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Abstract. This article introduces basic concepts of meshless methods for solving partial dif-
ferential equations in their strong form by collocation or least squares approximation. Global
and local formulations are defined. The current achievements, based on the local form and col-
location with radial basis functions are explained in detail. Heat transfer and fluid flow prob-
lems are treated. These achievements represent a simple, and at the same time more efficient
version of the classical meshless radial basis function collocation (Kansa) method. Instead of
global, the collocation is made locally over a set of overlapping domains of influence and the
time-stepping is performed in an explicit way. Only small systems of linear equations with
the dimension of the number of nodes included in the domain of influence have to be solved
for each node. The computational effort thus grows roughly linearly with the number of the
nodes. The represented approach thus overcomes the principal large scale bottleneck of the
original Kansa method and widely opens space for industrial applications of the method. The
purpose of this article is to give a concentrated information on this new method, which has
already been successfully applied in macroscopic and microscopic transport phenomena field,
accompanied with research requirements for the future. It is devoted to practicing engineers
and researchers.

Key words: Radial basis function collocation method, transport phenomena, strong formula-
tion, multiquadrics.

Nomenclature

Latin Symbols
b = augmented vector of the system of linear equations
c = coefficient of the weight function
D = diffusion tensor
f = body force
K = number of global approximation functions
N = number of gridpoints
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p = position vector
P = pressure
P̃ = pressure correction
S = source
t = time
T = deviatoric part of the stress tensor
v = velocity
ṽ = velocity correction
v̂ = velocity estimate

Greek Symbols
α = coefficient of the global approximation function
�t = time-step
�tP = pressure iteration time-step
ρ = density
ψ = global approximation function
ψ = system matrix
� = system matrix (boundary condition information included)
! = general transport variable
θ = scalar inhomogeneous part in Poisson equation
� = vector inhomogeneous part in Poisson equation
A = transported-diffused variable relation function
ϒ = boundary condition indicator function
� = boundary
ω = sub-domain
� = domain

Superscripts
l = sub-domain indicator
D = Dirichlet boundary indicator
N = Neumann boundary indicator
R = Robin boundary indicator

Subscripts
0 = initial time
x = Cartesian coordinate
y = Cartesian coordinate
z = Cartesian coordinate
ς = coordinate indicator
ζ = coordinate indicator
ξ = coordinate indicator
τ = coordinate indicator
ι = time level indicator

Mathematical Symbols
∇ = divergence operator
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∇2 = Laplace operator∑
= sum

1 Introduction

1.1 Motivation

The development of efficient as well as simple algorithms for the numerical solution
of partial differential equations (PDEs) is of major interest in applied sciences and
engineering. The most popular discrete approximate methods for PDEs are nowadays
the finite difference (FDM) [22], the finite volume (FVM) [35], the finite element
(FEM) [41], the spectral (SM) [3], and the boundary-domain integral (BDIM) [40]
methods. Despite the powerful features of these methods, there are often substantial
difficulties in applying them to realistic, geometrically complex three-dimensional
transient problems. A common element of the mentioned methods is the need to
create a polygonisation, either in the domain and/or on its boundary. This type of
meshing is often the most time consuming part of the solution process and is far
from being fully automated.

Figure 1 shows the most common types of space discretisation arrangements in
numerical methods used for non-linear transport phenomena. The FDM discretisa-
tion shown in Figure 1(a), involves pointisation only. However, the points are re-
stricted to coordinate directions and uniformity. The FVM discretisation shown in
Figure 1(b) includes polygonisation with rectangles. The rectangles are restricted to
coordinate directions. The FEM discretisation is shown in Figure 1(c) and includes
polygonisation with triangles. The triangles might be of arbitrary dimension and ori-
entation. The triangles can be exchanged with other types of polygons. The BDIM
discretisation is shown in Figure 1(c) as well. It includes discretisation of the domain
with polygons (cells) and discretisation of the boundary with straight lines (boundary
elements). The DRBEM discretisation is shown in Figure 1(d). Instead of the discret-
isation of the domain with polygons (cells), the domain is discretised by pointisation
and the boundary is discretised with straight lines (boundary elements). This method
belongs to the so-called mesh reduction techniques, since the domain polygonisation
is replaced by the domain pointisation. However, boundary polygonisation remains.
A discretisation used in the Meshless or Mesh-free (MSM) methods is shown in Fig-
ure 1(e). It includes pointisation of the domain and boundary. The gridpoints can
be arbitrarily spaced and non-uniform. The question mark at the right lower corner
of Figure 1 stands for our inability of solving PDEs without gridpoints (Grid-less,
Grid-free methods).

The numerical solution of coupled heat and mass transfer problems is becom-
ing increasingly important as a result of the computational modelling needs in di-
verse modern technologies. A broad class of such heat, mass, momentum, and solute
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Fig. 1. Schematics of the domain discretisations used in numerical methods for the solution of
partial differential equations. The question mark represents post-meshless methods.

transfer problems involves two or more phases, separated by free (steady-state) or
moving (transient) interphase boundaries. Due to the existence of complex shaped
interphase boundaries, most of the numerical simulations of engineering gas-liquid
and liquid-solid two-phase flows conducted so far, have been based on averaged field
equations with constitutive interphase relations solved on a fixed mesh. However,
the diversity of the possibly involved length scales, inhomogeneities, and anisotrop-
ies, usually requires the adaptation of the mesh with respect to high field gradients
and subsequent re-meshing. The most physically sound information can be directly
perceived only from the numerical approaches that explicitly take into account the
moving boundaries. The principal bottleneck in these types of numerical methods is
the time consuming re-meshing of the evolving interphase boundaries and phase do-
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mains which limits such methods to problems with quite trivial phase patterns. The
polygonisation problem is thus even more pronounced in such type of front-tracking
approach.

1.2 Definition and Characteristics of Meshless Methods

The meshless, sometimes also called meshfree or mesh reduction methods establish
a system of algebraic equations for the whole problem domain and boundary without
polygonisation [1, 2, 15, 16]. Meshless methods use a set of nodes scattered within
the problem domain as well as sets of nodes scattered on the boundaries of the do-
main to represent the problem domain and its boundaries. These sets of scattered
nodes do not form a polygonisation (mesh), which means that no information on the
geometrical connections between the nodes is required.

There exist a number of meshless methods such as the Element free Galer-
kin methods, the Meshless local Petrov–Galerkin method, the Point interpolation
method, the Point assembly method, the Finite point method, the Finite difference
method with arbitrary irregular grids, Smoothed particle hydrodynamics, Reprodu-
cing kernel particle method, Kansa method, etc.

The discussion in this article is limited to the very recent generation of meshless
methods only. They are characterised by the following features:

• The governing equation is solved in its strong form.
• The formulation is almost independent on the problem dimension.
• The complicated geometry is easy to cope with.
• No polygonisation is needed.
• No integrations are needed.
• The method is very efficient.
• The method is very accurate.
• The methods is simple to learn.
• The method is simple to code.

2 Governing Equations

This part introduces the general transport equation, relevant types of boundary con-
ditions and the reformulation of the governing transport equation into non-linear
Poisson equation. It discusses the basic strategies of solving the non-linear Poisson
equation in cases of weak and strong non-linearities.

2.1 General Transport Equation

Let us limit our discussion to solution of the general transport equation [32], defined
on a fixed domain � with boundary �, standing for a reasonably broad spectra of
mass, energy, momentum, and species transfer problems



262 B. Šarler

∂

∂t
[ρA(!)] + ∇ · [ρv A(!)] = ∇ · (D∇!)+ S, (1)

with ρ,!, t, v,D, and S standing for density, transport variable, time, velocity, dif-
fusion matrix

D ≡
⎡⎢⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤⎥⎦ , (2)

and source, respectively. The scalar function A stands for possible more involved
constitutive relations between the conserved A(!) and diffused ! quantities. The
solution of the governing equation for the transport variable at the final time t0 +�t

is sought, where t0 represents the initial time and �t the positive time increment. The
solution is constructed by the initial and boundary conditions that follow. The initial
value of the transport variable !(p, t) at a point with position vector p and time t0 is
defined through the known function !0

!(p, t) = φ0(p, t); p ∈ �+ �. (3)

The boundary � is divided into not necessarily connected parts � = �D ∪ �N ∪
�R with Dirichlet, Neumann and Robin type boundary conditions, respectively. At
the boundary point p with normal n� and time t0 ≤ t ≤ t0 + �t , these boundary
conditions are defined through known functions !D

� ,!N
� ,!R

�,!
R
� ref

! = !D
� ; p ∈ �D, (4)

∂

∂n�
! = !N

� ; p ∈ �N, (5)

∂

∂n�
! = !R

�(!−!R
� ref); p ∈ �R. (6)

2.2 Poisson Reformulation of the General Transport Equation

The general transport equation (Equation 1) can be reformulated into Poisson form.
This form sometimes permits an easier theoretical treatment. The inhomogeneous
part of the Poisson equation can be split into a scalar part and a divergence of the
vector part

∇2! = θ +∇ ·�, (7)

θ =
{

∂
∂t
[ρ A(!)] − S

}
D

, (8)

� = [ρ v A(!)− D′∇!]
D

. (9)



From Global to Local RBF Collocation Method for Transport Phenomena 263

The diffusion matrix is split into a constant isotropic part DI and a remaining an-
isotropic part D′,

D+DI+ D′,D′ ≡
⎡⎢⎣D11 −D D12 D13

D21 D22 −D D23

D31 D32 D33 −D

⎤⎥⎦ . (10)

The partial time derivative might be approximated by a two

∂

∂t
[ρ A(!)] ≈ 1

�t
[ρ A(!)− ρ0 A(!0)], (11)

or by a three-level finite difference scheme

∂

∂t
[ρ A(!)] ≈ 1

2�t
[3ρ A(!)− 4ρ0 A(!0)+ ρ−1 A(!−1)], (12)

with the following notation
A−1 ≡ A(t0 −�t), (13)

A0 ≡ A(t0), (14)

A ≡ A(t0 +�t). (15)

The unknown can be discretized in time by a two level scheme with a time level
indicator 0 ≤ ι ≤ 1. This gives the fully implicit scheme for ι = 1, the fully explicit
scheme for ι = 0, and the Crank–Nicolson scheme for ι = 1/2.

∇2! ≈ ι∇2!+ (ι− 1)∇2!0, (16)

θ ≈
{

∂
∂t
[ρ A(!)] − ιS − (ι− 1)S0

}
D

, (17)

� ≈ [ιρv A(!)+ (ι− 1)ρ0v0 A(!0)− ιD′∇!− (ι− 1)D′0∇!0]
D

. (18)

The involved parameters of the governing equation and boundary conditions are
assumed to be dependent on the transport variable, space, and time. The solution of
such type of non-linear equation requires iterations. Let us (for the sake of compact
notation) assume further discussion in non-time discretized form. The inhomogen-
eous terms are, due to non-linearity, respectively expanded as

θ = θ + ∂θ̄

∂!
(!− !̄), (19)

� = �̄+ ∂�̄

∂!
(!− !̄), (20)
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with the over-bar denoting the value from previous iteration. The final form of the
transformed equation, suitable for iterative solution then becomes

∇2! = Q(!), (21)

Q(!) = θ̄ + ∂θ̄

∂!
(!− !̄)+∇ · �̄+∇ · ∂�̄

∂!
(!− !̄). (22)

The source term can be treated by under-relaxation (recommended in case of weak
non-linearity)

∇2! = Q(!̄)+ crel

[
Q(!̄)−Q( ¯̄!)

]
, (23)

with an under-relaxation coefficient crel < 1. The two-fold over-bar denotes the
known value two iterations ago. Alternatively, the source term can be treated expli-
citly (recommended in case of strong non-linearity)[

∇2 − ∂θ̄

∂!
−∇ · ∂�̄

∂!

]
! = θ̄ − ∂θ̄

∂!
!̄+∇ · �̄− ∇ · ∂�̄

∂!
!̄. (24)

The discretisation of Equations (23) and (24) and subsequent set-up of the algeb-
raic equation systems is quite different. In case of Equation (23), the system matrix
of the algebraic equation system need not to be recalculated each iteration and in
the case of Equation (24), the system matrix of the algebraic equation system needs
to be recalculated ateach iteration. Strategy used in Equation (24) usually requires
less iterations than strategy used in Equation (23), however, each iteration is com-
putationally more costly. Therefore, the strategy in Equation (23) is used for weak
non-linear problems, and the strategy in Equation (24) is for the strong non-linear
problems. For the strong non-linear problems the strategy in Equation (23) might
require a very small under-relaxation and a huge number of iterations. The iterations
over one time-step are completed when the criterion in Equation (25) is satisfied in
all computational nodes n = 1, 2, . . . , N

max |!n − !̄n| ≤ !itr. (25)

The steady-state is achieved when the criterion in Equation (26) is satisfied in all
computational nodes n = 1, 2, . . . , N

max |!n −!0| ≤ !ste. (26)

The parameters !itr and !ste are denoted as iteration and steady-state limits. The
iteration limit has to be an order of magnitude lower as the steady-state limit. If
this is not true, a non-convergent virtual steady-state can be achieved. The derived
formulas in this part are universally valid for all known spatial discretization types,
including meshless.
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Fig. 2. Schematics of the polygon-free domain and boundary node arrangement.

Fig. 3. Left: Schematics of the concept of contiguous (non-overlapping) sub-domains (typical
for FEM). Right: Schematics of the concept of non-contiguous (overlapping) sub-domains
(typical for MSM).

3 Spatial Discretisation in Meshless Methods

This part introduces the spatial discretisation (pointisation) in Meshless methods and
the concept of overlapping sub-domain (Figures 2 to 6).

3.1 Pointisation

The value of the transport variable !n is solved in a set of nodes pn; n = 1, 2, . . . , N
of which N� belong to the domain and N� to the boundary, i.e. N = N� +N�.

4 Representation of Function over a Set of Nodes

This part introduces the concept of the representation of the function with global
shape functions and the concepts of the calculation of shape function coefficients by
collocation (interpolation) and by the approximation.



266 B. Šarler

Fig. 4. Schematics of the local influence area (small circle) that encompasses only 4 nodes and
global influence area (big circle) that encompasses all 43 nodes.

Fig. 5. Schematics of the sub-domains. In the left case the sub-domain is defined by the geo-
metry of the circle. In the right case, the sub-domain is defined by the four nearest nodes to
the central node.

4.1 Global Representation of Function

The representation of function over a set l of (in general) non-equally spaced lN

nodes lpn; n = 1, 2, . . . , lN is made in the following way

!(p) ≈
lK∑
k=1

lψk(p) lαk (27)

lψk stand for the shape functions, lαk for the coefficients of the shape functions, and
lK represents the number of the shape functions. The left lower index on entries
of Equation (27) represents the sub-domain lω on which the coefficients lαk are
determined. The total number of sub-domains is denoted by L. The sub-domains
lω can in general be contiguous (overlapping) or non-contiguous (non-overlapping).
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Fig. 6. Schematics of the definition of two quantities that measure the density of the data set.
In the left case the fill distance is defined, which measures the maximum distance between
two nodes in a sub-domain, and in the right case, the separation distance is defined, which
measures the minimum distance between the two nodes in a sub-domain.

Each of the sub-domains lω includes lN grid-points of which lN� are in the domain
and lN� are on the boundary.

lN =l N� +l N�. (28)

For each of the sub-domains lω, a separation distance is defined, which is the
minimum distance between the two nodes, and the fill distance is defined, which is
the maximum distance between the two nodes. In case the sub-domains are overlap-
ping, the following is valid

L∑
l=1

lN > N. (29)

The coefficients can be calculated from the sub-domain nodes in two distinct ways.
The first way is collocation (interpolation) and the second way is approximation by
the least squares method (see Figures 7 and 8, respectively).

Approximation is needed where data smoothing rather than interpolation is
needed. This is because data are often inaccurate, contain noise or – as happens
sometimes in practical applications – are too plentiful and cannot and need not be
reasonably all interpolated at once. Moreover, smoothing is almost always required
as long as problems are ill-posed, which means that their solution for theoretical
reasons, is extremely sensitive to even the smallest changes in input data.

4.2 Calculation of Coefficients by Collocation

Let us assume the known function values l!n in the nodes lpn of sub-domain lω.
The collocation implies

lK∑
k=1

lψk(lpn) lαk = !(lpn); lK = lN. (30)
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Fig. 7. A one-dimensional example of interpolation of the function.

Fig. 8. A one-dimensional example of the least squares approximation of the function.

For the coefficients to be computable, the number of the shape functions has to
match the number of the collocation points, and the collocation matrix has to be
non-singular.

lK∑
k=1

lψk(lpn) lαk = !(lpn); lK = lN. (31)

The system of Equations (31) can be written in matrix-vector notation

lψ lα = l
, (32)

with
lψkn

= lψk(lpn), (33)

l!n = !(lpn). (34)
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The coefficients lα can be computed by inverting the system (32)

lα = lψ
−1

l
. (35)

The matrices ψ and ψ−1 have dimension lN × lN and the vectors lα and l
 have
dimension lN .

4.3 Calculation of Coefficients by Approximation

Let us assume the known function values l!n in the nodes lpn of sub-domainωl . The
least squares approximation implies that the following functional should be minim-
ized

�[lα(p)] =
lN∑
n=1

lυn(p)
lK∑
k=1

[ψk(lpn) lαk(p)−!(lpn)]2, (36)

with respect to change of lα(p), i.e.

∂

∂ lα(p)
�[lα(p)] = 0. (37)

The number of the nodes lN used in the approximation has to be greater or equal
to the number of the shape functions lK . Weight functions lυn have been introduced
in Equation (36) in addition to the shape functions. The weight functions measure
the relative importance of the node. The coefficients lα(p) depend on the center of
the weight function p. The coefficients lα(p) are respectively calculated from the
system of linear equations

l
*
ψ (p) lα(p) = l

+
ψ (p) l
. (38)

The matrices l
*
ψ and l

+
ψ are of the dimensions lK × lK and lK × lN respectively.

Their entries are

l
*
ψ

ik
(p) =

lN∑
n=1

lυn(p) lψi(lpn) lψk(lpn), (39)

l

+
ψ

in
(p) = lυn(p) lψi(lpn). (40)

The coefficients lα(p) in general depend on the weight function center p. For prac-
tical reasons, their calculation is fixed to the central node of the sub-domain lω,
denoted by lp

l
*
ψ≡ l

*
ψ (lp), (41)

l

+
ψ≡ l

+
ψ (lp), (42)
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lα ≡ lα(lp). (43)

Similarly as in the case of collocation, an explicit expression for the calculation of
the coefficients lα can be written

lα = lψ
−1

l
, (44)

with

lψ
−1 = l

*
ψ −1

l

+
ψ . (45)

The main difference between collocation and approximation is as follows: In
collocation, the representation of the function exactly satisfies the nodal values l!n.
In approximation, the nodal values are approximated in the least squares sense. The
advantage of approximation compared to collocation is that it usually gives better
estimation of the derivatives, particularly in cases with sharp gradients (see Figures 7
and 8). The drawback over collocation is obvious. The nodal values are not exactly
satisfied in approximation.

4.4 From the Representation of the Function to the Representation of the
Partial Derivatives

By taking into account the expressions for the calculation of the coefficients lα (by
collocation or by approximation), the representation of function !(p) can be ex-
pressed as

!(p) ≈
lK∑
k=1

lψk(p)
lN∑
n=1

lψ
−1
kn l !n (46)

The first partial derivatives of !(p) can be expressed as

∂

∂pς

!(p) ≈
lK∑
k=1

∂

∂pς

ψk(p)
lN∑
n=1

lψ
−1
kn lφn; ς = x, y, z. (47)

The second partial derivatives of !(p) can be expressed as

∂2

∂pςpξ

!(p) ≈
lK∑
k=1

∂2

∂pςpξ
lψk(p)

lN∑
n=1

lψ
−1
kn l!n; ς, ξ = x, y, z. (48)

4.5 Selection of Global Representation Functions

Let us introduce the Cartesian coordinate system with base vectors iς ; ς = x, y, z

and coordinates pς ; ς = x, y, z, i.e.

p = iςpς ; ς = x, y, z. (49)
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The following six polynomials can be used in 2D to represent the quadratic basis:

�1 = 1, ψ2 = px, ψ3 = py, ψ4 = pxpx, ψ5 = pxpy, ψ6 = pypy. (50)

The following additional four polynomials have to be used in 3D to represent the
quadratic basis:

ψ7 = pz, ψ8 = pxpz, ψ9 = pypz, ψ10 = pzpz. (51)

The radial basis functions [4, 28, 33] such as multi-quadrics

ψk(p) = [(p− pk) · (p− pk)+ c2]1/2, (52)

or inverse multi-quadrics

ψk(p) = [(p− pk) · (p− pk)+ c2]1/2, (53)

can be used in 2D or 3D. The calculation of the coefficients lα can be made by
collocation or by approximation.

4.6 Selection of Weight Functions

As a weight function typically a radial basis function is chosen. A typical example is
the polynomial-like shape function

lυn(p) =

⎧⎪⎨⎪⎩
[
(p− lpn)·(p− lpn)− lσn
(p− lpn)·(p− lpn) lσn

]
; |p− lpn| < σn,

0; |p− lpn| ≥ σn,

(54)

or the Gaussian function

lυn(p) =
{

exp(−lc(p− lpn) · (p− lpn)/σ
2
n ; |p− lpn| < σn,

0; |p− lpn| ≥ σn.
(55)

The size of the circular (2D) or spherical (3D) support lσn is chosen to contain an
appropriate number of nodes. The weight function shape factor lcn depends on the
mesh (non-)uniformity. In case of a uniform mesh, the best results are obtained with
a large shape factor. In case of the non-uniform node arrangements, a smaller shape
factor has to be chosen. The size of the shape factor depends on the non-uniformity
of the node arrangement (see [23]).

4.7 Diffuse Approximation

A limited number of applications using the polynomial basis functions in connection
with the least squares approximation and strong formulation has been developed
under the name Diffuse Approximation (DA) [21, 25] for heat transfer and fluid flow
problems.
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4.8 Kansa Method

A broad class of meshfree methods in development today are based on Radial Basis
Functions (RBFs) [4]. The RBF collocation method or Kansa method [11] is the
simplest of them. This method has been further upgraded to symmetric collocation
[10, 24], to modified collocation [8] and to indirect collocation [20]. The method has
been already used in a broad spectrum of computational fluid dynamics problems
[29] such as the solution of Navier–Stokes equations [17, 18] or porous media flow
[28, 31] and the solution of solid-liquid phase change problems [12]. In contrast to
advantages over mesh generation, all the listed attempts unfortunately fail to perform
for large problems, because they produce fully populated matrices, sensitive to the
choice of the free parameters in RBFs. Sparse matrices can be generated by the intro-
duction of the compactly supported RBFs and the accuracy of such approach can be
improved by the multilevel technique [7]. One of the possibilities for mitigating the
large fully populated matrix problem is to employ the domain decomposition [19].
However, the domain decomposition re-introduces some sort of meshing which is
not attractive. The concept of local collocation in the context of RBF-based solution
of Poisson equation has been introduced in [14, 34]. For interpolation of the func-
tion value in a certain node the authors use only data in the (neighbouring) nodes
that fall into the domain of influence of this node. The procedure results in a mat-
rix that is of the same size as the matrix in the original Kansa method, however it
is sparse. Circular domains of influence have been used in [14] and stencil-shaped
domains in [34]. In [14], the one-dimensional and two-dimensional Poisson equa-
tion has been solved by using multiquadrics and inverse multiquadrics RBFs with
a detailed analysis of the influence of the free parameter on the results. In [34], a
class of linear and non-linear elasticity problems have been solved with a fixed free
parameter. The differential quadrature method, that calculates the derivatives of a
function by a weighted linear sum of functional values at its neighbouring nodes has
been structured with the RBFs in [26]. Despite the local properties, the matrix still
has a similar form as in [14, 34]. This paper reviews a new, even more simple mesh-
free solution procedure for solving the transport phenomena, which overcomes even
the solution of the large sparse matrices.

5 Semi-Explicit Solution of the General Transport Equation

5.1 Reformulation

This part elaborates the semi-explicit solution of the general transport equation
(Equation 1), subject to the initial condition presented in Equation (3) and the bound-
ary conditions presented in Equations (4–6). The general transport equation can be
transformed into following expression by taking into account the explicit discretiza-
tion
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ρA(!)− ρ0A0

�t
+∇ · [ρ0v0A0] = ∇ · (D0∇!0)+ S. (56)

At time t = t0 +�t , the functions A(!) and S(!) can be expanded as

A(!) ≈ Ā+ ∂Ā

∂!
(!− !̄), (57)

S(!) ≈ S̄ + ∂S̄

∂φ
(!− !̄), (58)

ρĀ+ ρĀl!(!− !̄)− ρ0 A0

�t
+∇ · [ρ0v0 A0]

= ∇ · (D0∇!0)+ S̄ + S̄l!(!− !̄). (59)

The unknown function value can be extracted from the above equation

! = ρ0 A0 − ρĀ+ ρ ∂Ā
∂!

!̄

ρ ∂Ā
∂!
−� ∂S̄

∂!

+
�t

[
∇ · (D0∇!0)− ∇ · (ρ0v0 A0)+ S̄ − ∂S̄

∂!
!̄
]

ρ ∂Ā
∂!
−�t ∂S̄

∂!

. (60)

The solution of the above equation in grid-point pn can be calculated as

!n =
ρn0 An0 − ρnĀn + ρn

∂Ā
∂!n

!̄n

ρ ∂Ā
∂!n

−�t ∂S̄
∂!n

+
�t

[
∇ · (D0n∇!0n)−∇ · (ρ0nv0n A0n)+ S̄n − ∂S̄

∂!n
!̄n

]
ρ ∂Ā

∂!n
−�t ∂S̄

∂!n

. (61)

The calculation of the convective term ∇ · (ρ0nv0nA0n) includes derivatives of the
form (see Appendix)

∂

∂pς
ρ0n νς0n A0n ≈ ς = x, y, z. (62)

These derivatives can be evaluated as

∂

∂pς

ρ0n νς0n A0n ≈
K∑
k=1

∂

∂pς

ψk(pn)

lN∑
n=1

lψ
−1
kn l(ρ0 νς0 A0)n; ς = x, y, z. (63)
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The calculation of the diffusive term∇·(D0n ∇ !0n) includes derivatives of the form
(see Appendix)

∂

∂pς

D0nζξ ,
∂2

∂pς∂pτ

D0nζξ ,
∂

∂pς

!0nζ ,
∂2

∂pς∂pτ

!0nζ ; ς, τ, ζ, ξ = x, y, z. (64)

These derivatives can be evaluated as

∂

∂pς

D0nξζ ≈
K∑
k=1

∂

∂pς

ψk(pn)

lN∑
n=1

lψ
−1
kn lD0nξζ ; ς = x, y, z, (65)

∂2

∂pς∂pτ

D0nξζ ≈
K∑
k=1

∂2

∂pς∂pτ

ψk(pn)

lN∑
n=1

lψ
−1
kn lD0nξζ ; ς = x, y, z. (66)

The solution procedure for the governing Equation (1) and the boundary conditions
presented in Equations (4–6) now follow the below defined steps 1–5:

Step 1:
First, the initial conditions are set in the domain and boundary nodes and the
derivatives required in the convective and diffusive terms are calculated from the
known nodal values.

Step 2:
Equation (61) is employed to calculate the new values of the variable !n at time
t0 +�t in the domain nodes.

What follows defines variable !n at time t0 + �t in the Dirichlet, Neumann,
and Robin boundary nodes. For this purpose, the coefficients lα have to be determ-
ined from the new values in the domain and from the information on the boundary
conditions.

Let us introduce domain, Dirichlet, Neumann, and Robin boundary indicators.
These indicators are defined as

ϒ�n =
{

1; pn ∈ �,

0; pn /∈ �,
ϒD

�n =
{

1; pn ∈ �D,

0; pn /∈ �D,

ϒN
�n =

{
1; pn ∈ �N,

0; pn /∈ �N,
ϒR

�n =
{

1; pn ∈ �R,

0; pn /∈ �R.
(67)

Step 3: The collocation version
Consider the collocation version for the calculation of the coefficients. This implies

lN∑
k=1

lϒ�n lψk(lpn) lαk +
lN∑
k=1

lϒ
D
�n lψk(lpn) lαk
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+
lN∑
k=1

lϒ
N
�n

∂

∂n�
lψk(lpn) lαk +

lN∑
k=1

lϒ
R
�n

∂

∂n�
lψk(lpn) lαk

= lϒ�n l!n + lϒ
D
�n l!

D
n + lϒ

N
�n l!

N
n

+ lϒ
R
�n l!

R
�n

⎛⎝ lN∑
k=1

lψk(lpn) lαk − l!
R
� refn

⎞⎠ . (68)

The Robin boundary conditions have been represented by

l!
R
�n(l!n − l!

R
� refn) ≈ l!

R
�n

⎛⎝ lN∑
k=1

lψk(lpn) lαk − l!
R
� ref n

⎞⎠ . (69)

The calculation of the coefficients lα follows from the following system of linear
equations

l� lα = lb, (70)

with the system matrix coefficients

l�nk = lϒ�n lψk(lpn)+ lϒ
D
�n lψk(lpn)+ lϒ

N
�n

∂

∂n�
lψk(lpn)

+ lϒ
R
�n

⎡⎣ ∂

∂n�
lψk(lpn)− l!

R
�n

lN∑
k=1

lψk(lpn)

⎤⎦ , (71)

and with the augmented right-hand side vector

lbn = lϒ�n!n + lϒ
D
�n!

D
n + lϒ

N
�n!

N
n − lϒ

R
�n l!

R
�n l!

R
� refn. (72)

Step 4: The approximation version
Consider the least squares approximation version for the calculation of the coeffi-
cients. This implies

�[lα] =
lN∑
n=1

lϒ�n lυn(lp)
lN∑
k=1

[lψk(lpn)lαk − l!n]2

+
lN∑
n=1

lϒ
D
�n lυn(lp)

lK∑
k=1

[lψk(lpn)lαk − l!n]2

+
lN∑
n=1

lϒ
N
�n lυn(lp)

lK∑
k=1

[
∂

∂n�
lψk(lpn)lαk − l!

N
�n

]2

(73)

+
Nl∑
n=1

lϒ
R
�n lυn(lp)

lK∑
k=1

[
∂

∂n�
lψk(lpn)lαk − l!

R
�n(lψk(lpn)lαk − l!

R
� ref n)

]2

.
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The same representation of the Robin boundary conditions is made as in the colloc-
ation case.

The minimisation of the functional �[lα] with respect to the coefficients lα gives
the following system of linear equations

l� lα = lb, (74)

with the system matrix coefficients

l�ik =
lN∑
n=1

lϒ�nυn(lp) lψk(pn) lψk(pn)

+
lN∑
n=1

lϒ
D
�nυn(lp) lψi(pn) lψk(pn)

+
lN∑
n=1

lϒ
N
�nυn(lp)

∂

∂n�
lψi(lpn)

∂

∂n�
lψk(lpn)

+
lN∑
n=1

lϒ
R
�nυn(lp)

(
l!

R
� refnψi(lpn)+ ∂

∂n�
lψi(lpn)

)

×
(
l!

R
� refn lψk(lpn)+ ∂

∂n�
lψk(lpn)

)
(75)

and with the augmented right-hand side vector

lbi =
lN∑
n=1

lϒ�n lυn(lp) lψi(lpn) l!n +
lN∑
n=1

lϒ
D
�n lυn(lp) lψi(lpn) l!

D
�n

+
lN∑
n=1

lϒ
N
�n lυn(lp)

∂

∂n�
lψi(lpn) l!

N
�n (76)

+
lN∑
n=1

lϒ
R
�n lυn(lp)

(
(l!

R
�n)

2
l!

R
� refn lψi(lpn)+ l!

R
�n l!

R
� refn

∂

∂n�
lψi(lpn)

)
.

After the coefficients are calculated, the unknown values of the unknown l
 in
the Dirichlet, Neumann, and Robin nodes at time t0 + �t are determined from the
global representation Equation (27).

Step 5
The iteration and steady-state checks are performed. In case the iteration criterion is
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passed, calculation of the new time-step is performed. In case the steady-state cri-
terion is passed or the time of calculation exceeds the predetermined time of interest,
the calculation is stopped.

The performance of the presented method for diffusion problems can be found
in [27], for convection-diffusion problems in [36], and for moving boundary prob-
lems with moving interfaces and moving domains in [38]. The microscopic species
transfer problems have been dealt with by Kovačević and Šarler [13], based on the
dynamic r-adaptivity of the nodal arrangement.

6 Explicit Solution of the Coupled Mass and Momentum
Transport Equations

This part discusses the special issues encountered in mesh-free solution of the
coupled mass

∂

∂t
ρ + ∇ · (ρv) = 0, (77)

and momentum conservation equation

∂

∂t
(ρv)+∇ · (ρvv) = −∇P + ∇ · T+ f, (78)

where P , T, and f represent the pressure, the deviatoric part of the stress tensor, and
the body force, respectively. For the sake of brevity, initial conditions and only the
Dirichlet velocity boundary conditions are assumed

v(p, t) = v0(p, t); p ∈ �+ �, (79)

v = vD� ; p ∈ �D. (80)

We seek the solution of the pressure field at time t0 and the pressure and velocity
fields at time t0+�t . The main goal is to formulate the equations that can be solved
by the “local” methodology, described in the previous part.

The pressure field is solved by taking the divergence of the momentum conser-
vation equation

∇2P = − ∂

∂t
∇ · (ρv)−∇ · [∇ · (ρvv)] + ∇ · (∇ · T)+∇ · f. (81)

The pressure is actually calculated from a false transient of the following equation
towards the steady-state:

∂

∂t
P = −∇2P − ∂

∂t
∇ · (ρv)−∇ · [∇ · (ρvv)] + ∇ · (∇ · T)+∇ · f. (82)
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Neumann boundary conditions for the Pressure Poisson equation are obtained by
multiplication of the momentum equation with the normal derivative

∂P

∂n�
=

[
− ∂

∂t
(ρvD� )−∇ · (ρvD� vD� )+∇ · (∇ · T)+∇ · f

]
· n�. (83)

The initial pressure is calculated as

P0 = P̄0 +
[−∇2P̄0 −∇ · [∇ · (ρ0v0v0] + ∇ · [∇ · T0)+∇ · f0

]
�tP , (84)

where P̄ represents the value from previous iteration and �tP the artificial pressure
transient time-step. The initial value of P̄0 can be set to 0. After the calculation of
the pressure field at time t0, the new velocity field at time t0 +�t is calculated from

v̂ =
[ρ0v0

�t
− ∇ · (ρv0v0)−∇P0 + ∇ · T+ f

] �t

ρ
. (85)

The calculated velocity is denoted by v̂, because it does not comply with the mass
conservation in general. In order to assure the compliance of the new velocity field
with the mass conservation, the following pressure and velocity corrections are made.
The calculated velocity is corrected by ṽ, which ensures

∇ · (ρv) = ∇ · [ρ(v̂+ ṽ)] = −∂ρ

∂t
. (86)

Consider that the velocity correction occurs exclusively due to action of the pressure
correction

ρ

�t
ṽ = −∇P̃ , (87)

∇2P̃ = 1

�t
∇ · (ρv̂)+ 1

�t

∂ρ

∂t
(88)

with the pressure correction Neumann boundary conditions

∂P̃

∂n�
= 0. (89)

The pressure correction is actually calculated from a false transient of the following
equation towards the steady-state:

∂P̃

∂t
= −∇2P̃ + 1

�t
∇ · (ρv̂)+ 1

�t

∂ρ

∂t
. (90)

The pressure correction is calculated as

P̃ = ¯̃
P +

[
−∇2P̃ + 1

�t
∇ · (ρv̂)+ ρ − ρ0

�t2

]
�tP . (91)
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After calculation of the pressure correction, the pressure and velocity fields are up-
dated

P = P + P̃ , (92)

v = v̂−∇P̃ �t

ρ
, (93)

and the solution procedure is advanced to a new time-step. The formulation, de-
scribed here, for solving fluid flow problems, has been numerically implemented by
Perko [23] in the context of Diffuse Approximation and by Divo and Kassab [9] in
the context of local Kansa method.

7 Conclusions

This article reviews a new (very) simple meshfree formulation for solving a wide
range of transport phenomena. The numerical tests [6], included in the cited refer-
ences of the new method, show much higher accuracy of the method as compared
with the classical FDM. The only exception observed is the solution at short times
immediately after Dirichlet jump where similar numerical observation properties are
observed [27]. The time-marching is performed in a simple explicit way. The gov-
erning equation is solved in its strong form. No polygonisation and integrations are
needed. The developed method is almost independent of the problem dimension. The
complicated geometry can easily be coped with. The method appears efficient, be-
cause it does not require a solution of a large system of equations like the original
Kansa method. Instead, small systems of linear equations have to be solved in each
time-step for each node and associated domain of influence, probably representing
the most natural and automatic domain decomposition. This feature of the developed
method represents its principal difference from the other related local approaches,
where the resultant matrix is large and sparse [7, 14, 19, 34]. The method is simple
to learn and simple to code. The method can cope with very large problems since
the computational effort grows approximately linear with the number of the nodes.
The local approach, described in this article could be extended in a straightforward
way to tackle other types of partial differential equations. Despite the fact that the
represented method behaves excellent, the underlying basic mathematical theory is
still lacking. First systematic numerical experiments with uniform and non-uniform
local collocation for very simple cases are expected to appear in [5].

Appendix

Calculation of the convective term in three-dimensional Cartesian coordinates

∇ · (ρv!) = ∂

∂px

(ρvx!)+ ∂

∂py

(ρvy!)+ ∂

∂pz

(ρvz!).



280 B. Šarler

Calculation of the diffusive term in three-dimensional Cartesian coordinates

∇ · (D · ∇!) =

+ ∂Dxx

∂px

∂!x

∂px
+ ∂Dxy

∂px

∂!y

∂py
+ ∂Dxz

∂px

∂!z

∂pz
+Dxx

∂2!x

∂p2
x

+Dxy
∂2!y

∂pxpy
+Dxz

∂2!z

∂pxpz

+ ∂Dyx

∂py

∂!x

∂px
+ ∂Dyy

∂py

∂!y

∂py
+ ∂Dyz

∂py

∂!z

∂pz
+Dyx

∂2!x

∂px∂py
+Dyy

∂2!y

∂p2
y

+Dyz
∂2!z

∂px∂pz

+ ∂Dzx

∂pz

∂!x

∂px
+ ∂Dzy

∂pz

∂!y

∂py
+ ∂Dzz

∂pz

∂!z

∂pz
+Dzx

∂2!x

∂px∂pz
+Dzy

∂2!y

∂py∂pz
+Dzz

∂2!z

∂p2
z

.
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33. Šarler B., Kovačević I. and Chen C.S. A mesh-free solution of temperature in direct-chill
cast slabs and billets. In: Mammoli A.A. and Brebbia C.A. (Eds), Moving Boundaries VI.
WIT Press, Southampton, 2004, pp. 271–280.

34. Tolstykh A.I. and Shirobokov D.A. On using radial basis functions in a “finite differ-
ence” mode with applications to elasticity problems. Computational Mechanics, 33:68–
79, 2003.

35. Versteeg H.K. and Malalasekera W. Computational Fluid Dynamics: The Finite Volume
Method. Prentice Hall, Harlow, 1995.

36. Vertnik R. and Šarler B. Meshless local radial basis function collocation method for
convective-diffusive solid-liquid phase change problems. International Journal of Nu-
merical Methods for Heat and Fluid Flow (Special Issue: European Congress on Com-
putational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyväskylä,
24–28 July 2004), 16:617–640, 2005.

37. Vertnik R., Perko J. and Šarler B. Solution of temperature field in DC cast aluminium
alloy billet by the Diffuse Approximate Method. Materials and Technology, 38:257–261,
2004.

38. Vertnik R., Založnik M. and Šarler B. Solution of transient direct chill aluminium billet
casting problem with simultaneous material and interphase moving boundaries. Engin-
eering Analysis with Boundary Elements, 30: 847–855, 2006.

39. Wang J.G. and Liu G.R. On the optimal shape parameter of radial basis functions used
for 2-D meshless method. Computer Methods in Applied Mechanics and Engineering,
26:2611–2630, 2002.

40. Wrobel L.C. The Boundary Element Method – Volume 1: Applications in Thermofluids
and Acoustics. Wiley, New York, 2001.

41. Zienkiewicz O.C. and Taylor R.L. The Finite Element Method. Butterworth-Heinemann,
Oxford, 2002.




