
5
Generalized Minkowski Spaces
and Killing Symmetries

In the first Part of this book, we discussed the physical foundations of
the DSR in four dimensions. This second Part will be devoted to dealing in
detail with the mathematical features and properties of DSR. In this frame-
work, the isometries of the deformed Minkowski space ˜M play a basic role.
The mathematical tool needed to such a study are the Killing equations,
whose solution will allow us to determine both the infinitesimal and the
finite structure of the deformed chronotopical groups of symmetries [41–43].
An important result we shall report at the end of this Part – due to its
physical implications – is the geometrical structure of ˜M as a generalized
Lagrange space [12,13,44].

5.1 Generalized Minkowski Spaces

The structure of the deformed space–time ˜M of DSR can be generalized
to what we shall call generalized Minkowski space ˜MN ({x}n.m.). We define
˜MN ({x}n.m.) as aN -dimensional Riemann space with a global metric struc-
ture determined by the (in general nondiagonal) metric tensor gµν({x}n.m.)
(µ, ν = 1, 2, ..., N), where {x}n.m. denotes a set of Nn.m. nonmetrical coor-
dinates (i.e., different from the N coordinates related to the dimensions of
the space considered) [41]. The interval in ˜MN ({x}n.m.) therefore reads

ds2 = gµν({x}n.m.)dx
µdxν . (5.1)
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We shall assume the signature (T, S) (T time-like dimensions and S =
N − T space-like dimensions). It follows that ˜MN ({x}n.m.) is flat, because
all the components of the Riemann–Christoffel tensor vanish.

Of course, an example is just provided by the 4D deformed Minkowski
space ˜M(E). In the following, in order to comply with the notation adopted
for generalized Minkowski spaces, we shall denote the DSR deformed space–
time with ˜M(x5), where the coordinate x5 has to be interpreted as the
energy. The index 5 explicitly refers to the already mentioned fact that
the deformed Minkowski space can be “naturally” embedded in a 5D
(Riemannian) space (see Parts IV and V).

5.2 Maximal Killing Group of a N -Dimensional
Generalized Minkowski Space

5.2.1 Lie Groups, P.B.W. Theorem and the Transformation
Representation

Let us recall the essential content of the Poincaré-Birkhoff–Witt (P.B.W.)
theorem and of the Lie theorems: Given a Lie group GL of order M , it is
always possible to build up an exponential representative mapping of any
finite element g of GL:

∀gfinite ∈ GL

⇒ ∃{αi}i=1...M ∈ RM ({αi} = {αi(g)}) : g = exp

(

M
∑

i=1

αiT
i

)

,

(5.2)

where
{

T i
}

i=1...M
is the generator basis of the Lie algebra of GL and

{αi = αi(g)}i=1...M is a set of M real parameters (of course depending on
g ∈ GL).

Therefore, by a series development of the exponential

g = exp

(

M
∑

i=1

αiT
i

)

=
∞
∑

k=0

1
k!

(

M
∑

i=1

αi(g)T i

)k

∀g finite ∈ GL, (5.3)

we get, for an infinitesimal element (g → δg) (⇔ {αi(g)}i=1...M ∈ RM →
{αi(g)}i=1...M ∈ I0 ⊂ RM ):1

δg = 1 +
M
∑

i=1

αi(g)T i +O(
{

α2
i (g)
}

) ∀δg infinitesimal ∈ GL. (5.4)

1I0 ⊂ RM is a generic neighborhood of 0 ∈ RM .
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Since any Lie group admits a representation as a group of transformations
acting on a N -dimensional manifold SN (“N -dimensional vector space of
transformation representation,” not to be confused with thegroup manifold
VM ), given x ∈ SN , one has, for the action of a finite and infinitesimal
element of GL, respectively:

gx =

[

exp

(

M
∑

i=1

αi(g)T i

)]

x =

⎡

⎣

∞
∑

k=0

1
k!

(

M
∑

i=1

αi(g)T i

)k
⎤

⎦x = x′ ∈ SN ;

(5.5)

(δg)x =
[

1 +
∑M

i=1 αi(g)T i
]

x = x+
(

∑M
i=1 αi(g)T i

)

x = x′ ∈ SN ;

δg : SN � x → x′ = x+ δx(g)(x) ∈ SN

⎫

⎬

⎭

⇒

⇒ δx(g)(x) =

(

M
∑

i=1

αi(g)T i

)

x. (5.6)

5.2.2 Killing Equations in a N -Dimensional Generalized
Minkowski Space

In general SN is endowed with a metric structure we shall assume in the
following to be at most Riemannian. The interval in SN is therefore:

ϕ(x) ≡ ds2(x) = gµν(x)dxµdxν , (5.7)

with gµν(x) being the symmetric, rank-two metric tensor. By carrying out
an infinitesimal transformation of the type

xµ′ = xµ + ξµ(x), (5.8)

one has:

δdxµ(x)
[δ,d]=0

= dδxµ(x) =
∂ξµ(x)
∂xγ

dxγ ;

δgµν(x) =
∂gµν(x)
∂xβ

ζβ(x), (5.9)

and therefore

δϕ(x) ≡ δds2(x) = δ(gµν(x)dxµdxν)
= (δgµν(x)) dxµdxν + gµν(x) (δdxµ(x)) dxν + gµν(x)dxµ (δdxν(x))



72 5. Generalized Minkowski Spaces and Killing Symmetries

=
(

∂gµν(x)
∂xβ

ζβ(x)
)

dxµdxν + gµν(x)
(

∂ξµ(x)
∂xγ

dxγ

)

dxν

+ gµν(x)dxµ

(

∂ξν(x)
∂xχ

dxχ

)

=
∂gµν(x)
∂xβ

ζβ(x)dxµdxν + gνβ(x)
∂ξβ(x)
∂xµ

dxµdxν

+ gµβ(x)
∂ξβ(x)
∂xν

dxµdxν

=

(

∂gµν(x)
∂xβ

ζβ(x) + gνβ(x)
∂ξβ(x)
∂xµ

+ gµβ(x)
∂ξβ(x)
∂xν

)

dxµdxν

(5.10)

The invariance of the infinitesimal interval under transformation (5.8)
requires therefore

δds2(x) = 0 ⇔
(

∂gµν(x)
∂xβ

ζβ(x) + gνβ(x)
∂ξβ(x)
∂xµ

+ gµβ(x)
∂ξβ(x)
∂xν

)

= 0;

(5.11)

aµ(x) ≡ gµη(x)aη(x)
gµη(x)gηχ(x)=δχ

µ ∀x∈SN⇔ aη(x) = gηµ(x)aµ(x); (5.12)

∂aη(x)
∂xν

≡ aη(x),ν

=
∂ (gηµ(x)aµ(x))

∂xν
=
∂gηµ(x)
∂xν

aµ(x) + gηµ(x)
∂aµ(x)
∂xν

. (5.13)

Let us introduce the covariant derivative on SN , defined by

aµ(x);ν ≡ aµ(x),ν − Γλ
µν(x)aλ(x) (5.14)

with Γλ
µν(x) being the affine connection

Γλ
µν(x) =

1
2
gρλ(x)

(

∂gνρ(x)
∂xµ

+
∂gµρ(x)
∂xν

− ∂gνµ(x)
∂xρ

)

. (5.15)

Since the covariant derivative of the metric tensor vanishes (gµη;ρ(x) = 0),
it is possible to rewrite (5.11) as:

δds2(x) = 0 ⇔ ξµ(x);ν + ξν(x);µ = 0, (5.16)

or, in compact form:
ξ[µ(x);ν] = 0, (5.17)

where the bracket [..] means symmetrization with respect to the enclosed
indices.
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As is well known, the N(N + 1)/2 (5.17) in the N components of the
covariant N -vector ξµ(x) are the Killing equations of the space SN . As is
clearly seen from their derivation, the contravariant Killing vectors corres-
pond to directions along which the infinitesimal interval – and therefore the
metric tensor – remains unchanged. Then, they determine the infinitesimal
isometries of SN . Another very useful property of Killing vectors is that
they are associated to constants of motion, namely to quantities which
keep their value along any geodesic. Any N -dimensional Riemannian space
admits a Killing group with at most N(N + 1)/2 parameters; in this
latter case, the space is called “maximally symmetric.” It can be shown
that a Riemann space is maximally symmetric iff its scalar curvature R
is constant.

In index notation, (5.6) can be written as:

δxµ
(g)(x) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

, µ = 1, ..., N. (5.18)

Let us denote simply by α the parametric M -vector {αi}i=1...M of the
representation (5.2) of the element g ∈ GL. Then, from (5.6) and (5.8) one
gets

δxµ
(g)(x, α) = ξµ

(g)(x, α); (5.19)

ξµ
(g)(x, α) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

, (5.20)

namely δxµ
(g)(x, α) is the contravariant N -vector of the infinitesimal trans-

formation associated – in the transformation representation of the Lie group
GL – to the infinitesimal element δg.

We can now define the mixed second-rank N -tensor δωµ
ν (g) of an infini-

tesimal transformation (associated to δg ∈ GL) as:

δxµ
(g)(x) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

≡ δωµ
ν (g)xν . (5.21)

The number of independent components of the tensor δωµ
ν (g) is equal to

the order M of the Lie group; in general, nothing can be said about its sym-
metry properties. Notice that, in the context of generalized N -dimensional
Minkowski spaces, the infinitesimal mixed tensor depends in general on the
set of nonmetric variables, i.e., δωµ

ν = δωµ
ν (g, {x}n.m.). From (5.18)–(5.20)

it follows
ξµ
(g)(x) = δωµ

ν (g)xν , (5.22)

showing that δωµ
ν (g) is the tensor of the “rotation” parameters in SN . Let us

stress that (5.20)–(5.21), associating the global tensor δωµ
ν (g) (
= δωµ

ν (g, x))
to δxµ

(g)(x) (in general local), imply a reductive assumption on the possible
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Lie groups considered. Actually, as is easily seen, the introduction of δωµ
ν (g)

(independent of x) is possible only iff δxµ
(g)(x) is a linear and homogeneous

function of x. Of course, this imposes severe restrictions on the possible
types of Lie groups under consideration.

Indeed, let us stress that the transformation representation of the
M -order Lie group GL we considered above is not a group representation of
GL (in the usual meaning of the term). Indeed, although GL can be inter-
preted as a suitable transformation group acting on SN (with M 
= N
in general), such coordinate transformations are not necessarily linear.
Otherwise speaking, GL does not admit, in general, a N-order matrix rep-
resentation. In other words, its M infinitesimal generators T i (i = 1, ...,M)
cannot in general be represented by N×N matrices acting on SN . Although
(5.3) for g in terms of the generators

{

T i
}

can be linearized with respect
to the group parameters {αi} (by means of a “parametric MacLaurin deve-
lopment” in the neighborhood of the null M -vector of parameters), thus
getting the infinitesimal element δg (5.4), δgx is not necessarily linear in
x, due to the possible dependence of some of the T i’s on x.

Therefore, introducing the tensor δωµ
ν (g) amounts to consider only those

Lie groups admitting a N×N matrix representation on SN (corresponding
to linear and homogeneous coordinate transformations).

5.2.3 Maximal Killing Group of ˜MN

To our present aims, we have to impose two further conditions. First, we
assume that the Lie groups under consideration, in the related transfor-
mation representation, are Killing groups of SN (not necessarily maximal),
namely (from (5.17), (5.18), and (5.20)):

ξ(g)µ(x);ν + ξ(g)ν(x);µ = 0 ⇔ δx(g)µ(x);ν + δx(g)ν(x);µ = 0

⇔
[(

M
∑

i=1

αi(g)T i

)

x

]

µ;ν

+

[(

M
∑

i=1

αi(g)T i

)

x

]

ν;µ

= 0

⇔ (δωµρ(g)xρ);ν + (δωνρ(g)xρ);µ = 0

⇔
(

δω[µρ(g)xρ
)

;ν]
= 0 (5.23)

Last (5.23) can be derived from the first one on account of (5.22) and of

ξ(g)µ(x) = gµνξ
ν
(g)(x) = gµνδω

ν
ρ(g)xρ = δωµρ(g)xρ. (5.24)

Moreover, SN is assumed to be endowed with a global metric structure,
independent of x ∈ SN (but dependent, in general, on a set {x}n.m. of
nonmetric coordinates), i.e.,:

gµν({x}n.m.) 
= gµν(x). (5.25)
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This second requirement entails that in SN all components of the Riemann–
Christoffel tensor vanish (so that the covariant derivative reduces to the
ordinary derivative), and then it is a flat manifold. In other words, we
are assuming that SN is a N-dimensional generalized Minkowski space, as
defined in Sect. 5.1. Therefore, we shall henceforth use the notation ˜MN

instead of SN .
Notice that although, in general, δωµ

ν (g, {x}n.m.) does depend on possible
nonmetric variables, its completely covariant form does not, due to the
dependence of gµν on {x}n.m.:

δωµρ(g) = gµσ({x}n.m.)δω
σ
ρ (g, {x}n.m.) 
= δωµρ({x}n.m.). (5.26)

On the contrary, its completely contravariant form does depend on {x}n.m.:

δωµρ(g, {x}n.m.) = gµσ({x}n.m.)δω
ρ
σ(g, {x}n.m.). (5.27)

We can therefore state that, in a generalized Minkowski space, any form of
the N -tensor δω(g) is global (i.e., independent of all metric variables), but
its completely covariant expression is independent of possible nonmetric
variables, too. This independence is related to the fact that (as it will be
seen in the following: see (5.26)) δωαβ(g) is nothing but the antisymmet-
ric tensor of the space–time rotation parameters. Thus the dependence of
δωαβ on the physical theory concerned is reducible to its very dependence
on the element g of the space–time rotation group of the N -d generalized
Minkowski space under consideration. That is why, in the following, paren-
theses will be sometime used in the covariant components of δω (e.g., in
the form δωαβ,(DSR) (g) or δωcov.,(DSR) (g)).

In ˜MN , the following formulae hold ∀δg infinitesimal ∈ GL:

δg : ˜MN � x → x′({x}m. , {x}n.m.) = x+ x(g)({x}m. , {x}n.m.) ∈ ˜MN ;
(5.28)

δxµ
(g)(x, {x}n.m.) =

[(

M
∑

i=1

αi(g)T i({x}n.m.)

)

x

]µ

= δωµ
ν (g, {x}n.m.)x

ν = ξµ
(g)(x, {x}n.m.); (5.29)

ξ(g)µ(x),ν + ξ(g)ν(x),µ = 0, (5.30)

where “, µ” denotes ordinary derivation with respect to xµ. From (5.21)
and (5.27) it follows also:

ξ(g)µ(x),ν + ξ(g)ν(x),µ = 0
⇔ (δωµν(g)xρ),ν + (δωνρ(g)xρ),µ = 0. (5.31)

The last equation entails the antisymmetry of δωµν(g):

δωµν(g) + δωνµ(g) = 0, (5.32)
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which therefore has N(N − 1)/2 independent components (such a number,
as stressed earlier, is also equal to to the order M of GL, M = N(N−1)/2),
i.e., the (rotation) transformation group related to the tensor δωµν(g) is a
N(N − 1)/2-parameter Killing group.

Let us observe that a N -dimensional, generalized Minkowski space, being
(as noted earlier) a special case of a Riemann space with constant curvature,
admits a maximal Killing group with N(N + 1)/2 parameters. Since the
(rotation) transformation group related to the tensor δωµν(g) is a N(N −
1)/2-parameter Killing group, we have still to find another N -parameter
Killing group of ˜MN (because N +N(N − 1)/2 = N(N + 1)/2).

This is easily done by noting that the N(N + 1)/2 Killing equations in
such a space

ξµ(x),ν + ξν(x),µ = 0 ≡
∂ξµ(x)
∂xν

+
∂ξν(x)
∂xµ

= 0 (5.33)

are trivially satisfied by constant covariant N -vectors ξµ 
= ξµ(x), to which
there corresponds the infinitesimal transformation

δg : xµ → xµ′(x, {x}n.m.) = xµ + δxµ
(g)({x}n.m.) = xµ + ξµ

(g)({x}n.m.)
(5.34)

with δxµ
(g)({x}n.m.) , ξµ

(g)({x}n.m.) constant (with respect to xµ).

In conclusion, a N -d generalized Minkowski space ˜MN ({x}n.m.) admits a
maximal Killing group which is the (semidirect) product of the Lie group of
the N -dimensional space–time rotations (or N -d generalized, homogeneous
Lorentz group SO(T, S)N(N−1)/2

GEN. ) with N(N −1)/2 parameters, and of the
Lie group of the N -dimensional space–time translations Tr.(T, S)N

GEN. with
N parameters:

P (T, S)N(N+1)/2
GEN. = SO(T, S)N(N−1)/2

GEN. ⊗s Tr.(T, S)N
GEN. (5.35)

The semidirect nature of the group product is due to the fact that, as it
shall be explicitly derived (in the case N = 4, T = 1, S = 3 of DSR, without
loss of generality) in Chap. 7, in general we have that

∃ at least 1 (µ, ν, ρ) ∈ {1, 2, ..., N}3 :
: [Iµν

GEN.({x}n.m.), Υ
ρ
GEN.({x}n.m.)] 
= 0, ∀ {x}n.m. , (5.36)

where Iµν
GEN.({x}n.m.) and Υ ρ

GEN.({x}n.m.) are the infinitesimal genera-
tors of SO(T, S)N(N−1)/2

GEN. and Tr.(T, S)N
GEN., respectively. We will refer to

P (S, T )N(N+1)/2
GEN. as the generalized (or inhomogeneous Lorentz ) group .

5.2.4 Solution of Killing Equations in a 4D Generalized
Minkowski Space

We want now to solve the Killing equations in a 4D generalized Minkowski
space ˜M({x}n.m.) (S ≤ 4, T = 4−S). A covariant Killing four-vector ξµ(x)
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must satisfy (5.17), which explicitly amounts to the system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(I) ξ0(x),0 = 0;

(II) ξ0(x),1 + ξ1(x),0 = 0;

(III) ξ0(x),2 + ξ2(x),0 = 0;

(IV) ξ0(x),3 + ξ3(x),0 = 0;

(V) ξ1(x),1 = 0;

(VI) ξ1(x),2 + ξ2(x),1 = 0;

(VII) ξ1(x),3 + ξ3(x),1 = 0;

(VIII) ξ2(x),2 = 0;

(IX) ξ2(x),3 + ξ3(x),2 = 0;

(X) ξ3(x),3 = 0.

(5.37)

From equations (5.37) (I ,V,VII, and X) one gets:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ0 = ξ0(x1, x2, x3);
ξ1 = ξ1(x0, x2, x3);
ξ2 = ξ2(x0, x1, x3);
ξ3 = ξ3(x0, x1, x2).

(5.38)

Solving system (5.37) is cumbersome but straightforward [41]. The final
result is:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0(x) = −ζ1x1 − ζ2x2 − ζ3x3 + T 0;

ξ1(x) = ζ1x0 + θ2x3 − θ3x2 − T 1;

ξ2(x) = ζ2x0 − θ1x3 + θ3x1 − T 2;

ξ3(x) = ζ3x0 + θ1x2 − θ2x1 − T 3,

(5.39)

where ζi, θi (i = 1, 2, 3) and Tµ (µ = 0, 1, 2, 3) are real coefficients.
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We can draw the following conclusions:

1. In spite of the fact that no assumption was made on the functional
form of the Killing vector, we got a dependence at most linear (inho-
mogeneous) on the metric coordinates for all components of ξµ(x).
Therefore, in order to determine the (maximal) Killing group of a
generalized Minkowski space,2 one can, without loss of generality,
consider only groups whose transformation representation is imple-
mented by transformations at most linear in the coordinates.

2. In general, ξµ 
= ξµ({x}n.m.), i.e., the covariant Killing vector does
not depend on possible nonmetric variables.3 On the contrary, the
contravariant Killing four-vector does indeed, due to the dependence
of the fully contravariant metric tensor on {x}n.m.:

ξµ(x, {x}n.m.) = gµν({x}n.m.)ξν(x). (5.40)

Such a result is consistent with the fact that δωµν(g), unlike
δωµ

ν (g, {x}n.m.), is independent of {x}n.m. (cf.(5.28),(5.29)).

3. Solution (5.39) does not depend on the metric tensor. This entails
that all 4D generalized Minkowski spaces admit the same covari-
ant Killing four-vector. It corresponds to the covariant four-vector of
infinitesimal transformation of the space–time rototranslational group
of ˜M({x}n.m.). Therefore, assuming the signature (+,−,−,−) (i.e.,
S = 3, T = 1), in a basis of “length-dimensional” coordinates, we can
state that:

(a) ζ = (ζ1, ζ2, ζ3) is the three-vector of the dimensionless parame-
ters (“rapidity”) of a generalized 3D boost

(b) θ = (θ1, θ2, θ3) is the three-vector of the dimensionless parame-
ters (angles) of a generalized 3D rotation

(c) Tµ = (T 0,−T 1,−T 2,−T 3) is the covariant four-vector of
the (“length-dimensional”) parameters of a generalized 4D
translation

2In fact, although we discussed explicitly the 4D case, the extension to the generic
N -d case is straightforward.

3Indeed

ξµ(g)(x) = gµν,DSR4({x}n.m.)ξ
ν
(g)(x, {x}n.m.)

= gµν,DSR4({x}n.m.)δων
ρ(g, {x}n.m.)x

ρ = δωµρ(g)xρ.




