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5.1. INTRODUCTION

Crimean-Congo hemorrhagic fever virus (CCHFV) constitutes a group of
viruses of the genus Nairovirus (family Bunyaviridae). Like all members of the
Bunyaviridae, the genome of CCHFV is composed of tripartite single-stranded
RNA. These segments, designated small (S), medium (M), and large (L), mini-
mally encode the nucleocapsid (N), envelope glycoproteins (Gn and Gc), and
RNA-dependent RNA polymerase (RdRp), respectively [38].

Published descriptions of major epidemics, outbreaks, and the ecology of
CCHFV have been reviewed extensively [18, 43, 45]. Interestingly a common
theme is illustrated by the very wide distribution of the virus, which stretches
over much of Asia, extending from the Xinjiang region of China to the Middle
East and southern Russia, and to focal endemic areas over much of Africa and
parts of southeastern Europe. Thus, CCHFV is the most widely distributed
agent of severe haemorrhagic fever known.

5.2. MOLECULAR EPIDEMIOLOGY

Classic serological methods have been important in determining CCHF distri-
bution; however, these assays do not readily differentiate between alternative
strains of CCHFV. In order to characterize viral strains in more detail and facil-
itate a global epidemiological study, molecular methods based on partial and
complete sequence data of the S segment have been used to identify certain S
segment genotypes [9, 13, 36]. These genotypes show a strong relationship to the
geographical area of parent virus isolation, leading to the terminology Asia 1,
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Asia 2, Europe 1, etc., which has been employed as a simple description of
genotype (Fig. 5-1). Furthermore, these studies also show that similar genotypes
are found in distant geographical locations (Fig. 5-2), supporting the idea that
virus or infected ticks may be carried over long distances during bird migration
[10]. Anthropogenic factors, such as the trade in livestock, may have also played
a role in the dispersal of CCHFV. Thus, molecular epidemiological observations
support a global and dynamic reservoir of CCHF virus.

Sequence information on L segments has lagged behind those of both S and
M segments primarily due to the technical difficulties in working with these very
long molecules. Nevertheless, several data from strains is available and while the
number of alternative strains is on a different scale to those of S segments, there
is evidence that the S and L segments from the same strains have similar evolu-
tionary history (Fig. 5-3). For M segments however, the situation is different and
it enables an insight into the ways CCHFV have evolved.

5.3. GENETIC VARIATION AND EVOLUTION

The driving force for evolution is provided by genetic change and variation in
genomes. These lead to phenotypes which are molded by selective forces, thus
genomes gradually change with their changing environments. RNA viruses, with
their large population sizes, swift, and mutation-prone replication rates are gen-
erally considered capable of rapid evolution [16]. Additional evolutionary
processes of (i) recombination, and for viruses with segmented genomes (ii) reas-
sortment, also offer potentially important routes of generating genetic diversity.
The genomes of arthropod-borne RNA viruses however, need to function and
maintain high fitness in both arthropod and vertebrate host cells. This mainte-
nance on two fronts is frequently thought to constrain the evolutionary processes
acting on arbovirus genomes [44]. Thus, low levels of genetic diversity are fre-
quently observed for arboviruses. The genome of CCHFV is interesting since, as
well as showing features of high genetic stability [13], it also shows features of
high flexibility [8]. CCHFV is often described as an emerging virus [22, 47].
Studies of its genetic fine structure aimed at developing a better understanding
of the ways it can change and evolve are helping to illuminate its nature as an
emerging pathogen. Complete genome entries of several CCHFV are now avail-
able in GenBank, and analysis of these sequences are enabling evolutionary
hypothesis to be inferred and tested.

5.3.1. Recombination

Genetic homologous recombination – the formation of chimeric RNA mole-
cules from sequences previously separated on different molecules – is an impor-
tant means of variation open to RNA genomes. Indeed, it is clear that
homologous recombination has been an important process that has shaped the
evolution of RNA viruses per se [46]. However, the contribution of its effects
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and the rate at which it occurs vary for different virus families. For example, it
is known to be frequent in retroviruses [19], less common but periodic for posi-
tive-strand RNA viruses [24], but relatively infrequent in negative-strand RNA
viruses [4, 32]. Yet, cases of recombination in the latter group do occur and
evidence of it in the Bunyaviridae [39] and Arenaviridae [1] is well documented.
Such reports have encouraged the search for recombination in CCHF viruses.
Noteworthy evidence, including the demonstration of phylogenetic incongru-
ence, often regarded as the best support for recombination [34], has been illus-
trated for the CCHF S segment [26]. Similar evidence for recombination in
either of the M or L segments was not detected. A very recent study [8] also
supported this latter observation in the majority of M and L segments. In addi-
tion, however, an analysis employing similarity plots, bootscanning and the
informative sites tests, highlighted the possibility of recombination events
within L segments of the Asian groups [8]. Interestingly, the cases of recombi-
nation are phylogenetically ancient and there is evidence that the sequences in
question have diverged considerably after recombination. This suggests that
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Fig. 5-2. Geographical correlation of genotypes. When superimposed onto the globe, the phylogenetic
grouping of S RNA subtypes illustrates that the pattern of genetic diversity observed is largely
related to the geographical distribution of the viruses. On some occasions, however, similar subtypes
are sometimes found in distant geographical locations. It is possible that trade in livestock and per-
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recombination in CCHFV is a rare event and while it is difficult to estimate
precise recombination rates, it is apparent that such rates are lower than those of
point mutation. Nevertheless, an important consideration borne out of such
work is that inferences about recombination events should only be entertained
when molecular analysis have been constructed from complete segment sequence
data. Additional consideration should also be given to the quality of published
sequence data. A noteworthy example is provided by strains; (i) STV/HU29223
from European Russia (Stavropol) and (ii) Uzbek/TI10145 from Uzbekistan,
which present some the of best evidence of genetic recombination in CCHFV as
observed by phylogenetic incongruence [12]. However, this conclusion should be
treated with caution as there is also evidence that the observed recombination
may be an artifact [29].

5.3.2. Reassortment

RNA viruses with segmented genomes have the capacity to reassort their
genomic segments into new genetically distinct viruses if the target cells are
subject to dual infection. Indeed, this ability is believed to play a key role in the
evolution, pathogenesis, and epidemiology of important pathogens such as
influenza viruses, rotaviruses, and arthropod-borne orbiviruses [20, 25, 30].
Within the Bunyaviridae family as a whole, reassortment has been demonstrated
for members of the genera Orthobunyavirus [2, 33, 42], Phlebovirus [40],
Hantavirus [15, 23, 37], and Tospovirus [35], accordingly it is not surprising that
segment reassortment in the Nairovirus genus has also been demonstrated
[8, 14]. Here, evidence of reassortment in CCHFV is illustrated by a phylogenetic
analysis of each strain or segment (Fig. 5-4). The phylogenetic groupings of
S and L segments are consistent and show a correlation with the geography
of parent strain isolation; however, the phylogenetic groupings of M segments
are different. Distinct groups that were formed in S and L segments by Asia 1
and Asia 2 genotypes, for example, are not matched in the M segment phylogeny
(Fig. 5-3). Although full-length sequence data is limited it is possible to ascer-
tain that reassortment has taken place in the biogenesis of certain strains of
CCHFV. For currently available data, the best evidence of reassortment is pro-
vided by the Matin strain isolated from Pakistan. If we consider groups for
which there is full-length sequence data available on each segment (so that
recombination events can be ruled out), then there appear to be strains with five
types of S and L segment (Europe 1, Africa 2, Africa 3, Asia 1 [Middle East],
and Asia 2 [Far East]) and five types of M segment (designated M1, M2, M3,
M4, and M5). Even from the limited number of full-length sequences and the
geographical location of virus isolations, it is possible to conceive that viruses of
the Europe 1 lineage are composed of [S-Europe 1/L-Europe 1/M-4]; viruses of
the Africa 2 lineage are [S-Africa 2/L-Africa 2/M-5]; viruses of the Africa 3 lin-
eage are [S-Africa 3/L-Africa 3/M-2]; the majority of circulating viruses in the
Middle East are composed of [S-Asia 1/L-Asia 1/M-2]; while in the Far East

50 Hewson



viruses contain the combinations [S-Asia 2/L-Asia 2/M-2], [S-Asia 2/L-Asia
2/M-1], and [S-Asia 2/L Asia 2/M-3]. From the available information it is possi-
ble to infer that strain Matin [S-Asia 1/L-Asia 1/M-1] is the result of reassort-
ment between a Middle Eastern virus [S-Asia 1/L-Asia 1/M-2], and a
Far-Eastern virus [S-Asia 2/L Asia 2/M-1]. It is likely that other strains have also
arisen by segment reassortment. Indeed, very recent work has provided more
complete sequence data from a broader range of strains [8] exposing many more
examples of segment reassortment. It is clear that the majority of these events
involve M segment reassortment, however, L segment reassortment viruses are
also observed, albeit at a lower frequency. The reassortment events involving
strains from widely separated geographical locations, illustrates that coreplica-
tion enabled by the movement and mixing of viruses is quite common. It follows
that there may be a global reservoir of CCHFV, with local subreservoirs sup-
porting high levels of virus circulation and permitting frequent coinfection
(in which migratory birds play a significant role in virus dispersion).
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5.4. CONCLUSIONS

There is evidence that both recombination and reassortment are able to play roles
in the evolution of CCHFV, in addition to general genetic drift. Obviously such
genetic exchange requires coreplication of two or more strains within the same
cell. The most likely coinfection environment where segment reassortment occurs
is within ticks, where lasting virus infections persists for extended periods and
superinfection with a second strain, during the strict requirement for blood meals,
is very likely [28]. Given the currently available data on the low rate of recombi-
nation in CCHFV, and particularly the fact that the rate of recombination seems
lower than general genetic drift, it appears that reassortment plays the most
contributory role to the variability and flexibility of the CCHFV genome. Indeed,
the low rate of recombination in negative-strand RNA viruses generally has led to
suggestions that genome segmentation and reassortment have evolved to increase
their fitness for survival [7, 31]. Specifically, while the high mutation rates of RNA
viruses provide the raw material for evolutionary processes [21], mutations also
introduce fitness compromising deleterious effects [6]. Genetic exchange through
recombination or reassortment are recognized as adaptive methods of purging
such effects [5, 27], thus in the practical absence of recombination, reassortment
is able to take up the reins. In addition, reassortment enables alternative virus
genotypes to be selected from a pool of functional segments.

The current evidence of reassortment in CCHFV [3, 8, 14] points principally
to the exchange of M segments between viruses in mixed infections. In addition,
the majority of data on L and S sequences show that in many cases these seg-
ments have evolved together as partners. Thus, in mixed virus infections where
reassortment is a possibility, partner L and S segments have a propensity to end
up in the same virus particle (due to the ostensibly strong interrelationships
between the nuclear protein and RdRp) in order to constitute a viable new virus
[3]. Some exceptions to this idea have been exposed by the availability of more
sequences [8], and while it is clear that L and S segments trees are not analogous,
they remain highly similar. M segments on the other hand seem to be more
autonomous and could result in new virus phenotypes. Thus, as CCHFV are
dispersed and introduced into new areas in which they are already endemic, the
emergence of new CCHFV would principally be the result of M segment reas-
sortment. Glycoprotein spikes encoded by M segments are well known for their
ability to influence host range and cellular tropism [11, 41], furthermore, they
are often associated with altered pathogenicity. These mechanisms, together
with the likely contact and infection of new hosts, provide a foundation for the
appearance of new CCHF disease and the emergence of new viruses [17].

These genomic studies highlight the importance of molecular surveillance to
monitor and track the natural fluxes of virus and CCHF disease. A number of
key questions can be asked in this context: For example, are certain viral geno-
types more associated with severe disease? If so, are certain combinations of
segments (or mutations) involved in the production of virulent strains? If there
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is a strain basis to disease, is viral genetic diversity increasing so that new strains
with novel biological properties (such increased virulence or transmission
potential) might appear? A practical conclusion of the evolutionary opportuni-
ties open to this virus is that CCHF diagnostic approaches and potential vaccine
research strategies should be tested against isolates from all parts of the world,
regardless of the intended location of use.
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