
Chapter 10: Evolutionary Algorithm Based Path 
Planning for Multiple UAV Cooperation1

This Chapter describes an evolutionary based off-line / on-line path plan-
ner for cooperating Unmanned Aerial Vehicles (UAVs). It considers the 
environment characteristics, the flight envelope and mission constraints of 
cooperating UAVs. The scenario under consideration assumes that several 
UAVs are launched from the same or different but known initial locations. 
Then, the main goal is to produce 3-D trajectories that ensure a collision 
free operation with respect to mission constraints. The path planner pro-
duces curved routes that are represented by 3-D B-Spline curves. Two 
types of path planner are discussed: i) the off-line planner that generates 
collision free paths in environments with known characteristics and flight 
restrictions; ii) the on-line planner, based on the off-line one, that generates 
collision free paths in unknown static environments by using acquired in-
formation from the UAV on-board sensors. This information is exchanged 
between cooperating UAVs in order to maximize knowledge of the envi-
ronment. For each UAV, the on-line planner generates rapidly a near opti-
mum path that guides the vehicle safely to an intermediate position within 
the already scanned territory, taking into account mission and cooperation 
objectives and constraints. The process is repeated for each UAV until the 
final position is reached by one of them. Then, each remaining UAV uses 
the acquired information about the environment in order to compute a 
curved path that connects its current position to the final one. Both off-line 
and on-line path planning problems are formulated as optimization prob-
lems, with a differential evolution algorithm serving as the optimizer.  

10.1 Introduction 

Path planning refers to the generation of a space path between an initial lo-
cation and the desired destination, with an optimal or near-optimal per-
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formance under specific constraints [1]. A path planning algorithm may 
produce different candidate plans, which should be compared and evalu-
ated based on specific criteria. Such criteria are generally related to feasi-
bility and optimality of the path generation. The first criterion relates to 
derivation of a plan that moves safely a UAV (an object) to its final state, 
without taking into account the quality of the produced plan. The second 
criterion refers to derivation of optimal, yet feasible, paths, with optimality 
defined according to the problem under consideration [2]. However, 
searching for optimal paths is not a trivial task; in most cases this requires 
excessive computational time; in some cases even computation of just one 
feasible path is a rather involved task. Therefore, the search focuses mostly 
on suboptimal or just feasible solutions. 

Compared to the path-planning problem in other application areas, path 
planning for UAVs requires special characteristics that need be considered 
[3] [4] [5]: i) feasibility, which refers to limitations from using UAVs, 
such as limited endurance and range, minimum turning angle, minimum 
and maximum speed, etc; ii) stealth, in order to minimize the probability of 
detection by hostile sensors; iii) acceptable performance related to as-
signed mission, which imposes special requirements, including maximum 
climbing / diving angle, minimum and/or maximum flying altitude, etc; iv) 
real-time implementation, which asks for computationally efficient algo-
rithms, and, v) cooperation between UAVs in order to maximize the possi-
bility of mission accomplishment. 

Cooperation between UAVs has recently gained increased interest as 
systems of multiple vehicles engaged in cooperative behavior show spe-
cific benefits compared to a single vehicle [6]. Such systems of cooperat-
ing UAVs may be used for fire fighting applications, military missions, 
search and rescue scenarios or exploration of unknown environments 
(space-oriented applications).  

In order to establish a robust framework for efficient and reliable coop-
eration of multiple UAVs, several issues must be addressed: i) the task as-
signment problem that relates to the number of UAVs required to perform 
a mission, with predefined order, on a number of targets; ii) the path plan-
ning problem to provide feasible, flyable and near optimal trajectories that 
connect starting to destination points; iii) the exchange of information be-
tween cooperating UAVs, and data fusion expected to enhance team effec-
tiveness; iv) cooperative sensing of the targets defined as how to ‘use’ 
UAV sensors in terms of their locations to achieve optimal estimation of 
the state of each target [7], and, v) cooperative sensing of the environment 
for better situation awareness.   
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10.1.1 Related Work 

UAV path planning algorithms were initially derived for solving the single 
vehicle case. However, the continuously increasing interest for cooperating 
UAVs has resulted in development of algorithms that take into account 
special characteristics of multi-UAV missions. 

Path planning problems are computationally demanding multi-objective 
multi-constraint optimization problems [8]. Problem complexity increases 
when multiple UAVs are used. Several approaches have been reported for 
coordinated route planning, such as Voronoi diagrams [9], mixed integer 
linear programming [10] [11], and dynamic programming [12] formula-
tions.

In [9] a group of UAVs is required to transition through a number of 
known target locations, with a number of threats present in the region of 
interest. Some threats were known a priori, while some others ‘popped up’ 
or became known only when a UAV flew near them. The motion planning 
problem was decomposed into a waypoint path planner and a dynamic tra-
jectory generator. The path planning problem was solved via a Voronoi di-
agram and Epstein’s k-best paths algorithm. The trajectory generator prob-
lem was solved via a real-time nonlinear filter that explicitly accounted for 
the dynamic constraints of the vehicle and modified the initial path. 

In [13], the motion planning problem for a limited resource of Mobile 
Sensor Agents (MSAs) was investigated in an environment with a number 
of targets larger than the available MSAs. The problem, being a combina-
tion of problems of sensor resource management and robot motion plan-
ning, was formulated as an optimization one with the objective to mini-
mize the average time duration between two consecutive observations of 
each target. 

Computational intelligence methods, such as Neural Networks [14], 
Fuzzy Logic [15] and Evolutionary Algorithms (EAs) [5] [16] have been 
successfully used to derive trajectories for guiding mobile robots in 
known, unknown or partially known environments.  

Besides their computational cost, EAs are considered as a viable candi-
date to solve path planning problems effectively, because of their high ro-
bustness compared to other existing directed search methods, their ease of 
implementation in problems with a relatively high number of constraints, 
and their high adaptability to the special characteristics of the problem un-
der consideration [16]. 

EAs have been successfully used in the past for the solution of the path 
finding problem in ground based or sea surface navigation [17]. A com-
mon practice was to model the path using straight line segments, connect-
ing successive waypoints. In the case of partially known or dynamic envi-
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ronments a feasible and safe trajectory was planned off-line by the EA and 
the algorithm was used on-line whenever unexpected obstacles were 
sensed [18] [19]. EAs have been also used for solving the path finding 
problem in a 3-D environment for underwater vehicles, assuming that the 
path is a sequence of cells in a 3-D grid [20] [21]. 

In [5] a route planner for UAVs was proposed based on evolutionary 
computation. The generated routes enabled the vehicles to arrive at their 
destination simultaneously by taking into account the exposure of UAVs to 
potential threats. The flight route consisted of straight-line segments, con-
necting the waypoints from the starting to the goal points. A real coded 
chromosome representation with certain design variables and state variable 
were used. These variables provided information on the feasibility of the 
corresponding way point and the route segment composed of these points. 
The cost function penalized the route length, high altitude flights or routes 
that come dangerously close to known ground threats. The imposed con-
straints on route segments were relevant to minimum route leg length, 
maximum route distance, minimum flying height, maximum turning angle, 
maximum climbing/diving angle, simultaneous arrival at target location 
and no collision between vehicles. 

In [22] a multi-task assignment problem for cooperating UAVs was 
formulated as a combinatorial optimization problem; a Genetic Algorithm 
was utilized for assigning the multiple agents to perform different tasks on 
multiple targets. Integer encoding was used for the chromosomes, which 
were composed of two rows; the first row presented the assignment of a 
vehicle to perform a task on the target appearing on the second row. The 
proposed algorithm solved the problem efficiently, while taking into ac-
count requirements, such as task precedence and coordination, timing con-
straints, and flyable trajectories. 

In [16] an EA based framework was utilized to design an off-line / on-
line path planner for UAVs autonomous navigation. The path planner cal-
culated a curved path line, represented using B-Spline curves in a 3-D ter-
rain environment; the coordinates of B-Spline control points served as de-
sign variables. The off-line planner produced a single B-Spline curve that 
connected the starting and target points with a predefined initial direction. 
The on-line planner gradually produced a smooth 3-D trajectory aiming at 
reaching a predetermined target in an unknown environment; the produced 
trajectory consisted of smaller B-Spline curves smoothly connected with 
each other. For both off-line and on-line planners, the problem is formu-
lated as an optimization one; each objective function is formed as the 
weighted sum of different terms, which take into account the various ob-
jectives and constraints of the corresponding problem. Constraints are 
formulated using penalty functions. 
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10.1.2 Problem Definition and Proposed Solution

The main scenario considered in this Chapter is the following: A number 
of UAVs are launched from the same or different but known initial loca-
tions with predefined initial directions. The main objective is to derive 3-D 
trajectories, represented by 3-D B-Spline curves, which connect the initial 
locations with a single destination location and ensure a collision free op-
eration with respect to mission constraints. The UAVs are assumed to be 
equipped with a set of on-board sensors, including radar, GPS (Global Po-
sitioning System) / DGPS (Differential GPS), INS (Inertial Navigation 
System) and gyroscopes, through which they sense their surroundings and 
position. Each vehicle is assumed to be a point and its actual size is taken 
into account by equivalent obstacle – ground growing. 

Two types of path planner are discussed: The off-line planner that gen-
erates collision free paths in environments with known characteristics and 
flight restrictions. The on-line planner, being an extension of the off-line 
one based on already reported research in [16]. Knowledge of the envi-
ronment is gradually acquired through the on-board sensors that scan the 
area within a certain range from each UAV. This information is exchanged 
between cooperating UAVs in order to maximize sensor effectiveness. The 
on-line planner rapidly generates a near optimum path for each UAV that 
will guide the vehicle safely to an intermediate position within the known 
territory, taking into account the mission and cooperation objectives and 
constraints. The process is repeated until the corresponding final position 
is reached by an UAV. Then, each one of the remaining UAVs uses ac-
quired information about the environment and the off-line planner output 
to compute a path that connects its current position to the final destination. 
Both path planning problems are formulated as optimization (minimiza-
tion) problems, where specially constructed functions take into account 
mission and cooperation objectives and constraints, with a Differential 
Evolution algorithm to serve as the optimizer. 

The rest of the Chapter is organized as follows: Section 10. 2 discusses 
B-Spline and differential EA fundamentals; the solid terrain formulation, 
used for experimental simulations, is also presented. The off-line path 
planner for a single UAV is briefly discussed in Section 10.3. Section 10.4 
deals with the concept of cooperating UAV on-line path planning using 
differential evolution. The problem formulation is described, including as-
sumptions, objectives, constraints, cost function definition and path model-
ing. Simulation results are presented in Section 10.5, followed by discus-
sion and conclusions in Section 10.6. 
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10.2 B-Spline and Differential Evolution Fundamentals 

10.2.1 Path Modeling Using B-Spline Curves 

Straight line segments that connect a number of waypoints have been used 
in the past to model UAV paths in 2-D or 3-D space [23] [5]. However, 
these simplified paths cannot be used for accurate simulation of a UAV 
flight, unless a large number of waypoints are adopted. Furthermore, if an 
optimization procedure is used, the number of design variables explodes, 
especially if cooperating flying vehicles are considered. As a result, com-
putation time becomes impractical for real world applications. 

In [9], paths from the initial vehicle location to the target location are 
derived from a graph search of a Voronoi diagram that is constructed from 
the known threat locations. The resulting paths consist of line segments, 
which are subsequently smoothed around each way point, in order to pro-
vide feasible trajectories within the dynamic constraints of the vehicle. 

In [24] car formulation has been proposed as an alternative approach to 
modeling UAV dynamics. Each UAV is assumed to fly with constant alti-
tude, constant flight speed and to have continuous time kinematics [25]. 
This approach seems inefficient to model real world scenarios, such as 
those including 3-D terrain avoidance and following of stealthy routes; 
however, it seems to be sufficient for task assignment purposes with coop-
erating UAVs flying at safe altitudes [13] [22] [25]. 

B-Spline curves have been used for trajectory representation in 2-D [26] 
or 3-D environments [16] [27]. They fit in an optimization procedure as 
they need a few variables, the coordinates of their control points, to define 
complicated curved paths. Each control point has a local effect on the 
curve’s shape and small perturbations in its position produce changes in 
the curve only in the neighborhood of the repositioned control point if the 
degree of the curve remains small. 

B-Spline curves are parametric curves; their construction is based on 
blending functions [28] [29]. Their parametric construction produces non-
monotonic curves, like the trajectories of moving objects.  

If the number of control points of the corresponding curve is n+1, with 
corresponding coordinates (x0, y0, z0),…, (xn, yn, zn), the coordinates of the 
B-Spline curve may be written as: 

,
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where u is the free parameter of the curve, Ni,p(u) are the blending func-
tions of the curve and p is its degree, which is associated with the curve’s 
smoothness, p+1 being its order. Higher values of p correspond to smooth-
er curves.

The blending functions are defined recursively in terms of a knot vector 
U={u0,…,um}, which is a non-decreasing sequence of real numbers, with 
the most common form being the uniform non-periodic one, defined as: 
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The blending functions Ni,p are computed using the knot values defined 
above, as: 
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If the denominator of either of the fractions is zero, that fraction is de-
fined to have zero value. Parameter u varies between 0 and (n-p+1) with a 
constant step, providing the discrete points of the B-Spline curve. The sum 
of the values of the blending functions for any value of u is always 1. 

The use of B-Spline curves for the determination of a flight path pro-
vides the advantage of describing complicated non-monotonic 3-D curves 
with controlled smoothness with a small number of design parameters, i.e. 
the coordinates of the control points. Another valuable characteristic of the 
adopted B-Spline curves is that the curve is tangential to the control poly-
gon at the starting and ending points. This characteristic may be used in 
order to define the starting or ending direction of the curve, by inserting an 
extra fixed point after the starting one, or before the ending control point. 
Figure 10.1 shows a quadratic B-Spline curve (p=2) in 2-D with its control 
points and the corresponding control polygon. 
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Fig. 10.1. Quadratic 2-D B-Spline curve, produced using a uniform non-periodic 
knot vector, and its control polygon. 

10.2.2 The Solid Boundary Representation 

The terrain is represented by a meshed 3-D surface using mathematical 
functions of the form: 

2 2

2 2

, sin sin cos

cos sin cos ,

z x y y a b x c d x y

e y f f x y g y

(10.7)

where a, b, c, d, e, f, g are constants experimentally defined, in order to 
produce a surface with mountains and valleys, as shown in Figure 10.2.  

Fig. 10.2. A typical terrain used for simulation studies. 
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A graphical interface has been developed for visualization of the terrain 
surface along with the path lines [16]. The corresponding interface deals 
with different terrains produced either artificially or based on real geo-
graphical data, providing an easy verification of the feasibility and the 
quality of each solution. The path planning algorithm considers the bound-
ary surface as a group of quadratic mesh nodes with known coordinates. 

10.2.3 Differential Evolution Algorithm 

Differential Evolution (DE) [30] [31] is used as an optimization tool. A DE 
algorithm, being a recent development in the field of optimization algo-
rithms, represents a type of evolutionary strategy, especially formed so that 
it can effectively deal with continuous optimization problems. The classic 
DE algorithm evolves a fixed size population, which is randomly initial-
ized. After initializing the population, an iterative process is started and at 
each generation G , a new population is produced until a stopping condition 
is satisfied. At each generation, each element of the population can be re-
placed with a new generated one. The new element is a linear combination 
between a randomly selected element and the difference between two other 
randomly selected elements. In detail, given a cost function f :

RRXf n:)( , n=nparam  (10.8) 
the optimization target is to minimize the value of this cost function by op-
timizing the values of its parameters (design variables): 

1 2, , , ,
paramn jX x x x x  (10.9) 

where X denotes the vector composed of nparam cost function parameters 
(design variables). These parameters take values between specific upper 
and lower bounds: 

, 1, ,L U
j j j paramx x x j n (10.10)

The DE algorithm implements real encoding for the values of the objec-
tive function design variables. In order to obtain a starting point for the DE 
algorithm, initialization of the population takes place. Initialization ( 1G )
is established by randomly assigning values to the parameters j of each 
i member of the population within the given boundaries, as follows: 

1
, , 1, , , 1, ,U L L

i j j j j pop paramx r x x x i n j n (10.11)

r is a uniformly distributed random value within the range [0, 1]. The DE 
algorithm mutation operator is based on a triplet of randomly selected dif-
ferent individuals. For each i member of the population a new parameter 

R
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vector G
iV is generated by adding the weighted difference vector between 

the two members of the triplet to the third one, the donor: 

3 1 2

,1 ,2 ,, , ,

i i i
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G G G G
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G G G G
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In this way a perturbed individual is generated. The perturbed individual 
G

iV and the initial population member G
iX  are then subjected to a cross-

over operation that generates the final candidate solution 1G
iU :
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v if r C j k j n
u

x otherwise

C

(10.14)

where k is a random integer within [1, nparam], chosen once for all members 
of the population. The random number r is seeded for every gene of each 
chromosome. F and Cr are DE algorithm control parameters, which remain 
constant during the search process and affect the convergence behaviour 
and robustness of the algorithm. Their values also depend on the objective 
function, the characteristics of the problem and the population size. 

The population for the next generation ( 1G ) is selected between the 
current population and the final candidates. If each candidate vector is bet-
ter fitted than the corresponding current one, the new vector replaces the 
vector with which it was compared. The DE selection scheme is described 
as follows (for a minimization problem): 

1 1
1

G G G
i i iG

i
G

i

U if f U f X
X

X otherwise
(10.15)

 new scheme [32] to determine the donor for the mutation operation 
has been adopted to accelerate the convergence rate. In this scheme, the 
donor is randomly selected (with uniform distribution) from the region 
within the ‘hyper-triangle’, formed by the three members of the triplet: 
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where 0 1rand , denotes a uniformly distributed value within the range [0, 
1]. With this scheme the donor comprises the local information of all 
members of the triplet, providing a better starting point for the mutation 
operation that result in a better distribution of the trial vectors.  

The random number generation (with uniform probability) is based on 
the algorithm presented in [33]. For each different operation inside the DE 
algorithm that requires a random number generation, a different sequence 
of random numbers is produced by using a different initial seed for each 
operation and a separate storage of the corresponding produced seeds. 

The off-line path planner is presented next. 

10.3 Off-line Path Planner 

The off-line path planner is presented to introduce the concept of UAV 
path planning using EAs. The off-line planner generates collision free 
paths in environments with known characteristics and flight restrictions. 
The derived path line for each UAV is a single continuous 3-D B-Spline 
curve, while the solid boundaries are interpreted as 3-D surfaces. The start-
ing and ending control points of each B-Spline curve are fixed. A third 
point close to the starting one is also fixed, determining the initial flight di-
rection of the corresponding UAV; this control point is placed in a pre-
specified distance from the starting control point. Between the fixed con-
trol points, additional free-to-move control points determine the shape of 
the curve. For each path, the number of the free-to-move control points is 
user-defined.

10.3.1 Path Modeling Using B-Spline Curves 

Each path is constructed using a 3-D B-Spline curve; each B-Spline con-
trol point is defined by its three Cartesian coordinates xk,j, yk,j, zk,j, k=0,…,n,
j=1,…,N; N is the number of UAVs, while n+1 is the number of control 
points in each B-Spline curve, the same for all curves. The first (k=0) and 
last (k=n) control points of the control polygon are the initial and target 
points of the jth UAV, which are predefined by the user. The second (k=1)
control point is positioned in a pre-specified distance from the initial con-
trol point, in a given altitude, and in a given direction, in order to define 
the initial direction of the corresponding path. 
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The control polygon of each B-Spline curve is defined by successive 
straight line segments as shown in Figure 10.3. For each segment, its 
length seg_lengthk,j and its direction seg_anglek,j are used as design vari-
ables (k=2,…,n-1, j=1,…,N). Design variables seg_anglek,j are defined as 
the difference in degrees between the direction of the current segment and 
the previous one. For the first segment (k=1) of each control polygon 
seg_angle1,j is measured with respect to the x -axis. Additionally, the con-
trol points’ altitudes zk,j are used as design variables, except for the three 
predefined fixed points (k=0, k=1, and k=n). In the first segment (k=1),
seg_length1,j, and seg_angle1,j are pre-specified in order to define the initial 
direction of the path, and they are not included in the design variables of 
the optimization procedure. The lower and upper boundaries of each inde-
pendent design variable are predefined by the user. 

seg_length1, j

k=1 

k=n 
seg_angle1, j

seg_length2, j

seg_angle2, j

k=n-1 

k=0 

Fig. 10.3. B-Spline control polygon in the horizontal plane. 

The coordinates of each B-Spline control point xk,j and yk,j can be easily 
calculated by using seg_lengthk,j and seg_anglek,j along with the coordi-
nates of the previous control point  xk-1,j and yk-1,j. The use of seg_lengthk,j
and seg_anglek,j as design variables instead of xk,j and yk,j was adopted for 
three reasons: i) abrupt turns of each flight path can be easily avoided by 
explicitly imposing short lower and upper bounds for the seg_anglek,j de-
sign variables; ii) by using the proposed design variables, a better conver-
gence rate is achieved compared to the case using the B-Spline control 
points’ coordinates as design variables, a consequence of shortening the 
search space following the proposed formulation; iii) by using seg_lengthk,j
as design variables, an easier determination of the upper bound for each 
curve’s length is achieved, along with a smoother variation of the lengths 
of each curve’s segments.  
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10.3.2 Cost Function Formulation for a Single UAV 

For the case of a single UAV the optimization problem to be solved mini-
mizes a set of five terms based on set objectives and constraints associated 
with the feasibility of the curve, its length and a safety distance from the 
ground. The cost function to be minimized is defined as: 

5

1
i i

i

f w f   (10.17) 

Term f1 penalizes the non-feasible curves that pass through the solid 
boundary. In order to compute this term, discrete points along each curve 
are computed, using B-Spline equations (10.1) to (10.6) and a pre-
specified step for B-Spline parameter u. The value of f1 is proportional to 
the number of discrete curve points located inside the solid boundary; con-
sequently, non-feasible curves with fewer points inside the solid boundary 
show better cost function than curves with more points inside the solid 
boundary.  

Term f2 is the length of the curve (non-dimensional with the distance be-
tween the starting and destination points) and it is used to provide shorter 
paths.

Term f3 is designed to provide flight paths with a safety distance from 
solid boundaries. For each discrete point i (i=1,…,nline, where nline is the 
number of discrete curve points) of the B-Spline curve its distance from 
the ground is calculated (recall that the ground is described by a mesh of 
nground discrete points). Then the minimum distance of the curve and the 
ground dmin is computed. Term f3 is defined as: 

2
3 minsafef d d (10.18)

while dsafe is a safety distance from the solid boundary. 
Term f4 is designed to provide B-Spline curves with control points in-

side the pre-specified space. If a control point results with an x or y coordi-
nate outside the pre-specified limits, a penalty is added to term f4 which is 
proportional to violating the following constraints: 

, max 4 4 1 , max
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if y y f f C y y

if x x f f C x x

if y y f f C y y

k k n j j N

(10.19)

C1 is a constant, and xmin, xmax, ymin, ymax define the borders of the working 
space. An additional penalty is added to f4 in case its value is greater than 
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zero, in order to ensure that curves inside the pre-specified space have a 
smaller cost function than those having control points outside of it. This 
can be formally written as: 

4 4 4 20if f f f C (10.20)
where C2 is a constant. 

Term f5 is defined to provide path lines within the known terrain. This 
characteristic is particularly useful when the off-line path planner is used 
together with the on-line one, as it will be explained later. Each control 
point of the B-Spline curve is checked for whether it is placed over a 
known territory. The ground is modeled as a mesh of discrete points and 
the algorithm computes the mesh shell (on the x-y plane) that includes each 
B-Spline control point. If the corresponding mesh shell is characterized as 
unknown then a constant penalty is added to f5. A mesh shell is character-
ized as unknown if all its 4 nodes are unknown (have not been scanned by 
a sensor). 

Weights wi are experimentally determined, using as criterion the almost 
uniform effect of the last four terms in the objective function. Term w1f1
has a dominant role in (10.17) providing feasible curves in few genera-
tions, since path feasibility is the main concern. The minimization of 
(10.17), through the DE procedure, results in a set of B-Spline control 
points, which actually represent the desired path.  

Initially, the starting and ending path-line points are determined, along 
with the direction of flight. The limits of the physical space, where the ve-
hicle is allowed to fly (upper and lower limits of their Cartesian coordi-
nates), are also determined, along with the ground surface. The determined 
initial flight direction is used to compute the third fixed point close to the 
starting one.  

The DE randomly produces a number of chromosomes to form the ini-
tial population. Each chromosome contains the z coordinates of the free-to-
move B-Spline control points (k=2,…, n-1), along with the corresponding 
seg_lengthk and seg_anglek design variables (k=2,…, n-1). For each chro-
mosome the Cartesian coordinates of all B-Spline control points are then 
computed. Using (10.1) to (10.6), with a constant step of parameter u, a B-
Spline curve is calculated for each chromosome of the population in the 
form of a sequence of discrete points. Subsequently, each B-Spline is eva-
luated using the aforementioned cost function f. The population of candi-
date solutions evolves during the generations; at the last generation the 
population member with the smallest value of the cost function is the solu-
tion to the problem and corresponds to the path line with the best charac-
teristics according to the aforementioned criteria. 
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The simulation runs have been designed in order to search for path lines 
between ‘mountains’. For this reason, an upper ceiling for flight height has 
been enforced by providing an upper limit to the z coordinates of the B-
Spline control points.  

10.4 Cooperating UAVs On-line Path Planning 

This Section describes the development and implementation of an on-line 
path planner for cooperating UAV navigation and collision avoidance in 
completely unknown static environments. The problem formulation is de-
scribed, including assumptions, objectives, constraints, cost function defi-
nition and path modeling. 

Given N UAVs launched from the same or different known initial loca-
tions, the objective is to derive N 3-D trajectories, aiming at reaching a 
predetermined target location while ensuring collision avoidance with the 
environmental obstacles. Additionally, produced flight paths should satisfy 
specific route constraints. Each vehicle is assumed to be a point, while its 
actual size is taken into account by equivalent obstacle – ground growing. 

The general problem constraint is collision avoidance between UAVs 
and the ground. The route constraints are based on:  

Predefined initial and target coordinates for all UAVs; 
Predefined initial directions for all UAVs; 
Predefined minimum and maximum limits of allowed-to-fly space, 

 expressed in terms of minimum and maximum allowed Cartesian 
 coordinates for all path points.  
The first two route constraints are explicitly taken into account by the 

optimization algorithm. The third route constraint is implicitly handled by 
the algorithm through the definition of the cost function. The cooperation 
objective is that all UAVs should reach the same target point. 

The on-line planner is based on the ideas developed in [16] for a single 
UAV. It uses acquired information from all UAV on-board sensors (that 
scan the area within a certain range from the corresponding UAV). The on-
line planner rapidly generates a near optimum path, modeled as a 3-D B-
Spline curve that will guide each vehicle safely to an intermediate position 
within the already scanned area. The information about the already 
scanned area by each UAV is passed to the other cooperating UAVs in or-
der to maximize environment knowledge. The process is repeated until the 
final position is reached by a single UAV. Then the other UAVs turn to the 
off-line mode and a single B-Spline path for each UAV is computed to 
guide it from its current position, through the already scanned territory to 
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the common final destination. As a result, each path line from the corre-
sponding starting point to the final goal is a smooth, continuous 3-D line 
that consists of successive B-Spline curves smoothly connected to each 
other.

10.4.1 Path Modeling 

As the terrain is completely unknown and radars (or equivalent sensors) 
gradually scan the area, it is impossible to generate feasible paths that con-
nect each starting point with the target point. Instead, at certain moments, 
each sensor scans a region around the corresponding moving UAV and this 
region is added to the already scanned regions by all cooperating UAVs. 
For the UAV under consideration a path line is generated that connects a 
temporary starting point with a temporary ending point. Each temporary 
ending point is also the next curve’s starting point for the corresponding 
vehicle. Therefore, what is finally generated is a group of smooth curve 
segments connected to each other, eventually connecting the starting point 
to the final destination for each UAV. This procedure is represented in 
Figures 10.4 to 10.6 for a single UAV. 

In the on-line problem only four control points define each B-Spline 
curve, the first two of which are fixed and determine the direction of the 
current UAV path. The remaining two control points are allowed to take 
any position within the scanned by the radars known space, taking into 
consideration given constraints. 

Fig. 10.4. Scanned area (in color), single UAV, movement along first segment. 
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Fig. 10. 5. Scanned area (in color), single UAV, movement along second segment. 

Fig. 10.6. Scanned area (in color), single UAV, movement along third segment. 

When the next path segment is generated, only the first control point of 
the B-Spline curve is known; it is the last control point of the previous B-
Spline segment. The second control point is not random, since it is used to 
guarantee at least first derivative continuity of the two connected curves at 
their common point. Hence, the second control point of the next curve lies 
on the line defined by the last two control points of the previous curve as 
shown in Figure 10.7. It is also desirable that the second control point is 
near the first one, so that the UAV may easily avoid any obstacle suddenly 
sensed in front of it. This may happen because the radar scans the envi-
ronment not continuously, but at intervals. The design variables that define 
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each B-Spline segment are the same as in the off-line case, i.e., 
seg_lengthk,j , seg_anglek,j, and zk,j (k=2, 3, and j=1,…,N).

seg_length1, j

k=1

k=3

seg_length2, j

seg_angle2, j

k=2 

k=0

seg_length3, j

Fig. 10.7. Schematic representation of formation of a complete path by successive 
B-Spline segments projected on the horizontal plane. 

The path-planning algorithm considers the scanned surface as a group of 
quadratic mesh nodes. All ground nodes are initially assumed to be un-
known.

An algorithm is used to distinguish between nodes visible by a radar and 
nodes that are not visible by it. A node is not visible by a radar if it is not 
within the range of the radar, or even if it is within its range it is hidden by 
a ground section that lies between the radar and the UAV. The correspond-
ing algorithm, simulates the radar and checks whether the ground nodes 
within the radar range are ‘visible’ or not and consequently ‘known’ or 
not. If a newly scanned node is characterized as ‘visible’, it is added to the 
set of scanned ground nodes, which is common for all cooperating UAVs. 

Radar information is used to produce the first path line segment for the 
corresponding UAV. As the vehicle moves along its first segment and until 
it has traveled about 2/3 of its length, its radar scans the surrounding area, 
returning a new set of visible nodes, which are subsequently added to the 
common set of scanned nodes. The on-line planner, then, produces a new 
segment for each UAV, whose first point is the last point of the previous 
segment and whose last point lies somewhere in the already scanned area. 
The on-line process is repeated until the ending point of the current path 
line segment of one UAV lies close to the final destination. Then the other 
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UAVs turn into the off-line process, in order to reach the target using B-
Spline curves that pass through the scanned terrain. 

The position at which the algorithm starts to generate the next path line 
segment for each UAV (here taken as the 2/3 of the segment length) de-
pends on the radar range, the UAV’s velocity and the algorithm computa-
tional demands. 

10.4.2 Cost Function Formulation 

The computation of intermediate path segments for each UAV is formu-
lated as a minimization problem. The cost function to be minimized is the 
weighted sum of eight different terms: 

8

1
i i

i

f w f  (10.21) 

where wi are the weights and fi are the corresponding terms described be-
low.

Terms f1, f2, and f3 are the same with terms f1, f3, and f4 respectively of 
the off-line procedure. Term f1 penalizes the non-feasible curves that pass 
through the solid boundary. Term f2 is designed to provide flight paths 
with a safety distance from solid boundaries. Only already scanned ground 
points are considered for this calculation. Term f3 is designed to provide B-
Spline curves with control points inside the pre-specified working space. 

Term f4 is designed to provide flight segments with their last control 
point having a safety distance from solid boundaries. This term was intro-
duced to ensure that the next path segment that is going to be computed 
will not start very close to a solid boundary (which may lead to infeasible 
paths or paths with abrupt turns). The minimum distance Dmin from the 
ground is calculated for the last control point of the current path segment. 
Only already scanned ground points are considered for this calculation. 
Term f4 is then defined as: 

2
4 minsafef d D (10.22)

while dsafe is a safety distance from the solid boundary. 
The value of term f5 depends on the potential field strength between the 

initial point of the UAVs path and the final target [16]. This potential field 
between the two points is the main driving force for the gradual develop-
ment of each path line in the on-line procedure. The potential is similar to 
the one between a source and a sink, defined as: 

01

02ln
rcr
rcr

(10.23)
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where r1 is the distance between the last point of the current curve and the 
initial point for the corresponding UAV, r2 is the distance between the last 
point of the current curve and the final destination, r0 is the distance be-
tween the initial point for the corresponding UAV and the final destination 
and c is a constant. This potential allows for selecting curved paths that 
bypass obstacles lying between the starting and ending point of each B-
Spline curve [16].  

Term f6 is similar to term f5 but it corresponds to a potential field be-
tween the current starting point (of the corresponding path segment) and 
the final target. 

Term f7 is designed to prevent UAVs from being trapped in small re-
gions and to force them move towards unexplored areas. It may be possi-
ble that some segments of the path lines are concentrated in a small area, 
away from the final target. In order to help the UAV leave this area, term f7
repels it from the points of the already computed path lines (of all UAVs). 
Furthermore, if a UAV is wandering around to find a path that will guide it 
to its target, the UAV will be forced to move towards areas not visited be-
fore by this or other UAVs. This term has the form: 

7
1

1 1poN

po kk

f
N r

 (10.24) 

where Npo is the number of the discrete curve points produced so far by all 
UAVs and rk is their distance from the last point of the current curve seg-
ment. 

Term f8 represents another potential field, which is developed in a small 
area around the final target. When the UAV is away from the final target, 
the term is given a constant value. When the UAV is very close to the tar-
get the term’s value decreases proportionally to the square of the distance 
between the last point of the current curve and the target. Thus, when the 
UAV is near its target, the value of this term is quite small and prevents 
the UAV from moving away. 

Weights wi in (10.21) are experimentally determined, using as criterion 
the almost uniform effect of all the terms, except the first one. Term w1f1
has a dominant role, in order to provide feasible curve segments in a few 
generations, since path feasibility is the main concern. 

10.5 Simulation Results 

The same artificial environment was used for all test cases considered, 
with different starting and target points. The artificial environment is con-
structed within a rectangle of 20x20 (non-dimensional lengths). The (non-
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dimensional) radar’s range for each UAV was set equal to 4. The safety 
distance from the ground was set to dsafe=0.25. The experimentally opti-
mized settings of the DE algorithm during the on-line procedure were as 
follows: population size = 20, F = 0.6, Cr = 0.45, number of generations = 
70. For the on-line procedure two free-to-move control points were con-
sidered, resulting in 6 design variables.  

The corresponding settings during the off-line procedure were as fol-
lows: population size = 30, F = 0.6, Cr = 0.45, number of generations = 70. 
For the off-line procedure eight control points were used to construct each 
B-Spline curve, including the initial (k=0) and the final one (k=7). These 
correspond to five free-to-move control points, resulting in 15 design vari-
ables. All B-Spline curves have a degree p equal to 3.

All experiments search for path lines between ‘mountains’. For this rea-
son, an upper ceiling for flight height has been enforced in the optimiza-
tion procedure by explicitly providing an upper bound for the z coordinates 
of all B-Spline control points. 

The first test case corresponds to the on-line path planning for a single 
UAV over an unknown environment. Results of how the path is formed in 
terms of successive snapshots of path formulation have already been illus-
trated through Figures 10.4 to 10.6. Figures 10.8 and 10.9 depict the path 
that finally succeeds in guiding the UAV towards the target location, al-
though the initial flight direction drives the UAV away from the target. In 
this case, term f3 is activated when the path line exceeds the borders of the 
pre-specified workspace as observed in the lower left corner of Figure 
10.9, and enforces the path line to return within the limits. Although the 
complete path is constructed of 15 successive B-Spline curves, the final 
curve is smooth enough to be followed by a flying vehicle. 

Four additional test cases of on-line path planning for a single UAV are 
shown in Figures 10.10 to 10.13, respectively. For the second case the 
starting point and the initial direction is the same with the first case. The 
third and forth test cases have the same initial point close to the center of 
the terrain. The fifth test case has its starting point near the right lower 
corner of the terrain. As observed, although the planner some times pro-
duces complicated paths, it succeeds in finding the final destination. How-
ever, as shown in Figure 10.13, an abrupt turn occurs, which is the result 
of the effort to avoid exceeding workspace limits.  
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Fig. 10.8. Test case 1, single UAV: On-line path planning with the scanned area 
shown in color. Path shown in an intermediate position of the flight; consists of 12 
B-Spline segments.  

Fig. 10.9.  The completed path for test case 1 consisting of 15 B-Spline segments. 
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Fig. 10.10. Test case 2, single UAV: On-line path planning; Completed path with 
the starting point being the same with test case 1, close to the upper left corner. 

Fig. 10.11. Test case 3, single UAV: On-line path planning; The starting point is 
close to the center of the terrain. 
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Fig. 10.12. Test case 4, single UAV: On-line path planning; Completed path with 
the starting point being close to the center of the terrain. 

Fig. 10.13. Test case 5, single UAV: On-line path planning with the starting point 
being close to the right lower corner of the terrain. 

Test case 6 corresponds to on-line path planning of 2 UAVs as shown in 
Figures 10.14 and 10.15. Figure 10.14 shows the path lines when the first 
UAV (blue line) reaches the target. At that moment the second UAV (red 
line) turns into the off-line mode, in order to compute a feasible path line 
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that connects its current position with the target through the already 
scanned area. The final status is demonstrated in Figure 10.15. The starting 
point for the first UAV is near the lower left corner of the terrain; the start-
ing point of the second UAV is near the upper left corner. 

Fig. 10.14. Test case 6, two UAVs. On-line path planning; when the first UAV 
(blue line) reaches the target the second one turns into the off-line mode. 

Fig. 10.15. Final status of the path lines for the test case 6. 

Test case 7 corresponds to on-line path planning for 3 UAVs as shown 
in Figures 10.16 and 10.17. Figure 10.16 shows the status of the two path 
lines when the first UAV (blue line) reaches the target. At that moment the 
second UAV (red line) and the third one (black line) turn into the off-line 
mode, in order to compute feasible path lines that connect their positions 
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with the target. The final status is demonstrated in Figure 10.17. The start-
ing point of the first and second UAV are the same as in test case 6, while 
the starting point of the third UAV is near the middle of the left side of the 
terrain.

Fig. 10.16. Test case 7, three UAVs. On-line path planning; it shows the paths 
when the first UAV (blue line) reaches the target. 

Fig. 10.17. The final status of the path lines of test case 7 

Test case 8 refers to another on-line path planning scenario for 3 UAVs 
as shown in Figures 10.18 and 10.19. Figure 10.18 depicts the status of the 
two path lines when the first UAV (blue line) reaches the target. The final 
status is demonstrated in Figure 10.19. As the first UAV (blue line) is 
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close to the target, it succeeds in reaching it using just one B-Spline seg-
ment. The other two UAVs turn into off-line mode to reach the target. 

Fig. 10.18. Test case 8, three UAVs. On-line path planning; it shows the path lines 
when the first UAV (blue line) reaches the target. 

Fig. 10.19. The final status of the path lines of test case 8. 

In test case 9 three UAVs are launched from the same point in the center 
of the working space but with different directions. Figure 10.20 shows the 
status of the two path lines when the first UAV (blue line) reaches the tar-
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get. The final status is demonstrated in Figure 10.21. During the on-line 
procedure, when the final point of a curve segment is within a small range 
from the final destination the on-line procedure is terminated; this is the 
reason for the absence of coincidence between the final points of the first 
(blue line) and the rest path lines. 

Fig. 10.20. Test case 9, three UAVs. On-line path planning; it shows the status of 
path lines when the first UAV (blue line) reaches the target.

Fig. 10.21. The final status of the path lines of test case 9. 



Evolutionary Algorithm Based Path Planning      337 

10.6 Conclusions 

A path planner has been presented that is suitable for navigating a group of 
cooperating UAVs avoiding collisions with environment obstacles. The 
planner is capable of producing smooth path curves in known or unknown 
static environments.  

Two types of path planner were presented. The off-line path planner ge-
nerates collision free paths in environments with known characteristics and 
flight restrictions. The on-line planner, which is based on the off-line one, 
generates collision free paths in unknown environments. The path line is 
gradually constructed by successive, smoothly connected B-Spline curves, 
within the gradually scanned environment. The knowledge of the envi-
ronment is acquired through the UAV on-board sensors that scan the area 
within a certain range from each UAV. This information is exchanged be-
tween the cooperating UAVs; as a result, each UAV utilizes the knowl-
edge of a larger region than the one scanned by its own sensors.  

The on-line planner generates for each vehicle a smooth path segment 
that will guide the vehicle safely to an intermediate position within the 
known territory. The process is repeated for all UAVs until the corre-
sponding final position is reached by an UAV. Then, the rest vehicles turn 
into the off-line mode in order to compute path lines consisting of a single 
B-Spline curve that connect their current positions with the final destina-
tion. These path lines are enforced to lie within the already scanned region. 
Both path planners are based on optimization procedures, and specially 
constructed functions are used to encounter the mission and cooperation 
objectives and constraints. A DE algorithm is used as the optimizer for 
both planners.  

The introduced potential fields are the main driving forces for the grad-
ual generation of the path lines in the on-line planner. As demonstrated by 
the presented test cases, potential fields may be effectively used to gener-
ate curves that bypass the solid ground obstacles positioned between the 
starting and target positions, and when combined with the other terms of 
the fitness (cost) function, they can produce path lines that escape from 
concave areas. 

The use of a confined workspace for the UAV flight was proven to be 
another useful characteristic of the on-line procedure. The planner enforces 
the path lines to be constructed within this confined space; as a result, the 
search for each path is restricted within a finite area. By utilizing a special 
term in the cost function, the on-line planner is enforced to explore new 
areas and prevent each UAV from being trapped in the same region for a 
long time. As the search space is confined, this term enables the planner to 



338      I. K. Nikolos, N. C. Tsourveloudis, K. P. Valavanis 

explore this space, and even if a vehicle is initially driven towards the 
wrong direction, it eventually returns towards its final destination. 

The selection of the B-Spline design variables was also proven very ef-
fective in providing smooth curves. For all seg_angle variables a range of 
variation between -90 and +90 degrees was explicitly defined, which re-
sulted in smooth turns for both off-line and on-line planners. If the B-
Spline control point coordinates were used as design variables, the avoid-
ance of abrupt turns would be a much more difficult procedure that would 
require additional special terms in the cost function. 

Results are very encouraging and support further research to implement 
the algorithms to small UAVs in real-time.   
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