He has grounds for near-
certainty that if Jones gets the disease, he will get S. Y, who knows that Jones has
had B, has grounds for near-certainty that if he gets the disease, he won’t get S. This
time, neither has the right opinion. There is further obtainable information which
would lead each to a better opinion: anyone who knows the relevant scientific
facts, and that Jones has had both vaccines, thinks that the chance that Jones will
get S if he gets the disease is 0.5. Doctor, having given Jones B: ‘I can’t guarantee
that you won’t get the disease, but if you do, you won’t get S’. Jones: ‘But I’ve
already had A’. Doctor: ‘Oh, then I must correct what I said: it’s very unlikely that
you will get the disease; and it’s 50% likely that you will get S if you do get the
disease’.

The Gibbard phenomenon arises if and only if there are currently ascertainable
facts which rule out A.58 In one direction: let F be a set of currently ascertainable
facts from which we can derive that ¬A. That is, A&F is inconsistent. That is,
A&F entails a contradiction. Furthermore, it will generally be the case that if
we know F, we can learn that ¬A by assuming A and deriving, from A&F, a
contradiction, B&¬B. Now, F is true, therefore consistent. It is the addition of A
that enables us to derive B&¬B. So there must be two subsets of F (not necessarily
disjoint), F1 and F2, such that from A&F1 we can derive B, and from A&F2 we
can derive ¬B. So someone who knows just F1 has adequate reason to believe ‘If
A, B’; and someone who knows just F2 has adequate reason to believe ‘If A,¬B’.

In the other direction: suppose there is no set of currently ascertainable facts
which rule out A: all currently ascertainable facts are consistent with A. Therefore,
there are not two subsets F1 and F2 such that A&F1 entails B and A&F2 entails ¬B.
The Gibbard phenomenon does not arise. There may be two subsets which render
it probable, and improbable, respectively, that B given A. But this is no threat to
objectivity. People in these states of information can improve their opinions by
learning more. There is no obstacle to there being an objectively right thing to
think, based on all the relevant currently available information.

If currently ascertainable facts are sufficient to rule out A, then A has a current
objective probability of 0. Hence the present objective probability of B given A is
undefined. Hence there is no ideal, objective thing to think. (There may of course

57I have given elsewhere a more careful example, which relies just on the gas laws [Edgington, 1991,
pp. 206–207]. The examples show that conditionals which are based on ‘objective connections in the
world’ are not immune from the Gibbard phenomenon.

58We must include general truths among the ascertainable facts; in the examples we have considered,
some were founded on the rules of a game; and there was ‘Pete always plays to win’; and the scientific
general truths about the vaccine.
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be more or less rational ways of assessing the information you have. But the world
does not make one judgement best.) A necessary condition for there being an
optimum judgement, then, is that the antecedent has a present non-zero chance of
being true.59

8.3

One way of approaching the idea of correct judgement is via the device of an
ideal epistemic perspective. There are different degrees to which we can idealise.
Take the extreme: G1 knows everything — all the facts, past, present and future.
Consider the conditional ‘If it rains tonight (R), the river will overflow its banks
tomorrow (O)’.60 G1 knows R&O, or knows R&¬O, or knows ¬R. He knows too
much to have any use for indicative conditionals. He can pronounce them trivially
true or false in the first two cases. If the third case obtains, the question doesn’t
arise.

G1 is a little too ideal for us to relate to. Before turning to G2, let us look at
some features of the concept of objective chance.

The concept of objective chance gets some purchase when, at least apparently,
like causes do not have like effects; and moreover, in a class of apparently rel-
evantly identical cases, the proportions of the various sorts of outcome are rela-
tively stable, although these proportions are generated in an apparently random
way. These facts about proportions could be brute (as those who interpret objec-
tive chance as relative frequency think); or they could be explained as just the sort
of pattern of outcomes one would expect if (e.g.) each F has a p% chance of re-
sulting in a G. The strongest notion of objective chance applies only if we remove
‘apparently’ from the above: relevantly qualitatively identical states do have dif-
ferent outcomes. Short of that, which different outcome occurs may be arbitrarily
sensitive to the exact values of the variables which specify the cause: there may be
no degree of similarity short of qualitative identity such that, if two situations are
that similar, the outcome will be similar.61 As we cannot measure to an infinite de-
gree of accuracy, we need to apply the concept of chance. And there will be many
more cases where detection of relevant difference is not practicable, and applica-
tion of the concept of chance is useful. We could call these three cases ‘absolute
indeterminism’, ‘quasi-indeterminism’ and ‘practical indeterminism’; there will
be correlative notions of determinism, depending on which they rule out. It will
not matter which way you interpret ‘indeterminism’ and ‘determinism’ in what
follows. They represent different degrees of idealisation of epistemic perspectives.

59For present purposes, nothing which is now causally possible has a zero chance of being true. We
can give infinitesimal probabilities to hitting a particular point on a dart-board, etc. See Lewis [1980,
p. 89], McGee [1994].

60This example is Bennett’s [1988, p. 521], where he also uses the device of an ideal epistemic
perspective.

61This gives rise to Chaos Theory. See Gleick [1987]; Smith [1991].
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The point of the concept of objective chance is that knowledge of the chances of
future events gives us reasons for our expectations. There are laws about chances,
which we try to ascertain.

The idea of backward-looking objective chance is as recherché as the idea of
backward causation.62 A past event may have had a real chance of not coming
about. But the time for the realisation of that chance has passed. The event hap-
pened, and has no present chance of not having happened. (There may be an
exception: the unobserved wave packet of quantum theory which didn’t collapse.
Our great difficulty in understanding this phenomenon underlines my point about
how we normally think.) Chances change with time, according to the outcomes of
intervening chance events. The probability of my winning my bet on 3 heads is
1
8 . After one toss, it has changed to either 1

4 or 0, for the probability of 1
2 that the

first toss had of landing heads has now ‘collapsed’ to 1 or 0. A man goes through
a maze at constant speed, deciding his path by a random device. At any point, we
can calculate the chance that he will be at the centre by noon. This can vary as he
makes unlucky or lucky turns, until noon at the latest, when it becomes 1 or 0.63

Our reasoning about the past respects this asymmetry in the direction of chance.
We try to find the best explanation of what we currently know, and examine hy-
potheses about past forward-looking chances. The chance was high that he would
get these symptoms, if he took arsenic; the chance was low that he would get these
symptoms if he didn’t.

Now let us return to the ideal epistemic perspective. G2 does not have magical
knowledge of the future (or anything else). For a given conditional, e.g. ‘If it
rains tonight, the river will overflow its banks tomorrow’, he knows all he needs
to know about the past and the laws of nature. (These are things we aspire to.)
Now distinguish two cases: if determinism is true, G2 is in as good a position as
G1. From his knowledge of the past and the laws, he can infer the future. Again,
he knows R&O, or knows R&¬O, or knows ¬R. He has no non-trivial use for
indicative conditionals. If determinism is false, however, G2 can know that R has
some chance of occurring, and moreover, can know the present chance of O given
R — it may be 1 or 0 or something in-between.

But suppose G2 knows that the chance of rain is now 0. Then p(O|R) is un-
defined. There is no objective fact about how likely it is, now, that the river will
overflow given that it rains, when it is now causally impossible that it rain. Com-
pare the doctor and the vaccination, above (p. 184). (There may be an objective
fact about how likely it is that it would have overflowed if it had rained. More on
that later.) Objectivity breaks down when the present chance of the antecedent’s
being true is 0.

When there is a right thing to think, it is only temporarily right. The chance of
a future possibility changes with time; and in due course, flips to 1 or 0, according

62I leave open the question whether it is incoherent, or merely very weird.
63This is Lewis’s delightful example of the ‘garden of forking paths’ [Lewis, 1980, p. 91]. My

discussion of chance owes much to this article.
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to what actually happens. Consider ‘If it rained on Monday night, the river over-
flowed its banks on Tuesday afternoon’. Even if I know that the chance of O given
R was 1, someone else can have just as good reason to say ‘If it rained on Monday
night, the river didn’t overflow on Tuesday afternoon’ — either because she saw
that the river didn’t overflow, or perhaps saw from the state of the river on Tues-
day morning, or on Wednesday, that it couldn’t overflow (or have overflowed) on
Tuesday afternoon. For backward-looking indicatives, there is the better or worse
management of uncertainty but no ideal view.

Objectively correct present values remain, then, for future-looking conditionals
whose antecedent has a present non-zero chance of being true (there are no cur-
rently ascertainable facts to rule it out; it is still causally possible). But a difficulty
arises for the project of providing stronger-than-truth-functional truth conditions
for such conditionals. People hanker after something along Goodman’s or Lewis’s
lines, some sort of strict conditional: the truth of ‘If A, B’ requires that the truth of B
be guaranteed by the truth of A, together with other facts, given the laws — at least
if the antecedent is false. (This qualification is unnecessary for those who deny
that A&B is sufficient for if A, B, for instance Pendlebury [1989], Lowe [1995],
and Read [1995]. Others, like Lewis, will accept that the conditional is true if it
turns out that A&B, even if it is causally possible that A&¬B. (Lewis is, of course,
only giving a theory of counterfactuals; but he applies the theory widely, for exam-
ple to the forward-looking conditionals needed for decision theory [Lewis, 1981,
pp. 325–335].)

A fair dose of determinism, then, is required for truth — to ensure a connection
between A and B, and to ensure that all the initial conditions are in place. But total
determinism will mean that, if the antecedent is false, it is now causally impossi-
ble, and there is no ideal thing to think. I do not say that happy combinations of
determinism and indeterminism are impossible. But it is hard to see what would
ground our confidence that many conditionals are true. (No general predilection
towards determinism, or indeterminism, would.)

If so much is required for truth, so little is required for falsity, on the above
views. Consider ‘If you toss the coin ten times, it will land heads at least once’.
Add that it is improbable that you will toss it. The conditional is either certainly
false (on the stronger alternative) or probably false (on the weaker alternative — it
is true only if you do toss it and it lands heads at least once, but it is improbable that
you will toss it). Our everyday conditionals run great risks of being certain1y false,
or much too probably false. It may be replied that charity requires that we interpret
them with a silent ‘it will be very probable that’ inserted in the consequent: ‘If you
toss the coin ten times, there will be a very high chance that it will land heads at
least once’.64 Well then, truth, as opposed to falsity, for the plain conditionals we
utter, isn’t what matters about them. We are happy enough with falsity, provided

64The conditionals Lewis uses in the analysis of causation and decision, when the assumption of
determinism is dropped, have chances in the consequents [Lewis, 1986, pp. 175–184; 1981, pp. 329–
335].
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that the chance of consequent given antecedent is sufficiently high. It is rather
more straightforward to construe people as doing their best, on the basis of as much
relevant information as it is worth their while to acquire, to estimate as accurately
as possible how likely it is that B given A.

The concept of objective chance is philosophically puzzling. But ordinary peo-
ple do understand it, when they read that (e.g.) eating garlic reduces one’s chance
of heart disease. Those who would explain it away need a surrogate for it. I hope
that I have not relied on anything too theoretically contentious in the discussion
above.

9 IS TRUTH POSSIBLE AFTER ALL?

9.1

According to Jackson [1979; 1980; 1987] we can explain why the Thesis gives
the right assertability condition for indicative conditionals, while maintaining that
their truth condition is the truth-functional one. The relation between ’A ⊃ B’ and
‘If A, B’ is analogous to the relation between ‘A and B’ and ‘A but B’, he claims.
The latter pair have the same truth conditions; but it is part of the meaning of ‘but’
that it is used to signal a contrast between the propositions it joins. In the case of
‘if’, it is part of its meaning that it signals not only that the speaker believes that
A ⊃ B, but that this belief is robust with respect to the antecedent: the speaker
would not abandon the belief if she were to learn that A. So someone who asserts
‘If A, B’ must not only have a high degree of belief in A ⊃ B, but must also have a
high degree of belief in A ⊃ B given A. But b((A ⊃ B)|A) = b(¬A∨ B|A) = b(B|A).
So we assert conditionals when we have a high degree of belief in the consequent
given the antecedent.

Jackson claims an explanatory advantage over those who take the Thesis as
primitive — the ‘no-explanation’ theorists, he calls them [Jackson, 1987, p. 55].
‘To have assertability conditions best explained by certain truth conditions is to
have those truth conditions’ [Jackson, 1987, p. 58]. It is a plausible methodologi-
cal maxim that the value of an explanation depends on its explaining more than the
data it accommodates. So let us first ask what else, if anything, the truth conditions
explain.

Armed with truth conditions, can we explain the occurrence of conditionals as
constituents of longer sentences? We cannot. We know how A ⊃ B behaves in
compound sentences. But Jackson’s theory is not that ‘If A, B’ means the same
as A ⊃ B: their truth conditions are the same, but their assertability conditions
differ. The theory has no implications for how conditionals behave in contexts in
which they are unasserted. In fact he adopts the strategy of explaining away such
occurrences [Jackson, 1987, pp. 127–137] along the lines of Section 7.1 above.

Do the truth conditions explain the validity of arguments involving condition-
als? A main source of dissatisfaction with the truth-functional conditional is a
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clash between our intuitions about validity and the arguments it licenses as valid
(see the example on p. 171 above). Jackson claims that our intuitions are at fault
here: we confuse preservation of truth with preservation of assertability [Jackson,
1987, pp. 50–51]. These generally stay in line, but, because of the special rule for
asserting conditionals, here they come apart. Adams gave an account of validity
in terms of preservation of probability or conditional probability (assertability for
Jackson), which coincides with an account in terms of preservation of truth for
arguments without conditionals. Lewis, agreeing that our intuitions about validity
go better with Adams, says ‘As to whether ‘validity’ should be the word for truth-
or assertability-preservation, that seems a non-issue if ever there was one’ [Lewis,
1986, p. 153]. Lewis, presumably, means not merely that we can use the word
‘valid’ any way we like, but that either choice would be reasonable. Adams’ guid-
ing thought was a pragmatic one. Take an argument with two or three premisses.
Would it be useful to classify it as ‘valid’ when one can be arbitrarily close to cer-
tain of the premisses yet reject the conclusion utterly (or in Jackson’s terms, if the
premisses are very highly assertable and the conclusion completely unassertable)?
Adams thought not.

Jackson’s account does have the advantage that if A is true and B is false, ‘If A,
B’ is straightforwardly false. A defender of the Thesis can point out that a high
b(B| A) commits you to a high b(A ⊃ B), and so commits you to something false
if A is true and B is false. But this is somewhat indirect. However, in Section
7.3 I argued that one could, compatibly with the Thesis, interpret asserting ‘If A,
B’ as making a conditional assertion, true if A&B, false if A&¬B, truth-value-less
otherwise (see above pp. 179–180).

We have yet to see any explanatory advantage of Jackson’s theory. I turn now
to some disadvantages. In Section 7.3 I claimed that the notion of a conditional
assertion was part of a uniform theory of conditional speech acts — conditional
commands, etc. A theory of conditional statements, I claimed, should allow that an
if-clause, ‘If he phones’, plays the same role in ‘If he phones, Mary will be pleased’
and ‘If he phones, hang up immediately’ (p. 169–169). This was a difficulty for
Stalnaker’s theory, and for the truth-functional theory, I argued. Let us try to extend
Jackson’s theory to conditional commands: to command that if A, B, is not only to
command that (A ⊃ B), but also to signal that you would still command (A ⊃ B)
if you believed that A were true. Return to the example ‘If the patient is alive in
the morning, change the drip’ (p. 179). On this analysis I command ‘Make it the
case that either the patient is not alive in the morning, or you change the drip’.
You obey my command if you kill the patient. There is no obvious reason why
you should concern yourself with what I would have commanded had I believed
that the patient would be still alive. (This is quite distinct from the notion of a
conditional command — an utterance which has the force of a command to make
the consequent true, on the condition that the antecedent is true.)

I turn to a difficulty for Jackson’s explanation of why we assert a conditional
when b(B|A) is high, noticed by Lewis. Having a high degree of belief in B given A
(call this, following Lewis, robustness1) does not always mean that you would (or
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even think you would) be confident in B if you learned A (call this robustness2).
Consider again ‘If Reagan is in the pay of the KGB, I’ll never find out’ (see above,
p. 161). I do have a high conditional degree of belief in consequent given an-
tecedent. I do assert the conditional. But I know in advance that I won’t believe
the consequent if I learn the antecedent. Lewis says

What really matters is robustness2, so it would be more useful to
signal that. On the other hand it would be much easier to signal
robustness1. . . It may be no easy thing to judge what would be learned
if [A] were learned, in view of the variety of ways in which something
might be learned. For the most part, robustness1 is a reasonable guide
to the robustness2 that really matters. So it is unsurprising that what
we have the means to signal is the former rather than the latter. And
if this gets conventionalized, it should be unsurprising to find that we
signal robustness1 even when that clearly diverges from robustness2.
That is exactly what happens. . . I say ‘If Reagan works for the KGB,
I’ll never believe it’. [Lewis, 1986, pp. 155–156].

So: when we utter a conditional ‘If A, B’, we convey that we believe A ⊃ B; and we
would like to convey, in addition, that if we were to learn A, we would still accept
A ⊃ B. But that is a hard thing to be confident about, as Lewis admits.65 We settle
instead for something easier: our conditional degree of belief in B given A — not
because it is intrinsically interesting in itself, but because it is a good but fallible
guide to what we would believe if we learned A. As this convention is established,
even in cases where b(B|A) is high but we would not believe B if we learned A, we
assert ‘If A, B’.

My point about conditional commands, combined with this difficulty, might
make us wonder whether it is robustness2 that really matters. With conditional
commands, I need not concern myself with what you would command if you
learned something else; I need only concern myself with what you do command,
albeit conditionally. Similarly with conditional assertions, one might wonder why
I should be interested in what you would assert if you learned that A — after all,
as has been pointed out, this is a difficult thing to be confident about. I am inter-
ested in the fact that you are confident that B on the supposition that A — confident
enough to assert that B, conditionally upon the truth of A. Is Jackson’s theory of
the meaning of ‘if’ plausible? His favourite analogy is with the meaning of ‘but’
([Jackson, 1987], p. 26). Consulting the dictionary on ‘but’, I see ‘in contrast’. On
‘if’, I see ‘on condition that; provided that; supposing that’; I do not find anything
to suggest that ‘if’ conventionally means anything about what I would assert if I
learned something.

65This, Jackson insists [1987, p. 33], and Lewis no doubt agrees, is a subjunctive (counterfactual)
conditional. Jackson’s theory of these is similar to Lewis’s. And it certainly is hard to be sure that in
all close worlds in which I learn A, I will accept B. For there might be, for all I know, unexpected ways
of learning A — like learning that the match was struck, but at the bottom of the swimming pool.
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A thesis like Jackson’s — belief that the truth-conditions of a statement S are
fulfilled is not sufficient for it to be asserted — might be tested by trying to find
out the conditions under which people believe that S, even when they would not be
prepared to assert it. Take a co-operative subject in a context where it is clear that,
for purposes of research, we want to elicit her beliefs. First consider ‘but’. She
believes that Ann is poor, and that Ann is honest. She sees no reason to contrast
these states of affairs. She wouldn’t say ‘She’s poor but she’s honest’ (except in
a special context where she’s hunting for an impecunious crook). She is asked
whether she assents to that sentence. She might hesitate. She might say ‘Yes —
but I wouldn’t put it that way’; she might say ‘She’s poor, she’s honest, but why
the ‘but’? Now she’s asked whether she assents to ‘If the Tories win, they will
nationalise the motor industry’. She thinks the Tories have a very small chance
of winning. Still, she unhesitatingly says ‘No’. (She might add ‘That’s certainly
false’.)

Jackson is well aware that it is impossible to support his theory by eliciting
evidence about when people believe conditionals. He advocates an error theory
here — people are wrong about ‘if’. We speak and think as though there were a
conditional connective ‘∗’, such that b(A ∗ B) = b(B|A). Not many people know
Lewis’s 1976 result that there isn’t [Jackson, 1987, p. 39]. (It is not surprising,
then, that dictionaries do not give the true meaning of ‘if’.)

Now in the sense (if any) that ordinary people can be credited with believing
that there is a conditional ‘connective’, there is a conditional connective: take two
suitable sentences; make, if necessary, some grammatical changes, add an ‘if’ in
an appropriate place and you have one usable sentence. It is philosophers, not
ordinary people, who have misconstrued it.

What about the response ‘That’s certainly false’ to the conditional about the
Tories? Doesn’t a defender of the Thesis have to attribute error to the speaker? I
don’t think so: If you say to her ‘You mean it’s certainly false that the Tories will
nationalise the motor industry, on the assumption that they win the next election?’,
I think she would accept that paraphrase. In Jackson’s view, if we were free from
error — if we stopped being flat-earthers [Jackson, 1987, p. 40] — we would see
that that conditional is very likely to be true when it’s very likely that the Tories
won’t win. In fact, however, we are better off in ‘error’. As I said earlier (p. 135)
we would be intellectually disabled without the ability to discriminate between
believable and unbelievable conditionals whose antecedent we think is false.

9.2

Mellor defends a position in some ways like Jackson’s. It concerns not assertability
[Mellor, 1993, p. 234 fn. 6], but acceptability: to accept a conditional is to be
disposed to infer its consequent from its antecedent; my degree of acceptance of
‘If A, B’ is the degree of belief I am disposed to have in B if I fully believe A. This is
close enough to the Thesis: any peripheral differences are not my present concern
(see above, pp. 159–160). To accept a conditional is not to have a belief, but to
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have an inferential disposition. But he argues, this does not deprive conditionals
of truth conditions. What Lewis showed [1976] is that there is no proposition, no
object of belief, such that your degree of belief in its truth systematically matches
your conditional degree of belief in B given A. Once we have decided that to accept
a conditional is not to believe something, Mellor claims, Lewis’s result becomes
irrelevant to the question whether conditionals have truth conditions.

Mellor reminds us that beliefs are not the only mental states that have truth
conditions. Desires, fears, and other propositional attitudes have them too. So why
shouldn’t the dispositional states which constitute acceptance of conditionals also
have them? ‘All Lewis shows is that an Adams ‘If P, Q’ cannot express a belief
in . . . [its truth-conditional] content. So nothing stops the [dispositional] theory
crediting all. . . conditionals with. . . truth conditions’ [Mellor, 1993, p. 238].

Mellor thinks there are two kinds of conditionals, and has been convinced by
Dudman that the traditional line was misplaced ([Dudman, 1988]; and see above,
p. 129). Backward-looking conditionals like ‘If Oswald didn’t do it, someone
else did’, have truth-functional truth conditions. Forward-looking conditionals,
like ‘If Oswald doesn’t do it, someone else will’, behave like those traditionally
called ‘subjunctive’. These, Mellor suggests, have Stalnaker–Lewis-style truth
conditions.

Take the truth-functional case. Belief that the truth condition is satisfied is not
enough to accept the conditional, for well-known reasons. But if you do accept ‘If
A, B’, the truth of A ⊃ B is what ensures that you won’t end up with a false belief
in B, should you learn A.

That is so, but inferring the consequent from the antecedent is not the only thing
we do with conditionals we accept. They have other roles in practical and theoret-
ical reasoning. And accepting truth-functionally true ones could get you into all
sorts of trouble. Being in a fragile state of mind, I accept that if the Queen was
at home this last hour, she has been worrying about where I am. So I had bet-
ter try and phone. I am liable to be arrested for making nuisance calls, though the
conditional I accept is true, for she is not at home. Had the Warren Commission ac-
cepted ‘If Oswald didn’t kill Kennedy, MI5 did’, Anglo-American relations would
have sunk to an all-time low, even if their conditional was true (Oswald did it). We
should try not to accept conditionals which are truth-functionally false, everyone
agrees; but accepting a conditional can be a pretty bad inferential disposition to
have, even if its material counterpart is true.

The converse problem arises for the conditionals to which Mellor ascribes strong
truth conditions: I may be disposed to have a high degree of belief in B on learning
A, yet be fairly sure that ‘If A, B’ is not true. To repeat the boring old example, I
am disposed to a high degree of belief in ‘the coin will land heads at least once’
should I acquire the belief that you are going to toss it ten times. So I accept the
corresponding conditional. I also happen to think it’s unlikely that you will toss it
ten times. On Lewis’s and Stalnaker’s truth conditions, it is true only if you do toss
it ten times and get at least one head — and this is unlikely, for it is unlikely that
you will toss it. On Lewis’s truth conditions, it is otherwise false — either you toss
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it and get no heads, or you don’t toss it, but there are some close worlds in which
you toss it and get no heads. On Stalnaker’s, it is false if you toss and get no heads,
indeterminate if you don’t toss it. For both, the probability of its truth is low. (I use
the coin example because its structure is transparent; but many everyday examples
produce the same result.) Mellor misses this discrepancy because, although he al-
lows that there are degrees of acceptance and of belief, he does not consider their
application in his discussion of possible-world truth conditions. The discrepancy
between his acceptance condition and the truth condition does not show up in the
case of full belief. If I’m certain that all relevant A-worlds are B worlds, I will fully
believe B if I learn A, and vice versa. The discrepancy shows up if we replace ‘all’
with ‘almost all’.

It is not clear what role the truth conditions play when they fit the acceptance
condition badly (as, of course, they must, given Lewis’s result). Mellor reminded
us that desires, hopes, fears also have truth conditions. So they do: to desire that
p is to desire that it is true that p, i.e., that p’s truth condition obtains. That is
to say, these states have propositional content. But a conditional does not have a
propositional content, according to Mellor, rather, ‘it has not one content, but two,
namely P and Q’ [Mellor, 1993, p. 238]. To accept a conditional is not to accept
that it is true, that its truth condition obtains. And yet it has a truth condition
— one which I may believe obtains while not accepting the conditional, or one
which I may disbelieve while accepting the conditional. Now ‘has a propositional
content’ and ‘has a truth condition’ are somewhat technical terms, but we use
them interchangeably. It has been hard enough to get our minds round the idea
that conditionals have neither. It is harder still, I think, to accept that they have one
but not the other.

9.3

Conditionals may have truth conditions which are radically context dependent.
Van Fraassen’s complaint against Lewis’s proof was the assumption that a con-
ditional will express the same proposition in different belief states: ‘the logical
disaster was precipitated not by Stalnaker’s Thesis [the equation of the probability
of a proposition with a conditional probability], but by [Stalnaker’s] Thesis cou-
pled with Lewis’s metaphysical realism’ [van Fraassen, 1976, p. 275]. Lewis had
said ‘presumably our indicative conditional has a fixed interpretation, the same for
speakers with different beliefs, and for one speaker before and after a change in
his beliefs. Else how are disagreements about a conditional possible, or changes
of mind?’ [Lewis, 1976, p. 138]. Stalnaker showed that even in a single belief
distribution, the Equation cannot hold for all conditionals (see Section 6.4 above);
but, for a simple conditional with no embedded conditionals, we can, perhaps,
always find some proposition for it to express in a given belief distribution. Stal-
naker [1975] argued for a context-dependent interpretation of his truth conditions
for indicative conditionals. Later he said that ‘to play their methodological role,
[indicative] conditionals must be too closely tied to the agents who utter them for
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those conditionals to express propositions which could be separated from the con-
texts in which they are accepted’ [Stalnaker, 1984, p. 111].

Stalnaker [1975] addresses a problem which is the mirror image of that ad-
dressed by Grice and Jackson. In Section 6.5, p. 169, I mentioned two prima fa-
cie desirable properties of indicative conditionals: (i) minimal certainty that A∨B
(ruling out just ¬A&¬B) is enough for certainty that if ¬A, B; and (ii) it is not
necessarily irrational to disbelieve A yet disbelieve that if A, B. I showed that no
proposition can satisfy both. The truth-functional conditional satisfies the first and
not the second. Grice and Jackson provide a surrogate for the second: if you dis-
believe A, then, although ¬A entails ‘If A, B’, the latter may still be unassertable.
Stalnaker’s conditional satisfies the second but not the first. He argues for a surro-
gate of the first. Although the inference

Either the butler or the gardener did it. Therefore, if the butler didn’t
do it, the gardener did

is invalid on his semantics, nevertheless, whenever the first is assertable, so is the
second. Like Grice, Stalnaker appeals to the pragmatics of communication.

Stalnaker’s formal semantics uses a ‘selection function’, f , which selects, for
any proposition A and any world w, a world, w′, the nearest (most similar) world
to w at which A is true. ‘If A, B’ is true at w iff B is true at f (A,w), i.e. at w′, the
world most similar to w at which A is true. ‘If A, B’ is true simpliciter iff B is true
at the nearest A-world to the actual world. (However, we do not know which world
is the actual world. To be sure that if A, B, we need to be sure that whichever world
w is a candidate for actuality, B is true at the nearest A-world to w.) If A is true,
the nearest A-world to the actual world is the actual world itself, so in this case ‘If
A, B’ is true iff B is also true. The selection function does substantive work only
when A is false.

In the case of indicative conditionals the selection function is subject to a prag-
matic constraint, set in the framework of the dynamics of conversation. At any
stage in a conversation, many things are taken for granted by speaker and hearer,
i.e. many possibilities are taken as already ruled out. The remaining possibilities
are live. Stalnaker calls the set of worlds which are not ruled out — the live pos-
sibilities — the context set. For indicative conditionals, antecedents are typically
live possibilities, and we focus on that case. The pragmatic constraint for indica-
tive conditionals says that if the antecedent A is compatible with the context set
(i.e. true at some worlds in the context set) then for any world w in the context set,
the nearest A-world to w — i.e. the world picked out by the selection function — is
also a member of the context set. Roughly, if A is a live possibility (i.e. not already
ruled out), then for any world w which is a live possibility, the nearest A-world to
w is also a live possibility.

The proposition expressed by ‘If A, B’ is the set of worlds w such that the nearest
A-world to w is a B-world. The ordering of worlds, by the pragmatic constraint,
depends on the conversational setting. As different possibilities are live in different
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conversational settings, a different proposition may be expressed by ‘If A, B’ in
different conversational settings.

Consider the one-person case: I am talking to myself, i.e. thinking — deliber-
ating about whether if A, B. The context set is the set of worlds compatible with
what I take for granted, i.e. the set of worlds not ruled out, i.e. the set of worlds
which are epistemically possible for me. Let A be epistemically possible for me.
Then the pragmatic constraint requires that for any world in the context set, the
nearest A-world to it is also in the context set. Provided you and I have different
bodies of information, the proposition I am considering when I consider whether
if A, B may well differ from the proposition you would express in the same words:
the constraints on nearness differ; worlds which are near for me may not be near
for you.

Stalnaker assumes that a disjunction, ‘A ∨ B’ is assertable only if A&¬B and
¬A&B are live possibilities, but ¬A&¬B has been ruled out. Hence, if the disjunc-
tion is assertable, the context set contains some ¬A&B-worlds and no ¬A&¬B-
worlds. So all the ¬A-worlds in the context set are B-worlds. So whichever world
in the context set is actual, the nearest ¬A-world to it is a B-world. Hence, in a
context in which ‘A ∨ B’ is assertable, so is ‘If ¬A, B’.

Thus Stalnaker avoids the argument against non-truth-functional truth condi-
tions given in 6.5. The argument may be spelled out as follows. There are six
incompatible logically possible combinations of truth values for A, B and ¬A→ B:

A ¬A B A ∨ B ¬A>B
1. T F T T T
2. T F T T F
3. T F F T T
4. T F F T F
5. F T T T T
6. F T F F F

We start off with no firm beliefs about which obtains. Now we eliminate just
¬A&¬B, i.e. establish A or B. That leaves five remaining possibilities, including
two in which ‘¬A > B’ is false. So we can’t be certain that ¬A > B (whereas,
intuitively, one can be certain of the conditional in these circumstances). Stalnaker
replies: we can’t, indeed, be certain that the proposition we were wondering about
earlier is true. But we are now in a new context: ¬A&¬B-worlds have been ruled
out (but ¬A&B-worlds remain). We now express a different proposition by ‘¬A >
B’, with different truth conditions, governed by a new nearness relation. As all
our live ¬A-worlds are B-worlds (none are ¬B-worlds), we know that the new
proposition is true.

Now this hypersensitivity of the proposition expressed by ‘If A, B’ to what is
taken for granted by speaker and hearer, or to the epistemic state of the thinker, is
not very plausible. One usually distinguishes sharply between the content of what
is said and the different epistemic attitudes one may take to that same content.
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Someone conjectures that if Ann isn’t home, Bob is. We are entirely agnostic
about this. Then we discover that at least one of them is at home (nothing stronger).
We now accept the conditional. It seems more natural to say that we now have a
different attitude to the same conditional thought, that B on the supposition that
¬A. It does not seem that the content of our conditional thought has changed.
And if there are conditional propositions, it seems more natural to say that we now
take to be true what we were previously wondering about. There does not seem
to be any independent motivation for thinking the content of the proposition has
changed.

Also, Stalnaker’s argument is restricted to the special case where we take the
¬A&¬B-possibilities to be ruled out. Consider a case when, starting out agnostic,
we become close to certain, but not quite certain, that A or B — say we become
about 95% certain that A or B, and are about 50% certain that A. According to the
Thesis, we are entitled to be quite close to certain that if ¬A, B — 90% certain in
fact. (If b(A or B) = 95% and b(A) = 50%, then b(¬A&B) = 45%. b(¬A&¬B) =
5%. So, on the assumption that ¬A, it’s 45:5, or 9:1, that B.) In this case, no
additional possibilities have been ruled out. There are ¬A&¬B-worlds as well as
¬A&B-worlds which are permissible candidates for being nearest. Stalnaker has
not told us why we should think it likely, in this case, that the nearest ¬A-world is
a B-world.

Uncertain conditional judgements create difficulties for all propositional theo-
ries. As we have seen, it is easy to construct probabilistic counterexamples to the
truth-functional theory; and it is easy to do so for the variant of Stalnaker’s theory
according to which ‘If A, B’ is true iff B is true at all nearest A-worlds (as Lewis
[1973]) holds for counterfactuals). (It is very close to certain that if you toss the
coin ten times, you will get at least one head; but it is certainly false that the con-
sequent is true at all nearest antecedent-worlds.) It is rather harder for Stalnaker’s
theory, because nearness is so volatile, and also because it is not fully specified.
Here is a putative counterexample. (I owe this example to a student, James Studd,
who used it for a slightly different purpose.)

We have no idea how much fuel, if any, there is in the car (the gauge isn’t
working). Ann is going to drive it at constant speed, using fuel at a uniform rate,
along a road which is 100 miles long. The capacity of the tank is just enough to do
100 miles: if the tank is full she will go 100 miles then stop. If the tank is x% full,
she will go x miles then stop. We give equal credence to the propositions ‘She’ll
stop in the first mile’, ‘She’ll stop in the second mile’ and so on.

Now consider the conditionals

(1.) If she stops before half way, she will stop in the 1st mile.

. . .

(50.) If she stops before half way, she will stop in the 50th mile.

According to the Thesis, these are all equally likely — each is 2% likely. This
seems reasonable.
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Write Stalnaker’s truth condition thus:

‘A > B’ is true iff either A&B, or ¬A and the nearest A-world is a
B-world.

The following assumption is very plausible: consider a world w in which Ann goes
more than half way. The most similar world to w in which she does not go more
than half way is one in which she stops in the 50th mile. After all, it is spatially and
temporally more similar, more similar in terms of the amount of fuel in the tank,
more similar in its likely causes and consequences, etc., than a world in which she
stops earlier.

Let us evaluate (1) and (50) using Stalnaker’s truth condition. There are two
ways in which (1) can be true: (a) she stops in the first mile (1% likely); (b) she
doesn’t stop before half way and in the nearest world in which she does stop before
half way she stops in the first mile. By our assumption, (b) is certainly false. So
(1) has a probability of 1%.

There are two ways in which (50) can be true: (a) she stops in the 50th mile
(1% likely); (b) she doesn’t stop before half way and in the nearest world in which
she does stop before half way she stops in the 50th mile. By our assumption, (b) is
true iff she doesn’t stop before half way, and so is 50% likely. So (50) gets a total
probability of 51%.

So, given the plausible assumption about nearness, Stalnaker’s theory gives im-
plausible answers to (1) and (50). The example also shows how unnatural the
thought-experiment is, as an assessment of how likely it is that if A, B, using Stal-
naker’s truth conditions for ‘If A, B’.

In Stalnaker’s defence, perhaps the assumption should be rejected: in the con-
text, there is nothing to choose between worlds such as (1) and (50), regarding
how close they are to a world w in which Ann goes more than half way. Then
the selection function does not have a definite value for this argument, and as the
conditionals are not true for all permissible values, they are indeterminate (see
[Stalnaker, 1981]). So, in a sense, they are, but the verdict ‘indeterminate’ is not
very informative. And we do not have a worked-out theory of uncertainty about
indeterminate propositions. Some ideas for such a theory are explored in the next
section, §9.4.

9.4

Van Fraassen [1976, pp. 279–282] had an idea for adapting Stalnaker’s semantics
so that your degree of belief in a Stalnaker conditional A > B equals your b(B given
A). Closely related ideas are found in [McGee, 1989; Jeffrey, 1991] and [Stalnaker
and Jeffrey, 1994]. The proposition A > B will not be independent of your belief
state, but it will yield a theory of what you should believe about compounds of
conditionals. This has been the focus of recent work.

As we saw above, Stalnaker’s formal semantics is equipped with a selection
function, f, which selects, for any world w and any proposition A, the ‘nearest’



198 DOROTHY EDGINGTON

world w′ to w in which A is true. Let w be the actual world. If A is actually true
f selects the actual world. If A is actually false, f selects the ‘nearest’ A world.
A > B is true iff B is true at the world f selects for A. Now suppose you think
it’s 80% likely that B given A. For expository purposes only, let me express this:
you think 80% of the A-worlds are B-worlds. In the A&B-worlds, A > B is true.
In the A&¬B-worlds, A > B is false. If the actual world is a ¬A-world, is it one
for which f selects an A&B-world, or one for which f selects an A&¬B-world?
Well, you don’t know; and there may be no determinate answer to the question, for
there may be nothing to choose between different A-worlds. Stalnaker never did
believe that there were hard facts about which worlds were ‘nearest’, or how actual
selection functions work: this was his way of ‘projecting epistemic strategies onto
the world’ (see p. 163 above). The best projection, Van Fraassen suggested, would
be this. If A is false, let the selection function select an A-world at random. Then
how likely is it (for you) that it selects a B-world? 80%, because you think 80%
of the A-worlds are B-worlds. So A > B has an 80% probability of being true if an
A-world obtains, and an 80% probability of being true if a ¬A-world obtains; so
an 80% probability of being true. b(A > B) = b(B|A).66

Suppose 90% of the red balls have black spots. How likely is it that, if you
pick a red ball (R), it will have a black spot (B)? Your b(B|R) = 0.9. R > B is
true if R&B, false if R&¬B; if ¬R there is a 90% chance that an R&B-world is
‘selected’ and (R > B) is true. So b(R > B) = 0.9. You think it’s very likely that
if they are at home (H), the lights will be on (L). Suppose they are not at home.
Then the selection function is very likely to select an H&L-world rather than an
H&¬L-world. So b(H > L) is high.

This is to give up genuine truth values for the conditional when its antecedent
is false. The ¬A-worlds don’t really divide into those in which A > B is true and
those in which A > B is false. A > B is indeterminate in all the ¬A-worlds (when
your b(B|A) is neither 1 nor 0). This would, I think, block Stalnaker’s version of
the bombshell (see Section 6.4). His proof did assume that the ¬A-worlds divide
into the ¬A&(A > B)-worlds, and the ¬A&¬(A > B)-worlds.

Jeffrey [1991] got the same effect by giving ‘If A, B’ an intermediate ‘semantic
value’ equal to your b(B|A) when A is false. The conditional is, as it were, 80%
true if ¬A, when your b(B|A) is 0.8. If we write ‘1’ for ‘T’ and ‘0’ for ‘F’, we get
a ‘truth table’ for the conditional that looks like this

b A B If A, B
0.4 1 1 1
0.1 1 0 0
0.5 0 0.8

Extending the notion of degree of belief to the case where the object of belief is
a three-valued entity, he takes the weighted average of its semantic value. For

66Van Fraassen proved far from trivial results showing how to apply this idea to an infinite set of
worlds.
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degrees of belief in A&B, A&¬B and ¬A as above, we get b(if A, B) = (0.4 × 1) +
(0.1 × 0) + (0.5 × 0.8) = 0.8 = b(B|A).

Jeffrey [1991] devised ways of assigning degrees of belief to compounds of con-
ditionals from this basis. Stalnaker and Jeffrey [1994] show that this construction
is equivalent to Van Fraassen’s. Within a given belief distribution, a conditional
degree of belief can be equated with a degree of belief (in this extended sense) in
a three-valued entity, and degrees of belief in compounds of conditionals can be
assigned.

It is, admittedly, a rather weird three-valued entity. The 1 and 0 are truth values.
The 0.8 is a degree of belief. This is an odd mixture of ingredients in a weighted
average. Replying to Jeffrey [Edgington, 1991, pp. 203–205], I thought we could
get the same effect by taking the third value to be the objective probability of B
given A (where this exists); and that our epistemic estimation of this objective
three-value identity would still be our b(B|A). But I was wrong. The bombshell
extends: there is no three-valued entity such that, in all belief distributions, your
epistemic estimate of its value is your b(B|A).

McGee [1989] tackled directly the question of assigning probabilities to e.g.
conjunctions and negations of conditionals whose values are conditional probabil-
ities. Part of his methodology was to investigate what would be fair betting odds
on conjunctions of conditionals.

If we can find a general way of assigning probabilities to conjunctions and nega-
tions of conditionals, we have a means of assigning truth values to them (and, more
obviously, vice versa). Start with a set of conditionals. Form from it a set of ‘state-
descriptions’ — conjunctions which contain, for every conditional, either it or its
negation. These form a partition. They are surrogate possible worlds. Suppose
we can assign probabilities to these, which sum to 1. The probability of a condi-
tional should be the sum of the probabilities of the state-descriptions in which it is
‘true’, viz. unnegated (see [Adams, 1975, pp. 32–33]). McGee ends by showing
that on his construction conditionals which satisfy the Thesis can be construed as
Stalnaker-like conditionals with a random selection function, like Van Fraassen’s.

I say ‘Stalnaker-like’ because McGee makes one modification. An important
part of McGee’s construction is the equivalence of ‘If A&B, then C’ and ‘If A, then
if B then C’. This is invalid on Stalnaker’s semantics (see above, p. 172). But only
a small change is needed to modify the semantics in this respect. This is one differ-
ence between Jeffrey’s and McGee’s constructions. Another, connected difference
is that Jeffrey applies his methods to conditionals in antecedents of conditionals,
and McGee does not: McGee’s antecedents are always ‘factual’ sentences. Apart
from these differences, they get the same results, by different methods.

Unfortunately, their results about compounds of conditionals are not altogether
pleasing. Lance [1991] has a plausible counterexample to their common account of
conjunctions of conditionals. I raised some further difficulties [Edgington, 1991,
pp. 200–202]. Stalnaker and Jeffrey [Stalnaker and Jeffrey, 1994] and McGee
(private communication) concede that their theories have counterintuitive conse-
quences. Intuition, though, is not very robust on this subject. We seem to know
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enough about compounds of conditionals to reject certain claims (see Section 7.1
above). Others remain controversial, and some we don’t know how to understand.
This is an area in which there is more work going on, and there may be more to be
learned.

It is hard to decide whether there is more to be learned. Conditionals, these
theorists concede, are not ordinary propositions, so there is no a priori reason why
there should be general routines for decoding compounds of them. On the other
hand, they are not that different from ordinary propositions; and they stand in defi-
nite relations to ordinary propositions (A&B entails ‘if A, B’, which entails A ⊃ B,
on Adams’ account). In Section 7.1 I agreed with Gibbard that, with the help of a
context, we adopt ad hoc strategies for finding suitable interpretations. Sometimes,
without a suitable context, we fail to understand them. These general theories give
the impression of going beyond the data, and going beyond our practical needs.
But a general theory which did not clash with those intuitions we do have would
be an achievement, one for which it is likely we would find a use.

10 COUNTERFACTUALS (BY ANY OTHER NAME)

10.1

We return to ‘counterfactual’ or ‘subjunctive’ conditionals — those expressed in
English with a ‘would’ in the consequent — and their relation to indicatives. (As
mentioned in §1.2, neither of the standard names is entirely appropriate: ’counter-
factuals’ need not be literally counterfactual; and ‘subjunctive’ is controversial —
Stalnaker [2005] speaks of ‘the combination of tense, aspect and mood that we
have gotten into the habit of calling “subjunctive”’.) Consider again these three
forms:

(1a) If she caught the 10 o’clock train, she arrived at noon;

(1b) If she catches the 10 o’clock train, she will arrive at noon;

(1c) If she had caught the 10 o’clock train, she would have arrived at noon.

What is the relationship between them? Intuitively, very close: you would not take
yourself to have expressed a radically new kind of thought, having passed from
one to another in a suitable context.

Those who defend the text-book truth-functional theory of the indicative con-
ditional must see the so-called subjunctive conditional as radically different, and
indeed logically stronger than the indicative conditional — as Jackson and Lewis
do. The difference, it is alleged, is shown by the OK cases:

(2a) If Oswald didn’t kill Kennedy, someone else did;

(2c) If Oswald hadn’t killed Kennedy, someone else would have.
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You may accept the former and reject the latter. But the thought that the subjunc-
tive is logically stronger is undermined when we switch the consequents:

(3a) If Oswald didn’t kill Kennedy, no one else did;

(3c) If Oswald hadn’t killed Kennedy no one else would have.

Suppose you accept (2a) and reject (2c); then you reject (3a) and accept (3c): one
may accept the subjunctive and reject the corresponding indicative. So the former
cannot be logically stronger than the latter; rather, the two forms would appear to
be independent in strength.67

Those who take the ordinary indicative conditional also to be logically stronger
than the truth-functional conditional cite in their favour the advantage of being
able to provide a broadly unified theory of conditionals, within which one hopes to
explain the difference made by the change in grammatical form. This perspective
goes back a long way. Ayers [1965] opens a paper in Mind with the remark that
there is no special problem of subjunctive, or counterfactual conditionals, there is
just a problem of conditionals. The same thought informs Strawson’s writings both
in Introduction to Logical Theory [1952] and in a later paper [Strawson, 1986],
quoted above (p. 11). And this thought lies behind Stalnaker’s approach to the
subject.

As mentioned above (pp. 156–157), Adams [1975, chapter 4; 1993] held that
the Thesis could be extended to subjunctive conditionals: while differences must
be accounted for, conditional probability is the key to the assessment of subjunc-
tive conditionals also. This has not been a popular view. Many philosophers follow
Adams on indicatives but take a Lewis-Stalnaker line on subjunctives, for instance
Gibbard [1981], Appiah [1985], and Bennett [2003]. When Bennett turns to sub-
junctives an entirely new battery of machinery arrives on the scene, and he says
‘they are not in any deep way like indicatives’ (ibid. p. 256). Here he echoes Gib-
bard, who wrote that ’the apparent similarity between these two “if” constructions
hides a profound semantic difference’ (ibid. p. 211). Indeed there is a profound se-
mantic difference on this view: subjunctive conditionals express propositions with
truth conditions, indicative conditionals do not. Can the difference be so great
between (1b) and (1c) above?

To be fair to Gibbard, he treats the ‘will’ conditional as ambiguous: it can be
read as indicative or subjunctive [Gibbard, 1981, p. 228]. Thus he subscribes to
a milder version of the ‘relocation thesis’ (Bennett’s term) than Dudman’s, who
holds that the ‘wills’ and ‘woulds’, like (1b) and (1c), are one kind of conditional;
those that are neither ‘wills’ nor ‘woulds’, Dudman calls ‘hypotheticals’, and treats
quite differently. However, intuitively, (1a) above does not seem to express a radi-
cally different kind of thought from (1c), either.

67This is yet another argument against the truth-functional interpretation of the indicative condi-
tional: the truth-functional conditional is weaker than, and entailed by, the corresponding subjunctive.
But the indicative conditional may be rejected while the corresponding subjunctive is accepted. There-
fore, the truth-functional conditional is not the indicative conditional.
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We shall consider the relocation thesis later. I turn to the question whether, and
if so how, the Thesis may be extended to subjunctives.

10.2

According to the Thesis, an indicative conditional statement is not a categorical
statement of a proposition, true or false as the case may be; it is rather a statement
of the consequent under the supposition of the antecedent. A conditional belief is
not a categorical belief that something is the case; it is a belief in the consequent
in the context of a supposition of the antecedent. Note that the easy transition
between ’suppose’ and ‘if’ is as natural for subjunctives as it is for indicatives:
suppose they had been at home; then the lights would have been on. Suppose
Kennedy had not been assassinated; then there would have been no Vietnam war.

The strongest evidence for the Thesis comes from considering uncertain con-
ditional judgements. Uncertainty is as prominent a feature of subjunctives as it
is of indicatives: the doctor is close to certain, but not quite certain, that the pa-
tient will be cured if he has the operation. The operation is declined, and on the
same grounds the doctor is close to certain that he would have been cured if he
had had the operation. If conditional probability gives the structure of the for-
mer judgement, it would seem that it is also the key to the latter. But while both
backward-looking and forward-looking indicative conditional judgements reflect
our degree of confidence in the consequent given the antecedent, for subjunctive
conditional judgements, the relevant conditional probability does not (normally)
reflect your current degree of confidence in C given A, but (most typically) your
view about how likely it was that C would have happened, given that A had.68

10.3

Let us take a step back and see how these past-tense probability judgements arise,
first in their unconditional form. Consider our judgements about the future. Often
the future cannot be known, but sometimes there is something more accessible to
guide our uncertain judgements, for there are objective chances of future events,
which can be estimated more or less accurately. We consult experts. Some peo-
ple do experiments to estimate the chances. Whether or not there are objective
chances at the most fundamental level of description of the world, there are stable,
discoverable — within limits — features of the world which generate the sorts of
patterns we would expect if there are chances; and at usable levels of description,
they are ubiquitous.

When I say our uncertain judgements about the future are — or better, should
be — guided by the chances, I am appealing in part to what David Lewis [1980]

68The parenthetical qualifications are there because (a) sometimes, about the future, it might be a
matter of indifference whether one says ‘If it rains. . . ’ or ‘If it were to rain. . . ’; and (b) not every
context shift away from your actual epistemic state is a temporal one: ‘Suppose Euclidean geometry
had been true of the real world. . . ’.
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named the Principal Principle: beliefs about chances rationally constrain credence
or degree of belief about future outcomes. One cannot rationally be convinced that
the coin is fair (i.e. is such that the objective chance of its landing heads is 0.5) yet
be close to certain that it will land heads on this toss. But what I am claiming goes
beyond the Principal Principle, and in a sense explains it: in matters of objective
chance about the future, the best degree of confidence to have which is attainable
by reliable and rational means, is one that matches the objective chance, and this
is something our beliefs sensibly aim at. Why else would it be irrational to be sure
that the coin is fair yet close to certain that it will land heads on this toss?

With our uncertain judgements about the past, chance has no such authoritative
normative role for belief. For the chances have already played themselves out —
settled down to 1 or 0. It may be the best you can do to base your judgement about
something in the past on your knowledge of what the chance was that it would
happen, e.g. that the coin was fair when it was tossed. But it may not be; for we
can have information downstream from the outcome making it certain, or close to
certain, that it landed heads. We can judge that it was probable that such and such
would happen, but it didn’t, or it is now unlikely that it did.

Chances change with time: when was it probable that such-and-such would
happen? Context may make this clear enough (as with the past tense in general),
or the time can be specified. It was probable at the beginning of the game that
Spurs would win; throughout the second half it became less and less probable, but
lo and behold, in the last minute they equalised and in extra time they won.

What does it mean to judge that it was probable that something would happen?
It doesn’t mean that you were close to certain that it would. You might have been,
or you might not have been. You can say ‘It was very probable that such-and-such
would happen, though I didn’t realise it at the time’. And indeed, the event in
question might concern a time before you were born — it could even concern a
time before anyone was born, say if it was about the survival chances of dinosaurs.
It can mean that there was, at the time in question, a high objective chance that such
and such would happen. Hence, you are endorsing the corresponding hypothetical
degree of confidence that would have been the right one at the earlier time. And it
is hard to see what else it could mean.

For ‘It was probable that such-and-such would happen’, it’s not necessary (as I
said) that you had an earlier high degree of confidence; nor is it sufficient. Suppose
that people have spun lies to me that I stand a good chance of making a fortune by
investing in this concern. I hand over my money, and it disappears without trace.
I realise I have been conned. Again, I don’t felicitously say ‘It was very probable
that I would make a fortune’, but ‘I thought it was very probable that I would make
a fortune’.69 In other words, there is a drive towards objectivity. And when we are
talking about an earlier time, we form judgements about how the chances were at

69I think the same is true of the epistemic ‘might’. ‘It might land heads’, I say. I later discover that
it was a double-tailed coin. I don’t felicitously say ‘It might have landed heads’ but rather ‘I thought it
might have landed heads’.
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that time. The best sense we can make of the locution ‘It was likely that such-
and-such would happen’ is as a judgement about how the objective chances were
at some past time.

All these sorts of judgements can occur within the context of a supposition.
We make suppositions when deliberating about what to do, and we make suppo-
sitions when deliberating about what is the case. You can be more or less certain
of these judgements in the context of a supposition: that Jane will accept on the
supposition that she is offered the job; that Smith took the money on the supposi-
tion that Jones didn’t; that the dog would have bitten me on the supposition that I
had approached, and so on. And suppositions (according to the Thesis) are more
succinctly formulated with the word ‘if’.

Our backward-looking and forward-looking indicative conditional judgements
reflect our degree of confidence in the consequent on the supposition of the an-
tecedent. With the backward-looking ones, we all have our own idiosyncratic
combinations of knowledge and ignorance, and, as Gibbard [1981] made famous,
people can faultlessly come to opposite opinions: there is nothing objective to aim
at. For instance, we both start off knowing that X or Y or Z did it. I discover that
it wasn’t Y . You discover that it wasn’t Z. I accept ‘If not X,Z’ and reject ‘If not
X,Y’. You do just the opposite. All the relevant facts are available, but neither of
us has them all, and we would know if we pooled our information that X did it.
The present objective chance that X didn’t do it is zero, so there is no such thing
as the present objective chance of Y supposing that not X (just as there is no such
thing as an objective chance that you will pick a spotted ball if you pick a red ball,
when there are no red balls in the bag). For many forward-looking indicatives, by
contrast, it is not yet determined whether the antecedent is true (or at least we treat
it as not yet determined, not yet knowable, whether the antecedent is true), and
there may be such a thing as the objective conditional chance of C given A for our
judgements to aim at. And after the event, should it turn out that not A, we can
be right or wrong when we say that, very likely, C would have happened if A had
— very likely, you would have picked a spotted ball if you had picked a red ball
(assuming now that there were some red balls in the bag). Thus, it is hoped, we get
a fundamentally unified account of conditional judgements, which also explains
interesting differences between the different kinds. Of course we may be certain
that if A,C, but typically we are not, and conditional probability — the probabil-
ity of C on the supposition that A — is the key to how close to certain we are of
a conditional of any kind. But, as already remarked, in the case of subjunctive
conditionals, this conditional probability does not typically represent your current
degree of belief in C given A.

Note that we secure the required independence in the Oswald-Kennedy cases:
it is obviously consistent to have a high degree of belief that someone else did it
on the supposition that Oswald didn’t (i.e. a low degree of belief that no one else
did it on the supposition that Oswald didn’t), but to judge that the probability was
low, back then in 1963, that someone else would have killed Kennedy, supposing
that Oswald hadn’t (i.e. the probability was high, back then in 1963, that no one
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else would have, supposing that Oswald hadn’t).
Why do these judgements matter — judgements about what would have hap-

pened if. . . ? Here is one reason which I am inclined to think is the principal one:
they play an indispensable role in empirical reasoning about what is the case. In
abduction, or inference to the best explanation, we look for hypotheses such that
what we do observe is what we would expect to observe if it were the case that H,
and would not expect to observe, were it not the case that H. ‘It’s not a problem
with the liver’ says the doctor, ‘for the blood test was normal; and if it had been a
problem with the liver, it would have been such-and-such’. ‘They’re not at home;
for the lights are off; and if they had been at home, the lights would have been on’;
‘I think the patient took arsenic; for he has such-and-such symptoms; and these are
the symptoms he would have if he had taken arsenic.’ ‘I think the prisoner jumped
from that window; for the flowers below are squashed; and they would have been
squashed if he had jumped from there’. These are not intended as deductively
valid arguments. They can be defeated if reasonable alternative hypotheses make
it just as likely, or unlikely, that we would have observed what we do observe. For
instance it may be pointed out that the flowers would also be squashed if there
had been a game of football, or a dog fight. Or it could be pointed out that they
always leave the lights on when they go out at night, so there must be some other
explanation of the lights being off— they have gone to bed early, or there was a
power cut. Nevertheless, they are part and parcel of the most basic kind of em-
pirical reasoning. Nor are the conditionals involved typically certain rather than
probable. But to the extent that we can find a hypothesis H such that the chance
was high that we would observe E (as we actually do), on the supposition that H is
true, and the chance was low that E given ¬H, and H is not initially too unlikely,
we have a good argument for H.

10.4

Now, a conditional probability — the probability of C on the supposition that A
— is not a measure of the probability of the truth of a proposition. There is no
proposition X such that, necessarily, the probability that X is true is the conditional
probability of C given A. If subjunctives are to be understood in terms of con-
ditional probabilities, they are not to be understood in terms of truth conditions.
For if they are to be understood in terms of truth conditions, you should believe
a subjunctive to the extent that you think it is true — that its truth conditions are
satisfied.

Bennett [2003, pp. 254–6] claims that none of the arguments against truth con-
ditions for indicative conditionals work for subjunctive conditionals because they
all have at least one false premiss. For example, an argument I have given (§6.4,
see p. 169) includes the premiss that if you are certain that A or B without being
certain that A, you must be certain that if ¬A, B. But this is false for subjunc-
tives. To take the most famous example, I can be certain that either Oswald killed
Kennedy or someone other than Oswald killed Kennedy (while less than certain
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that Oswald did it), without being certain that if Oswald hadn’t killed Kennedy
someone else would have. But Bennett misses the point that the conditional prob-
abilities relevant to the assessment of subjunctive conditionals do not (typically)
represent your present actual distribution of belief, but those of a hypothetical be-
lief state in a different context, normally that of an earlier time, concerning (e.g.)
whether someone else will kill Kennedy if Oswald doesn’t. And it is on that earlier
belief state that one would run the arguments. One could say: your attitude to the
subjunctive endorses the hypothetical matching attitude to the earlier indicative;
and we could run the standard arguments to show that the attitude to the earlier
indicative is not an attitude to a proposition.70

The standard arguments were aimed at indicative conditionals. They apply the
general structural fact that a conditional probability does not measure the probabil-
ity of the truth of a proposition, to the case where the conditional represents your
actual present state of conditional belief.

Here is another way of looking at it: the fact that a conditional probability is not
the probability of the truth of a proposition is in a sense the same structural fact as
the fact that quantifiers like ‘most’, ‘almost all’ in ‘Most As are B’, ‘Almost all As
are B’, or ‘90% of As are B’, unlike the standard treatment of the quantifiers ‘all’
and ’some’ in ‘All As are B’ and ‘Some As are B’, are essentially binary, restricted
quantifiers, in that they cannot be reduced to unary, unrestricted quantifiers ‘Most
things [in the domain] are. . . ’. For probability statements can be modelled by
statements about proportions. Let me divide logical space into a finite number
of (in my judgement) equiprobable bits, adequate for the problem at hand, i.e.
every proposition I am concerned with is true throughout, or false throughout, any
bit. For the sake of familiarity I shall call the bits ‘worlds’; though they are not
ultimate not-further-subdividable possibilities, they are divided finely enough for
the project at hand. A proposition B is probable iff it is true in most of the worlds;
it is almost certain iff it is true in almost all of the worlds; it is 90% probable
iff it is true in 90% of the worlds. A proposition B is conditionally probable, on
the supposition that A, iff most A-worlds are B-worlds; almost certain if almost
all A-worlds are B-worlds; 90% probable if 90% of the A-worlds are B-worlds.
If these were equivalent to statements about the probability of some proposition
X, they would be equivalent to something of the form: in most worlds, X is true;
most worlds are X-worlds; almost all worlds are X-worlds; 90% of worlds are X-
worlds, etc.; and we would have expressed the ‘most’ in ‘Most As are B’ as a unary
quantifier, which cannot be done.71

70Actually Bennett’s claim is not true of Lewis’s first proof [Lewis, 1976], which is just that there is
no proposition such that necessarily, the probability of its truth is the conditional probability of C given
A.

71In the general theory of quantifiers the first predicate is sometimes called the ‘restrictor’; that
describes what the antecedent of a conditional does: it restricts the claim that C to a context in which
the antecedent, A, is satisfied.
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10.5

I say ‘If you touch that wire you will get a shock’. You don’t touch it. I use
my circuit-testing instrument to show you: ‘You see, if you had touched it you
would have got a shock’. Or, if the result is different: ‘Funny, the power must be
off. I was wrong. You wouldn’t have got a shock if you had touched it’. A dog
almost always, but not quite always, attacks and bites when strangers approach.
I’m told ‘It’s very likely that you will be bitten if you approach’. I don’t approach.
Trusting my informant, I say ‘It’s very likely that I would have been bitten if I
had approached’. Fred asks his doctor if he will be cured if he has the operation.
The doctor says ‘We can’t be sure, but I’m pretty sure — about 90% sure that
you will be cured if you have the operation’. Fred declines the operation, and
dies, and the doctor, with no new relevant information, says ‘it’s very likely that he
would have been cured if he had had the operation’. Such pairs could be multiplied
indefinitely. For easier arithmetical examples: it’s 90% likely that you will get a
ball with a black spot if you pick a red ball. It was 90% likely that you would have
got a black spot if you had picked a red ball.

I shall now show that standard truth conditions for subjunctives give the wrong
answers for uncertain judgements of this form. The argument to follow applies
to all accounts of truth conditions which construe a subjunctive conditional as
some kind of strict conditional, involving universal quantification over some set of
worlds or possibilities, or spelled out in terms of entailment from some premises
including the antecedent. I shall stick to the popular Lewis-style truth conditions
— roughly, a subjunctive A→ C is true iff C is true at all closest A-worlds [Lewis
1973; 1979] — see §4 above, though the same points can be made about Goodman-
style truth conditions [Goodman 1954] — see §3 above. It also applies to William
Lycan [2001], who says a conditional A → C is true iff all real and relevant A-
possibilities are C-possibilities; and to Bennett [2003], who fine-tunes Lewis’s
account. Arguably in all of my examples above, and certainly in the last three,
the counterfactuals would not come out as highly probable, but as known to be
plain false, on these truth conditions. Consider the dog that almost always bites
when strangers approach. We can’t tell the difference between the cases in which
it does and those in which it doesn’t. Either there is a bit of indeterminism in play,
or it depends on some undetectable subtle feature of the manner of approach. It’s
not the case, and we take it not to be the case, that in all the relevant worlds in
which I approached I was bitten. So the truth condition is not satisfied, and we
believe it is not satisfied: we think it’s certainly false that if you had approached
you would have been bitten, according to the truth condition. Similarly for the
doctor who thinks it’s 90% likely that I will be cured if I have the operation, and
later considers whether I would have been cured if I had had the operation. Her
uncertainty depends in part on the fine details of what would have happened in the
operating theatre. She is certain that the Lewis truth condition does not obtain:
that in not all relevant operation-worlds I am cured. Yet she thinks that it’s 90%
likely that I would have been cured if I had had the operation. And most obviously
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of all, the balls in the bag: it is certainly false that in all relevant worlds in which
I pick a red ball, it has a black spot. But I say that it’s 90% likely that you would
have got a black spot if you had picked a red ball.

It might be objected that the probability goes in the consequent of the condi-
tional itself. That is, it’s just plain true that (e.g.), if she had had the operation,
there would have been a 90% chance of being cured. I have two replies to this
objection. First, in all of these examples, it’s far from obvious that all relevant
antecedent worlds have the same probability of being a C-world, or even that in all
relevant worlds the consequent has a high chance of being true. The doctor who
believes it’s 90% likely that I would have been cured, need not believe that that fig-
ure would be right for every relevant world in which I go ahead with the operation.
Indeed, it is compatible with her belief that she thinks some ways in which the
operation could have gone would have had a very low chance of success. Second,
even if the first reply is inoperative, it sounds contradictory to say: ‘It’s certainly
not the case that if she had had the operation she would have been cured; but if she
had had the operation it is 90% likely that she would have been cured’. That is,
there are not really two distinct natural ways of hearing these uncertain condition-
als. Scope distinctions are a great philosopher’s tool, but we don’t naturally hear
the two readings of that sentence.

Putting together the point about the close links between wills and woulds, and
the above argument about how easy it is for counterfactuals to be plain false on the
standard truth conditions, those who run the following combination: conditional
probability is the measure of believability of an indicative conditional, Lewis is
more or less right about subjunctives — must say that someone may be very confi-
dent that you will be cured if you have the operation, or that the dog will bite if you
approach, or that you will get a black spot if you pick a red ball; but then, when
those have gone counterfactual, but there is no change in their evidence, claim that
the corresponding subjunctives are definitely false. This seems to me to be a very
unfortunate combination.

A consequence of the above phenomenon is that a very large number of the
counterfactuals we accept and assert turn out to be false on the standard truth
conditions. Either because of indeterminism, or because determinism is too fine-
grained for our everyday antecedents, or because the concepts used in our everyday
antecedents don’t fit nicely into laws of nature (which play a large role in Lewis’s
account of closeness, and of course play a crucial role for Goodman), there will
be the odd world in which you strike the match and it doesn’t light, let alone odd
worlds which falsify counterfactuals about human behaviour: ‘If you had asked
me to do it I would have done so’, ‘If Fred had been in London he would have got
in touch’ and so on.72 (It’s important to see that this does not depend on indeter-

72Unlike some writers on this theme, I would put less weight on the cases where the probabilities are
astronomically high though less than one, which a Lewisian might reasonably ignore; and more weight
on cases where the probabilities are, say, around 90%, i.e. significantly different from certainties, i.e.
the possibility of error cannot be ignored, yet one does not want to judge the conditional to be certainly
false.
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minism. Consider the balls-in-bag example as the easiest. Assume determinism. I
didn’t pick a red ball. So, given the laws and the past, I couldn’t have picked a red
ball. The supposition that I picked a red ball floats free of the past and the laws.
So there is nothing in determinism to say exactly what my hand movements would
have been. And not all pickings would have resulted in a black spot.)

I think we can see from these examples that these judgements of 90% prob-
ability that C would have happened if A had, are not judgements that it is 90%
probable that some fact obtains. What fact? Could God know whether it is TRUE
that I would have picked a spotted ball if I had picked a red ball?

I will make a brief remark about Stalnaker’s truth conditions. Stalnaker does
not treat the conditional as a kind of strict conditional. He says the conditional
is true iff the consequent is true at the closest A-world. (This has been less pop-
ular than Lewis’s approach.) Now when the antecedent is false, there is never
a unique closest A-world. Think of all the different hand-movements you could
have made if you had struck the match or picked a red ball. Stalnaker [1975]
adopts the technique of supervaluations to deal with this fact. So what we get is
the conditional is true iff the consequent is true at all permissible candidates for
closest A-world, i.e. at all closest A-worlds; false iff the consequent is false at all
closest A-worlds; otherwise the conditional is indeterminate. Now this is not so
uncongenial to the Thesis, which is unsurprising, as Stalnaker’s original aim was
to find truth conditions compatible with the probabilistic account, and to extend
the account to subjunctives. My complaints, transposed to Stalnaker’s account, are
that vast numbers of subjunctive conditionals just get the verdict ‘indeterminate’
and this is not very helpful; second, the probability of the truth of a conditional is
still the same as it is for Lewis, and all my problem cases turn out to be not true.
And we do not have a well-developed theory for how to think about how likely it
is that if A,C, when it is almost certainly indeterminate. There have been some
attempts, by Stalnaker, van Fraassen, Jeffrey, McGee (see §9.4 above), but all ran
into difficulties. I am inclined to think that if there were anything promising to
be discovered along these lines it would have been discovered by now. But that
judgement might be premature.

10.6

Bennett [2003] is aware of the above difficulties, and they get some attention in his
book. His first reaction, he calls the near-miss proposal: a subjunctive conditional
counts as true iff the consequent is true in almost all the relevant A-worlds. This
is equivalent to saying that it’s true iff the relevant conditional probability is suffi-
ciently high. This is both vague and context-dependent, but I don’t object to that.
There are more serious objections to be made. Here are six. First, the proposal
allows a conditional to be true which happens to have a true antecedent and false
consequent. Bennett amends the account by adding that this is not the case. Sec-
ond, suppose, just for the sake of argument, that the threshold for truth is around
99%. (I am aware that it is usually vague and context-dependent, but that does not
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affect the arguments to follow.) Then if you know that the relevant probability of C
given A is 99%, (and you know that the antecedent is false, so the first amendment
doesn’t apply), you know enough to be sure that the conditional is true, i.e. sure
that if A had been the case, C would have been the case (on this account). But
you are not: you are just 99% sure that if A had been the case, C would have been
the case. Third, if the relevant conditional probability misses the threshold by a
small amount, say it is 90%, you should say the conditional is definitely false, and
utterly reject ‘If A,C’; but you don’t, you think it is 90% likely that C would have
happened if A had. Fourth, the proposal falls foul of the lottery paradox.73 As
one may put it — probabilities go down on conjunction, but truth values don’t! ‘If
A, B’ and ‘If A,C’ should entail ‘If A, then B&C’. Suppose the balls in the bag are
numbered 1 to 100. (I pick balls-in-bag examples just to get the structure right.)
‘If you had picked a ball, it wouldn’t have been number 1’ and ‘If you had picked
a ball it wouldn’t have been number 2’ can both be true, but ‘If you had picked a
ball it wouldn’t have been number 1 and it wouldn’t have been number 2’ is false.
Fifth, consider conditionals of the form ‘If you had tossed the coin n times you
would have got at least one heads’. Whatever the threshold, it seems absurd to
hold that as n increases there is some value for n at which such conditionals sud-
denly switch from false to true. Sixth: probabilities change. It may be above the
threshold on Monday that if she were to have the operation on Friday she would
survive, below the threshold on Tuesday, above again on Wednesday. So the con-
ditional is true on Monday, false on Tuesday, true again on Wednesday. So ‘If she
had had the operation on Friday, she would have survived’ gets different truth val-
ues with reference to different times. This is perhaps not a knock-down objection,
but we usually think of truth values as more lasting features of our claims than
probabilities.

Bennett also considers what he calls a ‘more radical proposal: drop truth’; and
considers it favourably, which I think is right; but then goes on to say that it
doesn’t matter very much, and ‘does not narrow the theoretical gap between in-
dicatives and subjunctives’ (ibid. p. 253). It is odd to say that it doesn’t matter
very much: without truth, we can no longer think of validity in terms of preser-
vation of truth; we no longer have a ready-made systematic theory of embedded
conditionals; Bennett had previously spent some time arguing against the Law of
Conditional Excluded Middle, that subjunctives with the same antecedent but con-
tradictory consequents could both be false, and uses that claim subsequently. But
without truth, it’s not clear what the Law states; and no two such conditionals can
each have a conditional probability of less than 50%: their conditional probabili-
ties sum to 1.

What Bennett means is that the careful fine-tuning of the notion of closeness
which has occupied many chapters of his book is still needed, whether we go
for truth or probability. There is something right about this. All theories of sub-
junctives — Goodman’s, Lewis’s, and the probabilistic account — share what is

73I owe this point to John Hawthorne [2005].
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essentially the same problem, that of specifying what you hang on to, and what
you give up, when you make a counterfactual supposition: suppose such-and-such
had been the case; what do you hold constant? For Goodman this is the problem of
cotenability, for Lewis it is the problem of closeness, for the probabilistic account,
it is the problem of which probability distribution is the appropriate one. One can
present the probabilistic view in such a way that it is a close relative of Lewis’s.
First we must specify the class of relevant A-worlds. Where Lewis says the coun-
terfactual is true iff C is true in all of them, otherwise false, we may alternatively
say: take a probability distribution over them, and figure out how likely it is that
we have a C-world, given that we have an A-world. We both have the problem of
specifying the class of relevant worlds.

10.7

I used to think that while the probabilistic account could broadly agree with Lewis
about what one holds constant, it could do so with minimal fuss. The default time
to consider is shortly before the antecedent time. Keep the laws of nature constant.
We just need to try to estimate the chance, then, that C given A.

Unfortunately for all views, things are more complicated than that. We also
hold constant independent chance events that occur subsequently, and have some
bearing on the consequent.74 For instance: I’m on my way to the airport. The car
breaks down on the motorway. I miss my flight. When the repairman turns up I
say ‘If I had caught that flight I’d be half way to Paris by now’. ‘Which flight were
you getting?’, he asks. I tell him. ‘Well you’re wrong’, he says, ‘It crashed. If you
had caught that flight you would be dead by now’.

That’s the dramatic example. There’s also ‘If I had bet on heads I would have
won.’ ‘If I had picked lottery ticket number xxx, I would have won’. If the plane
was brought down by a rare chance event, very unlikely in advance (so that in
advance, the plane was no different in terms of safety from any standard plane),
and if my presence or absence on the plane had no causal bearing on whether the
crash would occur, it seems, the repairman’s remarks are correct, and the ratio-
nal forward-looking conditional and the rational hindsightful counterfactual come
apart. Well, yes, but note that in some sense the person who said in advance for no
good reason ‘If you catch that plane you will be killed’ or ‘If you buy ticket xxx
you will win’, and I miss the plane but it crashes, or, I don’t buy a ticket but that is
the number that comes up, we would say she was right!

So the conditional probability we are interested in, for counterfactuals, and in a
sense the ultimate verdict on the forward-looking wills, is the chance, back then,
when A still had some chance of coming about, of C given A and any relevant,
causally independent, subsequent facts that bear on C. You have the chance back
then. Then you eliminate the ‘no crash’ possibilities and consider the probability
distribution over the remaining possibilities. It is still a conditional probability, but

74I have written about this elsewhere [Edgington 2004].
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not one which represents a reasonable degree of conditional belief at the earlier
time.

Why do we assess them in this way? Because it is these hindsightful condition-
als that feed into our inferential practices, in using them to discover what is the
case. Here is an example.

A long time ago, a volcano erupted. It was a slow eruption, the lava creeping
slowly forward. When it began, it was very likely that the lava would eventually
submerge valley A, but valley B would not be affected. However, in the unlikely
event of an earthquake of a particular kind at an appropriate time, the path of the
lava would very probably be switched away from valley A, towards valley B. As a
matter of fact, that is what happened.

Along comes our geologist, centuries later, making her inference about the vol-
cano. She already knows about the earthquake. ‘That volcano must have erupted’,
she concludes. For there is lava in valley B. And given what I know about the
earthquake, that’s what I’d expect to find if that volcano had erupted.’

Suppose there was a second volcano whose potential eruption, at the time in
question, presented much more danger to valley B, but in the unlikely event of
the earthquake, its lava would probably be diverted elsewhere. The hindsightful
counterfactuals get things right: if the second volcano had erupted, there would not
be lava in valley B, and if the first had erupted there would be. These hindsightful
judgements stand most chance of leading us to true beliefs. This explains our
practice in evaluating these quirky cases.

Or: I’m spotted arriving in Paris several hours late for my appointment. Sur-
prise! ‘She must have missed her plane’, they say. ‘If she had caught that plane
she would be dead.’

10.8

When Lewis gave his criteria for closeness in ‘Counterfactual Dependence and
Time’s Arrow’, he did so for what he called ‘the standard resolution of vagueness’
of the similarity relation between worlds. While I prefer the locution ‘context-
dependence’ to ‘vagueness’, I think he was right in spirit, and would now be in-
clined to be perhaps more liberal than he was: pretty well any acceptable indicative
conditional can ‘go counterfactual’ in a suitable context. I will take an extreme ex-
ample (borrowed from Grice), which involves an absolutely minimal ground for
an indicative. If the shift to the counterfactual is permissible here, it looks as if it
is permissible for any indicative. There is a treasure hunt. The organizer tells me:
‘I’ll give you a hint: it’s either in the attic or the garden’. Trusting the speaker, I
think ‘If it’s not in the attic it’s in the garden’. We are competing in pairs: I go to
the attic and tip off my partner to search the garden. I discover the treasure. ‘Why
did you tell me to go to the garden?’ she asks. ‘Because if it hadn’t been in the
attic it would have been in the garden: that’s what I was told’, (or more pedanti-
cally: ‘that’s what I inferred from what I was told’). That doesn’t sound wrong in
the context. (Maybe the organizer gave someone else a hint: ‘It’s either in the attic
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or the kitchen’. Repeat the scenario, but this player arrived in the attic too late.
‘Why did you tell me to go to the kitchen?’ asks her partner. ‘Because if it hadn’t
been in the attic it would have been in the kitchen: I inferred that from what I was
told’.)

Or consider: ‘Why did you hold Smith for questioning?’ ‘Because we knew
the crime was committed by either Jones or Smith — if it hadn’t been Jones, it
would have been Smith’. There is also a nice example of Van Fraassen’s [1981]:
the conjuror holds up a penny and claims he got it from the boy’s pocket. ‘That
didn’t come from my pocket’ says the boy. ‘All the coins in my pocket are silver.
If that had come from my pocket, it would have been a silver coin’.75

This takes off some of the pressure to find the account of relevance or closeness.
It also allows us to make sense, in context, of ‘far out’ subjunctives which do not
easily fit the standard pattern outlined in the previous section. Nevertheless, the
default, most interesting way of assessing subjunctives, feeding into our inferential
practices in important ways, is the one sketched there.

10.9

Let us turn to the ‘relocation thesis’, the thesis that wills and woulds are one kind
of conditional, the plain past/present indicatives another. Dudman [1984a, 1984b],
was not the first to stress the close relation between ‘wills’ and ‘woulds’ (which I
think is correct) but he was, I think, the first to draw the conclusion that there are
two kinds of conditionals, the ‘wills’ and ‘woulds’ are one kind, the plain past and
present tense indicatives are another kind.76 This thesis has been quite influential
(for references see p. 130, n. 6, above). Often in the philosophical literature the
wills and woulds are treated as something like ‘causal conditionals’, the others as
‘evidential conditionals’. I am against splitting the traditional class of indicative
conditionals in this way.

In the traditional class of indicative conditionals, we have a declarative sentence
suitable for making a statement, be it about the past, present or future (or indeed
timeless), to which a conditional clause is attached, expressing a judgement not
categorically but in the context of a supposition; that is, they do essentially the
same sort of thing. Ramsey’s thesis is plausible for all this class: you are confident
in a conditional to the extent that you have a high degree of belief in the consequent
on the supposition of the antecedent. Naturally, our grounds tend to be different
for statements about the future and statements about the past, and a common and
important sort of ground for the ‘wills’ is that A, if it happens, will cause it to be the
case that C. But first, this sort of ground can equally apply to conditionals about the
past — ‘If she touched that, she got a shock’; and second, it is not the only kind of
ground for those about the future: I know the boss told one of his assistants to meet

75It is a nice example because Goodman’s [1954] paradigm example of a generalization which does
not support counterfactuals was ‘All the coins in my pocket are silver’.

76As mentioned above, Gibbard [1981] independently holds a more moderate version of this view.
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me at the station, but I don’t know which; so if Bob doesn’t come, Ann will come.
Even for those that cry out for a causal interpretation, one can tell more or less
bizarre non-standard stories. Here is one from Bennett. ‘If it rains tomorrow, the
roads will be slippery’. But I don’t mean that rain will make the roads slippery: the
roads are very well constructed and not made slippery by rain. I’ve just received
a leaflet from the council which (a) includes a weather forecast predicting rain;
and (b) says they intend to oil the roads tomorrow, warning that this will make the
roads slippery. It doesn’t look as if it’s going to rain, but the council has a first-
rate weather forecaster. However, there is some reason to suspect that the leaflet
may be a hoax and not genuine. If it rains, that will be evidence that it is genuine,
and hence that they will oil the roads, and hence that the roads will be slippery.
Of course one would mislead by making that conditional remark without warning
that the most obvious ground is not the operative one. But that is pragmatics. No
conditional that does not explicitly use causal language like ‘produce’ or ‘make’,
‘result’ or ‘outcome’ forces a causal reading, though of course it is very often
rightly presumed to be asserted on causal grounds. ‘If A happens, B will happen,
but A won’t cause B to happen’ is never contradictory.

Here are some further points in favour of the traditional distinction: Jackson
[1981; 1987] pointed out that while one can believe ‘If Oswald hadn’t killed
Kennedy, things would have been different from the way they actually are’, one
cannot believe ‘If Oswald didn’t kill Kennedy, things are different from the way
they actually are’. Nor can one believe ‘If the Tories win, things will be different
from the way they actually will be’. This conforms with the Thesis in that, with
indicative conditionals, you are supposing to be the case something taken as an
epistemic possibility, and assessing the consequent under that supposition; while
the subjunctive may be used when you know that A and C are actually false, and
you make a judgement about what was going to happen, had A been true (but
actually, didn’t happen).

Jackson’s point has a converse: we can say non-trivially ‘If he had taken arsenic,
things would be just as they actually are’, whereas it is trivial to say ‘If he took
arsenic, things are just as they actually are’, or ‘If the Tories win, things will be
just as they actually will be’.

Also, both kinds of indicatives can occur as conditional commands and promises.
This is obvious for the ‘wills’. For the plain conditionals: ‘If he didn’t give the
lecture, tell the Principal’. ‘If you did it, I promise not to tell’; whereas there
are no subjunctive commands or promises: ‘If he hadn’t given the lecture, tell the
Principal’ and ‘If you had done it, I promise not to tell’ are nonsense.

Let me now address Dudman’s grammatical reason for drawing a new line, the
odd behaviour of tenses in the antecedents of conditionals about the future: ‘If it
rains tomorrow’, not ‘If it will rain tomorrow’.

The future tense plays (at least) two roles which are often coincident: it indi-
cates that we are speaking about the future; and it indicates that we are making a
predication or inference. The two roles can come apart. When something in the
future can be taken as a fixed datum, the present tense is natural: ‘Term begins on
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October 12th’, ‘The sun sets at 7.03 tomorrow’, ‘Christmas Day is on a Sunday
this year’. Conversely, we use the future tense when we are inferring something
about the present, rather than simply observing it. Consider the difference between
‘The washing will be dry now’ and ‘The washing is dry now’. I’d say the latter on
feeling it, the former on looking at my watch, and the sky, and figuring that it has
been hanging out long enough. Similarly for ‘The chicken will be ready now’. (It
would be rash to claim that these facts hold in all languages, but they hold in all the
dozen-or-so languages I have asked native speakers about.) Even when speaking
about the past, the following have different connotations: ‘John got home about
ten’ (I saw him then); ‘John will have got home about ten’ (I infer that from the
fact that he left at nine).

Now, when we make a supposition about the future, as I claim we do with
‘if’: ‘If it rains tomorrow, . . . ’ ‘Suppose England lose tomorrow, . . . ’, we are not
predicting or inferring rain or defeat. Nor are we supposing that these things are
predictable: there is nothing amiss in ‘If it rains tomorrow, I’ll be very surprised’.
We are taking something, hypothetically, for the sake of argument, for granted, as
a datum. To make clear that we are not, even hypothetically, in the business of
inferring the antecedent, the present tense is in order.

Here are some exceptions from the philosophical literature: ‘If she will get the
letter tomorrow anyway, we might as well tell her about it today’ [Woods, 1997];
‘If Granny will be dead by sundown, we can start selling her clothes right now’
(Dudman). The future tense in these antecedents indicates that it is the predictabil-
ity of the antecedent that is being supposed.

Dudman and his followers have said that the words that follow ‘If’ in e.g. ‘If it
rains tomorrow’ and ‘If England lose tomorrow’ do not make a sentence, and thus
they have been wrongly construed by philosophers. I disagree. ‘It rains tomor-
row’ and ’England lose tomorrow’ are sentences, though, given the nature of the
weather and games, not sentences for which we have much use unattached to an
‘if’. ‘England lose tomorrow’ could be used by someone who has fixed the game
in advance, or as a statement about what happens in tomorrow’s episode of a soap
opera he has written. ’It rains at six o’clock’ could be said to a newcomer to an
equatorial climate where rain is as regular as clockwork, who had been planning
his day.

So I think there is an innocent explanation of tense oddity: in ‘If it rains tomor-
row. . . ’ we hypothetically (hence the ‘if’) take as a datum about the future (hence
the present tense) that it rains tomorrow. This syntactic feature does not indicate
a distinct kind of conditional thought. It is a consequence of (1) the more general
phenomenon of present-tense future reference (’The sun sets at 7.03 tomorrow’);
and (2) the nature of suppositions.
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11 CONCLUDING REMARKS

None of the main theories of conditionals is incoherent. All are possible ways
in which speakers and thinkers could use ‘if’. It is an empirical question which
theory fits our practice best. Why do philosophers get worked up about it? Why
don’t we just leave the matter to be settled by questionnaires, or the empirical
work of linguists and cognitive psychologists? (And indeed there is much work in
this field. Jonathan Evans and David Over [2004] provide an excellent overview.)
It is not just an empirical question for philosophers. It is a normative question.
We have here an immensely valuable form of thought, without which our thinking
would be immeasurably diminished. And we want the theory that best explains
why conditionals matter so much to us. As I said earlier, the truth functional
theory of indicative conditionals deprives us of the ability to distinguish between
believable and unbelievable conditionals whose antecedent we think is unlikely to
be true. We would be intellectually impoverished if we used ‘if’ that way. And I
have argued in the last section, a lot of theories of subjunctive conditionals have
the consequence that almost all but the most trivial conditionals of this form are
knowably false; and this would have a disastrous effect on the use we make of
these conditionals. We get worked up because we have the inkling that there is
an essential form of thought here, which serves important purposes, and we are
after the nature of conditional thinking — an account of how and why this form
of thought serves these purposes. That is why there is a philosophy of ‘if’, but we
don’t write philosophy books about ‘whereas’ or ’while’.

Finally, it is worth adding that subjunctive conditionals are supposed to do a
lot of work for us within philosophy, as well as in ordinary life. They have been
used to ‘analyse’ causation, dispositions, laws, and play a large part in some ac-
counts of perception and knowledge. On the first, causation, I think we need to
appeal to causal notions to get subjunctive conditionals right, and the order of ex-
planation goes that way round. I am a little sceptical about their being a valuable
philosophical tool for illuminating other concepts, but I leave that question open.

ACKNOWLEDGEMENTS

Much of the work on the original version of this paper was done while I held a
British Academy Research Readership, for which I am very grateful. I am also in-
debted, for comments and discussion, to Jonathan Bennett, Keith Hossack, David
Over, the late Raúl Orayen, David Papineau and Scott Sturgeon. Michael Fire-
stone’s thesis, and the manuscript which later became Woods [1997], were also
beneficial influences. My greatest philosophical debt is to the work of Ernest
Adams.

Dorothy Edgington
Magdalen College, Oxford, UK



ON CONDITIONALS 217

BIBLIOGRAPHY

[Adams, 1965] E. W. Adams. A Logic of Conditionals. Inquiry 8, 166–197, 1965.
[Adams, 1966] E. W. Adams. Probability and the logic of conditionals. In Hintikka, J. and Suppes, P.

(eds.), 256–316, 1966.
[Adams, 1970] E. W. Adams. Subjunctive and indicative conditionals. Foundations of Language 6,

89–94. 1970.
[Adams, 1975] E. W. Adams. The Logic of Conditionals. Dordrecht, Reidel, 1975.
[Adams, 1993] E. W. Adams. On the rightness of certain counterfactuals. Pacific Philosophical Quar-

terly 74, 1–10, 1993.
[Anderson, 1951] Alan Ross Anderson. A note on subjunctive and counterfactual conditionals. Anal-

ysis 12, 35–38, 1951.
[Appiah, 1985] Anthony Appiah. Assertion and Conditionals. Cambridge: Cambridge University

Press, 1985.
[Appiah, 1986] Anthony Appiah. The importance of triviality. Philosophical Review 95, 209–231,

1986.
[Ayers, 1965] M. R. Ayers. Counterfactual and subjunctive conditionals. Mind 74, 347–364, 1965.
[Bayes, 1940] Thomas Bayes. An essay towards solving a problem in the doctrine of chances, in

Deming, W. E. (ed.) 1940. Originally published in Transactions of the Royal Society of London 53,
370–418, 1763. Philosophical Review 95, 209–231, 1986.

[Bennett, 1974] Jonathan Bennett. Review of David Lewis, Counterfactuals. Canadian Journal of
Philosophy 4, 381–402, 1974.

[Bennett, 1984] Jonathan Bennett. Counterfactuals and temporal direction. Philosophical Review 93,
57–91, 1984.

[Bennett, 1988] Jonathan Bennett. Farewell to the Phlogiston Theory of Conditionals. Mind 97, 509–
527, 1988.

[Bennett, 1995] Jonathan Bennett. Classifying conditionals:the traditional way is right. Mind 104,
331–334, 1995.

[Bennett, 2003] Jonathan Bennett. A Philosophical Guide to Conditionals. Oxford: Oxford University
Press, 2003.

[Bernoulli, 1713] Jacques Bernoulli. Ars Conjectandi. Basle, 1713.
[Black, 1950] Max Black. Philosophical Analysis. Englewood Cliffs: Prentice Hall, 1950.
[Blackburn, 1986] Simon Blackburn. How can we tell whether a commitment has a truth condition?,

in Travis, C. (ed.), 201–232, 1986.
[Burton, 1980] David Burton. Elementary Number Theory. Boston:Allyn and Bacon, 1980.
[Carlstrom and Hill, 1978] I. Carlstrom and C. Hill. Review of Adams 1975, Philosophy of Science

45, 155–158, 1978.
[Carnap, 1936] R. Carnap. Testability and meaning. Philosophy of Science 3, 509–527, 1988.
[Chisholm, 1946] R. Chisholm. The contrary-to-fact conditional. Mind 55, 289–307, 1946.
[Davidson, 1980] Donald Davidson. Mental events, in his Essays on Actions and Events. Ox-

ford:Clarendon Press, 207–225, 1980.
[Dale, 1985] A. J. Dale. Is the future unreasonable? Analysis 45, 179–183, 1985.
[Deming, 1940] W. E. Deming. Facsimiles of Two Papers by Bayes. Washington D.C:US Department

of Agriculture, 1940.
[Dudman, 1983] V. H. Dudman. Tense and time in verb clusters of the primary pattern. Australian

Journal of Linguistics 3, 25–44, 1983.
[Dudman, 1984] V. H. Dudman. Parsing if-sentences. Analysis 44, 145–153, 1984.
[Dudman, 1984a] V. H. Dudman. Conditional interpretations of ‘if-sentences’. Australian Journal of

Linguistics 4, 143–204, 1984.
[Dudman, 1986] V. H. Dudman. Antecedents and consequents. Theoria 52, 168–199, 1986.
[Dudman, 1987] V. H. Dudman. Appiah on ‘if’. Analysis 47, 74–79, 1987.
[Dudman, 1988] V. H. Dudman. Indicative and subjunctive. Analysis 48, 13–22, 1988.
[Dudman, 1989] V. H. Dudman. Vive la Revolution!. Mind 98, 591–603, 1988.
[Dudman, 1992] V. H. Dudman. Probability and assertion. Analysis 52, 4, 204–211, 1992.



218 DOROTHY EDGINGTON

[Dudman, 1994] V. H. Dudman. On conditionals. Journal of Philosophy 91, 113–128, 1994.
[Dummett, 1959] Michael Dummett. Truth, in Dummett, M. 1978, 1–24, 1959.
[Dummett, 1973] Michael Dummett. Frege:The Philosophy of Language. London: Duckworth, 1973.
[Dummett, 1978] Michael Dummett. Truth and Other Enigmas. London:Duckworth, 1978.
[Dummett, 1992] Michael Dummett. The Logical Basis of Metaphysics. London: Duckworth, 1992.
[Edgington, 1986] Dorothy Edgington. Do conditionals have truth conditions?, in Jackson, F. (ed.)

1991, 176–201. First published in Critica 18,52, 3–30, 1986.
[Edgington, 1991] Dorothy Edgington. The mystery of the missing matter of fact. Proceedings of the

Aristotelian Society, Supplementary Volume 65, 185–209, 1991.
[Edgington, 2004] Dorothy Edgington. Counterfactuals and the benefit of hindsight. In Phil Dowe and

Paul Noordhof, eds., Cause and Chance, pp. 12–27. London: Routledge, 2004.
[Eells and Skyrms, 1994] E. Eells and B. Skyrms (eds.)Probability and Conditionals. Cam-

bridge:Cambridge University Press, 1994.
[Ellis, 1973] Brian Ellis. The logic of subjective probability. British Journal for the Philosophy of

Science 24, 125–152, 1973.
[Ellis, 1979] Brian Ellis. Rational Belief Systems. Oxford:Basil Blackwell, 1979.
[Ellis, 1984] Brian Ellis. Two Theories of Indicative Conditionals, 1984. Australasian Journal of Phi-

losophy 62, 50–66.
[Evans and Over, 2004] Jonathan St. B. T. Evans and David E. Over. If. Oxford: Oxford Univeristy

Press, 2004.
[Fine, 1975] Kit Fine. Critical notice of David Lewis’s Counterfactuals. Mind 84, 451–58, 1975.
[Firestone, 1995] Michael Firestone. The Meaning of ‘If’. A Study of the Conditional. MA Thesis,

Australian National University, 1995.
[Fowler, 1965] R. W. Fowler. A Dictionary of Modern English Usage, second edition, revised by Sir

Ernest Gowers. Oxford:Clarendon Press, 1965.
[Frege, 1960] G. Frege. Begriffsschrift, in Geach and Black 1960, 1–20. First published in 1879. 1960.
[Frege, 1979] G. Frege. Posthumous Writings. Oxford:Basil Blackwell, 1979.
[Frege, 1980] G. Frege. Philosophical and Mathematical Correspondence. Oxford:Basil Blackwell,

1980.
[Geach and Black, 1960] Peter Geach and Max Black. Translations from the Philosophical Writings

of Gottlob Frege. Oxford:Basil Blackwell, 1960.
[Gibbard, 1981] A. Gibbard. Two recent theories of conditionals in Harper, Stalnaker and Pearce

(eds.), pp. 211-247, 1981.
[Gleick, 1987] James Gleick Chaos. Penguin Books, 1987.
[Goodman, 1947] N. Goodman. The Problem of Counterfactual Conditionals. Journal 0f Philosophy

44, 113–28, 1947.
[Goodman, 1955] N. Goodman. Fact, Fiction and Forecast. Indianapolis: Bobbs-Merrill, 1955.
[Grandy and Warner, 1986] R. E. Grandy and R. Warner (eds.) Philosophical Grounds of Rationality.

Oxford:Clarendon Press, 1986.
[Grice, 1989] H. P. Grice. Studies in the Way of Words. Cambridge MA: Harvard University Press,

1989.
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QUANTIFIERS IN FORMAL AND NATURAL
LANGUAGES

For a long time, the word ‘quantifier’ in linguistics and philosophy simply stood for
the universal and existential quantifiers of standard predicate logic. In fact, this use
is still prevalent in elementary textbooks. It seems fair to say that the dominance of
predicate logic in these fields has obscured the fact that the quantifier expressions
form a syntactic category, with characteristic interpretations, and with many more
members than ∀ and ∃.

Actually, when Frege discovered predicate logic, it was clear to him that the
universal and existential quantifiers were but two instances of a general notion
(which he called second level concept). That insight, however, was not preserved
during the early development of modern logic. It took quite some time before the
mathematical machinery behind quantification received, once more, an adequate
genera formulation. This time, the notion was called generalised quantifier; a first
version of it was introduced by Mostowski in the late 1950s. Logicians gradually
realised that generalised quantifiers were an extremely versatile syntactic and se-
mantic tool — practically anything one would ever want to say in any logic can
be expressed with them. The power of expression, properties and interrelations
of various logics with generalised quantifies is now a well established domain of
study in mathematical logic.

This is the mathematical side of the coin. The linguistic side looks a bit differ-
ent. Syntactically, there are many expressions one could place in the same category
as some and every: no, most, many, at least five, exactly seven, all but three, . . . .
These expressions — the determiners — occur in noun phrases, which in turn oc-
cur as subjects, objects, etc. in the NP–VP analysis of sentences usually preferred
by linguists. Logically, however, subject–predicate form had fallen into disrepute
since the breakthrough of predicate logic. So it was not obvious how to impose a
semantic interpretation on these syntactic forms — except by somehow rewriting
them in predicate logic. This may explain why the systematic study of quantifiers
in natural language is of a much later date than the one for mathematical language.

The starting-point of this study was when Montague showed that linguistic syn-
tax is, after all, no insurmountable obstacle to systematic and rigorous semantics.
Montague did not yet have the quantifiers in a separate category. But in 1981 Bar-
wise and Cooper united Montague’s insights with the work on generalised quan-
tifiers in mathematical logic in a study of the characteristics of natural language
quantification [Barwise and Cooper, 1981]. At about the same time, but inde-
pendently and from a slightly different perspective, Keenan and Stavi were inves-
tigating the semantic properties of determiner interpretations [Keenan and Stavi,
1986]. It became clear that, in natural language too, the quantifier category is quite
rich and semantically powerful. In the few years that have passed since then, the
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subject has developed considerably. In particular, van Benthem has discovered an
interesting logical theory behind the mechanisms of natural language quantifica-
tion — often with no direct counterpart for mathematical language [van Benthem,
1984a].

My main aim in this chapter is to give a comprehensive survey of the logic and
semantics of natural language quantification, concentrating on the developments in
the last five years or so. the basic tools are the generalised quantifiers from mathe-
matical logic. but it is the questions asked about quantifiers, not the methods used,
that distinguishes our present perspective on quantifiers from that of mathematical
logic.

The basic question facing anyone who studies natural language quantification
from a semantic viewpoint can be formulated as follows. Logically, the category of
quantifiers is extremely rich. For example, even on a universe with two elements,
there are 216 = 65536 possible (binary) quantifiers (the reader who finds this hard
to believe may wish to turn directly to Section 4.6 for the explanation). But, in
natural languages, just a small portion of these are ‘realised’ (512, according to
Keenan and Stavi). Which ones, and why? What are the constraints on deter-
miner interpretations in natural language? what are the properties of quantifiers
satisfying those constraints.

Most of this paper presents various answers to such questions. But we start,
in Section 1, with a selective history of quantifiers: from Aristotle via Frege to
modern generalised quantifiers. It will be seen that both Aristotle’s and Frege’s
contributions compare interestingly to the recent developments. That section also
gives a thorough introduction to generalised quantifiers, and to some logical issues
pertaining to them. In particular, the logical expressive power of monadic quanti-
fiers is discussed in some detail. Section 2 presents basic ideas of the Montague–
Barwise–Cooper–Keenan–Stavi approach to natural language quantification. A
number of examples of English quantifier expressions are also collected, as empir-
ical data for alter use. In Section 3, several constraints on quantifiers are formu-
lated and discussed and various properties of quantifiers are introduced. The con-
straints can also be seen as potential semantic universals. Section 4 then presents
various results in the theory of quantifiers satisfying certain basic constraints; re-
sults on how to classify them under various aspects, on how to represent them, on
their inferential behaviour and other properties. The paper ends with a brief fur-
ther outlook and two appendices, one on branching quantification and the other on
quantifiers as variables.

This chapter is concerned with the semantics of quantification. It examines cer-
tain precisely delimited classes of quantifiers that arise naturally in the context of
natural language. These classes are related in various ways to the (loosely de-
limited) class of natural language quantifiers, i.e. those that are denotations of
natural language determiners. I will make few definite claims about the exact na-
ture of this relationship, but I will discuss several tentative proposals. The idea is
to present the possibilities for determiner interpretation, and to give a framework
sufficiently general for serious discussion of natural language quantifiers, yet re-
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stricted in significant ways compared with the generalised quantifier framework
of mathematical logic. (I also hope to make it clear that interesting logical issues
arise in the restricted framework (and sometimes only in that framework), and thus
that logic can fruitfully be inspired by natural language as well as by the language
of mathematics.)

So, except for a few rather straightforward things, I shall have little to say about
the syntax of quantification here. And except for an introductory overview, I will
not attempt to survey generalised quantifiers in mathematical logic. For more on
quantification and linguistic theory, cf. [Cooper, 1983] or [van Eijck, 1985]. A very
comprehensive survey of quantifiers in mathematical logic is given in [Barwise and
Feferman, 1985].

The semantic framework used here is that of classical model theory. It is simple,
elegant and well known. that it works so well for natural language quantification
too is perhaps a bit surprising. However, there are certain things it does not pretend
to handle, for example, intensional phenomena, vagueness, collectives, or mass
terms. So these subjects will not be taken up here. but then, they receive ample
treatment in other parts of this Handbook.

The logical techniques we need are usually quite elementary. the reader should
be used to logical and set-theoretic terminology, but, except on a few occasions,
there are no other specific prerequisites (the chapter by Hodges in this Handbook
gives a suitable background; occasionally, part of the chapter by van Benthem
and Doets will be useful). I have intended to make the exposition largely self-
contained, in the sense that (a) most proofs and arguments are given explicitly, and
(b) when they are not given, references are provided, but he reader should be able
to get a feeling for what is going on without going to the references. Naturally,
if these intentions turn out not to be realised, it does not follow that the fault lies
with the reader.

This is a survey, and most results are from the literature, although several are
new, or generalised, or proved differently here. I have tried to give reasonable
credit for known results.

1 BACKGROUND FROM ARISTOTELIAN TO GENERALISED
QUANTIFIERS

This section gives a condensed account of the development of what can be called
the relational view of quantifiers. As a chapter in the history of logic, it seems not
to be widely known, which is why I have included a subsection on Aristotle and a
subsection on Frege. My main purpose, however, is to introduce a precise concept
of quantifier sufficiently general to serve as a basis for what will follow. This is the
notion of a generalised quantifier from mathematical logic. In the last subsections,
I will also mention some of the things mathematical logicians do with quantifiers,
as a background to what linguistically minded logicians might do with them.
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1.1 Aristotle

Aristotle’s theory of syllogisms, for ages considered the final system of logic, is
not often seen as rather pointless formal exercise, whose main achievement is to
have hampered the development of logic for some two thousand years. But to
understand Aristotle’s contribution to logic one must distinguish his views from
those of his followers. It is a fact that most of his followers and commentators
were unable, for various reasons, to appreciate his logical insights (to take one
simple but important example the point of using variables).1 From the standpoint
of modern logic, on the other hand, these insights ought to be easily visible.

There is, however, one obscuring issue. According to widespread opinion, the
breakthrough of modern logic rests upon the rejection of a basic Aristotelian idea,
namely, that sentences have subject-predicate form. This was Russell’s view, ap-
parently vindicated by the absence of subject-predicate form in today’s standard
predicate logic. Hence, Aristotle’s logic seems to be built on a fundamental mis-
take.

If we set aside questions concerning the historical causes of the long standstill in
logic after Aristotle, there is, however, no necessary incompatibility between mod-
ern logic and subject-predicate form.2 It is quite feasible to give an adequate ac-
count of both relations and quantification while preserving subject-predicate form,
as we shall see in 2.3. Thus, although it is true that Aristotle’s logic could not ad-
equately account for these things, and thus was unable to express many common
forms of reasoning, this weakness is not necessarily tied to his use of subject-
predicate form.

In addition to matters of syntactic form, however, one ought to consider the
concepts Aristotle introduced with his logic, the questions he raised about it, and
the methods he used to answer them. Herein lies his greatest contribution.

Thousands of pages have been written on Aristotle’s logic, most of them about
irrelevant and futile matters (such as the order between the premisses in a syllo-
gism, why he didn’t mention the fourth figure, whether a valid syllogism can have
a false premiss — Aristotle himself had no doubts about this — , etc.). Readable
modern expositions, with references to the older literature, are Łukasiewicz [1957]
and Patzig [1959]. Below I wish to point, without (serious) exegetic pretensions,
to one important aspect of Aristotle’s logic.

The syllogistics is basically a theory of inference patterns among quantified
sentences. Here a quantified sentence has the form

(1) QXY,

1Actually, contemporaries of Aristotle, like Theophrastus, seem to have understood him rather well.
But the medieval reintroduction of Aristotle’s logic lost track of many important points. Even 19th
century commentators continue in the medieval vein; cf. [Łukasiewicz, 1957].

2About the historical causes Russell may well be right. Note that we are also setting aside here the
metaphysical claims of Russell’s logical atomism, according to which the logical form of sentences
mirror the structure of reality.
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where X,Y are universal terms (roughly 1-place predicate) and Q is one of the
quantifiers all, some, no, not all. In practice, Aristotle treated these quantifiers as
relations between the universal terms.3

Aristotle chose to study a particular type of inference pattern with sentences
of the form (1), the syllogisms. A syllogism has two premisses, one conclusion,
and three universal terms (variables). Each sentence has two different terms, all
three terms occur in the premisses, and one term the ‘middle’ one, occurs in both
premisses but not in the conclusion. It follows that the syllogisms can be grouped
into four different ‘figures’, according to the possible configurations of variables:

Q1Zy Q1Y Z Q1ZY Q1Y Z
Q2XZ Q2XZ Q2ZX Q2ZX
Q3XY Q3XY Q3XY Q3XY

Here the Qi can be chosen among the above quantifiers, so there are 44 = 256
syllogisms. As a matter of historical fact, Aristotle’s specification of the syllogis-
tic form was not quite accurate; he had problems with defining the middle term,
and his systematic exposition does not mention the fourth figure (although he in
practice admitted syllogisms of this form), but these are minor defects.

Now, the question Aristotle posed — and, in essence, completely answered —
can be formulated as follows:

For what choices of quantifiers are the above figures valid?

For example, of we in the first figure let Q1 = Q2 = Q3 = all, a valid syllogism
results (‘Barbara’, in the medieval mnemonic); likewise if Q1 = Q2 = no and
Q2 = all (‘Celarent’). Note that Aristotle’s notion of validity is essentially the
modern one: a syllogism is valid if each instantiation of X,Y,Z verifying the
premisses also verifies the conclusion (a slight difference is that Aristotle didn’t
allow the empty or the universal instantiation; this can be ignored here).

There are interesting variants of this type of question. Given some common
quantifiers, we can ask for their inference patterns, and try to systematise the an-
swer in some perspicuous way (axiomatically, for example). This is a standard
procedure in logic. But we can also turn the question around and ask which quan-
tifiers satisfy the patterns we found: only the ones we started with or others as
well? If our common schemes of inference characterise our common quantifiers,
we have one kind of explanation of the privileged status of the corresponding ‘log-
ical constants’, and one goal of a theory of quantifiers has been attained.

The latter question is somewhat trivialised in Aristotle’s framework, since there
were only four quantifiers. For example, the question of which quantifiers satisfy
the scheme:

QZY
QXZ
QXY

3He sometimes comes very close to an explicit statement; cf. the last pages of [Patzig, 1959].
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has the obvious answer: just all. But the question itself does not depend on the
quantifier concept you happen to use. In 4.1 we shall return to it (and in 4.5 to the
characterisation of our most common quantifiers), this time with infinitely many
quantifiers to choose from, and find some non-trivial answers.

Thus, not only did Aristotle introduce the relational concept of quantifiers, he
also asked interesting questions about it. His methods of answering these ques-
tions were axiomatic (for example, he derived all valid syllogisms from the two
syllogisms ‘Barbara’ and ‘Celarent’ mentioned above) as well as model-theoretic
(non-validity was established by means of counter-examples). Even from a mod-
ern point of view, his solution leaves only some polishing of detail to be desired.
Perhaps this finality of his logic was its greatest ‘fault’; it did not encourage appli-
cations of the new methods to, say, other inference patterns. Instead, his followers
managed to make a sterile church out of his system, forcing logic students to re-
hearse syllogisms far into our own century. But we can hardly blame Aristotle for
that.

It should be noted that outside of logic Aristotle studied quantifiers without
restriction to syllogistic form. For example, he made interesting observations on
sentences combining negation and quantification (cf. [Geach, 1972]).

We shall not pursue the fate of the relational view of quantifiers between Aris-
totle and Frege. Medieval logicians spent much time analysing quantified sen-
tences, but they were more or less prevented from having a concept of quantifier
by their insistence that quantifier words are syncategorematic, without indepen-
dent meaning (this view, incidentally, is still common). Later logicians applied
the mathematical theory of relations (converses, relative products, etc.) to give
explicit formulations of Aristotle’s relational concept, and to facilitate the proofs
of his results on syllogisms (cf. [DeMorgan, 1847] or, for a more recent account
[Lorenzen, 1958]). These methods were in general only applied to the quantifiers
in the traditional square of opposition and their converses. A systematic study of
quantifiers as binary relations did not appear until the 1980s (cf. Section 4.1).

all no

not all some

1.2 Frege

It is undisputed that Frege is the father of modern logic. He invented the language
of predicate calculus, and the concept of a formal system with syntactic formation
and inference rules. Moreover, his work was characterised by an exceptional the-
oretical clarity, greatly surpassing that of his contemporaries, and for a long time
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also his successors, in logic.
There is some difference of opinion, however, as to how ‘modern’ Frege’s con-

ception of logic was. According to Dummett [1973; 1981], we find in Frege, im-
plicitly if not explicitly, just that dualism between a syntactic (proof-theoretic) and
a semantic (model-theoretic) viewpoint which is characteristic of modern logic.
“Frege would have had within his grasp the concepts necessary to frame the notion
of completeness of a formalisation of logic as well as its soundness” [Dummett,
1981, p. 82] Dummett also traces the notion of an interpretation of a sentence, and
thereby the semantic notion of logical consequence, to Frege’s work.

This evaluation is challenged in [Goldfarb, 1979], a paper on the quantifier
linearly (modern) logic. Goldfarb holds the notion of an interpretation to be non-
existent in Frege’s logic: first, because there are no non-logical symbols to inter-
pret, and second, because the universe is fixed once and for all. The quantifiers
range over this universe, and the laws of logic are about its objects. furthermore,
the logicism of Frege and Russell prevented them, according to Goldfarb, from
raising any metalogical questions at all.

Although it takes us a bit beyond a mere presentation of Frege’s notion of quan-
tifier, it is worthwhile trying to get clear about this issue. The main point to be
made is, I think, that Frege was the only one of the logicians at the time who main-
tained a sharp distinction between syntax and semantics, i.e. between the expres-
sions themselves and their denotations. This fact alone puts certain metalogical
questions ‘within the reach’ of Frege that would have been meaningless to others.
Thus, one cannot treat Frege and Russell on a par here. Moreover, if one loses sight
of this, one is also likely to miss the remarkable fact that, while the invention of
predicate logic with the universal and existential quantifiers can also be attributed
to Peano and Russell, Frege was the only one who had a mathematically precise
concept of quantifier. This concept seems indeed to have gone largely unnoticed
among logicians, at least until the last decade or so; in particular, the inventors of
the modern generalised quantifiers do not seem to have been aware of it.

For this reason, Frege, but not Russell, has a prominent place in an historical
overview of the relational view of quantifiers — in fact, Russell’s explanations
of the meaning of the quantifiers are in general quite bewildering (for example,
[Russell, 1903, Chapter IV, Sections 59–65], or [Russell, 1956, pp. 64–75 and
230–231]). I will present Frege’s concept below, and then return briefly to the
issue of how questions of soundness and completeness relate to Frege’s logic.

1.2.1 Quantifiers as second level concepts

Let us first recall some familiar facts about Frege’s theoretical framework.4 All
entities are either objects or functions. These categories are primitive and cannot
be defined. Functions, however, are distinguished from objects in that they have

4More precisely, the system of Grundgesetze [1893]. The English translation of the first part of
this work by M. Furth is prefaced with an excellent introduction, where more details about Frege’s
conceptual framework can be found.
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(one or more) empty places (they are ‘unsaturated’). When the empty places are
‘filled’ with appropriate arguments a value is obtained. The value is always an
object, but the arguments can either be objects, in the case of first level functions,
or other functions: second level functions take first level functions as arguments,
etc. — no mixing of levels is permitted. All functions are total (defined for all
arguments of the right sort). They can be called unary, binary, etc. depending on
the number of arguments.5

Concepts are identified with functions whose values are among the two truth
values True and False. Thus they have levels and ‘arities’ just as other functions.

The meaningful expressions in a logical language (‘Begriffsschrift’) are simple
or complex names standing for objects or functions.6 Names have both a sense
(‘Sinn’) and a denotation (‘Bedeutung’); only the denotation matters here. there is
a strong parallelism between the syntactic and the semantic level: function names
also have empty places (marked by special letters) that can (literally) be filled with
appropriate object or function names. In particular, sentences are (complex) object
names, denoting truth values.

Complex function names can be obtained from complex object names by delet-
ing simple names, leaving corresponding empty places. For example, from the
sentence

23 is greater than 14

we obtain the first level function (concept) names

x is greater than 14,
23 is greater than y,
x is greater than y,

and also the second level

Ψ(23, 14).

Now, suppose the expression

(1) F (x)

is a unary first level concept name. Then the following is a sentence.7

(2) ∀xF (x).

5This notion of ‘arity’ does not tell us the number of arguments of the arguments, etc; for levels
grater than one; we will not need that here.

6Actually, Frege did not use “name” for expressions referring to functions. Instead he used “incom-
plete expression” and the like.

7Here I depart from Frege by (i) using modern quantifier notation, and (ii) using the same letter ‘x’
in (1) and (2). According to Frege, the variable in (1) just marks a place and does not really belong
to the concept name, whereas in (2) it is an inseparable part of a function name (cf. below). These
distinctions, while interesting, are not essential in the present context.
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According to Frege, (2) is obtained by inserting the concept name (1) as an argu-
ment in the second level concept name

(3) ∀xΨ(x).

(3) is a simple name in Frege’s logic. It denotes a unary second level concept,
namely, the function which, when applied to any unary first level function f(x),
gives the value True if f(x) has the value True for all its arguments, False other-
wise.8

This, of course, is a version of the usual truth condition for universally quanti-
fied sentences: (2) is true iff F (x) is true for all objects x. But Frege’s formulation
makes it clear that (3) denotes just one of many possible second level concepts, for
example,

(4) ¬∀x¬Ψ(x)

(5) ∀x(Φ(x) → Ψ(x)).

(4) is the existential quantifier. (5) is the binary second level concept of subordi-
nation between two unary first level concepts. Both can be defined by means of
(3) in Frege’s logic, and are thus denoted by complex names.

In a similar fashion, quantification over first level functions can be introduced
by means of third level concepts, and so on.

Summarising, we find that there is a well defined Fregean concept of quantifier:

Syntactically, (simple) quantifier names can be seen as variable-binding
operators (but see Note 7 on Frege’s use of variables). Semantically,
quantifiers are second level concepts.

If we let, in a somewhat un-Fregean way, the extension of an n-ary first level
concept be the class of n-tuples of objects falling under it, and the extension of an
n-ary second level concept the class of n-tuples of extensions of first level concepts
falling under it, then the extensions of the quantifiers (3)–(5) are

∀u = {X ⊆ U : X = U}(6)

∃u = {X ⊆ U : X �= ∅}(7)

alli = {〈X,Y 〉 : X ⊆ U&Y ⊆ U&Y ⊆ Y },(8)

where U is the class of all objects. Apart from the fact that the universe is fixed
here (and too big to be an element of a class), these extensions are generalised
quantifiers in the model-theoretic sense; cf. Section 1.4.

8Note that the quantifier (3) must be defined for all unary first level functions (not only for concepts),
since functions are total. As we can see, ∀xΨ(x) is false for arguments that ar enot concepts.
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1.2.2 Unary vs. binary quantifiers

Frege was well aware that the usual quantifier words in natural language stand for
binary quantifiers. For example, in ‘On Concept and Object’ he writes

. . . the words ‘all’, ‘any’, ‘no’, ‘some’ are prefixed to concept-words.
In universal and particular affirmative and negative sentences, we are
expressing relations between concepts; we use the words to indicate a
special kind of relation ([Frege, 1892, p. 48], my italics).

But he also found that these binary (Aristotelian) quantifiers could be defined by
means of the unary (3) and sentential connectives. This was no trivial discovery
at the time, and Frege must have been struck by the power and simplicity of the
unary universal quantifier. In his logical language he always chose it as the sole
primitive quantifier.

The use of unary quantifiers was to become a characteristic of predicate logic,
and the success of formalising mathematical reasoning in this logic can certainly be
said to have vindicated Frege’s choice. It does not follow from this, however, that
the same choice is adequate for formalising natural language reasoning. Indeed,
we will see later that unary quantifiers are unsuitable as denotations of the usual
quantifier words, and that, furthermore, it is simply not the case that all binary
natural language quantifiers can be defined by means of unary ones and sentential
connectives.

Such a preference for binary quantifiers in a natural language context is, as we
can see from the foregoing, in no way inconsistent with Frege’s view on quanti-
fiers.9

1.2.3 Logical truth and metalogic

Let us return to the DummettGoldfarb dispute about whether metalogical issues
such as completeness were in principle available to Frege. The usual notion of
completeness of a logic presupposes the notion of logical truth (or consequence),

9There may be deeper reasons for preferring binary quantifiers. For example, [Dummett, 1981]
regards Frege’s decision to use a unary quantifier as the fatal step which eventually led to paradox in
his system. This is because in the unary case we quantify over all objects, whereas binary quantifiers
can restrict the domain to that part of the universe denoted by the first argument (as we will see in
Section 2), thereby avoiding the need to consider a total universe [Dummett, 1981, p. 227].

This argument may point to one cause of Frege’s actual choice of an inconsistent system, but it is not
by itself conclusive against unary quantifiers. The lesson of the paradoxes is not necessarily that one
must not quantify over all objects. Indeed, the Tarskian account of the truth conditions for universally
quantified sentences is quite independent of the size of the universe, and logicians often quantify over
total domains, e.g. the domain of all sets in Zermelo–Fraenkel set theory, without fearing paradox. (It
is another matter that they,for ‘practical’ reasons, often prefer set domains when this is possible.) So
the above argument can only have force, I think, when combined with a general theory of meaning of
the type that Dummett advocates (and which in some sense rejects the Tarskian account). These deeper
issues in the theory of meaning will not be discussed here.
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i.e. truth in all models. But the latter notion was clearly not considered by Frege.
As Goldfarb remarks, he had no non-logical constants whose interpretation could
vary (it seems that he explicitly rejected the use of such constants; cf. Hodges’
chapter, section 17), nor did he consider the idea that the universe could be varied.
One universe was enough, namely, the universe U of all objects, and only simple
truth in U interested Frege.

However, the notion of truth in U is very close to the notion of logical truth. to
fix ideas, consider some standard version of higher-order logic (say, the logic Lω

presented in the chapter by van Benthem and Doets, Section 3.1). For the purposes
of the present discussion we may identify Frege’s logic with higher-order logic
without non-logical symbols.10 Then we can observe that Frege did not ‘miss’
any standard logical truths. For, each sentence ψ in Lω has an obvious translation
ψ∗ in Frege’s logic, obtained by ‘quantifying out’ the non-logical constants. For
example,

∀xPx→ Pa

translates as

∀X∀y(∀xXx→ Xy),

and similarly for higher-order sentences. It is evident that

(9) if ψ is logically true then ψ∗ is true in U.

A parenthetical observation is necessary here. Logical truth is often defined as
truth in all set models, instead of truth in all models, whether sets or not. The
latter notion is real logical truth, and it is with respect to this notion that (9) is
evident. As Kreisel has stressed, use of the former notion is only justified for
first-order logic, since there the two notions coincide (this follows from the usual
completeness proofs). For higher-order sentences, on the other hand, this is open;
cf. [Kreisel, 1967].

For first-order logic, there is a converse to (9), provided we disregard sentences
such as

∃x∃y(x �= y),

which have finite counter-examples but are still true in the infinite U :

THEOREM 1. Let M be any infinite class and ψ a first-order sentence. then ψ is
true in all infinite models iff ψ∗ is true in M .

10Frege’s logic, that is, not his whole system with its (inconsistent) principles of set existence (ab-
straction). The proposed identification slurs over some details, but is consistent with Frege’s idea that
logic is about a domain of objects (U ), upon which a structure of functions of different levels is built,
with no mixing between functions and objects, or between functions of different levels.
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Proof. (This proof uses some standard techniques of first-order model theory; they
can be found in [Chang and Keisler, 1973];; but will not be employed in the se-
quel.) From left to right this is similar to (9); if only set models are considered we
employ Kreisel’s observation mentioned above. For the other direction, suppose
that ¬ψ = ¬ψ(P, . . .) has an infinite model N = 〈N,R, . . .〉. Again by Kreisel’s
observation, we can assume that N is a set. Now distinguish two cases, depending
on whetherM is a set or not. IfM is a set, application of the Löwenheim–Skolem–
Tarksi theorem gives us a model M0 of ¬ψ with the same cardinality as M . Via
a bijection from M to M0,M0 is isomorphic to a model 〈M,S, . . .〉 of ¬ψ with
universe M . Thus, ∃X . . .¬ψ(x, . . .) is true in M , i.e. ψ∗ is false in M , as was to
be proved. Now suppose M is a proper class. Starting with N = N0 as before,
define uniformly for each ordinal α a model Nα such that Nα is a proper elemen-
tary extension of Nβ when β < α. The union M′ of all these is then a model
of ¬ψ (Tarski’s union lemma). Moreover, M ′ is a proper class, whence there is a
bijection from M to M ′. It follows as before that ψ∗ is false in M . �

Thus, in a sense it makes no difference for first-order logic if we have, as Frege
did, a fixed infinite universe (such as U ) and no non-logical constants. More pre-
cisely, it follows from the above that the true Π1

1 sentences of Frege’s logic corre-
spond exactly to the standard first-order logical truths on infinite models.

In conclusion, then, we have seen that notions such as completeness and sound-
ness were not directly available to Frege, since they presuppose a notion of logical
truth he did not have. But Dummett’s position is still essentially correct, I think:
Frege’s work does introduce a version of the dualism between model theory and
proof theory. For, Frege had the notion of truth, which he certainly did not con-
found with provability. Clearly he considered all theorems of his system to be
true. He did not, as far as we know, raise the converse question of whether all true
sentences are provable, but surely it was ‘within his grasp’. And for his logic, this
question turns out to be a version of the completeness question, as noted above.
Moreover, the answer is yes if we restrict attention to Π1

1 sentences (by the above
result and the completeness of first-order logic), no otherwise (higher-order logic
is not complete).

1.3 Mostowskian Quantifiers

As we know, Frege’s work was neglected in the early phase of modern logic, and
the rigor he attained, especially in semantics, was not matched for a long time. But
the language of predicate logic was powerful enough to be a success even in the
absence of a solid semantic basis. In the history of quantifiers, this period is mainly
interesting for its discussions on the role of quantification over infinite domains for
the foundation of mathematics, but that is not a subject here.

The idea of a mathematically sharp dividing line between syntax and semantics
began to reappear gradually in the 1920s, but not until Tarski’s truth definition in
1936 did the notion of truth (in a model) become respectable. Tarski’s truth con-
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ditions for universally and existentially quantified formulas treat ∀ and ∃ syncat-
egorematically, but it is natural to try some other quantifiers here, i.e. to consider
formulas

Qxψ

forQ other than ∀ and ∃. For example, it is clear what the truth conditions for ∃≥n

and ∃=n should look like. To get a general concept, however, we must treatQ non-
syncategorematically, i.e. we must have a syntactic category ‘quantifier’ with a
specified range of interpretations. Such a general concept appeared in [Mostowski,
1957].

Recall that Tarski defines the relation

M � φ[g],

(‘g satisfies φ in M′), where M is model, g an assignment of elements in M to
the variables, and φ a formula. When φ is ∀xψ or ∃xψ, this can be expressed as a
condition on the set

ψM,g,x = {a ∈M : M � ψ[g(a/x)]}.
Thus,

M � ∀xψ[g] ⇔ ψM,g,x = M,
M � ∃xψ[g] ⇔ ψM,g,x �= ∅,
M � ∃≥nxψ[g] ⇔| ψM,g,x |
 n.

A condition on subsets of M is, extensionally, just a set of subsets of M . So
Mostowski defines a (local) quantifier onM to be a set of subsets ofM , whereas a
(global) quantifier is a function(al) Q assigning to each non-empty setM a quanti-
fier QM on M . Syntactically, a quantifier symbol Q belongs to Q, such that Qxψ
is a formula whenever x is a variable and ψ is a formula, with the truth condition

M � Qxψ[g] ⇔ ψM,g,x ∈ QM .

Examples of such quantifiers are

∀m = {M},
∃M = {X ⊆M : X¬∅},
(∃≥n)M = {X ⊆M :| X |
 n},
(Qα)M = {X ⊆M :| X |
 ℵα}, (the cardinality quantifiers)
(QC)M = {X ⊆M :| X |=|M |}, (the Chang quantifier)
(QR)M = {X ⊆M :| X |>|M −X |} (Rescher’s ‘plurality quantifier’).

All of these satisfy the following condition:

ISOM If f is a bijection from M to M ′ then X ∈ Qm ⇔ f [X] ∈ QM ′ .

In fact, Mostowski included ISOM as a defining condition on quantifiers, express-
ing the requirement that ‘quantifiers should not allow us to distinguish between
element/of M /’ [1957, p. 13].
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1.4 Generalised Quantifiers

Rescher, introducing the quantifier QR, noted that QRxψ(x) expresses

(1) Most things (in the universe) are ψ,

but that the related (and more common)

(2) Most φs are ψ

cannot be expressed by means of QR [Rescher, 1962]. From our discussion of
Frege we recognise (2) a binary quantifier, most, giving, on each M , a binary
relation between subsets of M :

mostM = {〈X,Y 〉 ∈M2 :| X ∩ Y |> X − Y |}.
To account for this, the construction of formulas must be generalised. This was
noted by [Lindström, 1966], who introduced the concept of a generalised quanti-
fier, defined below.

(2) can be formalised as

most x, y(φ(x, ψ(y)).

Here the free occurrences of x(y) in φ(ψ) are bound by the quantifier symbol. In
fact, the choice of variables is arbitrary; we can write

most z, x(φ(x), ψ(x)),

or, more simply,

most x(φ(x), ψ(x)).

In this way Mostowskian quantifiers on M are generalised to n-ary relations
between subsets of M . A further generalisation is to consider relations between
relations on M . Here is an example:

Wr
M = {〈X,R〉 : X ⊆M&R ⊆M2&R wellorders X}

(The name of this quantifier will be explained later). The statement that (the set) φ
is wellordered by (the relation) ψ is formalised as

W rx, yz(φ(x), ψ(y, z))

(note that y and z are simultaneously bound in ψ).
Quantifiers are associated with types (finite sequences of positive numbers;

Mostowskian quantifiers have type 〈1〉, most has type 〈1, 1〉, and Wr has type
〈1, 2〉; the principle should be clear. We are now prepared for the following

DEFINITION 2. A (local) generalised quantifier of type 〈k1, . . . , kn〉 on M is
an n-ary relation between subsets of Mk1 , . . . ,Mkn , respectively, i.e. a subset of
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P (Mk1)×· · ·×P (Mkn). A (global) generalised quantifier of type 〈k1, . . . , kn〉 is
a function(al) Q which to each set M assigns a generalised quantifier QM of type
〈k1, . . . , kn〉 on M . To Q belongs a quantifier symbol Q (of the same type) with
the following rule: If φ1, . . . , φn are formulas and x̄1, . . . , x̄n are strings of distinct
variables of length k1, . . . , kn, respectively, then Qx̄1, . . . , x̄n(φ1, . . . , φn) is a
formula with the truth condition

M � Qx̄1 . . . x̄n(φ1, . . . , φn)[g] ⇔ 〈φM,g,x̄1
1 , . . . , φN,g,x̄n

n 〉 ∈ QM .

This definition expresses our final version of the relational view of quantifiers,
the one we will use in the sequel. It should be clear that, apart from the rela-
tivisation to an arbitrary universe M , the notion of a generalised quantifier (or a
Lindström quantifier as it is sometimes called) is essentially the same as Frege’s
notion of a second level concept.11

Most of the time we will restrict attention to quantifiers of type 〈1, 1, . . . , 1〉.
These are the monadic generalised quantifiers; we will usually call them just quan-
tifiers. We can then continue to talk about unary, binary, etc. quantifiers, when we
mean generalised quantifiers of type 〈1〉, 〈1, 1〉, etc.

Like Mostowski, Lindström included ISOM in the definition of generalised
quantifiers:

ISOM If f is a bijection from M to M ′ then 〈R1, . . . , Rn〉 ∈ QM

⇔ 〈f [R1], . . . , f [Rn]〉 ∈ QM ′ .

(If R is k-ary, f [R] = {〈f(a1), . . . , f(ak)〉 : 〈a1, . . . , ak〉 ∈ R}.)
Here are some further examples of generalised quantifiers:

allM = {〈X,Y 〉 ∈M2 : X ⊆ Y },
someM = {〈X,Y 〉 ∈M2 : X ∩ Y �= ∅},
IM = {〈X,Y 〉 ∈M2 :| X |=| Y |},
moreM = {〈X,Y 〉 ∈M2 :| X |>| Y |},
WM = {R ⊆M2 : R wellorders M}.

I is the Härtig quantifier, more is sometimes called the Rescher quantifier (al-
though Rescher only considered the quantifiers QR and most above). W is the
wellordering quantifier. The generalised quantifier Wr given before is the rela-
tivisation of W. This notion is defined as follows.

DEFINITION 3. If Q is of type 〈k1, . . . , kn〉, the relativisation of Q is the
generalised quantifier Qr of type 〈1, k1, . . . , kn〉 defined by

〈X,R1, . . . , Rn〉 ∈ Qr
M ⇔ 〈R1 ∩Xk1 , . . . , Rn ∩Xkn〉 ∈ QX

11Neither Mostowski nor Lindström seem to have been aware of Frege’s concept. there is, however,
a tradition within type theory which builds on Frege’s work, starting with Church’s logic of sense and
denotation (cf. [Church, 1951]). More recent works are, e.g. [?; Daniels and Freeman, 1978].
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(for all X ⊆M and Ri ⊆Mki).

Thus for X ⊆ M we can use Qr to express in M what Q says in X; this will
be made precise in 1.6. Note that all = ∀r, some = ∃r, and most = Qr

R.

1.5 Partially Ordered Prefixes

At this point it is appropriate to mention another generalisation of quantifiers, al-
though not directly related to the relational view. In standard predicate logic each
formula can be put in prenex form, i.e. with a linear prefix Q1x1 . . . Qnxn, where
Qi is either ∀ or ∃, in front of a quantifier-free formula. Henkin [1961] suggested a
generalisation of this to partially ordered or branching prefixes, e.g. the following

(1)

∀x− ∃y

φ(x, y, z, u)

∀z − ∃u
The prefix in (1) is called the Henkin prefix. The intended meaning of (1) is that
for each x there is a y and for each z there is a u such that φ(x, y, z, u), where
y and u are chosen independently of one another. To make this precise one uses
Skolem functions. (1) can then be written

(1′) ∃f∃g∀x∀zφ(x, f(x), z, g(z)).

The method of Skolem functions works for all prefixes with ∀ and ∃. For ex-
ample, the first-order

(2) ∀x∀z∃y∃uφ(x, y, z, u),

(3) ∀x∃y∀z∃uφ(x, y, z, u)

become

(2′) ∃f∃g∀x∀zφ( f(x, z), z, g(x, z)).

(3′) ∃f∃g∀x∀zφ(x, f(x), z, g(x, z)).

But the dependencies in (1′) cannot be expressed in ordinary predicate logic; some-
what surprisingly, the Henkin prefix greatly increases the expressive power, as we
shall see in 1.6.

Although branching quantification generalises another feature of ordinary quan-
tification than the one we have been considering here, it can in fact, be subsumed
under the relational view of quantifiers. To the Henkin prefix, for example, corre-
sponds the Henkin quantifier H of type 〈4〉, defined by

H = {R ⊆M4 : there are functions f, g on M such that
for all a, b ∈M, 〈a, f(a), b, g(b)〉 ∈ R}.

The formula (1) is then written, in the notation of 1.4,
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(1′′) Hxyzuφ(x, y, z, u).

Observe that branching was only defined for ∀ and ∃. Can we let other quanti-
fiers branch as well, and consider formulas such as

(4)

Q′x

φ(x, y)?

Q′′y

It is not immediate what this should mean. Compare the linear

(5) Q′xQ′′yφ(x, y);

this is true in M iff X = {a ∈ M : M � Q′′yφ[a, y]} is in Q′
M , and, for each

a ∈ M,M � Q′′yφ[a, y] iff Ya = {b ∈ M : M � φ[a, b]} is in Q′′
M . But the

idea with (4) is to evaluate the quantifiers independentlyof each other, and then it
is not clear which sets to look for in Q′

M and Q′′
M . Nevertheless, Barwise [1979]

shows that for certain Q′ and Q′′ a reasonable interpretation of (4) can be given,
and Westerståhl [1987] extends this to arbitrary Q′ and Q′′.

Branching quantification is not only of mathematical interest. It can be argued
that both the Henkin prefix and the form (4) (for certain non-first-order Q′ and
Q′′) occur essentially in natural languages. Barwise [1979] contains a good pre-
sentation of the issues involved here; a brief review will be given in Appendix
A.

1.6 Model-Theoretic Logics

The introduction of generalised quantifiers opens up a vast area of logical study.
Let EL (elementary logic) be standard predicate logic, and, if Qi are generalised
quantifiers for i ∈ I , let L(Qi)i∈I be the logic obtained from EL by adding the
syntactic and semantic rules for each Qi as in Definition 2. The study of such
model-theoretic logics is sometimes called abstract model theory.12 For a compre-
hensive survey of this field of mathematical logic the reader is referred to Barwise
and Feferman [1985], in particular the chapter [Mundici, 1985]. Below, just a few
examples of such logics and their properties will be given.

The expressive power of a logic is most naturally measured by the classes of
models its sentences can define. Define L � L′ (L′ is an extension of L) to mean
that for each sentence of L there is an equivalent sentence (i.e. one with the same
models) of L′. Clearly � is reflexive and transitive, and every logic L = L(Qi)i∈I

is an extension of EL. We write L ≡ L′ when L � L′ and L′ � L, and L < L′

when L � L′ and L′ �� L.13

12There are more general concepts of logic, used in abstract model theory. A comparison of various
abstract notions of a logic is given in [Westerståhl, 1976].

13This partial order concerns explicit power of expression, by single sentences. One can also consider
implicit strength (cf. Appendix B.3), or expressibility by sets of sentences.
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Since formulas are defined inductively, to prove that L(Qi)i∈I � L′ it suffices
to show that each Qi is definable in L′. For example, if Qi is of type 〈2, 1〉 it
suffices to show that the sentence

Qixy, z(P1xy, P2z)

is equivalent to a sentence in L′.
The inductive characterisation of formulas also gives the following result, which

explains why ISOM is normally assumed for generalised quantifiers in mathemat-
ical logic: if each Qi satisfies ISOM, then truth of sentences in L(Qi)i∈I is pre-
served among isomorphic models. In fact, the inductive proof of this gives slightly
more

PROPOSITION 4. If each Qi satisfies ISOM, φ is a formula in L(Qi)i∈I , f an
isomorphism from M1 to M2, and g an assignment in M1, then

M1 � φ[g] ⇔ M2 � φ[fg].

Here is the relative strength of some of the logics we have considered:

THEOREM 5. EL < L(Q0) < L(I) < L(more) < L(H).

The easiest part of the proof of this theorem is to show that one logic is an
extension of the previous one. That L(Q0) � L(I) follows from the equivalence

Q0xPx↔ ∃y(Py ∧ Ix(Px, Px ∧ x �= y))

(P is infinite iff removal of one element does not change its cardinality). That
L(I) � L(more) is obvious, and that L(more) � L(H) follows by the following
trick (due to Ehrenfeucht):

¬more x(P1x, P2x) ↔ ∃f(f is a 1–1 function from P1 to P2)
↔ ∃f∀x∀z(x = z ↔ f(x) = f(z)∧

∧P1x→ P2f(x))
↔ ∃f∃g∀x∀z(x = ↔ f(x) = g(z)∧

∧P1x→ P2f(x))
↔ Hxyzu(x = z ↔ y = u ∧

∧P1x→ P2y).

To prove that one logic is not an extension of another, one can either show
directly that some sentence in the first is not equivalent to any sentence in the
second, or, more indirectly, use properties of the two logics to distinguish them.
For example, the following well known properties of EL can sometimes be used:

1. The compactness property: If every finite subset of a set of sentences has
a model, the whole set has a model. Consider the following set of L(Q0)-
sentences:

{¬Q0x(x = x)} ∪ {∃�nx(x = x) : n = 1, 2, 3, . . .}.
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This set has no models, but each finite subset has one. So L(Q0) (and all its
extensions) is not compact. In particular, L(Q0) �� EL.

2. The Tarski property: If a sentence has a denumerable model it has an un-
countable model. Let φ be an EL-sentence saying that < is a discrete linear
ordering with a first element. Then the L(Q0)-sentence

(1) φ ∧ ∀x¬Q0y(y < x)

characterises the natural number ordering 〈N,<〉 (i.e. 〈M,R〉 is a model of
(1) iff it is isomorphic to 〈N,<〉). All models of (1) are denumerable, so
L(Q0) does not have the Tarski property.

3. The completeness property: The set of valid sentences is recursively enu-
merable. Adding to (1) sentences (of EL) defining addition and multiplica-
tion,and saying that 0 is the least element and x + 1 the immediate succes-
sor of x, we obtain a sentence θ which characterises the standard model of
arithmetic N = 〈N,<,+,×, 0, 1〉. Then, for every L(Q0)-sentence ψ in
this vocabulary,

N � ψ ⇔ θ → ψ is valid.

Thus, since the set of true arithmetical sentences is not recursively enumer-
able, L(Q0) is not complete. This time there is no immediate consequence
for extensions of L(Q0). For the extensions mentioned in Theorem 5, how-
ever, sentences characterising N can be constructed in a similar way, so they
are not complete either.

4. The Löwenheim property: If a sentence has an infinite model it has a denu-
merable model. It is not very difficult to show that L(Q0) in fact has the
Löwenheim property. But L(I) (and its extensions) does not: we can write
down a sentence of L(I) saying that < is a dense linear ordering without
endpoints, and that there is an element which does not have as many prede-
cessors s it has successors. In a model, the set of predecessors and the set
of successors of this element are infinite and of different cardinalities, so the
model must be uncountable. It follows, in particular, that L(I) �� L(Q0).

In the proof of Theorem 5, it only remains to show that L(I) is not an extension
of L(more), and that L(more) is not an extension of L(H). A convenient way
to prove the former will be given in 1.7. A proof of the latter can be found in
[Cowles, 1981].

Recall the definition of relativised quantifiers in Section 1.4.2. We say that
L = L(Qi)i∈I relativises, if

Lr = L((Qi)r)i∈I � L,
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i.e. if the relativisation of each Qi is definable in L. EL,L(Qα), L(I), L(most),
L(more) and L(H) all relativise. For example,

∀rx(Px, P1x) ↔ ∀x(Px→ P1x),
mostrx(Px, P1x, P2x) ↔ most x(Px ∧ P1x, P2x),
Hrv, xyzu(Pv, P1xyzu) ↔ Hxyzu((Px ∧ Pz) →

(Py ∧ Pu ∧ P1xyzu)).

L(QR), L(QC) and L(W), on the other hand, do not relativise (cf. Section 1.7).
As the above equivalences show, relativised quantifier symbols are used to make

relativised statements. This extends to all L-sentences. Define, for each L-formula
φ and each unary predicate symbol P , the relativised formula

φ(P )

In Lr inductively by letting φ(P ) = φ if φ is atomic, (¬ψ)(P ) = ¬ψ(P ), (ψ ∧
θ)(P ) = ψ(P ) ∧ θ(P ), and, when φ is quantified, beginning with Qi of type 〈2, 1〉,
say,

Qixy, (ψ, θ)(P ) = (Qi)rv, xy, z(Pv, ψ(P ), θ(P )).

φ(P ) expresses exactly what φ says about the universe restricted to (the deno-
tation of) P . We can formulate this precisely as follows. Call a subset X of the
universe of the model M universe-like if X �= ∅, the denotations of all individual
constants in the vocabulary for M are in X , and X is closed under the denotations
of all function symbols in the vocabulary. In that case, let M | X be the model
with universe X , and all the relations etc; in M restricted to X . Then it can be
shown by induction that if X is universe-like and φ is an L sentence,

(REL) (M,X) � φ(P ) ⇔ M | X � φ

(here we assume that P does not occur in φ and that it denotes X in (M ,X)).
If L relativises, all this can be done in L, since φ(P ) is then clearly equivalent

to an L-sentence.
So far we have only discussed particular logics and their properties. The most

exciting part of abstract model theory, however, concerns results relating various
properties of logics to each other, and results characterising certain logics in terms
of their properties. Most famous of these characterisations is still Lindström’s
theorem [1969], which characterises EL in terms of the four properties mentioned
above (for proofs, cf. [Flum, 1985], van Benthem and Doets or Hodges (both this
Handbook series).

THEOREM 6. If L is compact and has the Löwenheim property, then L ≡ EL.
Also, of L relativises, then (a) if L is complete and has the Löwenheim property
then L ≡ EL; (b) if L has the L’́owenheim and Tarski property then L ≡ EL.
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1.7 The Strength of Monadic Quantifiers

In general, it may be quite difficult to determine whether L � L′ or not, where
L and L′ are logics with generalised quantifiers. In the case of monadic quanti-
fiers, however, things become much easier. Since this case is what we shall mainly
be dealing with, I will devote the present subsection to developing some machin-
ery for comparing the expressive power of logics with monadic quantifiers. The
machinery will be applied in particular to the quantifiers more and most. I use
these quantifiers later to illustrate some important points concerning natural lan-
guage quantification, and it will then be instructive to have established their logical
properties.

This subsection is a bit more technical than the previous ones; I have written
out proofs of results that are new or not easily found in the literature (cf. the bib-
liographical note at the end). The reader can skip or glance through it now, and
return to it for a definition or a result that is used later.

From now on, when Q is an m-ary monadic quantifier, we will write simply

QMX1 . . . Xm,

instead of 〈X1, . . . , Xm〉 ∈ QM . Thus,

allMAB ⇔ A ⊆ B,
mostMAB ⇔ |A ∩B| > |A−B|,
moreMAB ⇔ |A| > |B|,

etc.
Let M = 〈M,A0, . . . , Ak−1〉 be a K-ary monadic structure (i.e. the Ai are

subsets of M , and the vocabulary consists of k unary predicate symbols). The
following terminology will be used her an in later sections. If X ⊆ M , let X0 =
X and X1 = M − X . If s is a function from {0, . . . , k − 1} to {0, 1}, i.e. if
s ∈ 2k, let

PM
s = A

s(0)
0 ∩ . . . ∩As(k−1)

k−1 .

{PM
s }s∈2k is a partition ofM , and, up to isomorphism, the number of elements in

these partition sets is all there is to say about M. In other words, if |PM
s | = |PM′

s |
for all s ∈ 2k, then M and M′ are isomorphic. Finally, let

UM
i ,

for 1 � i � 22k

, be all possible unions of the partition sets (including ∅), in some
fixed order.

If L is a logic, M a structure (not necessarily monadic), X ⊆ M, and a1, . . . ,
an ∈ M,X is said to be L-definable in M with parameters a1, . . . , an, if there is
an L-formula φ in the vocabulary of M such that

a ∈ X ⇔ M � φ[a, a1, . . . , an].
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The following is an almost immediate consequence of this definition and Propo-
sition 4:

LEMMA 7. If L satisfies ISOM, X is L-definable in M with parameters a1, . . . ,

an, and f is an automorphism on M (i.e. an isomorphism from M to M) with
f(ai) = ai, then f [X] = X .

If A,B are sets, A ⊕ B, the symmetric difference between A and B, is
(A−B) ∪ (B −A). We say that B is an X-variant of A, if A⊕B ⊆ X .

LEMMA 8. Suppose that L satisfies ISOM and that M is a monadic structure.
Then the L-definable sets in M with parameters a1, . . . , an are precisely the {a1,

. . . , an}-variants of the unions UM
i .

Proof. Clearly all these sets are also definable. Now suppose X is L-definable in
M from a1, a . . . , an. Then so isX ′ = X = {a1, . . . , an}. It suffices to show that
X ′ has the desired form. Let s1, . . . , sp be those s ∈ 2k for which X ′ ∩ Pm

s �= ∅.
Thus,

X ′ ⊆ PM
s1

∪ . . . ∪ PM
sp
.

Suppose X ′ is not and {a1, . . . , an}-variant of PM
s1

∪ . . . ∪ PM
sP

. Then, for some
i, there is a ∈ PM

si
−X ′ such that a �= a1, . . . , an. But, by the construction, there

is b ∈ PM
si

∩X; such that b �= a1, . . . , an. let f(a) = b, f(b) = a, and f(x) = x
when x �= a, b. Then f is an automorphism on M leaving a1, . . . , an fixed, so
f [X ′] = X ′, by Lemma 7. But this contradicts the fact that a ∈ f [X ′] −X ′. �

Now we restrict attention to logics with monadic quantifiers satisfying ISOM. For
simplicity, assume that L = L(Q), where Q is binary; the results below extend
immediately to logics L(Qo  → Qi)i∈I , with monadic Qi.

The quantifier rank of L-formulas is defined inductively as follows:

qr(φ = 0, if φ is atomic,
qr(¬φ) = qr(φ)
qr(φ ∧ ψ) = max(qr(φ), qr(ψ)),
qr(∃xφ) = qr(φ+ 1)
qr(Qx(φ, ψ)) = max(qr(φ), qr(ψ)) + 1.

we write

M ≡n,Q M′

to mean the same L(Q)-sentences of quantifier rank at most n are true in M and
M′. M =≡Q M′ (M and M′ are L(Q)-equivalent) if, for all n, M ≡n,Q M′.
Our main tool will be an equivalent but more workable formulation of the rela-
tion ≡n,Q. This is accomplished in the next definition. If a1, . . . , an ∈ M and
b1, . . . , bn ∈ M ′ we write (a1, . . . , an) !p (b1, . . . , bn) to mean that {〈ai, bi〉 :
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1 � i � n} is a partial isomorphism from M to M′ (i.e. ai = aj iff bi = bj , and
ai ∈ Am iff bi ∈ A′

m).
In what follows, M and M′ are k-ary monadic structures.

DEFINITION 9.

(a) X ≈n Y iff either |X| = |Y | < n or |X|, |Y | 
 n.

(b) M ≈n M′iff PM
s ≈n P

M′
s for all s ∈ 2k

(c) M ≈n,Q M ′ iff

(i) M ≈n M′

(ii) If (a1, . . . , an−1) !p (b1, . . . , bn−1),Xi,Xj are {a1, . . . , an−1}-
variants ofUM

i , UM
j , an Yi, Yj the corresponding {b1, . . . , bn−1}-variants

of UM′
i , UM′

j , then

QMXiXj ⇔ QM ′YiYj .

THEOREM 10. M ≡nQ M′ ⇔ M ≈n,Q M′.

Proof. ⇒: It is clear that (i) holds. As for (ii), let ψi(y, x1, . . . , xn−1), ψj(y, x1,
. . . , xn−1) be formulas whichL-defineXi,Xj in M with parameters a1, . . . , an−1).
Each ap belongs to exactly one PM

sp
; let this set be defined by θp(x). If QMXi,Xj ,

then

M � ∃x1, . . . , xn−1(θ1(x1) ∧ . . . ∧ θn−1(xn−1)∧
∧Qy(ψi(y, x1, . . . , xn−1), ψj(y, x1, . . . , xn−1))).

This sentence has quantifier rank n. Thus, it is also true in M′, whence there are
b′1, . . . , b

′
n−1 ∈M ′ such that b′p ∈ PM′

s′
p

and

M′ � Qy(ψi, ψj)[b′, . . . , b′n−1].

Let f map b′p on bp and leave everything else in M ′ as it is. It follows that f is an
automorphism on M′, so

M′ � Qy(ψi, ψj)[b1, . . . , bn−1].

but this means that QM ′Yi, Yj . The converse is similar.
⇐: We prove by (downward) induction over p � n that

(∗) If (a1, . . . , ap) !p (b1, . . . , bp) and qr(φ) � n−p, then M � φ[ai, . . . , ap] ⇔
M′ � φ[b1, . . . , bp].
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The case p = 0 gives the result. (∗) is clear for p = n. So suppose (∗) holds for
p, (a1, . . . , ap−1) !p (b1, . . . , bp−1) and qr(φ) = n − p + 1. We may suppose
that φ begins with a quantifier symbol. If this symbol is ∃, the result follows
easily from the induction hypothesis and the fact that M ≈n M′. So suppose φ
is Qx(ψ1, ψ2). Let ψM

i = {a ∈ M : M � ψi[a, a1, . . . , ap−1]}, i = 1, 2, and
similarly for ψM′

i . By Lemma 8, each ψM
i is an {a1, . . . , ap−1}-variant of some

union UM
ji

of partition sets.

CLAIM: ψM′
i is the corresponding {b1, . . . , bp−1}-variant of UM′

ji
.

The result follows immediately from the chain and (ii) above. The proof of the
claim is straightforward, using the induction hypothesis together with the fact that
M ≈n M′. �

As noted, the theorem extends to logics with several monadic quantifiers (satis-
fying ISOM). We use this in the next corollary. A k-ary quantifier Q is said to be
closed under ≈n,Q1...Qm if QMA0 . . . Ak−1 and 〈M,A0, . . . , Ak−1〉 ≈n,Q1,...,Qm

〈M ′, A′
0, . . . , A

′
k−1〉 implies QM′A′

0, . . . A
′
k−1.

COROLLARY 11. A monadic quantifier Q is definable in L(Q1, . . . ,Qm) if and
only if, for some natural number n,Q is closed under ≈n,Q1...Qm .

Proof.[outline] If Qis defined by a sentence φ in L(Q1, . . . ,Qm), i.e. if

QMA0, . . . , Ak−1 ⇔ 〈M,A0, . . . , Ak−1〉 � φ,

just let n be the quantifier rank of φ and use the theorem. Conversely, note that,
with a fixed finite vocabulary there are, up to logical equivalence, only finitely
many L(Q1, . . . ,Qm)-sentences of quantifier rank at most n. Now take the dis-
junction of all such sentences which are 1-complete n-descriptions of the models
〈M,A0, . . . , Ak−1〉 for which QMA0, . . . , Ak−1; this disjunction defines Q. �

We will now apply these results to some particular monadic quantifiers. First, note
the following special cases of Theorem 10:

1. M ≡n M′ ⇔ M ≈n M′,

2. If Q is first-order definable, then M ≡n,Q M′ ⇔ M ≈n M′.

Using this, one easily shows that quantifiers such as Qα,QC ,QR are not first-
order definable. Next, note that an {a1, . . . , an−1}-variant of UM

i has cardinality

 ℵα iff UM

i has cardinality 
 ℵα iff one of the partition sets in UM
i has car-

dinality 
 ℵα. Thus, when Q = Qα, we need only consider the partition sets
(not variants of unions of them) in Definition 9(c). This makes it easy to show,for
example, that if α �= β, L(Qα) and L(Qβ) have incomparable expressive power.

3. L(QR 	 L(I).
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Proof. By the theorem, it suffices to find, for each n structures 〈M,A〉 and〈M ′, A′〉
such that 〈M,A〉 ≡n,I 〈M ′, A′〉, (QR)MA, and ¬(QR)M ′A′. But this is easy.
For example, let |A| = 4n, |M − A| = 2n, |A′| = 2n, |M ′ − A; | = −4n. There
are just four unions of partition sets to consider in each structure, and it is easy to
verify that the conditions in Definition 9(c) are satisfied. �

4. “|A| is even” is not expressible in L(more).

Proof. For each n, choose M,M ′, A ⊆ M,A′ ⊆ M ′ such that |A| = 4n, |M −
A| = |M ′ − A′| = n, |A′| = 4n + 1. Then 〈M,A〉 ≈n,more 〈M ′, a′〉, so
〈M,A〉 ≡n,more 〈M ′, a′〉 by the theorem, but |A| is even and |A′| is odd. �

The following result is from Barwise and Cooper [1981]:

5. L(most) �� L(QR), i.e. L(QR) does not relativise.

Proof. Given n, choose 〈M,A0, A1〉, 〈M ′, A′
0, A

′
1〉 such that A0 ∩A1 = ∅, A′

0 ∩
A′

1 = ∅, |A0| = |A1| = n, |M | = 6n, |A′
0| = n, |A′

1| = n + 1, |M ′| = 6n + 2.
So ∅, A0, A1, A0 ∪ A1 all have cardinalities less than their complements, and
this continues to hold if n − 1 elements are ‘moved around’ in the model. The
same holds for M′, and it is then easy to see that M ≡n,QR

M ′. However,
¬mostM , A0 ∪A1A1 and mostM ′A′

0 ∪A′
1A

′
1. �

Similarly, we can prove that QC does not relativise. Note that only finite structures
have been used so far. The next and final application involves infinite structures.

6. L(Q0) �� L(most).

Proof. This time, choose 〈M,A〉, 〈M ′, A′〉 such that |M − A| = |M ′ − A′| =
n, |A| = ℵ0, and |A′| = 3n. Again, it is not hard to see that 〈M,A〉 ≈n,most

〈M ′, A′〉 (especially if we use the characterisation of ≈n,most given in Theorem
12 below), but A is infinite and A′ is finite. �

Finally, we shall consider more closely the relative expressive power of most
and more. Note first that the four properties of logics mentioned in Section 1.6 do
not enable us to distinguish between these two quantifiers: we saw that L(more)
does not have any of these properties, and similar arguments establish that neither
does L(most). For example, if we replace the second conjunct in the sentence
(1) in Section 1.6 by a sentence saying that, for each x (except the first) there is a
greatest element y < x with the property that most of the x-predecessors are not
predecessors of y, then we again obtain a characterisation of the natural number
ordering.

The next result characterises the relations ≡n,Q and ≡Q for monadic structures,
when Q is most or more.

THEOREM 12.
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(a) M ≡n,more M′ iff, whenever (a1, . . . , an−1) !p (b1, . . . , bn−1),Xi,Xj

are {a1, . . . , an−1}-variants of UM
i , UM

j and Yi, Yj the corresponding {b1,
. . . , bn−1}-variants of UM′

i , UM′
j , we have |Xi| > |Xj | ⇔ |Yi| > |Yj |.

(b) For ≡n,most we have the same condition, except that Xi,Xj(Yi, Yj) are
required to be disjoint.

(c) M =more M′ iff M ≡most M′ iff M ≡ℵ0 M′ and, for all s, t ∈ 2k,
|PM

s | > |PM
t od⇔ |PM′

s | > |PM′
t |.

Proof.

(a) This is Theorem 10, except that we must show that the condition on the
right hand side of the equivalence ((ii) in Definition 9 (c)) implies that
M ≈n M′. So suppose first |PM

s | < n. Suppose also that|PM′
s | �= |PM

s |,
say |PM′

s | < |PM
s | (the other case is similar). If PM′

s = {b1, . . . , br},
choose a1, . . . , ar ∈ PM

s and let Yi = ∅ = PM′
s − {b1, . . . , br} and

Yj = ∅. It follows from the condition that Xi = PM
s − {a1, . . . , ar} is

empty, contradicting our assumption. The case when |PM
s | 
 n is similar.

(b) From left to right, note that most allows us to compare the cardinalities of
disjoint sets X,Y ⊆ M : then |X| < |Y | iff mostMX ∪ Y X . In the other
direction, observe first that the argument in (a) above goes through under
the disjointness requirement. Moreover, the proof of Theorem 10 (⇐:) also
goes through under this requirement, since the formula most x(ψ1, ψ2) only
‘compares’ disjoint sets.

(c) Clearly M ≡more M′ implies M ≡most M′, which in turn implies the
rightmost condition in (c). Now suppose that condition holds; we must show
that, for all n,M ≈n,more M′. So take n, and suppose a1, . . . , an−1, b1,
. . . , bn−1,Xi,Xj , Yi, Yj are as in (a) above. We assume |Xi| > |Xj | and
show that , in this case, |Yi| > |Yj |; the other direction is similar.

Case 1: Xi and Xj are both finite. Then the partition sets in UM
i are finite and

thus have the same cardinality as the corresponding partition sets in UM′
i , since

M ≈n M′ for all n. Xi differs from UM′
i only by certain of the a1, . . . , an−1,

and Yi differs in the same way from UM′
i . Therefore, |Xi| = |Yi| and |Xj | = |Yj |,

and the conclusion follows.
Case 2: Xi and Xj are both infinite. Then |Xi| is the max of the cardinalities of

the partition sets making up UM
i ; say, |Xi| = |PM

s |, and similarly |Xj | = |PM
t |.

It then follows from the condition in (c) that |Yi| = |PM′
s | and |Yj | = PM′

t |. Since
|PM

s | > |PM
t | we have, again by the condition, |PM′

s | > |PM′
t |.

Case 3: Xi is infinite and Xj is finite. Arguing as in Cases 1 ad 2, we see that
Yi is infinite and Yj is finite. �



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 249

Thus, the relations ≡most and ≡more coincide on monadic structures (but not the
relations ≡n,most and ≡n,more). Nevertheless, L(more) is more expressive than
L(most), even if we restrict attention to monadic structures, as the next result will
show. Another instance of the same phenomenon is given by the fact that

M ≡Q0 M′ ⇔ M ≡ M′

(this is an easy consequence of Theorem 10), but EL < L(Q0) (even on monadic
structures).

The following theorem holds in general, but it is also true if only monadic struc-
tures are considered.

THEOREM 13.

(a) L(most) < L(more).

(b) L(most) ≡ L(more) on finite structures.

(c) L(more) ≡ L(most,Q0).

Proof.

(a) Clearly L(most) � L(more). That L(more) �� L(most) follows from (6)
and Theorem 5.

(b) This follows from the fact that, ifA∩B is finite, then moreMAB ⇔ |A| >
|B| ⇔ |A−B| > |B −A| ⇔ mostMA⊕BA.

(c) We must show that L(more) � L(most,Q0). Take any M and A,B ⊆
M . IfA∩B is finite, moreMAB is expressed as in (B). IfA∩B is infinite,
then |A| = max(|A− B|, |A ∩ B|) and |B| = max)|B − A|, |A ∩ B|). It
follows that

|A| > |B| ⇔ |A−B| > |B −A|&|AB| > |A ∩B|,

and the right hand side of this is again expressible with most (since only
disjoint sets are compared). Moreover, Q0 allows us to distinguish the two
cases, in one sentence of L(bfmost,Q0).

�

This theorem tells us that the difference between L(more) and L(most) is
precisely that the former, but not the latter, can distinguish between infinite and
finite sets.

The results of this section allow us to extend Theorem 5 to the following picture:
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EL

L(I)

L(most)

L(more)

L(Q0)

L(QR)

L(H)

Here each logic is strictly stronger than its immediate predecessor(s), and logics
not on the same branch are incomparable.

REMARK 14. The only thing in the figure above not proved with the simple
methods used here is the fact that L(H) is strictly stronger than L(more). How-
ever, if we consider the logic Lpo, where not only the Henkin prefix but all par-
tially ordered prefixes with ∀ and ∃ are allowed, then it follows from (4) that
Lpo �� L(more). For,

|A| is even ⇔ ∃X ⊆ A(|X| = |A−X|),
which can be expressed as a Σ1

1 sentence, and is shown in [Enderton, 1970] and
[Walkoe, 1970] that all such sentences are expressible in Lpo.

Is ‘|A| is even |’ expressible in L(∗H)? More generally, is L(H) strictly
stronger than L(more) if we restrict attention to monadic structures/ I don’t know
the answer to these questions, but it may be noted that it follows from Theorem
12 and a result in [Lachlan and Krynicki, 1979] that ≡more and ≡H coincide for
monadic structures.

Bibliographical remark: The theorems in this section have not, to my knowledge,
appeared in the literature, although no doubt they belong to the folklore in some
circles. Most of the applications to particular logics are known, but it should be
noted that the methods used here are much more elementary than the ones that
have been used in the literature the proof of (5) in [Barwise and Cooper, 1981] is
an exception). For example, it is proved in [Hauschild, 1981] and [Weese, 1981]
that L(more) is strictly stronger than L(I) by establishing that these logics have
different properties w.r.t. the decidability of certain theories formulated in them.
The same result follows from the simple observation 93); in a sense, (3) gives
more, since it concerns monadic structures, whereas the theories just mentioned
use non-monadic languages.

2 NATURAL LANGUAGE QUANTIFIERS

A main objective of Montague’s PTQ [Montague, 1974] was to show that inten-
sional phenomena, such as quantification into intensional contexts, could be han-
dled rigorously with model-theoretic methods. But even if one completely dis-
regards the intensional aspects of PTQ, its approach to quantification was novel.
Although it had no category ‘quantifier’ or ‘determiner’, a general pattern is dis-
cernible from its treatment of the three quantifier expressions (every, a, and the)



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 251

it in fact did account for. The basic idea is that quantifier expressions occur as
determiners in noun phrases. By the close correspondence between syntax and
semantics in Montague Grammar, this also determines the interpretation of such
expressions.

In this section, I will describe this idea in somewhat more detail, and its later
development in [Barwise and Cooper, 1981] and [Keenan and Stavi, 1986], within
the generalised quantifier framework of Section 1.

2.1 Determiners

Suppose that the expressions of the categories common noun (N ) and noun phrase
(NP ) have somehow been (roughly) identified.14 Since we are disregarding inten-
sions,the semantic types of these expressions are such that Ns are interpreted, in a
model M = 〈M, ‖ ‖〉 with universe M and interpretation function ‖ ‖, as subsets
of M an NP s as sets of subsets of M . Here are three examples from PTQ:

‖every man‖ = {X ⊆M : ‖man‖ ⊆ X},
‖a man| = {X ⊆M : ‖man‖ ∩X �= ∅},
‖the man‖ = {X ⊆M : |‖man‖| = 1&‖man‖ ⊆ X}.

Many NP s, like the above ones, are naturally regarded as the result of applying
a syntactic operator to Ns. We introduce the syntactic category determiner (DET)
for this sort of operator:

(DET) DETs form NP s from Ns.

This is a rough criterion, but, in a Montagovian framework, it is enough to fix
the syntax and semantics of determiners. In particular, DETs are interpreted as
functions from N denotations to NP denotations. For example,

‖every‖(A) = {X ⊆M : A ⊆ X},
‖a‖(A) = {X ⊆M : A ∩X �= ∅},
‖the‖(A) = {X ⊆M : |A| = 1&A ⊆ X}.

Another thing, of course, is to apply the criterion to identify simplex and com-
plex English DETs; we will return to this in Section 2.4.

2.1.1 Three apparent problems

As noted, the basic idea of the present Montague-style treatment of quantification
is this:

(Q) Quantifier expressions are DETs.

14We don’t need to assume that proper definitions of these categories exist, only that there is agree-
ment about them in a large number of cases.
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This may not yet seem very exciting, but note at least that it differs, syntactically as
well as semantically, from the standard predicate logic treatment of quantification.
The import of (Q) will become clear as we go along. For the moment, however,
let us look at a few apparent counter-instances to (Q) that come to mind.

I. In sentences like

(1) All cheered,

(2) Some like it hot,

(3) Few were there to meet him,

the words all, some, few are not applied to arguments of category N . Isn’t
the standard predicate logic analysis more plausible here? No, it is very
natural to assume that the DETs have ‘dummy’ arguments in these sentences
(what context-given interpretations); in this case (Q) still holds (cf. 2.4.5).

II. Words like something, everything, nothing, nobody, etc. look like quantifier
expressions but are certainly not DETs. We have two options here. The first
is to regard them as simplex NPs, denoting quantifiers of type 〈1〉 in the
sense of 1.4. They would then correspond (roughly) to the standard logical
∀ and ∃. The other option, which we will take here, is to regard them as
complex: something = some(thing), nothing = no(thing), etc.; i.e. obtained
by applying a DET to a (perhaps logical) N like thing. In this way, (Q) can
be maintained.

III. In 1.4 we defined the binary quantifier more. The word more, however, is
not a DET by our criterion; compare

(4) Some boys run,

(5) Most boys run,

(6) *More boys run.15

Still, more does occur in quantified sentences, for example,

(7) There are more girls than boys,

which in generalised quantifier notation becomes

(8) more x(girl(x), boy(x)).

15Even if there are contexts where (6) might be uttered, it is unreasonable to interpret more as an
independent DET: the standard of comparison is missing, and has to be supplied to get at the meaning.
So more in (6) would then stand for something like more than 10, more . . . than the number of girls,
etc. These are DETs by our criterion, but not the single more.
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This is an objection to (Q) that must be taken seriously. It involves (i) finding
a semantic distinction between the quantifiers more and, say, most, which
explains why one but not the other is a DET denotation; (ii) the analysis of
‘there are’-sentences; (iii) the semantics of words like more. These matters
will be taken up in Section 2.2.

2.1.2 Determiner interpretations as generalised quantifiers

Following Montague, we interpreted DETs as functions from subsets of the uni-
verse M to sets of such subsets. From now on, however, we return to the gener-
alised quantifier framework of Section 1, where quantifiers on M are relations
between subsets of M . Thus, to each n-place function D from (P (M))n to
P (P (M))n we associate the following (n+ 1)-ary quantifier on M :

QMA1 . . . AnB ⇔ B ∈ D(A1, . . . , An).

In what follows, DET interpretations will be such monadic quantifiers on the uni-
verse.

The functional interpretation of DETs emphasises similarity of structure be-
tween syntax and semantics, which is one of the characteristics of Montague
Grammar. From the present semantic perspective, however, relations turn out to
be easier to work with. But keep in mind that the relational approach increases the
number of arguments by one: n-place DETs will denote (n+1)-ary quantifiers (so
far we have only seen 1-place DETs, but cf. 2.2). It should also be noted that for
some semantic issues, the functional framework seems more natural; cf. [Keenan
and Moss, 1985].

Terminological Remark: The use of words ‘determiner’ and ‘quantifier’ is rather
shifting in the literature. Here, the idea is to use ‘determiner’ and ‘DET’ only
for syntactic objects, and ‘quantifier’ only for semantic objects. The extension of
‘quantifier’ was given in Section 1.4, and a criterion for DET-hood at the beginning
of 2.1.

2.1.3 Determiners as constants

In a Montague-style model M = 〈M, ‖ ‖〉, DETs are on a par with expressions of
other categories. Nothing in principle prevents, for example, that a determiner D
is interpreted as every in one model and as most in another. But there is usually no
point in allowing this generality. Moreover, there is a clear intuition, I think, that
determiners are constants. We therefore lay down the following methodological
postulate:

(MP) Simplex DETs are constants: each one denotes a fixed quantifier (modulo,
of course, lexical ambiguity, vagueness, etc.; cf. 2.4).
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(MP) allows us to dispense with the interpretation function for (simples) DETs
and to resume the notation from 1.4, using boldface letters for quantifiers: Q de-
notes Q, most denotes most, some denotes some, etc.

What about complex DETs? In case such a DET contains a non-constant ex-
pression, there seems to be a choice. We can either persist in treating them as con-
stants, or let their interpretation depend on the interpretation of the non-constant
expressions occurring in them. To take a simple example, consider some red. This
expression can be construed as giving an NP when applied to an N , thus can be
classified as a DET by our criterion. As a constant, it would denote the quantifier
defined by

some redMAB ⇔ A ∩B ∩ {a ∈M : a is (in fact) red} �= ∅,

for each universe M . As an expression consisting of a constant and a non-constant
symbol, i.e. of the form some P , it is interpreted in a model M as

‖some P‖AB ⇔ A ∩B ∩ ‖P‖ �= ∅.

Given M, this is a quantifier on M , but the expression does not denote a fixed
quantifier on each universe.

No doubt many readers will find the latter option more natural, but we need not
take a stand on this methodological issue here. Our model-theoretic machinery
provides adequate semantic objects for both cases, quantifiers, and quantifiers on
universes, respectively.

Note, however, that our decision to treat simplex DETs as constants does not
necessarily imply that they are logical constants. It can be argued that logicality
requires a lot more; this theme will be resumed in 3.4 and 4.4 (cf. also [Westerståhl,
1985a]). For example, the quantifier some red defined above is not logical, the
reason being that it violates the condition ISOM from 1.4.

In Appendix B we will indicate what happens if the postulate (MP) is dropped.

2.1.4 Global vs. local perspective

To study quantifiers from a global perspective means to concentrate on properties
which are uniform over universes. A typical example is first-order definability:
Q is first-order definable if there is some first-order sentence which defines it on
every universe. Sometimes, however, it is natural to take a local viewpoint: fix
a universe M and restrict attention to quantifiers on M . Then other definability
notions become interesting as well, involving parameters from M in an essential
way.

Our perspective here will be predominantly global. The main reason for this
is that global definitions and results are more general: they usually have an im-
mediate ‘local version’. The converse, however, does not hold. Quantifiers from
a local perspective are studied extensively in [Keenan and Stavi, 1986]. Some of
their results will be reviewed in Section 4.6.
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2.2 The Interpretation of Determiners

The basic quantifier postulate (Q) from 2.1.1 can be split into a syntactic and a
semantic part as follows:

(Qsyn) Quantifier expressions are DETs.

(Qsem) DETs denote (n+ 1)-ary quantifiers, n 
 1.

In contrast with standard predicate logic, there are no unary quantifiers on this
approach. And although some binary DET denotations (e.g. Montague’s every, a,
the) are definable in standard predicate logic, others are not: we saw in 1.7 that
most is an example. Consequently, EL is inadequate for formalising even the pure
quantificational part of natural languages.

However, (Q) is not yet quite satisfactory. In particular, we need to account for
the apparent counter-examples mentioned in 2.1.1, III. Nothing so far precludes
more from being a DET denotation.

The starting-point of a systematic study of natural language quantification was
the isolation, in [Barwise and Cooper, 1981], and independently in [Keenan and
Stavi, 1986] (although the latter paper was published much later, they were written
at about the same time), or a purely model-theoretic property characteristic of
those quantifiers that are DET denotations. This is the property of conservativity,
defined below (Barwise and Cooper used a different terminology, in terms of an
NP denotation living on a given set). Actually, the property (and the term) first
appeared in [Keenen, 1981], but in the two first-mentioned papers it was proposed
as a significant semantic universal for determiners (although with rather different
motivations; cf. below).

2.2.1 Conservativity

A binary quantifier Q is called conservative if the following holds:

(CONSERV) for all M and all A,B ⊆M,QMAB ⇔ QMA A ∩B.

It is easily checked that most is conservative, but more is not. As we will see in
2.4, practically all English DETs denote conservative quantifiers (a few possibly
doubtful cases will be noted).

CONSERV gives the first argument of Q a privileged role: only the part of B
which is common to A matters for whether QMAB holds or not. This seman-
tic difference between the arguments A and B matches the syntactic difference
between the corresponding expressions:
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Conservativity is a very fruitful postulate, as well be seen in Sections 3 and 4.
Still, one may ask what, if any, is the idea or intuition behind it. As for Barwise
and Cooper, they seem to regard it mainly as a successful empirical generalisation.
Keenan and Stavi, on the other hand, give an interesting theoretical motivation:
they prove that, on a given (finite) universe M , the conservative quantifiers on
M are precisely those which can be generated from certain initial quantifiers by
means of a few natural closure operations; an exact statement (and proof) will be
given in Section 4.6. Yet another motivation, discussed in [Westerståhl, 1985a], is
that CONSERV is related to the notion of restricted domains of quantification: an
NP ‘restricts’ the universe to the denotation of the N ; this will be formulated in
Section 3.2.

CONSERV resolves the first doubt concerning (Q) expressed in 2.1.1, III. We
still have to deal with ‘there are’-sentences and with the semantics of more.

2.2.2 ‘there are’-sentences

Consider sentences such as

(1) There are no flowers,

(2) There are many patients waiting outside,

(3) There are some philosophers who like logic,

(4) There are a few errors in the text.

Without commitment to their syntactic form, let us write such sentences

(5) There are QMA,

where Q is the quantifier denoted by the DET and A is the set contributed, in a
model M, by the expression following the DET.16 There are in fact two questions
here. The first is to interpret quantified sentences of the form (5) in a way conso-
nant with the basic postulate (Q). The second concerns the fact that certain DETs
do not fit in (5): all, most, not all, for example. Is there a semantic explanation for
this phenomenon?

16The ‘hybrid’ form (5) is used in order to avoid discussion of the syntactic structure of “there
are”-sentences. This structure is quite varied, as already (1)–(4) indicate, and there may be divergent
opinions about it, but it still seems that (5) is semantically adequate in a large number of cases.
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We shall review the answers proposed by Barwise and Cooper to both of these
questions, first, because they show a way to handle ‘there are’-sentences, and sec-
ond, because this case can serve as a model of the kind of linguistic explanation
one may expect from the present theory of quantifiers.

The first proposal is simple: interpret (5) as

(6) QMAM .

This interpretation works in the sense that it gives (1)–(3) the right truth conditions.
Moreover, one can argue that it accounts for the idea that the phrase ‘there are’
serves to ascribe existence, i.e. the property that everything in the universe has, to
the rest of the sentence.

But why are some choices of Q apparently forbidden in (5)? First, a definition.
Call a DET strong, if its denotation, as a binary relation, is either reflexive or
irreflexive; otherwise the DET is weak. Now observe that the DETs that fit in (5)
are weak, whereas the exceptions are strong.17 This is still no explanation, but it
is a fact which may point to one. The next move is theoretical: we prove in our
theory that (6) is equivalent to

(7) QMAA;

this is actually an immediate consequence of CONSERV. It follows that

If Q is strong, (5) is either trivially true or trivially false.

Thus, the connection between the strong/weak distinction and our problem has
not merely been described; it has been explained, given the plausible assumption
that it is in general ‘strange’ to utter trivial truths or falsities.

This simple but instructive model of explanation shows the typical interplay
between linguistic facts, theoretical concepts, and results in the theory. Here the
results used were quite trivial,but this may not always be the case.

Let me hasten to add that the above by no means exhausts the many interest-
ing problems connected with ‘there are’-sentences. Moreover, Keenan and Stavi
[1986] argue against the explanation in terms of the strong/weak distinction; the
propose another semantic characterisation of the relevant class of determiners (a
detailed discussion of these matters can be found in [Keenan, 1989]). But it is the
type of explanation that I have tried to illustrate here.

2.2.3 (n+ 1)-ary conservative quantifiers

Now, what about more? We noted that

(8) There are more P than Q

(9) more x(Px,Qx).

17Actually, most, as we have interpreted it, is not reflexive, since mostmAA is false when A = ∅.
One remedy is to redefine it for this argument.
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Observe further that more P than Q is very naturally considered as NP, obtained
by applying the 2-place DET more . . . than to two Ns, and typically occurring in
sentences such as

(10) More men than women voted for Smith.

(10) means that the number of men who voted for Smith is greater than the number
of women who voted for Smith. So more . . . than denotes a ternary quantifier:

more . . . thanMA1A2B ⇔ |A1 ∩B| > |A2 ∩B|.
Other examples of such ternary quantifiers are

fewer . . . thanMA1A2B ↔ |A1 ∩B| < |A2 ∩B|,
as many . . . asMA1A2B ⇔ |A1 ∩B| = |A2 ∩B|.

We now see that (8) can be written as a generalisation of (5) to ternary quanti-
fiers:

(11) There are QMA1A2.

Furthermore, (11) can be interpreted on exactly the same principle as (5), namely,
as

(12) QmA1A2M .

For example, if P denotes A and Q denotes B, the interpretation of (8) is

more . . . thanMABM,

which is equivalent to

|A| > |B|
i.e. to

moreMAB,

as predicted. So the previous analysis of ‘there are’-sentences with binary quan-
tifiers extends naturally to ternary (in fact, (n + 1)-ary) quantifiers. (The reader
might wish to ponder whether the characterisation in terms of the strong/weak
distinction also generalises; cf. [Keenan, 1989]).

Finally, the notion of conservativity also extends to (n + 1)-ary quantifiers:
the set to which the V P denotation can be restricted is then the union of the n
denotations. We get the following general version of CONSERV for (n + 1)-ary
quantifiers:

(CONSERV) For all M and all A1, . . . , An, B ⊆M ,
QMA1 . . . AnB ↔ QmA1 . . . An(A1 ∪ . . . ∪ n) ∩B.
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It is easily verified that more . . . than, fewer . . . than, as many . . . as are all con-
servative, in contrast with the binary operator more.

In conclusion, our findings about the use of more do not contradict the basic
idea (Q), on the contrary, they support it. A final formulation of this idea goes as
follows (cf. the beginning of 2.2):

(Qsyn) Quantifier expressions are DETs.

(Qsem) n-place DETs denote (n+1)-ary conservative quantifiers, n 
 1.

We should perhaps note that there are other uses of more in determiners, for
example, more than ten or six or more. These are ordinary (complex) 1-place
DETs, and denote binary conservative quantifiers, just as (Qsem) predicts (cf. also
2.4.7).

2.3 Subject-Predicate Logic

As in Montague Grammar, Barwise and Cooper use an intermediate logical lan-
guage, called L(GQ), into which a fragment of English is translated. L(GQ) has
two unusual features;

(i) Quantified sentences have NP − V P form (subject-predicate form).

(ii) Quantifier symbols are not used as variable-binding operators.

The well-formed expressions in L(GQ) are of two kinds: formulas and set
terms. A set term is either a unary predicate symbol or an expression of the form

x̂[ψ],

where x is a variable and ψ a formula; in models, set terms denote subsets of
the universe. Variable-binding is done with the abstraction operator .̂ Quantifier
symbols are (certain) 1-place DETs and quantified formulas are of the form

(*) D(η)(δ),

whereD is a DET and η, δ are set terms. There are the usual atomic formulas, plus
formulas of the form η(t), where η is a set term and t an individual term, and the
formulas are closed under sentential connectives. DETs are interpreted as binary
conservative quantifiers; the truth condition for (*) in a model is then obvious.

The result is that logical form in L(GQ) corresponds more closely to syntactic
form in the fragment than usual. (*) can be said to have NP −vP form withD(η)
as the NP and δ as the V P (the formation rules actually give (*) this structure).
Another pleasant feature is that some unnecessary uses of bound variables are
avoided. For example,

(1) Some boys run
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is translated

(1′) some(boy)(run)

instead of the usual

(1′′) ∃x(boy(x) ∧ run(x)).

the example also shows that certain unnecessary sentential connectives in the
standard formalisation are avoided. In more complex cases, e.g. with transitive
verbs or relative clauses, L(GQ) must introduce variables and connectives (though
English often can avoid them): consider

(2) Most women who love Harry have a cat,

(2′) most (x̂[woman(x) ∧ love(x, Harry)])(x̂[a(cat)(ŷ[have(x, y)])]),

(2′′) most x(woman(x) ∧ love(x,Harry),∃y(cat(y) ∧ have(x, y))).

These examples should make it plausible that there is no deep difference be-
tween L(GQ) and the standard language for generalised quantifiers as in 1.4. In
fact, they are even syntactically intertranslatable in a rather obvious way. Still,
quantified formulas in L(GQ) have subject-predicate form. It is hard to avoid
the conclusion that the importance of the issue of whether subject-predicate form
occurs in logic has been greatly over-estimated, from Russell and onwards.

2.4 Some Natural Language Quantifiers

A quantifier Q will be called a (simple) natural language quantifier, if it is denoted
by some (simplex) natural language DET.

This notion is somewhat loose,but its serves our purposes. A more exact spec-
ification would presuppose, among other things, (i) that the class of DETs has
been more precisely delimited; (ii) that it has been decided how to treat complex
non-logical DETs (2.1.3); (iii) that a global or a local perspective has been chosen
(2.1.4). We may think of the notion of a natural language quantifier as having var-
ious parameters, which can be set at different values. It turns out that, for many
of the things we shall have to say about natural language quantifiers, the value of
these parameters is immaterial. This is why the above ‘loose’ notion is useful. And
in other cases, we will indicate how a particular observation on natural language
would depend on different parameter settings.

To take a first and crude example, consider the assertion that not all binary
quantifiers are natural language quantifiers. From a global perspective, or from a
local perspective with a given infinite universe M , this is true for cardinality rea-
sons: there are uncountably many binary quantifiers (onM ), but at most countably
many natural language quantifiers. But, even from a finite local perspective, the
assertion is true for another reason, namely, the conservativity universal (e.g. more
or moreM is not a natural language quantifier). The other parameter settings are
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clearly irrelevant her, so the assertion is true however the parameters are set. An
example of an assertion whose truth does depend on the parameters is this: All
natural language quantifiers satisfy ISOM. We will see in section 3.3 that this is in
fact a candidate for a quantifier universal, but only under a certain delimitation of
the class of DETs.

In the remainder of this section, I will present a list of examples of natural lan-
guage quantifiers. Some of them will be used later on, but the list is also intended
to give the reader a feeling for the perhaps surprising richness of the class of natural
language quantifiers.

The method is simply to list the various English DETs, together with their se-
mantic interpretations (when these are not obvious). The DETs are selected by us-
ing the criterion for DET-hood in Section 2.1 as liberally as possible, but with some
‘common sense’ (standard co-occurrence criteria for constituenthood, etc.). Thus
I will be listing possible DETs — there may be syntactic, semantic, or method-
ological reasons for discarding several of them from a more definitive list. In fact,
some such reasons will be discussed in what follows.

The main sources for the list that follows are [Keenan and Stavi, 1986] and
[Keenan and Moss, 1985]. The reader is referred to these works for further exam-
ples, and for detailed arguments that most of the expressions listed really belong
to the category DET.

2.4.1 Some simplex DETs

(1) all, every, each, some, a, no, zero, most

(2) both, neither

(3) one, two, three, . . .

(4) many, few, several, a few

(5) the

(6) this, that, these, those

(7) more . . . than, fewer . . . than, as many . . . as

Here are some interpretations, a few of which have already been given

allMAB ⇔ everyMAB ⇔ eachMAB ⇔ A ⊆ B,
someMAB ⇔ aMAB ⇔ A ∩B �= ∅,
noMAB ⇔ zeroMAB ⇔ A ∩B = ∅,
mostMAB ⇔ |A ∩B| > |A−B|,
bothMAB ⇔ allMAB&|A| = 2,
neitherMAB ⇔ noMA&|A| = 2,
one = some,
twoMAB ⇔ |A ∩B| 
 2,
threeMAB ⇔ |A ∩B| 
 3, . . .
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So n is interpreted as at last n here, although it can be argued that it sometimes
means exactly n. As for (4)–(6), cf. 2.4.2–6 below. The denotation of the 2-place
DETs in (7) were given in 2.2.3.

2.4.2 Vague DETs

Vagueness in the sense of the occurrence of borderline cases (in some suitable
sense) pertains to DETs as well as to other expressions. We do not incorporate a
theory of vagueness here, but choose idealised precise versions instead.

Two examples of vague DETs are several and a few. Here one may, following
Keenan and Stavi, stipulate that

several = three,
a few = some.

2.4.3 Context-dependent DETs

The DETs many and few are not only vague but also context-dependent in the sense
that the ‘standard of comparison’ may vary with the context. For example, in

(8) Many boys in the class are right-handed,

(9) Lisa is dating many boys in the class,

some ‘normal’ standard for the least number considered to be many is used,but
probably different standards in the two cases. Even within one sentence different
standards may occur, as in the following example (due to Barbara Partee):

(10) Many boys date many girls.

Other, complex, DETs with a similar behaviour are, for example,

a large number of, unexpectedly few, unusually many.

Westerståhl [1985a] discusses various interpretations of many. Basically, there
are two possible strategies. Either one excludes this type of DETs from extensional
treatments such as the present one (this is what Keenan and Stavi do), or one tries
to capture what many might mean in a fixed context (this is the approach of Barwise
and Cooper). Here are some suggestions for the second strategy:

many1
MAB ⇔ |A ∩B| 
 k|M | (0 < k < 1),

many2
MAB ⇔ |A ∩B| 
 k|A| (0 < k < 1),

many3
MAB ⇔ |A ∩B| 
 (|B|/|M |)|A|.

many1 relates the standard to the size of the universe: in a universe of 10, 5 may
be many, but not in a universe of 1000. many2 is a frequency interpretation: the
number ofAs that areB, compared to the total number ofAs, is at least as great as
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a ‘normal’ frequency of Bs, given by k. In both cases, k has to be supplied by the
context. But in many3, the ‘normal’ frequency of Bs is just the actual frequency
of Bs in the universe.

Notice that many1 and many3 make essential reference to the universe of the
model. As we shall see, this is in contrast with most other natural language quanti-
fiers. Also notice that many3 is not conservative. Since the conservativity univer-
sal is so central, this observation gives a (methodological) argument for discarding
many3 as an interpretation of many.

As for few, we may simply interpret it as not many.

2.4.4 Ambiguous DETs

Ambiguity in the sense of a small number of clearly distinguishable meanings of a
DET is another phenomenon than context-dependence. We have already noted that
the DETs one, two, three, . . . may be ambiguous with respect to the quantifiers at
least n and exactly n. Another possibly ambiguous DET is most: it can be argued
that aside from the interpretation we have given, most can also mean something
like almost all; cf [Westerståhl, 1985a].

The fact that certain DETs may be ambiguous is not a problem in the present
context, as long as we make sure to include each of their interpretations among the
natural language quantifiers.

2.4.5 Pronominal DETs

Most 1-place DETs can occur without their N arguments, as was noted in 2.1.1.
Such DETs may be called pronominal. The natural analysis of sentences with
pronominally occurring DETs is that the argument (or the set it denotes) is given
by the context. So

All cheered

is interpreted as

allMX‖cheered‖,
where the set X is provided by the context. The use of such context sets is studied
further in [Westerståhl, 1985b].

The only non-pronominal 1-place DETs encountered so far are, as the reader
can check,

a, every, no, the.

Moreover, DETs taking two or more arguments are never pronominal, it seems.
Note that the pronominal all and the non-pronominal every denote the same

quantifier. So pronominality is not a semantic property of DETs in the present
framework.
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2.4.6 Definites

By the simple definites we shall understand here

(i) the definite article the,

(ii) the simple possessives, like John’s, Susan’s, my, his, their,

(iii) the demonstratives: this, that, these, those.

We have already given an interpretation for the:

theMAB ⇔ allMAB&|A| = 1.

This is the singular the, as in

(11) The boy is running.

For a sentence like

(12) The boys are running

we must use instead

thepl
MAB ⇔ allMAB&|A| > 1.

Thus the is ambiguous on this analysis. Demonstratives can be interpreted sim-
ilarly; there we have singular and plural forms and thus no ambiguity. but the
simple possessives exhibit the same ambiguity as the:

(13) John’s car is clean,

(14) John’s cars are clean

can be interpreted, respectively, with the quantifiers

John’sMAB ↔ allMPJohn ∩AB&|PJohn ∩A| = 1,
John’sMAB ↔ allMPJohn ∩AB&|PJohn ∩A| > 1,

where PJohn is the st of things possessed by John; a possession relation is then
supposed to be given in the model. there are also relational uses of possessives,
where the relation is given explicitly, as in

(15) John’s friends are nice.

Here it is doubtful whether John’s applies to an N , and thus whether it is a DET in
our sense. (In any case, the truth condition for sentences like (15) can be given by

John’spl
MRB ⇔ allMRJohnB&|RJohn| > 1,

where R is a binary relation on M and Ra = {b ∈ M : Rab} — here we have a
generalised quantifier of type 〈2, 1〉.)
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We see that the definites come with a number condition, concerning the number
of elements in a certain set. It is also possible to let sentences with definites pre-
suppose that the number condition is satisfied, instead of making them false when
it isn’t, as we did above. This could be effected by extending the model-theoretic
framework to allow partial quantifiers the, thepl, John’s, John’spl would then be
undefined when the number condition is not met. We return to this in 3.7.

2.4.7 Complex DETs with definites

There are several ways to construct complex DETs with definites in English, in
particular with partitive constructions. I will present a rather uniform way of inter-
preting such DETs. The starting-point is the observation that one function of the
simple definites is to indicate the occurrence of context sets (cf. 2.4.5). For simple
possessives, this is usually the set of things possessed by the individual (it may also
be a subset of this set). But also the and the demonstratives need context sets to
make the interpretation come out right. For example, in (11) or (12) we are usually
not talking about the set of all boys in the universe M (as the interpretations given
in 2.4.6 would have us believe), but a context-given subset of it (in the singular
case, this set has one element).

Consider sentences (with DETs as indicated) like

(16) Some of the seven men survived,

(17) Most of John’s few books were stolen.

We interpret these on the following scheme:

(18) (Q1 of Def Q2) BC ⇔ Q1X ∩BC&Q2X ∩BM ,

where Q1,Q2 are quantifiers and Def is a simple definite with X as associated
context set (the subscript ‘M ’ is omitted for readability). note that the second
conjunct in (18) can be written, as in 2.2.2,

There are Q2X ∩B,
expressing the condition that, in (17), John’s books were few, and, in (16) that the
set of men under consideration has (exactly?) seven elements.

Some other constructions with definites can be obtained as special cases of (18).
We define

(19) Def Q2)BC ⇔ (all of Def Q2)BC,

(20) (Q1 of Def)BC ⇔ (Q1 of Def all)BC
⇔ Q1X ∩BC (by (19) with Q2 = all),

(21) DefBC ⇔ (all of Def)BC
⇔ allX ∩BC (by (20) with Q1 = all).
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(19) takes care of complex DETs such as

the five, these few, John’s several, etc.

(20) deals with partitives such as

some of Susan’s, many of these, at least five of the, etc.

And (21) returns to the simple definites: the truth conditions are essentially the
same as in 2.4.6, except that context sets are mentioned.

(18)–(21) can be seen to give the right truth conditions for sentences of these
forms, except that we have, for readability, omitted the number conditions belong-
ing to these interpretations: in (18) and (20) a plural condition, i.e. that |X ∩B| >
1, should be added, and in (19) and (21) the cases with singular and plural condi-
tions should be distinguished (syntactically they are distinguished by the singular
or plural form of the N denoting B).

More complicated DETs with definites can be treated along similar lines. For
example, there are DETs which quantify over the possessor a in a simple posses-
sive

a’sBC ⇔ allPa ∩BC
(we continue to leave out the number condition, and assume for simplicity, in the
rest of this subsection, that everything is in the plural). One example is with DETs
like

some students’, most boys’, several girls’, etc.,

as in

(22) Some students’ books were stolen.

The interpretation of these DETs is given by

(23) (Q1A’s)C ⇔ Q1A{a ∈M : a’sBC}.
Another example is with iterated definites. Here is one scheme, which generalises
(20):

(24) (Q1 of Def A’s)BC ⇔ Q − 1X ∩A{a ∈M : a’sBC}
(we could have generalised (18) similarly, but examples of this form seem rare).
This covers DETs like

most of the students’, some of these boys’, three of John’s cars’, etc.

It could be argued that a sentence like

(25) Most of the students’ books were stolen
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is ambiguous; then (24) gives the sense where most takes students as argument,
whereas the sense where it takes books as arguments is given by

(24) (Q1 of DEF A’s)BC ⇔ allX ∩A{a ∈M : (Q1 of a’s)BC}.

As before, if the is replaced by John’s in (25), X = PJohn (or a subset of it) n
(24) and (26). Also as before, we get DETs like

the students’ those boys’, Susan’s cars’, etc.

as a special case of (24):

(27) (Def A’s)BC ⇔ (all of DefA’s)BC,

and similarly for DETs like

the five students’, those few boys’, Susan’s two cars’, etc.

We have given uniform truth conditions for a number of sentences with complex
DETs by proposing a semantics for the DET constructions involved there. This is
one task of a theory of natural language quantification. Another is to describe
and if possible explain the restrictions that often belong to such constructions (cf.
2.2.2).

Consider, for example, the construction in (18). One can see that only pronom-
inal DETs can be in the Q1 position here. As for the Def position, the definites,
and no others, will work. And there are restrictions on Q2 too: e.g. most, all, ev-
ery, no, some sound strange here. This last restriction can actually be explained by
combining the Barwise and Cooper explanation of the restrictions on ‘there are’-
sentences (2.2.2) with the plural condition holding for (18): the exceptions will
then once more be those quantifiers making the truth condition trivial. This and
other restrictions at work here are discussed further in [Westerståhl, 1985b].

There is one notable feature of the constructions with definites given here: al-
though the analysis is compositional, it does not use the quantifiers taken to inter-
pret the simple definites in 2.4.6. The function of simple definites was merely to
provide context sets. If our analysis is viable, it opens the possibility to leave out
the definites from the class of DETs, i.e. to treat them as not denoting quantifiers.
This move has in fact been viewed desirable for independent reasons which I will
not discuss here. My point is merely that such a move can be accommodated in
the present quantifier framework.

Likewise, it is not strictly necessary to regard the constructions in this subsec-
tion as giving new DETs and thereby new natural language quantifiers. Instead, the
definitions (18)–(21), (23)–25), (27) could be seen as uniform truth conditions for
sentences involving (among other things) quantifiers Q1 and Q2, but not as defin-
ing new quantifiers. the class of natural language quantifiers will then become
correspondingly smaller.
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If, on the other hand, these constructions are regarded as quantifier definitions,
it should be noted that they always yield conservative quantifiers, provided Q1 and
Q2 are conservative.

Clearly we have merely scratched the surface of the many problems pertaining
to the analysis of definites, possessives, partitives, etc. It seems, however, that the
present quantifier framework can be applied quite fruitfully to these well known
linguistic questions; cf. for example [Keenan and Stavi, 1986; Partee, 1984a;
Partee, 1984b; Thijsse, 1983].

2.4.8 Numerical DETs

There are many variations of the simplex numerical DETs one, tow, three, . . . , e.g.

at least five, at most five, exactly five, five or more, between five and
ten, more than five, fewer than five, infinitely many, at most finitely
many, an even number of, an infinite number of, every other, every
third, around ten, almost ten, nearly ten, approximately ten, . . . ;

the interpretations are more or less obvious. A particular group of numerical ex-
pressions is

half, more than half, less than half, at least half, not more than half,
two thirds, at least two thirds, . . .

These are not really DETs by our criterion (they don’t apply to Ns), but if a phrase
of the form of Def is appended to hem (after half, the of is optional), the resulting
expressions are quite similar to those in (20): more than half of the, two thirds of
John’s, not more than half of these, . . . . the interpretation give in (20) fits well
here,but to use it we must have suitable quantifiers Q1 available. Thus, it seems
reasonable, even if the above expressions are not DETs, to include the quantifiers

at least m/n AB ⇔ |A ∩B| 
 m/n|A|
(n > m > 0) among the natural language quantifiers (Boolean combinations of
these will then give the other quantifiers needed here).

2.4.9 Comparative DETs

The words more, fewer, less, . . . can be used in DETs for comparison with a fixed
number or proportion, as in 2.4.8. We also have the 2-place simplex DETs more
. . . than, fewer . . . than, etc. Some complex variants of these are

more than twice as many . . . as, less than half as many . . . as, etc.

Keenan and Stavi discuss other comparative DETs, e.g. those in

(28) More male than female students stayed home,



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 269

(29) More students attended than stayed home,

(30) More students attended than teachers who stayed home;

the respective 1-place DETs are italicised. That they are putative DETs follows
by our criterion (nothing prevents a 1-place DET from being syntactically discon-
tinuous!). However, it is also possible to analyse (28)–(30) with the 2-place more
. . . than: rewrite them as

(28′) More male students than female students stayed home,

(29′) there are more students who attended than students who stayed home,

(30′) there are more students who attended than teachers who stayed home.

The last two ‘there are’-sentences are then treated as in 2.2.3.
These examples illustrate nicely that more than one structural analysis of an

NP is often possible. Since no semantic ambiguity is involved here, one would
like to make a choice. For a further illustration, consider

(31) More men than women voted for Smith,

(31′) More men than women voted for Smith.

(31) uses more . . . than, whereas (31′) uses the 1-place more than women. but this
latter DET is not conservative, as one easily sees, so we have a good reason to
prefer (31). The DETs in (18)–(30), on the other hand, are all conservative. For
example,

more than stayed homeMAB ⇔
⇔ |A ∩B| > |A ∩ ‖stayed home‖|
⇔ |A ∩ (A ∩B)| > |A ∩ ‖stayed home‖|
⇔ more than stayed homeMAA ∩B.

Still, there are reasons to prefer (28′)–(30′). One is that they are simpler and more
uniform. Another will be given in Section 3.3.

Keenan and Stavi also consider comparatives with definites, such as

more of John’s than of Susan’s, fewer of the male than of the female,
etc.

These can be dealt with, if one wishes, by combining the simplex 2-place compar-
atives with the treatment of definites in 2.4.6 an d2.4.7; we omit details.

2.4.10 “Only”

Consider the sentence

(32) Only women voted for Smith.
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If only is a DET here, its interpretation is

onlyMAB ↔ B ⊆ A.18

This is not a conservative quantifier (indeed, onlyMAA∩B is trivially true for all
A,B). So let us look for alternatives. Now, only can modify many other things
besides Ns, e.g. NPs:

(33) Only Susan voted for Smith.

An alternative analysis is then to treat women in (32) as a full em NP (a ‘bare
plural’); then only is not a DET at all.

there are also complex DETs with only. Consider the following example (es-
sentially from Keenan and Stavi):

(34) Only liberal students voted for Smith.

This sentence is three ways ambiguous: (i) as an answer to ‘Which students voted
for Smith?’; (ii) as an answer to ‘Which liberals voted for Smith?’; and (iii) as an
answer to ‘Who voted for Smith?’. Writing (34) in the form only ABC, we can
represent its three meanings as

(i) only ABC ⇔ B ∩ C ⊆ A,

(ii) only ABC ⇔ A ∩ C ⊆ B,

(iii) only ABC ⇔ C ⊆ A ∩B.

There are various possibilities here. One is to treat only as a 2-place DET with
three possible interpretations, as in (i)–(iii). One readily verifies that (i) and (ii),
but not (iii), are conservative. Or, if one wants to analyse (34) with a 1-place DET,
we have, in case (i),

only liberalMAB ⇔ A ∩B ⊆ ‖liberal‖;

in case (ii),

only . . . studentsMAB ⇔ A ∩B ⊆ ‖student‖
(but only . . . students isn’t really a DET since it applies to an adjective); and in case
(iii) the ordinary only, as in (32). Again, the first two are conservative, but not the
third.

Only can also combine with numerical expressions, as in

(35) Only five students voted for Smith.

18One may argue that (32) also says that some women voted for Smith. We ignore the possible
existence implications of only here, but they could easily be added without affecting the discussion.
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This time, there is no analysis with a 2-place DET, and there are just two possible
meanings: (i) as an answer to ‘How many students voted?’; and (ii) as an answer
to ‘How many voted?’. So, writing (35) as only five AB, we get

(i) only five AB ⇔ exactly fiveMAB,19

(ii) only five AB ⇔ exactly fiveMAB&B ⊆ A.

In case (ii), only five would be a non-conservative DET, but it is more natural to
treat only as an NP -modifier here. In case (i), on the other hand, only five works
fine as a conservative DET. Here one would like to see a uniform treatment of
DETs of the form

(36) only Q;

we have already seen that only ‘transforms’ n into exactly n, but when Q is a
definite, things get more complicated, as the reader can check by considering the
example

(36) Only John’s students voted for Smith

(three possible readings). Also, one would like to explain the restrictions on Q in
(36). For example, a few, between five and ten, around ten are fine, but not several,
all, most.

These are just a few hints about some phrases with only, and nothing like a
uniform semantics analysis. For further discussion, cf. Keenan and Stavi [1986],
Rooth [1984; 1985].

2.4.11 Exception DETs

This term is used by Keenan and Stavi for DETs like

all but three, all but at most five, all but finitely many, . . .

As for interpretations, we have

all but threeMAB ↔ |A−B| = 3,
all but at most fiveMAB ⇔ |A−B| � 5,
all but finitely manyMAB ⇔ A−B is finite.

The construction all but Q apparently obeys certain restrictions — we will return
to these in 3.4. It can create ambiguities similar to the ones discussed for only in
2.4.10; cf.

(38) All but five liberal students voted for Smith.

19There is also the idea that five is unexpectedly few here. It would be possible to add fewMAB as
a further condition.
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There are also exception DETs with proper names and with definites:

every but John, no but John, every but John’s, all but the liberal, . . .

Some of these are discontinuous

(39) Every student but John voted for Smith,

(40) Every car but John’s was stolen,

(41) Every book but this (one) was returned.

If we were to treat proper names as definites in the sense of 2.4.7, i.e. as providing
suitable sets (in this case: the unit set of the denoted individual), we could interpret
these on the uniform scheme

(42) every but DEFMAB ⇔ |X ∩A| = 1 &
& everyMA−XB& noMA ∩XB,

where, in (39), X = {John}, and, in (40), X = PJohn; note that e.g. (39) says that
John is a student, that he didn’t vote for Smith, but that all other students voted for
Smith. Note also that (42) gives conservative quantifiers.

2.4.12 Boolean combinations

First, negation, as in

not every, not all, not many, note more than five, not fewer than there,
not more than half (of the), . . .

The semantics of negated quantifiers is obvious,

(not Q)M ⇔ ¬QMAB,

but not cannot stand in front of all DETs: e.g. not some, not most, not at most five
are not well-formed. It is not clear that there is a semantic explanation for this. An
interesting question, however, is whether the class of natural language quantifiers
is closed under negation. For example, even though not most is not a DET, we can
express the intended quantifier with another DET:

¬ mostMAB ⇔ |A ∩B| � |A−B|
⇔ |A ∩B| � 1/2|A| (on finite sets, of course)
⇔ not more than half (of the)MAB

Likewise, we have ¬(at most five) = more than five. But there are other cases
which seem more doubtful, for example, the exception DETs: what DET would
express the negation of all but three or every but John? We return to this question
in 3.4.

As for conjunction and disjunction, we have
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some but not all, some but not many, most but not all, at least five and
at most ten, either exactly five or more than ten, neither less than five
nor more than ten, John’s but not Susan’s, neither John’s nor Susan’s,
both John’s and Susan’s, . . . .

Again the semantics is clear. It is tempting to claim that any two 1-place DETs
can in principle be conjoined with and or or (another matter is that many such
conjunctions and disjunction would be long and cumbersome, express trivial or
otherwise ‘strange’ quantifiers, etc.) n-place DETs for n > 1 are discontinuous,
which makes the claim less plausible in this case.20 But the class of binary natural
language quantifiers would, if the claim is correct, be closed under conjunction
and disjunction.

Boolean operators can also be used to create n-place DETs for n > 1, e.g. the
2-place

every . . . and, some . . . or,

as in

(44) Every businessman and lawyer knows this,

(45) Some mother or father will react

Note that (43) is ambiguous. In general, there are two possible readings of sen-
tences of the form QA and/or BC:

(45) Q1A and BC ↔ QA ∩BC,
Q2A and BC ↔ QAC &QBC

(46) Q1A or BC ↔ QA ∪BC,
Q2A or BC ↔ QAC ∨QBC

In the one sense of (43) we have the ordinary every applied to the complex N
businessman and lawyer, and in the other we have every2 applied to the two Ns
businessman and lawyer. Of course, it is not absolutely necessary to use 2-place
DETs here, since the interpretations are definable with 1-place DETs. For several
arguments that 2-place DETs are in fact the natural choice, and for more examples,
we refer to Keenan and Moss [1985].

We may note that

(47) every2A and BC ⇔ every1A or BC,

(48) some1A or BC ⇔ some2A or BC.

(47) explains why the second reading of (43) can also be expressed by

20We had a few examples of discontinuous 1-place DETs too, e.g. every but John, and here the claim
is more dubious. But note that in all these cases, an alternative analysis was proposed, which eliminates
the need for the DETs in question.
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(49) Every businessman or lawyer knows this.

(48) explains why (44) isn’t in fact ambiguous.
The same method as above can be used to create n-place DETs for all n > 1;

cf.

(50) Every professor and assistant and secretary and student has a key.

This 4-place DET would be interpreted by a 5-ary quantifier similarly to (45) (the
second reading seems to be preferred here, which again is manifested in the fact
that and can be replaced by or in (50)).

3 QUANTIFIER CONSTRAINTS AND SEMANTIC UNIVERSALS

A natural way to approach the class of natural language quantifiers is to study the
effect of linguistically motivated constraints, such as conservativity, on the class
of all quantifiers. These constraints are related to semantic universals, i.e. general
statements about semantic interpretation true for all natural languages. In this sec-
tion we discuss some such constraints; a number of possible semantic universals
will be noted along the way.

3.1 The Restriction to Monadic Quantifiers

In Section 2 we tacitly assumed that natural language quantifiers are monadic, i.e.
of type 〈1, 1, . . . , 1〉. Is there some reason natural language should not employ
non-monadic generalised quantifiers like those used in mathematical logic?

Towards an answer to this, recall first that generalised quantifiers are second-
order properties or relations (cf. 1.2.1 and 1.4). Thus, any sentence which at-
tributes, say, a (second-order) property to a (first-order) property can in principle
be formalised as a quantified sentence. For example, consider

(1) Red is a colour.

Even in our extensional framework we could define a quantifier C of type 〈1〉 by

CM = {X ⊆M : X is the extension in M of some colour}.
So CM would contain the set of all blue things in M , the set of all red things in
M , etc. Then (1) can be formalised as

(2) Cx red(x),

which is true in a model M iff the set which red denotes in M is (the extension of)
a colour. This quantifier is monadic, but a similar story could be told for properties
of binary relations, i.e. generalised quantifiers of type 〈2〉.

But from our perspective, (2) is clearly an unreasonable formalisation of (1). It
is useful to understand why. Compare (2) with
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(3) ∃x red(x),

which formalises

(4) Something is red.

There is a match in logical form between (3) and (4),21 which is lacking between
(1) and (2). Roughly, the difference is that some and colour are of completely
different syntactic categories (some is an operator and colour is a predicate). In a
natural language context, such matching appears to be essential. It is now always
essential in mathematical contexts; cf. the quantifier W, where

WxyPxy

expresses that

P is a wellordering.

These remarks are really just another way of putting our basic idea that, in
natural language, quantifier expressions are DETs. So the question is this: are there
DETs denoting non-monadic quantifiers? Put differently, are there DETs whose
corresponding quantifier symbols bind more than one variable in the succeeding
formula(s)?

The following example was suggested by Hans Kamp:

(5) Most lovers will eventually hate each other.

This sentence makes good sense,22 and, looking closely, one sees that it does not
talk about the set of people who love and are loved by someone, but instead about
pairs23 of people who love each other: most such pairs will end up as pairs whose
members hate each other. In other words, (5) is not equivalent to

(6) Most people who love and are loved by someone will eventually hate and be
hated by everyone (or someone) they love.

This follows from the observation that one person may belong to different ‘loving
pairs’; using this it is easy to construct models where (5) and (6) (in either version)
differ in truth value.24

21The match would be even better if we had used the binary some instead of the usual existential
quantifier.

22Other similar sentences are harder to make sense of, for example,

Most schoolboys tease each other.

Is this about pairs of schoolboys, or does it mean that most schoolboys tease some other schoolboy,
or most other schoolboys, . . . ? The problem seems to be that schoolboy denotes a set but each other
indicates a relation.

23I take the pairs to be ordered, but this doesn’t really matter.
24In other cases equivalence would obtain. Consider, for example,

Most twins like each other.

Since everyone is the twin of at most one other person, there are as many individual twins as there are
ordered twin pairs, and thus the same proportion of ‘liking’ twin pairs as that of twins who like their
other twin.
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In the terminology of Section 1.4 we would formalise (5) as

(7) most(2)xy(love∗(x, y), will eventually hate∗(x, y)),

where R∗(x, y) means R(x, y) ∧R(y, x) and

most(2)M = {〈R1, R2〉 : R1, R2 ⊆M2&
&|R1 ∩R2| > |R1 −R2|},

a generalised quantifier of type 〈2, 2〉.
Another suggestion to use quantification over pairs instead of individuals ap-

pears in Fenstad et al. [1987]. They consider sentences like

(8) Every boy who owns a dog kicks it.

There is a question as to the meaning of this, but the preferred reading appears to
be that every boy who owns a dog kicks every dog he owns; in other words, using
the binary every and some,

(9) every x(boy(x)∧ some y (dog(y), owns(x, y)),
every y(dog(y)∧ owns (x, y) beats(x, y)).

The traditional problem here has been to get (9) (or something equivalent to it)
from a compositional analysis of (8); note that it refers back to a dog, but does not
correspond to a bound variable in (9)! Fenstad et al. propose a way to do this;
their analysis (whose details need not concern us here) leads, essentially, to the
formalisation

(10) every(2)xy(boy(x)∧ dog(y)∧ owns(x, y), beats(x, y))

where every(2) denotes the type 〈2, 2〉 generalised quantifier

(11) every(2)
M = {〈R1, R2〉 : R1, R2 ⊆M2&R1 ⊆ R2}.

Note that (10) and (9) are equivalent. (Note also, however that, as Johan van
Benthem has pointed out, this analysis does not seem to work for all quantifiers:
consider

(12) Most boys who own a dog kick it.

Here, the sentence obtained from (9) by replacing the first occurrence of every with
most is not equivalent to the sentence obtained from (10) by replacing every(2) with
most(2). Moreover, the former sentence appears to give the preferred reading.25)

A third and final example that could be construed as quantification over pairs in
natural language is branching quantification as discussed in Section 1.5. To take
an example from Barwise [1979], consider

25Consider a situation with two boys, one of whom owns and kicks two dogs, the other owning,
but not kicking, one dog. The formalisation with most(2) would be true in this case, which seems
counter-intuitive.
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(13) Most boys in my class and most girls in your class know each other.

The preferred reading of this sentence (which has a conjoined NP) can be for-
malised as

(14)
most x boy-in-my-class(x)

know∗(x, y),
most y girl-in-your-class(y)

where this is taken to mean that there is a subset X of the boys in my class, con-
taining most of these boys, and a subset Y of the girls in your class, containing
most of those girls, such that if a ∈ X and b ∈ Y then a knows∗b (cf. Appendix
A).

(14) involves branching of the ordinary monadic most. But, as noted in 1.5, it
is possible to ‘simulate’ branching of two (or more) quantifiers by means of one
generalised quantifier. That generalised quantifier will be non-monadic — in the
present case, it has type 〈1, 1, 2〉, since it relates two sets (the set of the boys and
the set of the girls) and one binary relation (know∗).

What can be concluded from these examples? Two things should be noted. The
first is that the logical power of expression increases if the constructions in the
examples are included. Consider the logic L(most(2)). It is easy to see that most
is expressible in this logic, so L(most � L(most(2)). But the converse does not
hold; the following result was pointed out by Per Lindström:

THEOREM 15. L(most) < L(most(2)) (even on finite models).

Proof. [Cf. Section 1.7] Given a natural number d, choose two finite models M=
〈M,A0, A1, A2〉 and M′ = 〈M ′, A′

0, A
′
1, A

′
2〉 such that the Ai(A′

i) are pairwise
disjoint sets whose union is M(M ′), and, if |A0| = k, |A1| = m, |A2| = n, then
|A′

0| = k − 1, |A′
1| = m, |A′

2| = n, and

(a) (k − 1)m � n < km,

(b) k < m < n and k,m− k, n−m > 2d.

Now, consider the sentence

most(2)xy((P0x ∧ P1y) ∨ (P2x ∧ x = y), P0x ∧ P1y).

In M, this expresses that

km > n

(note that P2x ∧ x = y denotes {(a, a) ∈ M2 : a ∈ A2}, whose cardinal is n).
Likewise, it expresses in M′ that (k − 1)m > n, so, by (a), it is true in M but
false in M′. On the other hand, using (b) and Theorem 10 it is easily seen that
M ≡d,most M′. Thus, since d was arbitrary, L(most(2)) �� L(most). �
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The same holds for the branching of most. Let Lb(most) be the logic which
extends L(most) by allowing formulas of the form (14), interpreted as indicated
for that example. It can be shown that ‘|A| is even’ is expressible in Lb(most).
Thus, by (4) in Section 1.7, we get the

THEOREM 16. L(most) < Lb(most) (even on finite models).

The second observation to make, however, is that there are clear senses in which
the non-monadic quantification considered here is reducible to monadic quantifi-
cation. Thus, branching maybe seen as a linguistic construction on its own, making
monadic quantifiers as arguments. And as for the first two examples, most(2) is
really just the old most applied to the new universe M2:

most(2)M = mostM2 ,

and similarly for every(2). Here we have lifted a relation on sets to a relation on
binary relations. In general, any k-ary monadic quantifier Q can be lifted to any
n > 1: define Q(n), of type 〈n, n, . . . , n〉 by letting, for all R1, . . . , Rk ⊆Mn,

〈R1, . . . , Rk〉 ∈ Q(n)
M ⇔ QMnR1, . . . , Rk.

In view of the foregoing discussion we have a possible semantic universal of
the form

(U1) Natural language quantifiers are either monadic or reducible to monadic
quantifiers,

where ‘reducible’ may be specified along the lines suggested above.
NB. This universal has been challenged recently, however, in [Keenan, 1987].

He considers sentences like

(15) Every boy read a different book

and shows that, although this may seem as simple iteration of two monadic quan-
tifiers, the truth conditions for (15) cannot be so obtained, nor can they be obtained
by branching or lifting monadic quantifiers. For further discussion of this matter,
cf. also [van Benthem, 1987b]. In what follows, however, we will restrict attention
to monadic quantifiers.

3.2 The Universe of Quantification

Recall the definition of conservativity for an (n+ 1)-ary quantifier Q:

CONSERV QMA1 . . . An, B ⇔ QMA1 . . . An, (A1 ∪ . . . ∪An) ∩B
(for all M and all A1, . . . , An, B ⊆ M ; we will usually omit this). We have put
a comma before ‘B’ here to indicate that ‘QMA1, . . . An’ corresponds to the NP
and ‘B’ to the V P . CONSERV says that the V P denotation can be restricted to
(the union of) the N denotation(s). Another way to put this is
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(*) IfB andC have the same intersections with all theAi, then QMA1 . . . An, B ⇔
QMA1 . . . An, C.

It is easily checked that CONSERV and (*) are equivalent conditions.
It is almost true that CONSERV restricts the universe of quantification to (the

union of) the first (n) argument(s); cf. the discussion in 2.2.1. But not quite: the
DET denotation may depend essentially on the universe M . The following condi-
tion, which we formulate for arbitrary n-ary quantifiers, expresses the requirement
of ‘universe-independence’ for quantifiers (‘EXT’ for ‘extension’):

EXT If A1, . . . , An ⊆M ⊆M ′

then QMA1 . . . An ⇔ QM ′A1 . . . An.

This has nothing to do with CONSERV; rather, it is a strengthening of the pos-
tulate, discussed in 2.1.3; that quantifier expressions are constants. For example,
EXT excludes a quantifier which is allM when M has fewer than 10 elements and
someM otherwise. But together with CONSERV, EXT gives the exact sense in
which DETs can be said to restrict the universe of quantification:

UNIV QMA1 . . . An, B ⇔
QA1∪...∪An

A1 . . . An, (A1 ∪ . . . ∪An) ∩B.
It is an easy exercise to show

PROPOSITION 17. UNIV is equivalent to CONSERV + EXT.

Some further discussion of universe-restriction can be found in Westerståhl
[1985a; 1983].

CONSERV and EXT are related to the logician’s notion of relativisation (Sec-
tions 1.4 and 1.6). Let us first note

PROPOSITION 18. If Qi satisfies EXT for i ∈ I , then L(Qi)i∈I relativises.

Proof. Since EXT implies that

(Qi)rx(Px, P1x, . . . , Pnx) ↔
↔ Qix(Px ∧ P1x, . . . , Px ∧ Pnx)

is valid. �

If in addition CONSERV holds we can say more: the binary quantifiers satisfying
CONSERV and EXT are precisely the relativized ones. Moreover, the sentences (in
any logic) with two unary predicate symbols which satisfy CONSERV and EXT (in
the obvious sense) are precisely the ones equivalent to the relativised sentences.
This is the content of the next result:

THEOREM 19.

(a) A binary quantifier Q satisfies CONSERV and EXT iff Q = (Q′)r, for some
unary Q′.
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(b) A sentence φ(P1, P2) with two unary predicate symbols in a logic L satisfies
CONSERV and EXT iff it is equivalent to ψ(P1), for some L-sentence ψ.

Proof. We prove (b); (a) then follows (it is also easily proved directly). Recall the
basic property of relativised sentences from 1.6, in this case, with M= 〈M,A,B〉,

(REL) 〈M,A,B〉 � ψ(P1) ⇔ 〈A,A ∩B〉 � ψ.

From this it is immediate that ψ(P1) satisfies CONSERV and EXT. Conversely, if
φ(P1, P2) satisfies CONSERV and EXT, let ψ = φ(x = x, P2).

Then

〈M,A,B〉 � ψ(P1) ⇔ 〈A,A ∩B〉 � ψ (REL)
⇔ 〈A,A,A ∩B〉 � φ(P1, P2) (by def. of ψ)
⇔ 〈M,A,B〉 � φ(P1, P2) (by UNIV).

�

The interest of (b) is that it relates a semantic notion (CONSERV and EXT) to a
syntactic property of sentences — a typical sort of logical result.

Notice that, for unary quantifiers, CONSERV makes no sense, and EXT, al-
though it can be formulated, is not true for e.g. the standard universal quantifier ∀.
This is another aspect of the advantage of binary quantifiers. Any unary quantifier
can be replaced by a binary one (its relativisation) which does (at least) the same
work and has the additional property of restriction the universe of quantification to
the first argument. As Theorem 19 shows, this moves give us all the binary quan-
tifiers with that property, in particular, it gives us all the binary natural language
quantifiers (provided (U2) and (U3) below hold).

For n-ary quantifiers with n > 1, it is also possible to secure CONSERV and
EXT by raising the number of arguments, though not quite as simply as when
n = 1. The next proposition surveys the possibilities.

PROPOSITION 20. Let QQ be an n-ary quantifier. then

(i) there is an (n+1)-ary quantifier Q′ satisfying CONSERV such that QMA1 . . .

An ⇔ Q′
MA1 . . . An,M ;

(ii) there is an (n+2)-ary quantifier Q′′ satisfying EXT such that QMA1 . . . An ⇔
Q′′

MA1 . . . An,M ;

(iii) there is an (n + 1)-ary quantifier Q+ satisfying both CONSERV and EXT
such that QMA1 . . . An,⇔ Q+

MA1 . . . AnM,M .

Proof.

(i) Define Q′
MA1 . . . An, B ⇔ QMA1 . . . An∩B . . . An∩B. The verification

of CONSERV is immediate.
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(ii) Let Q′′
MA1 . . . An, B ⇔ QBA1 ∩B . . . An ∩B; again EXT is immediate.

(iii) Define Q′′ as in (ii), and then form Q+ from Q′′ as in (i); the result follows
from (i) and (ii).

�
For the record, we formulate the semantic universals corresponding to CON-

SERV and EXT:

(U2) Natural language quantifiers are conservative.

(U3) Natural language quantifiers satisfy EXT.

We saw in 2.4 that the few apparent exceptions to (U2) could be accounted for by
reasonable methodological decisions (2.4.3, 2.4.9–10). As for (U3), the only ex-
ceptions found were certain interpretations of context-dependent DETs like many.
For example, if

QMAB ⇔ |A ∩B| 
 1/3|M |,
Q violates EXT. Again, it is mainly a methodological question whether one wants
to allow this kind of context-dependence or not.

3.3 Quantity

The condition ISOM, repeated below, was formulated for generalised quantifiers
of any type 〈k1, . . . , kn〉:
ISOM If f is a bijection from M to M ′

then QMR1 . . . Rn ⇔ QM ′f [R1] . . . f [Rn].

The idea is that Q does not distinguish between different elements of the universe,
or even across two universes. This requirement, which is a version of what is some-
times called topic-neutrality, can be formulated for arbitrary syntactic categories
(cf. [van Benthem, 1983b]). It is a general requirement of logical constants.

For monadic quantifiers, ISOM has a particularly conspicuous formulation.
Roughly, it says that quantifiers deal only with quantities. The latter assertion
can be made precise with the terminology from Section 1.7 as follows:

QUANT If M= 〈M,A0, . . . , Ak−1〉, M′ = 〈M ′, A′
0, . . . , a

′
k−1〉, and |PM

s | =
|PM′

s | for all s ∈ 2k, then QMA0 . . . Ak−1 ⇔ QM ′A′
0 . . . A

′
k−1.

This means that the truth value of QMA0 . . . Ak−1 depends only on wk quantities,
namely, the number of elements in the partition sets.

A bijection from M to M ′ splits into bijections of the respective partition sets,
and, conversely, bijections between these sets can be joined to one from M to M ′.
Thus we have that
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PROPOSITION 21. ISOM and QUANT are equivalent (for a monadic Q).

If we consider only one universe M in ISOM (letting M ′ = M ), and thus
permutations on M , we get a slightly weaker version, called PERM.26 From a
local perspective on quantifiers (2.1.4), PERM is the natural notion. Our global
condition EXT, however, says that the choice of universe is unimportant. Indeed,
it is straightforward to prove

PROPOSITION 22. Under EXT, ISOM and PERM are equivalent.

All the simplex DETs from 2.4.1–3 denote quantitative quantifiers. To see this,
it is sufficient to check that the defining conditions can be expressed as conditions
on the cardinalities of the relevant sets. For example, allMAB ⇔ |A − B| =
0, someMAB ⇔ |A ∩B| �= 0,mostMAB ⇔ |A ∩B| > |A−B|,bothMAB ⇔
|A−B| = 0&|A∩B| = 2,many2

MAB ⇔ |A∩B| 
 k(|A∩B|+ |A−B|), etc.
As for complex DETs, there are just a few of the constructions in 2.4.6–12

which yield non-quantitative quantifiers. One example is DETs with fixed adjec-
tive phrases, or similar expressions, such as more male than female, some red, only
liberal. We saw, however, that sentences with such expressions can also be inter-
preted using only quantitative quantifiers (2.4.9–10). Another major example are
the possessives, either simple ones such as John’s, or complex constructions with
possessives. The quantifier John’s from 2.4.6 violates ISOM since the ownership
relation need not be preserved under permutations of the objects in the universe.
For example, John may own two white shirts but no red tie, even though it is pos-
sible to permute the shirts and the ties, and the white things and the red things in a
one-one fashion. Then

John’s shirts are white

is true, but not

John’s ties are red,

as ISOM would require.
In 2.4.7, we mentioned an alternative analysis of definites, and thus in particular

of possessives. Under this analysis, one can dispense with quantifiers denoted by
simple possessives, also in various complex constructions. Quantitative quantifiers
would suffice, it seems, for all of these constructions (the same holds for every but
John (2.4.11), another counter-instance to ISOM). It would then be possible to
propose the following rather appealing universal:

(U4) Natural language quantifiers are quantitative.

If one does not want to take this methodological step, on the other hand, one
will settle for the more modest

(U4′) Simple natural language quantifiers are quantitative.

26To get a ‘quantity version’ of PERM, let M ′ = M in QUANT.
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3.4 Logical Quantifiers, Negations and Duals

Whichever version of the last universal one prefers, the following class of quanti-
fiers is a natural object of study:

DEFINITION 23. If n-ary quantifier (n > 1) is logical then it satisfies CONSERV,
EXT and QUANT.

The terminology is meant to suggest that these three requirements are necessary
for logicality; further conditions will be discussed in 4.4.

For binary quantifiers, logicality means that the truth value of AMAB depends
only on the two numbers |A−B| and |A ∩B|:
PROPOSITION 24. A binary quantifier Q is logical iff, for all M,M ′ and all
A,B ⊆ M and A′, B′ ⊆ M ′, |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|
implies that QMAB ⇔ QM ′A′B′.

Proof. If Q is logical and |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|,
then, by QUANT, QAAA ∩ B ⇔ QA′A′A′ ∩ B′, and so, by UNIV (Proposition
17), QMAB ⇔ QM ′A′B′. Conversely, if the right-hand side of the equivalence
holds, QUANT is immediate. Take M and A,B ⊆ M and let M ′ = A′ = A and
B′ = A ∩B. Thus, QMAB ⇔ QAAA ∩B, i.e. UNIV holds. �

This means that a logical binary relation between sets can be replaced by a bi-
nary relation between cardinal numbers; we exploit this in 4.2. Proposition 24
can be generalised to n-ary logical quantifiers: QUANT transforms an n-ary Q
to a relation between 2n cardinal numbers, and CONSERV + EXT eliminate the
dependence of two of these.

The class of logical quantifiers has some nice closure properties. It is straight-
forward to verify that if Q1 and Q2 are CONSERV and EXT (QUANT), then so are
A1 ∧ Q2,Q1 ∨ Q2, and ¬Q1. Thus,

PROPOSITION 25. For each n > 1, the class of n-ary logical quantifiers is
closed under the usual Boolean operations.

In a natural language context, there are also inner Boolean operations. We
noted in 2.4.12 that from a binary Q one can construct two (n + 1)-ary inner
conjunctions:

Q∧1
M A1 . . . An, B ⇔ QMA1 ∩ . . . ∩AnB,

Q∧2
M A1 . . . An, B ⇔ QMA1B& . . .&QMAnB.

Inner disjunctions Q∨1 and Q∨2 are defined similarly. As for negation, we make
the

DEFINITION 26. If Q is (n + 1)-ary, the inner negation of Q is the quantifier
Q¬, defined by

(Q¬)MA1 . . . AnB ⇔ QMNA1 . . . An,M −B.
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Also, the dual of Q Q̆, is the quantifier ¬(Q¬)(= (¬Q)¬).

Outer and inner negation correspond to sentence negation and VP negation,
respectively; cf.

Not many boys are lazy,
Many boys are not lazy,

with the respective truth conditions

(¬many)M‖boy‖ ‖lazy‖,
(many¬)M‖boy‖ ‖lazy‖.

PROPOSITION 27. The class of logical quantifiers is closed under inner con-
junctions and disjunctions (both kinds), and inner negation (hence also duals).

Proof. This is again a routine check; let us take one case and verify that Q¬
satisfies EXT if Q satisfies CONSERV and EXT. Suppose A1, . . . , An, B ⊆ M ⊆
M ′. Then

(Q¬)MA1 . . . An, B ⇔ QMA1 . . . An,M −B
⇔ QMA1 . . . An, (A1 ∪ . . . ∪An) −B (CONSERV)
⇔ QM ′A1 . . . An, (A1 ∪ . . . ∪An) −B (EXT)
⇔ QM ′A1 . . . An,M

′ −B (CONSERV)
⇔ (Q¬)M ′A1 . . . An, B.

�

It should be noted that other inner negations than VP negation do not preserve
logicality. For example, if we define,for a binary Q,

Q∗
MAB ⇔ QMM −AB,

then CONSERV will not be preserved.
The following propositions list some de Morgan-like laws for inner Boolean

operations on quantifiers:

PROPOSITION 28.

(a) (¬Q)∧1 = ¬(Q∧1), (¬Q)∧2 = ¬(Q∨2),

(b) (¬Q)∨1 = ¬(Q∨1), (¬Q)∨2 = ¬(Q∧2),

(c) (Q1 ∧ Q2)¬ = Q1¬ ∧ Q2¬,

(d) (Q1 ∨ Q2)¬ = Q1¬ ∨ Q2¬,

(e) (Q∧i)¬ = (Q¬)∧i(i = 1, 2),

(f) (Q∨i)¬ = (Q¬)∨i(i = 1, 2),
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In 2.4.12 we considered the suggestion that the class of binary natural language
quantifiers is closed under (outer) conjunction and disjunction, i.e. that the follow-
ing universal holds:

(U5) If Q1 and Q2 are binary natural language quantifiers then so are Q1∧Q2

and Q1 ∨ Q2.

The case of negation was more doubtful. In the table opposite, some examples
of DETs for negations and duals in English are given. ‘-’ means that it seems hard
to find a DET, simplex or complex, denoting the negation or dual in question. Of
course these quantifiers are always expressible by some suitable paraphrase, but
the question here is whether there are determiners denoting them.

This table suggests certain questions. When is the (inner or outer) negation of a
simple quantifier again simple? Barwise and Cooper have several proposals here,
e.g. that the negations of the cardinal quantifiers at least n and exactly n re never
simple, and that if a language has a pair of simple duals, that pair consists of every
and some; cf. also 3.6.

Here we shall look a bit closer at the ‘-’ signs for the binary quantifiers in the
table. Note that if these signs are correct, the class of binary natural language
quantifiers is not closed under inner or outer negation. Discussing this question
will give us an occasion to look at some typical issues, and to introduce a few
useful notions. The purpose, as usual, is to illustrate problems and ideas, rather
than making definite empirical claims.

Table 1.

Q ¬Q Q¬ ˘Q

some no not every every
every not every no some
no some every not every
most at most half less than half at least half
many few - all but a few
infinitely many at most finitely many - all but finitely many
(at least) n less than n - all but less than n
at most n more than n all but at most n -
(exactly) n not exactly n all but n -
more . . . than at most as many . . . as - -
fewer . . . than at least as many . . . as - -

Note first that part of what Table 1 claims is that certain expressions of the form
all but Q are anomalous. Thus, while all but five, all but at most five, all but finitely
many are fine, all but at least five, all but not exactly five, all but (infinitely) many
are not. It might be claimed that the anomaly in the latter cases is pragmatic rather
than semantic. I will not argue about this directly, but instead try to see if there
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are in fact significant semantic differences between the normal and the anomalous
cases.

Exception DETs of the form all but Q (cf 2.4.11) are interpreted on the scheme

(1) all but Q = Q¬.

When is Q¬ a natural language quantifier? Before trying to give some answers to
this, we need to introduce a new concept.

DEFINITION 29. A binary quantifier Q is VP-positive (VP-negative) if, for all
M,M ′ and all A,B ⊆ M,A′B′ ⊆ M ′ such that A ∩ B = A′ ∩ B′(A − B =
A′ −B′),QMAB ↔ QM ′A;B′.27

As the terminology indicates, VP-positivity means that Q amounts solely to a
condition on the VP denotation (intersected with the N denotation, since we as-
sume CONSERV), whereas a VP-negative quantifier reduces to a condition on the
complement of the VP denotation. For example, some, no, many,28 few, infinitely
many, at least n, at most n, exactly n are VP-positive, whereas every, not every,
all but n, all but at most n are VP-negative. most, at least half, and other ‘pro-
portional’ quantifiers are neither VP-positive nor VP-negative, and the same holds
for the interpretations of the definites (because of the number condition on the N
denotation; cf. 2.4.6–7).

For a conservative Q, VP-positivity (-negativity) is related to inner and outer
negation as follows:

(2) Q is VP-positive (-negative) ⇔¬Q is VP-positive (-negative)
⇔ Q¬ is VP-negative (-positive).

The next result, essentially due to Barwise and Cooper shows that VP-positivity
is in fact a simple relational property of quantifiers. A binary quantifier is symmet-
ric if it is symmetric as a relation, i.e. iff for all M and all A,B ⊆M ,

QMAB ⇒ QMBA.

PROPOSITION 30. If Q satisfies CONSERV and EXT the following are equiva-
lent:

(a) Q is VP-positive.

(b) Q is symmetric.

(c) QMAB ↔ QMA ∩BA ∩B (for all M and all A,B ⊆M ).

27V P -positivity is related to the notions of existential and cardinal quantifiers in [Keenan and Stavi,
1986]. In fact, under CONSERV, V P -positivity is equivalent to existentiality, and cardinality is equiv-
alent to V P -positivity +QUANT.

28This is for many1(2.4.3); many2 is neither V P -positive nor V P -negative.
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Proof. (a) ⇒ (b): Suppose QMAB. Let A′ = B and B′ = A. Thus A ∩ B =
A′ ∩B′, so, by VP-positivity, QMAB′, i.e. QMBA.

(b)⇒ (c): Suppose Q is symmetric. Then QMAB ⇔ QMAA∩B (CONSERV)
⇔ QMA ∩BA (symmetry) ⇔ QMA ∩BA ∩B (CONSERV).

(c) ⇒ (a): If (c) holds andA∩B = A′∩B′, whereA,B ⊆M andA′, B′ ⊆M ′,
then QMAB ⇔ QMA∩BA∩B ⇔ QMA′∩B′A′∩B′ ⇔ QM ′A′∩B′A′∩B;
(by EXT) ⇔ AM ′A′B′ (by (c)). �

The following corollary is easy using (2):

COROLLARY 31. Under CONSERV and EXT the following are equivalent:

(a) Q is VP-negative.

(b) Q¬ is symmetric.

(c) QMAB ⇔ QMA−B∅.

From our list of English DETs in 2.4, it appears much easier to find VP-positive
quantifiers than VP-negative ones. Moreover, it seems that for each DET giving
a condition on the complement of the VP denotation, there is another DET giving
the same condition on the VP denotation itself. For example, if the first DET is of
the form all but q, the corresponding positive condition is given by Q, and if the
first DET is every or not every, the second is no or some, respectively. This lets us
propose the following universal:

(U6) If Q is a VP-negative natural language quantifier, then Q¬ is also a natural
language quantifier.

A related observation is that when Q denotes a VP-negative quantifier, the form
all but Q is not allowed: all but every, all but not every, all but all but five, etc. are
ruled out. The reason, one imagines, is that this would be a very cumbersome way
of expressing a ‘double VP negation’, which in any case is equivalent to the more
easily expressed positive condition.

(U6) gives one (partial) answer to our question about when Q¬ is a natural
language quantifier. But, to return to Table 1, the most interesting case concerns
VP-positive quantifiers: all the ‘-’ signs (for binary quantifiers) are examples of
failure of Q¬ to be a natural language quantifier for VP-positive Q. What, then, is
wrong with a DET such as all but at least five?

Here is one suggestion: sentences of the form all but Q A B imply the exis-
tence of As that are B (in contrast with all A B). More precisely, let us say that a
quantifier Q has existential import, if

(3) for sufficiently large A (and M ), QMAB ⇒ somemAB.
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(3) holds for all but five, all but at most five, all but finitely many, etc., but
fails for (at least five)¬, (not exactly five)¬, (infinitely many)¬, etc. E.g.

(at least five)¬MAB ⇔ |A−B| 
 5,

so for each A with at least five elements, we have (at least five)¬MA∅ but not
someMA∅. Note that the qualification ‘for sufficiently large A’ is necessary: all
but at most fiveMAB implies someMAB only when |A| > 5, and all but finitely
manyMAB implies someMAB only when A is infinite.

What condition on Q corresponds to the fact that Q¬ has existential import/ For
VP-positive quantifiers, the answer is as follows. Call Q bounded, if

(4) there is an n such that for allM and allA,B ⊆M,QMAB ⇒ |A∩B| � n.

PROPOSITION 32. Suppose Q is VP-positive and satisfies CONSERV and EXT.
Then Q¬ has existential import iff Q is bounded.

Proof. If Q is bounded by n, then |A| > n&Q¬MAB ⇒ |A| < n&|A − B| �
n ⇒ A ∩ B �= ∅, so (3) holds for Q¬. On the other hand, if Q is not bounded,
it follows from proposition 30 that there are arbitrarily large A (and M ) such that
QMAA. But this means that Q¬MA∅, so (6) fails for Q¬. �

From these observations it is tempting to suggest the universal: for VP-positive
Q,Q¬ is a natural language quantifier only if Q is bounded. But this would be
premature. The universal concerns arbitrary quantifiers Q¬, whereas the above
discussion concerned the interpretations of DETs of the form all but Q′. In fact,
there is a simple counter example to this universal: some is VP-positive, some¬ =
not every is a natural language quantifier, but some is not bounded!

Of course we cannot require in the universal that Q¬ be the interpretation of
a DT all but Q′; that would make Q¬ trivially a natural language quantifier! But
all is not lost: it seems that if we require Q to be non-simple, the universal holds;
possibly, the simple some was the only counter-example.

What about the converse statement, i.e. if Q is bounded, does it follow that Q¬
is a natural language quantifier? Here we can say something more definite:

PROPOSITION 33. If Q is logical, VP-positive, and bounded, then Q is a finite
disjunction of quantifies of the form exactly n.

(The proof is best postponed until Section 4.2.) Thus if Q is as in this proposi-
tion, Q is clearly a natural language quantifier, and so is Q¬, which by Proposition
28 is a finite disjunction of quantifiers of the form all but n.

Some of the last observations are collected in the following tentative universal:

(U7) If Q is a VP-positive, non-simple, logical quantifier,then Q¬ is a natural
language quantifier iff Q is bounded.

This universal, then, would be an explanation of the empty spaces (for the bi-
nary quantifiers) in Table 1.
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3.5 Non-Triviality

Call an n-ary quantifier Q trivial on M, if QM is either the empty or the universal
n-ary relation on P (M). Consider the condition

NONTRIV Q is non-trivial on some universe.

Quantifiers violating NONTRIV are not very interesting: either any sentence
beginning with a DET denoting such a quantifier (satisfying EXT) is true in each
model, or any such sentence is false in each model. Nevertheless, natural language
permits the construction of such DETs, for example, at least zero, fewer than zero,
at least ten and at most nine, more than infinitely many, as pointed out in [Keenan
and Stavi, 1986]. But the following universal seems true:

(U8) Simple natural language quantifiers satisfy NONTRIV.

Note that the NONTRIV quantifiers are not closed under Boolean operations:
for any Q, the quantifier Q ∨ ¬Q is trivial on every universe.

NONTRIV requires a very modest amount of ‘activity’ of Q; a stronger variant
is

ACT Q is non-trivial on each universe.

ACT holds for many natural language quantifiers, but there are exceptions even
among the simple ones, e.g. both, two, three, four, . . . (if M has less than 4 ele-
ments fourMAB is always false).

van Benthem [1984a] considers an even stronger requirement of activity, called
‘variety’, for binary quantifiers. Here is a generalisation to (n+ 1)-ary quantifiers:

VAR For allM and allA1, . . . , An ⊆M such thatA1∩. . .∩An �= ∅, there
are B1, B2 ⊆ M such that QMA1, . . . , An, B1 and ¬QMA1, . . . ,
An, B2.

In the binary case, we could say that VAR transfers the requirement of activity to
each non-empty first argument. For quantifiers satisfying CONSERV and EXT, this
seems a reasonable strengthening of ACT.

Clearly,

VAR ⇒ ACT ⇒ NONTRIV;

the implications cannot be reversed: an example of a (logical) quantifiers satisfying
ACT but not VAR is

QMAB ⇔ |A| = 1.

Note that this does not seem to be a natural language quantifier. In fact, inspection
of the DETs in 2.4 shows that the ACT ones — e;g; some, no, all, not all, most,
more . . . than, fewer . . . than, every . . . and/or, some . . . and/or (both interpreta-
tions) — also satisfy VAR. So one may propose

(U9) Natural language quantifiers satisfying ACT also satisfy VAR.
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3.6 Monotonicity

The monotonicity behaviour of a quantifier A concerns the preservation of other
truth value of QMA1 . . . , An when the arguments are decreased or increased. For
simplicity, we shall only consider binary quantifiers here, although many of the
definitions and results below can easily be extended to (n+ 1)-ary quantifiers.

DEFINITION 34. A binary quantifier Q is

MON ↑, if QMAB&B ⊆ B′ ⇒ QMAB′,
MON ↓, if QMAB&B′ ⊆ B ⇒ QMAB′,
↑MON, if QMAB&A ⊆ A′ ⇒ QMA′B,
↓MON, if QMAB&A′ ⊆ A⇒ QMA′B.

Also, Q is RIGHT MON (LEFT MON) if it is MON↑ or MON↓ (↑MON or ↓MON),
and Q is ↑MON↑ if it is both MON↑ and ↑MON; similarly for ↑MON↓, ↓MON↑,
and ↓MON↓.

Barwise and Cooper call RIGHT MON monotonicity, ↑MON persistence and ↓MON
anti-persistence.

Many natural language quantifiers have simple monotonicity properties. The
four types of double monotonicity are exemplified by the square of the opposition:

↓ MON ↑ all no ↓ MON ↓

↑ MON ↓ not all some ↑ MON ↑

Other doubly monotone quantifiers are at least n, infinitely many, which are
↑MON↑, and at most n, at most finitely many, only liberal (cf 2.4.10), which
are ↓MON↓. most is MON↑ but not LEFT MON, as is easily seen, and the same
holds for simple definites like the and John’s (as defined in 2.4.6). Of the inter-
pretations of any from 2.4.3, many1 is ↑MON↑, many2 is MON↑ but not LEFT
MON, and many3 is neither LEFT nor RIGHT MON. Other examples of neither
LEFT nor RIGHT MON quantifiers are exactly n, all but n, between five and ten.

The monotonicity behaviour of Q determines that of its negations and dual:

PROPOSITION 35.

(a) Outer negation reverses the direction of both RIGHT and LEFT MON.

(b) Inner negation reverses RIGHT MON but preserves LEFT MON.

(c) Dual-formation preserves RIGHT MON but reverses LEFT MON.

For example, from the monotonicity behaviour of one column of Table 1, we can
infer that of all the other columns (for the binary quantifiers).
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For doubly monotone quantifiers, we have the following pleasing result from
van Benthem [1983c]. The proof is a nice demonstration of the strength and flexi-
bility of the quantifiers constraints we are using.

THEOREM 36 (van Benthem). Under CONSERV and VAR, the only doubly
monotone quantifiers are those in the square of opposition.

Proof. Suppose Q is ↓ MON ↓. We prove that Q = no; the theorem then follows
from Proposition 35. Take a universe M and A,B ⊆ M . First assume that A ∩
B = ∅. We claim that there is C such that QMAC. This is immediate from VAR
if A �= ∅; otherwise, note that QM∅∅ holds by ↓ MON ↓ and the fact that Q is
non-trivial on M . By MON ↓ it then follows that QMA∅, i.e. QMAA∩B. Thus,
by CONSERV, QMAB. Conversely, suppose that QMAB holds. By ↓ MON ↓,
QMA∩BA∩B. But then QMA∩BC holds for all C ⊆M , since, for any such
C, it suffices (by CONSERV) to show QMA ∩ BA ∩ B ∩ C, and this holds by
MON ↓. Hence, VAR tells us that A ∩B = ∅, and the proof is finished. �
For logical quantifiers, we can replace double monotonicity by LEFT MON:

THEOREM 37 (van Benthem). The only logical and LEFT MON quantifiers sat-
isfying VAR are the ones in the square of the opposition.

A convenient method to prove this for finite universes (the case van Benthem
considers) will be given in 4.2; actually, the result holds for all universes. Note the
use of VAR here; without it, room is left for many other LEFT MON quantifiers, as
is clear from the examples above.

Barwise and Cooper propose several universals involving monotonicity. One of
them is the following:

(U10) Simple binary natural language quantifiers are either RIGHT MON or con-
junctions of RIGHT MON quantifiers.

Note that exactly n (which probably is simple) is the conjunction of the RIGHT
MON at least n and at most n. This and other examples of neither LEFT nor
RIGHT MON quantifiers suggest a weaker notion of monotonicity, which well be
called continuity:

DEFINITION 38. A binary quantifier Q is

RIGHTCONT, if QMAB&QMAB′′&
&B ⊆ B′ ⊆ B′′ ⇒ QMAB′,

LEFTCONT, if QMAB&QMA′′B&
&A ⊆ A′ ⊆ A′′ ⇒ QMA;B.

Let us further call a quantifier STRONG RIGHT (LEFT) CONT if both it and its
outer negation are RIGHT (LEFT) CONT. We have

RIGHT(LEFT)MON ⇒
→ STRONG RIGHT (LEFT) CONT ⇒
⇒ RIGHT(LEFT)CONT.
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None of the implications can be reversed: for example, exactly n is RIGHT (and
LEFT) CONT, but not STRONG RIGHT (or LEFT) CONT.

Thijsse [1983] observes that the property of quantifiers identified in (U10) is in
fact RIGHT CONT:

PROPOSITION 39. A binary quantifiers is RIGHT CONT iff it is the conjunction
of a MON ↑ and a MON ↓ quantifier.

The proof is similar to the proof of Proposition 41(b) below.
Our use of the conservativity constraint on binary quantifiers gives the right and

the left arguments quite different roles, so it is not surprising that right monotonic-
ity and left monotonicity are very different properties. This is clear from Theorem
37, and will become even more apparent in Section 4.3. A further illustration of
the difference is afforded by the following model-theoretic characterisation of the
left monotonicity properties. Note first that any quantifier Q can be identified with
a class of structures: in the binary case,

Q = {〈M,A,B〉 : QMAB}.
Call such a class sub-closed (ext-closed) if it is closed under substructures (ex-
tensions), and inter-closed if, whenever two structures, one a substructure of the
other, are in Q, then so is every structure ‘between’ these two. It is straightforward
to verify that

PROPOSITION 40. Under CONSERV and EXT, a binary quantifier is sub-closed
(ext-closed, inter-closed) iff it is ↓ MON (↑ MON,LEFT CONT).

For first-order definable quantifiers, the semantic property of being subclosed has a
well known syntactic counterpart, namely, definability by a universal sentence (cf.
[Chang and Keisler, 1973, p. 128]). Thus, among first-order definable quantifiers
satisfying CONSERV and EXT, the ↓ MON ones are precisely those definable by
universal sentences. Corresponding results for ↑ MON and LEFTCONT quantifiers
follow from the previous proposition and

PROPOSITION 41. For any binary quantifier Q,

(a) Q is ext-closed ⇔ ¬Q is sub-closed,

(b) Q is inter-closed ⇔ Q = Q′ ∧ Q′′, for some sub-closed Q′ and some
ext-closed Q′′.

Proof. (a) is obvious. As for (b), a conjunction of the sort indicated is clearly
inter-closed. Conversely if Q is inter-closed, define

Q′
MAB ⇔ QM ′A′B′, for some extension 〈M ′, A′, B′〉 of 〈M,A,B〉,

Q′′
MAB ⇔ QM ′A′B′, for some substructure 〈M ′, A′, B′〉 of 〈M,A,B〉;

then Q′ and Q′′ are as desired. �
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Another syntactic characterisation of monotonicity from first-order logic is the
following. Call a sentence φ(P ), containing the unary P among its non-logical
symbols, upward monotone (in P ), if

φ(P ) ∧ ∀x(Px→ P ′x) → φ(P ′)

is valid, and similarly for downward monotonicity. For example, sentences defin-
ing LEFT or RIGHT MON quantifiers will be monotone in certain predicate sym-
bols. An occurrence of P in φ is said to be positive (negative), if it is within the
scope of an even (odd) number of negations, when → and ↔ have been elimi-
nated. The next result is well known from first-order model theory (the proof is
an application of Lyndon’s interpolation theorem; cf. [Chang and Keisler, 1973, p.
90]).

PROPOSITION 42. A first-order sentence φ(P ) (which may contain other pred-
icate symbols but no function or constant symbols) is upward (downward) mono-
tone iff it is equivalent to a sentence where P occurs only positively (negatively).

Monotonicity properties have been quite useful in describing and explaining
linguistic phenomena; cf. [Barwise and Cooper, 1981; Keenan and Stavi, 1986],
and, in connection with so-called polarity items, [Ladusaw, 1979; Zwarts, 1986].
We will have several further uses of monotonicity in Section 4. In mathematical
logic, monotone quantifiers have been studied in model theory and recursion the-
ory. The beginnings of the model theory for montone quantifiers will be given in
Appendix B; further information can be found in [Barwise and Feferman, 1985].
On the more recursion-theoretic side, cf. for example, [Aczel, 1975] and [Barwise,
1978], and the references therein.

3.7 Partial and Definite Quantifiers

In 2.4.6 we mentioned that the number conditions belonging to the definites have
been taken to indicate that the corresponding quantifiers are partial. This is the
approach of Barwise and Cooper, who furthermore identify a semantic property
of partial quantifiers, called definiteness, characteristic of the interpretation of the
definites.29

Consider (in this subsection) binary quantifiers which are partial in the first
argument (i.e. for certainA,QMAB may be undefined for allB). For example, the
partial quantifier the coincides with the total the when |A| = 1, but is undefined
when |A| �= 1.

DEFINITION 43. Q is definite, if, for all M and all A ⊆ M for which Q is
defined, there is a non-empty set BA such that, for all B ⊆M , QMAB ⇔ BA ⊆
B.

The simple definites of 2.4.6 all have this property, when treated as partial quan-
tifiers: e.g. for the, BA = A (or BA = X ∩ A for some context set X), and for

29They consider (the singular) the, both, and DETs of the form the n, but not possessives.
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John’s, BA = PJohn ∩ A. That the use of partial quantifiers is necessary here
follows from

PROPOSITION 44. Under CONSERV, no definite quantifier is total.

Proof. This follows from the fact that a definite and conservative quantifier must
be undefined for A = ∅: suppose Q is defined for ∅ and consider B∅ that exists
by definiteness. Since B∅ ⊆ B∅ we have QM∅B∅ and thus, by CONSERV,
AM∅∅. But then B∅ ⊆ ∅, by definiteness, contradicting the stipulation that B∅

is non-empty. �

In view of this proof it is natural to weaken the requirements in Definition 43
slightly. Call Q universal, if it is as in 43, except that B∅ is allowed to be empty
(i.e. that BA is required to be non-empty only when A is). All definite quantifiers
are universal, but not conversely, since all is universal. This is indeed the prime
example of a universal quantifier, as the next result shows.

THEOREM 45. Suppose Q is logical. Then Q is universal iff Q = all whenever
defined.

Proof. If Q coincides with all whenever defined it is clearly universal (with BA =
A). Conversely, suppose Q is universal and defined for A. We need to show that
BA = A. If A = ∅ we get BA = ∅ just as in the proof above. Suppose, then,
that A �= ∅. then BA �= ∅ by universality. Also, BA ⊆ A; this follows from
CONSERV, since QMABA, whence QMAA ∩ BA, and thus BA ⊆ A ∩ BA by
universality. Now assume that BA �= A. Take a ∈ BA and a′ ∈ A − BA. Let
f be a function which permutes a and a′ but leaves everything else in M as it is.
By ISOM, QMf [A]f [BA], i.e. QMA(B − {a}) ∪ {a′}. Thus, by universality,
BA ⊆ (BA − {a}) ∪ {a′}. But this contradicts a ∈ BA. �

Thus the logical universal quantifiers, and in particular the definite ones, are just
partial versions of all. This is one reason to restrict attention to total quantifiers,
as we have done in preceding sections and shall continue to do in what follows.
Another reason is that partial quantifiers make the model theory more cumber-
some, and that many results for total quantifiers can rather easily be extended to
the partial case by inserting phrases of the form ‘whenever . . . is defined’ in suit-
able places.

Note finally that even if partial quantifiers are admitted in principle,, the alter-
native treatment of definites suggested in 2.4.7 makes it possible to propose the
universal.

(U11) Natural language quantifiers are total,

while still preserving the intuition that statements involving definites lack truth
value when the corresponding number conditions are not met.
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3.8 Finite Universes

Many DETs more or less presuppose that the N and VP denotations under con-
sideration are finite sets. Examples are more than half, 30 percent of, many, but
also DETs like most, more . . . than, fewer . . . than, where the interpretations we
gave actually work for infinite sets as well. It seems that in many natural language
contexts we can make the blanket assumption

FIN Only finite universes are considered.

For DETs like infinitely many or all but finitely many, on the other hand, infinite
models seem to be needed. So our strategy will be to keep track of those results that
need FIN and those that don’t. Interestingly, it turns out that FIN is a very natural
constraint for the quantifier theory in the next section, in the sense that it simplifies
results and proofs. Most of the results have generalisations to the case when FIN
is dropped, but the added information does not appear to be very exciting from a
natural language point of view.

This should be contrasted with the situation in mathematical logic. There in-
finite sets are crucial, and finite models are often just a nuisance. Consider the
effect FIN would have in classical model theory. Most standard methods of con-
structing models (compactness, ultraproducts, etc.) would become ineffective, and
many of the usual logical questions would become pointless. For example, the four
properties of logics mentioned in Section 1.6 lose their interest. This is clear for
the Tarski and the Löwenheim property, and for compactness and completeness it
follows from

PROPOSITION 46. Under FIN, no logic is compact or complete.

Proof. Under FIN, the set {∃≥nx(x = x) : n = 1, 2, . . .} has no model, does EL
(and hence all its extensions) fail to be compact. The statement about completeness
follows from a result by Trakhtenbrot, by which the set of all finitely valid EL-
sentences (i.e. the set of valid sentences under FIN) is not recursively enumerable.
For any logic L = L(Qi)i∈I , this set is the intersection of the set of finitely valid
L-sentences with the (recursive) set of EL-sentences. It follows that the set of
finitely valid L-sentences is not recursively enumerable. �

Some standard logical questions remain, though. For example, we may still
compare the power of expression of various logics under FIN, though some of the
facts may change: we showed in 1.7 that L(most) < L(more) in general, but that
L(most) ≡ L(more) under FIN. Likewise, definability issues are affected by FIN;
for example, all but finitely many is not first-order definable in general, although
it is trivially first-order definable under FIN.

It should be noted, however, that the main definability results in Section 1.7
(Theorem 10 and Corollary 11) continue to hold in the presence of FIN.
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4 THEORY OF BINARY QUANTIFIERS

Binary quantifiers are the most common ones in natural language; they are also
the most manageable relations, and we restrict attention to them from now on. A
similar study of (n + 1)-ary quantifiers appears quite feasible, cf. [Keenan and
Moss, 1985]. The important step is abandoning unary quantifiers: most of the
results in this section have no counterpart for the unary case.

If nothing else is said, we assume in what follows that all quantifiers involved
are logical and satisfy NONTRIV. Other constraints, such as ACT, VAR and FIN,
will be stated explicitly.

As a consequence of the assumption that EXT holds, we can often skip reference
to the universe M , and write

QAB

instead of QMAB. More precisely, let QAB mean that, for some M such that
A,B ⊆M,QMAB. EXT then guarantees that this is well defined.

Most of the results in 4.1–5 below originate from [van Benthem, 1984a; van
Benthem, 1983c].

4.1 Relational Behaviour

We have already encountered standard properties of binary relations, such as
(ir)reflexivity (2.2.2) and symmetry (3.4), in the context of natural language quan-
tification. A first start in quantifier theory is to exploit this perspective systemati-
cally. As we shall see, this turns out to be both rewarding in itself and useful for
other purposes. Here are a few common properties of relations, and some quanti-
fiers exemplifying them:

One project is to find informative characterisations of (logical) quantifiers hav-
ing such properties. As for symmetry, two useful equivalent formulations were
given in Proposition 30. To deal with the other properties, we first state a

LEMMA 47. If QAB holds, there exists B′ such that QAB′ and QB′A.

Proof. Choose B′ such that A ∩ B = B′ ∩ A and |A− B| = |B′ − A| (this may
require extending the original universe, which is permitted by EXT. Since QAB,
we get QAB′ by CONSERV, and then QB′A by QUANT. �

Note the use of logicality here; the lemma fails if any of CONSERV, EXT, or
QUANT are dropped. The following corollary is immediate (since we are assuming
NONTRIV):

COROLLARY 48 (van Benthem). There are no asymmetric quantifiers.

A characterisation of antisymmetry is also forthcoming.

COROLLARY 49. Q is antisymmetric iff QAB ⇒ A ⊆ B.
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Table 2.

Property Definition Examples

symmetry QAB ⇒ QBA some, no, at least n, at most n,
exactly n, between n and m

antisymmetry QAB&QBA ⇒ A = B all
asymmetry QAB ⇒ ¬QBA -
reflexivity QAA all, at lest half, all but finitely many
quasireflexivity QAB � QAA some, most, at least n
weak reflexivity QAB ⇒ QBB some, most, at least n
quasiuniversality QAA ⇒ QAB no, not all, all but n
irreflexivity ¬QAA not all, all but n
linearity QAB ∨ QBA ∨ A = B not all
transitivity QAB&QBC ⇒ QAC all, but finitely many
circularity QAB&QBC ⇒ QCA -
euclidity QAB&QAC ⇒ QBC -
antieuclidity QAB&QCB ⇒ QAC ?

Proof. If the condition holds, Q is clearly antisymmetric. Conversely, if Q is
antisymmetric and QAB holds, take B′ as in the proof of Lemma 47. Thus A =
B′ by antisymmetry, and |A−B| = |B′ −A| = 0, i.e. A ⊆ B. �

This also gives a characterisation of linearity, since Q is linear iff ¬Q is antisym-
metric. As to the reflexivity properties and quasiuniversality, their main interest is
in combination with other properties, as we shall see. The following consequences
of Lemma 47 may nevertheless be noted:

COROLLARY 50. Weak reflexivity implies quasireflexivity.

This leaves only the properties in Table 2 involving three set variables. The ‘-’
signs here are explained by the following results from van Benthem [1984a].

THEOREM 51 (van Benthem). There are no Euclidean quantifiers.

We omit the proof, but show how to obtain the following corollary with the aid
of Lemma 47

COROLLARY 52 (van Benthem). There are no circular quantifiers.

Proof. Suppose Q is circular. If QAB, take B′ as in Lemma 47. By circularity,
QAA. Thus, QAB ⇒ QAA&QAB ⇒ QBA (again by circularity), i.e. Q
is symmetric. But it is easy to see that a circular and symmetric quantifier is
Euclidean, contradicting the theorem. �
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Actually, some of these results, e.g. Corollary 48 and Theorem 51, were first pro-
posed as semantic universals, based on empirical evidence (Frans Zwarts). Only
later was it realised that they are consequences of more fundamental properties of
quantifiers. This provided a first illustration of the potential usefulness of quanti-
fier theory for linguistic explanation.

We left a question mark for antieuclidity in Table 2. Here is an example though:
QAB ⇔ |A| = n. The following result from [Westerståhl, 1984] explains the
situation.

THEOREM 53. Q is antiEuclidean iff QAB ⇒ QAC (for all A,B,C).

Two corollaries follow easily:

COROLLARY 54. Q is antiEuclidean iff there is a class X of cardinal numbers
such that QAB ⇔ |A| ∈ X .

COROLLARY 55 (Zwarts). Under VAR there are no antiEuclidean quantifiers.

Thus antiEuclidean quantifiers put no condition at all on the second argument,
i.e. the VP denotation. It seems safe to conclude that there are no antiEuclidean
natural language quantifiers.

Finally, consider transitivity. Here are some examples of transitive quantifiers:

(a) all, all but finitely many,

(b) alleAB ⇔ ∅ �= A ⊆ B (all with existential import; cf. 3.4)

(c) allnAB ⇔ A ⊆ B ∨ |A| < n (n 
 1; note that all1 = all)

(d) any antiEuclidean quantifier (by Theorem 53)

(e) QAB ⇔ (A ⊆ B&|A| 
 5) ∨ |A| = 3.

Let us check (e): suppose QAB and QBC. In case |A| = 3 we get QAC au-
tomatically, so suppose A ⊆ B&|A| 
 5. But then |B| �= 3, so we must have
B ⊆ C&|B| 
 5, whence A ⊆ C&|A| 
 5, i.e. QAC. �

The following characterisation of transitivity from [Westerståhl, 1984] depends
essentially on FIN. It shows that (e) above is in a sense the typical case. If X,Y
are sets of natural numbers, let X < Y mean that every number in X is smaller
than every number in Y ; this is taken to hold trivially if X or Y are empty.

THEOREM 56 (FIN). Q is transitive iff there are sets X,Y of natural numbers
such that X < Y and QAB ⇔ |A| ∈ X ∨ (A ⊆ B&|A| ∈ Y ).

The proof combines a result from [van Benthem, 1984a] with techniques that
will be introduced in 4.2 below. Note that the transitive all but finitely many fails
to satisfy the condition in the theorem, if infinite universes are allowed. The next
corollary shows that VAR has drastic effects on transitivity.

COROLLARY 57 (FIN). Under VAR the only transitive quantifiers are all and
alle.
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Proof. This follows from the observation that VAR implies that either X = ∅ and
Y = N , or X = {0} and Y = N = {0} in the theorem. �

Having thus looked at single properties of quantifiers, we can go on to combi-
nations of such properties. For example, using Theorem 51 and Proposition 30 we
obtain the

COROLLARY 58. No quantifiers are both

(a) symmetric and transitive,

(b) symmetric and antiEuclidean,

(c) symmetric and (ir)reflexive,

(d) quasiuniversal and reflexive.

Reflexivity often has strong effects in combination with other properties. Note
that, if Q is reflexive, A ⊆ B ⇒ QAB (by CONSERV). From this and Corollary
49 we immediately get

COROLLARY 59. The only reflexive and antisymmetric quantifier is all.30

Furthermore, it is not hard to see that reflexivity together with the condition in
Theorem 56 implies that, for some n 
 1,X = {0, . . . , n− 1} and Y = {k : k 

n}. This gives

COROLLARY 60 (van Benthem (FIN)). The only reflexive and transitive quanti-
fies are alln, for n 
 1.

Again, all but finitely many is a counterexample if FIN is dropped.

COROLLARY 61 (FIN). Under ACT, the only reflexive and transitive quantifier
is all.

Proof. Suppose that Q = alln, for some n 
 2. Let M be a universe with exactly
one element. It follows that Q is trivial on M , contradicting ACT. �

The next result connects our simple properties of relations with the monotonicity
properties of Section 3.6.

THEOREM 62 (Zwarts).

(a) If Q is reflexive and transitive, then Q is ↓ MON ↑.

(b) If Q is symmetric, then

(i) Q is quasireflexive iff Q is MON ↑,

(ii) Q is quasiuniversal iff Q is MON ↓.

30Actually, only CONSERV is needed for this result [van Benthem, 1984a].
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Proof. We prove (a); (b) is similar. If QAB and A′ ⊆ A, then QA′;A, by
reflexivity and CONSERV, and hence QA;B by transitivity. Similarly, if QAB
and B ⊆ B′, then QBB′ and hence QAB′. �

From this and Theorem 36 we get the following variant of Corollary 61.

COROLLARY 63. Suppose that Q satisfies CONSERV and VAR (but not neces-
sarily EXT or QUANT), and is reflexive and transitive. Then Q = all.

Proof. It suffices to note that neither Theorem 36 nor Theorem 62 uses EXT or
QUANT. �

Instead of characterising properties in terms of which quantifiers satisfy them, one
may turn the question around and ask for characterisations of our most common
quantifiers in terms of their properties. For the quantifier all and its variants, such
characterisations were in fact obtained in Corollaries 57, 59–61, and 63. We end
by giving a corresponding result for some. Let, for each cardinal κ, someκ be the
quantifier at least κ, i.e.

someκAB ⇔ |A ∩B| 
 κ

(so some1 = some).

THEOREM 64 (van Benthem). Q is symmetric and quasireflexive iff Q = someκ,
for some κ 
 1.

A proof will be given in Section 4.2. The following corollary is obtained simi-
larly to Corollary 61.

COROLLARY 65. Under ACT, the only symmetric and quasireflexive quantifier
is some.

4.2 Quantifiers in the Number Tree

By Proposition 24, each binary logical quantifier Q can be identified with a binary
relation between cardinal numbers. We use the same notation for this relation,
which is thus defined by

(1) Qxy ⇔ for some A,B with |A−B| = x and |A ∩B| = y,QAB.

Inversely, given any binary relation Q between cardinal numbers, we get the cor-
responding logical quantifier by

(2) QAB ⇔ Q|A−B| |A ∩B|.
With (1) and (2) we can switch back and forth between a set-theoretic and a
number-theoretic perspective on quantifiers. The latter perspective is the subject
of the present subsection.
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Here are the number-theoretic versions of a few well known quantifiers:

all xy ⇔ x = 0,
no xy ⇔ y = 0,
somenxy ⇔ y 
 n,
allnxy ⇔ y = 0 ∨ x+ y < n,
most xy ⇔ y < x,
infinitely many xy ⇔ y is infinite,
all but finitely many xy ⇔ x is finite.

Properties of quantifiers also have their number-theoretic versions. In the case
of universal properties, such as those in Table 2, there is a simple translation
from the set-theoretic to the number-theoretic framework. Details can be found
in [Westerståhl, 1984]; here we just consider a few examples. If two sets A,B are
involved, let x correspond to |A − B|, y to |A ∩ B|, and z to |B − A|. Then, for
example,

(3) quasireflexivity is the property: Qxy ⇒ Q0x+ y (for all x, y),

(4) symmetry is the property: Qxy ⇒ Qzy (for all x, y, z), or, equivalently,
Qxy ⇔ Q0y (for all x, y);

the last equivalence follows from Proposition 30 (it is also easy to see directly).
Sometimes proofs are simpler to carry out in the number-theoretic framework.

This holds for several of the results in 4.1, in particular Theorems 53 and 56. As
an illustration, we give the following

Proof.[of Theorem 64] Let κ be the least cardinal x such that Q0x, κ exists, by
NONTRIV and (4). Also, κ > 0; otherwise, for any x, y, we get Qy0 (from Q00
by (4)), whence Q0y (by (3)), and so Qxy (by (4)), contradicting NONTRIV. We
claim that Q = someκ. Clearly, Qxy implies y 
 κ, by 94). Conversely, given
x, y such that y 
 κ, take x′ such that κ + x′ = y. By (4) and the definition of
κ,Qx′κ. Thus, by (3), Q0x′ + κ i.e. Q0y so Qxy by (4). �

An operation that becomes nicely represented in the number-theoretic framework
is inner negation, since we have

PROPOSITION 66. (Q¬)xy ⇔ Qyx.

The number-theoretic perspective becomes particularly attractive if FIN is as-
sumed. Quantifiers are then subsets of N2. N2 can be represented as a number
tree, where each point (x, y) has two immediate successors (x+1, y) and x, y+1),
which in turn are the immediate predecessors of the point (x+ 1, y + 1):31

31Without FIN one may represent logical quantifiers as subsets of Card2 (Card = the class of car-
dinal numbers). This is not as easy to visualise as N2. For example, diagonals and columns get mixed
up:(0,ℵ0), (1,ℵ0), . . . are in the column given by ℵ0, but also in the diagonal {(x, y) : x + y = ℵ}.
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(3,0) (2,1) (1,2) (0,3)

(2,0) (1,1) (0,2)

(0,1)(1,0)

(0,0)row x− |A−B|

column y = |A ∩B|

diagonal x+ y = |A|

Quantifiers and their properties can be visualised in the number tree, and proofs
can often be carried out directly in it. For an illustrative example, the reader is
invited to carry out the above proof of theorem 64 in the number tree (assuming
FIN). Note that symmetry (quasi-reflexivity) means that if a point is in Q then so
are all the points on the column (so is the rightmost point on the diagonal) though
it. Another illustration, also left to the reader, is the proof of Proposition 33 in the
number tree.

When representing a quantifier Q in the tree it is often practical to write a ‘+’
on the points in Q and a ‘-’ on the other points. For example,

+
- +

- - +
- - - +

- - - - +

-
- +

- + -
- + - -

- + - - -

-
- +

- - +
- - + +

- - - + +
all exactly one most

With this technique we can give our non-triviality conditions the following per-
spicuous formulations (we assume FIN for the rest of this subsection):

(5) NONTRIV ⇔ there is at least one + and one -in the tree,

(6) ACT ⇔ there is at least one + and one - in the top triangle (0,0),(1,0), (0,1),

(7) VAR ⇔ there is at least one +and one - on each diagonal (except (0,0)).

This illustrates that VAR is a much stronger assumption than ACT, i.e. that the
universal (U9) in 3.5 really has content.

Monotonicity properties turn out to be particularly suited to number tree rep-
resentation. Beginning with the RIGHT monotonicity properties, we can easily
verify that

(8) MON ↑⇔ each + fills the diagonal to its right with +s,

(9) MON ↓⇔ each + fills the diagonal to its left with +s,
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(10) RIGHT CONT ⇔ between two +s on a diagonal there are only +s.

Also observe that STRONG RIGHT CONT, i.e. RIGHT CONT for both Q and
¬Q, amounts to (10) together with the same condition with ‘+’ replaced by ‘-’. It
follows that

(11) STRONG RIGHT CONT ⇔ on each diagonal there is at most one change of
sign.

The LEFT monotonicity properties can be illustrated as follows:

(x, y)

(x′, y′)

(x, y)
(x, y)

↓ MON ↑ MON LEFT CONT

I.e. if (x, y) (and (x′, y′)) is in Q then so are all the points in the shaded area.
Working in the number tree, we can introduce several variants of the above

monotonicity properties. Define ↑c MON , ↓c MON ,LEFT cCONT , and
STRONG LEFTc CONT by replacing in (8)–(11), respectively ‘diagonal’ with ‘col-
umn’, and do the same for ↑r MON , ↓r MON ,LEFT rCONT , and STRONG
LEFTr CONT, replacing ‘diagonal’ with ‘row’. The terminology is motivated by
the fact that

(12) ↑c MON ⇔ (QAB&A′ ⊆ A&A ∩B = A′ ∩B ⇒ QA′B),

and similarly for the other properties; in other words, they are as the previous
LEFT properties, only we keep A∩B fixed in the ‘c’ case, and A−B fixed in the
‘r’ case. To make the intuitive picture clear, her is yet another way to illustrate the
downward monotone properties we have so far encountered:

MON ↓ ↓c MON ↓r MON ↓ MON

In the tree it is easy to check whether particular quantifiers have such properties.
For example, it is clear from the above illustrations that most is MON ↑ and ↓c

MON, but not ↓r MON. It is also clear that

(13) ↑ MON ⇔↑c MON& ↑r MON,

(14) ↓ MON ⇔↓c MON& ↓r MON.

The corresponding statement for CONT fails, however (as can also be seen from
the tree).
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An interesting application of ‘tree techniques’ is given in [van Benthem, 1983c]
to an idea in [Barwise and Cooper, 1981] concerning how hard it is (psycholog-
ically) to ‘process’ (verify or falsify) quantified statements. Barwise and Cooper
speculated that quantifiers with monotonicity properties were easier to process and
would therefore be preferred in natural language. Now, verifying a sentence of the
form all AB in a universe with n elements takes n observations, and falsifying it
takes at least 1 observation. If we look at most AB instead (and suppose that n is
even for simplicity), the least possible number of observations it takes to verify it
is n/2 + 1, and the corresponding number for falsification is n/2. In both cases
the sum is n + 1. This holds for many basic quantifiers, but not all: e.g. exactly
one AB requires n observations for verification and 2 for falsification.

van Benthem defines, with reference to the number tree, Q to be of minimal
count complexity if, on each universe with n elements (this corresponds to the finite
top triangle of the tree with the diagonal x + y = n as base), there is a minimal
confirmation pair (x1, y1) and a minimal refutation pair (x2, y2)(xi + yi � n)
such that every pair (x, y) on the diagonal x+ y = n is determined by them:

x 
 x1&y 
 y1 ⇒ Qxy,
x 
 x2&y 
 y2 ⇒ ¬Qxy

One can verify that x1 + y1 + x2 + y2 = n+ 1, and thus that all and most are of
minimal count complexity, but not exactly one.

Now consider the very strong continuity property:

SUPER CONT =df STRONG RIGHT CONT&
&STRONG LEFT cCONT&
&STRONG LEFT rCONT .

In other words, SUPER CONT means that there are no changes of sign in any of
the three main directions in the number tree. It can be seen that the SUPER CONT
quantifiers are precisely those determined by a branch in the tree (which can start
anywhere on the edges; not necessarily at the top) with the property that, going
downward, it always contains one of the immediate successors of each point on it:

The connection with count complexity is now the following:

THEOREM 67 (van Benthem). (FIN) Under ACT, Q is of minimal count com-
plexity iff it is SUPER CONT.

The proof of this consists simply in showing that the two combinatorial descrip-
tions give the same tree pattern.
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From the above description of SUPER CONT one also obtains the following
results:

PROPOSITION 68. SUPER CONT ⇒ RIGHT MON.32

PROPOSITION 69. There are uncountably many SUPER CONT logical quanti-
fiers (even under FIN).

What is the relation between SUPER CONT and LEFT CONT? Using the tree
it is easy to see that neither property implies the other. In the next subsection
we shall find, moreover, that there are only countably many LEFT CONT logical
quantifiers, under FIN.

4.3 First-order Definability and Monotonicity

We shall prove a theorem characterising the first-order definable quantifiers in
terms of monotonicity, under FIN. The most general form of the result has noth-
ing directly to do with logicality, so we begin by assuming that Q is an arbitrary
k-ary quantifier (K 
 1). We noted in 3.6 that Q can be identified with the class
of structures 〈M,A0, . . . , Ak−1〉 such that QMA0, . . . , Ak−1, and we defined the
properties of being sub-closed, ext-closed, and inter-closed for classes of struc-
tures.

The key to the result is the following lemma from [van Benthem, 1984a]:

LEMMA 70 (van Benthem). (FIN) Suppose K is a class of (finite) structures
which is definable in EL by a set of monadic universal sentences. Then K is defin-
able already by one such sentence.

THEOREM 71. (FIN) Q is first-order definable iff there are interclosed quanti-
fiers Q1, . . . ,Qm satisfying ISOM such that Q = Q1 ∨ . . . ∨ Qm.

Proof. Suppose first Q is a disjunction of this kind. By Proposition 41, each Qi

can be written ¬Q′
i ∧ Q′′

i , where Q′
i and Q′′

i are sub-closed. Moreover, it easily
follows from the proof of that proposition that both Q′

i and Q′′
i satisfy ISOM if

Qi does. Thus it will suffice to show that every sub-closed quantifier satisfying
ISOM is first-order definable. Assume, then, that Q has these properties. Un-
der FIN, any class of structures closed under isomorphism is definable by a set
of EL-sentences, by a standard argument: a finite structure can be completely de-
scribed (up to isomorphism) by one EL-sentence, and the relevant set consists of
all negated descriptions of models not in the class. If the class is in addition sub-
closed, a variant of this argument shows that the sentences can be taken universal
(one takes the negations of the existentially quantified diagrams of structures not in
the class).33 Since in our case the class is also monadic, Q is first-order definable
by Lemma 70.

32This does not need FIN.
33This observation is also from [van Benthem, 1984a]. For the notion of a diagram, cf. [?, p. 68].
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Now suppose Q is definable by an EL-sentence ψ = ψ(P0, . . . , Pk−1). By
Corollary 11 (with L = EL), there is a natural number n such that Q is closed
under the relation ≈n (cf. Section 1.7). Consider sentences expressing conditions

|PM
s | = i,

for some i < n, or

|PM
s | 
 n.

It follows that any conjunction of such sentences where s runs through all the
functions from k to 2, is a complete description of a model 〈M,A0, . . . , Ak−1〉,
as far as Q is concerned. There are finitely many such descriptions, and ψ must
be equivalent to the disjunction of all complete descriptions of structures in Q.
Moreover, each disjunct defines a quantifier, which, by the form of the definition,
is easily seen to be inter-closed. Since any EL-definable quantifier satisfies ISOM,
the theorem is proved. �

Returning now to the case of binary logical quantifiers, we get from the theorem
and Proposition 40 that

COROLLARY 72. (FIN) If Q is binary and logical, then Q is first-order definable
iff Q is a finite disjunction of LEFT CONT (binary and logical) quantifiers.

There is a simpler direct proof of the corollary. This is because we can work
in the number tree. In one direction, it suffices to show that ↑ MON quantifiers
are first-order definable. If Q is ↑ MON, each point in Q generates an infinite
downward triangle. From a given triangle within Q, only finitely many steps can
be taken towards the edges of the tree. It follows that Q is a finite union of such
triangles,

and therefore clearly first-order definable. The proof in the converse direction,
using Corollary 11, also becomes simpler in the number tree.

Corollary 72 shows, once more, that the LEFT monotonicity properties are
much stronger than the RIGHT ones, due to the special role CONSERV gives to
the left argument of a quantifier. In particular, there are only denumerably many
LEFT CONT logical quantifiers (under FIN); this should be contrasted with Propo-
sition 69.
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Note that FIN is essential here. For example, at most finitely many is ↓ MON
but not definable by any first-order sentence (or set of such sentences).34

Definability results such as these have not only logical interest: they also tell us
something about the extent to which a certain logic — first order logic in this case
— is adequate for natural language semantics. Of course, we knew already that
first-order logic is not adequate, e.g. by the non-definability of most, but Corollary
72 places such isolated facts in a wider perspective.

The results here concern definability in the set-theoretic framework for quan-
tifiers. What about number-theoretic definability (for logical quantifiers, under
FIN)? Here we should consider formulas φ(x, y) in some suitable arithmetical
language, containing at least the individual constant 0 and the unary successor
function symbol S (and hence the numerals 0 = 0,1 = S0,2 = SS0, etc.). Then
φ defines Q iff, for all m,n,

Qmn⇔ 〈N, 0, S, . . .〉 � φ(m, n).

Examples of definable quantifiers, some of which in languages with the relation
< or the operation +, were given at the beginning of Section 4.2. Now which
arithmetical definability notion corresponds to first-order definability in the set-
theoretic sense? Notice first that even the simple formula

x = y

defines a non-first-order definable quantifiers, namely, exactly half. However, let
the pure number formulas be those formulas in the language {0, S} obtained from
atomic formulas of the form

x = n

by closing under Boolean connectives. Clearly every pure number formula with
variables among x, y defines a first-order definable quantifier. But also conversely,
for it can be seen by inspecting more closely the proofs of Theorem 71 and Corol-
lary 72 that every first-order definable quantifier is in fact a Boolean combination
of quantifiers of the form at most n and all but at most n, and the former, for
example, is defined by the pure number formula

y = 0 ∨ . . . ∨ y = n.

Thus, we have the

COROLLARY 73. (FIN) Q is first-order definable iff Q is arithmetically defined
by some pure number formula.

This of course raises new definability questions. Which quantifies are defined
by arbitrary formulas in {0, S}? Which are defined by formulas in {0, S,+}? It

34Michał Krynicki has observed (private communication) that, without FIN, LEFTCONT quantifiers
are definable in logic with the cardinality quantifiers Qα (Section 1.3).
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can be seen that most belongs to the second, but not the first, class. These ques-
tions are studied in connection with computational complexity in van Benthem
[1985; 1987a]. He shows, among other things, that the second class of quantifiers
mentioned above consists precisely of those computable by a push-down automa-
ton (under FIN). He also characterises the first-order definable quantifiers compu-
tationally, namely, as those computable by a certain type of finite-state machine.
This illustrates another aspect of the interest of definability questions: classifica-
tion of quantifiers w.r.t. various notions of complexity. For the relevant definitions,
and for several other interesting results along the same lines, we must refer to the
two papers by van Benthem mentioned above.

4.4 Logical Constants

Clearly not all the 2ℵ0 logical quantifiers deserve the title logical constant. We
have already presented conditions that severely restrict the range of quantifiers.
For example, LEFT MON plus VAR leaves only the quantifiers in the square of op-
position (3.6). But there is no immediate reason why these two constraints should
apply to logical constants. In this subsection, we look at some conditions which
can be taken to have an independent connection with logical constanthood.

One idea seems natural enough, namely, that quantifiers that are logical con-
stants should be simple natural language quantifiers (Section 2.4). Thus, the se-
mantic universals holding for simple quantifiers apply to them. It follows that they
should be logical (i.e. obey CONSERV, EXT, and QUANT) and satisfy NONTRIV
and RIGHT CONST (by (U10) and Proposition 39).

As for constraints specifically related to logical constanthood, we will concen-
trate on one rather strong property often claimed to be characteristic of logical
constants, namely, that they do not distinguish cardinal numbers. The idea is that
such distinctions belong to mathematics, not logic. We will consider two rather
different ways of making this idea precise.

FIN is used in what follows, so that we can argue in the number tree. It is possi-
ble, however, to generalise the results (with suitable changes) to infinite universes.

The first version of the above idea goes back to Mostowski [1957], although he
only applied it to the infinite cardinalities. Given QAB, the relevant cardinality
here is that of the universe, or in our case, by CONSERV and EXT, that of A. We
must of course separate 0 from the other cardinalities, since distinguishing non-
zero numbers from 0 is precisely what basic quantifiers such as some and all do.
With these observations, we can transplant Mostowski’s idea to the finite case as
follows:

DEFINITION 74. Suppose m,n > 0. Q does not distinguish m and n if

(a) Qm0 ⇔ Qn0,

(b) Q0m⇔ Q0n,
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(c) if x1 + y1 = m and x2 + y2 = n, where xi, yi > 0, then Qx1y1 ⇔ Qx2y2.

For example, at least k does not distinguish any m,n < k, but distinguishes all
m,n for which at least one is 
 k.

Note that no restriction at all is put on the point (0, 0). To avoid trivial compli-
cations n the next result, we shall restrict attention to the number tree minus (0, 0)
(we write ‘−0’ to indicate this). Also, we replace, in this subsection, NONTRIV
by the slightly stronger condition that in the tree minus(0, 0), there is at least one
+ and one −.

It is not surprising that the present logicality constraint has rather drastic effects
on the range of quantifiers:

THEOREM 75 (FIN, −0). Suppose that Q does not distinguish any pair of non-
zero natural numbers and satisfies RIGHT CONT. Then Q is one of the quantifiers
some, no, all, not all, and some but not all.

Proof. There are four possible patterns for the top triangle minus (0, 0).
Case 1: ++. By the cardinality property and RIGHT CONT, this puts a + every-
where, contradicting (our present version of) NONTRIV. Case 2: +−. Then the
left edge will have only +, and the right edge only −. For the remaining interior
triangle, there are two possibilities, giving either no or not all. Case 3: −+. This
is symmetric to Case 2 an gives some and all. Case 4: −−. Besides the trivial
case with only −, there is the case with + in the interior triangle and − on both
edges, i.e. some but not all. �

We may note that VAR, or STRONG RIGHT CONT, will exclude some but not
all, but it is not clear that we have to assume any of these. (On the other hand, it
could be argued that one interpretation of the DET some, especially when focused
or stressed, is some but not all.)

The second version of the requirement that logical constants do not distinguish
cardinal numbers is from [van Benthem, 1984a]. Here the idea is that no point in
the tree is special: you always proceed downward in the same way. Proceeding one
step downward can be regarded as a thought experiment, whereby one, givenA and
B, adds one element to A−B or A∪B. The condition is then that the outcome is
uniform in the tree, i.e. that it does not depend on the number of elements in these
sets (the point (0, 0) need not be excluded here, although it can be):

UNIF The sign of any point in the tree determines the sign of its two immediate
successors.

THEOREM 76 (van Benthem (FIN)). The UNIF and RIGHT CONT quantifiers
are precisely some, no, all, not all and the quantifiers |A| is even and |A| is odd.

Proof. Again a simple tree argument suffices. There are eight top triangles to con-

sider; let us look at two. First consider
−− +. Here the − successors are determined,

but for the right + successor there is a choice, and we get two patterns
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-
- +

- + -
- + - +

-
- +

- + +
- + + +

The first of these is excluded by RIGHT CONT, and the second is some.

Now consider the top triangle
+− −. Here the −successors are either both −

or both +. In the first case we get only − in the rest of the tree, contradicting
NONTRIV. In the second case we get |A| is even. the other cases are similar. �

The last two quantifiers in the theorem are not natural language quantifiers and
should be excluded somehow. The following slight strengthening of NONTRIV
would suffice:

NONTRIV∗ On some diagonal in the tree, there is at least one + and at least one
−.

In fact, it seems that we may safely replace NONTRIV by NONTRIV∗ in the uni-
versal (U8) in 3.5.

It is interesting that these two quite different implementations of the idea that
logical constants are insensitive to changes in cardinal number give so similar re-
sults. There are of course other ideas than cardinal insensitivity on which one can
base constraints for logical constanthood. Further ideas and results in this direc-
tion can be found in van Benthem [1984a; 1983c]. For example, he shows that
by slightly weakening UNIF one can obtain, in addition to the quantifiers in the
square of opposition, most, not most, least (i.e. least AB ⇔ |A∩B| < |A−B|),
not least, and no others, as logical constants. The number tree is an excellent
testing ground for experiments in this area.

4.5 Inference Patterns

The universal properties of quantifiers we have considered can be seen as inference
schemes for quantified sentences:

QAB

QBA

(symmetry)

QAB
QBC

QAC

(transitivity)

QAB
QAC

QBC etc.

(euclidity)

There are also schemes with fixed quantifiers, such as
QAB
all BC
QAC

(MON↑).
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In 4.1 we answered some questions of the type: which quantifiers satisfy infer-
ence scheme S? This is familiar from Aristotle’s study of syllogisms, cf. Section
1.1. Aristotle aimed at systematic survey, and he answered the question for all
schemes of a certain form.

EXAMPLE. Consider schemes with 2 premisses, 1 conclusion (all of the form
QXY with distinct X,Y ), at most 3 variables, and 1 quantifier symbol. There
are 6 possibilities for each formula in a scheme, and hence, up to notional vari-
ants (permutations of the variables), 63/3! = 36 possible schemes. Identifying
schemes that differ only by the order of the premisses, and deleting the trivially
valid schemes whose conclusion is among the premisses, 15 schemas will remain.
Then, it can be shown, using Lemma 47 and Theorems 51–53, that for logical
quantifiers these reduce to symmetry, transitivity, anti-euclidity, and the following
property which we may call weak symmetry:

QAB
QBC

QBA

(ignoring unsatisfiable schemes, such as euclidity). Weak symmetry is strictly
weaker than symmetry; a number-theoretic characterisation of it can be found in
[Westerståhl, 1984].

Thus, there are no other schemes than these (of the present form), and the results
of 4.1 (e.g. Corollary 54 and Theorem 56) give us a pretty good idea of which
quantifiers satisfy them.

EXAMPLE. Aristotelian syllogisms. The schemes are as in the first example,
except that there are 3 quantifier symbols, and that one variable (the ‘middle term’)
is required to occur in both premisses but not in the conclusion. Aristotle solved
this problem in the special case that quantifiers are taken among some, all, no, not
all. In the general case of logical quantifiers the solution is of course much more
complicated.

The last example indicates that systematic survey of all possible cases is not nec-
essarily an interesting task. In this subsection we shall consider a more specific
problem: given the well known inference schemes for basic quantifiers such as
some and all, are these quantifiers determined by the schemes, or are the schemes,
as it were inadvertently, satisfied by other quantifiers as well?

The logical interest of such questions should be clear. They concern the ex-
tent to which the syntactic behaviour of logical constants determine their semantic
behaviour. Negative results will tell us that inference rules of a certain type under-
determine semantic interpretation — a familiar situation in logic. Positive results,
on the other hand, can be viewed as a kind of completeness or characterisation
theorems.35

35One analogy is with the usual completeness theorems in logic, relating provability to truth in mod-
els. Or, one may think of the extent to which axiomatic characterisations of a relation (say) determine
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These questions are also related to deeper issues in the philosophy of language,
namely, whether the ‘concrete manifestations’ of linguistic expressions determine
their meaning; cf. post-Wittgensteinian discussions of meaning and use, or Quine’s
idea on the indeterminacy of translation, or the debate on whether the meaning of
logical constants are given by their introduction rules, and more generally on the
relation between meaning and proofs (in the context of classical vs. intuitionistic
logic; cf. [Prawitz, 1971; Prawitz, 1977; Dummett, 1975]).

Clearly, inference patterns concern the ‘concrete’ side of language, whereas
model theory deals with abstract entities. It would seem that results which relate
these two perspectives may be of interest regardless of one’s position on the deeper
philosophical issues.

A first observation is that the content of our question depends crucially on which
kind of inference scheme one allows, i.e. on the choice of inferential language. We
will look at two such languages here, with quite different properties. But then point
is illustrated even more clearly by the following

EXAMPLE. Let the inferential language be predicate logic with the (binary) quan-
tifiers some and all (this is not essential; we could use ∀ and ∃ instead). The stan-
dard rules for some, but with an arbitrary quantifier symbol Q in place of some,
can be formulated as follows;

(1)
φ(t)ψ(t)

Qx(φ(x), ψ(x))

φ(x) ∧ ψ(x) → θ

Qx(φ(x), ψ(x)) → θ
(x not free in θ).

Q satisfies a rule of this type if, for each model M and each sequence ā of individ-
uals from M , if the premisses are true in (M, ā) (with Q interpreted as QM ), then
so is the conclusion. But then it is practically trivial that

(2) Q satisfies the rules (1) iff Q = some.

For suppose Q satisfies (1). Take anyM . We must show that QMAB ⇔ A∩B �=
∅. If a ∈ A∩B then P1x and P2x are true in 〈M,A,B, a〉, and hence, by the first
rule, so is Qx(P1x, P2x), i.e. QMAB holds. If, on the other hand, A ∩ B = ∅,
let θ be a logically false sentence and b any element of M . Then P1x ∧ P2x → θ
is true in 〈M,A,B, b〉, and thus also Qx(1x, P2x) → θ, by the second rule. So
Qx(P1x,2 x) is false in the model, i.e. QMAB does not hold. (Similar remarks
apply to all.)

Why does the inferential language of this example trivialise the question of whether
the rules characterise the quantifiers? One suggestion might be that rules like (1)
are circular (in some sense to be specific) as explanations of meaning. In any
case, we shall now define two other inferential languages, ILsyll and ILboole, for
which the problem has non-trivial solutions. These languages have no individual

an intended interpretation (e.g. questions of categoricity). Since the relations in the present case are
basic logical constants, a third analogy suggests itself: characterisations of EL, such as Lindström’s
theorem (Section 1.6).
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variables, only set variables. Most of the inference schemes we have seen so far
can be expressed in them. The idea to pose the present charaterisation problem
for quantifiers was introduced in [van Benthem, 1984a] and the results on ILsyll

below are from [van Benthem, 1983c].

DEFINITION of ILsyll.

(a) Syntax: Elementary schemes in ILsyll are of the form QAB or ¬Q′AB,
where A,B, . . . are the set variables and Q,Q′, . . . quantifier symbols. A
scheme in ILsyll is either an elementary scheme or has the form

(a) φ1 ∧ . . . ∧ φn → θ1 ∨ . . . ∨ θk,

where φi and θj are elementary schemes.

(c) Semantics: Suppose ψ is a scheme in ILsyll with quantifier symbols among
Q1, . . . , Qm, and with p set variables. For any quantifiers Q1, . . . ,Qm, a
(Q1, . . . ,Qm)-model (for ψ)is a model M = 〈M,A0, . . . , Ap−1〉, where
Qi is interpreted as Qi

M . We say that

(Q1, . . . ,Qm) satisfies the scheme ψ,

if ψ is true (in the obvious sense) in all (Q1, . . . ,Qm)-models. Similarly,
(Q1, . . . ,Qm) satisfies a set Ψ of ILsyll-schemes if it satisfies each element
of Ψ. Finally, the syllogistic theory of (Q1, . . . ,Qm) is

Thsyll(Q1, . . . ,Qm) = {ψ : (Q1, . . . ,Qm) satisfies ψ}.

This definition just gives more formal versions of notions we have been using
all along. For example, all the properties in Table 2 (4.1), except antisymmetry
and linearity, can be expressed in ILsyll (these two would be expressible if we
had allowed quantifier constants above). That a quantifier Q satisfies a scheme
just means that the scheme expresses a valid inference rule for Q. For example,
Qsatisfies

QAB → QBA

just in case Q is symmetric. Note that more than one quantifier symbol may occur
in a scheme. For instance, the scheme

Q1AB ∧Q2CA→ Q1CB

is satisfied by the pair (no, all) (this is the syllogistic inference ‘Celarent’; cf.
Section 1.1).

DEFINITION of ILboole.



314 DAG WESTERSTÅHL

(a) Syntax: As for ILsyll, except that elementary schemes now have the form
QXY or ¬Q′XY , where X,Y are (Boolean) combinations of set variables
with the symbols ∩,∪, and −.

(b) Semantics: As before, where the Boolean symbols have their usual meaning.

Examples of schemes in ILboole but not in ILsyll are

QAB →AA A ∩B,
QAA∩ B → QAB,
QAB →QA ∩B A ∩B,

QA ∩B A ∩B → QAB;

the first two together express CONSERV, and the other two are (together) equiva-
lent to symmetry.

There is one last

DEFINITION 77. Let Ψ be a set of schemes in ILsyll (or ILboole), in the quanti-
fier symbols Q1, . . . , Qm. Let Q1, . . . ,Qm be quantifiers. We say that

Ψ determines (Q1, . . . ,Qm),

if (a) (Q1, . . . ,Qm) satisfies Ψ, and (b) no other sequence of m quantifiers sat-
isfies Ψ. Also, (Q1, . . . ,Qm) is determined in ILsyll (ILboole), if some set of
schemes in ILsyll (ILboole) determines (Q1, . . . ,Qm).

Note that if (Q1, . . . ,Qm) is determined in ILsyll (ILboole),, it is determined
by the set Thsyll(Q1, . . . ,Qm)(Thboole(Q1, . . . ,Qm)).

As an example, consider the set consisting of two ILsyll-schemes expressing
symmetry and quasireflexivity. some satisfies this set, but, by Theorem 64, the set
does not determine some. The obvious question is then whether some larger set
determines some i.e. whether some is determined in ILsyll. A negative answer
follows from the next theorem.

We assume FIN from now on (but see the comments at the end). The quantifiers
somen and alln were defined in Section 4.1.

THEOREM 78 (van Benthem). Thsyll (some, all) is satisfied precisely by the
pairs (somen, alln), for n 
 1.

Thus not even (some, all) is determined in ILsyll. That some (or all) is not
determined follows immediately, since Thsyll(some) ⊆ Thsyll(some, all).

This theorem is an immediate consequence of the next two theorems, which
give additional information about the pair (some, all).

THEOREM 79 (van Benthem). Thsyll(some, all) = Thsyll(somen, alln) for
n 
 1.

For the next result, let Φ consist of the ILsyll-schemes saying that Q1 is sym-
metric and quasireflexive and that Q2 is reflexive and transitive, plus the following
schemes:
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(4) Q1AB ∧Q2AC → Q1BC,

(5) ¬A1AA→ Q2AB.

THEOREM 80 (van Benthem). If (Q1,Q2) satisfies Φ, then, for some n 
 1,Q1 =
somen and Q2 = alln.

The proof uses Theorem 64 and Corollary 60, which tells us that Q1 = somem

and Q2 = allk, for some m, k. It can then be seen that (4) implies that k � m,
and (5) that m � k.

As to the proof of Theorem 79, we shall indicate the basic technique that is
used. The first step is reformulation. Note that the negation of a scheme of the
form (3) is equivalent to

φ1 ∧ . . . ∧ φn ∧ ¬θ1 ∧ . . . ∧ ¬θk,

i.e. that negated schemes are (equivalent to) conjunctions of elementary schemes.
Since

ψ ∈ Thsyll(Q1, . . . ,Qm) ⇔ ¬ψ has no (Q1, . . . ,Qm) − model,

we are done if any (some, all)-model for a negated scheme can be transformed
into a (somen, alln)-model for the scheme and vice versa.

Now let M = 〈M,A0, . . . , Ap−1〉 be a (some, all)-model for ¬ψ. Each con-
junct in ¬ψ expresses either that a set of the form Ai ∩Aj or Ai −Aj is empty, or
that it is non-empty. Each Ai ∩Aj or Ai −Aj can be written uniformly as a union
of partition sets of the form PM

s (cf. Section 1.7). The two types of condition
expressed are thus

(a) x = x1 + x2 + . . . > 0,

(b) x = x1 + x2 + . . . = 0,

where x is the cardinal of Ai ∩ Aj (or A−Aj) and the xk are the cardinals of the
relevant partition sets. Now add n − 1 new elements to each non-empty partition
set. This gives a model M+〈M+, A+

0 , . . . , A
+
p−1〉, where the conditions (a) and

(b) are transformed into

(a+) x+ = X+
1 ,+x

+
2 + . . . 
 n,

(b+) x+ = x+
1 +X+

2 + . . . = 0.

But then it is easy to check that M+ is a (somen, alln)-model of ¬ψ.
Note that this method does not work if we start with a (somen, alln)-model and

want to get a (somen+1, alln+1)-model, say. For example, with n = 3, we may
have

x = x1 + x2 < 3
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with x1 = x2 = 1; then adding 1 gives

x+ = x+
1 + x+

2 
 4,

which means that the schemes of the form ¬Q1AiAj will not be preserved.
Nevertheless, by an ingenious elaboration of this technique, van Benthem shows

that a (somen+1, alln+1)-model can in fact always be obtained, and, combining
this with yet another construction, he also shows how to obtain a (some,all)-model
from a (somen, alln)-model.

In view of these negative results about ILsyll, it is natural to ask if there is
a stronger inferential language where the basic logical constants are determined.
Indeed, ILboole is such a language. First observe that in ILboole it is sufficient
to look at one of the quantifiers some and all. This follows from the next, easily
verified, proposition.

PROPOSITION 81.

(a) Q is determined in ILsyll iff ¬Q is determined in ILsyll.

(b) Q is determined in ILboole iff Q¬ is determined in ILboole iff (Q, Q̆) is
determined in ILboole.

We therefore concentrate on some. Let Φ0 consist of schemes saying that Q is
symmetric and quasireflexive, plus the following ILboole-scheme:

(vi) ¬QAA ∧ ¬QBB → ¬QA ∪B A ∪B
THEOREM 82. Φ0 determines some.

Proof. Clearly some satisfies these schemes. Now suppose Q is any (logical)
quantifier satisfying Φ0. As before, the first two schemes imply that Q = somen

for some n 
 1. Since Q satisfies (6), we also have

|A| < n&|B| < n⇒ |A ∪B| < n

(for all sets A,B). But this means that n = 1. �

Now let us look at the other somen in KLboole. From the last result, Thboole

(some) �= Thboole(somen) when n > 1. The proof technique for ILsyll works for
ILboole as well — indeed, it works better since conditions on (the cardinal number
of) any Boolean combinations of A0, . . . , Ap−1 can be expressed there. We thus
get a somen-model from a some-model as before. In fact, even from a some2-
model we get a somen-model with this method: adding n − 2 to each non-empty
partition set transforms

(a) x = x1 + x2 + . . . 
 2,

(b) x = x1 + x2 + . . . < 2
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into

(a)+ x+ = x+
1 + x+

2 + . . . 
 n,

(b)+ x+ = x+
1 + x+

2 + . . . < n,

since at most one xi in (b) is non-zero. This gives us

THEOREM 83. Thboole(somen) ⊆ Thboole(some2) ⊆ Thboole(some), for n >
2.

No such method works if we start with a somem-model with m > 2, however.
This was pointed out by Per Lindström: in fact, we have the

THEOREM 84.

(a) Thboole(somen+1) �⊆ Thboole(somen), for n 
 2.

(b) On the other hand, if m 
 n2 then thboole(somem) ⊆ Thboole(somen).

Proof.

(a) the case n = 3 will give the general idea. Let ¬ψ be a negated scheme in
ILboole expressing the conditions

(7)
x1 + x2 + x3 
 k, x1 + x+ 4 < k, x2 + x4 < k, x3 + x4 < k,
x4 + x5 + x6 
 k, x1 + x5 < k, x2 + x5 < k, x3 + x5 < k,

x1 + x6 < k, x2 + x6 < k, x3 + x6 < k,

when Q is interpreted as somek (6 partition sets are needed, so a negated
scheme with 3 set variables suffices). First note that for k = 3, (7) is satisfied
when all the xi are 1. Thus ¬ψ has a some3-model. But (7) cannot be true
when k = 4. For, the first two conditions would give an xi(1 � i � 3)
and an xj(4 � j � 6) which both are 
 2, and this contradicts one of the
remaining conditions. So ¬ψ has no some4-model.

(b) Suppose m 
 n2, and take k such that (k − 1)n � m < kn. It follows that
n � k, and hence that k(n− 1) � (k − 1)n < m. Now, given conditions

(a) x = x1 + x2 + . . . 
 n,

(b) x = x1 + x2 + . . . � n− 1,

multiply all the xi by k. Then, x+ 
 m in (a)+ and x+ < m in (B)+; this
gives the desired somem-model.

�

As to the converse inclusions, we have the

THEOREM 85. Thboole(somen) �⊆ Thboole(somem), for 1 � n < m.
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Proof. Generalising (6), we can write a scheme in ψ in ILboole with n + 1 set
variables which expresses∧

|Ai1 ∪ ∪ . . . Ain
| < K ⇒ |A1 ∪ . . . ∪An+1| < k

(here the conjunction is taken over all subsets of {1, . . . , n + 1} with exactly
n elements), when Q is interpreted as somek. Then somen satisfies ψ. For
otherwise, there are sets A1, . . . , An+1 such that |A1 ∪ . . . ∪ An+1| 
 n and
|Ai1 ∪ . . . ∪Ain

| < n for 1 � i1, . . . in � n+ 1. it follows that, for all i,

Ai �⊆
⋃
j �=i

Aj .

So in every Ai there is an element not in the other Aj . But this means that |A1 ∪
. . . ∪An| 
 n, a contradiction.

Now let m < n. Choose pairwise disjoint A1, . . . , An+1 such that |A1| =
m − n and |Ai| = 1 for 1 < i � n + 1. Then, if 1 � i1, . . . , in � n + 1, the
cardinal of Ai1 ∪ . . . ∪ Ain

is either n or m − 1, i.e. in both cases < m, whereas
|A1 ∪ . . . ∪An+1| = m. So somem does not satisfy ψ. �

Summarising, we find once more that some behaves in a significantly different
way than somen for n > 1 (and similarly for all):

COROLLARY 86. Of the quantifiers somen, only some is determined in ILboole.

Proof. some is determined, by Theorem 82. Further, if Ψ determines somen, then,
by Theorem 83,

Ψ ⊆ Thboole(somen) ⊆ Thboole(some).

Thus some satisfies Ψ, and it follows that n = 1. �

As for the quantifiers satisfying Thboole(somen), it follows from our results here
that they are all of the form somek with k � n, that some, some2, and somen are
always among them, but that somen−1 never is if n > 3.

The results in this subsection depend on FIN. For ILboole, the proof technique
works without FIN, but the facts are different. More precisely, with the previous
methods one easily proves

THEOREM 87. For each infinite cardinal κ, Thboole(some) = Thboole ( in-
finitely
many) = Thboole(someκ).

Thus, as one would expect, some is not determined in ILboole without FIN.
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4.6 Local Perspective

Let M be a fixed finite universe, with n elements. We can then study local quanti-
fiers on M ,with much the same aim as before: of all these quantifiers, which ones
are ‘realised’ in natural language?

Most of our global constraints have local versions. CONSERV is the same as
before (with M fixed), and so are the monotonicity properties of 3.6 and the rela-
tional properties of 4.1. ISOM reduces to the local PERM (3.3). But one constraint
which lacks a local version is EXT. As a consequence, results not depending on
EXT have more or less immediate local versions, but when EXT is used, such ver-
sions may be harder to get. For example, Theorem 36 on double monotonicity
holds locally as well, whereas Corollary 48 on the non-existence of asymmetric
quantifiers, which uses EXT, fails: QMAB ⇔ A = M&B = ∅ is an asymmetric
quantifier on M , satisfying CONSERV and PERM. Suitably modified versions of
Corollary 48 and similar results do exist, however, cf. [Westerståhl, 1983].

One advantage of a local and finite perspective is that the effects of constraints
such as CONSERV and PERM can be assessed in a rather perspicuous way, namely,
by the number of quantifiers they allow. here are some examples for binary quan-
tifiers on M :

Table 3.

number of no constraints CONSERV CONSERV & CONSERV

quantifiers on VP-positivity & MON↑
M under

no constraints 2w4n

23n

22n

?

when n = 2 65536 512 16 108

PERM 2(
n+3
3 ) 2(

n+2
2 ) 2(

n+1
1 ) (n+ 2)!

when n = 2 1024 64 8 24

There is a simple uniform calculation for the first three entries in both rows of
this table (these and other calculations have appeared in [Higginbotham and May,
1981; Keenan and Stavi, 1986; Keenan and Moss, 1985; van Benthem, 1984a;
Thijsse, 1983]). Consider a pair (A,B), with A,B ⊆M , as a function f from M
to {0, 1}2 : f(x) = (1, 1) if x ∈ A∩B, f(x) = (0, 1) if x ∈ B−A, etc. There are
4n such functions and hence 24n

quantifiers on M . CONSERV means that B − A
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can be assumed to be empty, removing the value (0, 1), and reducing the number
of functions to 3n. By Proposition 30, CONSERV + VP-positivity means that only
the pairs (A,A) need be considered, reducing the number of functions to 2n.

Under PERM, QM is a relation between 4 numbers whose sum is n. To choose
such numbers is essentially to put n indistinguishable objects in 4 (distinguished)
boxes; there are (n+3

3 ) ways to do this, by standard combinatorics. As before,
addition of CONSERV or CONSERV + VP-positivity reduces the number of boxes
to 3 and 2, respectively.

PERM and CONSERV are defined for k-ary quantifiers on M(k 
 2), and the
above calculations extend straightforwardly to this case: just replace ‘4’ by ‘2k’
(= the number of partition sets induced by (A0, . . . , Ak−1)), ‘3’ by ‘2k − 1’, and
‘2’ by ‘2k − 2’ (in the exponent) in the first two columns of Table 3.

The value (n+ 1)! for Perm + CONSERV + MON↑ can be obtained by looking
in the number tree for M , i.e. the number tree restricted to pairs (x, y) such that
x + y � n. But the corresponding value without PERM is unknown:36 [Thijsse,
1983] shows that a calculation of this appears to require an explicit calculation
of the number of anti-chains in P (M); the latter is an unsolved mathematical
problem. Thijsse’s paper contains several further counting results for quantifiers
under various constraints (e.g. the number 108 for the case |M | = 2), and so does
the paper by Keenan and Moss.

It is rather amazing at first sight that there are 65536 possible quantifiers on
a universe with only two elements. The strength of the conservativity universal
appears clearly from Table 3, which indicates that counting quantifiers is not just
pleasant combinatorics — see the papers by Keenan and Stavi and Keenan and
Moss for linguistic applications of such counting results.

Another distinguishing feature of the local perspective on quantifiers is that
new definability issues arise here. Suppose certain DET denotations are given in
M , and likewise denotations of other expressions: proper names, common nouns,
transitive and intransitive verbs, etc. (we may think of a model M being given, not
just a universe). Suppose further that we have identified certain constructions in
natural language which can be interpreted as operations producing new quantifiers

36Editors’ note. The problem indicated is known as Dedekind’s problem: give a nice formula
(closed-form expression) for the number of anti-chains in P (M) (or, equivalently, the number of
monotone Boolean functions of n variables). As far as I know, the problem is still unsolved. These
so-called Dedekind numbers form sequence A000372 in the On-line Encyclopaedia of Integer Se-
quences, http://www.research.att.com/∼njas/sequences/: 2, 3, 6, 20, 168, 7581, 7828354,
2414682040998, 56130437228687557907788

The problem also pops up in areas such as tiling and graph colouring. Upper and lower bounds are
known (and important for computational purposes), as well as its asymptotic behaviour. The number
is well defined and it is rather easy to write a program that calculates the numbers — given sufficient
resources. Before 1990 I checked the number for n = 7 on a simple PC (one of the values reported
in the literature, viz. 2414682040998, turned out to be correct), shortly before 2000 the value for n=8
was calculated. (vide link). FYI: the listed number 108 arises as the product of powers of Dedekind
numbers: 213261, where the exponents are binomial coefficients.

The Editors are grateful to E. Thijsse for this information.
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from given denotations. We can then ask which quantifiers can be generated from
the given denotations by means of these operations. Such generated quantifiers are
‘realised’ in a definite sense; in fact, if the operations and the starting-point were
chosen wisely, one may expect each generated quantifier to be denoted by some
complex DET expression (relative to M).

This approach is pursued in [Keenan and Stavi, 1986]. We will present one of
their main results, which shows that conservativity is a crucial invariant here. Let
CONSERVM be the class of binary quantifiers on M . Also if K is any class of
binary quantifiers on M , let B(K) be the smallest class containing K which is
closed under conjunction, disjunction, and inner and outer negation. Finally, for
each a ∈M , define the quantifiers Sa on M by

SaAB ⇔ a ∈ A ∩B.
Keenan and Stavi argue that each Sa can be taken as a basic, initially given

quantifier. For, if b is an individual in M who owns a and nothing else, i.e. if
Pb = {a} (cf. Section 2.4.6), then

b’s one or moreMAB ⇔ Pb ∩A ⊆ B&|Pb ∩A| 
 1
⇔ SaAB.

Note that the Sa are conservative (but PERM fails), and that, to regard them as
given, we also need each element of M to be given (by proper names or other
means), and enough ownership relations to guarantee that for each a in M there
is a b in M such that Pb = {a}. these are not implausible assumptions, and the
Boolean operations are natural enough.37

THEOREM 88 (Keenan and Stavi). Suppose K ⊆ CONSERVM and that Sa ∈
K for a ∈M . Then B(K) = CONSERVM .

Proof. We know from 3.4 that Boolean operations preserve conservativity, so
B(K) ⊆ CONSERVM . Now let Q be any element of CONSERVM . We then have

QAB ⇔ QA A ∩B
⇔ ∃X∃y ⊆ X(QXY ∧X = A ∧ Y = A ∩B)
⇔

∨
X ⊆ Y ⊆M

&QXY

(X = A ∧ Y = A ∩B).

Note that the last disjunction is finite. It only remains to show that each disjunct
can be generated from the Sa by Boolean operations. We claim that each disjunct
is equivalent to the conjunction of

37Cf. [Keenan and Stavi, 1986] for the plausibility of the assumptions. Unlike Keenan and Stavi, I
have included inner negation in the closure operations, but this can be avoided at the cost of adding a
variant of Sa (namely, b’s zero or more, when Pb = {a}) to the initial quantifiers. In 3.4 I expressed
some doubts as to the closure of natural language quantifiers under inner or outer negation. These
doubts do not affect Theorem 88, however, for, in the proof, we only apply inner and outer negation to
the quantifiers Sa, and, as Keenan and Stavi show, ¬Sa and Sa¬ are expressible with familiar DETs.
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(1)
∧

a∈Y SaAB,

(2)
∧

a∈X−y(Sa¬)AB,

(3)
∧

a∈M−X(¬SaAB = S̆aAB).

For, (1) expresses that Y ⊆ A∩B, (2) thatX−Y ⊆ A−B, and (3) thatA∩B ⊆ X
and A − B ⊆ X , and it is easily verified that the conjunction of these expresses
that X = A ∧ Y = A ∩B. �

By this theorem, precisely the conservative quantifiers on M are generated from
certain basic ones by Boolean operations. This lends new significance to the con-
servativity universal (U2). By (U2) and the theorem, precisely these quantifiers on
M are ‘realised’, in the sense of being denoted by DETs (relative to a model; cf.
also note 38).

Note that the complex DET expression resulting from the proof of the theorem
depends crucially on M . That is, conservative quantifiers, such as most, will get
different ‘definitions’ on different universes, and there is in general no way of giv-
ing a global definition working for all universes. Keenan and Stavi prove a theorem
(the ‘Ineffability Theorem’) to the effect that no fixed DET expression, containing
symbols for simplex DETs, K-place predicates, adjectives, NP s and prepositions,
can be made to denote, by varying the interpretation of these symbols, an arbitrary
conservative quantifier on an arbitrary universe. The reason is that the number of
possible denotations of such expressions grows slower with |M | = n than 23n

.38

5 PROBLEMS AND DIRECTIONS

A basic theme of this paper has been to point to natural language as a source for
logical investigation. This theme is by no means limited to quantifiers. Thus, one
main direction for further study is extension to other categories. Some of the con-
straints we have studied can be transferred to other categories, and new constraints
emerge. A typical trans-categorical constraint is ISOM, which has significant ef-
fects in most categories. For instance [Westerståhl, 1985a] shows that, for relations
between individuals, ISOM leaves essentially just Boolean combinations with the
identity relation, and [van Benthem, 1983b] proves that, for arbitrary operations
on subsets of the universe, ISOM leaves precisely the operations whose values are
Boolean combinations of the arguments. For further results in this area, and for
a broad assessment of the present approach to logical semantics, the reader is re-
ferred to [van Benthem, 1986],which also lists several topics for further research,
both in the quantifier area and beyond, complementing the brief suggestions given
below.

38This makes heavy use of the universal (U4′) that simplex DETs denote PERM quantifiers:
2(n+1)(n+2)/2 grows slower than w3n

. Without (Ur′), a simplex DET symbol could denote any
conservative quantifier on any M .
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Within the area of quantifiers there is, to begin with, the whole field of the syn-
tax of various constructions with DETs, and of how to treat them semantically.
We have mentioned (Section 2) constructions with only, the treatment of definites,
of partitives, and of ‘there are’-sentences, to take just a few examples. The pa-
pers [Keenan and Stavi, 1986; Keenan and Moss, 1985] provide ample evidence
that these linguistic questions may be fruitfully pursued from the present model-
theoretic perspective.

Another linguistic concern is the search for universals. As we have seen, uni-
versals can be used as basic theoretical postulates, or they can appear as empirical
generalisations, sometimes amenable to explanation by means of other principles.
the list of universals in Section 3 was not meant to be complete, and some of the
formulations were quite tentative. Further proposals can be found in the papers by
Barwise and Cooper and by Keenan and Stavi.

The use of semantic theory to explain linguistic facts, such as the privileged
status of certain constants, the restrictions on various syntactic constructions, or
the discrepancies between possible and actual interpretations of expressions of a
certain category, can most likely be carried a lot further. Recall, for example, the
discussion after Table 1 in 3.4. Other similar questions are easily found. Why are
there so few simple VP-negative quantifiers? Why so few simple MON ↓ ones?
Why isn’t not every a simple natural language quantifier (like the other quantifiers
in the square of opposition)? Such questions may warrant psychological consid-
erations, but van Benthem’s analysis of the ‘count complexity’ in 4.2 shows that
simple model theory may be useful even in this context.

In connection with the last remark, it should be mentioned that van Benthem
[1985; 1987a] carries the study of computational complexity in semantics much
further. He shows (cf. the end of Section 4.3) that the well known complexity hier-
archies of automata theory are eminently suitable for classification of quantifiers.
Moreover, these investigations carry the promise of a new field of computational
semantics, which, in addition to questions of logical and mathematical interest, has
applications to language learning and to mental processing of natural language.

On the logical side of quantifier theory, many further questions suggest them-
selves. One natural direction is generalisation by weakening the assumptions. For
example:

(a) Drop EXT. This allows for ‘universe-dependent’ quantifiers, such as some
of the interpretations of many in 2.4.3. Some hints on how this admission
affects the theory can be found in [Westerståhl, 1983].

(b) Drop QUANT. If possessives are allowed, this is a natural move. One can
then replace QUANT(ISOM) by postulates of quality, requiring closure un-
der ‘structure-preserving’ bijections. Other new constraints can also be for-
mulated for this case, which is studied in [van Benthem, 1983b].

(c) Allow ternary quantifiers, or arbitrary n-ary ones (n 
 2). We did this in
Section 3 for the basic concepts, but the corresponding generalisation of the
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theory in Section 4 is by no means straight-forward; cf. [Keenan and Moss,
1985].

Dropping CONSERV, on the other hand, does not seem fruitful (except for
purely logical issues such as definability; cf. Section 4.3). (a)–(c) are not (only)
generalisations for their own sake, but linguistically motivated. The next generali-
sation is more mathematical:

(d) DROP FIN. Many of the results using FIN can in fact be generalised, as
we have noted from time to time. Two apparent exceptions were the results
on transitivity, Theorem 56 and Corollary 60 (without VAR; cf. Corollary
63). Are there generalisations of these to infinite universes? But perhaps
these generalisations lead in the wrong direction. It could be that FIN, or
some similar constraint, is an essential characteristic of natural language
quantification (cf Section 3.8). In any case, the assessment of some minimal
model-theoretic means for handling ‘natural language infinity’ appears to
be an interesting task. Some results in this direction can be found in [van
Deemter, 1985].

But, even without generalising, the type of logical study conducted in Section 4
can be pursued further. The properties in 4.1 were chosen in a rather conventional
way; there may be more interesting properties of relations to study. Definabil-
ity questions need not be confined to first-order definability — as we saw in 4.3,
arithmetical definability is a natural concept in the realm of (logical) quantifiers.

A particularly interesting aspect of definability concerns the expressive power
of natural language. Various global notions of definability may be used here, e.g.
definability from given quantifiers. There is also the local definability question
mentioned in 4.6: of the possible denotations of expressions of a certain cate-
gory, which ones are ‘generated’ in a given model? The conservativity theorem of
Keenan and Stavi gives one answer, for DET denotations. Perhaps NP denotations
are even more interesting; this aspect of expressive power is studied in [Keenan
and Moss, 1985], where several results on which NP denotations are obtainable
from quantifiers with certain properties (conservative, logical, VP-positive, etc.)
are proved.

The study of inferential languages from Section 4.5 gives rise to a number of
logical questions. This appears to be a recent field, though related to well-known
questions on the correlation between a proof-theoretic and a model theoretic per-
spective on logic.39 Note that the results of 4.5 depend crucially on our use of bi-
nary quantifiers instead of unary ones. As for particular questions, one would like
to know which quantifiers are determined in these languages. Are any (non-trivial)
quantifiers determined in ILsyll? Are any quantifiers besides those in the square of

39Zucker [1978] adopts a point of view similar to the present one. There seems to be a connection
between his notion of a quantifier being implicitly definable and our notion of it being determined, even
though the settings are different.
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opposition determined in ILboole? One can also pose ‘finiteness’ (compactness)
questions, e.g. if Q is determined by Ψ, is Q by necessity determined by a finite
subset of Ψ? This may of course be a trivial question, depending on the answer to
the first two. Another compactness question is: if every finite subset of Ψ is sat-
isfied by some quantifier (or sequence of quantifiers), must Ψ itself be satisfiable?
Actually, this question can be seen to have a negative answer for ILboole, but the
case of ILsyll seems open. Other inferential languages could also be considered.
In general, one would like to have a better understanding of what is required of a
good inferential language. An obvious extension of ILsyll and ILboole, however,
is to add some and all as constants. This allows, e.g. monotonicity properties to be
expressed in ILsyll, and the logical questions are reopened.

In this connection we should also mention an application of the present theory
outside the domain of quantifiers: [van Benthem, 1984b] analyses conditional
sentences If X then Y as relations between sets ‖X‖ and ‖Y ‖ (of possible worlds,
situations, etc.), i.e. as binary quantifiers, an obtains several interesting results for
the logic of conditionals.

Finally, all of the logical questions mentioned so far presuppose the classical
model-theoretic framework we have used in this paper. If one wants to treat such
linguistically interesting phenomena as plurals, collective quantification (as op-
posed to the distributive quantification we have studied; cf. sentences such as
five boys lifted the piano), or mass terms (with new determiners such as much
or a little), this framework has to be extended. From a natural language point of
view, such extension seems imperative. For some steps taken in these directions,
cf. e.g. [van Benthem, 1983b; Hoeksema, 1983; Link, 1987; Lønning, 1987a;
Lønning, 1987b]. An even more radical change would be the switch from the
traditional ‘static’ model theory to a dynamic view on interpretation, e.g. along the
lines suggested in [Kamp, 1981] or [Barwise and Perry, 1983]. It would be pleas-
ant if the insights gained from the present quantifier perspective were preserved in
such a transition. But, however that may be, standard model-theoretic semantics
has already, I think, proved unexpectedly useful for a rich theory of quantifiers,
and this theory is in turn a fair illustration of the possibilities of a logical study
which starts not from mathematics but from natural language.

APPENDIX

A BRANCHING QUANTIFIERS AND NATURAL LANGUAGE

This appendix presents a brief summary of the main issues related to occurrence
of branching quantification (Section 1.5) in natural language. A more detailed
presentation is given in [Barwise, 1979].

Let us say, somewhat loosely, that a sentence exhibits proper branching if its
formalisation requires a partially ordered quantifier prefix which is not equivalent
to a linear one. There has been some debate over the following question:
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(I) Does proper branching occur in natural languages?

The debate started with the claim in [Hintikka, 1973] that proper branching
occurs in English. Here is the most well known of his examples:

(1) Some relative of each villager and some relative of each townsman hate each
other.

The idea is that (1) should be analysed with the Henkin prefix. Arguing that the
branching reading of (1) is preferred over linear versions requires a detailed and
quite complicated analysis of what we actually mean when using such a sentence,
and not all linguists agreed with Hintikka. In [Barwise, 1979], where the main
arguments are summarised, it is argued that the most natural logical form of (1)
does involve a branching reading, but one which is equivalent to a linear one, so
that this branching is not proper. But the answer to (I) does not necessarily depend
on sentences like (1). Barwise, who was sympathetic to Hintikka’s general claim
argued that with other quantifiers that ∀ and ∃ one can find clearer examples of
proper branching. One of his examples was

(2) Most boys in your class and quite a few girls in my class have all dated each
other.

It seems that (2) does not mean the same as

(3) Most boys in your class have dated quite a few girls in my class

or

(4) Quite a few girls in my class have dated most boys in your class.

The preferred reading of (2) is stronger than both of these: it says that there is a
set X containing most boys in your class and a set Y containing quite a few girls
in my class, such that any boy in X and any girl in Y have dated each other. Note
that X and Y are independent of each other. This is a branching reading, which
is (provably) not equivalent to any linear sentence in L(most, quite a few). We
could formalise (2) as

(5)

most x boy(x)

have dated each other(x, y).

quite a few y girl(y)

Barwise pointed out that the above truth definition for such sentences gives the
desired reading when, as in the present case, both quantifiers are MON ↑, and gave
a similar (but different) truth condition for the case when both are MON ↓. He also
noted that sentences of this form with one MON ↑ and one MON ↓ quantifier are
anomalous.



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 327

(6) Few of the boys in my class and most girls in your class have dated each
other.

Even though it seems perfectly grammatical, (6) makes no sense, and this may
be explained by means of the monotonicity behaviour of the quantifiers involved.
Further discussion of the circumstances under which it makes sense to branch two
quantifiers can be found in [Westerståhl, 1987].

For another example, van Benthem has noted that we can have proper branching
with certain first-order definable quantifiers that are not monotone. Consider

(7) Exactly one boy in your class and exactly one girl in my class have dated
each other.

The meaning of (7) is clear and unambiguous, and it is easily seen that (7) is not
equivalent to any of its ‘linear versions’ (or to their conjunction). (Note that we
are talking about prefixes with exactly one here; it is in this sense the branching is
proper, even though (7) is clearly equivalent to a (linear) first-order sentence.)

In conclusion, it seems that there are good arguments for an affirmative answer
to (I). Then, one may ask:

(II) What are the consequences for the ‘logic of natural language’ of the occur-
rence of proper branching?

One of the aims of Hintikka’s original paper was to use the occurrence of proper
branching to give lower bounds of the complexity of this logic. From 1.5 and
1.6 it should be clear that logic with the Henkin quantifier has many affinities
with second-order logic. In fact, it can be shown that the set of valid sentences
with the Henkin quantifiers, or with arbitrary partially ordered prefixes ∀ and ∃, is
recursion-theoretically just as complex as the set of valid second-order sentences,
and this is an extremely complicated set. It is tempting to conclude that natural
language is at least as complicated. This last inference, however, is not unprob-
lematic. The result about second-order logic depends crucially on the fact that
second-order variables vary over all subsets (relations) of the universe. In a natu-
ral language context, on the other hand, it may be reasonable to restrict the range
of these variables, and thus to alter the strength of the resulting logic. More on
these issues can be found in the chapter by van Benthem and Doets in this Hand-
book. Some other types of consequences of the occurrence of proper branching
are discussed in [Barwise, 1979].

In addition to the principled questions (I) and (II), there is also the more prag-
matical:

(III) Should branching quantification be used more extensively in the analysis of
logical and linguistic form?

Both Hintikka and Barwise suggest that in many cases a branching reading may
be preferable regardless of whether the branching is proper or not: the actual order
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between two (or more) quantifier expressions in a sentence sometimes seems irrel-
evant, syntactically and semantically, and a logical form where these expressions
are unordered is then natural. Certain syntactic constructions appear to trigger
such branching readings, in particular, conjoined noun phrases with a reciprocal
object (each other). An even more extensive use of branching is proposed in [van
Benthem, 1983a]: he suggests using branching instead of ‘substitution’ to explain
certain well-known scope ambiguities with ∀ and ∃; cf. also [van Eijck, 1982].
There seem to be a lot of interesting possibilities in this field.

B LOGIC WITH FREE QUANTIFIER VARIABLES

Quantifier symbols have been constants in this paper (cf. Section 2.1.3). What
happens if they are treated as free variables instead, or, more precisely, as symbols
whose interpretation varies with models? From a logical perspective at least, this
is a natural question. Some answers are reviewed in this appendix.

To fix ideas, consider a language LQ, of standard first-order logic with one
binary quantifier symbol Q added (for simplicity; we could have added several
monadic quantifier symbols, and a fixed (countable) vocabulary of other non-
logical symbols. LQ is a language for logics like L(most), except that this time Q
does not denote a fixed quantifier. Instead, a model is now a pair (M,q), where M
is as before and q is a binary quantifier on M . Such models are often called weak
models (since nothing in particular is required of q). Truth (satisfaction) in (M,q)
is defined in the obvious way, with Q interpreted as q. A valid sentence is thus
true regardless of the interpretation of Q (and other non-logical symbols). Here is
a trivial example:

Qx(x �= x, ψ) → (∃xφ ∨Qx(φ, ψ))

(where φ, ψ only have x free). Are there non-trivially valid sentences in LQ? This
is answered below.

B.1 The Weak Logic

Add to a standard axiomatisation of first order logic the axioms

(1) Qx(φ(x), ψ(x)) ↔ Qy(φ(y), ψ(y)
(y free for x in φ(x), ψ(x))

(2) ∀x(φ1 ↔ φ2) → (Qx(φ1, ψ) → Qx(φ2, ψ))

(3) ∀x(φ1 ↔ φ2) → (Qx(Ψ, φ1) → Qx(ψ, φ2))

(the last two are extensionality axioms for Q).Call this the weak logic. Provability
(from assumptions) is defined as usual, the deduction theorem holds, and the ax-
iomatisation is obviously sound. The following completeness theorem goes back
to [Keisler, 1970]:
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THEOREM 89. If Σ is a consistent set of sentences in the weak logic, then Σ has
a weak model.

Proof.[Outline] A slight extension of the usual Henkin-style proof suffices. Extend
Σ to Σ′ by witnessing existentially quantified sentences and then to a maximally
consistent Γ. Let M consist of the usual equivalence classes [c] of new individual
constants, and interpret relation and constant symbols as usual. For each ψ(x)
with at most x free, let ψ(x)Γ = {[c] ∈M : Γ � ψ(c)}. Then define q as follows:

qAB ⇔ there are φ, ψ such that φΓ =, ψΓ = B, and Γ � Qx(φ, ψ).

One then shows that, for all sentences θ,

(M,q) � θ ⇔ Γ � θ
by a straight-forward inductive argument, using (1)–(3) and properties of Γ when
θ is of the form Qx(φ, ψ). �

COROLLARY 90. The weak logic is complete, compact, and satisfies the down-
ward Löwenheim–Skolem theorem.

B.2 Axiomatisable Properties of Quantifiers

By the last results, if all weak models are allowed, no ‘unexpected’ new valid
sentences appear. However, it may be natural to restrict the interpretation of Q
to, say, conservative quantifiers, or transitive and reflexive ones, or MON ↑ ones.
Such properties are second-order, and hence in general not directly expressible
in LQ. Nevertheless, in many cases the resulting logic is still axiomatisable, by
adding the obvious axioms to the weak logic.

Let P be a property of q expressible by a universal second-order sentence

(4) ∀X1, . . . ,∀XnΨ((X1, . . . , Xn),

where theXi are unary set variables and Ψ is inLQ (with theXi acting as predicate
symbols). Let the corresponding set of LQ-sentences, ΣP , consist of the universal
closures of all formulas obtained by replacing all occurrences of X1, , . . . , Xn in
Ψ by LW -formulas φ1, . . . , φn. For example, ΣCONSERV and ΣMON↑ consist,
respectively, or universal closures of formulas of the form

Qx(φ, ψ) ↔ Qx(φ, φ ∧ ψ),
Qx(φ, ψ) ∧ ∀x(ψ → θ) → Qx(φ, θ),

Let KP be the class of models (M,q) such that q satisfies P . Clearly,

(5) (M,q) ∈ KP ⇒ (M,q) � ΣP ,
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but the converse fails in general. To KP corresponds a logic, which we write
L(KP ), where truth and validity is as for the weak logic, except that models are
restricted to KP . then is L(KP ) axiomatised by ΣP ? A sufficient condition is
given below.

A subset A of M is called (M,q)-definable, if, for some LQ-formula ψ and
some finite sequence b̄ of elements of M,a ∈ A ⇔ (M,q) � ψ[a, b̄]. Consider
the following property of P :

(*) If (M,q) � ΣP then there is a q′ satisfying P which agrees with q on the
(M,q)-definable sets.

we need one more definition: (M′,q′) is an elementary extension of (M,q), in
symbols, (M,q) < (M′,q′), if M′ is an extension of M and, for all LQ formulas
ψ and all finite sequences b̄ of elements of M, (M,q) � ψ[b̄] ⇔ (M′,q′) � ψ[b̄].
Now a straightforward induction proves the

LEMMA 91. If q and q′ agree on the (M,q)-definable sets, then (M,q) <

(M,q′).

From this Lemma and Theorem 89 we immediately obtain the

THEOREM 92. If (*) holds for P then each set of LQ-sentences consistent with
ΣP in the weak logic has a model in KP . Hence, L(KP ) is complete, compact,
and satisfies the Löwenheim–Skolem theorem.

Instances of this result appear, for example, in [Keisler, 1970; Broesterhuizen,
1975; Sgro, 1977; Makowski and Tulipani, 1977; Barwise, 1978]. To see its utility
we consider some examples.

EXAMPLE. Given (M,q), let Md be the set of (M,q)-definable subsets of
M , and let Qd − Q ∩ (Md)2. If (M,q) � ΣP then, since P is universal, qd

satisfies P on Md. In some cases, Qd actually satisfies P on the whole of P (M),
i.e. (*) holds with Q′ = qd. This is true for all the properties of quantifiers in
Table 2 (Section 4.1), except reflexivity, quasiuniversality and linearity, as is easily
checked. So, for example, the logic L(KP ), where P is the property of being a
strict partial order (irreflexive and transitive), is axiomatisable.

EXAMPLE. P = strict linear order. If (M,q) � ΣP , let Q∗ be any strict linear
order on P (M) = Md, and let q′ = qd + q∗ (order type addition). Then Q′

is a strict linear order coinciding with q on Md, so L(KP ) is axiomatisable. As
similar construction can be used to show that each of the three properties left over
in the preceding example is axiomatisable.

EXAMPLE. P = MON ↑. If (M,q) � ΣMON↑, define q′ by: q′AB ⇔ for some

C ∈ Md, C ⊆ B and qAC. Since q is MON ↑,q′ agrees with q on Md. Also,
q′ is MON ↑ (on all subsets of M ). Other monotonicity (or continuity) properties
can be treated similarly.
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EXAMPLE. P = CONSERV. If (M,q) � ΣCONSERV, let q′AB ⇔ qAA∩B.
Again, the verification that (*) holds is immediate.

EXAMPLE. In the following mathematical example, q is unary, and satisfies P
iff q− = P (M) = q is a proper, non-principal ideal in P (M), i.e. iff for all
A,B ⊆ M , (i) A,B ∈ q− ⇒ A ∪ B ⊆ q−; (ii) A ∈ q−&B ⊆ A ⇒ B ∈ q−;
(iii) M �∈ q−; (iv) {a} ∈ q− for all a ∈ M . In L(KP ), Qxψ can be read
‘for many x in the (infinite) universe, ψ’. Now suppose (M,q) � ΣP . Then
qd− = Md − qd is a proper, non-principal ideal in Md. Also, qd− generates a
proper, non-principal ideal q′− in P (M): let A ∈ q′− ⇔ A ⊆ B1 ∪ . . . ∪ Bn,
for some B1, . . . , Bn ∈ qd−. Then (*) holds for q′ = P (M) − q′−, so L(KP ) is
axiomatisable. L(KP ) is studied in [Bruce, 1978], mainly as a mains for obtaining
results about the logic L(Q1) where Q1 is the quantifier ‘for uncountably many’.

Note that even though axiomatisability comes rather easily in these examples,
other properties, such as interpolation, unions of chains, etc. may be much harder
an require new methods (cf. [Bruce, 1978]).

C A NON-AXIOMATISABLE PROPERTY

In view of the above examples, one may ask if the property of quantity is also
axiomatisable. After all, PERM is a universal second-order property (with a bi-
nary relation variable in addition to the unary set variables), and a corresponding
ΣPERM can be found much as before. However, L(KPERM) is a rather strong
logic, and not axiomatisable. The reason is, roughly, that it can express that two
sets have different cardinalities. For example, if (M,q) ∈ KPERM, and qMA is
not equivalent to qMB, it follows that either |A| �= |B| or |M − A �= |M − B|.
This is used in the following result, which is due to [Yasuhura, 1969].

THEOREM 93. Then natural number ordering, 〈N,<〉, is characterisable in
L(KPERM) in the sense that there is an LQ-sentence θ such that 〈M,R〉 is iso-
morphic to 〈N,<〉 iff, for some q satisfying PERM, (〈M,R〉,q) � θ.

Proof. Let θ be the conjunction of a sentence saying that < is a linear ordering
with immediate successors and a first but not last element, and the sentence

∀x∀y(‘y is the successor of x’ →
¬(Qz(z = z, z < x) ↔ Qz(z = z, z < y))).

If (〈M,R〉,q) � θ, where q satisfies PERM, it is easy to see that for each a ∈
M, |Ma| < |Ma+1| (where Ma is the set of predecessors to a), and thus that
〈M,R〉 is isomorphic to 〈N,<〉. Conversely, if the quantifier q on N is defined
by qAB ⇔ A = N&|B| is even, then PERM holds and (〈N,<〉,q) � θ. �

As in Section 1.6, we obtain the

COROLLARY 94. L(KPERM) is neither complete nor compact.
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Väänänen [1979] extends these results to show that, in terms of implicit defin-
ability (definability with extra non-logical symbols), L(KPERM) is equivalent to
the logic L(I) (cf. 1.6), and that its set of valid sentences is very complicated: it is
neither Π′1

1 nor Σ′1
1 in the analytical hierarchy.

The above theorem and corollary extend, with the same proof, to the logic
L(KPERM+CONSERV). They also extend to logical quantifiers. To see this,
note that in this appendix we have used local quantifiers in our models, for which
ISOM or EXT have no immediate meaning. An alternative procedure would be to
consider models of the form (M,Q), where Q is a global quantifier, and interpret
Q as QM on such a model. It is then easy to check that, for each model (M,q) in
KPERM+CONSERV, there is a logical quantifier Q such that QM = q. From this
it follows that a sentence is valid in (L(QPERM+CONSERV) iff it is valid when
Q varies over arbitrary logical quantifiers.

Let us remark, finally, that the results of this appendix depend on the fact that
the usual universal and existential quantifier constants occur in LQ. Anapolitanos
and Väänänen [1981] show that, if we drop these, and also drop identity, then
L(KPERM) becomes axiomatisable; actually it becomes decidable.
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[Kanazawa and Piñón, 1994] M. Kanazawa and C. Piñón, eds. Dynamics, Polarity and Quantification,

Stanford, CA: CSLI Publications, 1994.
[Keenan, 1992] E. Keenan. Beyond the Frege boundary. Linguistics and Philosophy, 15, 199–221,

1992.
[Keenan, 1993] E. Keenan. Natural language, sortal reducibility, and generalized quantifiers. Journal

of Symbolic Logic, 58, 314–24, 1993.
[Keenan, 2000] E. Keenan. Logical objects. In Logic, Language and Computation: Essays in Honor

of Alonzo Church, C. A. Anderson and M. Zeleny, eds, pp. 151–83. Dordrecht: Kluwer, 2000.
[Keenan, 2003] E. Keenan. The definiteness effect: semantics or pragmatics? Natural language Se-

mantics, 11, 187–216, 2003.
[Keenan, 2005] E. Keenan. Excursions in natural logic. In Language and Grammar: Studies in Math-

ematical Linguistics and Natural Language, C. Casadio, P. Scott and R. Seely, eds., pp. 3–24.
Stanford, CA: CSLI Publications, 2005.



QUANTIFIERS IN FORMAL AND NATURAL LANGUAGES 337

[Keenan and Stabler, 2004] E. Keenan and E. Stabler. Bare Grammar: A Study of Language Invari-
ants. Stanford, CA: CSLI Publications, 2004.
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Schütte, K., 18
Second level concept, 223
self-extensional, 35
Seoane, J., 81
Sette, A. M., 19
Sgro, J., 330
Shramko Y., 5
Skolem, T., 234
Skyrms, B., 156
Slater, B. H., 5
Smiley, T., 130
Smith, P., 185
Square of opposition, 228, 291
Stalnaker, R., 141, 150, 151, 160–

165, 167, 172, 177, 192,
193, 197, 199–201, 209

Stavi, J., 223, 224, 251, 254, 255,
257, 261, 262, 268, 269,
271, 286, 289, 293, 319–
324

Strategically dependent, 108
Strawson, P. F., 136, 201
Structural equation model, 105
Subject-predicate form, 226, 259
subjunctive, 200
Suppes, 97
Supplementing Principle of Explo-

sion, 13
Syllogism, 227, 311
Sylvan, R., 66, 83
Syndrome, 122

Tarski property, 241
Tarski, A., 232, 234, 235, 241, 242,

295
Tarskian consequence relation, 6
Tarskian logic, 6
Thijsse, E., 268, 292, 319, 320
Thomason, R., 141, 160
Thompson, J., 160
Tichy, P., 148
top particle, 12
translation, 27

trivial theory, 7
truth-functional, 200
Tulipani, S., 330

Ultimate background knowledge,
110

Ultimate belief, 110
UNIF, 309
UNIV, 279
Urbas, I., 14, 31, 35, 67, 83

Väänänen, J., 332
Vakarelov, D., 82
van Fraassen, B., 160, 161, 167,

193, 197–199, 209, 213
van Benthem, J., 224, 225, 233,

242, 276, 278, 281, 289,
291, 296–299, 304, 305,
308–310, 313, 316, 319,
322, 323, 325, 327, 328,
332

van Deemter, K., 324
van Eijck, J., 225, 328
VAR, 289
VP-positive/negative quantifier,

286

Walkoe, W. Jr., 250
Weak logic, 328
Weak model, 328
Weese, M., 250
Westerst̊ahl, D., 239, 254, 262, 263,

267, 279, 298, 301, 311,
319, 322, 323, 327

Whitehead, A. N., 157
Wittgenstein, L., 312
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