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Abstract. Stability analyses of Lagrangian and Semi-Lagrangian Reproducing Kernel (RK)
approximations for nonlinear solid mechanics are performed. It is shown that the semi-
Lagrangian RK discretization yields a convective term resulting from the non-conservative
coverage of material points under the kernel support. The von Neumann stability analysis
shows that the discrete equations of both Lagrangian and semi-Lagrangian discretizations are
stable when they are integrated using stabilized conforming nodal integration. On the other
hand, integrating the semi-Lagrangian discretization with a direct nodal integration yields an
unstable discrete system which resembles the tensile instability in SPH. Under the framework
of semi-Lagrangian discretization, it is shown that the inclusion of convective term yields a
more stable discrete system compared to the semi-Lagrangian discretization without convect-
ive term as was the case in SPH.
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1 Introduction

Particle and meshfree methods offer considerable advantages over the finite ele-
ment method in modeling large deformation solid mechanics problems, where mesh
entanglement difficulty in the finite element method can be considerably reduced.
Smoothed Particle Hydrodynamics (SPH), originally introduced for astrophysics
[12, 15] has been extended to model large deformation problems in solids [16, 19].
SPH method, however, exhibits tensile instability [3, 17, 20]. This tension instabil-
ity has been corrected by the employment of Lagrangian kernel under the frame-
work of reproducing kernel particle method (RKPM) [5, 6]. The Lagrangian kernel
based RKPM has been applied to path-independent hyperelasticity [4, 6, 11] and
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path-dependent plasticity [5–8] large deformation problems. The Lagrangian kernel
based meshfree methods in nonlinear solid mechanics, however, have their inherent
difficulty due to the regularity requirement of the deformation gradient needed for
inverse mapping from deformed configuration to undeformed configuration. A semi-
Lagrangian formulation under the framework of reproducing kernel particle method
is proposed herein for extremely large deformation solid mechanics problems. Semi-
Lagrangian discretization defines kernel function distance measure in the deformed
configuration and thus avoids the need for inverse mapping from deformed to unde-
formed configurations.

The main difference between Lagrangian kernel and semi-Lagrangian kernel is
due to the definition of distance measure between point of evaluation and discrete
points. The Lagrangian kernel defined at the material discrete points yields vanish-
ing material time derivative of the Lagrangian kernel. On the other hand, material
time derivative of the semi-Lagrangian kernel does not vanish due to the advection
of materials covered under the kernel support during material deformation. Con-
sequently, nodal mass is not conservative when a continuum is discretized by the
semi-Lagrangian kernel, and an additional convective term appears in the conserva-
tion laws. Note that SPH is semi-Lagrangian in nature, but it was formulated without
considering the above mentioned non-conservative nodal mass and the convective
effect in the conservation laws.

Two types of instabilities have been discussed in meshfree literatures: the tensile
instability and the rank instability. The tensile instability in SPH has been analyzed
by Swegle et al. [20]. Stability analysis of element free Galerkin (EFG) method us-
ing Lagrangian and Eulerian kernels has been conducted [1, 2] and the method has
been applied to problems with moderate deformations [18]. Belytschko and Xiao
[1] showed that tensile instability can be resolved by using a Lagrangian kernel [6].
Other remedies for tensile instability in SPH such as the conservative smoothing ap-
proach by Guenther et al. [22] and Swegle et al. [23], the stress point approach by
Dyka and Ingel [21], and an artificial stress approach by Monaghan [17] have been
proposed. The rank instability due to direct nodal integration (DNI) has been pointed
out by Chen et al. [9, 10] and a stabilized conforming nodal integration (SCNI) has
been proposed.

In this work, stability analysis of Lagrangian and semi-Lagrangian Galerkin
meshfree formulations will be performed. The effects of domain integration using
direct nodal integration and stabilized conforming nodal integration on numerical
stability will also be analyzed. The remaining of the paper is arranged as follows. An
overview of Lagrangian discretization using reproducing kernel (RK) approximation
is given in Section 2. In Section 3, the semi-Lagrangian kernel and the corresponding
RK shape functions are presented, and the semi-Lagrangian discretizations of equa-
tion of motion are derived. The convective effect resulting from the non-conservative
nature of semi-Lagrangian kernel is also identified. Von Neumann stability analyses
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of Lagrangian and semi-Lagrangian discrete equations integrated by SCNI and DNI
are carried out in Section 4. Conclusion remarks are given in Section 5.

2 Lagrangian Reproducing Kernel Discretization

2.1 Reproducing Kernel (RK) Approximation

Let the problem domain � be discretized into a set of NP points {x1, x2, . . . , xNP },
where xI is the location of node I and NP denotes the total number of points. The
variable, for example, displacement ui(x) in solid mechanics, is approximated by:

uhi (x) =
NP∑
I=1

�I(x)diI , (1)

where uhi (x) is the approximation of ui(x), and �I and diI are the shape functions
and their associated coefficients, respectively. Under the framework of reproducing
kernel approximation, the shape function �I(x) is expressed as:

�I (x) =
( n∑
i+j=0

(x1 − x1I )
i (x2 − x2I )

i bij (x)
)
φa(x− xI ), (2)

where φa(x − xI ) is a kernel function that defines the smoothness and locality of
the approximation with a compact support a, which is the radius of the support. The
unknown coefficients b(x) in Equation (2) are obtained by enforcing the following
nth order reproducing conditions:

NP∑
I=1

�I(x) xα
1I x

β
2I = xα

1 x
β
2 , α + β = 0, 1, 2, . . . , n. (3)

Upon solving bij (x) from Equation (3), the shape functions are obtained:

�I(x) = HT (0)M−1(x)H(x− xI )φa(x− xI ), (4)

where

HT (x−xI ) = [1 x1−x1I x2−x2I (x1−x1I )
2 . . . . . . (x2−x2I )

n], (5)

M(x) =
NP∑
I=1

H(x− xI )H
T (x− xI )φa(x− xI ). (6)
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2.2 Lagrangian Description and Discretization of Equation of Motion

In solid mechanics large deformation problems, material motion from undeformed
(initial) domain �X to deformed (current) domain �x has to be defined. Consider
a material particle originally located at X in the undeformed domain �X . Under
certain action this material particle is moved to x at time t in the deformed do-
main �x . The motion of the material particle X is described by a mapping function
x = ϕ(X, t), and u(X, t) = x(X, t) − X is the displacement vector associated with
material particle originally positioned at X. In Lagrangian description, the weak form
of equation of motion expressed in the undeformed domain �X is expressed as:∫

�X

δuiρ
0 üi d�+

∫
�X

δFijPji d� =
∫
�X

δuib
0
i d�+

∫
�h
X

δuih
0
i d�, (7)

where Fij = ∂xi/∂Xj is the deformation gradient, Pij is the first Piola–Kirchhoff
stress which in general is a function of Fij and its rate, J is the determinant of the
deformation gradient, ρ0 is the initial density, b0

i is the body force defined in the
undeformed domain �X, and h0

i is the surface traction mapped onto the undeformed
traction (natural) boundary �h

X .
In the Lagrangian discretization, the reproducing kernel approximation of mater-

ial displacements is expressed as [5, 6]:

uhi (X, t) =
NP∑
I=1

�X
I (X)diI (t), (8)

where X is the material coordinate defined in the undeformed domain (configura-
tion). Based on RK approximation, the Lagrangian shape function is expressed as

�X
I (X) = HT (0)M−1(X)H(X− XI )φa(X− XI ), (9)

where the basis functions are defined as

HT (X− XI ) = [1 X1 −X1I X2 −X2I . . . (X2 −X2I )
N ] (10)

and the moment matrix is computed by

M(X) =
NP∑
I=1

H(X− XI )H
T (X− XI )φa(X− XI ). (11)

An example of kernel function is

φa(z) =

⎧⎪⎪⎨⎪⎪⎩
2
3 − 4z2 + 4z3 0 ≤ z ≤ 1

2

4
3 − 4z+ 4z2 − 4

3z
3 1

2 < z ≤ 1 z = ‖X−XI ‖
a

0 z > 1.

(12)
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Fig. 1. Representative integration domain for SCNI.

The shape functions �X
I (X) formulated using material coordinate X in the unde-

formed domain �X are called the Lagrangian shape functions.
A stabilized conforming nodal integration (SCNI) [9] has been introduced for

the integration of weak form to achieve computational efficiency and stability. Lin-
ear exactness in the Galerkin approximation requires (1) first order completeness of
the trial and test functions, and (2) a domain integration that satisfies integration con-
straints. To meet integration constraints for nodal integration of Equation (7) using
the deformation gradient as the primary kinematic variable, a smoothing of deforma-
tion gradient at a nodal point with material coordinate XL has been considered [10]:

F̄ij (XL) = 1

AL

∫
�L

Fij d� = 1

AL

∫
�L

∂ui

∂Xj

d�+ δij , AL =
∫
�L

d�, (13)

where �L is the nodal representative domain of XL in the undeformed configuration
as shown in Figure 1. Applying the divergence theorem at the undeformed configur-
ation yields

F̄ij (XL) = 1

AL

∫
�L

uiNj d� + δij = ēij (XL)+ δij , (14)

where

ēij (XL) = 1

AL

∫
�L

uiNj d�. (15)

In Equation (15), �L is the boundary of �L as shown in Figure 1, and Ni is the
surface normal of �L. Generally, a Voronoi diagram is employed to generate the
representative domain. Introducing a Lagrangian shape function into Equation (15)
yields
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ēij (XL) =
∑
I

b̄LjI diI , (16)

where

b̄LiI =
1

AL

∫
�L

�X
I Ni d�. (17)

It has been shown that by introducing linear basis functions in material coordinate
in the reproducing kernel approximation (Equations (9)–(11)), and by employing the
above smoothed deformation gradient (Equations (14)–(17)) in the static Lagrangian
equilibrium equation integrated by nodal integration, exact solution can be obtained
in large deformation problems with homogeneous constant deformation field [10],
which is the large deformation version of linear patch test. The corresponding dis-
crete equation of Equation (7) is:

Mü = fext − fint, (18)

where
MIJ =

∑
L

ρ0�
X
I (XL)�

X
J (XL)IAL, (19)

fext
I =

∑
K

�X
I (X̂K)h0(X̂K)WK +

∑
L

�X
I (XL)b0(XL)AL, (20)

fint
I =

∑
L

B̄T
I (XL)P(XL)AL, (21)

B̄I (XL) =

⎡⎢⎢⎢⎢⎣
b̄L1I 0

0 b̄L2I

b̄L2I 0

0 b̄L1I

⎤⎥⎥⎥⎥⎦ , P(XL) =

⎡⎢⎢⎢⎢⎣
P11(XL)

P22(XL)

P12(XL)

P21(XL)

⎤⎥⎥⎥⎥⎦ , (22)

b̄LiI =
1

AL

∫
�L

�X
I Ni d�, AL =

∫
�L

d�, (23)

where XL and AL are the nodal point position and the corresponding weight asso-
ciated with domain integration in the undeformed domain �X, X̂K , and WK are the
nodal point position and weight associated with boundary integration on the unde-
formed natural boundary �h

X , and �L and Ni are the boundary and surface normal of
the nodal representative domain �L in the undeformed configuration. Note that the
area of nodal representative domain AL is used as the weight of nodal integration.

3 Semi-Lagrangian Reproducing Kernel Discretization

3.1 Semi-Lagrangian RK Shape Function

For problems involving path-dependent materials such as materials deformed in
plastic deformation, the internal energy is expressed as

60



Stability in Lagrangian and Semi-Lagrangian Reproducing Kernel

∫
�X

∂δui

∂Xk

Pki d� =
∫
�X

∂δui

∂Xk

F−1
kj σij J d�, (24)

where σij is Cauchy stress. Cauchy stress calculation requires the spatial derivative of
displacements approximated by Lagrangian shape functions, and thus the following
chain rule is employed:

∂�X
I (X)

∂xi
= ∂�X

I (X)

∂Xj

∂X

∂xi
= ∂�X

I (X)

∂Xj

F−1
ji , (25)

where F−1 is obtained by taking a direct inverse of F.
It is clear that this Lagrangian formulation in Equations (24) and (25) breaks

down when the mapping x = ϕ(X, t) or the inverse mapping X = ϕ−1(x, t) is no
longer regular (one-to-one). This happens in problems involve situations such as new
free surface formation in damage evolution or free surface closure that commonly ex-
ists in materials processing, earth moving, and penetration processes. To circumvent
this difficulty, a semi-Lagrangian discretization is proposed.

As has been mentioned, the distance measure, z = ‖X− XI‖/a for Lagrangian
kernel φa(z) is defined in the undeformed configuration. Therefore, the kernel sup-
port covers the same set of material particles before and after deformation in the Lag-
rangian discretization. Similar to the Lagrangian discretization, in semi-Lagrangian
discretization the discrete meshfree points follow the material motion, however, the
distance measure z = ‖x− x(XI , t)‖/a in the semi-Lagrangian kernel φa(z) is
defined in the deformed configuration. Under this definition, the material particles
covered under the kernel support vary during material deformation. These two dif-
ferent kernel functions are compared as follows:

φa(z) :
{

Lagrangian kernel: z = ‖X− XI‖/a,
Semi-Lagrangian kernel: z = ‖x − x(XI , t)‖/a.

(26)

Figure 2 schematically compares kernel supports in Lagrangian and semi-Lagrangian
kernels.

As shown in Figure 2, Lagrangian kernel deforms with the material, and the
kernel support covers the same group of material particles at all time. For the semi-
Lagrangian kernel, in general, material particles can move in and out of the kernel
support during the deformation processes.

In semi-Lagrangian discretization, the discrete points follow the material motion,
i.e., xI = x(XI , t), whereas the approximation is formulated in the current configur-
ation in the following form

ui(x, t) =
NP∑
I=1

�I (x)diI (t), (27)
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Fig. 2. Comparison of Lagrangian and semi-Lagrangian kernels.

where the semi-Lagrangian shape function ψI (x) is constructed based on (i) the cur-
rent position of material points and (ii) basis functions defined in the current config-
uration as follows

�I(x) =
n∑

i+j=0

[(x1 − x1(XI , t))
i (x2 − x2(XI , t))

j bij (x)]φa(x− x(XI , t)). (28)

The coefficients bij (x) are constructed by imposing the following semi-Lagrangian
reproducing conditions

NP∑
I=1

�I (x)x1(XI , t)
i x2(XI , t)

j = xi
1x

j

2 , i + j = 0, 1, 2, . . . , n . (29)

Solving bij (x) from Equation (29) yields the following semi-Lagrangian shape func-
tion:

�I (x) = C(x; x− x(XI , t))φa(x− x(XI , t)), (30)

where
C(x; x− x(XI , t)) = HT (0)M−1(x)H(x− x(XI , t)), (31)
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M(x) =
NP∑
I=1

H(x− x(XI , t))H
T (x− x(XI , t))φa(x− x(XI , t)), (32)

HT (x− x(XI , t)) = [1 x1−x1(XI , t) x2−x2(XI , t) . . . (x2−x2(XI , t))
n].

(33)

3.2 Material Time Derivatives

The difference between Lagrangian and semi-Lagrangian approximations can be ob-
served in the material time derivative of Lagrangian and semi-Lagrangian kernels:

1. Lagrangian kernel: φ̇a

(‖X− XI‖
a

)
= 0 (34)

2. Semi-Lagrangian kernel: φ̇a

(‖x− x(XI , t)‖
a

)
(35)

= φ′a
(‖x− x(XI , t)‖

a

)
n · (v− vI )

a
,

where

(˙) = ∂( )

∂t

∣∣∣∣[X] is the material time derivative, and

n = x− x(XI , t)

‖x − x(XI , t)‖ . (36)

The term n · (v− vI ) in Equation (35) is the projection of relative velocity between
point of evaluation (x) and grid point (x(XI , t)) onto the kernel support radial dir-
ection centered at x(XI , t), and it represents the relative motion between the neigh-
boring material x and the kernel support center point x(XI , t) as shown in Figure 3.
Positive value of n · (v− vI ) indicates x moving away from x(XI , t), and negative
value of n · (v− vI ) indicates x moving towards x(XI , t).

3.3 Semi-Lagrangian Discrete Equation of Motion

The semi-Lagrangian discrete equation of motion is obtained by employing the fol-
lowing weak form of equation of motion expressed in the deformed domain �x :∫

�x

δu(i,j)σij d�+
∫
�x

δuiρüi d� =
∫
�x

δuibi d�+
∫
�h
x

δuihi d�, (37)

where σij is the Cauchy stress, u(i,j) = (∂ui/∂xj + ∂uj/∂xi)/2, ρ is the density at
the current state, bi is the body force defined in the deformed domain �x , and hi is
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Fig. 3. Relative motion between neighboring material x and kernel support center point xI =
x(XI , t).

the surface traction defined on the deformed traction boundary �h
x . Let the velocity

νi be approximated by semi-Lagrangian shape functions,

νhi (x, t) =
NP∑
I=1

�I (x)νiI (t). (38)

The corresponding semi-Lagrangian approximation of acceleration is given as

ühi (x, t) = ν̇hi (x, t) =
NP∑
I=1

(�I (x)ν̇iI (t)+ �∗I (x)νiI (t)), (39)

where �∗I (x) is the correction due to time rate of the semi-Lagrangian kernel φ̇a

�∗I (x) = C(x; x− x(XI , t))φ̇a(x− x(XI , t)). (40)

Substituting Equations (38) and (39) into formula (37), and considering strain
smoothing of u(i,j) with similar procedures discussed in Section 2, the following
discrete equation is obtained

Mv̇+ Nv = fext − fint, (41)

where
MIJ =

∑
L

ρ(x(XL, t))�I (x(XL, t))�J (x(XL, t))IaL, (42)

NIJ =
∑
L

ρ(x(XL, t))�I (x(XL, t))�
∗
J (x(XL, t))IaL, (43)
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fext
I =

∑
K

�I(x(X̂K, t))h(x(X̂K, t))wk +
∑
L

�I (x(XL, t))b(x(XL, t))aL (44)

fint
I =

∑
L

B̄T
I (x(XL, t))�(x(XL, t))aL, (45)

B̄I (x(XL, t) =
⎡⎢⎣ b̄L1I 0

0 b̄L2I

b̄L2I b̄L1I

⎤⎥⎦ �(x(XL, t) =
⎡⎢⎣σ11(x(XL, t))

σ22(x(XL, t))

σ12(x(XL, t))

⎤⎥⎦ , (46)

b̄LiI =
1

aL

∫
γL

�Ini d� aL =
∫
ωL

d�, (47)

where x(XL, t) and aL are the nodal point position and the corresponding weight as-
sociated with domain integration in the deformed domain �x , respectively, x(X̂K, t)

and wk are the nodal point position and weight associated with boundary integration
on the deformed natural boundary �h

x , respectively, and γL and ni are the boundary
and surface normal of the nodal representative domain ωL in the deformed config-
uration, respectively. The second term on the left hand side of Equation (41) is a
convective term resulting from the material time derivative of the semi-Lagrangian
kernel function.

4 Stability Analysis of Lagrangian and Semi-Lagrangian Discrete
Equations

Von Neumann stability analyses of Lagrangian and semi-Lagrangian discrete equa-
tions are presented in this section. The following notations are used in stability ana-
lysis:

C(h) = C(xI ; xI+1 − xI ) φa(h) = φa(xI+1 − xI )

C(h/2) = C(xI ; xI+1/2 − xI ) φa(h/2) = φa(xI+1/2 − xI )

�I (0) = �I (xI ) �I (h) = �I (xI+1)

�I,x(h) = �I,x(xI+1) �I,xx(h) = �I,xx(xI+1).

where h = �x is the constant nodal spacing.

4.1 Lagrangian Discrete Equation of Motion Integrated by SCNI

The Lagrangian discrete equation of motion in one-dimension can be expressed as:

Mü = fext − fint, (48)

where

65



J.S. Chen and Y. Wu

F int
I =

∫
�x

�X
I (X),X P d�, (49)

F ext
I =

∫
�x

�X
I (X)b0 d�+�X

I (X)h0
∣∣∣∣
�h
X

. (50)

By employing SCNI, Equation (49) can be written as

f int
I =

NP∑
L=I

b̄LI P (XL)AL, (51)

where b̄LI is the smoothed gradient:

b̄LI =
1

AL

[
�X

I (X+L )−�X
I (X−L )

]
. (52)

In one-dimension, AL is the length of nodal representative domain �L = ]X−L ,X+L [
for node L, and X+L and X−L are the two end points of �L. The first Piola–Kirchhoff
stress P is defined as:

P = SF. (53)

Here S is the second Piola–Kirchhoff stress obtained by

�S = CSE�E (54)

and the Green strain E is given as

E = 1

2
(F 2 − 1). (55)

Further considering lumped mass, the Lagrangian discrete equation of motion at a
node I can be written as

mI üI = f ext
I − f int

I no summation on I . (56)

Assuming small perturbation in displacement, the perturbation equation of Equa-
tion (56) reads [2]:

mI
¨̃uI = −f̃ int

I . (57)

From Equation (51), we have

f̃ int
I =

NP∑
L=1

b̄LI P̃ (XL)AL. (58)

The perturbation of the first Piola–Kirchhoff stress is
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P̃ (XL) = (CSEF 2 + S)f̃L, (59)

where

f̃L = ∂ũ

∂X

∣∣∣∣
L

=
NP∑
I=1

b̄LI ũI . (60)

Consider uniform particle distribution in an infinite domain, Equation (57) can be
written as

¨̃uI = −CSEF 2 + S

ρ0

m∑
K=−m

[
b̄I+KI

m∑
J=−m

b̄I−JI ũI+J+K

]
, (61)

where m = int(R + 0.5) is an integer determined by the normalized support size R

(support size divided by nodal distance).
For plane wave, the perturbed displacement takes the form as

ũI = geikI�x=iωt , (62)

where g is the amplitude of the perturbation, k is the wave number,ω is the frequency,
and �x = h is the nodal spacing. Accordingly, the stability criterion is ω should be
real. Substituting Equation (62) into Equation (61) yields:

ω2 = CSEF 2 + S

ρ0

2m+1∑
K=1

[
b̂K

2m+1∑
L=1

b̂L cos(K − L)kh

]
, (63)

where
b̂K = b̄I+K−m−1

I . (64)

Note that since uniform nodal spacing and infinite domain is considered, the index I
is ignored in Equation (63) for notational simplicity. The frequency relations based
on Equation (63) are shown in Figure 4 for various normalized support sizes, and
c2 = (CSEF 2 + S)/ρ0. It is observed that the frequency is very close to zero near
the cut-off point (kh = π) for the case with very large support size (R = 3.5). This
implies that the stiffness matrix becomes more linearly dependent and ill conditioned
when very large support size is used and this should be avoided.

4.2 Stability of Semi-Lagrangian Discrete Equation

In one-dimension, with the employment of lumped mass and nodal integration, the
discrete equation of motion by the semi-Lagrangian approximation can be written
as:

mI ν̇I +
NP∑
J=I

NIJ νJ = f ext
I − f int

I no summation on I , (65)
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Fig. 4. Frequency characteristic of Lagrangian RK discretization with SCNI.

where

NIJ =
NP∑
K=1

ρ(xK)�I (xK)�∗J (xK)aK, (66)

f int
I =

NP∑
K=1

B̄I (xK)σ(xK)aK, (67)

�∗I (xK) = C(xK ; xK − xI )φ̇a(xK − xI ), (68)

σ(xK) = Cσ ε(xK) = Cσ
NP∑
J=1

B̄J (xK)uJ , (69)

φ̇a(xK − xI ) = φ′a(xK − xI )
nIK(νK − νI )

a
, (70)

nIK = xK − xI

|xK − xI | . (71)

Here aK is the length of nodal representative domain of node K, xK = x(XK, t)

is the current position of material point XK , and Cσ is the material modulus. Note
that B̄I (xK) is the gradient of shape function which takes the smoothed form (Equa-
tion (46)) if SCNI is used, and B̄I (xK) = �I,x(xK) if a direct nodal integration
(DNI) is employed.
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4.2.1 Semi-Lagrangian Weak Form Integrated by Stabilized Conforming
Nodal Integration (SCNI)

When SCNI is employed for domain integration, the smoothed shape function gradi-
ent following Equation (46) is

B̄I (xK) = B̄K
I =

1

aK

[
�I(x

+
K)−�I (x

−
K)

]
. (72)

In one-dimension, aK is the length of nodal representative domain �K =]x−K, x+K [
for node K , and x+K and x−K are the two end points of �K . Under the assumption of
small perturbation in displacement and velocity, the perturbation in nodal mass can
be neglected, therefore, the perturbed equation corresponding to Equation (65) can
be written as

mI
˙̃νI +

NP∑
J=1

ÑIJ νJ +
NP∑
J=1

NIJ ν̃J = −f̃ int
I . (73)

It can be shown that Equation (73) can be expressed explicitly as

mI
˙̃νI +

NP∑
J=1

(
NP∑
K=1

mK�̃I (xK)�∗J (xK)

)
νJ +

NP∑
J=1

(
NP∑
K=1

mK�I(xK)�∗J (xK)

)
ν̃J

+
NP∑
K=1

˜̄BI (xK)σ(xK)aK +
NP∑
K=1

B̄I (xK)σ̃ (xK)aK +
NP∑
K=1

B̄I (xK)σK ãK = 0.(74)

The perturbed quantities such as �̃I (xK), σ̃ (xK), and ˜̄BI (xK) can be obtained ac-
cording to their definitions. For moderate normalized support size 1 < R < 2, by
approximating νI+1 = νI +Q�x, where

Q = ∂ν

∂x

∣∣∣∣
x=xI

,

and ν̃ = ˙̃uI , Equation (74) can be rewritten as

¨̃uI − 2Q2[C(h)φ′a(h)]2
R2

(ũI+1 − 2ũI + ũI−1)

+ QC(h)φ′a(h)
R

[
�I (0)(−˙̃uI+1 + ˙̃uI−1)+�I (h)(−˙̃uI+2 + ˙̃uI−2)

]
+ (Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(−ũI+2 + 2ũI − ũI−2) = 0. (75)

Substituting Equation (62) into Equation (75) leads to
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ω2 − 4Q2 [C(h)φ′a(h)]2
R2

(1− cos kh)

− 2Qω
C(h)φ′a(h)

R
[�I(0) sin kh+�I (h) sin 2kh]

− 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1− cos 2kh) = 0. (76)

Rewrite Equation (76) as
ω2 + Bω + C = 0, (77)

where

B = −2Q
C(h)φ′a(h)

R
[�I(0) sin kh+�I (h) sin 2kh]

C = −4Q2 [C(h)φ′a(h)]2
R2 (1− cos kh)

− 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1− cos 2kh). (78)

Define a frequency characteristic parameter D(ω) as

D(ω) = B2 − 4C. (79)

It is observed that if D(ω) ≥ 0, real solution for ω is obtained and the discrete system
is stable. Note that D(ω) ≥ 0 is satisfied as long as Cσ + σ ≥ 0, where Cσ + σ

represents the tangent modulus including geometric nonlinearity effect. Therefore,
under semi-Lagrangian discretization with SCNI, the sufficient condition for stability
is when the tangent modulus is positive (Cσ+σ ≥ 0). This stability condition for the
semi-Lagrangian discrete system integrated by SCNI is consistent with the stability
condition of a continuum.

Note that the sign of the velocity gradient Q does not affect the stability in semi-
Lagrangian discretization with SCNI, hence only a non-negative velocity gradient is
considered in the following study of the behavior of D(ω). Consider a discretization
with uniform particle distribution, normalized support size R = 1.5, small velocity
gradient 0 ≤ Q ≤ 2, and Cσ is assumed positive.

Figure 5 demonstrates frequency characteristic parameter D(ω) = B2 − 4C for
the case where the continuum system is stable (Cσ+σ > 0). It can be observed from
Figure 5 that in the cases when (Cσ + σ > 0) the frequency is real (D(ω) ≥ 0) for
all wavelengths, representing a stable discrete system compatible with the continuum
system. Figure 6 displays frequency characteristic parameter D(ω) = B2 − 4C for
the case where continuum system exhibits instability (Cσ + σ ≤ 0). It is shown in
Figure 6 that D(ω) < 0 in certain range of wavelengths leading to imaginary angular
frequency, and hence the discrete system is unstable. This instability in the discrete
system is consistent with the continuum instability [2].
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Fig. 5. Frequency characteristic parameter for semi-Lagrangian with SCNI and Cσ + σ > 0.

Fig. 6. Frequency characteristic parameter for semi-Lagrangian with SCNI and Cσ + σ < 0.

4.2.2 Semi-Lagrangian Weak Form Integrated by Direct Nodal Integration
(DNI)

When direct nodal integration is used for domain integration, the nodal value of
gradient is calculated as:

B̄I (xK) = �I,x(xK). (80)

Correspondingly, Equation (74) reduces to

¨̃uI − 2Q2[C(h)φ′a(h)]2
R2

(ũI+1 − 2ũI + ũI−1)

+ QC(h)φ′a(h)
R

[�I(0)(−˙̃uI+1 + ˙̃uI−1)+�I (h)(−˙̃uI+2 + ˙̃uI2)]

+ σ

ρ
�I,xx(h)(ũI+1 − 2ũI + ũI−1)
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− (Cσ + σ)

ρ
[�I,x(h)]2(ũI+2 − 2ũI + ũI−2) = 0 (81)

Substitution of Equation (62) into Equation (81) yields

ω2 − 4Q2 [C(h)φ′a(h)]2
R2 (1− cos kh)

− 2Qω
C(h)φ′a(h)

R
[�I(0) sin kh+�I (h) sin 2kh]

+ 2
σ

ρ
�I,xx(h)(1− cos kh)− 4

Cσ + σ

ρ
[�I,x(h)]2 sin2(kh) = 0. (82)

Equation (82) can be written as

ω2 + Bω + A = 0, (83)

where B is given in Equation (78), and

A =
{
−4Q2 [C(h)φ′a(h)]2

R2 + 2
σ

ρ
�I,xx(h)

}
(1− cos kh)

− 4
Cσ + σ

ρ
[�I,x(h)]2 sin2(kh). (84)

Define the frequency characteristic parameter D(ω) as

D(ω) = B2 − 4A. (85)

Note that the sign of σ�I,xx(h), and hence the sign of stress σ , plays an important
role in the stability of discrete system integrated by DNI.

In the stability analysis shown below, discretization with constant nodal distance
�x = 0.05 is employed. Figures 7 and 8 demonstrate frequency characteristic para-
meter D(ω) = B2 − 4A for different values of Q and σ/Cσ . The results in Figure 7
show that when a stable continuum is under tension (Cσ + σ > 0), imaginary fre-
quency occurs (D(ω) < 0) at certain wavelengths, leading to an unstable discrete
system constructed using DNI. This is referred to as the tensile instability observed
in SPH [20]. On a separate test as shown in Figure 8, the discrete system constructed
using DNI becomes stable when continuum instability occurs (Cσ + σ ≤ 0), and it
is unphysical.

4.3 Effect of Convective Term on Stability

To examine how the convective term in the semi-Lagrangian discretization affects
the stability of the discrete equation, consider removing the convective term (second
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Fig. 7. Frequency characteristic parameter for semi-Lagrangian with DNI for Cσ +σ > 0 and
σ > 0.

Fig. 8. Frequency characteristic parameter for semi-Lagrangian with DNI for σ + Cσ < 0.

term in Equation (65)) to yield the following dispersion equations constructed by
SCNI and DNI:

(1) SCNI

ω2 − 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1− cos 2kh) = 0 (86)
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(2) DNI (equivalent to SPH)

ω2 = 2
Cσ + σ

ρ
[�I,x(h)]2 (1− cos 2kh)− 2

σ

ρ
�I,xx(h)(1− cos kh). (87)

By comparing Equations (76) and (86) for the semi-Lagrangian discretization integ-
rated by SCNI, it is seen that inclusion of the convective term in the semi-Lagrangian
discretization does not have negative influence on the stability property of discrete
system. In fact, the stability is slightly improved when convective term is included in
the semi-Lagrangian discrete equation. Similar situation is observed by comparing
Equations (82) and (87) for the DNI case.

Equation (86) confirms that there is no tensile instability if SCNI is employed in
the semi-Lagrangian discretization. On the other hand, it is seen from Equation (87)
that if DNI is employed, tensile instability will occur. This tensile instability con-
dition in Equation (87) when σ�I,xx(h) > 0 reflects tensile instability in SPH as
has been identified by Swegle et al. [20]. Based on the stability analysis of semi-
Lagrangian discretization in Sections 4.2.1 and 4.2.2 and in this section, it is shown
that SCNI always yields a stable semi-Lagrangian discrete system regardless of the
inclusion of convective term if the continuum is stable, whereas instability is ob-
served when DNI is employed.

Note that the semi-Lagrangian discrete equation constructed with DNI and with
convective term removed yields an SPH type formulation. By comparing Equa-
tion (76) (semi-Lagrangian discretization integrated by SCNI and with convective
term included) and Equation (87) (semi-Lagrangian discretization integrated by DNI
and without convective term included, representing SPH), it is suggested the stability
of SPH can be improved by introducing strain smoothing of SCNI in the nodal strain
calculation and by including the convective term in the SPH equation of motion.

5 Conclusions

Lagrangian formulation breaks down when the one-to-one mapping of material point
position between undeformed domain and deformed domain cannot be defined. This
situation happens in the processes of new free surface formation in damage evolution
or free surface closure that commonly exists in materials processing, earth moving,
and penetration processes. To circumvent this difficulty, a semi-Lagrangian discretiz-
ation is proposed. In the Lagrangian discretization the distance measure in the kernel
function is defined in the initial undeformed domain, whereas in the semi-Lagrangian
discretization the distance measure in the kernel function is defined in the current de-
formed domain. It has been shown that the semi-Lagrangian discretization yields a
convective term resulting from the non-conservative coverage of material points un-
der the kernel support.

Von Neumann stability analyses have been performed for Reproducing Kernel
(RK) Lagrangian and semi-Lagrangian discretizations with weak forms integrated
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using stabilized conforming nodal integration (SCNI). In Lagrangian discretization
with SCNI, the stability of the discrete system is always consistent with the stabil-
ity of the continuum. In the semi-Lagrangian discrete equation, an additional con-
vective term exists due to the change of material particles covered under the semi-
Lagrangian kernel function during different states of material deformation. By com-
parison of stability conditions of Lagrangian and semi-Lagrangian discretizations
integrated by SCNI, it has been shown that the inclusion of the convective term in
the semi-Lagrangian discretization offers a slightly better stability compared to the
semi-Lagrangian discretization without convective term. The stability analysis also
showed similar stability conditions between Lagrangian and semi-Lagrangian dis-
cretizations if convective term is included in the semi-Lagrangian discretization.

The stability of semi-Lagrangian discretization with domain integration by a dir-
ect nodal integration (DNI) has also been analyzed. The analysis results demon-
strated that semi-Lagrangian discretization constructed by DNI yields instability un-
der tension, which is referred to as the tensile instability in SPH. Note that semi-
Lagrangian discretization integrated by DNI and with removal of convective term
resembles SPH. The stability analysis performed in this work suggests that the sta-
bility of SPH can be improved with the addition of convective term in the equation
of motion and by introducing strain smoothing employed in SCNI in the nodal strain
evaluation of SPH.
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