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Abstract: Regulation of Calcium (Ca) cycling by the sarcoplasmic reticulum (SR) underlies the
control of cardiac contraction during excitation-contraction (E-C) coupling. Moreover,
alterations in E-C coupling occurring in cardiac hypertrophy and heart failure are
characterized by abnormal Ca-cycling through the SR network. A large body of evidence
points to the central role of: a) SERCA and its regulator phospholamban (PLN) in
the modulation of cardiac relaxation; b) calsequestrin in the regulation of SR Ca-load;
and c) the ryanodine receptor (RyR) Ca-channel in the control of SR Ca-release. The
levels or activity of these key Ca-handling proteins are altered in cardiomyopathies, and
these changes have been linked to the deteriorated cardiac function and remodeling.
Furthermore, genetic variants in these SR Ca-cycling proteins have been identified,
which may predispose to heart failure or fatal arrhythmias. This chapter concentrates on
the pivotal role of SR Ca-cycling proteins in health and disease with specific emphasis
on their recently reported genetic modifiers
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1. INTRODUCTION

Excitation-contraction coupling in cardiac myocytes is initiated by the cardiac action
potential (AP), where depolarization-activates an inward Ca current (ICa), that is
called the Ca-trigger, as it promotes the sarcoplasmic reticulum (SR) Ca release. The
combination of ICa and SR Ca release raises intracellular free [Ca] ([Ca]i), allowing
Ca to bind to the myofilament protein troponin C, which activates contraction. For
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relaxation to occur [Ca]i declines, causing Ca dissociation from troponin C. This
[Ca]i decline is due to transport from the cytosol by four pathways: 1) SR Ca-
ATPase; 2) sarcolemmal Na/Ca exchange (NCX); 3) sarcolemmal Ca-ATPase; and
4) mitochondrial Ca uniport. The most prominent of these is the SR Ca-ATPase.
For the myocyte to be in a steady state with respect to Ca balance, the amount of
Ca extruded from the cell during relaxation must be the same as the amount of Ca
entry at each beat. Likewise, the amount of Ca released from the SR must equal
that re-accumulated by the action of the SR Ca-ATPase.

During heart failure (HF), functional expression of different proteins involved
in E-C coupling is altered, and these changes contribute to altered Ca transients,
contractility and arrhythmias in HF. Furthermore, genetic mutations in the key
Ca-cycling proteins have been recently identified, which contribute to heart failure
and fatal arrhythmias. This chapter will concentrate in recent studies on genetic
modifiers of cardiac function at the level of the sarcoplasmic reticulum.

2. SR CALCIUM-CYCLING

During cardiac relaxation, Ca is transported into the SR lumen by the SR Ca-ATPase,
which is under reversible regulation by phospholamban (PLN). Dephosphorylated
PLN binds to SERCA2a and inhibits the enzyme’s apparent Ca-affinity. However,
phosphorylation of PLN relieves the Ca-ATPase inhibition and enhances Ca-
sequestration, associated with increased relaxation rates and contractility (Simmerman
et al., 1998; MacLennan et al., 2003). In vivo, PLN is phosphorylated by both
cAMP-dependent and Ca-CaM-dependent protein kinases (PKA and CaMK) during
�-adrenergic stimulation (Kranias, et al., 1982; Wegener, et al., 1989; Talosi, et al.,
1993; Lindemann, et al., 1983; Garvey, et al., 1988; Mundina-Weilenmann, et al.,
1996). PLN is the major phosphoprotein mediating the positive inotropic and lusitropic
effects of �-adrenergic receptor (�-AR) agonists (Wegener, et al., 1989; Talosi,
et al., 1993; Lindemann, et al., 1983; Garvey, et al., 1988; Mundina-Weilenmann,
et al., 1996). Reversal of PLN phosphorylation occurs by the SR-associated type 1
phosphatase, which is regulated by an endogenous inhibitor-1 protein (Kranias, et al.,
1988).

Initiation of contractions occurs when a Ca-trigger through the outer cell
membrane induces SR Ca-release through the RyRs (SR Ca release channels), which
are coupled to other proteins at the luminal SR surface (triadin, junctin and calse-
questrin) (Zhang, et al., 1997). This quaternary Ca-signaling complex participates in
both intra-SR Ca buffering and modulation of the Ca release process. Termination
of SR Ca release most likely includes RyR inactivation (or adaptation) and a partial
decline in [Ca]SR � When the SR Ca load is elevated, it enhances the fraction of
SR Ca that is released due to stimulation of RyR open probability (Bassani, et al.,
1995; Shannon, et al., 2000) . In addition to effects of [Ca]SR on fractional release
in response to Ca current during E-C coupling, elevation of [Ca]SR also increases
the probability of spontaneous SR Ca release events that can propagate through the
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myocyte as Ca waves and activate aftercontractions, transient inward current and
delayed afterdepolarizations that are arrhythmogenic (Bers, DM, 2001).

2.1. Regulation of SR Calcium-Cycling by Phospholamban

The functional significance of PLN in cardiac muscle has been elucidated through
the generation of mouse models with altered PLN expression levels. Heterozygous
(40% of PLN) and homozygous (no PLN) for PLN deficiency mice (Luo, et al.,
1994; Luo, et al., 1996) indicated that the decreases in PLN levels were associated
with a linear increase in the affinity of SERCA2a for Ca, (Luo, et al., 1996) and
with a linear increase in contractile parameters of isolated cardiomyocytes, perfused
hearts and intact mice (Luo, et al., 1996; Wolska, et al., 1996; Li, et al., 1998;
Lorenz, et al., 1997). The hyperdynamic cardiac function of PLN null hearts could be
minimally stimulated by �-AR agonists. Furthermore, there were no effects of aging
on the hyperdynamic cardiac function and there was no compromise of exercise
performance (Desai, et al., 1999). On the other hand, cardiac overexpression (two-
fold) of PLN was associated with significant inhibition of cardiac function (Kadambi
et a., 1996; Dash et al., 2001). The inhibitory effects of PLN overexpression could
be reversed by �-AR agonist stimulation, which resulted in phosphorylation of the
increased PLN levels. These findings in genetically altered models indicate that
PLN is a major regulator of basal cardiac Ca2+ cycling and contractile parameters
(Figure 1). PLN is also a key determinant of �-AR agonist responses. Furthermore,
only a fraction of the SERCA2 molecules in cardiac SR are functionally regulated
by PLN in vivo.

2.2. Regulation of Cardiac Function by �-Adrenergic
Receptor Signalling

�-adrenergic receptor stimulation of the heart increases cardiac contractility through
enhanced Ca-cycling. The major substrates for the cAMP-PKA axis include PLN,
L-type Ca channels, RyR, troponin I and myosin binding protein C (Figure 2).
The relaxant effect of PKA is mediated mainly by phosphorylation of PLN and
troponin I. PLN phosphorylation speeds up SR Ca reuptake, while phosphorylation
of troponin I speeds up dissociation of Ca from the myofilaments.

Current evidence indicates that PLN phosphorylation appears to be dominant over
troponin I phosphorylation (Li, et al., 2000). The faster SR Ca uptake by phospho-
rylated PLN also contributes to increased SR Ca load, which is available for subse-
quent release, resulting in an inotropic effect. The increased ICa by PKA activation
also contributes to the inotropic effects of the �-AR agonists. The myofilament
effects of PKA appear to be almost entirely attributable to troponin I phospho-
rylation (vs. myosin binding protein C) because substitution of troponin I with a
non-phosphorylatable troponin I abolishes myofilament effects of PKA (Kentish,
et al., 2001; Pi, et al., 2002).
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Figure 1. Schematic representation of PLN regulation of the SR Ca-ATPase Ca-affinity, which reflects
altered SR Ca-load (green dots in SR) (See Colour Plate 24)

RyR phosphorylation by PKA also alters its open probability. In recordings of
single RyR channels in lipid bilayers, PKA treatment enhanced the immediate RyR
opening in response to a very rapid [Ca]i rise (meant to simulate ICa activation), but
it decreased the steady state open probability at a given [Ca]I (Valdivia, et al., 1995).

Figure 2. Both PKA and CaMKII have common molecular targets in E-C Coupling (ICa, RyR and PLN),
The specific amino acids that are targets for phosphorylation (P) differ between PKA and CaMKII, as
well as the intensity of functional regulation (indicated by arrow thickness). Both kinases may bind
directly to the RyR and L-type Ca channel (via an anchoring protein for PKA) (See Colour Plate 25)
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In contrast, Marx, et al., 2000, found that PKA enhanced steady state RyR open
probability in bilayers, attributing this to RyR phosphorylation and consequent
release of FKBP-12.6 from the RyR. PKA effects on diastolic RyR function remain
equivocal because several groups have not found FKBP dissociation from RyR
upon PKA-dependent phosphorylation, and Li, et al., 2002, found no effect of PKA-
dependent RyR phosphorylation on Ca spark frequency in intact or permeabilized
PLN-knockout myocytes (where SR Ca load was not increased) (Li, et al., 2002;
Stange, et al., 2003; Xiao, et al., 2004). During E-C coupling PKA effects on
RyR are also somewhat mixed, and are generally complicated by simultaneous
enhancement of ICa and SR Ca-ATPase and SR Ca content upon PKA activation.
In a systematic E-C coupling voltage clamp study, where ICa and SR Ca content
were controlled, PKA was found not to alter the amount of SR Ca released, but
to increase the initial and maximal rate of Ca release and speed the shut-off of Ca
release (Ginsburg, et al., 2004).

2.3. Regulation of SR by Ca-Calmodulin Dependent Protein Kinase

Parallel to the long-studied regulation of ICa, SR Ca-ATPase/PLN and RyR
by PKA-dependent phosphorylation (Figure 2), these three key targets are also
phosphorylated by Ca-Calmodulin dependent protein kinase (CaMKII), and the
phosphorylation occurs at different molecular sites (Maier, et al., 2003). CaMKII
is responsible for Ca-dependent facilitation of Ca current, which may contribute
somewhat to the positive force-frequency relationship in heart (Yuan, et al, 1994;
Xiao, et al., 1994; Anderson, et al., 1994). However, this is a quantitatively small
stimulation of ICa compared to that produced by PKA activation. PLN phospho-
rylation (at Thr-17) by CaMKII also increases SR Ca-ATPase activity similar to
PKA-dependent phosphorylation of Ser-16 on PLN. While sympathetic stimulation
enhances phosphorylation at both of these sites, PKA-dependent phosphorylation
seems to be functionally predominant (Luo, et al., 1998).CaMKII also phosphory-
lates the RyR and appears to strongly activate SR Ca release, both during diastole
and during E-C coupling (Li, et al., 1997; Guo, et al., 2006). Both PKA and CaMKII
are likely to be co-activated during normal sympathetic stimulation, creating synergy
between these important regulatory signaling pathways.

3. HEART FAILURE (HF)

A major characteristic of human and experimental HF is depressed Ca-cycling
in the cardiac myocyte. The differences in Ca-cycling and contractility between
non-failing and failing myocytes are mainly observed at high heart rates and the
force-frequency relationship is generally less positive in failing vs. non-failing
hearts. This is mainly attributed to depressed SR Ca-transport and SR Ca content,
as suggested by findings on alterations of the protein levels or activity of the key
Ca-cycling proteins (e.g. ICa, SR Ca-ATPase, Na/Ca exchange, myofilament Ca
sensitivity), (Hasenfuss, et al., 1998; Richard, et al., 1998; Mukherjee, et al., 1998;
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Wickenden, et al., 1998; Nabauer, et al., 1998; Phillips, et al., 1998; de Tombe,
et al., 1998; Houser, et al., 2000) and direct cellular measurements of both SR
Ca-ATPase function and SR Ca content (Pogwizd, et al., 2001; Hobai, et al., 2001;
Piacentino, et al., 20003).

3.1. SERCA2A and PLN

Most reports indicate that the SR Ca-ATPase is functionally decreased in almost
all HF models. However the PLN levels are not altered in HF, indicating decreased
Ca-affinity of the SR Ca transport system (Dash, et al., 2001). There are also data to
suggest that the phosphorylation state of PLN may be reduced in HF (Richard, et al.,
1998; Huang, et al., 1999; Schwinger, et al., 1999). This would further reduce the
[Ca]-sensitivity of SR Ca uptake and further slow Ca transport at physiological [Ca]i.
Reduced SR Ca-ATPase function fits well with the characteristic slowed relaxation
and [Ca]i decline of HF. Moreover, when SERCA2 expression in myocytes or failing
hearts is increased or PLN expression is decreased, by adenoviral gene transfer,
relaxation and [Ca]i decline can be accelerated (del Monte, et al., 1999; Miyamoto,
et al., 2000). Thus, it seems clear that reduced SR Ca-transport function is important
in the slowed relaxation and [Ca]i decline characteristic of HF, and correction of
this depressed SR Ca-uptake may hold promise as a therapeutic approach in heart
failure.

3.2. Ryanodine Receptor

Western blots and ryanodine binding generally indicate that the RyR protein levels
are unchanged in heart failure (Go, et al, 1995; Schillinger, et al., 1996; Sainte
Beuve, et al., 1997). However, in the pacing-induced dog HF model and a rabbit
pressure/volume overload HF model, there seems to be down-regulation of RyR
(Vatner et al., 1994; Yano, et al., 2000; Bossuyt, et al., 2005).

The regulation of RyR function may also be altered in HF since some studies have
reported enhanced RyR phosphorylation by PKA and/or CaMKII. This increased
RyR phosphorylation can enhance diastolic RyR open probability, and increased
SR Ca leak has been measured in HF (Marx, et al., 2000; Schwinger, et al., 1999;
Bossuyt, et al., 2005). Whether this involves loss of FKBP binding to the RyR,
(Marx, et al., 2000; McCall, et al., 1996) is controversial. Indeed, some investigators
have indicated that PKA-dependent RyR phosphorylation has no effect on Ca sparks
(Li, et al., 2002) and may not alter FKBP12.6 binding (Stange, et al., 2003; Xiao,
et al., 2004).

Buffering of Ca inside the SR is probably unaltered in HF, because calsequestrin
(and calreticulin) does not seem to be altered in HF (Maier, et al., 2003; Richard,
et al., 1998). This means that if SR Ca content is lower in HF, free [Ca]SR may
also be lower. Although there are few measures of SR Ca in HF under relatively
physiological conditions, SR Ca content seems to be reduced in human, (Piacentino,
et al., 2003; Lindner, et al., 1998) rabbit (Pogwizd, et al., 1999 & 2001) and dog,



Calcium and cardiomyopathies 529

(Hobai, et al., 2001) based on caffeine-induced Ca transients. Reduced SR Ca
content is sufficient to largely explain the reduced twitch Ca-peak and contractile
function in HF.

3.3. Human SERCA2 Mutations in Heart Failure

There is only one report on naturally occurring mutations in the human SERCA2
gene (Schmidt, et al., 2003). This study concentrated on exons 8, 15, 16, 18, and 19,
corresponding to the SERCA2-PLN interaction domains, as well as exons 10, 13,
and 14, which covered the phosphorylation and the nucleotide binding/hinge domain
of SERCA2, since mutations in these regions may predispose to the development
of heart failure.

One hundred and sixty one patients with ischemic or idiopathic dilated cardiomy-
opathy (New York Heart Association functional class II-IV) were screened for
SERCA mutations. Double strand sequencing revealed nucleotide changes in exons
8, 15 and 18. However, none of these naturally occurring genetic variants resulted
in amino acid alterations. Furthermore, there were no mutations or single nucleotide
changes observed in exons 10, 13, 14, 16, and 19. Thus, although the SERCA2
mRNA and protein levels are altered in human heart failure, the SERCA2 gene
is highly conserved in patients with heart failure. There were only four nucleotide
changes identified in the SERCA2 gene in three out of eight exons examined. All
of these alterations were conservative (Schmidt, et al., 2003). Thus, the SERCA2a
gene is tightly regulated to maintain proper intracellular Ca2+ cycling. It is inter-
esting to speculate that even minor alterations in the SERCA2a gene cannot be
accommodated and result in premature death, which may not allow their discovery
in adult heart failure.

3.4. Human PLN Mutations in Dilated Cardiomyopathy

Three PLN mutations in the coding region have been reported to date. Interestingly,
all three appeared to be inherited in a familial manner. One of these is the mutation
of R9C, which was associated with the inheritance of dilated cardiomyopathy in
a large American family (Schmitt, et al., 2003). Carriers of this mutation had a
mean age of 25 years. The effects of R9C-PLN appeared to be linked to significant
decreases in PLN phosphorylation. Transgenic mice overexpressing human PLN-
R9C mutant exhibited dilated cardiomyopathy and early death. To elucidate the
mechanisms underlying the detrimental effects of this mutant, the R9C-PLN was
expressed in HEK cells. When the mutant-PLN was co-expressed with WT-PLN, it
did not relieve the inhibition of SERCA2a by WT-PLN. The R9C mutant appeared
to exhibit enhanced affinity for PKA, preventing the PKA-phosphorylation of WT-
PLN. These findings suggest that the dominant effects of this mutation in affected
individuals may be associated with chronic inhibition of SERCA2a. Thus, inhibition
of PLN phosphorylation is sufficient to cause the onset of dilated cardiomyopathy
in humans in their teenage years.
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A second mutation, associated with a termination codon at amino acid 39
(L39stop) was discovered in two large families (Franz, et al., 2001). Truncation of
the 52 amino acid protein occurred in transmembrane domain II, which is highly
conserved among species (Mc Tiernan, et al., 1999) and involved in PLN regulation
of SERCA2a affinity for Ca2+ (Brittsan, et al., 2000). In the first family, there
were two homozygous individuals, which developed severe dilated cardiomyopathy
and required cardiac transplantation at young age. Histopathological examination
of both explanted hearts revealed fibrosis and myofibrillar disarrangement. The
heterozygous individuals exhibited normal left ventricular function but some of
them appeared with left ventricular hypertrophy. In the second family, there were
two brothers identified, who were heterozygous for the L39stop-PLN mutation.
Interestingly, both of them were diagnosed with cardiomyopathy. Their father had
also died of dilated cardiomyopathy and their mother was homozygous for wild-
type PLN. The rest of the heterozygous subjects in this family had normal left
ventricular systolic function but some of them exhibited left ventricular hyper-
trophy, similar to the first family. These finding indicate incomplete penetrance of
the cardiomyopathy phenotype.

The function of PLN-L39stop on SR Ca2+ transport was elucidated by expression
studies in HEK cells. Co-expression of human wild-type PLN (PLN-WT) with
SERCA2a resulted in decreased apparent affinity for Ca2+, but co-expression of
SERCA2a with PLN-L39stop had no effect. When the wild type and mutant PLN
were co-expressed with SERCA2a, the decrease in the apparent Ca2+ affinity was
similar to that observed in by WT-PLN, indicating that the PLN-L39stop mutant
does not exert any effects on SERCA2a activity.

Furthermore, infection of adult rat myocytes with adenoviral vectors containing
either wild-type or L39stop PLN cDNAs indicated that wild type PLN decreased the
contractile parameters and calcium kinetics, compared to control cells infected with
an adenovirus expression GFP. However, the PLN-L39stop did not alter myocyte
mechanics or calcium cycling.

Western blots of microsomal fractions from transfected HEK-293 cells with the
PLN-L39stop mutant, indicated that the PLN-L39stop protein could not be detected.
In addition, confocal microscopy in HEK-293 cells transfected with PLN-L39stop
revealed detectable immunoreactive protein signals in a small percent of cells and
the PLN-mutant was mainly localized to the cell membrane, compared with PLN-
WT, which localized to the endoplasmic reticulum. Consistent with these findings,
human PLN-L39stop homozygous ventricles had no detectable PLN.

Thus, PLN is an important regulator of human SERCA2a due to the large cardiac
reserve required for flight or fight situations, allowing 2–3 fold increases in heart
rate. In contrast, the mouse exhibits heart rates ranging up to 800 bpm and it is
operating close to its maximal rate, with low cardiac reserve. Intuitively, the rapid
Ca-cycling in mouse hearts does not depend on PLN, while PLN is essential for
normal function in the human heart.

More recently, another human PLN mutation, which deletes Arg 14 in
the coding region was identified. This mutation is associated with inherited
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human dilated cardiomyopathy and premature death. Some of the heterozygous
individuals presented dilated cardiomyopathy with ventricular extra systolic beats
and ventricular tachycardia. These symptoms progressed to congestive heart failure
by middle age. However, other young heterozygous subjects were asymptomatic
with normal echocardiography, indicating that the effects of this mutation may
be age-dependent. In accordance, cardiac overexpression of PLN-R14Del in the
mouse recapitulated human dialed cardiomyopathy with abnormal histopathology
and premature death.

Expression of the heterozygous mutant-PLN in HEK-293 cells resulted in SERCA
superinhibition. The dominant effect of the PLN-R14Del mutation could not be
reversed, even after �-adrenergic stimulation. Thus, mutant-PLN remains a chronic
inhibitor of SERCA and cardiac Ca-cycling. In accordance, cardiac overexpression
of PLN-R14Del in the mouse recapitulated human dilated cardiomyopathy with
abnormal histopathology and premature death. Increased PLN inhibition over a
period of years may lead to cardiac remodeling, which may progress to failure in
later years.

The superinhibitory effects of the PLN-R14Del mutant maybe due to its structure.
One charged residue (Arg 14) is missing from the three charged Arg (at positions
9, 13, and 14) in wild-type PLN, which may influence the interaction of PLN with
SERCA. Another effect of the Arg 14 deletion is partial disruption of the PLN
pentameric structure. Increases in monomeric PLN are expected to gain inhibitory
function on the apparent affinity of SERCA2a for Ca2+, which may not be relieved
even upon PKA-mediated phosphorylation. A mutation in the PLN promoter region,
which increases PLN expression, has been also identified in human hypertrophic
cardiomyopathy (Minamisawa, et al., 2003). Consistent with findings in trans-
genic mice, an increase in the apparent stoichiometry of PLN/SERCA2 is expected
to result in depressed Ca-cycling and contractility, which may lead to cardiac
remodeling.

Collectively, the human PLN mutant studies indicate that chronic inhibition of
either basal SERCA2a activity (PLN-R14Del mutant) or the �-adrenergic stimu-
lation (PLN-R9C mutant) (Schmitt, et al., 2003) result in heart failure. On the other
hand, absence of PLN inhibition by the PLN-L39stop mutant, associated with the
lack of cardiac reserve, also results in heart failure (Figure 3). Thus, the identifi-
cation of these human PLN mutations point to the paramount importance of PLN
and its role in maintaining normal calcium homeostatic mechanisms in the human
heart.

3.5. Human Calsequestrin Mutations

Calsequestrin (CSQ) is the most abundant Ca-binding protein in the SR lumen,
acting as a low affinity but high capacity Ca buffer (Figure 4) (Mitchell, et al.,
1988). CSQ has also been suggested to have a regulatory effect on the activity of
the RyR (Schillinger, et al., 1996). Some insight into the physiological function of
the protein came from mice overexpressing either canine or murine cardiac CSQ
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Figure 3. Schematic representation of the effects of Human PLN Mutations on the SR Ca-ATPase
Activity and contractility under basal and isoproterenol (PKA)-stimulated conditions (See Colour Plate
26)

Figure 4. Calsequestrin (CSQ) is the main intra-SR Ca buffering protein, and its structure and interaction
with other CSQ and partner proteins (triadin and junctin) is influenced by intra-SR [Ca]. In addition to
its role as a low affinity Ca buffer, CSQ may also regulate RyR gating via its interaction with triadin
and junctin (See Colour Plate 27)
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in the heart. Overexpression of the heterologous protein resulted in hypertrophy
which progressed to heart failure (Solaro, et al., 1974). Overexpression of the
homologous protein was also associated with cardiac hypertrophy and induction
of a fetal gene expression program (Sato, et al., 2001). These mice also exhibited
depressed contractility and Ca transients even though the Ca storage capacity of the
SR was enhanced, which may be due to increased SR Ca buffering.

There are currently two different CSQ genes, a skeletal isoform and a cardiac
isoform (Lehnart, et al., 2004). The cardiac isoform is highly conserved between
species and is the only isoform expressed in the heart. The levels of CSQ are
not altered in the developing heart and in many pathological disease states such
as hypertrophic, ischemic or dilated cardiomyopathy (Gyorke, et al., 2004; Wang,
et al., 2001), suggesting that CSQ expression is under rigid genetic regulation. Inter-
estingly, recent studies have indicated that human mutations in the CSQ gene may
be responsible for catecholaminergic polymorphic ventricular tachycardia (CPVT).
More specifically, a missense mutation was discovered that replaced aspartic
acid (negatively charged residue) with histidine, (a positively charged residue), at
position 307 (Farrell, et al., 2003; Wehrens, et al., 2003). This residue is localized
in a highly conserved Ca binding region and CPVT may therefore be triggered by
disrupted Ca binding. However, it is possible that this mutation may also disrupt the
interaction of CSQ with the RyR. Also, a nonsense mutation was described, which
results in a truncated protein, associated with CSQ ablation (Leenhardt, et al., 1995).
In both situations, the patients present with recurrent syncope, seizures or sudden
death following physical activity or emotional stress. The seizures associated with
the disease are often misdiagnosed as epilepsy, especially since the patients may
recover spontaneously without the need of any resuscitation. These patients appear
to have structurally normal hearts and marked bradycardia under resting conditions.
In general, these patients exhibit arrhythmogenic activity, when a threshold heart
rate of 120 beats per minute (bpm) is exceeded. Although the mean age at which
the first syncope occurs is around 7 years old, cases have been reported, where the
patients were as young as 3 years old. Some insight into the cellular mechanism
underlying this disease were obtained from experiments on reduction of CSQ levels,
using antisense methodology or expression of the D307H mutant in myocytes. Both
of these resulted in disturbances in rhythmic Ca transients with signs of delayed
afterdepolarizations (DADs), when undergoing periodic electrical stimulation and
exposure to isoproterenol (Hoit, et al., 1995; Bassani, et al., 1995). Thus, it was
suggested that the development of this arrhythmogenic disorder is due to impaired
SR Ca storage as well as impaired release through the RyR, resulting in an increase
in diastolic leak, which may cause delayed afterdepolarizations.

4. CONCLUSION

Many proteins contribute centrally to the delicate balance of Ca in cardiac myocytes
that controls cardiac contractility and influence electrical activity. These include
voltage-gated Ca channels, RyR, SERCA2, PLN, calsequestrin and regulatory



534 Kranias and Bers

kinases (and phosphatases), Both genetic and acquired alterations in these Ca
handling proteins in cardiac myocytes contribute to pathophysiological cardiovas-
cular disease. Altered cellular Ca2+ handling can cause reduced systolic or diastolic
cardiac function and also contribute to cardiac arrhythmias.
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