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Abstract. The Generalized Finite Element Method (GFEM) is first applied to hybrid-mixed
stress formulations (HMSF). Generalized shape approximation functions are generated by
means of polynomials of three independent approximation fields: stresses and displacements
in the domain and displacements field on the static boundary. Firstly, the enrichment can inde-
pendently be conducted over each of the three approximation fields. However, solvability and
convergence problems are induced mainly due to spurious modes generated when enrichment
is arbitrarily applied. With the aim of efficiently exploring enrichments in HMSF, an extension
of the patch-test is proposed as a necessary condition to ensure enrichment, thus preserving
convergence and solvability. In the present work, the inf-sup test based on Babuška–Brezzi
condition was used to demonstrate the effectiveness of the Patch-Test. In particular, the inf-sup
test was applied over selectively enriched quadrilateral bilinear and triangular finite element
meshes. Numerical examples confirm the Patch-Test as a necessary but not sufficient condition
for convergence and solvability.

Key words: Generalized finite element method, hybrid-mixed stress formulation, Babuška–
Brezzi condition, inf-sup test.

1 Introduction

Boundary value problems (BVPs) can be variationally expressed using different prin-
ciples. Depending on the variables involved in the variational principle, a specific
weak form results and the FEM can then be applied to generate approximated solu-
tions.

Among the non-conventional weak forms, three variants of the Hybrid formu-
lation can be emphasized: the Hybrid-Mixed, Hybrid and Hybrid-Trefftz forms, all
of which are detailed in [6]. In the present work, the Hybrid-Mixed Stress Model
Formulation (HMSF) is addressed.
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This non-conventional form is called mixed for the reason that two incompat-
ible stress and displacements fields are approximated in the domain. Since a second
displacement field is approximated independently on the static boundary (where sur-
face forces are imposed), the formulation is also typified as a hybrid one. Finally, the
model is referred to as a stress model in view of the fact that continuity is primarily
imposed over the stress approximation field.

Concerning numerical tools to solve BVPs, meshless methods provide approxim-
ations which are totally or relatively independent of the finite element mesh concept.
The hp-Clouds Method [5], is distinguished among the meshless methods by the en-
richment alternative of a basic approximation (partition of unity) without the defin-
ition of any additional nodal points in the domain. The Generalized Finite Ele-
ment Method (GFEM) [8], allows combining the enrichment scheme of the hp-cloud
method and advantageous features such as the strong imposition of boundary condi-
tions of the conventional FEM.

Pimenta et al. [9] and Góis [7] applied the nodal enrichment technique to HMSF,
resulting in a new application of the GFEM. Apparently, since displacements and
stresses can be independently approximated, the enrichment could also be uncondi-
tionally imposed to each of those fields. However, that is not true because not all
the combinations of enrichment supply stable and convergent solutions. Actually, in
spite of noticeably good convergent responses, sometimes bad combinations of en-
richments furnish unsatisfactory values of strain energy or stress and displacement
fields as well.

Based on the above, in the present work, two numerical tests are proposed to
verify the stability of HMSF solutions provided by GFEM. The first, a kind of Patch
Test is linked to solvability, while the second is used to verify whether the (inf-
sup) condition is satisfied by GFEM approximation functions obtained from clouds
composed by four nodes quadrilaterals.

2 Hybrid-Mixed Stress Formulation in Plane Elasticity

The basis of the Hybrid-Mixed stress model in isotropic linear elasticity employed
in the present work is founded on the variational principle of Reissner–Hellinger
expressed as:

�(u, σ, u�) = −
∫
�

1

2
σT f σ d�−

∫
�

uT (Lσ + b) d�

+
∫
�t

uT�(Nσ − t) d� +
∫
�u

uT (Nσ) d�. (1)

The above expression comprises stress (σ ) and displacement (u) fields defined
in the domain (�) and a displacement field (u�) defined on the static part (�T ) of
the boundary. In addition, L is the differential divergent operator; b the vector of
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body forces; N the matrix formed by the components of the unit vector normal to the
boundary; u the vector of prescribed displacements on �u and t the vector of applied
superficial forces on �t . The treatment will be restricted to plane elasticity. Thus, f
represents the flexibility matrix for linear and isotropic elastic materials.

Concerning numerical approximations and assuming the domain (�) and bound-
ary (�) of the solid discretized by nodal points, interpolations of nodal values can be
used to approximate the three independent fields as indicated below:

σ̂ = S� s�; û = U� q�; û� = U� q�. (2)

In the preceding relations, s� represents the vector of nodal stress variables while
q� and q� are vectors of displacement nodal degrees of freedom. S�,U� and q�
are respectively the matrices collecting the approximation functions for stress and
displacement fields. Taking into consideration the approximated fields and imposing
the stationary condition to the functional given in Equation (1), the following system
of linear equations can be generated:⎡⎢⎢⎣

F A� −A�

AT
� 0 0

−AT
� 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
s�

q�

q�

⎤⎥⎥⎦ =
⎡⎢⎢⎣
e�

−Q�

−Q�

⎤⎥⎥⎦ . (3)

The system matrix can be rearranged using the following sub-matrices:

F =
∫
�

ST
� f S� d�, (4a)

A� =
∫
�

(LS�)
T U� d�, (4b)

A� =
∫
�t

(NS�)
T U� d�, (4c)

e� =
∫
�u

(NS�)
T u d�, (4d)

Q� =
∫
�

UT
�b d�, (4e)

Q� =
∫
�t

UT
� (t) d�. (4f)

In this work body forces (b) are not considered and the vector of displacements
u is prescribed as null on the boundary (�u) (then e� = Q� = 0).
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Fig. 1. Nodal clouds on domain and boundary nodes.

3 Bilinear Quadrilateral Elements with Nodal Enrichment

Consider a plain domain covered by a mesh of four nodes quadrilateral elements.
The covering mesh is employed to define (ω) clouds in the domain, Figure 1. The
boundary mesh is composed of linear elements connecting the nodes positioned on
the boundary. Each cloud on both the domain and boundary is then formed by the
elements sharing a common node. For those meshes composed of quadrangular ele-
ments, conventional bilinear Lagrangian functions are used as interpolating partition
of unity for both stresses and displacements fields in the domain. Linear partitions of
unit are used to interpolate displacements on boundary.

In order to provide enrichment to any approximation field attached to the nodes
of the covering mesh, polynomial functions hkj , k = 1, . . . , I (j) can be adopted in
the domain �. Here I (j) is the number of chosen functions at each node of index j .
The following GFEM approximation family then results:

�2
N = {{S�j }Nj=1 ∪ {S�j hkj }Nj=1 : j = 1, . . . , N; k = 1, . . . , I (j)}. (5)

For instance the enriched stress field can be constructed as:

σ̂ =
N∑

j=1

S�j

⎧⎨⎩s�j +
I (j)∑
i=1

hij bij

⎫⎬⎭ , (6)

where N is the total number of nodes in the domain, s�j are the stress degrees of
freedom associated with the original shape functions and bij are new nodal para-
meters introduced by each of the enrichment portions. With respect to the fields of
displacements in domain and boundary, analogous procedure can be used to generate
enriched approximations.

Thus, the interpolation matrices of the HSMF stress and displacement fields in
domain can be represented as:
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S�e = [φ1�1 φ2�2 φ3�3 φ4�4], (7)

U�e = [φ1�1 φ2�2 φ3�3 φ4�4], (8)

where φj , j = 1, . . . , 4 represents the Lagrangian bilinear functions connected to
node j . The interpolation matrix for the two nodes element employed on the bound-
ary mesh is given by:

U� = [ψ1��1 ψ2��2], (9)

where ψj� , j� = 1, 2 being the Lagrangian linear functions connected to node j� of
the element.

In Equation (7) through Equation (9), �j and ��j�
are named the polynomial

enrichment matrices attached respectively to node j of the domain and node j� of
the boundary element. Such matrices are given by:

�j = [I3 h1j I3 . . . hkj I3 . . . hi(j)j I3] (10)

when enrichment is over domain stress fields;

�j = [I2 h1j I2 . . . hkj I2 . . . hI (j)j I2] (11)

when enrichment is over domain displacements fields; and

��j�
= [I2 h1j� I2 . . . hkj� I2 . . . hI (j)j� I2] (12)

when enrichment is over boundary displacements fields.
Clearly, if the functions hkj and hkj� are null the conventional structure of the

FEM is recovered. In this work the functions and are such that they are null in the
enriched nodes (“bubble like functions”). The advantage of this procedure is that the
original physical meaning of nodal degrees of freedom s�, q� and q� is preserved.

The forms selected for the bubbles functions hkj (later referred to as levels 2, 3
and 4 enrichment) and hkj� (later referred to as level 2 enrichment) are:

hkj = (Y − Yj )
2, (X−Xj)

2, (X−Xj)(Y − Yj )
2, . . . and hkj� = (ξ − ξj� )

2, . . . ,

(13)
where Xj , Yj are dimensionless coordinates to the finite element in the domain cov-
ering mesh and ξj� is a dimensionless coordinate for the one-dimensional finite ele-
ment of the boundary covering mesh.

Obviously the set of approximating functions involved in the HMSF can be lim-
ited not only to polynomials but also extended to include customized functions. On
the other hand, with respect to the number of Gauss points necessary to carry out
a numerical integration of the enriched matrices of each quadrilateral element, the
following cases are distinguished:

• for the domain elements where the maximum degree of the hkj polynomials in a
direction is gap, gap + 2 Gauss points are necessary in each direction for integ-
rating while;

• for the boundary elements where the maximum degree of the hkj� polynomials
is gap� , the number of Gauss points necessary for integrating is gap� + 2;
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4 On the Conditions of Convergence of HMSF with GFEM
Spaces

A first step towards the study of the conditions of convergence of GFEM solutions
for the case of HMSF presented here is founded in the work of Zienkiewicz et al.
[11]. Initially a simple algebraic condition called Patch Test is suggested to ensure
solvability (non-singularity condition) of the discrete linear system. Then a numer-
ical study is proposed following the Babuška–Brezzi (inf-sup) sufficient condition to
solvability and convergence.

4.1 The Patch Test Applied to HMSF with GFEM

Taking into account the system of equations given by Equation (3), limited to the
case without enrichment and based on the proposal of Zienkiewicz et al. [11], the
following algebraic conditions are necessary for the existence of a solution:

s� ≥ q�, (14)

expressed in terms of degrees of freedom attached to domain patches and

s� ≥ q�, (15)

expressed in terms of degrees of freedom of stress and displacements on boundary
patches. Both conditions are essentially important to assure good properties to the
sub-matrices, A� and A� composed of the system given by Equation (3).

When enrichment is considered, the patch test is extended by including the new
set of degrees of freedom introduced at each node. Then, Equation (14) and Equa-
tion (15) become:

a� + bij ≥ q� + cmn, (16)

s� + bij ≥ q� + dkl, (17)

where cmn and dkl are the additional degrees of freedom introduced by displacement
enrichments in the domain and boundary respectively.

Now, analyzing the enrichment possibilities and considering the conditions ex-
pressed in formuae (16) and (17), it can be concluded initially that:

• Only stress field enrichment in the domain is unrestricted since both conditions
would always be satisfied;

• The simultaneous enrichment of stress and displacement fields in the domain is
also effective;

• Simultaneous enrichment of stress and displacement fields (in domain and
boundary) is allowed provided enrichment applies to those nodes in the domain
coincident with nodes of the enriched mesh on the boundary;
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• The previous conclusion can be extended to enrichment including stress fields in
the domain and displacements on the boundary;

• Enrichment restricted to displacement fields is ineffective since Equations (16)
and (17) would not be satisfied.

It is important to note once more that the patch test conditions are necessary but not
sufficient for solvability and consequently for the stability of the linear system.

4.2 Study of the Babuška–Brezzi (inf-sup) Condition Apllied to the HMSF
with GFEM

The Babuška–Brezzi or inf-sup condition [1, 3] is a necessary and sufficient condition
to ensure stability and convergence of any linear numerical approach supplied by the
MEF. Based on Babuška [2] and Chapelle and Bathe [4], a numerical verification of
this condition extended to GFEM in HMSF is presented here.

4.2.1 On the Well-Posedness of a Boundary Value Problem: The
Babuška–Brezzi (inf-sup) Condition

A boundary value problem (BVP) expressed in its variational form consists in finding
a solution u0 ∈ H1 such that:

B(u0, ν) = F(ν) ∀ν ∈ H2 (18)

for every continuous linear functional F in H2. Well-posedness of the problem is as-
sured if the following conditions are verified: Continuity of the bilinear form B(. . .)

and the Babuška–Brezzi (inf-sup) condition.

Continuity of the bilinear form

Let H1 and H2 be Hilbert spaces endowed with norms ‖·‖H1 and ‖·‖H2 respectively.
The bilinear form, B(·) : H1xH2 → R is continuous if for a given positive scalar
CB , the inequality below is valid:

|B(u, ν)| < CB‖u‖H1‖ν‖H2 ∀ u ∈ H1 and ν ∈ H2. (19)

The Babuška–Brezzi (inf-sup) condition

The class of problems governed by the addressed continuous bilinear form is well-
posed if:

inf
u �=0∈H1

sup
ν �=0∈H2

B(u, ν)

‖u‖H1 ‖ν‖H2

≥ λ > 0, (20)

sup
u∈H1

B(u, ν) > 0 ∀ ν �= 0 ∈ H2. (21)
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In the above equations, ν represents the space of test functions. Furthermore, by
definition:

H1 = H2 =
{
ν|ν ∈ L2(�); ∂νi

∂xj
∈ L2(�),

(i, j = 1, 2, 3); νi|�u = 0, (i = 1, 2, 3)

}
. (22)

Accordingly, any element ν in H2 must satisfy boundary conditions which are
homogeneous on �u. Moreover, ∫

�

(ν)2 d� <∞, (23)

∫
�

(
∂νi

∂xj

)2

d� <∞, i, j = 1, 2, 3. (24)

In fact, the preceding conditions are related to the existence of a solution to the
problem in question. Essentially, it can be demonstrated that the conditions given by
Equation (20) and Equation (21) are necessary and sufficient to ensure the existence
and uniqueness of the BVP solution.

Once the original problem is well-posed, the performance of the formulation
using finite elements is dependent on the choice of n-dimensional linear subspaces
Sn

1 ⊂ H1 and Sn
2 ⊂ H2 defined as:

sn1 = sn2 (25)

=
{
νn|νn ∈ L2(�); ∂νni

∂xj
∈ L2(�), (i, j = 1, 2, 3); νni |�u = 0, (i = 1, 2, 3)

}
.

Usually, νu is a polynomial function of degree n. As a rule, it is assumed that
there are νk ∈ Sk such that the sequence νk(k = 1, 2, . . .) converges to u0.

The partition of unity features used in the approximation spaces, Sn
1 and Sn

2 ,
ensures continuity of the bilinear form involved in HMSF and also the verification
of Equation (21). Hence, the Babuška–Brezzi (inf-sup) condition is the main focus
of what follows.

Assuming that B(u, ν) satisfies Equation (19), the discrete form of Equation (21)
can be written as:

inf
u �=0∈sn1

sup
ν �=0∈Sn

2

B(un, νn)

‖un‖H1‖νn‖H2

≥ λ(n) > 0. (26)

It can be perceived that λ(n) now depends on the dimension of the approximation
spaces. However, if the problem is well-posed, convergence to a value λ0 should
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be verified provided mesh refinement or enrichment of the approximation space is
carried out.

Let then u0 ∈ H1 be the exact solution derived from the strong formulation, for
instance, and un ∈ Sn

1 a numerical estimate. Then, since the exact solution is also a
solution for the weak form, both conditions below are valid:

B(u0, ν) = F(ν), ∀ν ∈ H2, (27)

B(un, νn) = F(νn), ∀νn ∈ Sn
2 . (28)

Subtracting Equation (27) from Equation (28) and using the continuity property
of the bilinear form, we have:

‖u0 − un‖h1 ≤
(

1+ CB

λ(n)

)
inf
χ∈Sn

1

‖u0 − χ‖H1 . (29)

Hence, if the inequality Equation (26) is satisfied one can conclude that conver-
gence and unicity of the numerical solution is also ensured. In practical terms, in
a first stage, the solution exists if the Babuška–Brezzi condition gives (λ(n) > 0)
for a certain approach. In a second stage, by considering successively more refined
approaches, the result λ(n)→ λ0 confirms convergence and unicity.

Numerical determination of λ(n)

Babuška [2] presents a mathematical development showing that the determination of
λ(n) is equivalent to finding the square root of the nonzero smallest eigenvalue of
the following generalized eigenvalue problem:

BT A−1
2 Bx = μA1x. (30)

In the above relation, B can be obtained from

B(un, νn) = vTBu, (31)

while v and u are vectors with components un ∈ Sn
1 and νn ∈ Sn

2 . Finally, A1 and A2
are symmetric and positive-definite matrices associated to the norms:

‖u‖2
H1
= uTA1u; ‖ν‖2

H2
= vTA2v. (32)

The inf-sup test applied to HMSF with GFEM

In the present work, we extend the numerical inf-sup test to a hybrid mixed formu-
lation. An important aspect of this is the identification of all matrices involved in
Equation (30).

Consider then the governing equations of the HMSF derived from the stationary
condition of the variational principle expressed by Equation (1):
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�

δσT f σ d�+
∫
�

uT (Lδσ) d�−
∫
�t

uT�(Nδσ) d� =
∫
�u

uT (Nδσ) d�, (33)

∫
�

δuT (Lσ) d� = −
∫
�

δuT b d�, (34)∫
�t

δuT (Nσ) d� =
∫
�t

δut t d�. (35)

It follows that the bilinear form B(. . .) and the linear form F(·) can be written as:

B(U,V ) =
∫
�

δσT f σ d�+
∫
�

uT (Lδσ) d�−
∫
�t

uT� (Nδσ) d�

+
∫
�

δuT (Lσ) d�+
∫
�t

δuT (Nσ) d�, (36)

F(V ) =
∫
�u

uT (Nδσ) d� −
∫
�

δuT b d�+
∫
�t

δuT t d�. (37)

It can be assumed [10] that the spaces U = (σ, u, u�) and V = (δσ, δu, δu�) can be
defined in XxY as:

X = {(σ, u, u�) : σ ∈ H1; σ, u, u� ∈ L2(�)}, (38)

Y = {(δσ, δu, δu�) : δσ ∈ H1; δσ, δu, δu� ∈ L2(�)}. (39)

Furthermore, the space U is endowed with the norm:

‖U‖2
x = ‖(σ, u, u�)‖2

x

=
∫
�

σ 2 d�+
∫
�

(Lσ)2 d�+
∫
�

u2 d�+
∫
�t

u2
� d�. (40)

Finally, from Equations (36) and (37), all matrices in Equation (30) can be de-
rived.

5 Inf-sup Test: Numerical Results

Here the methodology of the inf-sup test is now applied considering the problem
depicted in Figure 2. For reasons of simplification, no units for the elastic parameters
and dimensions are adopted in both problems. Furthermore, the Young’s modulus
and Poisson’s coefficient are assumed to be respectively: E = 1000 and ν = 0.3.

The problem considers a 5 units side square plate and stressed by a uniformly dis-
tributed force of p = 10 units applied along its length. Essential boundary conditions
are imposed over the left vertical side by constraining the plane displacement com-
ponents (ux = 0 and uy = 0). Essential boundary conditions are also imposed over
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Fig. 2. Uniformly tensioned plate.

the upper and lower horizontal sides by constraining the displacements in direction
y(uy = 0). The reference value of the strain energy in this problem is: 1.14.

The inf-sup test was applied to the HMSF by considering sequences of regular
quadrilateral element meshes indicated as (1× 1), (2× 2), (4× 4), (8×8) and (16×
16). The numbers in the preceding nomenclature represent the amount of regular di-
visions in the x ey directions respectively. Polynomials as indicated by Equation (13)
were often adopted as enrichment functions for the stress and displacement fields in
the domain and displacement field on the boundary.

For each mesh, the value of λ(n) was computed from the square root of the smal-
lest eigenvalue determined on solving Equation (30). The results were then plotted
on a log(λ(n)) − log(1/N), (N is the total number of degrees of freedom) scale.
The inf-sup test was considered to be satisfied if the (log(1/N) − log(λ(n))) curve
showed an asymptotic behavior towards positive values.

5.1 Numerical Results

The results of the inf-sup test applied to the sets of quadrilateral element meshes
without enrichment are presented in Figure 3.

Even though the inf-sup condition is not satisfied, we note that the patch test is
verified and there is convergence in terms of strain energy.

With the enrichment restricted to the stress field in all nodes in domain, one can
conclude that the quadrilateral element satisfies the inf-sup test, see Figure 4. This
test confirms the results predicted by the patch-test. Another conclusion derived from
the control of ‘spurious modes’ is that enrichment of the stress field eliminates such
modes, improving the solvability of the problem.
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Fig. 3. Results for regular meshes without enrichment.

Fig. 4. Results for regular meshes with enrichment of the stress field in the domain.

Figure 5 shows results obtained by adopting selective polynomial enrichments
over the stress field. It can be concluded that the number of enriched nodes, compared
to the total number of nodes, affects the inf-sup test results. In fact, the responses for
few enriched nodes are more comparable to the situation without enrichment.

The quadrilateral element with simultaneous enrichment of the domain fields
satisfies the inf-sup test as illustrated in Figure 6. Spurious displacement modes are
still present but not affecting solvability and convergence aspects.

In Figure 7 two other possibilities of enrichment satisfying the patch test are
presented. Enrichment limited to displacement field at all nodes of the domain is not
recommended (patch test fails). The enrichment of the boundary displacement field
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Fig. 5. Results for regular meshes with selective stress polynomial enrichment.

Fig. 6. Results for enrichment of the stress and displacement fields in the domain.

is effective if supplemented by enrichment of the stress fields. In such a case the
patch test is verified.

Although the inf-sup test fails, the convergence strain energy is verified when the
displacement field in the domain is enriched.
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Fig. 7. Results for enrichments of displacements field in the domain or displacements on the
boundary accompanied by enrichment over the stress field.

6 Conclusions

A study on the effectiveness of the Generalized Finite Element approximation spaces
in the context of Hybrid Mixed Stress Formulation problems was conducted. The
basic purpose was to discern appropriate enrichment combinations among multiple
possibilities involving the three independent fields involved in the formulation. The
issues of solvability and stability were then addressed by suggesting a patch test and
by carrying out numerically the inf-sup test. Polynomial functions were selected as
enrichment alternatives over regular clouds formed by quadrilateral and triangular
elements.

The conclusion that the inf-sup test confirms the efficacy of the patch test as a
necessary but not sufficient condition for solvability, at least in the sort of HMSF
problems analyzed, is highlighted. For instance, in spite of the fact that the patch test
was verified considering the basic case of partition of unity without enrichment, the
inf-sup test was able to identify cinematic spurious modes and for this reason was not
satisfied. Furthermore, in all situations of enrichment imposed over the basic fields
wherein the patch test was not verified, the inf-sup test was not satisfied as well.

In essence, in the framework of HMSF, the enrichment over the stress field is
always effective. However, enrichments over approximations for displacements in
the domain and displacements on boundary always introduce spurious modes. This
can be effective only if accompanied by stress field enrichment.
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