
9
Deformed Minkowski Space
as Generalized Lagrange Space

9.1 Generalized Lagrange Spaces

We want now to show that the deformed Minkowski space ˜M of DSR does
possess another well-defined geometrical structure, besides the deformed
metrical one. Precisely, we will show (following [44]) that ˜M is a generalized
Lagrange space.

Let us give the definition of generalized Lagrange space [12], since usually
one is not acquainted with it.

Consider a N -dimensional, differentiable manifold M and its (N -
dimensional) tangent space in a point, TMx (x ∈ M). As is well known,
the union

⋃

x∈M
TMx ≡ TM (9.1)

has a fiber bundle structure. Let us denote by y the generic element of
TMx, namely a vector tangent to M in x. Then, an element u ∈ TM is a
vector tangent to the manifold in some point x ∈ M. Local coordinates for
TM are introduced by considering a local coordinate system (x1, x2, ..., xN )
on M and the components of y in such a coordinate system (y1, y2, ..., yN ).
The 2N numbers (x1, x2, ..., xN , y1, y2, ..., yN ) constitute a local coordinate
system on TM. We can write synthetically u = (x,y). TM is a 2N -
dimensional, differentiable manifold.

Let π be the mapping (natural projection) π : u = (x,y) −→ x. (x ∈ M,
y ∈TMx). Then, the tern (TM, π,M) is the tangent bundle to the base
manifold M. The image of the inverse mapping π−1(x) is of course the
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tangent space TMx, which is called the fiber corresponding to the point
x in the fiber bundle One considers also sometimes the manifold ̂TM =
TM/ {0}, where 0 is the zero section of the projection π. We do not dwell
further on the theory of the fiber bundles, and refer the reader to the wide
and excellent literature on the subject [46].

The natural basis of the tangent space Tu(TM) at a point

u = (x,y) ∈ TMis
{

∂

∂xi
,
∂

∂yj

}

, i, j = 1, 2, ..., N.

A local coordinate transformation in the differentiable manifold TM
reads

⎧

⎪

⎨

⎪

⎩

x′i = x′i(x), det
(

∂x′i

∂xj

)


= 0,

y′i =
∂x′i

∂xj
yj .

(9.2)

Here, yi is the Liouville vector field on TM, i.e., yi ∂

∂yi
.

On account of (9.2), the natural basis of TMx can be written as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂

∂xi
=
∂x′k

∂xi

∂

∂x′k
+
∂y′k

∂xi

∂

∂y′k
,

∂

∂yj
=
∂y′k

∂yj

∂

∂y′k
.

(9.3)

Second (9.3) shows therefore that the vector basis (∂/∂yj), j = 1, 2, ..., N ,
generates a distribution V defined everywhere on TM and integrable, too
(vertical distribution on TM).

If H is a distribution on TM supplementary to V, namely

Tu(TM) = Hu ⊕ Vu , ∀u ∈ TM, (9.4)

then H is called a horizontal distribution, or a nonlinear connection on TM.
A basis for the distributions H and V are given, respectively, by δ/δxi and
∂/∂yj , where the basis in H explicitly reads

δ

δxi
=

∂

∂xi
−Hj

i(x,y)
∂

∂yj
. (9.5)

Here, Hj
i (x,y) are the coefficients of the nonlinear connection H. The basis

{

δ

δxi
,
∂

∂yj

}

=
{

δi, ∂̇j

}

is called the adapted basis.
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The dual basis to the adapted basis is
{

dxi, δyj
}

, with

δyj = dyj +Hj
i(x,y)dxi. (9.6)

A distinguished tensor (or d-tensor) field of (r,s)-type is a quantity whose
components transform like a tensor under the first coordinate transforma-
tion (9.2) on TM (namely they change as tensor in M). For instance, for
a d-tensor of type (1, 2):

R′i
jk =

∂x′i

∂xs

∂xr

∂x′j
∂xp

∂x′k
Rs

rp. (9.7)

In particular, both δ/δxi and ∂/∂yj are d-(covariant) vectors, whereas dxi,
δyj are d-(contravariant) vectors.

A generalized Lagrange space is a pair GLN=(M, gij(x,y)), with
gij(x,y) being a d-tensor of type (0,2) (covariant) on the manifold TM,
which is symmetric, nondegenerate1 and of constant signature.

A function
L : (x,y) ∈ TM → L(x,y) ∈ R (9.8)

differentiable on ̂TM and continuous on the null section of π is named a
regular Lagrangian if the Hessian of L with respect to the variables yi is non-
singular. A generalized Lagrange space GLN=(M, gij(x,y)) is reducible to
a Lagrange space LN if there is a regular Lagrangian L satisfying

gij =
1
2

∂2L

∂yi∂yj
(9.9)

on ̂TM . In order that GLN is reducible to a Lagrange space, a necessary
condition is the total symmetry of the d-tensor (∂gij/∂y

k). If such a con-
dition is satisfied, and gij are 0-homogeneous in the variables yi, then the
function L = gij(x,y)yiyj is a solution of the system (9.9). In this case,
the pair (M, L) is a Finsler space2 defined for x ∈ M and ξ ∈TxM such
that Φ(x, ·) is a possibly nonsymmetric norm on TxM.

Notice that every Riemann manifold (M, g) is also a Finsler space, the
norm Φ(x, ξ) being the norm induced by the scalar product g(x).

A finite dimensional Banach space is another simple example of Finsler
space, where Φ(x, ξ) ≡‖ξ‖ . (M,Φ), with Φ2 = L. One says that GLN is
reducible to a Finsler space.

Of course, GLN reduces to a pseudo-Riemannian (or Riemannian) space
(M, gij(x)) if the d-tensor gij(x,y) does not depend on y. On the con-
trary, if gij(x,y) depends only on y (at least in preferred charts), it is a
generalized Lagrange space which is locally Minkowski.

1Namely it must be rank ‖gij(x,y)‖ = N .
2Let us recall that a Finsler space [7] is a couple (M, Φ), where M is be an N -

dimensional differential manifold and Φ : TM ⇒ R a function Φ(x, ξ)
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Since, in general, a generalized Lagrange space is not reducible to a
Lagrange one, it cannot be studied by means of the methods of symplectic
geometry, on which – as is well known – analytical mechanics is based.

A linear H−connection on TM (or on ̂TM) is defined by a couple of
geometrical objects CΓ (H) = (Li

jk, C
i
jk) on TM with different trans-

formation properties under the coordinate transformation (9.2). Precisely,
Li

jk(x,y) transform like the coefficients of a linear connection on M,
whereas Ci

jk(x,y) transform like a d-tensor of type (1,2). CΓ (H) is called
the metrical canonical H−connection of the generalized Lagrange space
GLN .

In terms of Li
jk and Ci

jk one can define two kinds of covariant derivatives:
a covariant horizontal (h-) derivative, denoted by “�,” and a covariant ver-
tical (v-) derivative, denoted by “|.” For instance, for the d-tensor gij(x,y)
one has

⎧

⎪

⎨

⎪

⎩

gij�k =
δgij

δxk
− gsjL

s
ik − gisL

s
jk;

gij|k =
∂gij

∂xk
− gsjC

s
ik − gisC

s
jk.

(9.10)

The two derivatives gij�k and gij|k are both d-tensors of type (0,3).
The coefficients of CΓ (H) can be expressed in terms of the following

generalized Christoffel symbols:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Li
jk = 1

2g
is

(

δgsj

δxk
+
δgks

δxj
+
δgjk

δxs

)

;

Ci
jk = 1

2g
is

(

∂gsj

∂xk
+
∂gks

∂xj
+
∂gjk

∂xs

)

.

(9.11)

Moreover, by means of the connection CΓ (H) it is possible to define a
d-curvature in TM by means of the tensors R i

j kh, S i
j kh and P i

j kh given by

R i
j kh =

δLi
jk

δxh
−
δLi

jh

δxk
+ Lr

jkL
i
rh − Lr

jhL
i
rk + Ci

jrR
r
kh;

S i
j kh =

∂Ci
jk

∂yh
−
∂Ci

jh

∂yk
+ Cr

jkC
i
rh − Cr

jhC
i
rk;

P i
j kh =

∂Li
jk

∂yh
− Ci

j�h + Ci
jrP

r
kh. (9.12)

Here, the d-tensor Ri
jk is related to the bracket of the basis δ/δxi:

[

δ

δxi
,
δ

δxj

]

= Rs
ij

∂

∂ys
(9.13)
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and is explicitly given by3

Ri
jk =

δHi
j

δxk
− δHi

k

δxj
. (9.14)

The tensor P i
jk, together with T i

jk, Si
jk, defined by

P i
jk =

∂Hi
j

∂yk
− Li

jk;

T i
jk = Li

jk − Li
kj ;

Si
jk = Ci

jk − Ci
kj (9.15)

are the d-tensors of torsion of the metrical connection CΓ (H).
From the curvature tensors one can get the corresponding Ricci tensors

of CΓ (H):
⎧

⎨

⎩

Rij = R s
i js; Sij = S s

i js;
1

P ij = P s
i js

2

P ij = P s
i sj ,

(9.16)

and the scalar curvatures

R = gijRij ; S = gijSij . (9.17)

Finally, the deflection d-tensors associated to the connection CΓ (H) are
{

Di
j = yi

�j = −Hi
j + ysLi

sj ;

di
j = yi

|j = δi
j + ysCi

sj ,
(9.18)

namely the h- and v-covariant derivatives of the Liouville vector fields.
In the generalized Lagrange space GLN it is possible to write the Einstein

equations with respect to the canonical connection CΓ (H) as follows:
⎧

⎪

⎨

⎪

⎩

Rij − 1
2Rgij = κ

H

T ij ;
1

P ij = κ
1

T ij ;

Sij − 1
2Sgij = κ

V

T ij ;
2

P ij = κ
2

T ij ,

(9.19)

where κ is a constant and
H

T ij ,
V

T ij ,
1

T ij ,
2

T ij are the components of the
energy-momentum tensor.

3Ri
jk plays the role of a curvature tensor of the nonlinear connection H. The corre-

sponding tensor of torsion is instead

tijk =
∂Hi

j

∂yk
−

∂Hi
k

∂yj
.
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9.2 Generalized Lagrangian Structure of ˜M

On the basis of the previous considerations, let us analyze the geometrical
structure of the deformed Minkowski space of DSR ˜M , endowed with the by
now familiar metric gµν,DSR(E). As explained in Part I, E is the energy of
the process measured by the detectors in Minkowskian conditions. There-
fore, E is a function of the velocity components, uµ = dxµ/dτ , where τ is
the (Minkowskian) proper time:

E = E

(

dxµ

dτ

)

. (9.20)

The derivatives dxµ/dτ define a contravariant vector tangent to M at x,
namely they belong to TMx. We shall denote this vector (according to the
notation of Sect. 9.1) by y = (yµ). Then, (x,y) is a point of the tangent
bundle to M . We can therefore consider the generalized Lagrange space
GL4 = (M, gµν(x,y)), with

⎧

⎨

⎩

gµν(x,y) = gµν,DSR(E(x,y)),

E(x,y) = E(y).
(9.21)

Then, it is possible to prove the following theorem:
The pair GL4 = (M, gµν,DSR(x,y)) ≡ ˜M is a generalized Lagrange space

which is not reducible to a Riemann space, or to a Finsler space, or to a
Lagrange space.

We already proved the first statement in Sect. 2.2 of Part I, on account
of the dependence of the deformed metric tensor on E (and therefore on y)
only: gµν,DSR(x,y) ≡gµν,DSR(y). To prove that GL4 is reducible neither to
a Lagrange space nor to a Finsler one, it is sufficient (as stated in Sect. 9.1)
to show that the d-tensor field (∂gµν,DSR/∂y

ρ) is not totally symmetric,
i.e., the equation

∂gµν,DSR

∂yρ
=
∂gµρ,DSR

∂yν
(9.22)

does not hold. Let us assume by absurdum that (9.22) is satisfied. Then,
for µ = ν 
= ρ, one gets

∂gµµ,DSR

∂yρ
=
∂gµρ,DSR

∂yµ
(9.23)

whence
∂gµν,DSR

∂yρ
= 0, µ 
= ρ (9.24)

(since gDSR,µν is diagonal). Equation (9.24) implies

∂gµµ,DSR

∂E

∂E

∂yρ
= 0, ∀µ, ρ;µ 
= ρ =⇒ ∂E

∂yρ
= 0, (9.25)
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which is impossible. This proves the theorem. Notice that such a result
is strictly related to the fact that the deformed metric tensor of DSR is
diagonal, and therefore it does not hold, in general, for the generalized
Minkowski spaces we defined in Chapter 5.

If an external electromagnetic field Fµν is present in the Minkowski
space M , in ˜M the deformed electromagnetic field is given by ˜Fµ

ν(x,y) =
gµρ
DSRFρν(x) (see Sect. 3.5). Such a field is a d-tensor and is called the elec-

tromagnetic tensor of the generalized Lagrange space. Then, the nonlinear
connection H is given by

Hµ
ν =

{

µ
νρ

}

yρ − ˜Fµ
ν(x,y), (9.26)

where
{

µ
νρ

}

, the Christoffel symbols of the Minkowski metric gµν , are

zero, so that
Hµ

ν = − ˜Fµ
ν(x,y). (9.27)

The adapted basis of the distribution H reads therefore

δ

δxµ
=

∂

∂xµ
+ ˜F ν

µ(x,y).
∂

∂yν
. (9.28)

The local covector field of the dual basis (cf. (9.6)) is given by

δyµ = dyµ − ˜Fµ
ν(x,y)dxν . (9.29)

9.3 Canonical Metric Connection of ˜M

The derivation operators applied to the deformed metric tensor of the space
GL4 = ˜M yield

δgµν,DSR

δxρ
=
∂gµν,DSR

∂xρ
+ ˜F σ

ρ

∂gµν,DSR

∂yσ
= ˜F σ

ρ

∂gµν,DSR

∂E

∂E

∂yσ
, (9.30)

∂gµν,DSR

∂yσ
=
∂gµν,DSR

∂E

∂E

∂yσ
. (9.31)

Then, the coefficients of the canonical metric connection CΓ (H) in ˜M (see
(9.11)) are given by
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Lµ
νρ = 1

2g
µσ
DSR

∂E

∂yα

(

∂gσν,DSR

∂E
˜Fα

ρ +
∂gσρ,DSR

∂E
˜Fα

ν − ∂gνρ,DSR

∂E
˜Fα

σ

)

,

Cµ
νρ = 1

2g
µσ
DSR

∂E

∂yα

(

∂gσν,DSR

∂E
δα

ρ +
∂gσρ,DSR

∂E
δα

ν − ∂gνρ,DSR

∂E
δα

σ

)

.

(9.32)
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The vanishing of the electromagnetic field tensor, Fα
ρ = 0, implies

Lµ
νρ = 0.
One can define the deflection tensors associated to the metric connection

CΓ (H) as follows (cf. (9.18)):

Dµ
ν = yµ

�ν =
δyµ

δxν
+ yαLµ

αν = ˜Fµ
ν + yαLµ

αν ;

dµ
ν = yµ

|ν = δµ
ν + yαCµ

αν . (9.33)

The covariant components of these tensors read

Dµν = gµσ,DSRDσ
ν = gµσ,DSR

(

˜F σ
ν + yαLσ

αν

)

= Fµν(x) +
1

2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
˜F α

ν +
∂gµν,DSR

∂E
˜F α

σ − ∂gσν,DSR

∂E
˜F α

µ

)

;

dµν = gµσ,DSRdσ
ν

= gDSR,µν +
1

2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
δα

ν +
∂gµν,DSR

∂E
δα

σ − ∂gσν,DSR

∂E
δα

µ

)

.

(9.34)

Let us show how the formalism of the generalized Lagrange space allows
one to recover some results on the phenomenological energy-dependent met-
rics discussed in Chap. 4.

Consider the following metric (c = 1):

ds2 = a(E)dt2 + (dx2 + dy2 + dz2), (9.35)

where a(E) is an arbitrary function of the energy and spatial isotropy (b2 =
1) has been assumed. In absence of external electromagnetic field (Fµν =
0), the nonvanishing components Cµ

νρ of the canonical metric connection
CΓ (H) (see (9.32)) are
⎧

⎨

⎩

C0
00 =

a′

a
y0, C0

01 = −a′

a
y1, C0

02 = −a′

a
y2, C0

03 =
a′

a
y3,

C1
00 = −a′y1, C2

00 = −a′y2, C0
00 = −a′y3,

(9.36)

where the prime denotes derivative with respect to E: a′ = da/dE.
According to the formalism of generalized Lagrange spaces, we can write

the Einstein equations in vacuum corresponding to the metrical connection
of the deformed Minkowski space (see (9.19)). It is easy to see that the
independent equations are given by

a′ = 0; (9.37)

2aa′′ − (a′)2 = 0. (9.38)



The first equation has the solution a = const., namely we get the Minkowski
metric. Equation (9.38) has the solution

a(E) =
1
4

(

a0 +
E

E0

)2

, (9.39)

where a0 and E0 are two integration constants.
This solution represents the time coefficient of an over-Minkowskian met-

ric of the second class, (4.31), with n0 =2. For a0 = 0 it coincides with (the
time coefficient of) the phenomenological metric of the strong interaction,
(4.11). On the other hand, by choosing a0 = 1, one gets the time coefficient
of the metric for gravitational interaction, (4.18).

In other words, considering ˜M as a generalized Lagrange space permits
to recover (at least partially) the metrics of two interactions (strong and
gravitational) derived on a phenomenological basis.

It is also worth noticing that this result shows that a space–time defor-
mation (of over-Minkowskian type) exists even in absence of an external
electromagnetic field (remember that (9.37),(9.38) have been derived by
assuming Fµν = 0).

9.4 Intrinsic Physical Structure of a Deformed
Minkowski Space: Gauge Fields

As we have seen, the deformed Minkowski space ˜M , considered as a gen-
eralized Lagrange space, is endowed with a rich geometrical structure. But
the important point, to our purposes, is the presence of a physical richness,
intrinsic to ˜M . Indeed, let us introduce the following internal electromag-
netic field tensors on GL4 = ˜M , defined in terms of the deflection tensors:

Fµν ≡ 1
2

(Dµν −Dνµ)

= Fµν(x) +
1
2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
˜Fα

ν − ∂gνσ,DSR

∂E
˜Fα

µ

)

(9.40)

(horizontal electromagnetic internal tensor) and

fµν ≡ 1
2

(dµν − dνµ)

=
1
2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
δα

ν − ∂gνσ,DSR

∂E
δα

µ

)

(9.41)

(vertical electromagnetic internal tensor).
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The internal electromagnetic h- and v-fields Fµν and fµν satisfy the
following generalized Maxwell equations

2 (Fµν�ρ + Fνρ�µ + Fρµ�ν) = yα
(

Rβ
µνCβαρ +Rβ

νρCβαµ +Rβ
ρµCβαν

)

,

Rβ
µν = gβσ ∂Fµν

∂xσ
; (9.42)

Fµν|ρ + Fνρ|µ + Fρµ|ν = fµν�ρ + fνρ�µ + fρµ�ν ; (9.43)

fµν|ρ + fνρ|µ + fρµ|ν = 0. (9.44)

Let us stress explicitly the different nature of the two internal electro-
magnetic fields. In fact, the horizontal field Fµν is strictly related to the
presence of the external electromagnetic field Fµν , and vanishes if Fµν = 0.
On the contrary, the vertical field fµν has a geometrical origin, and depends
only on the deformed metric tensor gµν,DSR(E(y)) of GL4 = ˜M and on
E(y). Therefore, it is present also in space–time regions where no external
electromagnetic field occurs. As we shall see in Part III, this fact has deep
physical implications.

A few remarks are in order. First, the main results obtained for the
(abelian) electromagnetic field can be probably generalized (with suitable
changes) to non-abelian gauge fields. Second, the presence of the internal
electromagnetic h- and v-fields Fµν and fµν , intrinsic to the geometri-
cal structure of ˜M as a generalized Lagrange space, is the cornerstone to
build up a dynamics (of merely geometrical origin) internal to the deformed
Minkowski space.

The important point worth emphasizing is that such an intrinsic dynam-
ics springs from gauge fields. Indeed, the two internal fields Fµν and fµν (in
particular the latter one) do satisfy equations of the gauge type (cf. (9.42)–
(9.44)). Then, we can conclude that the (energy-dependent) deformation
of the metric of ˜M , which induces its geometrical structure as generalized
Lagrange space, leads in turn to the appearance of (internal) gauge fields.

Such a fundamental result can be schematized as follows:

˜M = (M, gµν,DSR(E)) =⇒ GL4 = (M, gµν(x,y)) =⇒
(

˜M,Fµν , fµν

)

(9.45)
(with self-explanatory meaning of the notation).

We want also to stress explicitly that this result follows by the fact
that, in deforming the metric of the space–time, we assumed the energy as
the physical (nonmetric) observable on which letting the metric coefficients
depend (see Chap. 2). This is crucial in stating the generalized Lagrangian
structure of ˜M , as shown in Sect. 9.2.

As is well known, successfully embodying gauge fields in a space–time
structure is one of the basic goals of the research in theoretical physics
starting from the beginning of the twentieth century. The almost unique
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tool to achieve such objective is increasing the number of space–time dimen-
sions. In such a kind of theories (whose prototype is the celebrated Kaluza–
Klein formalism), one preserves the usual (special-relativistic or general-
relativistic) structure of 4D space–time, and gets rid of the nonobservable
extra dimensions by compactifying them (for example to circles). Then
the motions of the extra metric components over the standard Minkowski
space satisfy identical equations to gauge fields. The gauge invariance of
these fields is simply a consequence of the Lorentz invariance in the enlarged
space. In this framework, gauge fields are external to the space–time,
because they are added to it by the hypothesis of extra dimensions.

In the case of the DSR theory, gauge fields arise from the very geomet-
rical, basic structure of ˜M , namely they are a consequence of the met-
ric deformation. The arising gauge fields are intrinsic and internal to the
deformed space–time, and do not need to be added from the outside. As a
matter of fact, DSR is the first theory based on a 4D space–time able to
embody gauge fields in a natural way.

Such a conventional, intrinsic gauge structure is related to a given
deformed Minkowski space ˜M , in which the deformed metric is fixed:

˜M = (M, ḡµν,DSR(E)) . (9.46)

On the contrary, with varying gDSR, we have another gauge-like structure –
as already stressed in Sect. 4.4 – namely what we called a metric gauge. In
the latter case, the gauge freedom amounts to choosing the metric according
to the interaction considered.

The circumstance that the deformed Minkowski space ˜M is endowed
with the geometry of a generalized Lagrange space testifies the richness
of nontrivial mathematical properties present in the seemingly so simple
structure of the deformation of the Minkowski metric. This will be fur-
ther supported in Part IV, where we shall show that ˜M can be naturally
embedded in a 5D Riemannian space.

9.4 Intrinsic Physical Structure of a Deformed Minkowski Space: Gauge Fields




