
25
Complete Solutions of Geodesic
Equations for the 5D Metrics

We discussed in Chap. 24 the solutions of the geodesic equations for the
four phenomenological metrics of the fundamental interactions, obtained
as special cases of the classes of solutions of the vacuum Einstein equations
in the Power Ansatz. However, it is easily seen that they hold only for
the energy ranges where the metrics are not Minkowskian (namely below
threshold for the electromagnetic and weak metrics, and above thresh-
old for the strong and gravitational ones). Moreover, in most cases the
value of the parameter r was fixed (as functions of the other coefficients
qµ, µ = 0, 1, 2, 3) by the structure of the Einstein equations. We want
now to give the general solutions of the geodesic equations for the four
interactions, starting from the general form of the metrics (20.21)–(20.23),
obtained by the 5D embedding of the 4D DSR phenomenological metrics in
the DR5 framework. As already stressed, such a procedure leaves undeter-
mined the fifth metric coefficient f(x5), and therefore yields r-parametrized
metrics.

The general expression of the geodesic generating function F±(ζ; q̃, A2),
which determines the geodesic motions in the Power Ansatz, is
given by (24.7). On account of it, and of the exponent sets q̃int.

(int.=e.m.,weak,strong,grav.), (20.41)–(20.43), one gets, in correspondence
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to the 5D metrics of the four fundamental interactions in the Power Ansatz:

F±,e.m./weak(ζ; r,A2, x
5
0,e.m./weak)

= ζr/2

{

A2

(

x5
0,e.m./weak

)−r

∓ C2
02

±
[(

x5
0,e.m./weak

)

ζ−1
]1/3Θ̂L(x5

0,e.m./weak−x5) (
C2

12 + C2
32

)

}−1/2

; (25.1)

F±,strong(ζ; r,A2, x
5
0,strong)

= ζr/2
{

A2

(

x5
0,strong

)−r ±
(

C2
12 + C2

22

)

+

±
[(

x5
0,strong

)

ζ−1
]2Θ̂L(x5−x5

0,strong) (C2
32 − C2

02

)

}−1/2

; (25.2)

F±,grav.(ζ; r,A2, x
5
0,grav.)

= ζr/2
{

(

x5
0,grav.

)−r
A2 ±

(

x5
0,grav.

)?
ζ−?
(

C2
12 + C2

22

)

+

±
[(

x5
0,grav.

)

ζ−1
]

˜2Θ̂L(x5−x5
0,grav.) (C2

32 − C2
02

)

}−1/2

, (25.3)

(25.4)

where the tilde and the question marks in F±,grav.(ζ; r,A2, x
5
0,grav.) have

the meaning clarified in Sect. 20.2.3.
The solutions for the geodesic equations are still given by (24.4), (24.6).

Let us distinguish the two cases of Minkowskian and non-Minkowskian
behavior.

25.1 Minkowskian Behavior

This is the case of the electromagnetic and weak interactions above thresh-
old, i.e., for x5 ≥ x5

0,e.m./weak, and of the strong and gravitational inter-
actions below threshold, i.e., for x5 ≤ x5

0,strong and x5 ≤ x5
0,grav. In these

cases, the exponent sets of the metrics reduce to

q̃e.m./weak

(

x5 ≥ x5
0,e.m./weak

)

= (0, 0, 0, 0, r) ; (25.5)

q̃strong

(

0 < x5 ≤ x5
0,strong

)

= (0, (0, 0) , 0, r) ; (25.6)

q̃grav.

(

0 < x5 ≤ x5
0,grav.

)

= (0, (0, 0) , 0, r) . (25.7)
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These coefficient sets are identical to that of Class VIII we already discussed
in Sect. 24.4. The corresponding solution for the fifth coordinate is therefore

x5
±,int.(τ ;x

5
0,int., rint.) =

[

± rint. + 2
2K1,±,int.

(

x5
0,int.

)rint/2
(τ +A1)

]2/(rint+2)

,

(25.8)

K1,±,int. =
{

±
[

C2
12 + C2

22 + C2
32 − C2

02 ±A2

(

x5
0,int.

)−rint.
]}−1/2

,

(25.9)

whereas the space–time coordinates are given by (ESC off)

xµ
±,int.(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ

= Cµ1 + Cµ2

(

τ + χµ

)

= ˜Cµ1 + Cµ2τ ,

µ = 0, 1, 2, 3, ˜Cµ1 = Cµ1 + Cµ2χµ. (25.10)

25.2 Non-Minkowskian Behavior

Let us consider separately the different cases.

25.2.1 Electromagnetic and Weak Interactions
under Threshold

(a.1) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r

= 0, C2
12 + C2

22 + C2
32 
= 0:

(a.1.1) 3r + 7 
= 0:

x5
±,e.m./weak.(τ)

=
[

±3r + 7
6

√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]6/(3r+7)

;

(25.11)

(a.1.2) r = −7
3
:

x5
±,e.m./weak.(τ)

= exp
[

±
√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]

;

(25.12)
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(a.2) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r


= 0, C2
12 + C2

22 + C2
32 = 0:

(a.2.1) r 
= −2:

x5
±,e.m./weak.(τ)

=
[

±r + 2
2

√

∓C2
02 +A2(x5

0,e.m./weak)
−r(x5

0,e.m./weak)
r/2(τ +A1)

]2/(r+2)

;

(25.13)

(a.2.2) r = −2:

x5
±,e.m./weak.(τ)

= exp

[

±
√

∓C2
02 +A2

(

x5
0,e.m./weak

)−r (

x5
0,e.m./weak

)r/2

(τ +A1)

]

;

(25.14)

(a.3) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r


= 0, C2
12 + C2

22 + C2
32 
= 0:

(a.3.1) 3r + 7 
= 0:

τ +A1 = ±
6
(

x5
0,e.m./weak

)(−3r+2)/9

(3r + 7)
√

± (C2
12 + C2

22 + C2
32)

×

⎡

⎢

⎣

−
(

C2
12 + C2

22 + C2
32

)

C2
02 ∓A2

(

x5
0,e.m./weak

)−r

⎤

⎥

⎦

(3r+7)/6
∫

dt
√

t
2

3r+7 + 1
,

(25.15)

where

t=

[

−C2
02 ±A2(x5

0,e.m./weak)
−r

(x5
0,e.m./weak)

1/3(C2
12 + C2

22 + C2
32)

](3r+7)/2

(x5
±,e.m./weak.(τ))

(3r+7)/6;

(25.16)

(a.3.2) r = −7
3
:

x5
±,e.m./weak.(τ)

= x5
0,e.m./weak

⎡

⎢

⎣

C2
12 + C2

22 + C2
32

−C2
02 ±A2

(

x5
0,e.m./weak

)−r

⎤

⎥

⎦

3

(25.17)

× sinh−6

[

±1
6

√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]

.

(25.18)
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25.2.2 Strong Interaction above Threshold

(b.1) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r = 0, C2
02 − C2

32 
= 0:

(b.1.1) r 
= −4:

x5
±,strong(τ) =

[

±r + 4
2

(τ +A1)(x5
0,strong)

(r+2)/2
√

∓(C2
02 − C2

32)
]2/(r+4)

;

(25.19)
(b.1.2) r = −4:

x5
±,strong(τ) = exp

[

± (τ +A1)
(

x5
0,strong

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.20)

(b.2) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r 
= 0, C2
02 − C2

32 = 0:

(b.2.1) r 
= −2:

x5
±,strong(τ)

=
[

±r + 2
2

√

±(C2
12+C2

22) +A2(x5
0,strong)−r(x5

0,strong)
r/2(τ +A1)

]2/(r+2)

;

(25.21)

(b.2.2) r = −2:

x5
±,strong(τ)

= exp
[

±
√

± (C2
12 + C2

22) +A2(x5
0,strong)−r(x5

0,strong)
r/2(τ +A1)

]

;

(25.22)

(b.3) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r 
= 0, C2
02 − C2

32 
= 0:

(b.3.1) r 
= −4:

τ +A1 = ±
2
[

∓
(

C2
02 − C2

32

)](r−2)/4

(r + 4)
[

± (C2
12 + C2

22) +A2

(

x5
0,strong

)−r
](r+4)/4

×
∫

dt√
t4/(r+4) + 1

, (25.23)

where

t =

[

±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r

(

x5
0,strong

)2 (∓C2
02 ± C2

32)

](r+4)/4
(

x5
±,strong(τ)

)(r+4)/2
;

(25.24)
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(b.3.2) r = −4:

x5
±,strong(τ) = x5

0,strong

√

−C2
02 + C2

32

C2
12 + C2

22 ±A2

(

x5
0,strong

)−r

× sinh−1

[

±
√

∓ (C2
02 − C2

32)
(

x5
0,strong

)(r+2)/2
(τ +A1)

]

.

(25.25)

25.2.3 Gravitational Interaction above Threshold

(I) ? = 0:

(c.I.1) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r = 0, C2
02 − C2

32 
= 0:

(c.I.1.1) r 
= −4:

x5
±,grav(τ) =

[

±r + 4
2

(τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]2/(r+4)

;

(25.26)
(c.I.1.2) r = −4:

x5
±,grav(τ) = exp

[

± (τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.27)

(c.I.2) ±(C2
12 + C2

22) +A2(x5
0,grav)−r 
= 0, C2

02 − C2
32 = 0:

(c.I.2.1) r 
= −2:

x5
±,grav(τ)

=
[

±r + 2
2

√

± (C2
12 + C2

22) +A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]2/(r+2)

;

(25.28)

(c.I.2.2) r = −2:

x5
±,grav(τ)

= exp
[

±
√

± (C2
12 + C2

22) +A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]

;

(25.29)

(c.I.2) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r 
= 0, C2
02 − C2

32 
= 0:
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(c.I.2.1) r 
= −4:

τ +A1 = ±
2
[

∓
(

C2
02 − C2

32

)](r−2)/4

(r + 4)
[

± (C2
12 + C2

22) +A2(x5
0,grav)−r

](r+4)/4

×
∫

dt√
t4/(r+4) + 1

(25.30)

where

t =

[

±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r

(

x5
0,grav

)2 (∓C2
02 ± C2

32)

](r+4)/4
(

x5
±,grav(τ)

)(r+4)/2
;

(25.31)
(c.I.2.2) r = −4:

x5
±,grav(τ) = x5

0,grav

√

−C2
02 + C2

32

C2
12 + C2

22 ±A2

(

x5
0,grav

)−r

× sinh−1

[

±
√

∓ (C2
02 − C2

32)
(

x5
0,grav

)(r+2)/2
(τ +A1)

]

.

(25.32)

(II) ? = 2̃:

(c.II.1) A2

(

x5
0,grav

)−r = 0, ∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)


= 0:

(c.II.1.1) r 
= −4:

x5
±,grav(τ)

=
[

±r + 4
2

(τ +A1)(x5
0,grav)(r+2)/2

×
√

∓(x5
0,grav)2̃(C2

02 − C2
12 − C2

22 − C2
32)
]2/(r+4)

; (25.33)

(c.II.1.2) r = −4:

x5
±,grav(τ) = exp

[

± (τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.34)

(c.II.2) A2(x5
0,grav)−r 
= 0, ∓(x5

0,grav)2̃
(

C2
02 − C2

12 − C2
22 − C2

32

)

= 0:
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(c.II.2.1) r 
= −2:

x5
±,grav(τ) =

[

±r + 2
2

√

A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]2/(r+2)

;

(25.35)
(c.II.2.2) r = −2:

x5
±,grav(τ) = exp

[

±
√

A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]

;

(25.36)

(c.II.3) A2

(

x5
0,grav

)−r 
= 0, ∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)


=
0:

(c.II.3.1) r 
= −4:

τ +A1

= ±
(

x5
0,grav

)−r/2 2

(r + 4)
√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

×

⎡

⎣

∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)

A2

(

x5
0,grav

)−r

⎤

⎦

(r+4)/4
∫

dt√
t4/(r+4) + 1

,

(25.37)

where

t=

⎡

⎣

A2

(

x5
0,grav

)−r

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

⎤

⎦

(r+4)/4

(

x5
±,grav(τ)

)(r+4)/2
;

(25.38)
(c.II.3.2) r = −4:

x5
±,grav(τ) =

√

√

√

√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

A2

(

x5
0,grav

)−r

× sinh−1

[

±
√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)
(

x5
0,grav

)r/2
(τ +A1)

]

.

(25.39)

Let us stress that, in both special cases ? = 0, 2̃, the treat-
ment is quite analogous to those of the strong interaction
above energy threshold.
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25.3 Slicing and Dynamics

It must be by now clear, from the examples discussed in Sect. 25.2, that the
explicit form of the geodesics in �5 (namely, its dynamics) strictly depends
on the sets of metric exponents q̃int. ((20.24)–(20.26)), which determine
xA(τ) through the knowledge of the generating function F±(ζ; q̃, A2).

But – as is easily seen from their expressions – the exponent sets q̃int.

are discontinuous at the threshold energy x5
0,int.:

lim
x5−→x5+

0,int.

q̃int.(x5) 
= lim
x5−→x5−

0,int.

q̃int.(x5), (25.40)

namely, for a given interaction, different sets are obtained in the two dif-
ferent energy ranges (below and above threshold). This entails among the
others that, as done in Sect. 20.2, it is necessary to use the right and left
specifications of the Heaviside function in order to write q̃int. in the com-
pact form (20.41)–(20.43), valid on the whole energy range. In turn, such
a discontinuity in q̃int. at x5

0,int. causes an analogous behavior in the geo-
desic motions. In fact, let x5

int.,<(τ), x5
int.,>(τ) denote the solutions of the

geodesic equation (24.3) for the fifth coordinate under and above thresh-
old, respectively. Then, it is possible to impose e.g., x5

int.,<(τ) = x5
0,int. and

find the corresponding value τ ∈ R. However, if such a value is replaced in
the geodesic solution corresponding to the other energy range, one finds in
general x5

int.,>(τ) = x5
int. 
= x5

0,int..
The situation is exactly analogous to that we encountered in the case of

the Killing symmetries (Sect. 22.4). The nontrivial “bifurcation of dynam-
ics” in the two energy ranges is clearly related to the nature change
(from parameter to coordinate) the variable x5 undergoes in the passage
DSR→DR5. Therefore, dynamic structures present in an energy range in
which the space–time sector is standard Minkowskian – or at least its met-
ric coefficients are constant – may no longer occur when (in a different
energy range) the space–time of �5 becomes Minkowskian deformed, and
vice versa.

Such a change of role of energy in the geometrical embedding of ˜M in �5

implies also, in full analogy with the case of the Killing isometries, that the
dynamics in a given 4D space ˜M

(

x5 = x5
)

is different from the dynamics

obtained for the slice of �5 at constant energy x5 = x5 with space–time
sector coinciding with ˜M

(

x5 = x5
)

. Symbolically one has:

Dynamics in �5|dx5=0⇔x5=x5 
= Dynamics in ˜M
(

x5 = x5
)

. (25.41)

In fact the change of role of x5 causes the destruction of the nonhomoge-
neous linearity in τ of the geodesic motions in DSR, which is no longer
recovered in the inverse process of slicing of �5 at dx5 = 0. This is again
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at variance with the metric level, where (see (19.10)) the constant-energy
sections of �5 at x5 = x5 are endowed with the same metric structure of
˜M
(

x5
)

. Again, as in the case of the Killing symmetries, it is possible to
understand this point by remembering that one is considering sections of
a genuine Riemannian space, which therefore do keep memory of the fifth
coordinate.

An explicit example of the key dynamic role played by the fifth coordinate
in the embedding process is provided by the results of Sect. 24.4 for the
geodesics relevant to class VIII of solutions of the 5D Einstein’s equations.
As already noted, the 5D metric (24.80) corresponding to the exponent set
q̃VIII = (0, 0, 0, 0, r) has a standard Minkowski structure for its space–time
sector. In spite of this, the embedding of such a Minkowski space in �5 (i.e.,
the presence and the form of the fifth metric coefficient) makes the dynamic
behavior genuinely nontrivial, because to the standard geodesic motion of
M it is added the further condition that the geodesics must correspond to
a minimal value of the time–energy uncertainty.

We can therefore conclude that not only Killing isometries, but dynamics,
too, depends on the geometrical framework. This further supports the deep
physical (not only mathematical) significance of the geometrical embedding
of ˜M in �5.




