
PSL: Beyond Hardware Verification

Ziv Glazberg, Mark Moulin, Avigail Orni, Sitvanit Ruah,
and Emmanuel Zarpas

Abstract In recent years, the language PSL (Property Specification Language, a.k.a.
IEEE P1850) has been embraced and put to successful use by chip design/verification
engineers across the electronics industry. While PSL is mainly used for hardware ver-
ification, it can, in fact, be used to verify a wide variety of systems, including missile
interception systems, railway interlocking protocols, system automation policies, and
even business processes. We discuss and exemplify how PSL can be used as a general
purpose language for the specification of models and properties, beyond hardware
systems.

Keywords: PSL, nonlinear controllers, concurrent reactive systems, policy-based
system automation.

1 Introduction

Since its approval by the IEEE, the Property Specification Language (PSL IEEE
P1850, [21]) has met with huge success in the hardware verification community. It is
widely used for industrial hardware verification and is supported by a wide range of
vendors. PSL is mainly considered a hardware specification language; however, its
use is not restricted to hardware verification. While some features such as clocking
are close to hardware, on the whole PSL is a general property specification language.

The goal of this paper is to illustrate how PSL can be used outside the hardware
verification scope. Section 2 describes PSL. Section 3 focuses on the use of PSL
for the modeling and verification of antimissile interception hybrid control system.
Section 4 describes our work in statically checking the output of IBM Rational Rose
Real-Time (RoseRT), a widely used model-driven development tool for concurrent
reactive systems. Section 5 deals with the modeling and verification of Tivoli System
Automation policies.

2 Property Specification Language (PSL)

PSL, the Property Specification Language, is a language for specifying properties. It
is typically used for specifying temporal properties of systems, i.e., properties that
deal with the behavior of a system over time. The main part of PSL is based on the

S. Ramesh and P. Sampath (eds.), Next Generation Design and Verification Methodologies 245
for Distributed Embedded Control Systems, 245–260.
c© Springer 2007

246 Ziv Glazberg et al.

temporal logic Linear Time Logic (LTL) [13], augmented with regular expressions.
PSL originated as the Sugar language, which was used by the IBM RuleBase PE
model checking tool [22], and later evolved into an IEEE standard.

This section presents a brief overview of PSL. Only a small selection of the lan-
guage is shown here. A clear and comprehensive introduction to PSL can be found
in [7]. The official definition of PSL is in IEEE Std. 1850-2005 [21].

2.1 Simple PSL Examples

We consider a system that accepts requests of some sort and processes them. The
assumption is that our system has some definition of time points, which may be
points at which a system clock ticks (if the system is synchronous), or points at
which certain chosen events occur. PSL only requires that we have a sequence (finite
or infinite) of discrete time points. (The notion of time in PSL is discussed more fully
in the “The Granularity of Time” section.)

Our system has variables such as req, ack, start, busy, and done.
Each variable is true at certain time points. We demonstrate how each of the follow-
ing English statements, which describe system behavior, can be formulated in PSL.

• “Whenever start is true at a time point, busy will be true at the following time
point.”

always (start -> next busy) (1)
• “For every occurrence of req that is immediately followed by ack, processing

of the acknowledged request begins at the next time point after the ack. The
processing sequence begins with start, which is followed by busy for some
number of time points, and ends with done.”

{[*]; req; ack} | => {start; busy[*]; done} (2)

PSL is mathematically rigorous, therefore the properties in PSL are precise and
unambiguous. However, they are also easy to read. Thus, a specification written in
PSL can be used as input for automatic tools and may also serve as part of a human-
readable specification document. In the following section, we present some PSL con-
structs and operators. Many of the PSL operators are based on LTL operators. Other
PSL constructs are based on SEREs (discussed below), which are a type of regular
expression. Another set of PSL operators is based on the CTL language [9] and is not
discussed here.

2.2 SEREs – Regular Expressions in PSL

PSL includes a type of regular expression called a SERE, a Sequential Extended Reg-
ular Expression. SEREs are used to describe scenarios. The simplest type of SERE
is a sequence of Boolean expressions separated by semicolons, such as

PSL: Beyond Hardware Verification 247

{req; !ack; ack}. This SERE describes a scenario spanning three time points,
in which req holds at the first time point, ack does not hold at the second, and ack
does hold at the third.

Generally, a SERE may describe a set of scenarios. For example, the operator [*]
indicates an interval of zero or more time points, in which anything may occur. There-
fore, the SERE {start;[*];done} describes any scenario that begins with start
and ends with done. The [*] operator may also be attached to a Boolean expression.
The expression busy[*] describes an interval of zero or more time points in which
busy is true.

Additional operators serve as shorthand for longer constructions. For example,
{busy[*4]} is equivalent to {busy; busy; busy; busy}. For any constant
number n, the expression busy[*n] describes a sequence of exactly n time points,
where busy holds for all the points. The expression req[=n] describes n occurrences
of req, which may be non-consecutive.

SERE conjunction and disjunction operators create compound SEREs. The con-
junction of two SEREs, using the && operator, describes two scenarios that happen
simultaneously.

For example, in {start; busy[*]; done} && {cancel[=1]}
the left-hand side sub-SERE states that processing takes place (starting with start
and ending with done). On the right-hand side, cancel occurs exactly once. In the
conjunction, both sides happen simultaneously, so cancel occurs exactly once, at
some time point, while processing is in progress.

The disjunction of two SEREs, using the | operator, describes a scenario in which
either the left-hand side or the right-hand side of the disjunction (or both) must occur.

SERE operators may also be nested and combined, as shown:

{{busy[*]} && {cancel[=0]}} | {{req; ack}[*2]}

2.3 PSL Properties with SEREs

SEREs may be used as building blocks of PSL properties. Typically, a property may
be composed of SEREs using the suffix implication operator | =>. For example

{[*]; req; ack} | => {start; busy[*]; done} (3)

This property states that any occurrence of the left-hand side scenario must be
followed by an occurrence of the right-hand side scenario. In this particular case,
{[*]; req; ack} describes a sequence of req followed immediately by ack,
which may occur at any time point (due to the [*] at the beginning of the SERE).
The property states that such a sequence must immediately be followed (starting at
the next time point) by a scenario matching {start; busy[*]; done}. This
property makes a requirement for any occurrence of a {req; ack} sequence,

248 Ziv Glazberg et al.

at any time point, including overlapping occurrences. The following property is very
similar to Formula 3:

{[*]; req; ack} | => {start ;busy[*]; done}! (4)

This property uses the strong version of the right-hand side SERE. Generally, a
SERE is strong if it is followed by an exclamation point (!), and weak if it is not. The
property in Formula 3 is satisfied by a right-hand side scenario in which done never
occurs, and busy stays true until the end of the scenario. The property in Formula 4
is only matched by a scenario in which done eventually occurs.

2.4 Other Property Styles

A PSL property may be written without using SEREs at all. For example:

always (start -> next busy) (5)

The sub-property (start -> next busy) uses the logical implication opera-
tor ->, which has the standard “if-then” meaning. The next operator refers to the
time point that immediately follows the current one. So (start -> next busy)
means, “if start is true at the current time point, then busy must be true at the
next time point”. Applying always to this sub-property means that the sub-property
must hold at every time point. So the entire property means, “Whenever start is
true, busy must be true at the time point that immediately follows”.

The eventually! operator can be used to state that start must occur at some
time point after req occurs (or simultaneously with req), as follows:

always (req -> eventually! start) (6)

In addition, we can combine non-SERE operators with SEREs, creating properties
such as (always {req; ack}| => (start && eventually! done))

2.5 PSL Layers and Flavors

PSL is structured in four layers: the Boolean layer, which contains the Boolean
expressions used in properties; the temporal layer, which contains the temporal prop-
erties and SEREs; the verification layer, for directing the use of PSL by a tool; and
the modeling layer, for modeling behavior of inputs and auxiliary variables.

Based on this layered structure, several flavors of PSL have been defined. The
most generic is the GDL flavor, which is based on the General Description Lan-
guage (GDL). GDL was designed especially for use in the PSL modeling layer, and
can be used for modeling systems in diverse problem domains, at various levels of
abstraction.

PSL: Beyond Hardware Verification 249

The other PSL flavors are based on hardware description languages (HDLs). In
each flavor, the Boolean and modeling layers follow the syntax of the underlying
HDL (or of GDL). The temporal and verification layers are not affected by flavors.

2.6 The Granularity of Time

Time in PSL is discrete; that is, time advances in pre-defined units. For example, the
property ((size == 3) -> next (size > 5)) requires that if size equals
3 now, then at the next time point (size > 5) must hold. The time points are set
by the system, that is, the system being verified has some function that advances by
one time point.

Some PSL operators are not affected by the granularity of time. For example:

• never (at critical [1] && at critical [2]) requires that
at critical [1] and at critical [2] are never true at the same time.

• eventually!(p) requires that p holds now or at some point in the future.
• next event(p)(f) requires that at the first time point at which p holds,
f holds, regardless of the granularity of time.

The PSL operators that are affected by the granularity of time are next, next e, next a
and some of the SERE operators.

The user can change the granularity of time given by the system using the @
operator. For example, assume you want to advance one time point whenever (sta-
tus==OK). You can use the PSL @ operator on your property as follows:

(always ((size==3) -> next (size > 5)))@(status==OK)
(7)

3 Missile Interception Control System

It is a considerable challenge to verify aerospace hybrid control systems, especially
when they include a significant amount of nonlinear dynamics. Recently, in [14],
different nonlinear controllers were applied to a complex aircraft design problem.
While each of the controllers demonstrated some ability to achieve the design criteria,
it was noted that the controllers are labor intensive to design and would require new
approaches for verification other than simulations. In this section, we present PSL-
enhanced formal verification of antimissile control system.

An initial step in formal verification of a hybrid system is to make a reasonable
approximation (discretization) of the nonlinear dynamics to reduce the possibly infi-
nite state space system into a finite state space system. A weakness of such a con-
servative approximation is that it may require a large number of samples, and both
the memory requirements and the computation time of a formal verification tool may

250 Ziv Glazberg et al.

aM VM

VT

T

aT

y

x

reference

r
LOS

α

ϕ

ϕ

β

M

Fig. 1 Geometry of the planar tracking problem

soon become impractical [15]. Usually, the number of states to examine is huge in
applications of practical interest, but in the case of missile tracking, the physical
process is time limited, and can be translated into a bounded model checking appli-
cation. Formal methods verify the antimissile interception using the same difference
equations representation of the system used by the Matlab simulation tool, and the
system properties have straightforward descriptions in PSL.

Consider the problem of a planar moving target interception, depicted in Figure 1
[10, 12]. Both the target T and pursuing missile M are assumed to be point masses
moving in a plane. These are the polar system equations of motion that appear in [10]:

ṙ = VT cos(β − ϕ)− VM cos(α − ϕ)
ϕ̇ = VT sin(β − ϕ)− VM sin(α − ϕ)

(8)

where LOS is the instantaneous missile-target line-of-sight, a time-variant vector
from the pursuer to target; r is the range i.e., the length of the LOS; ϕ is the bearing
angle i.e., the angle between the LOS and the reference line; α is the missile heading
angle; and β is the target heading angle.

The missile is governed by its guidance system, i.e., a compensation network
placed in series with engagement process Eq. (8) to accomplish an interception.
Most of the applied guidance laws belong to the family of Proportional Naviga-
tion guidance laws [11], which have shown good performance against moderately-
maneuvering targets. In the True Proportional Navigation guidance laws, missile
acceleration is usually applied normal to LOS:

⎧
⎨

⎩

aM = −λṙ ϕ̇

V̇M = aM sin(α − ϕ)
α̇ = aM/VM cos(α − ϕ)

(9)

where λ > 0 is a navigation constant. In practice, the control dynamic is implemented
as a sampled control system (a computer-based control).

The closed-loop hybrid tracking system has a free system input; this is the tar-
get acceleration. An intelligent target is expected to perform evasive maneuvers

PSL: Beyond Hardware Verification 251

to increase the probability of its escape. The target maneuver considered below in
Eq. (10) is restricted to the application of the lateral target acceleration normal to the
target velocity; this governs the following input dynamics for the target:

⎧
⎨

⎩

aT = b/(r ϕ̇)

V̇T = aT sin(β − ϕ)

β̇ = aT /VT cos(β − ϕ)
(10)

where b > 0 is a positive constant.
The tuning of this hybrid control system is a very tedious task. The performance of

the derived guidance law is characterized by the capturability (i.e., the ability of the
guidance law to ensure the capture or interception of a target), which is translated into
the capture region bounds. The capture regions may not exist when the initial condi-
tions on range, bearing angle, and their rates are high. Usually, the qualitative analysis
technique is used to obtain the capture region from the chosen target maneuver, final
time to intercept, and sufficient initial conditions for interception [10]. The resulting
controller is relevant only to this specifically chosen target maneuver according to
the specific b parameter value.

In contrast to this, formal methods provide a full coverage of the impacts of b para-
meter perturbations by verifying a logical model of the system to satisfy/dissatisfy
the particular properties. Formal verification formulates the design problem as fol-
lows: define the particular final time and initial conditions, and find the guidance
system parameters that could prevent the escape of the target under these conditions.
This property is realistic and helps design robust controllers, which take into account
realistic target maneuvers.

Systems that have been traditionally analyzed by formal methods are discrete;
therefore, the continuous-time Eq. (8) is transformed into the difference equation
presentation of the continuous-time systems as a periodically-updated system. The
overall system is described in the Verilog language, which has a powerful compiler
that can synthesize the Verilog model into the logical circuit of basic logical gates.
All numbers are represented by 32-bit vectors.

The tracking algorithm is applied to a realistic interception scenario with the ini-
tial range varying around 30 kilometers for a maneuvering target. For this case, the
property is based on a necessary capturability condition that after 10 seconds from
the start of the interception process (or after the k sequences of state transitions),
the distance r between the missile and target must always decrease from the initial
range of 30000 meters to less than 20000 meters. The specially-chosen gain of the
controller (navigation constant) λ = 3 must ensure this. The simulation procedure
usually used to check controller consistency is the launch of Monte Carlo trials. A
formal verification engine found a counterexample in a single run after verifying the
following property formulated in PSL:

Property 1:
define λ = 3;
always(range(0)=30000 − > next[k] (range(k)<20000)) (11)

252 Ziv Glazberg et al.

relative to all possible perturbations of target acceleration parameter b= [950. . .
1000] with granularity 5.

The SAT solver was launched for k = 5 sequences of state transitions (cycles).
The counterexample provides the target acceleration that caused the range to be at
least 21000 meters after the first 10 seconds of the interception process. Because
the designed controller with λ = 3 has not met the requirements of the intermedi-
ate range value, we must tune the navigation constant of the guidance law Eq. (9).
The following property claims that it is impossible to find the navigation constant
λ = [3. . . 5] with granularity 0.1 that ensures the condition r (5) < 20000 meters.

Property 2:
forall λ =[3...5]
always(range=30000 -> next[k] (range>20000)) (12)

After a 94 second run, the RuleBase PE provides a counterexample to Property 2,
saying that navigation constant λ = 3.8 is a suitable control gain for this case.

This successful example illustrates a general methodology for formal analysis of a
control system:

1. Create a discrete model of the system and control law.
2. In PSL, specify the system properties.
3. Verify the initial solution (model vs. properties).
4. If system properties hold, the system design is acceptable.
5. Otherwise, select a (possibly new) candidate control law.
6. Choose a new set of candidate values for control parameters.
7. Create a model of the system with the new control law.
8. Specify the fail claim property: the selected control law, for all perturbations of

control parameters, always fails.
9. Check the model against the fail claim property.

10. If the fail claim property holds, go back to Step 5 or 6.
11. If the fail claim property does not hold, conclude that the values of the control

parameters provided in the counterexample are robust.

This methodology provides a possibility of efficient application of formal analysis
to design and verification of control systems.

4 SMARRT: Static Model Checking and Analysis
for Rose Real-Time

IBM Rational Rose Real-Time (RoseRT) is a widely used model-driven development
tool for concurrent reactive systems. The system’s behavior is specified using a col-
lection of UML [5] diagrams. RoseRT generates code based on the given model.
Since RoseRT is intended to support the entire development process and not just the
design stage, it allows the user to execute and debug the system at the model level.

PSL: Beyond Hardware Verification 253

The model defines the system in an exact and complete representation so that there
is no disparity between the code and the model. In the SMARRT project, we set a
goal to allow users of RoseRT to formally verify the model. As opposed to traditional
testing, formal verification can prove the absence of a bug, and not only the existence
of a feature. Often in the model checking process, verification expertise is required
to build the model, define the specifications, and observe and understand the results.
We, instead, intend to equip RoseRT users with the advantages of model checking,
without requiring the user to be an expert in the field.

4.1 Defining the Model

The RoseRT model describes the entire system, therefore it can be used as the model
that is checked. Using a simple transformation [8], the same behavior is expressed
in a PSL model. In RoseRT, the user can work with certain building-blocks that are
available for describing the behavior of the system. For example, one building block
is a simple message queue. Generated code based on the RoseRT model uses an
efficient code template to perform the desired behavior. The efficiency of this code
should not be misunderstood—it is optimized for execution but not for verification.
Thus, we have hand-modeled these building-blocks in a verification-efficient tem-
plate. When the RoseRT model is translated into PSL, the PSL template is used, just
as the code template is used when the model is translated to code.

Figure 2 shows a small client-server protocol example [6]. This example has two
state machines: one for the client and one for the server. They are connected using

Fig. 2 Client–server protocol

254 Ziv Glazberg et al.

a two-way message queue. The client state machine has three states: Ready, Wait,
and Register. The Server state machine also has three states: Idle, Service, and Fault.
A state machine changes the state, either due to a message it receives or an internal
event. In this protocol, each transition is either associated with the reception or dis-
patch of a message. A state transition is represented by an arc. The arc is tagged by
a sign: plus (+m) represents message reception and minus (−m) represents message
dispatch. Initially, the client is in the Ready state and the server is in the Idle state.

SMARRT generates a PSL model that includes a state variable for each state
machine defined in a state diagram, and a variable for each state machine that defines
non-deterministically which port the state machine will check (the environment
port, a communication port, or none). The variable that defines the state of the state
machine changes according to the content of the checked port and the current state.
If a transition occurs, the appropriate port action is executed (whether sending a
message or getting a message). Different interleavings are modeled by allowing the
state machine to not examine any port, and thus forcing it to stay in the same state.

4.2 Defining the Specification

SMARRT takes advantage of the fact that RoseRT users are comfortable working
with models. The specification is written using an extension of the UML sequence
diagram. Sequence diagrams depict the interactions between objects and their states.
They define a clear timeline, allowing the user to express temporal specifications with
a user-friendly interface. The specification is later translated into a PSL formula that
needs to be verified. Even if users are not familiar with the PSL, they can express
complex constraints that the verified system needs to hold. For a verification process
to be successful, the user must understand which specification to verify. This is key
to the usefulness of the entire process. Though the user should know which “ques-
tions” to ask, SMARRT allows the users to express these questions without prior PSL
expertise.

Figure 3 shows a specification requirement over the client–server protocol spec-
ifying that the client does not enter into a deadlock state. A PSL translation of this
requirement would be eventually! Client State=Ready.

4.3 Model Checking the PSL Model

The translated PSL model and specification is fed to IBM RuleBase PE [4]. Rule-
Base PE can utilize different model checking engines (e.g., SAT-based, BDD-
based, abstraction-refinement, and others) to verify the model. Though a specialized
software-oriented engine exists for RuleBase PE [2, 3] we do not utilize it in verify-
ing these models. We observe that concurrent reactive systems are more similar to
hardware than common software. Typically, in software systems, a relatively small

PSL: Beyond Hardware Verification 255

Fig. 3 Specification equivalent to “eventually! Client State=Ready”

set of variables changes in every cycle, but in hardware, all variables may change
in every cycle. Similarly, in communicating state machines for concurrent reactive
systems, all machines may change their states in every cycle. Due to this similarity,
we believe that hardware model checking techniques are more likely to succeed
on these systems. RoseRT models sometimes introduce hierarchy into the model.
Once the code is generated, the entire hierarchical structure is flattened. Though the
model that needs to be verified is the flattened model, the hierarchy may be used for
abstraction purposes if the model is too big for the model checker to cope with [16].

4.4 Counterexample Generation

If the model is verified and a counterexample is found, it is presented to the user in
a simple and straightforward manner. The counterexample is described using a stan-
dard UML sequence diagram. As every sequence diagram depicts a possible execu-
tion of the system, the counterexample is exactly that—an execution of the system
that violates the specification.

5 System Automation

System automation through policy-based management allows IT administrators to
define high-level policies for various management tasks, such as networked systems
and applications for business environments, network planning, problem detection,
and quality of service provisions. This approach (e.g., [17]) to system management

256 Ziv Glazberg et al.

allows the separation of the rules that govern behavioral choices of the system from
the functionality provided by that system. In a very general way, policies are plans of
an organization to achieve its objectives. A policy can be understood as a high-level
specification of the system to be automated. It is, therefore, natural to translate it into
a formal language and then verify it. Here, we consider policies for the IBM Tivoli
System Automation (TSA) for Multi-Platform [19]. This section focuses on how to
model and check TSA policy with PSL. We translate real-life industrial policies into
PSL and then verify the system with the RuleBase PE model checker.

A TSA policy is a collection of relationships that describes the automated behav-
ior to be enforced by TSA. TSA describes temporal relationships (e.g., A should
start after B) or topological relationships (e.g., A is co-located with B) between
resources that should be enforced by the system. The building blocks of TSA
policies are resources, which can be any piece of hardware or software in the TSA
management scope, located on several nodes of the system. There are three types
of resources in the TSA policy language: fixed resources (Resource), floating
resources (MoveGroup), and references to a resource outside the management
scope of TSA (ResourceReference). Resources can be grouped using the
ResourceGroup or Equivalency constructs, so that they are easier to handle.
TSA policies are described with XML syntax. See [20] for a detailed description of
the TSA policy language.

5.1 Modeling TSA Policies with PSL

To model TSA policies, fixed and floating resources are modeled as state machines in
the GDL flavor of the PSL modeling layer and the relationships are modeled as PSL
assumptions. In the systems we are modeling, time is continuous, while PSL time is
discrete. We deal with this by allowing events to happen at a non-deterministic time
and by considering the atomic unit of time to be the minimum possible time between
two events in the system.

The TSA description provides the name and node of a resource. A resource
can have five states: Unknown, Online, Offline, FailedOffline, and StuckOnline. A
resource state is Unknown when its state is not known by TSA for some reason; a
resource is Online when it is running and Offline when it is not running. A resource is
FailedOffline when it is down with a fatal failure and StuckOnline when it is running
with a fatal failure. Possible transitions (where a transition takes one atomic unit of
time) for the resource state:

Unknown -> Unknown | Online | Offline | FailedOffline | StuckOnline
Online -> Unknown | Online | Offline | FailedOffline | StuckOnline
Offline -> Unknown | Online | Offline | FailedOffline
FailedOffline -> FailedOffline
StuckOnline -> StuckOnline

PSL: Beyond Hardware Verification 257

The amount of time a resource stays in a specific state is non-deterministic and
independent of the behavior of other resources. Resources, resource groups, move
groups, and equivalencies are coded in the PSL modeling language as an array. The
first part of the array codes the node and the second part codes the state. For simplic-
ity’s sake, we denote the node and the state of a resource “r” by r.node and r.state.
Resource transitions are constrained by the relationship.

Relationships are modeled as constraints using the PSL verification layer direc-
tive assume (the assume statement allows specifying an invariant). This allows us
to provide a formal description of TSA policy relationships that are only informally
described in [19] and [20]. We give a few examples of the way relationships are
modeled in PSL.

A StartAfter B means that A must start after B starts. More precisely, when A
starts, B should already be online. This translates to the following PSL verification
directive:

assume always(rose(A.state=Online) -> (B.state=Online &
!rose(B.state=Online))) ;

This means the following property should be an invariant of the model: when A
goes online, B should be online but did not go online at the same moment as A
(always p is PSL syntax for the LTL Gp). This is more complex than expected.
Translation to PSL allows a clearer and non-ambiguous description of the relation-
ships.

A StopAfter B means that A must stop after B does, i.e., when A stops, B is already
offline:

assume always (fell(A.state=Online) -> (B.state in
{Offline, FailedOffline} & !rose(B.state in {Offline,
FailedOffline}))) ;

A Collocated B means that if A is online, A and B are on the same node:

assume always ((A.state=Online) -> A.node=B.node) ;

A Anti Collocated B means that if A is online, A and B are not on the same node:

assume always ((A.state=Online) -> A.node!=B.node) ;

5.2 Verification

Once the model is built, we can check PSL properties against it to perform conflict
detection, validation of the specified policy to ensure it is consistent with the capa-
bilities of the system, deadlock detection, and loop detection.

258 Ziv Glazberg et al.

We don’t check how the system managed by TSA behaves; rather, we check prop-
erties on the policy controlling its behavior. For example, we check that the policy
is not over-constrained in ways that prevent the system from running satisfactorily,
we check that the system can reach the desired state, and we identify whether there
exists a single point of failure with regard to these properties. The following PSL
properties should hold for every policy:

1. assert EF nominal state ;
2. assert AG EX true ;
3. assert AG (desired state1 -> EF desired state2) ;
4. assert AG (desired state1 -> EX desired state1) ;

where nominal state is true when all resource groups are in the desired states
specified in the policy, and desired state1 and desired state2 are chosen
non-deterministically from all the desired states of the system. A desired state of the
system is a state in which each resource group is in a known state, and not failed or
stuck. Thus there are two “good” values per resource group: Online and Offline, and
2n possible values of desired state1 and desired state2.

Property 1 means the system can reach the nominal state specified by the policy.
Property 2 means the system can always follow the policy; i.e., there is no truncated
path. Property 3 means that while running and in a desired state, the system can
reach any other desired state (for instance, if resource group X is offline, all other
resource groups are online, and it is possible to bring the desired resource group
X online and take groups Y and Z offline). Property 4 means that once the system
reaches a desirable state, it can stay there forever (this can be seen as some sort of
termination property; it ensures, for instance, that no loop prevents the system from
staying as long as needed in the desired state). RuleBase automatically checks that
the model is not empty. These properties are rather different to the properties com-
monly used in hardware verification; as, for example, in [18]. The most commonly
used properties for hardware verification are safety properties; non-LTL properties
are uncommon. The properties we have shown so far should hold for every policy,
and thus checking them can be completely automated. In addition, it is possible to
perform policy-specific checks using RuleBase PE.

We built an ad hoc translator that semi-automatically translates the XML TSA
policy into a model (described in the previous section) and extracts the definitions
needed for the automated properties. We then checked these properties with the Rule-
Base PE model checker. Our work was used to verify several real-life TSA policies.

6 Conclusion

In this paper, we encourage readers to view PSL from a novel perspective, such that
its use should not be limited to hardware verification. We do this by reviewing the
application of PSL to various fields, such as missile interception algorithms, gener-
ated code for concurrent systems, or policies from policy-based middleware. There is

PSL: Beyond Hardware Verification 259

a large amount of literature available about CTL and LTL use; this is also relevant for
PSL since CTL and LTL are sub-languages of PSL. As PSL is an IEEE standard, we
believe it can be used successfully for a wide variety of problems beyond hardware
verification.

Acknowledgements The authors wish to thank Cindy Eisner for her helpful suggestions.

References

1. Dakshi Agrawal et al. Policy Management of Networked Systems and Applications. In Proc. of
9th Intl. Symp. on Integrated Network Management, IFIP/IEEE 2005.

2. S. Barner, Z. Glazberg, and I. Rabinovitz. Wolf—Bug Hunter for Concurrent Software Using
Formal Methods. In Proc. of 17th International Conference on Computer Aided Verification,
LNCS 3576, Springer, 2005.

3. S. Barner and I. Rabinovitz. Efficient symbolic model checking of software using partial dis-
junctive partitioning. CHARME, LNCS 2860, 2003.

4. I. Beer et al. RuleBase: An Industry-Oriented Formal Verification Tool. In Proc. of the 33rd
Design Automation Conference, 1996.

5. G. Booch, J. E. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide. Addison-
Wesley, 1999.

6. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the Association
for Computing Machinery, 30(2), 1983.

7. Cindy Eisner, Dana Fisman. A Practical Introduction to PSL. Springer, August 2005.
8. Janees Elamkulam et al. Detecting Design Flaws in UML State Charts for Embedded Software,

to In Proc. of Haifa Verification Conference HVC 2006. LNCS 4383, Springer, 2006.
9. E.M. Clarke and E.A. Emerson, Design and Synthesis of Synchronization Skeletons Using

Branching Time Temporal Logic. In Proc. of Workshop on Logics of Programs, LNCS 131,
Springer, 1981.

10. D. Ghose. True Proportional Navigation with Maneuvering Target, IEEE Trans. on Aerospace
and Electronic Systems, 1994.

11. C.-F. Lin. Modern Navigation, Guidance and Control Processing. Prentice Hall, 1991.
12. M. Moulin, L. Gluhovsky, and E. Bendersky. Formal Verification of Maneuvering Target Track-

ing. Proc. of the AIAA Conf. of Guidance, Navigation and Control, Austin, TX, 2003.
13. A. Pnueli. A Temporal Logic of Concurrent Programs. In Theoretical Computer Science, Vol

13, 1981.
14. M. L. Steinberg. Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws, Jour-

nal of Guidance, Control and Dynamics, 2001.
15. A. van der Schaft, H. Schumacher. An Introduction to Hybrid Dynamical Systems. Springer,

2000. V.251 of Lecture Notes in Control and Information Sciences.
16. A. Wasowski. Flattening Statecharts without Explosions. In Proc. of the 2004 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, 2004.
17. S. Wright, R. Chadha, and G. Lapiotis (eds): Special Issue on Policy Based Networking, IEEE

Networking 16, 2002.
18. Emmanuel Zarpas. A Case Study: Formal Verification of Processor Critical Properties, Correct

Hardware Design and Verification Methods: CHARME 2005, LNCS 3725, Springer 2005.
19. IBM Tivoli System Automation for Multi-platforms, Guide and Reference, version 1.2, IBM,

2004.

260 Ziv Glazberg et al.

20. IBM Tivoli System Automation for Multi-platforms, Base Component Reference, version 2.1.1,
2006.

21. IEEE Standard for Property Specification Language IEEE Std. 1850-2005, 2005.
22. RuleBase PE homepage.

http://www.haifa.il.ibm.com/projects/verification/RB Homepage/index.html, 2006

