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Abstract. A hybrid approximation scheme for the shallow-water equations on the sphere is
proposed which utilizes spectral-element approximation coupled with regional meshless col-
location. The issue of satisfying continuity conditions across spectral-element to meshless col-
location interfaces for this domain decomposition method is discussed and gives an example
of a meshless collocation framework which can be successfully coupled with spectral-element
approximation. We conclude the paper with numerical examples using the proposed hybrid
scheme on two well-known standardized test problems for the rotational shallow-water equa-
tions on the sphere.
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1 Introduction and Motivations

The purpose of this paper will focus on constructing an innovative hybrid approxima-
tion method for geophysical fluid dynamics. To accomplish such a task, we will focus
on the shallow-water equations which provide a useful model to global climate mod-
eling because their solutions include nonlinear effects and wave structures similar to
those of the full primitive equations of the atmosphere. The main backbone of this
hybrid meshless/spectral-element shallow-water model will be focusing on incorpor-
ating a unique regional scale approximation method. This regional scale method will
be accomplished by using a robust meshless approximation scheme called the empir-
ical Backus-Gilbert reproducing kernel developed by Blakely in [5]. The advantage
of such a hybrid approximation is two-fold: (1) high-order approximation results
can be obtained in complex shaped geometries without the need of a mesh. Thus,
no remeshing of a local region into smaller rectangles is needed, ultimately speed-
ing up the computation time; (2) the Backus–Gilbert reproducing kernel method has
been shown to be endowed with the unique power of ignoring oscillatory effects
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in scattered data. This will be useful when the spectral approximation forms high
oscillations due to discontinuities in the data.

This article is organized as follows. Section 2 begins with a brief review of
the shallow-water equations defined on the cubed-sphere and its discretization in
time using a semi-implicit time stepping scheme. We follow this discussion in Sec-
tion 3 with a brief review of the spectral-element and Backus-Gilbert reproducing
kernel discretization methods of the time-discrete shallow-water equations. Next,
we present the three-field variational formulation which effectively couples the two
types of approximations in a weak sense by introducing two additional approxim-
ation spaces on the interfaces between the approximation, akin to domain decom-
positon and the mortar element method. Implementation of the coupling is then given
and then finally, in order to verify the mathematical correctness of the algorithms
presented in this paper and to validate the performance hybrid model, we conclude
the paper with some standardized test cases which were proposed by Williamson et
al. in [22].

2 The Shallow-Water Equations on the Cubed-Sphere

Being the simplest form of motion equations that can approximate the horizontal
structure of the atmosphere or the dynamics of oceans, the shallow-water equations
have been used as a robust testing model in atmospheric and oceanic sciences. The
solutions can represent certain types of motion including Rossby waves and inertia-
gravity waves while describing an incompressible fluid subject to gravitational and
rotating acceleration. The governing equations for the inviscid flow of a thin layer of
fluid in 2-D are the horizontal momentum and continuity equations for the velocity
u = (u1, u2) and the geopotential height η .

While there are many different ways of defining the shallow-water equations, we
focus in this model on cubed-sphere geometry originally proposed by Sadourny in
[17] and used in other global models in recent years such as [20] and [21]. We begin
by a brief review of the cubed-sphere while adopting notational conventions from
[20]. Consider a cube inscribed inside a sphere where each corner of the cube is a
pointin the sphere and where each face of the cube is subdivided into NE subregions.
The goal is to project each face of the cube onto the sphere and in effect, obtain a
quasi-uniform spherical grid of 6× NE subregions which can be further subdivided
into many spectral element and meshless collocation subregions. In the mapping of
the cube to sphere, each face of the cube is constructed with a local coordinate system
and employs metric terms for transforming between the cube and the sphere which
will now be defined.

Let (α, β) be equal angular coordinates such that −π/4 ≤ α, β ≤ π/4. Then
any x1 and x2 on a face Pi of the cube is related through x1 = tanα, x2 = tanβ.
We denote r the corresponding position vector on the sphere with longitude λ and
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latitude θ . For such an equiangular projection, we define basis vectors a1 = rα and
a2 = rβ which may be written as

rα = 1

cos2 α
rx1, rβ = 1

cos2 β
rx2, (1)

where rx1 and rx2 are defined as rx1 = (cos θ λx1 , θx1) and rx2 = (cos θ λx2 , θx2)

The metric tensor gij , i, j ∈ [1, 2] can be derived as

gij = ai · aj = 1

r4 cos2 α cos2 β

[
1+ tan2 α − tanα tanβ

− tanα tanβ 1+ tan2 β

]
,

where r2 = 1+ tan2 α+ tan2 β and the Jacobian of the transformation and the matrix
Ã are, respectively,

√
g = [det(gij )]1/2 = 1

r3 cos2 α cos2 β
, Ã =

[
cos θ λα cos θ λα

θα θβ

]
.

While using the definition of gij given in (2), we can write transformations between
covariant and contravariant components of a vector v as[

u2

u2

]
=

[
g11 g12

g21 g22

][
u1

u2

]
,

[
u1

u2

]
=

[
g11 g12

g21 g22

][
u1

u2

]
. (2)

With the metric terms defined, we can now write the shallow water equations in
in the curvilinear coordinates system to be integrated on the cubed-sphere. In such a
coordinate system, the shallow-water equations can be written as follows

∂ui

∂t
= −gij

[
εjku

kg(f + ζ )+ ∂

∂xj

(1

2
uku

k
)
+ ∂η

∂xj

]
,

∂η′

∂t
= −uj

∂η

∂xj
− η

g

∂

∂xj
(g uj ).

Here, we define η = η′ +η0, f is the Coriolis force and ζ is the relative vorticity.
Covariant and contravariant vectors are defined through the short-hand metric tensor
notation ui = gij uj , gij = (gij )

−1. Furthermore, using εij as the two-dimensional
permutation matrix.the divergence and relative vorticity can be calculated as

g ∇ · v = ∂

∂xj
(g uj ), gζ = εij

∂uj

∂xi
. (3)
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Fig. 1. Hybrid cube.

We note that the metric terms can be precalculated and stored once the issue of
discretizing the cube has been resolved. To this end, we discuss the discretization of
the cubed-sphere using the spectral element method in Section 3.1 and the meshless
collocation method in Section 3.2. An example of the resulting discretized cube is
shown in Figure 1.

2.1 Semi-Implicit Time Discretization

As an integral part of the hybrid meshless/spectral-element model, the semi-implicit
time stepping scheme which we discuss in this subsection has many computational
advantages. Semi-implicit time-stepping schemes were first used in atmospheric
models in order to aleviate the problem of stability constraints ultimately due to
the fast moving gravity waves in the discrete shallow water equations [20]. They
have been successfully applied for allowing an increase in the time step without af-
fecting the atmospherically important Rossby waves. Such a semi-implicit method
is described in this subsection and was originally proposed in the spectral element
model developed in [20].

In the hybrid meshless/spectral-element method, the semi-implicit time stepping
is composed of an explicit leapfrog scheme for the advection terms combined with a
Crank–Nicholson scheme for the gradient and divergence terms. Adopting the differ-
ence notation δui = ui(n+1)−ui(n−1) and δηi = η(n+1)−η(n−1), the time discretized
shallow water equations in curvilinear coordinates can be written as
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δui +�tgij
∂

∂xj
(δ η) = 2�t

[
− gij

∂

∂xj
(η)n−1 + f i(n)

u

]
,

δηi +�t
η0

g

∂

∂xj
(gδuj ) = 2�t

[η0

g

∂

∂xj
(guj )n−1 + f i(n)

η

]
,

where the tendencies fu and fη contain nonlinear terms along with the Coriolis term,
namely

fu = −gij
[
εjku

k(n)g(f + ζ n)+ ∂

∂xj

(1

2
uku

k
)n]

,

and

fη = −uj
∂η

∂xj
.

Lastly, bringing the implicit terms to the left hand side of the equation and the explicit
terms to the right, we end up with the time discrete evolution form of the shallow
water equations

ui(n+1) +�tgij
∂

∂xj
(η)n+1 = ui(n−1) −�tgij

∂

∂xj
(η)n−1 + 2�tf i(n)

u (4)

ηn+1 +�t
η0

g

∂

∂xj
(guj )n+1 = ηn−1 −�t

η0

g

∂

∂xj
(guj )n+1 + 2�tf n

η (5)

which is now in the form needed for spatial discretization using the hybrid
meshless/spectral-element. Because of the Crank–Nicholson terms, the storage of
two previous time steps is needed. The overall performance of this semi-implicit
method is reduced to the performance of a robust solver that can ultimately be paral-
lelizable in an efficient manner for obtaining the solution at the n+ 1 time step. The
preconditioned conjugate gradient method using a block-jacobi type preconditioner
offers such an approach but at the cost of inter-elemental communication at every
iteration step of the iterative solver. The method is of course highly dependent on
the spatial approximation scheme and will be discussed in the next two subsections.
To this end, we first briefly review the construction of the nodal spectral element
spproximation on the cubed-sphere.

3 Hybrid Meshless/Spectral-Element Discretization

3.1 Spectral-Element Discretization

The spectral element formulation for the cubed sphere begins by decomposing each
face on the unit cube denoted by Pi, i = 1, . . . , 6 into Ne nonoverlapping subdomain
elements �e of equal area which are each referenced to a standard element �st =
[−1, 1]2 by a mapping xe(r, s) ∈ �e for (r, s) ∈ �st . The mapping also has a well
defined inverse (r, s)e(x) ∈ �st, x ∈ �e. Since two fields are being approximated in
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the discrete shallow water equations, namely the velocity and the geopotential, two
different approximation spaces are needed. As in most shallow water models, we
adapt the so-called staggered grid approach to discretization. We begin by defining
the approximation space for the velocity as VN := PN,Ne ∩H 1(Pi), where PN,Ne is
the space of piecewise continuous functions that map to polynomials of degree less
than or equal N to the reference element on face i. Namely,

PN,NE (Pi) := v(xe(r, s))|�e ∈ PN(r)⊗ PN(s), e = 1, . . . , Ne,

where PN(r) is the space of all polynomials of degree less than or equal to N . In or-
der to facilitate inter-element continuity on �e for all e ∈ [1, Ne] and more globally,
inter-face continuity on Pi , i = 1, . . . , 6, nodal Lagrangian interpolants are used to
construct the basis within each element. In this paper, we use Lagrangian interpolants
constructed from orthogonal Legendre functions of degree p.

While many spectral-element and spectral collocation models of fluid dynam-
ics such as the ones found in [19] have utilized a staggered grid where the pres-
sure/geopotential field on each element is discretized on an N − 2 Gauss–Legendre
distribution which does not include the boundaries of the element, this hybrid
meshless/spectral-element model relies on boundary information of the geopoten-
tial field as explained in the next section on the three-field formulation for the
shallow water equations. We thus build a staggered grid for the geopotential field
which includes the boundaries of each element �e by considering the space MN :=
P(N−2,Ne) ∩ L2(Pi) and distributing (N − 2)2 Gauss–Lobotto–Legendre points
(ξ1

i , ξ
2
j ).

Using the space MN , the geopotential is expanded in a similar manner to the
velocity components by using the (N − 2)-th degree Lagrangian interpolants π̃i as

η(r, s)|�e =
N−2∑
i=0

N−2∑
j=0

ηeij π̃i(r)π̃j (s),

with ηeij being the nodal values of the geopotential at (ξ1
i , ξ

2
j ). This expansion will

require evaluation not only on the geopotential grid, but on the velocity grid as well.
As will be shown later, the geopotential field provides the means for coupling the
spectral element and meshless collocation approximations.

With the definitions of the Lagrangian nodal expansion and quadrature rule in
place for each element, we can now apply weak formulation to the semi-implicit
time discretized shallow water equations. Find (ui , η) ∈ VN ×MN such that for all
(vi , q) ∈ VN ×MN
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〈ui(n+1), vi〉 −�tgij
〈
ηn+1,

∂

∂xj
vi

〉
= 〈ui(n−1), vi〉 +�tgij

〈
ηn−1,

∂

∂xj
vi

〉
+ 2�t〈f i(n)

u , vi〉,

〈ηn+1, q〉 +�t
η0

g

〈
q,

∂

∂xj
(guj )n+1

〉
= 〈ηn−1, q〉 −�t

η0

g

〈
q,

∂

∂xj
(guj )n+1

〉
+ 2�t〈f n

η , q〉. (6)

With the matrices, cubed-sphere metrics, and Coriolis forcing constructed on
each element, the semi-implicit scheme can now be formulated into Ne local Helm-
holtz problems where the geopotential is solved at every timestep from a discrete
Helmholtz problem and then ‘communicated’ to the velocity field. Writing the as-
sembled discrete shallow water system from the previous subsection in matrix-vector
form, we get [

Bt −Dt

Dt B̃t

][
un+1

ηn+1

]
=

[
Rt

u

Rt
η

]
, (7)

where

Bt = B
�t

, Rt
u =

Ru

�t
, B̃t = B̃

�tη0
, Rt

η =
Rη

�tη0
. (8)

The Helmholtz problem for the geopotential perturbation at each timestep is obtained
by solving for the velocity un+1 in the above block system to arrive at

un+1 = B−1(Rt
u +�tgijDT ηn+1), (9)

and then applying back-substitution to obtain an equation for the geopotential

gB̃ηn+1 +�t2η0DgB−1gijDT ηn+1 = R′η, (10)

where
R′η ≡ gRη −�tη0DgB−1Ru. (11)

Once the geopotential ηn+1 is computed, the velocity components u1, u2 are com-
puted from (9) where thereafter, shared local nodal values on element boundaries of
the velocity components are then averaged.

Furthermore, due to the fact that η0, g, B̃ and B−1 are diagonal, and gij can
be shown to be symmetric, it is easy to see that the matrix HSE is symmetric and
positive definite. In effect, an efficient preconditioned conjugate gradient method
can be constructed by using local element direct solvers for the Helmholtz prob-
lem with zero Neumann pressure gradient boundary conditions. The inverse of each
local Helmholtz operator matrix restricted to an element H|�e is computed once and
stored for use as a block-Jacobi preconditioner. This preconditioning technique en-
joys a computational structure ideal for parallel processors due to the fact that the
preconditioner is strictly local to an element and requires no global communication.
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3.2 The Empirical Backus-Gilbert Reproducing Kernel Discretization

Coupled with the global spectral-element method for use in regional approximation
of the shallow-water model, the empirical Backus–Gilbert reproducing kernel dis-
cretization method, originally introduced in Blakely [5] has been demonstrated to
produce highly accurate solutions to time-dependent nonlinear PDEs while being
endowed with great freedom in choosing the approximation space for building the
reproducing kernel. Furthermore, as the name of the method suggests, the EBGRK is
completely empirical with respect to the distribution of meshless nodes in the domain
of interest. For complete details of the method the reader is referred to [5].

The EBGRK method considers a quasi-interpolant of the form

Pu(x) =
N∑
i=1

u(xi)�i(x), (12)

where u = [u(x1), . . . , u(xN)]T represents the given data on a set of N distinct
evaluation nodes X = {x1, . . . , xN } on a bounded domain � ⊂ R

2. The finite set of
nodes X is endowed with a separation distance defined as

qX := 1

2
min

xj �=xi
‖xi − xj‖2.

The quasi-interpolant �i(x), or discrete reproducing kernel in some literature, is
constructed to be minimized in a discrete quadratic expression subject to some ap-
proximation space reproduction constraints. Details on constructing the empirical
reproducing kernel is out of the scope of this paper. We refer the reader to Blakely
[5] for the construction of the kernel and efficient numerical implementation.

To initiate regional meshless approximation on the cubed-sphere, consider the
domain �M = ∪M

i=1�
ei constructed of M contiguous elements on the discret-

ized cubed-sphere. For simplicity, we will assume �M lies on only one face of
the the cube. Building a meshless approximation space V�,X begins by randomly
distributing two sets of NM distinct collocation nodes in �M and on its bound-
ary ∂�M giving two sets XV

M , X
η
M such that XV

M = X
η
M . Using the EBGRK

method, the kernels �i(·) and !i(·) are constructed to form the discrete spaces
V�,X = span{�i(·), i = 1, . . . , NM } and M!,X = span{!i(·), i = 1, . . . , NM }
and with respect to the sets XV

M and X
η
M , respectively.

For writing the cubed-sphere shallow water equations in strong form, we utilize
the matrix-vector form of the equations originally given in [21]. As in any other
collocation method, we construct the set of Dirac delta test functionals �XV

M
=

{δx1, . . . , δxNM
} ⊂ (H 1)′(�M) and multiply each of the velocity components and

geopotential by each Dirac delta test functional δxi ∈ �XV
M

evaluated which gives
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〈δxj , u
i(n+1)〉 +�t

〈
δxj , g

ij ∂

∂xj
(η)n+1

〉
= 〈δxj , u

i(n−1)〉 −�tgij
〈
δxj ,

∂

∂xj
(η)n−1

〉
+ 2�t〈f i(n)

u , δxj 〉,

〈δxj , η
n+1〉 +�t

〈
δxj ,

η0

g

∂

∂xj
(guj )n+1

〉
= 〈δxj , η

n−1〉 −�t
〈
δxj ,

η0

g

∂

∂xj
(guj )n+1

〉
+ 2�t〈δxj , f

n
η 〉 (13)

with

〈δxj , f
i(n)
u 〉 = −εjk〈δxj , g

ij uk(n)gf 〉 −
〈
δxj , g

ij unk
∂

∂xj
uk(n)

〉
,

and

〈δxj , f
n
η 〉 = −

〈
δxj , u

j ∂η
n

∂xj

〉
.

In order to approximate these equations spatially with the EBGRK method, we look
for a solution u ∈ (V�,X)2 ⊂ (H 1(�M))2 and η ∈ V�,X by taking for all n ≥ 0

unk(xj ) =
NM∑
i=1

ũnk (xi )�i(xj ), ηn(xj ) =
NM∑
i=1

η̃n(xi )!i(xj ) for xk ∈ XV
M,

where ũnk (xi) and η̃n(xi ) are the approximated values at the collocation nodes xi at
time step n. Substituting these into (13) and applying the Dirac delta functionals, we
get for all δxj ∈ �XV

M〈
δxj ,

NM∑
i=1

ũk(n+1)(xi )�i(x)
〉
+

〈
�tgij

∂

∂xj
δxj ,

NM∑
i=1

η̃n+1(xi )!i(x)
〉

=
〈
δxj ,

NM∑
i=1

ũk(n−1)(xi)�i(x)
〉
+

〈
�tgij

∂

∂xj
δxj ,

NM∑
i=1

η̃n−1(xi )!i(x)
〉

+ 〈2�tδxj , f
i(n)
u 〉,〈

δxj ,

NM∑
i=1

η̃n+1!i(x)
〉
+

〈
�t

η0

g

∂

∂xj
δxj , g

NM∑
i=1

ũj (n+1)(xi)�i(x)
〉

=
〈
δxj ,

NM∑
i=1

η̃n−1(x)!i(x)
〉
−

〈
�t

η0

g

∂

∂xj
δxj , g

NM∑
i=1

ũj (n−1)(xi)�i(x)
〉

+ 2〈�tδxj , f
n
η 〉. (14)
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The calculation of

gxj
∂�i(xj )
∂xk

, xj ∈ XV
M,

which is used in the divergence terms of the strong form shallow water system is
made prior to time stepping and stored as matrices in the form

Dk =

⎛⎜⎜⎜⎝
gx1ϒ1(x1) gx1ϒ2(x1) · · · gx1ϒNM (x1)

gx2ϒ1(x2) gx2ϒ2(x2) · · · gx2ϒNM (x2)
...

gxNM
ϒ1(xNM ) gxNM

ϒ2(xNM ) · · · gxNM
ϒN(xNM )

⎞⎟⎟⎟⎠ , (15)

where ϒj (·) denotes the differential operator ∂
∂xk

acting on the kernel �j(·), which

was shown how to be constructed in Section 3.2. A similar matrix gijDT
k used in cal-

culating the gradient of the geopotential in strong form is also computed and stored
prior to time stepping. These matrices are akin to the two-dimensional derivative
matrix Di of size N2 × N2 in the spectral element formulation.

Using notation borrowed form the spectral element formulation, we write the
discretized equations in matrix form with D = (D1,D2) as the derivative matrices
with respect to the collocation nodes and B, B̃ as the collocation matrices for the
velocity and geopotential, respectively. This leads to the system[

Bt −Dt

Dt B̃t

][
ũn+1

η̃n+1

]
=

[
Rt

u

Rt
η

]
,

where

Bt = B
�t

, Rt
u =

Rt
u

�t
, (16)

B̃t = B̃

�tη0
, Rt

η =
Rη

�tη0
. (17)

Performing the Uzawa velocity-geopotential decoupling algorithm where we solve
for the velocity un+1 in the above block system to arrive at

ũn+1 = B−1(Rt
u +�tgijDT η̃n+1), (18)

and then applying back-substitution to obtain an equation for the geopotential at the
time step n+ 1.

gB̃η̃n+1 +�t2η0DgB−1gijDT η̃n+1 = R′η, (19)

where
R′η ≡ gRη −�tη0DgB−1Ru.
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As with the spectral element case, we are now concerned with the solution to the
Helmholtz problem for the geopotential. Although the meshless collocation method
yields a strong form of the discrete shallow water model, the resulting discrete Helm-
holtz equation is similar to the spectral element Helmholtz equation in that the matrix
operator

HMM = gB̃ +�t2η0DgB−1gijDT (20)

is symmetric and positive definite and of size NM×NM . It is important to notice that
the term

DgB−1gijDT

is a discrete pseudo-Laplacian operator on �M , a local domain on the sphere S2.
Because of the fact that the domain is locally defined on the sphere, essential bound-
ary conditions on ∂�M are needed in order to show direct equivalence to a local
Helmholtz elliptic problem on �M . This was not the case with the spectral element
discretization on the sphere since no boundary conditions are needed for the global
shallow water model. As a result, the boundary information on ∂�M must come
from the spectral element approximation in order to produce a unique solution to the
discrete Helmholtz problem (19). As we propose in the next section, if η̃n+1 is the
unique solution to this local Helmholtz problem at time n + 1 with respect to the
boundary information given by a global spectral element discretization at time n+1,
then η̃n+1 is an approximation to the geopotential field restricted to �M at time step
n + 1. To accomplish this task, we adapt the three-field domain decomposition al-
gorithm developed in [7] for coupling the two Helmholtz discretizations, which is
discussed in the next section.

4 Coupling the Meshless and SE Approximations

Because the meshless approximation is done locally utilizing the strong formulation
of the shallow-water equations on a local domain �M , certain transition conditions
are needed on the boundary of the subdomain connecting the meshless and spectral-
element approximations in order to satisfy continuity and flux conditions of the solu-
tion along with the artificial fluxes of the field variables. In 1994, Brezzi and Marini
(see [7]) developed a method termed the three-field formulation for hybrid finite-
element formulations where the goal was to give the possibility of coupling different
finite-element approximations using different meshes and basis functions from one
subdomain to another.

In this paper, we extend the idea of the three-field technique to couple spectral-
element and meshless collocation methods. As shown in the previous sections,
the manner in which we couple the two approximation schemes is done implicity.
Namely, after deriving the semi-implicit method, a symmetric positive definite dis-
crete Helmholtz type equation was left to be solved at each time step for the geo-
potential. With the solution of the geopotential at hand, it could then be used to
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approximate the velocity field at the same time step. So the question that remains
is how to solve Helmholtz equations for the coupled meshless/spectral-element ap-
proximation. In this section we consider solving the elliptic problem

Hu = �u(x)+ g(x)u(x) = f (x), ∈ S2, (21)

where S2 is the unit sphere which is discretized via the cubed-sphere method dis-
cussed in Section 2. The fact that spatial discretization is not performed with spher-
ical harmonics but rather on a cubed-sphere mesh allows for an adaptive localized
approximation using meshless collocation via domain decomposition. Thus the heart
of the hybrid shallow water model lies in the efficient handling of the Helmholtz
equation on the sphere using the meshless/spectral-element formulation.

For proper stability analysis of this new three-field formulation for coupling
spectral-elements and meshless collocation including Babuška–Brezzi inf-sup type
conditions, the reader is referred to the paper by Blakely [6]. In order to introduce
the method, we must first discuss the necessary approximation spaces that will be
used in the formulation and discretization and their relevant physical meaning.

4.1 The Continuous Three-Field Formulation

Using the notation from the previous subsections, suppose we have are given a sub-
domain of M unioned elements �M = ∪M

i=1�
ei . For simplicity of exposition of the

three-field method, we assume �M is on one face of the cube. Let �SE/M denote
the boundary of �M which we will call the interface of the hybrid method between
the spectral element and meshless collocation approximations. Finally, we denote
�SE = �−�M , namely the collection of spectral elements not in �M and then set
�1 := �SE , �2 := �M and �i := ∂�i , for i = [1, 2], which are the boundaries of
these domains sharing the interface �SE/M .

In addition to the Sobolev space H 1
0 (�i) on each domain �i , utilizing the inter-

face �SE/M leads to two additional types of spaces that will be needed for domain
decomposition. We define a trace space and two dual spaces on �SE/M by consider-
ing H 1/2(�SE/M) with corresponding norm ‖ · ‖� := ‖ · ‖H 1/2(�SE/M) and denote the

dual of this space as H−1/2(�). Furthermore we introduce two spaces of Lagrangian
multipliers which provide the role of enforcing necessary boundary continuity over
the interface �SE/M and are defined as $i := H−1/2(�i) for i = [1, 2] which can
be regarded as the dual of the trace spaces associated with the two Hilbert spaces
H 1(�1) and H 1(�2). The Lagrangian multiplier space is endowed with the stand-
ard scalar inner product L2(�), 〈$i,H 1/2〉� =

∫
� λiu

ids for ui ∈ H 1(�). The third
function space which acts as the global continuity space for the hybrid approxima-
tion is defined on the interface � as restrictions of functions on the sphere S2 to the
interface. Namely

! := {υ ∈ L2(�) : ∃u ∈ H 1(S2), u = υ on �}. (22)
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Global norms for the spaces Vi := H 1
0 (�i) and $i can be given as broken norms

over �i

‖u‖V :=
( 2∑

i=1

‖ui‖2
1,�i

)
, ‖λ‖� :=

( 2∑
i=1

‖λi‖2

H
− 1

2
(�i)

)
,

and can easily be shown to be Hilbert spaces with these induced norms. Furthermore,
with the use of extension operators, the interface continuity space is endowed with
the norm

‖ϕ‖! := inf
u|�=ϕ

‖u‖1,�.

With the three approximation spaces at hand, the three-field formulation of the
Helmholtz problem can be written for the two subdomains utilizing the additional
two interface spaces $i and the global continuity space !. Using the dual product
notation 〈·, ·〉i = 〈H−1/2(�i),H

1/2(�i)〉 the following variational form is called the
three-field formulation. Find u ∈ V, λ ∈ $, and ϕ ∈ ! such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)
2∑

i=1

(
a�i (u

i, vi)− 〈λi, vi 〉�i

) = 2∑
i=1

(f, vi )�i , ∀v ∈ V,

(ii)
2∑

i=1

〈μi, ui − ϕ〉�i = 0, ∀μ ∈ $

(iii)
2∑

i=1

〈λi, ψ〉�i = 0, ∀ψ ∈ !

(23)

The bilinear operator a�i stems from the weak formulation of the Helmholtz
equation and is defined as

a�i (u
i, vi) =

∫
�i

∇ui∇vi + guivid�i.

Furthermore, the inner products of the form

〈H−1/2(�i),H
1/2(�i)〉�i

signify the artificial boundary or interface matching conditions. To be more specific,
the second equation enforces weak continuity along the interface �i with the solution
ui on �i with respect to the interface continuity variable ϕ. The third equation serves
two purposes: (1) it further constraines the space of Lagrangian multipliers $ by
adding orthogonality conditions with the interface space !, and (2) it renders the
discrete formulation of the above system as a symmetric positive definite system
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which can then be solved for the global solution (u, λ, ϕ) using a preconditioned
conjugate gradient method as will be shown in the next subsection.

We first note that a key observation in the three-field formulation comes from the
first two equations of (23). For a given ϕ on the skeleton �, the first two equations
are local Dirichlet problems where the boundary conditions on �i are imposed in
the weak sense. Because of this, one can show that the local problems are well-
posed for a given sufficient ϕ. For a complete analysis of the three field method for
coupling meshless and spectral-element approximations for elliptic equations, the
reader is referred to the paper by Blakely [6]. The thesis by Rabin [16] and relevent
references therein also give much insight to the three-field variational formulation in
the finite-element context.

4.2 Discrete Version of the Three-Field Formulation

The difficulty in passing to the discrete formulation the variational problem (23) is in
choosing the appropriate discrete subspaces of V, $, and !. Arbitrarily choosing the
subspaces can lead to unstable solutions of the discrete variational problem primarily
due to not satisfying the discrete versions of the inf-sup conditions, so careful con-
sideration of the spaces is necessary. In past approaches to the method, usually the
discretization of the space V is chosen first and then $ and ! are chosen thereafter
to satisfy the inf-sup requirements. In this section, we propose a discrete approxima-
tion to the three-fields formulation by considering the spectral-element and meshless
collocation methods as the discretization tools which will then lead to the hybrid
meshless/spectral-element method for the shallow water equations on the sphere.

With �1 defining the domain for the spectral element approximation and the
regional domain �2 being allocated for meshless collocation, we define the space
V 1
N := PN,Ne ∩H 1(�1), where PN,Ne is the space of piecewise continuous functions

that map to polynomials of degree less than or equal N to the reference element �e.
Namely,

PN,E(�1) :=
{
v(xe(r))|�e ∈ PN(r)⊗ PN(s), e = 1, . . . , Ne such that �e ∈ �1

}
,

where PN(r) is the space of all polynomials of degree less than or equal to N . To
restrict this space to �1, we include all �e such that �1 ∩�e �= 0. This approxima-
tion space will provide each component of the velocity field on the spectral element
partition �1. As described in Section 3.1, the discrete geopotential space is obtained
by utilizing the staggered grid approach and setting M1

N := PN−2,Ne ∩ H 1(�1).
Since the bounderies on each element �e are essential to the three-field method, the
N − 2 Gauss–Lobatto–Legendre distribution of nodes is used for the geopotential
grid, which is contrary to many spectral element staggered grids which use Gauss–
Legendre nodes for the geopotential/pressure field.

The regional domain �2 allocates a collocation approximation by considering a
random (or uniform) distribution of NM distinct collocation nodes �M and on its
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boundary ∂�M giving two sets XV
M , X

η
M such that XV

M = X
η
M . We then construct

the approximation space M2
NM

= V 2
NM

:= span{�1(x), . . . , �NM (x)} as defined in
Section 3.2.

With the spaces defined for the velocity and geopotential fields on each subdo-
main �i , the Lagrangian multiplier spaces $i for the interface boundaries �i can
now be constructed by using the spaces M1

N and M2
NM

. Since M1
N defines a spectral

approximation of order N − 2, we define the Lagrangian multiplier space for �1 as
the space of Lagrangian interpolants of order less that or equal to N and restricted to
�1. This is given by

$1
N = PN,E(�1) (24)

:= {
λ(xe(r))|�e ∈ PN−4(r)|�1, e = 1, . . . , Ne such that �e ∩ �1 �= 0

}
.

Using such a space for H− 1
2 (�1), it can be shown that the discrete inf-sup condition

for the interface inner product on �1 is satisfied. Namely, for some constant C1,N
dependent on the degree N of the spectral elements, we have

inf
λ1
N∈$1

N/{0}
sup

η1
N∈M1

N/{0}

〈Bλ1
N , η1

N 〉�1

‖η1
N‖M1

NM

‖λ1
N‖$1

N

= 〈λ1
N, η1

N 〉1
‖η1

N‖M1
NM

‖λ1
N‖$1

N

> C1,N

is satisfied. This result is proved in the paper on the Mortar Spectral Element method
by Ben Belgacem et al. [3] in a similar interface inner product using Lagrangian
multipliers.

In order to complete the space $ we need the additional interface space on �2.
On the boundary �2, a second meshless collocation space for $2

N is constructed
using a random distribution of NM� nodes restricted to the interface �2 producing
the set X�2 . Using the EBGRK method presented in Section 3.2, the Lagrangian
multiplier space for �2 is taken to be $2

NM
= span{�λ

1 (x), . . . , �
λ
NM

(x) : x ∈
�2} ⊂ H−1/2(�2) where �λ

i (·) denotes the i-th discrete reproducing kernel function
on X�2 .

Lastly, in order to connect the two pairs of approximation spaces (M1
N,$1

N) and
(M2

NM
,$2

NM
) on �1 and �2, respectively, we build a suitable discrete subspace of

! by taking the Lagrangian interpolants constructed from Legendre polynomials of
degree N − 2 restricted to �. Namely,

!N := {ϕ(xe(r))|�e ∈ PN−2(r)|�, e = 1, . . . , Ne, such that �e ∩ ∂� �= 0}.
This will ensure that the discrete inf-sup condition for ! and $1

N on �1 is satisfied.
The last issue we need to resolve in this three field formulation is complying

with the strong form of the shallow water equations on �2. To this end, since �2
utilizes a meshless collocation technique, we define the set of test distributions on
�2 as M2

δ,NM
= {δxi : xi ∈ X

NM
η } where δxi is the Dirac delta function at node xi .
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The original variational formulation in (23) can now be modified as follows. Find
(η1

N, λ1
N , η2

N, λ2
N , ϕ) ∈ M1

N ⊗$1
N ⊗M2

NM
⊗$2

NM
⊗! such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) a�1(η
1
N, χ1

N)− 〈λ1
N , χ1

N 〉�1 = (f, χ1
N)�1, ∀χ1

N ∈ M1
N,

(ii) 〈μ1
N, η1

N − ϕN 〉�1 = 0, ∀μ1
N ∈ $1

N,

(iii) 〈λ1
N ,ψN 〉�1 = 0, ∀ψN ∈ !,

(25)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) a�2(η

2
N, χ2

N)− 〈λ2
N, χ2

N 〉�2 = (f, χ2
N)�2 , ∀χ2

N ∈ M2
δ,NM

,

(ii) 〈μ2
N, η2

N − ϕN 〉�2 = 0, ∀μ2
N ∈ $2

NM
,

(iii) 〈λ2
N ,ψN 〉�1 = 0 ∀ψN ∈ !.

(26)

Once the discrete approximation spaces have been chosen and numerical integ-
ration has been done, an efficient manner in solving this is to construct the Schur
compliment system and then apply a conjugate gradient method. To do this, we first
write (25) and (26) in algebraic form as:

Aiηi − BT
i λi = fi ,

−Biηi + CT
i ϕ = 0,

Ciλi = 0,

for i = 1, 2. Now applying block Gaussian elimination to the linear system, we
obtain a linear system for ϕ as

Sϕ = g, (27)

where S = S1 + S2, g = g1 + g2 and

Si := CiD
−1
i CT

i , gi := CiD
−1
i BiA

−1
i fi , Di := BiA

−1
i BT

i , i = 1, 2. (28)

The S matrix can be considered as the Schur compliment matrix with respect to u and
λ of the entire system defined above. Furthermore, it was shown by Brezzi in [7] that
the Schur compliment S is symmetric and positive definite if the matrices BT

i and Ci

have full rank. One can then apply a conjugate gradient method to the system (27) to
obtain the solution of the elliptic problem on the global domain. It can be remarked
that by definition of gi , the calculation of a conjugate gradient iteration requires the
solution to the local Helmholtz equation in each subdomain �i , i = 1, 2. Block-
Jacobi preconditioning is used to solve each of these local Helmholtz problems by
considering zero Neumann conditions for each local problem. This way, each local
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Helmholtz problem has a unique solution and in effect, the matrix Ai has an inverse
which can be calculated before time-stepping.

The last issue of the discrete three-field formulation is related to the efficient
construction of the matrices C and B. As they include the integration of the basis
functions for the Lagrangian multiplier spaces and the interface space and are inde-
pendent of the data, they can be calculated and stored prior to time stepping as well.
The matrices have the form

Ci (j, k) = 〈μi,j , φk〉�, μi,j ∈ $i
N, φi,k ∈ !N, (29)

Bi (j, k) = 〈ηi,j , μi,k〉�i , μi,j ∈ $i
N, ηi,k ∈ Mi

N . (30)

For i = 2, the above calculations involve integration on a spectral grid using
meshless reproducing kernels. The choice of the β parameter and NM for a given
radial basis that constructs the reproducing kernel determines the stability of the
entire hybrid model. A study on these parameters is given in full detail in Blakely
[6].

5 Numerical Experiments

As is it well established that the spherical rotational shallow-water equations rep-
resent a simplified model of the dynamica of the atmosphere, Williamson et al. [22]
have proposed a series of eight test cases for the equations in spherical geometry.
It is proposed by the authors that in order to have any type of success with a new
numerical scheme for an a climate model, successful integrations of the numerical
scheme with these test cases are imperative. The purpose of the tests are to examen
the sensitivites of a numerical scheme with many computational challenges faced in
atmospheric modeling such as stabilization of the scheme for large time steps over
a long period of time, the pole problem, simulating flows which have discontinu-
ous first-derivatives in the potential vorticity, and simulating flows over mountain
topographies.

5.1 Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

As the second test case, a steady state flow to the full non-linear shallow water equa-
tions is prescribed and the challenge for a numerical scheme is simply to test its
numerical stability with respect to l1, linf errors over time. Since the flow is steady,
the numerical scheme should be able to integrate the model for many steps without
the addition any filtering. The velocity field is given as

u = u0(cos θ cosα + cos λ sin θ sin α),

v = −u0 sinλ sin α,
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Fig. 2. Plot of l1 errors of the spectral element and meshless geopotential solutions on face 2
of the cubed sphere using 256 (64 per element) nodes for the evaluation of the solutions.

which is non-divergent. The analytic geopotential field is give by

η = gh0 −
(
a�u0 + u2

0

2

)
(− cosλ cos θ sinα + sin θ cosα)2,

with constants u0 = 2πa/(12 days) and gh0 = 2.94× 104 m2/s2.
For this numerical experiment, we began with 24 total spectral elements (4 on

each face) and ran the model for 121 days without any additional filtering. A second
integration was performed using on face number 2 of the cube the meshless col-
location approximation built from compactly supported radial functions (see [18]).
Figure 2 shows the l1 errors over time of the geopotential solution on face 2 for both
the spectral element and meshless collocation approximations.

Notice how errors in the meshless approximation do not grow nearly as fast as in
the spectral element approximation, despite not being as accurate. This is due to the
collocation properties of the radial basis used. For the geopotential grid, a total 256
Gaussian–Lobatto–Legendre nodes (64 per element) were used at each time step.
Furthermore, to obtain an accurate error comparison between the methods, the col-
location approximation was evaluated at the spectral element nodes. Similar results
for the linf error were also obtained.

5.2 Test Case 6: Rossby-Haurwitz Waves

The most interesting of the test cases features an initial condition for the velocity
which is actually the analytical solution to the non divergent nonlinear Barotropic
equation on the sphere, given as a vorticity equation. We refer the reader to [22] for
the initial conditions of the velocity components and geopotential field.
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Fig. 3. Plots of geopotential approximation using 20 spectral elements and 4 elements alloc-
ated to meshless collocation. Plot after 10 and 60 days.

As originally proposed, these waves were expected to evolve nearly steadily with
wavenumber 4. However, Thuburn and Li showed that this case is actually weakly
unstable in that it will eventually break down once perturbed. This usually occurs
after about 40 days depending on the model and parameters used. Figure 3 shows the
geopotential layed out on rectangular coordinates for easier viewing. The figure to
the left shows the field after 10 days at an angle where the hybrid mesh structure on
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the cubed-sphere can easily be seen. Notice that the continuity along the interfaces
between the meshless and spectral-element approximations are preserved, meaning
the inf-sup conditions along the interface are satisfied.

6 Conclusion

In this article, we proposed and developed a new hybrid numerical scheme for the
shallow water equations on the sphere based on the merging of several numerical
tools including meshless collocation, spectral elements, and the three-field vari-
ational formulation. Furthermore, a high-performance Fortran 90 software suite has
been developed for the hybrid method for use on distributed memory parallel pro-
cessors with the message passing interface. Such a successful high-performance im-
plementation ultimately required the use of other Fortran 90 numerical packages for
almost half of the computational tasks in the model, such as the domain decomposi-
tion. Although much work still remains with theoretical issues of the hybrid approx-
imation scheme such as stability and convergence, the numerical examples in the
previous section have clearly shown the method’s robustness in approximating the
global solution with spectral elements along with localized regions using meshless
collocation.
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