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Embedding Deformed
Minkowski Space in a 5D
Riemann Space

19.1 From LLI Breakdown to Energy as Fifth
Dimension

Both the analysis of the physical processes considered in deriving the
phenomenological energy-dependent metrics for the four fundamental inter-
actions, and the experiments discussed in Part III, seem to provide evidence
(indirect and direct, respectively) for a breakdown of LLI invariance (at
least in its usual, special-relativistic sense). But it is well known that, in
general, the breakdown of a symmetry is the signature of the need for a
wider, exact symmetry. In the case of the breaking of a space–time symme-
try – as the Lorentz one – this is often related to the possible occurrence of
higher-dimensional schemes. It will be shown that this is indeed the case,
and that energy does in fact represent an extra dimension.

In the description of interactions by energy-dependent metrics, we saw
that energy plays in fact a dual role. On one side, as more and more stressed,
it constitutes a dynamic variable. On the other hand, it represents a para-
meter characteristic of the phenomenon considered (and therefore, for a
given process, it cannot be changed at will). In other words, when describ-
ing a given process, the deformed geometry of space–time (in the inter-
action region where the process is occurring) is “frozen” at the situation
described by those values of the metric coefficients

{

b2µ(E)
}

µ=0,1,2,3
cor-

responding to the energy value of the process considered. Namely, a fixed
value of E determines the space–time structure of the interaction region at
that given energy. In this respect, therefore, the energy of the process has



280 19. Embedding Deformed Minkowski Space

to be considered as a geometrical quantity intimately related to the very
geometrical structure of the physical world. In other words, from a geo-
metrical point of view, all goes on as if were actually working on “slices”
(sections) of a 5D space, in which the extra dimension is just represented
by the energy. Then, the 4D, deformed, energy-dependent space–time is
just a manifestation (or a “shadow,” to use the famous word of Minkowski)
of a larger space with energy as fifth dimension.

The simplest way to take account of (and to make explicit) the double
role of energy in DSR is assuming that E represents an extra metric dimen-
sion – on the same footing of space and time – and therefore embedding
the 4D deformed Minkowski space ˜M(E) of DSR in a 5D (Riemann) space
�5. This leads to build up a “Kaluza–Klein-like” scheme, with energy as
fifth dimension, we shall refer to in the following as 5D Deformed Relativity
(DR5) [6,130,131].

Let us recall that the use of momentum components as metric variables on
the same foot of the space–time ones can be traced back to Ingraham [117].
On the contrary, it was just shown by Lee that time (namely, a space–time
coordinate) can be used as a (discrete) dynamic variable [132]. Moreover,
many authors (starting from Dirac [133]) treated mass as a dynamic variable
in the context of scale-invariant theories of gravity [134,135]. Such a point
of view has been advocated also in the framework of modern Kaluza–Klein
theories by the already quoted “Space–Time–Mass” (STM) theory [123].

It is worth stressing that, apart from the previous considerations, we
already ran across some clues of a possible 5D structure underlying DSR.
One such an indication is provided e.g., by generalized energy-momentum
dispersion law (3.100), which – as already stressed – is typical of mul-
tidimensional theories. Another one is provided by the form of the phe-
nomenological metric of strong interaction (see Sect. 4.1.3), in particular
expressions (4.12), (4.13) of the space coefficients b2,strong =

√
2/5 and

b3,strong = 2/5. Indeed, the 5 at the denominators are reminiscent of
the same factor entering the relation between the Ricci tensor and the
scalar curvature in a 5D Riemann space, RAB = (R/5)gAB , with gAB

being the 5D metric tensor.1 Another clue is the interpretation of the

1In fact, let us consider the vacuum Einstein equations with a cosmological constant
Λ in a N -dimensional Riemann space:

RAB − 1

2
RgAB = ΛgAB .

By contracting on A, B and using the well-known property gDAgAB = δD
B , one gets

R =
2n

2 − n
Λ.

Then

RAB =

(

1

2
R + Λ

)

gAB =
R

n
gAB

(M. Mamone Capria, private communication).
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hadronic law of time deformation, (17.3), as a relation of power conser-
vation, W = const. (needed to explain the mechanism of piezonuclear
reactions: see Sect. 16.3.5). As already stressed, in a 5D optics this means
moving along the extra dimension energy at constant speed (namely it
amounts to a principle of inertia for energy). Another possible experimental
inkling of the fifth dimension can be found in the double-slit-like experi-
ments (Chap. 13). Indeed, we have seen that, in order to put the anomalous
interference effect into evidence, it is necessary to employ a suitable time
sampling of the measurements. On account of the fact that the phenom-
enon has a threshold behavior both in space and in energy, we can state
it to occur in a well-defined space–time–energy, 5D region. Moreover, the
crucial dependence on the time sampling can be interpreted as follows. As
is well known, a way to realize one lives on a curved manifold is by means of
the geodesic deviation. For instance, on Earth surface, moving from Equa-
tor along two meridians shows that the meridian separation decreases, thus
implying Earth surface is curved (Wheeler’s “parable of the two travelers”).
However, the travelers are able to discern the decrease of their relative sep-
aration only if they move an appreciable distance (compared to the Earth
radius of curvature). Otherwise, no separation is seen and they remain con-
vinced that Earth is flat. In our opinion, the anomalous interference effect
is not only related to the deformation of space–time (and therefore to the
breakdown of LLI), but also to the Gaussian curvature of the 5D space–
time–energy manifold �5. Selecting the suitable time sampling amounts
therefore to choose the time magnitude scale necessary to detect the cur-
vature of the 5D region in which the anomalous effect shows up.

19.2 The 5D Space–Time–Energy Manifold �5

On the basis of the arguments of Sect. 19.1, we assume therefore that
physical phenomena do occur in a world which is actually described by
a 5D space–time–energy manifold �5 endowed with the energy-dependent
metric:2

gAB,DR5(E) ≡ diag(b20(E),−b21(E),−b22(E),−b23(E), f(E)) ESC off=

= δAB

(

b20(E)δA0 − b21(E)δA1 − b22(E)δA2 − b23(E)δA3 + f(E)δA5

)

.
(19.1)

2In the following, capital Latin indices take values in the range {0, 1, 2, 3, 5}, with

index 5 labeling the fifth dimension. We choose to label by 5 the extra coordinate,

instead of using 4, in order to avoid confusion with the notation often adopted for the

(imaginary) time coordinate in a (formally) Euclidean Minkowski space.
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It follows from (19.1) that E, which is an independent nonmetric variable
in DSR, becomes a metric coordinate in �5. Then, whereas gµν,DSR(E)
(given by (2.17)) is a deformed, Minkowskian metric tensor, gAB,DR5(E) is
a genuine Riemannian metric tensor.

Therefore, the infinitesimal interval of �5 is given by

ds2
DR5(E) ≡ dS2(E) ≡ gAB,DR5(E)dxAdxB

= b2
0(E)

(

dx0
)2 − b2

1(E)
(

dx1
)2 − b2

2(E)
(

dx2
)2 − b2

3(E)
(

dx3
)2

+ f(E)
(

dx5
)2

= b2
0(E)c2 (dt)2 − b2

1(E)
(

dx1
)2 − b2

2(E)
(

dx2
)2 − b2

3(E)
(

dx3
)2

+ f(E)l20 (dE)2 ,

(19.2)

where we have put
x5 ≡ l0E , l0 > 0. (19.3)

The constant l0 provides the dimensional conversion energy→ length,
and it has therefore the dimensions of the inverse of a force. On physical
grounds, it is expected to be a fundamental constant of DR5, so it is worth
trying to guess a possible identification of l0. Let us recall that in Sect. 4.2
we already came across a quantity built up by fundamental constants with
dimensions of a force: the Kostro constant or Planck force K = c4/G (see
(4.27), which can be interpreted as the greatest possible force in Nature
[40]). Then, it is natural to assume

l0 =
1
K

=
G

c4
=

1
8π

κ, (19.4)

where κ is the gravitational coupling constant of the usual, four dimen-
sional Einstein equations Gµν = κTµν (with Gµν = Rµν − 1

2gµνR and
Tµν being the Einstein curvature tensor and the energy–momentum ten-
sor, respectively). Therefore, identifying l0 with the inverse of the Kostro
constant has as consequence that it coincides with the gravitational con-
stant κ apart from the numerical factor 8π (which however is essentially
due to the choice of the unit system). As is well known, in General Rela-
tivity κ determines the effectiveness of the energy density of the source in
deforming space–time and can be interpreted as the force per unit area
required to give space–time a unit curvature.3 If the identification (19.4)
is correct, then l0, and consequently κ, plays an analogous role in DR5,
namely it is related in an essential way to the curvature of �5 – which in
turn reflects itself in the deformation of the 4D space–time ˜M – whatever
the interaction involved. In the framework of DR5, therefore, the gravita-
tional constant rises, from mere coupling constant for the gravity only, to
the role of universal constant of deformation, valid for all interactions.

Since the space–time metric coefficients are dimensionless, it can be
assumed that they are functions of the ratio E/E0, where E0 is an energy

3Remember that curvature has dimensions l−2.
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scale characteristic of the interaction (and the process) considered (for
instance, the energy threshold in the phenomenological metrics of Sect. 4.1).
The coefficients

{

b2µ(E)
}

of the metric of ˜M(E) can be therefore expressed
as

{

bµ

(

E

E0

)}

≡
{

bµ

(

x5

x5
0

)}

=
{

bµ(x5)
}

∀µ = 0, 1, 2, 3, (19.5)

where we put
x5

0 ≡ l0E0 . (19.6)

As to the fifth metric coefficient, one assumes that it too is a function
of the energy only: f = f(E) ≡ f(x5) (although, in principle, nothing
prevents from assuming that, in general, f may depend also on space–time
coordinates {xµ}, f = f({xµ} , x5)). Unlike the other metric coefficients, it
may be f(E) ≶ 0. Therefore, a priori, the energy dimension may have either
a time-like or a space-like signature in �5, depending on sgn (f(E)) = ±1.
In the following, it will be sometimes convenient assuming f(E) ∈ R+

0 and
explicitly introducing the double sign in front of the fifth coefficient.

In terms of x5, the (covariant) metric tensor can be written as

gAB,DR5(x5) = diag(b20(x
5),−b21(x5),−b22(x5),−b23(x5),±f(x5))

ESC off
= δAB

[

b20(x
5)δA0 − b21(x

5)δA1 − b22(x
5)δA2 − b23(x

5)δA3 ± f(x5)δA5

]

.

(19.7)

On account of the relation

gAB
DR5(x

5)gBC,DR5(x5) = δA
C , (19.8)

the contravariant metric tensor reads

gAB
DR5(x

5) = diag(b−2
0 (x5),−b−2

1 (x5),−b−2
2 (x5),−b−2

3 (x5),±
(

f(x5)
)−1

)

ESC off
= δAB

[

b−2
0 (x5)δA0 − b−2

1 (x5)δA1 − b−2
2 (x5)δA2 − b−2

3 (x5)δA3

±
(

f(x5)
)−1

δA5

]

.

(19.9)

The space �5 has the following “slicing property”

�5|dx5=0⇔x5=x5 = ˜M(x5) =
{

˜M(x5)
}

x5=x5
(19.10)

(where x5 is a fixed value of the fifth coordinate) or, at the level of the
metric tensor:

gAB,DR5(x5)
∣

∣

dx5=0⇔x5=x5∈R+
0

= diag
(

b20(x5),−b21(x5),−b22(x5),−b23(x5),±f(x5)
)

= gAB,DSR(x5).

(19.11)
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We recall that in general, in the framework of 5D Kaluza–Klein (KK)
theories, the fifth dimension must be necessarily space-like, since, in order
to avoid the occurrence of causal (loop) anomalies, the number of time-like
dimensions cannot be greater than one. But it is worth to stress that the
present theory is not a Kaluza–Klein one. In “true” KK theories, due to
the lack of observability of the extra dimensions, it is necessary to impose
to them the cylindricity condition. This is not required in the framework
of DR5, since the fifth dimension (energy) is a physically observable quan-
tity (think to the Minkowski space of standard SR: There is no need to
hide the fourth dimension, since time is an observable quantity). Actu-
ally, in DR5 not only the cylindricity condition is not implemented, but
it is even reversed. In fact, the metric tensor gAB,DR5(x5) depends only
on the fifth coordinate x5. Therefore, one does not assume the compactifi-
cation of the extra coordinate (one of the main methods of implementing
the cylindricity condition in modern hyperdimensional KK theories, as dis-
cussed in Chap. 18), which remains therefore extended (i.e., with infinite
compactification radius). The problem of the possible occurrence of causal
anomalies in presence of more time-like dimensions is then left open in the
“pseudo-Kaluza–Klein” context of DR5. This is reflected in the uncertainty
in the sign of the energy metric coefficient f(x5). In particular, it cannot be
excluded a priori that the signature of x5 can change. This occurs whenever
the function f(x5) does vanish for some energy values. As a consequence,
in correspondence to the energy values which are zeros of f(x5), the metric
gAB,DR5(x5) is degenerate.

DR5 belongs therefore to the class of noncompactified KK theories .
Moreover, it has some connection with Wesson’s STM theory [123]. Both
in the DR5 formalism and in the STM theory (at least in its more recent
developments) it is assumed that all metric coefficients do in general depend
on the fifth coordinate. Such a feature distinguishes either models from
true Kaluza–Klein theories. However, DR5 differs from the STM model –
as well as from similar ones, like e.g., the Fukui STMC [126] – at least in
the following main respects:

(1) Its physical motivations are based on the phenomenological analysis
of Part I and on the experimental results of Part III, and therefore
are not merely speculative.

(2) The fact of assuming energy (which is a true variable), and not rest
mass (which instead is an invariant), as fifth dimension.4

(3) The local (and not global) nature of the 5D space �5, whereby the
energy-dependent deformation of the 4D space–time is assumed to
provide a geometrical description of the interactions.

4In this respect, therefore, the DR5 formalism rensembles more the one due to Ingra-
ham [117].
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We want to stress that, in embedding the deformed Minkowski space ˜M(x5)
in �5, energy does lose its character of dynamic parameter (the role it plays
in DSR), by taking instead that of a true metrical coordinate, on the same
footing of the space–time ones. This has a number of basic implications.
The first one is of geometrical nature, and is just the passage from a (flat)
pseudoeuclidean metric to a genuine (curved) Riemannian one. The others
consequences pertain to both symmetries and dynamics, as we shall see
in this Part and in the next one. In such a change of role of energy, with
the consequent passage from ˜M(x5) to �5, some of the geometrical and
dynamic features of DSR are lost, whereas others are still present and new
properties appear. Among the former, we recall the basic one – valid at the
slicing level x5 = const. (dx5 = 0) – related to the Generalized Lagrange
Space structure of ˜M(x5), which implies the natural arising of gauge fields,
intimately related to the inner geometry of the deformed Minkowski space
(see Part II). Let us also stress that, in the framework of �5, the depen-
dence of the metric coefficients on a true metric coordinate make them fully
analogous to the gauge functions of non-abelian gauge theories, thus imple-
menting DR5 as a metric gauge theory (in the sense specified in Sect. 4.4).

19.3 Phenomenological 5D Metrics of Fundamental
Interactions

Let us now consider the 4D metrics of the deformed Minkowski spaces
˜M(x5) for the four fundamental interactions (electromagnetic, weak,
strong, and gravitational) (see Sect. 4.1). In passing from the deformed,
special-relativistic 4D framework of DSR to the general-relativistic 5D one
of DR5 – geometrically corresponding to the embedding of the deformed
4D Minkowski spaces

{

˜M(x5)
}

x5∈R+
0

(where x5 is a parameter) in the 5D

Riemann space �5 (where x5 is a metric coordinate), in general the phenom-
enological metrics (4.2)–(4.3), (4.7)–(4.8), (4.10)–(4.13), and (4.17)–(4.18)
take the following 5D form (f(x5) ∈ R+

0 ∀x5 ∈ R+
0 ):

gAB,DR5,e.m.(x
5)

= diag

(

1,−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,±f(x5)

)

; (19.12)
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gAB,DR5,weak(x
5)

= diag

(

1,−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,±f(x5)

)

; (19.13)

gAB,DR5,strong(x
5)

= diag

(

1 + ̂Θ(x5 − x5
0,strong)

[

(

x5

x5
0,strong

)2

− 1

]

,−
(√

2

5

)2

,

−
(

2

5

)2

,−

{

1 + ̂Θ(x5 − x5
0,strong)

[

(

x5

x5
0,strong

)2

− 1

]}

,±f(x5)

)

; (19.14)

gAB,DR5,grav.(x
5)

= diag

(

1 + ̂Θ(x5 − x5
0,grav.)

[

1

4

(

1 +
x5

x5
0,grav.

)2

− 1

]

,−b2
1,grav.(x

5),

−b2
2,grav.(x

5),−

{

1 + ̂Θ(x5 − x5
0,grav.)

[

1

4

(

1 +
x5

x5
0,grav.

)2

− 1

]}

,±f(x5)

)

.

(19.15)

As we are going to show, all the earlier metrics – derived on a mere phe-
nomenological basis, from the experimental data on some physical phe-
nomena ruled by the four fundamental interactions, at least as far as their
space–time part is concerned – can be recovered as solutions of the vacuum
Einstein equations in the 5D space �5, natural covering of the deformed
Minkowski space ˜M(x5).




