
Chapter 15: Decentralized Formation Tracking of 
Multi-Vehicle Systems with Consensus-Based 
Controllers1

In the problem of formation tracking, multiple unmanned vehicles are re-
quired to follow spatial trajectories while keeping a desired inter-vehicle 
formation pattern in time. This Chapter considers vehicles with nonlinear 
dynamics that follow very general trajectories generated by some reference 
vehicles. Formations are specified using vectors of relative positions of 
neighboring vehicles and using consensus-based controllers in the context 
of decentralized formation tracking control. The key idea is to combine 
consensus-based controllers with the cascaded approach to tracking con-
trol, resulting in a group of linearly coupled dynamical systems. Two types 
of tracking controllers are proposed under different information flow to-
pologies. Their stability properties are examined by using nonlinear syn-
chronization theory. Simulation results are presented to illustrate the pro-
posed method. The major advantage of the approach is that it is applicable 
to both unmanned ground vehicles, as well as aerial vehicles flying at a 
certain altitude. As such, the Chapter refers to ‘unmanned mobile vehicles’ 
in general. 

15.1 Introduction

Control problems involving unmanned mobile vehicles have attracted con-
siderable attention in the control community during the past decade. One 
of the basic motion tasks assigned to a mobile vehicle may be formulated 
as following a given trajectory [13] [25]. The trajectory tracking problem 
was globally solved in [20] by using a time-varying continuous feedback 
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law, and in [2] [12] [16] through the use of dynamic feedback lineariza-
tion. The backstepping technique for trajectory tracking of nonholonomic 
systems in chained form was developed in [6] [10]. In the special case 
when the vehicle model has a cascaded structure, the higher dimensional 
problem can be decomposed into several lower dimensional problems that 
are easier to solve [17]. 

An extension to the traditional trajectory tracking problem is that of co-
ordinated tracking or formation tracking as shown in Figure 15.1. The 
problem is often formulated as to find a coordinated control scheme for 
multiple unmanned vehicles that forces them to maintain some given, pos-
sibly time-varying, formation while executing a given task as a group. The 
possible tasks could range from exploration of unknown environments 
where an increase in numbers could potentially reduce the exploration 
time, navigation in hostile environments where multiple vehicles make the 
system redundant and thus robust, to coordinated path following. Detailed 
information may be found in recent survey papers [1] [21]. 

Fig. 15.1. Six unmanned vehicles perform a formation tracking task. 

In formation control of multi-vehicle systems, different control topolo-
gies can be adopted depending on applications. There may be one or more 
leaders in the group, with other vehicles following one or more leaders in a 
specified way. In many scenarios, vehicles have limited communication 
ability. Since global information is often not available to each vehicle, dis-
tributed controllers using only local information are desirable. One ap-
proach to distributed formation control is to represent formations using the 
vectors of relative positions of neighboring vehicles and the use of consen-
sus-based controllers with input bias [3] [11]. 

In this Chapter, the formation tracking problem for a group of vehicles 
is studied using the consensus-based controllers combined with the cas-
cade approach [17]. The idea is to specify a reference path for a given, 
nonphysical point. Then a multiple vehicle formation, defined with respect 
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to the real vehicles as well as to the nonphysical virtual leader, should be 
maintained at the same time as the virtual leader tracks its reference trajec-
tory. The vehicles exchange information according to a communication di-
graph, G. Similar to the tracking controller in [17], the controller for each 
vehicle can be decomposed to two ‘sub-controllers’, one for positioning 
and one for orientation. Different from the traditional single vehicle track-
ing case, each vehicle uses information from its neighbors in the commu-
nication digraph to determine the reference velocities and stay at their des-
ignation in the formation. Based on nonlinear synchronization results [27], 
it is proven that consensus-based formation tracking can be achieved as 
long as the formation graph had a spanning tree and the controller parame-
ters are large enough; they can be lower-bounded by a quantity determined 
by the formation graph. 

Related work includes [4] [5] [9] [19] [22]. In [9], the vehicle dynamics 
were assumed to be linear and formation control design was based on al-
gebraic graph theory. In [19], output feedback linearization control was 
combined with a second-order (linear) consensus controller to coordinate 
the movement of multiple mobile vehicles. The problem of vehicles mov-
ing in a formation along constant or periodic trajectories was formulated as 
a nonlinear output regulation (servomechanism) problem in [4]. The solu-
tions adopted in [5] [22] for coordinated path following control of multiple 
marine vessels or wheeled vehicles built on Lyapunov techniques, where 
path following and inter-vehicle coordination were decoupled. Detailed in-
formation on consensus problems in networked systems may be found in 
[15] [18]. 

The proposed approach offers two key contributions: i) The consensus-
based formation tracking controller for nonlinear vehicles is novel and its 
stability properties are examined using cascaded systems theory and nonli-
near synchronization theory; ii) Global results allow one to consider a 
large class of trajectories with arbitrary (rigid) formation patterns and ini-
tial conditions.

Further, a novelty of this research that should not be overlooked is that 
the formation tracking in a 2-D setting studied in this Chapter includes ho-
vercraft coordinating on a flat surface [7] or UAV flying at a constant alti-
tude. Thus, the methodology proposed is easily extended and applied to 
UAV formation tracking in more general settings. 
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15.2 Preliminaries 

15.2.1 Tracking Control of Unmanned Mobile Vehicles 

A kinematics model of a hovercraft with two degrees of freedom is given 
by the following equations: 

cos ,  sin ,  x v y v (15.1)

where the forward velocity v and the angular velocity are considered as 
inputs, (x, y) is the center of the rear axis of the vehicle, and  is the angle 
between heading direction and x-axis as shown in Figure 15.2.  
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Fig. 15.2. Mobile hovercrafts and the error dynamics. 

For time-varying reference trajectory tracking, the reference trajectory 
must be selected to satisfy the nonholonomic constraint. The reference tra-
jectory is hence generated using a virtual reference hovercraft [8] which 
moves according to the model: 

cos ,  sin ,  r r r r r r r rx v y v (15.2)

where [xr yr r] is the reference posture obtained from the virtual vehicle. 
Following [8] the error coordinates are defined as (Figure 15.2): 

cos sin 0
sin cos 0
0 0 1

e r

e e r

e r

x x x
p y y y (15.3)

It can be verified that in these coordinates the error dynamics become:
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cos
sin .

e e r e

e e e r e

e r

x y v v
p y x v (15.4)

The aim of (single hovercraft) trajectory tracking is to find appropriate 
velocity control laws v and of the form: 

, , ,

, , ,
e e e

e e e

v v t x y

t x y
(15.5)

such that the closed-loop trajectories of (15.4) and (15.5) are stable in 
some sense (e.g., uniform globally asymptotically stable). As discussed in 
Section 15.1, there are numerous solutions to this problem in the continu-
ous time domain. Here, the cascaded approach proposed in [17] is revis-
ited. As a starting point, the notion of globally K-exponential stability is 
introduced.

Definition 15.1: A continuous function : [0, a)  [0, ) is said to be-
long to class K if it is strictly increasing and  (0) = 0. 

Definition 15.2: A continuous function : [0, a)×[0, )  [0, ) is 
said to belong to class KL if for each fixed s the mapping (r, s) belongs to 
class K with respect to r, and for each fixed r the mapping (r, s) is de-
creasing with respect to s and  (r, s)  0 as s .

Definition 15.3: Consider the system: 

, ,  ,0 0 0x g t x g t t (15.6)

where g(t, x) is piecewise continuous in t and locally Lipschitz in x.
The system (15.6) is called globally K-exponentially stable if there exist 

 > 0 and a class K  function k(·) such that: 
0t tx t k x t e .

Theorem 15.1 ([17]): Consider the system (15.4) in closed-loop with the 
controller:

2

1

,
,

r e

r e

v v c x
c (15.7)

where c1 > 0 c2 > 0. If r(t), ( )r t , and vr(t) are bounded and there exist 
and k such that: 

2
0,

t

rt
d k t t (15.8)
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then the closed-loop system (15.4) and (15.7), written compactly as: 

, ,, ,
r r r re e e e v e vp h x y h p (15.9)

is globally K-exponentially stable. 
In the above, the subscriptions for ,( )

r rvh mean that the error dynamics 
are defined relative to reference velocities vr and r. The tracking condi-
tion (15.8) implies that the reference trajectories should not converge to a 
point (or straight line). 

This also relates to the well-known persistence-of-excitation condition 
in adaptive control theory. Note that control laws in (15.7) are linear with 
respect to xe and e. This is critical in designing consensus-based controller 
for multiple vehicle formation tracking as we shall see below. 

15.2.2 Formation Graphs 

Formations are considered that can be represented by acyclic directed 
graphs. In these graphs, the agents involved are identified by vertices and 
the leader-following relationships by (directed) edges. The orientation of 
each edge distinguishes the leader from the follower. Follower controllers 
implement static state feedback-control laws that depend on the state of the 
particular follower and the states of its leaders. 

Definition 15.4 ([24]): A formation control graph G = (V, E, D) is a di-
rected acyclic graph consisting of the following. 

A finite set V = {v1, . . . ,vN} of N vertices and a map assigning to each 
vertex a control system ( , , )i i i ix f t x u  where xi Rn and ui Rm.
An edge set encoding leader-follower relationships between agents. 
The ordered pair ( , )i j ijv v e  belongs to E if uj depends on the state of 
agent i, xi.
A collection D = {dij} of edge specifications, defining control 
objectives (setpoints) for each j: (vi, vj)  E for some vi  V.

For agent j, the tails of all incoming edges to vertex represent leaders of 
j, and their set is denoted by Lj  V. Formation leaders (vertices of in-
degree zero) regulate their behavior so that the formation may achieve 
some group objectives, such as navigation in obstacle environments or 
tracking reference paths. 

Given a specification dkj on edge (vk,vj) E, a set point for agent j can 
be expressed as r

j k kjx x d . For agents with multiple leaders, the specifi-
cation redundancy can be resolved by projecting the incoming edges speci-
fications into orthogonal components: 
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j

r
j kj k kj

k L
x S x d (15.10)

where Skj are projection matrices with k rank(Skj) = n. Then the error for 
the closed-loop system of vehicle j is defined to be the deviation from the 

prescribed set point j
r
jj xxx

~
, and the formation error vector is con-

structed by stacking the errors of all followers: 

,  \T
j Fx x v V L .

15.2.3 Synchronization in Networks of Nonlinear Dynamical 
Systems

Definition 15.5: Given a matrix V Rn×n , a function f (y, t) : Rn+1 Rn is 
V-uniformly decreasing if 2, ,Ty z V f y t f z t y z for some 

> 0 and all y, z Rn and t R.
Note that a differentiable function f (y, t) is V-uniformly decreasing if 

and only if V( f (y)/ y) + I for some > 0 and all y, t. Consider the fol-
lowing synchronization result for the coupled network of identical dy-
namical systems with state equations: 

1, , , ,
T

nx f x t f x t C t D t x u t , (15.11)

where x = (x1, . . . , xN)T, u = (u1, . . . , uN)T and C(t) is a zero sums matrix 
for each t. C  D is the Kronecker product of matrices C and D.

Theorem 15.2 ([27]): Let Y(t) be an n by n time-varying matrix and V be 
an n by n symmetric positive definite matrix such that f (x, t) + Y (t)x is V-
uniformly decreasing. Then the network of coupled dynamical systems in 
(11) synchronizes in the sense that 0i jx x as t  for all i, j if the 
following two conditions are satisfied: 

lim 0t i ju u  for all i, j;
There exists an N by N symmetric irreducible zero row sums 
matrix U with nonpositive off-diagonal elements such that: 

( ) ( ) ( ) 0U V C t D t I Y t (15.12)

 for all t.
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15.3 Basic Formation Tracking Controller 

The control objective is to solve a formation tacking problem for N un-
manned vehicles. This implies that each unmanned vehicle must converge 
to and stay at their designation in the formation while the formation as a 
whole follows a virtual vehicle. Equipped with the results presented in the 
previous Section, at first one should construct a basic formation tracking 
controller (FTC) from (15.7). Let [  ]

ri ri

T
ri x yd d d denote the formation spe-

cification on edge (vr, vi). In virtue of linear structures of (15.7), the fol-
lowing basic FTC is proposed for vehicle i:

2

1

i

i

i r e

i r e

v v c x

c (15.13)

where c1 > 0, c2 > 0 and: 

cos sin 0
[ ] sin cos 0

0 0 1

ri

i i i i ri

r i xi i
T

e e e e i i r i y

r i

x x d

p x y y y d (15.14)

Remark 15.1: It is not required to have constraints for every pair of ve-
hicles. We need only a sufficient number of constraints which uniquely de-
termine the formation. 

Theorem 15 3: The basic FTC (15.13) and (15.14) solves the formation 
tracking problem. 
 Proof: By Theorem 15.1, every vehicle i follows the virtual (or leader) 
vehicle, thus the desired trajectory, with a formation constraint dri on edge 
(vr, vi). Therefore, all vehicles track the reference trajectory while staying 
in formation, which is specified by formation constraints dri’s as shown in 
Figure 15.3. 
   

Fig. 15.3. Illustration of formation tracking using baseline FTC. The reference ve-
hicle sends to vehicle i the formation specification dri as well as the reference ve-
locities vr and r.
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Corollary 15.1: Suppose only vehicle 1 follows the virtual vehicle. The 
composite system with inputs vr and r and states 

1 1 11 [   ]e e ex x y  is glob-
ally K-exponentially stable and therefore formation input-to-state stable 
(see Section 15.4).

Example 15.1-Basic FTC: Consider a system consisting of three vehi-
cles, which are required to move in some predefined formation pattern. 
First, as in [4], consider the case of moving in a triangle formation along a 
circle. That is, the virtual (or reference) vehicle dynamics are given by: 

00 )sin(,)cos( rrrrrr yrtvyxrtvx
where vr is the reference forward velocity, r the reference angular veloc-
ity, and [xr0 yr0]T the initial offsets. 

Assume that that parameters have the following values: vr = 10, r =
0.2, [xr0 yr0]T = [ 25 0]T . For simulation purposes, an isosceles right trian-
gle was used with sides equal to 3 2 , 3 2 , and 6. Also fixed was the po-
sition of the virtual leader at the vertex with the right angle. Then, from the 
above constraints the required (fixed) formation specifications for the ve-
hicles are given by dr1 = [0  0]T, dr2 = [3  3]T, dr3 = [3  -3]T.

For the basic FTC parameters were chosen as c1 = 0.3 and c2 = 0.5. Fig-
ure 15.4 shows the trajectories of the system for about 100 seconds. Ini-
tially the vehicles are not in the required formation; however, they form 
the formation quite fast (K-exponentially fast) while following the refer-
ence trajectory (solid line in the figure). Figure 15.5 shows the control sig-
nals v and  for each vehicle.  

−100 −80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0
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Fig. 15.4. Circular motion of three vehicles with a triangle formation. Initial vehi-
cle postures are: [ 8 9 3 /5]T for vehicle 1 (denoted as *); [ 15  20 /2]T for 
vehicle 2 (  - square); [ 10 15 /3]T for vehicle 3 (  - diamond). 
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Fig. 15.5. Control signals v and  for virtual vehicle: solid line; vehicle 1: dotted 
line; vehicle 2: dashed line; and vehicle 3: dot-dash line. 

15.4 Consensus-Based Formation Tracking Controller 

The basic FTC has the advantage that it is simple and leads to globally sta-
bilizing controllers. A disadvantage, however, is that it requires every ve-
hicle to get access to the reference velocities vr and r. This further implies 
that the reference vehicle needs to establish direct communication links 
with all other vehicles in the group, which may not be practical in some 
applications.

In a more general setting, one may assume that only a subset of vehicles 
(leaders) have direct access to the reference velocities. Other vehicles (fol-
lowers) use their neighboring leaders’ information to accomplish the for-
mation tracking task. In this case, formation tracking controllers operate in 
a decentralized fashion since only neighboring leaders’ information has 
been used. 

Therefore, the consensus-based FTC for vehicle i is defined as follows:

2

1

( ),

( ),

( ),

( )

i i i ji

i i i ji

i j ii

i j ii

i r e ij e ej L

i r e ij e ej L

r ij r rj L

r ij r rj L

v v c x a x x

c a

v a v v

a

(15.15)

where:
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cos sin 0
sin cos 0
0 0 1

i

i i

i

r
e i i i i

r
e e i i i i

r
i ie

x x x
p y y y .

and aij represents relative confidence of agent i in the information state of 
agent j.

Remark 15.2: As one can see from (15.15), the communication between 
vehicles is local and distributed, in the sense that each vehicle receives the 
posture and velocity information only from its neighboring leaders. 

The following theorem is proven regarding the stability of the consen-
sus-based FTC. 

Theorem 15.4: The consensus-based FTC (15.15) solves the formation 
tracking problem if the formation graph G has a spanning tree and the con-
troller parameters c1, c2 > 0 are large enough. Lower bounds for c1 and c2
are related to the Laplacian matrix for G.
 Proof: Let LG be the Laplacian matrix induced by the formation graph G
and it is defined by: 

1,
,

( )
,             

N
ikk k i

G ij

ij

a j i
L

a j i

with Pe =
1

[ , , ]
N

T
e ep p R3N, [Vr r ]T =

1 1
[ , , , , , ]

N N

T
r r r rv v R2N.

The closed loop system (15.15) - (15.4) for all vehicles can be expressed in 
a compact form as: 

1 1 1
( ) ,

( )

( ) ,
N N N

e r r

e G e

e r r

h p v

P L D P

h p v

, (15.16)

2( ) rr
G

rr

VV
L I , (15.17)

where:

1 0 0
0 0 0
0 0 1

D (15.18)

describes the specific coupling between two vehicles. 
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It can be seen that (15.17) is in the form of linear consensus algorithms. 
Since the formation graph has a rooted spanning tree (with the root corre-
sponding to the virtual vehicle), the reference velocities (coordination vari-
ables) ( )

ir
v t  and ( )

ir
t  for any vehicle i in the group will approach vr(t) and 

r(t), respectively, but with bounded tracking errors [14]. For an easy ex-
position, one may consider the tracking errors to be zero in this proof, and 
defer the discussion of its implication to the end of this Section.   

Therefore, (15.16) may be re-written as:  

1 1
( ) , ( )

( )
( ) , ( )

N

e r r

e G e

e r r N

h p v t
P L D P

h p v t
(15.19)

and i(t)  0 as t . The functions i can be considered as residual er-
rors that occurred when replacing 

ir
v and

ir
 in (15.16) with vr and r, re-

spectively. Now (15.19) is in the same form with (15.12). Further, set Y =
D so that h(pe)+ Dpe is V-uniformly decreasing (see Lemma 11 in [26]) 

provided that c1 > 0 and c2 > 0. Theorem 15.2 states that (15.19) 
synchronizes if there exists a symmetric zero row sums matrix U with non-
positive off-diagonal elements such that (U V)( LG D  I Y) 0.
Since VD 0 and Y = D, this is equivalent to: 

( ) 0GU L I . (15.20)

Let µ( LG) be the supremum of all real numbers such that U( LG I) 0. 
It was shown in [28] that µ( LG) exists for constant row sum matrices and 
can be computed by a sequence of semi-definite programming problems. 
Choose c1 and c2 to be large enough such that: 

1 2min{ , } ( )Gc c L (15.21)

and the proof is complete. 
In particular, an upper bound for µ( LG) is given by µ2( LG) = minRe

( ) where Re( ) is the real part of , the eigenvalues of LG that do not 
correspond to the eigenvector e. It suffices to make min{c1, c2} > µ2( LG).

Example 15.2: In this example, virtual vehicle dynamics are of a sinu-
soidal form: (xr(t), yr(t)) = (t, sin(t)). The acyclic formation graph with 
formation specifications is shown in Figure 15.6. The (un-weighted) Lap-
lacian matrix that corresponds to Figure 15.6 is given by: 
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1 1 0 0
0 2 1 1
0 0 1 1
0 0 0 0

GL . (15.22)

Since µ2( LG) = 2, consensus-based FTC (15.15) was used with posi-
tive c1, c2, say c1 = 0.3 and c2 = 0.5. As shown in Figure 15.7, successful 
formation tracking with a desired triangle formation is achieved. Vehicle 
control signals vi’s and i’s are shown in Figure 15.8.   

Fig. 15.6. A formation graph with formation specifications on edges: 1 [0 0]T
rd ,

12 [3 3]Td , 13 [3 -3]Td , 23 [0 -6]Td .
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Fig. 15.7. Tracking a sinusoidal trajectory in a triangle formation. Initial vehicle 
postures are: [12 12 0]T for vehicle 1 (denoted as *); [ 15  20 /4]T for vehicle 2 
(  - square); [ 10 15 /4]T for vehicle 3 (  - diamond). 
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Fig. 15.8. Vehicle control signals vi’s and i’s.

15.4.1 Discussions on Formation ISS 

In the proof of Theorem 15.4, it was assumed that the reference velocities 
( )

ir
v t  and ( )

ir
t  for any vehicle i in the group will eventually approach to 

vr(t) and r(t).  In fact, ( )
ir

v t  and ( )
ir

t  cannot always follow time-varying 
vr(t) and r(t) without errors, due to the low-pass nature of all consensus 
schemes. But the tracking errors between vr(t) and ( )

ir
v t , r(t) and ( )

ir
t

are known to be bounded, provided that:  
The formation graph has a spanning tree, and,
vr(t) and r(t) are uniformly bounded rate signals, i.e., 1| ( ) |rv t m
and 2| ( ) |r t m  (see Proposition 2 in [14]). 

 A question that is raised naturally is the following: Does a variant of 
Theorem 15.4 hold with 1| |

ir rv v , 2| |
ir r , where 1 and 2 are 

reference velocities tracking errors? The answer is yes. To state this new 
result, one must introduce first the concept of leader-to-formation stability 
(LFS) [23].  

Definition 15.6: A formation is called LFS if there exist a class KL
function  and a class K function , such that for any initial formation error 

(0)x  and for any bounded inputs of the formation leaders, {wl} the forma-
tion error satisfies: 

0( ) ( (0) , ) (sup ( ) )
F

l t l
l L

x t x t w (15.23)
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As a variant of Theorem 15.4, the following theorem takes into account 
the effects of time-varying reference velocities on the formation stability. 

Theorem 15.5: Consensus-based FTC (15) results in LFS if the forma-
tion graph has a spanning tree and the reference velocities are uniformly
bounded rate signals. 

Proof: The proof follows from Corollary 15.1 and the invariance prop-
erty of LFS [23]. 

15.5 Conclusions and Future Work 

This Chapter addressed the formation tracking problem for multiple mo-
bile unmanned vehicles with nonholonomic constraints. A basic formation 
tracking controller (FTC) was developed as well as a consensus-based one 
using only neighboring leaders information. The stability properties of the 
multiple vehicle system in closed-loop with these FTCs were studied using 
cascaded systems theory and nonlinear synchronization theory. In particu-
lar, connections were established between stability of consensus-based 
FTC and Laplacian matrices for formation graphs. The simple formation 
tracking strategy holds great potential to be extended to the case of air and 
marine vehicles.  

Collision avoidance and formation error propagation problems were not 
discussed. The proposed FTC does not guarantee avoidance of collisions 
and there is a need to consider them in future work. Theorem 15.5 showed 
that consensus-based FTC leads to LFS. The invariance properties of LFS 
under cascading could be explored to quantify the formation errors when 
individual vehicle’s tracking errors are bounded. Formation tracking in a 
higher dimension is another interesting problem for future study. 
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