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Abstract - Mining emerging patterns (EPs) in rare-class databases is one 
of the new and difficult problems in knowledge discovery in databases 
(KDD).  The main challenge in this task is the limited number of rare-
class instances.  This scarcity limits the number of emerging patterns that 
can be mined for the rare class.  In this paper, we propose a novel 
approach for mining emerging patterns in rare-class datasets.  We 
experimentally prove that our method is capable of gaining enough 
knowledge from the rare class; hence, it increases the performance of EP-
based classifiers.    

I. INTRODUCTION 
The rare-class problem is faced in many real life 

applications.  These applications include direct marketing, 
web log analysis, and intrusion detection in security 
networking systems.  The main challenge in this problem is 
the scarcity of the rare cases.  This challenge prevents 
classification methods from gaining enough knowledge from 
the rare class. 

In this paper, we introduce a new method for mining 
emerging patterns (EPs) in rare-class datasets.  EPs are a new 
kind of patterns introduced recently [2].  They have been 
proved to have a great impact in many applications [1] [5] [6] 
[8] [9].  EPs can capture significant changes between datasets.  
They are defined as itemsets whose supports increase 
significantly from one class to another.  The discriminating 
power of EPs can be measured by their growth rates.  The 
growth rate of an EP is the ratio of its support in a certain 
class over that in another class.  Usually the discriminating 
power of an EP is proportional to its growth rate. 

For example, the Mushroom dataset, from the UCI 
Machine Learning Repository [7], contains a large number of 
EPs between the poisonous and the edible mushroom classes.  
Table 1 shows two examples of these EPs.  These two EPs 
consist of 3 items.  e1 is an EP from the poisonous mushroom 
class to the edible mushroom class.  It never exists in the 
poisonous mushroom class, and exists in 63.9% of the 
instances in the edible mushroom class; hence, its growth rate 
is ∞  (63.9 / 0).  It has a very high predictive power to 
contrast edible mushrooms against poisonous mushrooms.  On 
the other hand, e2 is an EP from the edible mushroom class to 
the poisonous mushroom class.  It exists in 3.8% of the 
instances in the edible mushroom class, and in 81.4% of the 
instances in the poisonous mushroom class; hence, its growth 
rate is 21.4 (81.4 / 3.8).  It has a high predictive power to 
contrast poisonous mushrooms against edible mushrooms. 

 
 
 
 
 

TABLE I 
EXAMPLES OF EMERGING PATTERNS 

 

II. RELATED WORK 
Traditional classification accuracy (percentage of correctly 

classified instances in all classes) is not a suitable metric to 
measure the performance of classifiers in the rare-class 
problem.  For example, suppose we have an imbalanced 
dataset consisting of two classes, and the major class 
contributes 95% of the instances. Then, the traditional 
accuracy can be increased to at least 95% by assuming all data 
instances belong to the major class. 

 
TABLE II 

CONFUSION MATRIX 

 
 

According to the confusion matrix in table 2, the traditional 
accuracy is defined as follows. 

 

TRFMFRTM
TRTMAccuracy

+++
+

= (1) 

 
This accuracy is dominated mainly by the performance of 

classifiers on the major class.  This is because of the large 
ratio between the number of major-class instances and the 
number of rare-class instances in the training set.  The F-
measure ( F ) [10] is a suitable alternative metric to evaluate 

 Classified 
as major 
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Classified 
as rare 
class 

Actual 
Major class 

TM FR 

Actual Rare 
class 

FM TR 

TM = number of major-class instances classified as 
major-class instances 
FR = number of major-class instances classified as 
rare-class instances 
FM = number of rare-class instances classified as 
major-class instances 
TR = number of rare-class instances classified as 
rare-class instances 

EP Support in poisonous 
mushrooms 

Support in edible 
mushrooms 

Growth rate 

e1 0% 63.9% ∞ 
e2 81.4% 3.8% 21.4 

e1 = {(ODOR = none), (GILL_SIZE = broad), (RING_NUMBER = one)} 
e2 = {(BRUISES = no), (GILL_SPACING = close), (VEIL_COLOR = 
white)} 
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classifiers in rare-class classification.  This metric evaluates a 
classifier based on both precision ( P ) and recall ( R ) as 
follows. 
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The F-measure has been used to evaluate a number of 

classification methods designed specifically for rare-class 
problems. 

There is a number of techniques proposed for rare-class 
problems.  On of these techniques is EPRC [3].  This 
approach is based on applying some improving stages to 
maximize the discriminating power of rare-class EPs.  These 
stages include generating new undiscovered rare-class EPs, 
pruning low-support EPs, and increasing the support of rare-
class EPs. 

EPDT [4] aims at supporting decision trees in rare-class 
problems.  It consists of two steps. First, new non-existing 
rare-class instances are generated.  Second, the most important 
rare-class instances are over sampled.  These two steps 
increase the performance of decision trees as they work 
together toward balancing the rare class with the major class. 

Two-phase rule induction (PNrule) [11] tries to find the 
best tradeoff between recall and precision to achieve the 
highest possible f-measure.  It consists of two phases.  In the 
first phase it seeks high recall objective using P-rules.  These 
P-rules detect the presence of the target class.  In the second 
phase the technique seeks high precision objective using N-
rules.  These N-rules detect the absence of the target class.  
The P-rules, mined in the first phase, are not accurate.  The 
reason is that they cover many major-class instances beside 
the rare-class instances.  This is because the high interference 
between the major and rare classes due the scarcity of the 
rare-class.  This problem affects the f-measure negatively.   

III. EMERGING PATTERNS AND CLASSIFICATION 
Let obj = {a1, a2, a3, ... an} is a data object following the 

schema {A1, A2, A3, ... An}.  A1, A2, A3.... An are called 
attributes, and a1, a2, a3, ... an are values related to these 
attributes. We call each pair (attribute, value) an item. 

Let I denote the set of all items in an encoding dataset D.  
Itemsets are subsets of I.  We say an instance Y contains an 
itemset X, if X ⊆  Y.   

 
Definition 1.  Given a dataset D, and an itemset X, the 

support of X in D, sD(X), is defined as 
 

||
)()(

D
XcountXs D

D = (5) 

 
 

 
where countD(X) is the number of instances in D containing X. 

 
Definition 2. Given two different classes of datasets D1 

and D2.  Let si(X) denote the support of the itemset X in the 
dataset Di.  The growth rate of an itemset X from D1 to D2, 
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Definition 3.  Given a growth rate threshold ρ >1, an 

itemset X is said to be a ρ -emerging pattern ( ρ -EP or 

simply EP) from D1 to D2 if ρ≥→ )(
21

Xgr DD . 

Let C = {c1, … ck} is a set of class labels.  A training 
dataset is a set of data objects such that, for each object obj, 
there exists a class label cobj ∈  C associated with it.  A 
classifier is a function from attributes {A1, A2, A3, ... An} to 
class labels {c1, … ck}, that assigns class labels to unseen 
examples. 
 

IV. MINING EPS IN RARE-CLASS DATASETS 
The major problem in mining EPs in rare-class datasets is that 
the number of the rare-class EPs is very small compared to the 
major-class EPs.  Work in [3] aims at solving this problem by 
generating additional EPs.  In this paper, we propose a novel 
method for mining a large number of rare-class EPs to fill the 
gap between the rare class and the major class. 

First, let us investigate the main reason behind the shortage 
in rare-class EPs.  Mining EPs involves some sort of 
comparison between the small population in the rare class and 
the large population in the major class.  That is, the mining 
process aims at finding patterns that exist frequently in the 
small number of rare-class instances and that do not exist very 
frequently in the large number of major-class instances.  This 
difficult restriction limits the number of rare-class EPs 
because the rare-class instances are compared at the same time 
with all the major-class instances. 

Our proposed approach is based on mining rare-class EPs 
by comparing the rare-class instances with subsets of the 
major-class instances instead of the whole range of data. 

The details of our approach are as follows.  Suppose that 
the rare class (RC) and the major class (MC) consist of R and 
M instances, respectively.  The major class is divided into a 
number of subsets, MSj such as j = {1,….,M/R}  and the 
number of instances in each subset is R.  Rare-class EPs are 
mined from RC against each subset of MC.  That is the mining 
process is divided into M/R sub processes rather than one as in 
the normal case.  The results of each sub process are a 
reasonable number of rare-class EPs because the number of 
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instances in RC and each subset MSj is identical.  These rare-
class EPs are distributed in M/R sets (REPSj) each of which is 
related to one of the mining sub processes. 

The rare-class EPs in the M/R sets are combined in one set, 
the EPs are then ranked in a descendent order according to 
their strength.  The strength of an EP e, strg(e), is defined as 
follows. 
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The strength of an EP is proportional to both its growth 

rate (discriminating power) and support.  Notice that if an EP 
has a high growth rate and a low support its strength might be 
low.  In addition, if it has a low growth rate and a high support 
its strength might also be low. 

Suppose that the number of major-class EPs is MEP.  The 
set of ranked rare-class EPs is divided into two subsets.  The 
first subset (called the final subset) contains MEP strongest 
rare-class EPs.  That is, the number of final rare-class EPs 
equals the number of major-class EPs.  The second subset 
(called the pending subset) contains the remaining rare-class 
EPs that are not yet included in the final subset. 

The final stage of our approach involves comparing the 
final subset of rare-class EPs with the major-class EPs.  If an 
EP exists in both the final subset of rare-class EPs and the 
major-class EPs, then it is eliminated from the final subset and 
the strongest EP in the pending subset is added to the final 
subset.  This process ensures that noisy rare-class EPs are 
eliminated from the final subset and the strongest EPs are 
added to this subset. 

• After completing our approach, we end up with two 
sets of EPs.  On of them is related to the major class 
and the other is related to the rare class.  These two 
sets have almost the same number of EPs.  That is, 
rare-class EPs are not rare compared to the major-
class EPs.  The two sets can be used with any EP-
based classifier (such as BCEP [5]) to classify 
unlabeled instances in both classes.  Figure 1 
sketches our proposed method.   

 
Figure1. (a) Mining major-class EPs. (b) Mining rare-class EPs using DEP. 

Rare-class EPs mining using our method (we call it 
division for mining EPs - DEP) are motivated by the 
following points: 

(a) 

RC MSM/R

REPSM/R 

 
 
 

MC

RC

 
 
 

M 

R 

Mining EPs 
for MC EPs of MC 

MEP 

 
 
 

MC

RC 

 
 
 

M 

R 

Dividing MC to M/R 
subsets 

RC MS1

REPS1

RC MS2

REPS2

………………… 

Combining the subsets of 
EPs 

All RC EPs 

Ranking EPs according to 
their strength 

All RC EPs (Ranked) 

Dividing the set of ranked 
EPs 

Final set of RC EPs 

MEP 

Pending set 

(b) 

MINING EMERGING PATTERNS IN RARE-CLASS DATASETS 209



• Dividing the major class into subsets enables the 
discovery of unseen rare-class EPs.  These unseen 
EPs are covered by the overwhelming amount of data 
in the major class. 

• Using the strength function to evaluate the rare-class 
EPs ensures that noisy EPs have minimum effect. 

 

V. EXPERIMENTAL EVALUATION 
We conduct experiments on 12 datasets from UCI 

repository of machine learning databases [7].  These datasets 
are disease, hypothyroid, sick-euthyroid, and nine binary 
datasets formed from the king-rook-king dataset1.  Table 3 
lists these datasets and the percentage of the rare-class for 
each one of them.  We compare our proposed method (DEP) 
with Pnrule [11], boosted PNrule, EPRC [3], and EPDT [4].  
The results are shown in table 42. 

The following points summarize the results: 
• Our proposed method, DEP, outperforms all the other 
methods on all datasets. 
• DEP has the highest average F-measure. 

 

VI. CONCLUSIONS 
Mining emerging patterns (EPs) in rare-class datasets is one of 
the challenging problems in data mining.  This problem is 
considered as the main reason behind the failure of EP-based 
classifiers in the rare-class classification.  In this paper, we 
propose a new technique for mining EPs in rare-class datasets.  
Our proposal is based on dividing the mining process into a 
number of sub processes and then combining the resulted EPs 
according to their strength.  We experimentally prove that our 
method is effective in rare-class classification. 
 

 
TABLE III 

RARE-CLASS DATABASES 
Dataset Percentage of the rare class 
Disease 1.6 

Hypothyroid 4.7 
Sick-euthyroid 9.2 

KRK-5 1.7 
KRK-8 5.1 
KRK-9 6.1 

KRK-10 7.1 
KRK-11 10.2 
KRK-13 14.9 
KRK-14 16.2 
KRK-15 7.7 
KRK-16 1.4 

 
 

                                                           
1 A binary rare-class problem is formed by considering a class as a rare class 
and union of the other classes as one major class. 
2 The first three datasets are not included in the average due to the unavailable 
results for PNrule.  We could not find more results for this technique from 
published research neither from their authors. 

TABLE IV 
F-MEASURE COMPARATIVE RESULTS 

Datasets PNrule BPNrule EPRC EPDT DEP 

Disease - - 73.5 74.9 76.8 
H-thyroid - - 93.7 94.3 95.6 
S-thyroid - - 88.3 88.7 90.2 
KRK-5 63.5 65.8 65.1 65.5 68.4 
KRK-8 52.7 61.8 66.1 66.9 69.8 
KRK-9 43.4 59.1 66 66.7 70.1 

KRK-10 42.1 54.6 58.2 55.9 63.3 
KRK-11 49 58.6 58.9 58.3 64.9 
KRK-13 58.5 61.6 64.5 65.3 69.5 
KRK-14 61.7 72.9 74.3 74 78.8 
KRK-15 66.1 72.1 74.9 74.8 77.4 
KRK-16 56.4 70.2 78.5 78.2 83.3 
Average 54.8 64.1 67.4 67.3 71.7 
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