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Preface

Over the past decade, mesh reduction techniques (meshless or meshfree methods)
have emerged as effective numerical techniques for solving science and engineering
problems. Meshing difficulties of existing numerical techniques like the finite ele-
ment and boundary element methods, were the initial thrust for the development of
meshfree methods. Several techniques devoted to the simulation of crack propaga-
tion, moving material interfaces, large deformation and shear band localization prob-
lems, among others, were proposed during the last decade. Problems with highly os-
cillatory solutions such as Helmholtz equations and multiscale problems have also
spurred great interest on this class of methods. The variety of problems that are now
being addressed by these techniques continues to expand and the quality of the results
obtained demonstrates the effectiveness of many of the methods currently available.

Various scientific meetings have been organized in recent years that were totally
or at least partially devoted to this area of knowledge and a large number of papers
have been published in prestigious journals. The number of methods that have re-
cently been proposed is also an evidence of the growing interest of the engineering
and mathematics community worldwide on these types of numerical techniques.

The objective of this book is to collect state-of-the-art research, methods and new
ideas on the subject of mesh reduction techniques, and to contribute to the develop-
ment of this area of knowledge. The book contains 15 invited contributions written
by participants to one of the Thematic Conferences sponsored by the European Com-
munity on Computational Methods in Applied Sciences, the ECCOMAS Thematic
Conference on Meshless Methods held in Lisbon, Portugal, from July 11th to 14th

reflected on the broad range of methods discussed in this book. Each contribution
in this book is an extended and revised version of the paper presented at the con-
ference. They present a sample of the state of the art in the field with methods that

vii

2005. The vitality and multi-disciplinarity of the research community in this field is
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have reached a certain level of maturity while also addressing many open issues. The
list of contributors reveals a fortunate mix of highly distinguished authors as well as
quite young but very active and promising researchers.

It is the editors’ wish that this book may constitute a valuable reference for re-
searchers interested in the field of mesh reduction techniques, one that may help pro-
moting the use of these techniques and to extend its application to an even broader
variety of engineering and science problems.

The editors would like to take this opportunity to thank all authors for submitting
their contributions.

V.M.A. Leitão
C.J.S. Alves
C.A. Duarte



A Global-Local Approach for the Construction of
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Abstract. Existing generalized or extended finite element methods for modeling cracks in
three-dimensions require the use of a sufficiently refined mesh around the crack front. This
offsets some of the advantages of these methods specially in the case of propagating three-
dimensional cracks. In this paper, a strategy to overcome this limitation is investigated. The
approach involves the development of enrichment functions that are computed using a new
global-local approach. This strategy allows the use of a fixed global mesh around the crack
front and is specially appealing for non-linear or time dependent problems since it avoids
mapping of solutions between meshes. The resulting technique enjoys the same flexibility of
the so-called meshfree methods for this class of problem while being more computationally
efficient.

The proposed generalized FEM with global-local functions, by numerically constructing
the enrichment functions, brings the benefits of existing generalized FEM to a broader class of
problems. The procedure is applied to the solution of three-dimensional linear elastic fracture
mechanics problems. Numerical experiments demonstrating the computational efficiency and
accuracy of the method are presented.

Key words: Generalized finite element method, extended finite element method, meshfree
method, global-local method, fracture mechanics.

1 Introduction

The generalized finite element method (GFEM) [4, 15, 31, 38] and the eXtended
finite element method (XFEM) [7, 26] are examples of the so-called partition of
unity method which originated in the works of Babuška et al. [3] and Duarte and
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2 C.A. Duarte et al.

Fig. 1. Construction of GFEM shape functions using (a) polynomial and (b) non-polynomial
enrichment functions. Here, ϕα are the functions at the top, the enrichment functions, L, are
the functions in the middle, and the generalized FE shape functions, φα , are the resulting
bottom functions.

Oden [17, 19]. The shape functions in this class of methods are built from the product
of a partition of unity, ϕα , and enrichment functions, L,

φα(x) := ϕα(x)L(x) (1)

where ϕα, α = 1, . . . , N , N being the number of functions, constitute a parti-
tion of unity, i.e., a set of functions defined in a domain � with the property that∑N

α=1 ϕα(x) = 1 for all x in �. Figure 1 illustrates the construction of GFEM shape
functions using a polynomial and a non-polynomial enrichment function.

The partition of unity property of functions ϕα, α = 1, . . . , N , implies that

N∑
α=1

φα(x) =
N∑

α=1

ϕα(x)L(x) = L(x) (2)

Any enrichment function L can be represented exactly through linear combinations
of generalized FE shape functions. Therefore, if the enrichment function L can ap-
proximate the solution u of a boundary value problem, the corresponding GFEM
shape function also will. There is considerable freedom in the choice of the enrich-
ment functions and the corresponding approximation spaces used in the GFEM. Fig-
ure 1b, for example, illustrates the construction of a GFEM shape function using a
highly oscillatory non-polynomial enrichment function.

Customized enrichment functions can be used to model local features in a domain
like cracks [11, 16, 26, 27, 30, 32, 42], edge singularities [15], boundary layers [13],
inclusions [41], voids [37, 41], microstructures [25, 34], etc., instead of a strongly
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Fig. 2. (a) Top view of a three-dimensional GFEM discretization for a cracked plate [16]. A
finner mesh is required near the crack front to compensate the limitations of the enrichment
functions. (b) Three-dimensional view of the crack front. Notice that the crack surface goes
through the elements [16].

refined mesh, as required in the finite element method. This has led to a growing
interest in this class of methods by the engineering community.

The GFEM and the XFEM have the ability to analyze crack surfaces arbitrarily
located within the mesh (across finite elements). Figure 2 shows the representation
of a three-dimensional crack surface using the generalized finite element method
presented in [16].

The GFEM enjoys, for several classes of problems, the same level of flexibility
and user friendliness as meshfree methods while being more computationally effi-
cient. The GFEM and the XFEM are the most promising techniques to model, for
example, propagating cracks in complex three-dimensional structures.

A crack can be represented by partition of unity methods using enrichment func-
tions from the asymptotic expansion of the elasticity solution in the neighborhood
of a crack. These expansions are well known for two-dimensional stress states, but
not for a general three-dimensional case. Custom enrichment functions for two-
dimensional linear problems are amenable to analytical derivation and all GFEM and
XFEM references listed above rely on this approach. However, this is not the case for
most non-linear and many three-dimensional linear problems. This has restricted the
application of the GFEM to many important classes of problems. The linear elastic
fracture mechanics theory in two- and three-dimensions is well developed. Asymp-
totic forms of the elasticity solution near the edges for three-dimensional problems
are discussed in, for example, [21, 28]. There are terms in the three-dimensional ex-
pansions which are very similar to the two-dimensional case. Nevertheless, the the-
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ory is quite complex and not practical for engineering applications. Currently, two-
dimensional expansions of the elasticity solution are used as enrichment functions
for three-dimensional cracks in finite size domains [16, 27, 42]. As a consequence,
a sufficiently fine mesh must be used around the crack front to achieve sufficient
accuracy. An example is shown in Figure 2a. This offsets some of the advantages
of the XFEM/GFEM, specially in the case of evolution type problems like crack
propagation, since the path of the crack is, in general, not known a priori.

In this paper, we propose to remove the limitations of existing generalized and
extended finite element methods for the solution of problems that are not amenable to
the analytical derivation of enrichment functions. The focus is on three-dimensional
fracture mechanics problems but the methodology is broad enough to be used with
many other classes of problems. In Section 3, we present an approach to numerically
construct enrichment functions for partition of unity methods and, in particular, for
the generalized FEM.

The proposed enrichment functions are computed from the solution of local
boundary valued problems defined in a neighborhood of a crack front in three-
dimensions. The approach uses concepts from the classical global-local finite ele-
ment method, where boundary conditions for local problems are extracted from the
solution of a global problem [29]. However, unlike the classical global-local FEM,
the proposed approach is able to account for local-global interactions and interac-
tions among local features, like multiple cracks. The proposed approach allows the
use of coarse global meshes around crack fronts while delivering accurate solutions
and is specially appealing to evolution type problems like propagating cracks. Nu-
merical experiments demonstrating the computational efficiency and accuracy of the
method are presented in Section 4. The main conclusions of this work are presented
in Section 5.

Strouboulis et al. [38–40] consider the problem of a scalar equation with micro-
scale. A particular example is the Laplace equation on a domain with many holes.
The main idea is to construct a space of functions which can approximate locally
the exact solution. Because the exact solution is not smooth and any coarse solution
can not approximate it well, it is not possible to use a crude solution as boundary
condtions for the local problems. Hence a set of solutions with polynomial boundary
conditions and a buffer zone is used. The solutions are then able to approximate well
inside the local domains. The present paper does not address multiscale problems.
It addresses instead three-dimensional fracture mechanics problems. In this case, the
solutions are smooth away from crack fronts where it is possible to assume that the
crude solution of a global problem can approximate the exact solution reasonably
well. When the boundary of a local problem intersects the crack front, the crude
global solution cannot approximate the exact solution well at this point. However,
this point at the crack front will be inside of another local problem since the local
domains overlap. Therefore, the solution of the other local problem will be able to
approximate well the exact solution at the point even with non-exact boundary condi-
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tions because of the ellipticity of the problem under consideration. This allows us to
utilize the crude solution of a global problem for the construction of local problems
using the crude solution as boundary conditions.

2 The Generalized Finite Element Method

In this section, we briefly review the construction of generalized finite element shape
functions. Further details can be found in, for example, [4, 14, 15, 18, 19, 24, 31, 36,
37]. The generalized FEM is one instance of the so-called partition of unity method.
A partition of unity-based approximation of a scalar field u(x) defined on a domain
� ⊂ IRn, n = 1, 2, 3, can be written as

uh(x) =
N∑

α=1

ϕα(x)uhα(x) (3)

where

(i) PoUN = {ϕα}Nα=1 constitute a partition of unity (PoU) with N functions ϕα

defined on � and with properties

ϕα ∈ Cs
0(ωα), s ≥ 0, 1 ≤ α ≤ N (4)

N∑
α

ϕα(x) = 1 ∀x ∈ � (5)

The support of ϕα , {x : ϕα(x) �= 0}, is denoted by ωα (often called cloud) and xα

denotes a node associated with function ϕα and its support. Examples of partition
of unities are standard finite element shape functions, functions generated by
moving least squares methods and Shepard functions [19, 23].

(ii) uhα(x) denotes a local approximation of the field u(x) defined on ωα and be-
longing to the local space

χα(ωα) = span{Liα(x)}i∈I(α) (6)

where the basis functions Liα, i ∈ I(α), are also denoted by enrichment func-
tions and I(α) is an index set such that

L1α = 1 (7)

Examples of linear and quadratic enrichment functions for a node xα = (xα, yα)

in two-dimensions are
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Fig. 3. One-dimensional finite element partition of unity.

{
1,

(x − xα)

hα

,
(y − yα)

hα

}
and{

1,
(x − xα)

hα
,
(y − yα)

hα
,
(x − xα)2

h2
α

,
(x − xα)

hα

(y − yα)

hα
,
(y − yα)2

h2
α

}
, (8)

respectively, where hα is a scaling factor [15].
Using the definitions above, we can write uhα(x) as

uhα(x) =
∑

i∈I(α)

aiαLiα(x), aiα ∈ IR (9)

The approximations used in all partition of unity methods like the hp-cloud method
[18, 19], the generalized finite element method [4, 14, 15, 24, 31, 36, 37], the particle-
partition of unity method [20], the extended finite element method [8, 26, 42], among
others, are special cases of (3), the basic difference being the choice of the partition of
unity functions, ϕα, α = 1, . . . , N, and/or the enrichment functions, Liα, i ∈ I(α).

The partition of unity approximation uh(x) can be written as

uh(x) =
N∑

α=1

ϕα(x)
∑

i∈I(α)

aiαLiα(x) =
N∑

α=1

∑
i∈I(α)

aiαφiα(x) (10)

where
φiα(x) := ϕα(x)Liα(x) (no sum on α) (11)

are denoted partition of unity, cloud or generalized finite element shape functions.
In the generalized finite element method the partition of unity is in general

provided by linear Lagrangian finite element shape functions. The support ωα of
ϕα is then given by the union of the finite elements sharing a vertex node xα. Fig-
ure 3 shows a one-dimensional finite element discretization. The partition of unity
functions ϕα are the usual global finite element shape functions, the classical “hat-
functions”, associated with node xα . The support ωα is thus the union of the ele-
ments τα−1 and τα . The resulting shape functions are called generalized finite ele-
ment shape functions. Figure 1 illustrates the construction of these functions in two
dimensions. The number of partition of unity functions, N , is given by the number of
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vertex nodes, xα, in the finite element mesh. The enrichment, Liα , and correspond-
ing shape functions, φiα , are defined on a node-by-node or cloud-by-cloud basis.
Each node may have a different set of enrichment functions [15, 31].

Using property (7), we can write a partition of unity and, in particular, a general-
ized finite element approximation as

uh(x) =
N∑

α=1

∑
i∈I(α)

aiαϕα(x)Liα(x)

=
N∑

α=1

ϕα(x)

⎡
⎣a1α +

∑
i∈I(α),i �=1

aiαLiα(x)

⎤
⎦

=
N∑

α=1

a1αϕα(x)

︸ ︷︷ ︸
regular interpolation

+
N∑

α=1

∑
i∈I(α),i �=1

aiαϕα(x)Liα(x)

︸ ︷︷ ︸
POU-based enrichment

(12)

The above decomposition of uh(x) is used in the extended finite element method
[8, 26, 42]. In this case, the enrichment functions are Heaviside or Westergaard func-
tions.

An a-priori error estimate for partition of unity approximations and, in particu-
lar, for the generalized finite element method, was proved by Babuška and Melenk
[24]. The estimate says that if the partition of unity PoUN = {ϕα}Nα=1 satisfies some
mild requirements and the error of the local approximations, uhα ∈ χα(ωα), α =
1, . . . , N , are bounded by

‖u − uhα‖E(ωα) < ε(α, u), α = 1, . . . , N, (13)

then the error of a partition of unity approximation, uh, given by (3) is bounded by

‖u − uh‖E(�) < C

(
N∑

α=1

ε2(α, u)

)1/2

(14)

where ‖.‖E denotes the energy norm and C is a constant. Details and proofs can be
found in [12, 19, 24].

3 A Global-Local Approach to Build Enrichment Functions

In this section, we present the formulation of the proposed global-local approach
to build enrichment functions for the generalized FEM. The focus is on 3-D frac-
ture mechanics problems but the formulation can also be applied to other classes of
problems. Sections 3.1 and 3.2 present the approach in a generic, abstract, setting.
Section 3.3 illustrates the application of the procedure using a more computationally
oriented setting.
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3.1 Formulation of Global Problem

Consider a domain �̄G = �G ∪∂�G in IR3. The boundary is decomposed as ∂�G =
∂�u

G ∪ ∂�σ
G with ∂�u

G ∩ ∂�σ
G = ∅. For simplicity of notation, let us consider the

case of a single crack surface �c with front �f ront in the domain �G.
The strong form of the equilibrium equations is given by

∇ · σ = 0 σ = C : ε in �G, (15)

where C is Hooke’s tensor. The following boundary conditions are prescribed on ∂�

u = ū on ∂�u
G σ · n = t̄ on ∂�σ

G, (16)

where n is the outward unit normal vector to ∂�σ
G and t̄ and ū are prescribed trac-

tions and displacements, respectively.
The solution of the following problem provides a GFEM approximation of u:
Find u0

G ∈ X
hp

G (�G) ⊂ H 1(�G) such that, ∀ v0
G ∈ X

hp

G (�G),∫
�G

σ(u0
G) : ε(v0

G)dx+η

∫
∂�u

G

u0
G·v0

Gds =
∫

∂�σ
G

t̄·v0
Gds+η

∫
∂�u

G

ū·v0
Gds (17)

where X
hp
G (�G) is a discretization of H 1(�G) built with the GFEM shape functions

defined in Section 2 and η is a penalty parameter. In the computations of Section 4,
we adopt η = 108 ∗ E ∗ J , where E and J are the Young modulus of the material
and the Jacobian on a volume element with a face on �u

G, respectively. Problem (17)
leads to a system of linear equations for the unknown degrees of freedom of u0

G. The
global problem is typically solved on a coarse mesh, without refinements around the
crack front.

3.2 Local Problems

Let xα denote a point along the crack front �front and �loc,α a neighborhood of
xα. This local domain, �loc,α, is composed of a set of finite elements containing
point xα enlarged with neighboring elements. Examples of local domains are given
in Section 3.3.

The following local problem is solved on �loc,α after the global solution u0
G is

computed as described above:
Find uloc,α ∈ X

hp
loc,α(�loc,α) ⊂ H 1(�loc,α) such that, ∀ vloc,α ∈ X

hp
loc,α(�loc,α)∫

�loc,α

σ(uloc,α) : ε(vloc,α)dx + η

∫
∂�loc,α\(∂�loc,α∩∂�σ

G)

uloc,α · vloc,αds

= η

∫
∂�loc,α\(∂�loc,α∩∂�G)

u0
G · vloc,αds

+ η

∫
∂�loc,α∩∂�u

G

ū · vloc,αds +
∫

∂�loc,α∩∂�σ
G

t̄ · vloc,αds (18)
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where, X
hp
loc,α(�loc,α) is a discretization of H 1(�loc,α) using GFEM shape func-

tions.
A key aspect of problem (18) is the use the generalized FEM solution of the

(crude) global problem, u0
G, as boundary condition on ∂�loc,α\(∂�loc,α ∩ ∂�G).

The explanation why this is admissible is given in Section 1.
The GFEM solution uloc,α can now be used as an enrichment function for nodes

in the global mesh whose support, ωα , is contained in the local domain �loc,α. The
corresponding global GFEM shape function is given by

φα = ϕαuloc,α (19)

where ϕα denotes a global partition of unity. The global problem (17) is then solved
using these global shape functions. As discussed in Section 1, we expect that uloc,α

can approximate well the exact solution u inside �loc,α although close to the bound-
ary of �loc,α the approximation can be worse because the global crude boundary
condition can be innacurate. Nevertheless, this possibly worse approximation is elim-
inated since the global partition of unity ϕα is zero at the boundary of �loc,α.

The proposed approach is related to global-local techniques developed for the
classical finite element method in the 1970s [29] and broadly used in many practical
applications of the FEM. A fundamental difference, however, is that the global-local
GFEM procedure accounts for possible interactions of local (near crack, for example)
and global (structural) behavior. This is in contrast with standard global-local FEM.
Our approach is also related to upscaling techniques for microscale problems [22].
However, the proposed approach does not lead to non-conforming approximations
like in some upscaling techniques [22]. In our case, the global shape functions build
with local solution enrichment functions uloc,α overlap and are conforming.

3.3 Example: Three-Dimensional Through-the-Thickness Crack

The construction of enrichment functions using the proposed global-local approach
is illustrated in this section. Consider the edge-cracked rectangular bar shown in
Figure 4 and denoted henceforth as the global domain �G. It contains a through-the-
thickness edge crack, �c, with front �f ront .

A discretization of the global problem is denoted by Gp=(px,py,pz) where
px, py and pz denote the polynomial degree of the shape functions in the x-,
y-, and z-direction, respectively. Orthotropic p-enrichment of tetrahedral meshes
is discussed in [13]. No mesh refinement is done at the crack front. Therefore,
the global GFEM solution, uG, computed on the mesh shown in Figure 4 has a
large error in the energy norm since this discretization is not capable of capturing
the singular behavior of the solution near the crack front. On the other hand,
the computational cost of computing uG is small if the polynomial order of the
approximation is not high.
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Fig. 4. Global problem with an edge crack and the first step of the global-local approach. Local
problems are automatically created along a crack front of a coarse global mesh.

Step 1: Construction of Local Discretizations: Discretizations for local problems
defined in a neighborhood of the crack front are constructed as follows. We restrict
the definitions to the case of a global discretization with cracks fronts located along
element boundaries, like the case shown in Figure 4. A situation like that shown in
Figure 2b, in which the crack front is arbitrarily located in the mesh, can be dealt
with analogously.

Let Nf ront denote the indices of a set of nodes from the global mesh located
along the crack front �f ront . Local meshes are created using elements extracted from
the global mesh around the crack front. A local domain corresponding to a mesh with
one layer of elements around the crack front is given by

�
nlay=1
loc,Nfront

:=
⋃

α∈Nf ront

ωα

where ωα is the union of (copy of) global elements sharing vertex node xα. Local
domains with additional layers of elements around the crack front are defined ana-
logously.

Figure 4 illustrates two local problems extracted from the coarse global mesh
shown in the figure. The number of local problems created can be chosen such that
each local problem can be efficiently solved in a single processor using, for example,
a direct sparse solver.

The boundary conditions applied to a local problem are displacements computed
by solving the global problem on a coarse mesh. These boundary conditions are also
illustrated in Figure 4.

Step 2: Solution of Local Problems on hp Refined Meshes: In this step, the local
meshes are h-refined and p-enriched in order to capture the singularity at the crack
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Fig. 5. Refined local meshes and computed local solutions. Each local problem can be auto-
matically refined and solved in parallel and thus a large number of local problems can be
efficiently solved.

front. Very refined meshes can be used in each local problem since the local domains
are much smaller than the global one. This allows the computation of highly accur-
ate local approximations of the global solution. Figure 5 illustrates this step of the
global-local GFEM.

A discretization of a local problem is denoted by L
p=(px,py,pz)

nref, nlay where: (i) px, py

and pz denote the polynomial degree in the x-, y-, and z-direction, respectively;
(ii) nlay denotes the number of layers of elements around the crack front in the
mesh extracted from the global problem as previously described; (iii) nref indicates
the level of the local (uniform or non-uniform) mesh refinement. A non-uniform
mesh refinement with nref = 1 is performed by first bisecting all elements in the
initial mesh with nodes on the crack front and then bisecting additional elements in
order to recover a conforming discretization. The marked-edge algorithm [1, 5] is
used to select the refinement edges of the elements. This procedure is repeated n − 1
times for a refinement level nref = n. The initial mesh extracted from the global
mesh corresponds to nref = 0. Figure 5 shows an example of the application of
this algorithm on local meshes extracted from the global mesh. Isosurfaces of the
computed solutions of the local problems are also shown in the figure. This local



12 C.A. Duarte et al.

Fig. 6. The solutions of the local problems are used to enrich the global problem. Only a few
additional degrees of freedom are added to the global problem in this step even if the local
solutions have several thousands of degrees of freedom.

mesh refinement algorithm preserves the nesting of local elements into the global
mesh. This greatly facilitates the computational implementation and provides many
opportunities for optimization of the code.

Step 3: Enrichment of Global Space with Local Solutions: Figure 6 illustrates the
last step in the global-local GFEM. The global problem is enriched with the solutions
of the local problems. This is performed using Equation (19). Only a few additional
degrees of freedom are added to the global problem even if the local solutions have
a large number of degrees of freedom. The enriched global space has very good
approximation properties even though it is built on a coarse mesh. This is due to
the use of custom-built enrichment functions provided by the local problems and the
error estimate given in (14).

4 Numerical Example

As an illustrative example of the proposed global-local GFEM, a Multiple Site Dam-
age(MSD) example is introduced in this section. MSD problems focus on the com-
bined effect of multiple growing cracks where each individual crack can be harm-
less, but the combined effect caused by several cracks can be disastrous. Hence, it is
necessary to consider many possible damage locations and damage sizes in the struc-
ture [2]. MSD problems are a good application for the global-local GFEM since they
contain a series of localized stress distributions which can be separately modeled in a
local problem of the global-local GFEM. In this numerical experiment, we deal with
only one combination of possible MSD cracks.

We consider the same MSD example as presented in [44]. In this example, there
are two small MSD cracks on the left and right side of the main crack as shown in
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Fig. 7. Multiple Site damage(MSD) crack example [44] (not drawn to scale). The main crack
is indicated as (1) and MSD cracks on the left of the main crack as (2) and (3).

Figure 7. The constant far field stress ty = 20 ksi is applied on the top and bottom
of the panel and it causes the opening of the main and MSD cracks. In the compu-
tations, only half of the entire domain (domain CDFG in Figure 7) is discretized.
Symmetry boundary conditions are applied along the vertical plane of symmetry. A
quasi uniform mesh with (20 ∗ 6) × (14 ∗ 6) × (1 ∗ 6) tetrahedral elements is used
to discretize the global problem. No refinement of the global mesh is done at the
crack fronts. The following parameters are assumed in this model: Poisson’s ratio
ν = 0.33; Young’s modulus E = 10, 500 ksi; In-plane dimensions d = 75.0 in,
c = 45.0 in, a1 = 20.0 in, a2 = 11.5 in, a3 = 2.0 in; Size of MSD cracks
a4 = 1.0 in; Domain thickness t = 1.0 in.

The exact strain energy is required for the computation of the error in the energy
norm. We estimated the value of the exact strain energy using the a-posteriori error
estimate of Szabo and Babuška [43] since this problem does not have an analytical
solution. In this procedure, the exact strain energy is estimated using a sequence of
finite element solutions and a-priori error estimates for h- or p-extensions. Details
are described in [43]. The accuracy of the estimate greatly depends on the accur-
acy of approximate solutions. For this problem, we solved the MSD problem using
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the standard GFEM with discretizations G
p=(2,2,2)
nref=6 , G

p=(3,3,3)
nref=6 and G

p=(4,4,4)
nref=6 where

nref is the number of refinement levels applied at each crack front. The estimated
value of the exact strain energy is U = 134.9445.

4.1 Illustration of the Global-Local Approach for the Analysis of the MSD
Crack Problem

Figure 8a shows the mesh of the initial global problem used in the analysis of the
MSD problem. This initial global problem is solved only to provide the boundary
conditions for the local problems. In problems involving crack propagation, this ini-
tial solution can be provided by the solution from the previous crack propagation
step. The cracks are explicitly modeled using double nodes along the crack surfaces
instead of discontinuous enrichment functions like in the XFEM and GFEM presen-
ted in [26] and [16], respectively. The mesh is almost uniform and very coarse for the
given crack sizes. The polynomial order used in this mesh was p = (5, 5, 2). This
global discretization is denoted by G

p=(5,5,2)

nref=0 . It has 48300 degrees of freedom and
a relative error in the energy norm er = 0.02094

Since singularities exist at the crack fronts, local domains are created at all five
crack fronts as shown in Figure 8b. These local domains are extracted from the global
mesh in Figure 8a and only one layer of elements near a crack front is used to define
each local domain. These local meshes are p-enriched to p = (5, 5, 2) and three
levels of refinement are applied to the crack fronts. The resulting local discretizations
are denoted by L

p=(5,5,2)

nref=3,nlay=1. Westergaard singular enrichment functions could, of
course, be used at the crack fronts as described in, for example [15, 16, 30, 32].
However, since our goal here is to demonstrate the effectiveness of the global-local
GFEM for problems in which such enrichment functions are not known, we rely only
on hp-refinements to control the discretization error.

Figure 9 displays von Mises stress distribution and displacement for the five local
problems created. The level of von Mises stress in this figure is represented by the
legend included in Figure 10. Notice that the local domain created at the front of the
main crack has the largest von Mises stress and displacement, whereas other local
domains have relatively smaller von Mises stress and displacement.

After the solution of local problems, all nodes on the crack fronts of the global
mesh are enriched with the local solutions as shown in Figure 8c. The global problem
enriched with local solutions uses the same coarse mesh as the initial global prob-
lem and no refinement is done in this global problem. The elements near the crack
fronts which came from the local problems are included in Figure 8c just for the
visualization of the global solution with local solution enrichment. These elements
are also used for numerical integration in the global domain. The enriched global
discretization has 47880 degrees of freedom and a relative error in the energy norm
er = 0.009737. The ratio between the error of the enriched and the initial global
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Fig. 8. Discretization of the MSD problem in the global-local GFEM.
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Fig. 9. Von Mises stress distribution and deformed shape of each local problem. Figure (a)
displays the result of the main crack front. Figures (b), (c), (d) and (e) are the results of MSD
cracks and ordered according to their relative locations from the main crack front.

solutions is 0.009737/0.02094 = 0.46. The error was therefore reduced to less than
half while the size of the global problem remained almost constant.1

Figure 10 displays von Mises stress and displacement of the global problem en-
riched with local solutions. The obtained solutions near the crack front are at least as
good as the local solutions in Figure 9 since the partition of unity not only reproduces
the local solution, but also adds one polynomial order to it as indicated in (19).

Although this MSD example has a very small thickness compared to other dimen-
sions, three-dimensional effects near the crack front are developed. Two-dimensional
expansions of the elasticity solution have limitations in capturing this effect, whereas
the proposed global-local GFEM can handle it very efficiently. This feature is well
illustrated in Figure 11 which shows the isosurfaces of the Euclidian norm of the dis-
placement vector near the main crack front. It is clearly observed that the isosurfaces
of the solution have some variations in the z-direction near the main crack front.

4.2 Cost Analysis in Terms of CPU Time

The effectiveness of the global-local GFEM is evaluated through a cost analysis in
terms of CPU time in this section. In the global-local GFEM, the number of degrees
of the freedom cannot be used as a measure of the computational cost of the enriched
global problem. This is because the number of degrees of freedom before and after
enrichment of the global problem with local solutions is almost the same and they
do not account for the computational cost of solving the local problems and the

1 The size of the enriched global problem (47880) is smaller than the initial global problem
(48300). This happens because in our implementation, the polynomial order of a node is
reduced by one degree when a custom enrichment (a local solution in this case) is assigned
to the node. This leads to a net reduction in the number of degrees of freedom at the node.
Of course, we can keep the polynomial shape functions at a node by increasing the order
assigned to the node by one before adding the custom enrichment.
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Fig. 10. Von Mises stress distribution and deformed shape of MSD example after enrichment
of global problem with the local solutions shown in Figure 9.

additional assemblage procedure used in the enriched global problem. We use the
CPU time as a measure of the computational cost of the enriched global problem.
The reported CPU time for the enriched global problem includes both the local and
global computations. All the computations were performed on a Dell Dimension
4600 PC with a 3.2 MHz Pentium processor and 2 GBs of memory.

The computational performance of the proposed global-local GFEM is compared
with the standard GFEM. In the later, the discretization error is controled through hp
refinements of the global mesh. Two problems are used in the analysis: The MSD
problem described in Section 4.1 and the same problem without the MSD cracks
indicated as (2) and (3) in Figure 7. In this case, it has only the single main crack
shown in Figure 7. The problems with and without MSD cracks use five and one local
problem, respectively. Therefore, the analysis presented here can illustrate the effect
of the number of local problems on the effectiveness of the proposed global-local
GFEM. The details of the analysis are as follows.

The exact strain energy for the problem with the single main crack was also
estimated using the a-posteriori error estimate described in the previous section. The
standard GFEM with discretizations G

p=(2,2,2)
nref =10 , Gp=(3,3,3)

nref=10 and G
p=(4,4,4)
nref =10 were used

in this case. The estimated value of the exact strain energy is U = 134.7412.
In the analysis using the global-local GFEM, all local problems in the MSD and

single main crack problem are solved with the following parameters: L
p=(5,5,2)

nlay=1,nref ,
0 ≤ nref ≤ 13, and Dirichlet boundary conditions obtained from the solution of
the global problem G

p=(5,5,2)

nref=0 . A relatively low polynomial order, pz = 2, is used
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Fig. 11. Isosurface of the solution near the main crack front. 3D effects near the crack front
are captured.

in the z-direction since the thickness of the panel is much smaller than the other
dimensions (cf. Figure 7). The polynomial shape functions of degree p = (5, 5, 2)

can approximate well the smooth part of the solution. In all local discretizations,
non-uniform h-extensions are performed on the elements near the crack fronts using
the marked-edge algorithm mentioned in Section 3.3. The level of refinement along
the crack fronts is indicated through the parameter nref . The solutions of the local
problems are used as enrichment functions for the global problem G

p=(5,5,2)

nref=0 .
The same polynomial order, p = (5, 5, 2), as in the global-local GFEM analysis

is used in the standard GFEM. The only difference is that some elements in the
neighborhood of the local domains are slightly more refined in the standard GFEM
analysis (compare Figures 8c and 12). This is a consequence of the mesh refinement
required to keep the global mesh conforming. As a result, it is expected that this
additional refinement can reduce errors in those elements slightly more than in the
global-local GFEM analysis. The global mesh used in standard GFEM is illustrated
in Figure 12.

In this numerical example, the maximum level of h-refinement is limited by the
maximum amount of memory a 32 bit machine can allocate. Therefore, the examples
analyzed by the global-local approach are expected to have a higher level of max-
imum h-refinement since the local problems are much smaller than the global prob-
lem solved with standard GFEM and we can release the dynamic memory assigned
to local problems after computing their solutions.
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Fig. 12. Discretization of the MSD problem in the standard GFEM.

The results of non-uniform h-extensions done on the domain of the MSD and
single main crack example using both the global-local and standard GFEM are
presented in Tables 1, 2, 3 and 4. The tables list the number of degrees of freedom,
the relative error in the energy norm in the global domain and the CPU time spent
on the assemblage (tassem), factorization (tf act ) and backward and forward substitu-
tion (tsub) of the stiffness matrix in both local and global problems. tassem, tf act and
tsub are the three essential components which comprise most of the computational
cost of the analysis. The local tassem, tf act and tsub reported in Table 1 are the total
CPU time spent in all five local problems. Tables 1, 3 and 2, 4 also report ttot which
measures the total CPU time spent in a global-local or in a standard GFEM analysis.
In case of a global-local analysis, ttot also includes the CPU time spent in the local
problems.

From the results reported in the tables, some unique features of the global-local
GFEM in the composition of the CPU time can be identified. As the number of
degrees of freedom in the local problem increases (as the local domain is h-refined),
all tassem, tf act and tsub of the local problem increase, whereas only tassem increases
in the global problem. This is because the enrichment of the global problem with
local solutions changes little the number of degrees of freedom of the global problem.
In addition, the number of degrees of freedom in the global problem does not depend
on the size of the local problems. However, tassem in the global problem increases
since mesh refinement in the local problem requires more integration points in the
global elements enriched with local solutions. It can also be noted that tassem spent
on the global problem of the MSD example is larger than tassem of the single main
crack example when the same level of h-refinemnet is done in each local problem
(compare tassem from Tables 1 and 3).

Figure 13 plots the values of ttot versus er from Tables 1, 2, 3 and 4. Several
observations can be made based on the plots. First, we observe a reduction in the
convergence rate with mesh refinement in both the standard and the global-local
GFEM. This happens because the mesh refinement is applied only to elements at
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Table 1. CPU time spent on the MSD example using global-local GFEM. Non-uniform h-
extension is done only in the local domains. Here, N is the number of degrees of freedom,
tassem is the CPU time spent on the assemblage of the stiffness matrix, tf act is the CPU
time spent on the factorization of the stiffness matrix, tsub is the CPU time spent on back and
forward substitution, ttot measures the total CPU time spent in a global-local GFEM analysis

and e
gl
r is the relative error in energy norm of the global solution. The CPU times reported for

the local problems account for all five local problems.

Local problems Global problem

nref N tassem tf act tsub N tassem tf act tsub ttot e
gl
r

0 1200 6.40 5.59 0.14 47880 93.97 329.41 8.16 443.67 0.014657
3 3300 32.00 35.00 0.49 47880 109.19 329.36 8.15 514.19 0.009737
7 8025 113.47 182.79 1.77 47880 157.90 328.36 8.21 792.50 0.007013
10 15600 250.01 841.53 4.06 47880 232.07 328.80 8.41 1664.88 0.004585
13 30075 524.82 3129.59 9.28 47880 381.94 329.35 8.15 4383.13 0.002265
∞ ∞ 47880 0

Table 2. CPU time spent on the MSD crack example using standard GFEM. Non-uniform h-
extension is done in the global domain. Here, ttot is the CPU time spent on a standard GFEM
analysis.

nref N tassem tf act tsub ttot er

0 48300 96.20 378.03 8.55 482.78 0.020942
2 54675 111.33 420.72 9.55 541.60 0.013783
5 70050 156.21 485.56 12.25 654.02 0.008448
∞ ∞ 0

Table 3. CPU time spent on the single main crack example using global-local GFEM. Non-
uniform h-extension is done only in the local domain.

Local problem Global problem

nref N tassem tf act tsub N tassem tf act tsub ttot e
gl
r

0 1200 1.31 1.13 0.04 47916 95.42 332.04 8.37 438.31 0.011340
3 3300 6.35 6.88 0.09 47916 98.97 332.28 8.35 452.92 0.007784
7 8025 22.74 36.49 0.33 47916 108.91 332.49 8.39 509.35 0.005910

10 15600 50.18 166.80 1.85 47916 123.91 332.82 8.33 682.87 0.004368
13 30075 104.46 600.13 1.85 47916 152.79 332.97 8.31 1200.51 0.003183
∞ ∞ 47916 0
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Table 4. CPU time spent on the single main crack example using standard GFEM. Non-
uniform h-extension is done in the global domain.

nref N tassem tf act tsub ttot er

0 48000 95.58 348.81 8.43 452.82 0.015684
3 50100 101.04 369.76 8.85 479.65 0.009370
7 54825 118.42 402.65 9.78 530.85 0.005848

10 62400 144.16 580.74 12.10 737.00 0.003607
∞ ∞ 0

Fig. 13. Computational cost for the MSD and single main crack problems using the pro-
posed local-global GFEM and the standard GFEM. The discreatization error in the local-
global GFEM is controled through mesh refinements in the local problems while global mesh
refinements are used only in the case of the standard GFEM.

the crack fronts followed by additional refinements required to recover a conforming
mesh. Therefore, the mesh refinement is only controlling the error in a small neigh-
borhood of the crack front. The decrease in convergence rate is less pronounced in
the case of the standard GFEM since, in this case, the mesh refinement is applied
to the global mesh and the refinements used to remove hanging nodes propagates
in the global domain. The convergence rate in the global-local GFEM may also be
significantly affected by the cost of the local problems. As the local problems are
h-refined, the computational cost of the local problems becomes the major cost in
the global-local analysis (cf. Tables 1 and 3). This, of course, depends on the size of
the original global problem. Therefore, there is a limitation for the size of the local
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problems where the global-local GFEM is more computationally efficient than the
standard GFEM.

Second, the global-local GFEM is more efficent than the standard GFEM over a
wider rage of CPU time when solving the MSD problem than when solving the single
main crack problem. Therefore, the efficiency of the global-local GFEM as compared
to the standard GFEM can be extended by increasing the number of local problems.
The number of local problems and consequently the effectiveness of the global-local
GFEM can be increased by using more than one local problem at each crack front.
The solution of the local problems is also amenable to parallel processing.

Third, the global-local GFEM is less affected by hardware limitations. For the
MSD example, the maximum possible level of h-refinement near the crack fronts is
5 when we use the standard GFEM (cf. Table 2). However, in case of the global-
local GFEM, we were able to refine the crack fronts in the local problems up to
13 levels (cf. Table 1). These discretizations have relative errors in the energy norm
er = 0.002265 and er = 0.008448 in case of the global-local and standard GFEM,
respectively. Therefore, it was possible, using the same hardware, to reach an error
0.008448/0.002265 = 3.7 times smaller using the global-local GFEM as compared
to the standard GFEM.

These observations indicate that the global-local GFEM may be an effective tool
for the analysis of problems with many local features.

5 Summary and Conclusions

In this paper, we propose a two-level approach to build enrichment functions for
partition of unity methods and, in particular, for the generalized FEM. A three-
dimensional fracture mechanics problem is used to illustrate the main ideas of the
procedure. The approach is not, however, limited to this particular application.

The main features of the proposed generalized FEM with global-local enrichment
functions are as follows:

• The procedure accounts for possible interactions of local (near crack for ex-
ample) and global (structural) behavior. This is in contrast with standard global-
local FEM [29] which is broadly used in many engineering applications of the
FEM.

• Local features, like crack fronts, are several orders of magnitude smaller than
the size of the domain of interest (a complex structure, for example). The mesh
density required in the neighborhood of a crack front is several orders of mag-
nitude larger than in parts of the domain with smooth solutions. As a result, mesh
refinements at the crack front usually propagate beyond the region of interest in
order to create a conforming global mesh. In the proposed global-local GFEM,
this problem does not exist since the refinement is done only at the local do-
mains. Therefore, no matter how refined are the local domains, no unnecessary
refinement is performed in the, usually large, global problem.
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• The computation of all local problems can be parallelized without difficulty al-
lowing the solution of large problems very efficiently. This feature of the meth-
odology is related to the various domain decomposition techniques available in
the literature [6, 9, 10, 33, 35].

• The size of the global problems solved with the proposed approach is almost
independent of the resolution used to resolve the local features. This happens
because the number of degrees of freedom added to the global problem does
not depend on the number of degrees of freedom used in the local problems. It
depends only on the number of global nodes enriched with local solutions.

• The enrichment of the global mesh with local solutions does not lead to linear
dependencies of the resulting global shape functions since the global partition of
unity itself cannot reproduce the solution of the local problem unless it is exactly
in the space spanned by the partition of unity itself.

The generalized FEM has had a tremendous impact in the solution of problems in
which there is an a-priori knowledge about the behavior of the solution (Helmholtz
equation, linear elastic fracture mechanics, domains with many voids or inclusions,
etc.). The proposed methodology, by numerically constructing the enrichment func-
tions, brings the benefits of existing generalized FEM to a broader class of problems.

This paper presents the main ideas and investigate the computational perform-
ance of the proposed generalized FEM with global-local enrichment functions. There
are, however, many open issues that need further investigation. Among them, we
have:

• The effect of using the solution of the global problem, instead of the unknown
exact solution, as boundary conditions for the local problems;

• The effect of the size of the local domains on the performance of the proposed
global-local GFEM. Larger domains are in principle desirable since they would
reduce the effect of not using exact boundary conditions for the local problems.
However, large domains are more computationally demanding;

• The effectiveness of the proposed technique in terms of convergence rates of the
global problem and its relations with the convergence rates of the local problems;

• How to efficiently implement the procedure.

We are currently investigating these topics.
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Abstract. The XFEM method in fracture mechanics is revisited. A first improvement is con-
sidered using an enlarged fixed enrichment subdomain around the crack tip and a bonding
condition for the corresponding degrees of freedom. An efficient numerical integration rule is
introduced for the nonsmooth enrichment functions. The lack of accuracy due to the transition
layer between the enrichment aera and the rest of the domain leads to consider a pointwise
matching condition at the boundary of the subdomain. An optimal numerical rate of conver-
gence is then obtained using such a nonconformal method.
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1 Introduction

In computational fracture mechanics, the eXtended Finite Element Method was in-
troduced in order to use a finite element mesh independent of the crack geometry
[2, 8, 15, 16, 19]. A better accuracy was obtained for a lower computational cost
thanks to XFEM instead of considering a classical finite element method. However,
numerical experiments show that the rate of convergence is not improved, when the
mesh parameter h goes to zero, for the elasticity problem on a cracked body [18]. So,
we are interested in the abilities of the methodology XFEM to achieve an optimal ac-
curacy for such non-smooth problems. Optimality refers here to an error of the same
order than the one given by a classical finite element method for a smooth problem.

The principle of the extended finite element method consists in incorporating
some enrichment functions into the finite element basis. Singular enrichement func-
tions are used to take into account the nonsmooth behavior of the displacement field
near the crack tip. In the standard XFEM, the size of the enrichment area at the crack
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tip vanishes when h goes to zero (the enrichment area is the union of the supports of
these new singular basis functions). So the influence in the global error of the enrich-
ment decreases with h, which explains the above-mentioned unsatisfactory numer-
ical behavior. To overcome the difficulty, a first variant of XFEM was considered in
which a whole fixed area (independent of h) around the crack tip is enriched [3, 11].

In the present paper, some improvements of the previous approach are studied
in order to obtain better computational performances (in terms of numerical rate of
convergence, number of degrees of freedom or well-conditioned system).

The outline of the paper is the following. In Section 2, the model problem of a
cracked body in linear plane elasticity is considered. Section 3 is devoted to a new
XFEM type method where the crack tip enrichment functions are localized by using
a smooth cut-off function. A mathematical result of optimal error estimate is stated
and confirmed by numerical tests for linear finite elements. In Section 4, a piecewise
linear cut-off function is considered for the singular enrichment. The method comes
to introduce some bonding condition between the enrichment degrees of freedom in
XFEM with a fixed enrichment area. The numerical rate of convergence is improved
for high order finite elements (of degree two or three) with respect to the classical
XFEM method. However, optimality is not achieved because of the lack of accuracy
coming from the elements in the transition layer (the finite elements between the
enrichment area and the rest of the body). An efficient numerical integration rule for
the nonsmooth enrichment functions is presented in Section 5. In the last section, we
study a nonconformal method where a pointwise matching condition at the boundary
of the enriched area takes the place of the transition layer. On a computational test,
we then obtain the expected optimality.

2 The Elasticity Problem on a Cracked Domain

Consider the model problem of the equilibrium of a cracked body in plane elasticity.
Let � be the bounded cracked domain in R2; the crack �C is assumed to be straight.
The boundary ∂� of the body is partitioned into �C , �D and �N ; a traction free
condition is considered on �C , on �D the displacement is prescribed and the surface
forces are known on �N (Figure 1).

The weak formulation of the elasticity problem on the cracked domain � consists
in finding a displacement field u = (u1, u2) such that

u ∈ V, a(u, v) = L(v) ∀v ∈ V, (1)

in the space of admissible displacements:

V = {v : v ∈ H1(�), v = 0 on �D}.
We have denoted
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Fig. 1. The cracked domain �.

a(u, v) =
∫

�

σ(u) : ε(u) d�,

σ(u) = λ trε(u) I + 2µ ε(u),

L(v) =
∫

�

g.v d� +
∫

�N

f.v d�.

The notation ε(u) stands for the linearized strain tensor, the Lamé coefficients satisfy
λ > 0, µ > 0, the force densities f and g are given on �N and � respectively. The
inner product of vectors in R2 is written u.v = ∑

i ui vi and the associated norm |.|;
for tensors, the inner product is denoted as usually σ : ε = ∑

ij σij εij . Finally, the
functional spaces for vector-valued functions are distinguished by bold characters,
e.g. Hs(�) = Hs(�; R2) equipped with its canonical norm ‖.‖s,�.

There exists a unique displacement solution u to (1) under standard assumptions,
i.e. mes �D > 0, f and g defining a continuous linear form L(.) on V . Assum-
ing smoothness conditions on the data, the solution u can be written as a sum of a
singular part u∗ and regular one u − u∗ satisfying the following properties:

u∗ = KI uI + KII uII , (2)

u − u∗ ∈ H2+m(�), (3)

for some integer m ≥ 0 such that (in particular) g ∈ Hm(�). In the definition of u∗,
the constants KI ,KII are the so-called stress intensity factors and the displacements
uI , uII denote the opening modes of the crack. For a bi-dimensional crack [12, 13]:

uI = 1

E

√
r

2π
(1 + ν)

(
cos θ

2 (3 − 4ν − cos θ)

sin θ
2 (3 − 4ν − cos θ)

)
, (4)

uII = 1

E

√
r

2π
(1 + ν)

(
sin θ

2 (γ + 2 + cos θ)

sin θ
2 (γ − 2 + cos θ)

)
, (5)
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in polar coordinates (r, θ) relatively to the crack tip, where ν is the Poisson ratio
and the constant γ is equal to γ = 3 − 4ν for the plane stress problem. The normal
(respectively tangential) component of function uI (resp. uII ) is discontinuous along
the crack. Note that the functions uI and uII belong to H3/2−ε(�) for any ε > 0
(see [9, 10]).

3 The Cut-Off Method

Assume that the uncracked body � is a polyhedric domain and consider a regular
triangulation Th of �. The mesh parameter h corresponds to the maximum of the dia-
meters of the triangles in Th. Denote ϕ1 . . . ϕN the Pk finite element basis functions
on the triangulation, where Pk represents the polynomials of degree k ≥ 1.

Let H be the function defined on �, equal to +1 on the one side of the crack �C

and equal to −1 on the other one:

H(x) =
{+1 if (x − x∗).n > 0,

−1 elsewhere.

In this definition, n is a given normal vector to the crack line. The asymptotic dis-
placement (2) at the crack tip x∗ can be written as a linear relation between the
following singular functions F1, . . . , F4 (see (4) and (5)):

F1 = √
r sin

θ

2
, F2 = √

r cos
θ

2
, F3 = √

r sin
θ

2
cos θ, F4 = √

r cos
θ

2
cos θ.

Let us introduce a C2-function χ satisfying⎧⎪⎪⎨
⎪⎪⎩

χ(r) = 1 if r ≤ R0,

0 < χ0(r) < 1 if R0 < r < R1,

χ0(r) = 0 if R1 ≥ r.

(6)

Parameters R0 and R1 are given such that 0 < R0 < R1.
We seek an approximate displacement field of the following form:

uh =
∑

1≤i≤N

ai ϕi +
∑
i∈IH

bi Hϕi +
∑

1≤j≤4

cj Fjχ. (7)

The degrees of freedom are vector-valued: ai, bi , cj ∈ R2. The corresponding dis-
crete problem is the following: find uh such that

uh ∈ Vh, a(uh, vh) = L(vh) ∀vh ∈ Vh, (8)

where Vh is the vector space of the displacements of the form (7).
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The present method differs from the standard XFEM by the definition of the
singular enrichment term. Namely, for the classical extended finite element, the last
term in expression (7) of the approximate displacement uh is changed into:∑

i∈IF

∑
1≤j≤4

cij Fjψi, cij ∈ R2, (9)

where the local partition of unity ψi (i ∈ IF ) is equal to the linear finite element
basis functions associated to the vertices of the element containing the crack tip x∗.
A variant consists in enriching all the finite elements nodes in a fixed area around x∗,
say the disk B(x∗, R) of radius R > 0 independent of h. The crack tip enrichment
term then becomes: ∑

i∈IF (R)

∑
1≤j≤4

cij Fjψi, (10)

where IF (R) corresponds now to the nodes in B(x∗, R) [3, 11].
In the following result of convergence, the exact solution u satisfies the smooth-

ness condition:
u − u∗ ∈ H2+ε(�), (11)

for some ε > 0 (see (3)). In the statement below, only the case k = 1 is considered.
To our knowledge, this is the first mathematical result about the accuracy of XFEM
type methods [4, 5].

Theorem 1. Let u be the displacement field solution to the model problem (1) on the
cracked domain, and uh the discrete solution defined from the enriched linear finite
element method (7), (8). Under assumption (11), the following error estimate holds:

‖u − uh‖1,� ≤ Ch‖u − χu∗‖2+ε,�, (12)

where u∗ is the asymptotic displacement (2) at the crack tip x∗, χ the cut-off function
for the singular enrichment and C > 0 a constant only depending on �.

Remark 1. For a classical affine finite element method over a cracked domain, the
error is of order

√
h, since the displacement field belongs to H 3/2−ε for any ε ≥

0. The error estimate obtained in Theorem 1 is optimal in the sense that the rate
of convergence is the same than using a classical P1 finite element method for a
smooth problem (the presence of ε > 0 in the assumption (11) only corresponds to a
technical difficulty).

The numerical tests are relative to the model problem (1) on the square domain � =
[−0.5, 0.5]× [−0.5, 0.5] where the crack is the line segment �C = [−0.5, 0] × {0}.
The exact solution u is the mode I crack displacement (4) prescribed as a Dirichlet
condition on the whole domain boundary. The parameters of the cut-off function χ

in the definition (6) are equal to R0 = 0.01, R1 = 0.49 and χ(x) is identical to a
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Fig. 2. Energy norm error for classical or enriched P1 elements with respect to the number of
cells ns = 1/h in each direction (logarithmic scales).

fifth degree polynomial if R0 ≤ |x − x∗| ≤ R1. The triangulation of the domain is
defined from a grid of square cells (independently of the crack); let ns be the number
of cells of the subdivision in each direction. A linear Lagrange finite element method
is considered on Th.

Figure 2 shows a comparison between the convergence rates of:

• the classical finite element method (without enrichment),
• the XFEM method specified by (10), where the radius of the singular enrichement

area is equal to R = 0.2,
• the previous cut-off enrichment strategy.

The energy norm error ‖u − uh‖1,� is computed by running the test problem for
different values of the mesh parameter h = 1/ns. It may be seen that the numer-
ical error is of order hα where the slope α on the figure differs according to the
method. With respect to the classical finite element method, the cut-off enrichment
reduces the error for a given mesh and presents a convergence rate α almost equal
to 1 instead of 1/2. Compared to the XFEM method with a fixed enrichment area,
the convergence rate is very close, but the computational cost is better in the case
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Fig. 3. Energy norm error with respect to 1/h in the case of the modified XFEM method using
a finite element cut-off function (XFEM–d.g.).

of the cut-off method. In fact, the number of degrees of freedom increases signific-
antly when h goes to zero in the term (10) specific to XFEM with a fixed enrichment
area. Another advantage of the cut-off method lies in its significantly better condition
number. Further details can be found in [5].

4 Piecewise Linear Cut-Off Function

The cut-off function is now defined as the continuous piecewise linear function on
the finite element mesh, which is equal to 1 at the vertices in B(x∗, R) and 0 at the
other ones. It is denoted:

χh =
∑

i∈IF (R)

ψi (13)

with the previous notations. The approximate displacement considered is now writ-
ten:

uh =
∑

1≤i≤N

ai ϕi +
∑
i∈IH

bi Hϕi +
∑

1≤j≤4

cj Fjχh (14)

and the degree k of the finite element basis functions ϕi here is equal to 1, 2 or 3.
For the Mode I test problem considered in the previous section, the convergence

curves are given on Figure 3. The radius R of the enrichment area is fixed to 1/10th

of the domain size. The figure shows that the convergence rate is equal to 0.5, 1.5, 2.6
according to the different choices of the polynomials degree k = 1, 2, 3 respectively.
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Let us observe that the rate of convergence is equal to 0.5 whatever the degree k in
the classical XFEM method [11, 18].

Some comments about the method under consideration may be made.

(i) The crack tip term in the approximate displacement uh for the method of the
piecewise linear cut-off function:

4∑
j=1

cj Fjχh (15)

has to be compared to the corresponding term for XFEM with a fixed enrichment
area (10). The cut-off enrichment (15) may be interpreted as a bonding condi-
tion between the enrichment degrees of freedom of the other method, or a d.o.f.
gathering (XFEM–d.g.).

(ii) About the second term in the approximate displacement (14), the partition of
unity for H is defined by the Pk finite element basis functions ϕi instead of the
P1 partition of unity ψi in the standard XFEM. So the approximation of the jump
[uh] of displacement along �C :

[uh] = 2
∑
i∈IH

bi ϕi on �C

is compatible with the finite element method (i.e. of the same order).
(iii)In the chosen approximation strategy (14), the number of degrees of freedom for

the Fj enrichment is minimal for a given enrichment aera B(x∗, R). Moreover,
the condition number is significantly better than using a classical XFEM enrich-
ment on a fixed subdomain (when h decreases and for high degree k) [11]. An
explanation may be found in the fact that the enrichment functions are not lin-
early independent. For instance, in the case of a P1 partition of unity, we observe
that

p2(F1 − F4) + p1F3 = 0, p2(F3 − F2) + p1F4 = 0,

where pi are the linear shape functions on the reference triangle:

p1(x, y) = x, p2(x, y) = y and p3(x, y) = 1 − x − y.

If a P2 partition of unity is used, there are six relations of that kind.

5 The Polar Numerical Integration

Special care has to be taken in the numerical integration of the elementary stiffness
matrix for the triangle containing the crack tip. First, expressing the integral
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Fig. 4. Transformation of an integration method on a square into an integration method on a
triangle for crack-tip functions.

∫
T

∇(Fiϕj ).∇(Fkϕl) dx

in polar coordinates, the r−1/2 singularity of ∇Fi(x) is canceled. The finite element
is then divided in (a few number of) subtriangles such that the crack tip is a vertex
of some of them. For such subtriangles, the following integration method gives ex-
cellent results with a low number of integration points (keeping a classical Gaussian
curvature formulae on the other subtriangles).

The geometric transformation τ : (x1, x2) → (x1x2, x2) maps the unit square
onto a triangle (Figure 4). Using this transformation, it is possible to build a curvature
formulae on the triangle from each one defined on the unit square. The new integ-
ration points ξ̄ and their weights η̄ are obtained from those of the original curvature
formulae by

ξ̄ = τ (ξ), η̄ = η det(∇τ ).

This curvature formulae will be called in the following the polar integration method.
The performances of the classical refined numerical integration and the polar

integration curvature formulae are compared computing a XFEM elementary matrix.
The reference elementary matrix is computed on a very refined subdivision near the
singularity point x∗. Figure 5 presents the relative error in infinity norm between
this reference elementary matrix and a computation of the elementary matrix by the
following different strategies:

• using a regular refinement of the triangle and a fixed Gaussian formulae on each
refined triangle (of order 3 and 10),

• using the polar integration method without any refinement, but for Gaussian
curvatures on the square of increasing order.

This figure shows that the polar integration approach offers an important gain. Prac-
tically, 25 Gauss points were enough for the most accurate convergence test we have
done.
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Fig. 5. Comparison of numerical integration methods for nonsmooth functions: uniform re-
finement with order 3 or 10 Gaussian method, and polar integration.

6 Pointwise Matching at the Boundary of Enriched Zone

The rates of convergence obtained in Figure 3 are not optimal. The only potential
problem comes from the transition layer between the enrichment area and the rest
of the domain, i.e. the triangles partially enriched. An analysis of interpolation error
shows a lack of accuracy of XFEM methods due to the transition layer [11]. Let us
note that a different analysis of this kind of problem is done in [6] where a specific
reproducing condition is introduced. But this analysis cannot be straightforwardly
applied to the present problem.

Let �1 and �2 be a partition of � where �i is a union of mesh triangles, the
crack tip belonging to �2. The interface between �1 and �2 is denoted �12. The
approximate displacement uh is such that uh = u1

h on �1 without a Fj enrichment:

u1
h =

∑
i∈I (�1)

ai ϕi +
∑

i∈IH (�1)

bi Hϕi

and uh = u2
h on �2 with a Fj enrichment:

u2
h =

∑
i∈I (�2)

ai ϕi +
∑

i∈IH (�2)

bi Hϕi +
4∑

j=1

cj Fj .

Finally, u1
h = u2

h at the nodes on �12. Naturally, this approximation procedure is
no longer a conformal method. The matching condition at the interface may be seen

36



Study of Some Optimal XFEM Type Methods

Fig. 6. Convergence of XFEM with pointwise matching condition (XFEM–p.m.) for the mode
I problem.

as a linear relation between the concerned degrees of freedom from the one or the
other side of �12. The convergence curves in Figure 6 show that optimality is reached
(actually, with a slight superconvergence) without any increasing of the number of
degrees of freedom or making the condition number worse. For more details, see
[11].

Remark 2. The XFEM method is based on a partition of unity principle. The Parti-
tion of Unity Finite Element Method does not exhibit such a lack of accuracy [14]
[1] [7]. Thus, an idea is to be closer to PUFEM original principle. So let consider a
PUFEM method using two overlapping subdomains �1 and �2 such that the crack
tip x∗ belongs to �1 but not to �̄2; a XFEM enrichment is defined on �1 with a
standard finite element approximation on �2. This method is different from the clas-
sical XFEM only on the transition layer. It may be seen that the size of the transition
layer does not influence the interpolation error estimate and consequently the con-
vergence rate. So a transition layer with a vanishing width should be convenient (i.e.
when �1 and �2 define a partition of �): this is the motivation of the previous XFEM
method with pointwise matching.

The numerical experiments were performed with the finite element library Getfem++
[17].
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Abstract. The Generalized Finite Element Method (GFEM) is first applied to hybrid-mixed
stress formulations (HMSF). Generalized shape approximation functions are generated by
means of polynomials of three independent approximation fields: stresses and displacements
in the domain and displacements field on the static boundary. Firstly, the enrichment can inde-
pendently be conducted over each of the three approximation fields. However, solvability and
convergence problems are induced mainly due to spurious modes generated when enrichment
is arbitrarily applied. With the aim of efficiently exploring enrichments in HMSF, an extension
of the patch-test is proposed as a necessary condition to ensure enrichment, thus preserving
convergence and solvability. In the present work, the inf-sup test based on Babuška–Brezzi
condition was used to demonstrate the effectiveness of the Patch-Test. In particular, the inf-sup
test was applied over selectively enriched quadrilateral bilinear and triangular finite element
meshes. Numerical examples confirm the Patch-Test as a necessary but not sufficient condition
for convergence and solvability.

Key words: Generalized finite element method, hybrid-mixed stress formulation, Babuška–
Brezzi condition, inf-sup test.

1 Introduction

Boundary value problems (BVPs) can be variationally expressed using different prin-
ciples. Depending on the variables involved in the variational principle, a specific
weak form results and the FEM can then be applied to generate approximated solu-
tions.

Among the non-conventional weak forms, three variants of the Hybrid formu-
lation can be emphasized: the Hybrid-Mixed, Hybrid and Hybrid-Trefftz forms, all
of which are detailed in [6]. In the present work, the Hybrid-Mixed Stress Model
Formulation (HMSF) is addressed.
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This non-conventional form is called mixed for the reason that two incompat-
ible stress and displacements fields are approximated in the domain. Since a second
displacement field is approximated independently on the static boundary (where sur-
face forces are imposed), the formulation is also typified as a hybrid one. Finally, the
model is referred to as a stress model in view of the fact that continuity is primarily
imposed over the stress approximation field.

Concerning numerical tools to solve BVPs, meshless methods provide approxim-
ations which are totally or relatively independent of the finite element mesh concept.
The hp-Clouds Method [5], is distinguished among the meshless methods by the en-
richment alternative of a basic approximation (partition of unity) without the defin-
ition of any additional nodal points in the domain. The Generalized Finite Ele-
ment Method (GFEM) [8], allows combining the enrichment scheme of the hp-cloud
method and advantageous features such as the strong imposition of boundary condi-
tions of the conventional FEM.

Pimenta et al. [9] and Góis [7] applied the nodal enrichment technique to HMSF,
resulting in a new application of the GFEM. Apparently, since displacements and
stresses can be independently approximated, the enrichment could also be uncondi-
tionally imposed to each of those fields. However, that is not true because not all
the combinations of enrichment supply stable and convergent solutions. Actually, in
spite of noticeably good convergent responses, sometimes bad combinations of en-
richments furnish unsatisfactory values of strain energy or stress and displacement
fields as well.

Based on the above, in the present work, two numerical tests are proposed to
verify the stability of HMSF solutions provided by GFEM. The first, a kind of Patch
Test is linked to solvability, while the second is used to verify whether the (inf-
sup) condition is satisfied by GFEM approximation functions obtained from clouds
composed by four nodes quadrilaterals.

2 Hybrid-Mixed Stress Formulation in Plane Elasticity

The basis of the Hybrid-Mixed stress model in isotropic linear elasticity employed
in the present work is founded on the variational principle of Reissner–Hellinger
expressed as:

�(u, σ, u�) = −
∫

�

1

2
σT f σ d� −

∫
�

uT (Lσ + b) d�

+
∫

�t

uT
�(Nσ − t) d� +

∫
�u

uT (Nσ) d�. (1)

The above expression comprises stress (σ ) and displacement (u) fields defined
in the domain (�) and a displacement field (u�) defined on the static part (�T ) of
the boundary. In addition, L is the differential divergent operator; b the vector of
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body forces; N the matrix formed by the components of the unit vector normal to the
boundary; u the vector of prescribed displacements on �u and t the vector of applied
superficial forces on �t . The treatment will be restricted to plane elasticity. Thus, f

represents the flexibility matrix for linear and isotropic elastic materials.
Concerning numerical approximations and assuming the domain (�) and bound-

ary (�) of the solid discretized by nodal points, interpolations of nodal values can be
used to approximate the three independent fields as indicated below:

σ̂ = S� s�; û = U� q�; û� = U� q�. (2)

In the preceding relations, s� represents the vector of nodal stress variables while
q� and q� are vectors of displacement nodal degrees of freedom. S�,U� and q�

are respectively the matrices collecting the approximation functions for stress and
displacement fields. Taking into consideration the approximated fields and imposing
the stationary condition to the functional given in Equation (1), the following system
of linear equations can be generated:⎡

⎢⎢⎣
F A� −A�

AT
� 0 0

−AT
� 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s�

q�

q�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e�

−Q�

−Q�

⎤
⎥⎥⎦ . (3)

The system matrix can be rearranged using the following sub-matrices:

F =
∫

�

ST
� f S� d�, (4a)

A� =
∫

�

(LS�)T U� d�, (4b)

A� =
∫

�t

(NS�)T U� d�, (4c)

e� =
∫

�u

(NS�)T u d�, (4d)

Q� =
∫

�

UT
�b d�, (4e)

Q� =
∫

�t

UT
� (t) d�. (4f)

In this work body forces (b) are not considered and the vector of displacements
u is prescribed as null on the boundary (�u) (then e� = Q� = 0).
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Fig. 1. Nodal clouds on domain and boundary nodes.

3 Bilinear Quadrilateral Elements with Nodal Enrichment

Consider a plain domain covered by a mesh of four nodes quadrilateral elements.
The covering mesh is employed to define (ω) clouds in the domain, Figure 1. The
boundary mesh is composed of linear elements connecting the nodes positioned on
the boundary. Each cloud on both the domain and boundary is then formed by the
elements sharing a common node. For those meshes composed of quadrangular ele-
ments, conventional bilinear Lagrangian functions are used as interpolating partition
of unity for both stresses and displacements fields in the domain. Linear partitions of
unit are used to interpolate displacements on boundary.

In order to provide enrichment to any approximation field attached to the nodes
of the covering mesh, polynomial functions hkj , k = 1, . . . , I (j) can be adopted in
the domain �. Here I (j) is the number of chosen functions at each node of index j .
The following GFEM approximation family then results:

�2
N = {{S�j }Nj=1 ∪ {S�j hkj }Nj=1 : j = 1, . . . , N; k = 1, . . . , I (j)}. (5)

For instance the enriched stress field can be constructed as:

σ̂ =
N∑

j=1

S�j

⎧⎨
⎩s�j +

I (j)∑
i=1

hij bij

⎫⎬
⎭ , (6)

where N is the total number of nodes in the domain, s�j are the stress degrees of
freedom associated with the original shape functions and bij are new nodal para-
meters introduced by each of the enrichment portions. With respect to the fields of
displacements in domain and boundary, analogous procedure can be used to generate
enriched approximations.

Thus, the interpolation matrices of the HSMF stress and displacement fields in
domain can be represented as:
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S�e = [φ1�1 φ2�2 φ3�3 φ4�4], (7)

U�e = [φ1�1 φ2�2 φ3�3 φ4�4], (8)

where φj , j = 1, . . . , 4 represents the Lagrangian bilinear functions connected to
node j . The interpolation matrix for the two nodes element employed on the bound-
ary mesh is given by:

U� = [ψ1��1 ψ2��2], (9)

where ψj� , j� = 1, 2 being the Lagrangian linear functions connected to node j� of
the element.

In Equation (7) through Equation (9), �j and ��j�
are named the polynomial

enrichment matrices attached respectively to node j of the domain and node j� of
the boundary element. Such matrices are given by:

�j = [I3 h1j I3 . . . hkj I3 . . . hi(j)j I3] (10)

when enrichment is over domain stress fields;

�j = [I2 h1j I2 . . . hkj I2 . . . hI (j)j I2] (11)

when enrichment is over domain displacements fields; and

��j�
= [I2 h1j� I2 . . . hkj� I2 . . . hI (j)j�

I2] (12)

when enrichment is over boundary displacements fields.
Clearly, if the functions hkj and hkj� are null the conventional structure of the

FEM is recovered. In this work the functions and are such that they are null in the
enriched nodes (“bubble like functions”). The advantage of this procedure is that the
original physical meaning of nodal degrees of freedom s�, q� and q� is preserved.

The forms selected for the bubbles functions hkj (later referred to as levels 2, 3
and 4 enrichment) and hkj� (later referred to as level 2 enrichment) are:

hkj = (Y − Yj )
2, (X − Xj)

2, (X − Xj)(Y − Yj )
2, . . . and hkj� = (ξ − ξj� )2, . . . ,

(13)
where Xj , Yj are dimensionless coordinates to the finite element in the domain cov-
ering mesh and ξj� is a dimensionless coordinate for the one-dimensional finite ele-
ment of the boundary covering mesh.

Obviously the set of approximating functions involved in the HMSF can be lim-
ited not only to polynomials but also extended to include customized functions. On
the other hand, with respect to the number of Gauss points necessary to carry out
a numerical integration of the enriched matrices of each quadrilateral element, the
following cases are distinguished:

• for the domain elements where the maximum degree of the hkj polynomials in a
direction is gap, gap + 2 Gauss points are necessary in each direction for integ-
rating while;

• for the boundary elements where the maximum degree of the hkj� polynomials
is gap� , the number of Gauss points necessary for integrating is gap� + 2;
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4 On the Conditions of Convergence of HMSF with GFEM
Spaces

A first step towards the study of the conditions of convergence of GFEM solutions
for the case of HMSF presented here is founded in the work of Zienkiewicz et al.
[11]. Initially a simple algebraic condition called Patch Test is suggested to ensure
solvability (non-singularity condition) of the discrete linear system. Then a numer-
ical study is proposed following the Babuška–Brezzi (inf-sup) sufficient condition to
solvability and convergence.

4.1 The Patch Test Applied to HMSF with GFEM

Taking into account the system of equations given by Equation (3), limited to the
case without enrichment and based on the proposal of Zienkiewicz et al. [11], the
following algebraic conditions are necessary for the existence of a solution:

s� ≥ q�, (14)

expressed in terms of degrees of freedom attached to domain patches and

s� ≥ q�, (15)

expressed in terms of degrees of freedom of stress and displacements on boundary
patches. Both conditions are essentially important to assure good properties to the
sub-matrices, A� and A� composed of the system given by Equation (3).

When enrichment is considered, the patch test is extended by including the new
set of degrees of freedom introduced at each node. Then, Equation (14) and Equa-
tion (15) become:

a� + bij ≥ q� + cmn, (16)

s� + bij ≥ q� + dkl, (17)

where cmn and dkl are the additional degrees of freedom introduced by displacement
enrichments in the domain and boundary respectively.

Now, analyzing the enrichment possibilities and considering the conditions ex-
pressed in formuae (16) and (17), it can be concluded initially that:

• Only stress field enrichment in the domain is unrestricted since both conditions
would always be satisfied;

• The simultaneous enrichment of stress and displacement fields in the domain is
also effective;

• Simultaneous enrichment of stress and displacement fields (in domain and
boundary) is allowed provided enrichment applies to those nodes in the domain
coincident with nodes of the enriched mesh on the boundary;
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• The previous conclusion can be extended to enrichment including stress fields in
the domain and displacements on the boundary;

• Enrichment restricted to displacement fields is ineffective since Equations (16)
and (17) would not be satisfied.

It is important to note once more that the patch test conditions are necessary but not
sufficient for solvability and consequently for the stability of the linear system.

4.2 Study of the Babuška–Brezzi (inf-sup) Condition Apllied to the HMSF
with GFEM

The Babuška–Brezzi or inf-sup condition [1, 3] is a necessary and sufficient condition
to ensure stability and convergence of any linear numerical approach supplied by the
MEF. Based on Babuška [2] and Chapelle and Bathe [4], a numerical verification of
this condition extended to GFEM in HMSF is presented here.

4.2.1 On the Well-Posedness of a Boundary Value Problem: The
Babuška–Brezzi (inf-sup) Condition

A boundary value problem (BVP) expressed in its variational form consists in finding
a solution u0 ∈ H1 such that:

B(u0, ν) = F(ν) ∀ν ∈ H2 (18)

for every continuous linear functional F in H2. Well-posedness of the problem is as-
sured if the following conditions are verified: Continuity of the bilinear form B(. . .)

and the Babuška–Brezzi (inf-sup) condition.

Continuity of the bilinear form

Let H1 and H2 be Hilbert spaces endowed with norms ‖·‖H1 and ‖·‖H2 respectively.
The bilinear form, B(·) : H1xH2 → R is continuous if for a given positive scalar
CB , the inequality below is valid:

|B(u, ν)| < CB‖u‖H1‖ν‖H2 ∀ u ∈ H1 and ν ∈ H2. (19)

The Babuška–Brezzi (inf-sup) condition

The class of problems governed by the addressed continuous bilinear form is well-
posed if:

inf
u �=0∈H1

sup
ν �=0∈H2

B(u, ν)

‖u‖H1 ‖ν‖H2

≥ λ > 0, (20)

sup
u∈H1

B(u, ν) > 0 ∀ ν �= 0 ∈ H2. (21)
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In the above equations, ν represents the space of test functions. Furthermore, by
definition:

H1 = H2 =
{
ν|ν ∈ L2(�); ∂νi

∂xj

∈ L2(�),

(i, j = 1, 2, 3); νi|�u = 0, (i = 1, 2, 3)

}
. (22)

Accordingly, any element ν in H2 must satisfy boundary conditions which are
homogeneous on �u. Moreover, ∫

�

(ν)2 d� < ∞, (23)

∫
�

(
∂νi

∂xj

)2

d� < ∞, i, j = 1, 2, 3. (24)

In fact, the preceding conditions are related to the existence of a solution to the
problem in question. Essentially, it can be demonstrated that the conditions given by
Equation (20) and Equation (21) are necessary and sufficient to ensure the existence
and uniqueness of the BVP solution.

Once the original problem is well-posed, the performance of the formulation
using finite elements is dependent on the choice of n-dimensional linear subspaces
Sn

1 ⊂ H1 and Sn
2 ⊂ H2 defined as:

sn
1 = sn

2 (25)

=
{
νn|νn ∈ L2(�); ∂νni

∂xj

∈ L2(�), (i, j = 1, 2, 3); νni |�u = 0, (i = 1, 2, 3)

}
.

Usually, νu is a polynomial function of degree n. As a rule, it is assumed that
there are νk ∈ Sk such that the sequence νk(k = 1, 2, . . .) converges to u0.

The partition of unity features used in the approximation spaces, Sn
1 and Sn

2 ,
ensures continuity of the bilinear form involved in HMSF and also the verification
of Equation (21). Hence, the Babuška–Brezzi (inf-sup) condition is the main focus
of what follows.

Assuming that B(u, ν) satisfies Equation (19), the discrete form of Equation (21)
can be written as:

inf
u �=0∈sn

1

sup
ν �=0∈Sn

2

B(un, νn)

‖un‖H1‖νn‖H2

≥ λ(n) > 0. (26)

It can be perceived that λ(n) now depends on the dimension of the approximation
spaces. However, if the problem is well-posed, convergence to a value λ0 should
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be verified provided mesh refinement or enrichment of the approximation space is
carried out.

Let then u0 ∈ H1 be the exact solution derived from the strong formulation, for
instance, and un ∈ Sn

1 a numerical estimate. Then, since the exact solution is also a
solution for the weak form, both conditions below are valid:

B(u0, ν) = F(ν), ∀ν ∈ H2, (27)

B(un, νn) = F(νn), ∀νn ∈ Sn
2 . (28)

Subtracting Equation (27) from Equation (28) and using the continuity property
of the bilinear form, we have:

‖u0 − un‖h1 ≤
(

1 + CB

λ(n)

)
inf

χ∈Sn
1

‖u0 − χ‖H1 . (29)

Hence, if the inequality Equation (26) is satisfied one can conclude that conver-
gence and unicity of the numerical solution is also ensured. In practical terms, in
a first stage, the solution exists if the Babuška–Brezzi condition gives (λ(n) > 0)

for a certain approach. In a second stage, by considering successively more refined
approaches, the result λ(n) → λ0 confirms convergence and unicity.

Numerical determination of λ(n)

Babuška [2] presents a mathematical development showing that the determination of
λ(n) is equivalent to finding the square root of the nonzero smallest eigenvalue of
the following generalized eigenvalue problem:

BT A−1
2 Bx = µA1x. (30)

In the above relation, B can be obtained from

B(un, νn) = vTBu, (31)

while v and u are vectors with components un ∈ Sn
1 and νn ∈ Sn

2 . Finally, A1 and A2
are symmetric and positive-definite matrices associated to the norms:

‖u‖2
H1

= uTA1u; ‖ν‖2
H2

= vTA2v. (32)

The inf-sup test applied to HMSF with GFEM

In the present work, we extend the numerical inf-sup test to a hybrid mixed formu-
lation. An important aspect of this is the identification of all matrices involved in
Equation (30).

Consider then the governing equations of the HMSF derived from the stationary
condition of the variational principle expressed by Equation (1):
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�

δσT f σ d� +
∫

�

uT (Lδσ) d� −
∫

�t

uT
�(Nδσ) d� =

∫
�u

uT (Nδσ) d�, (33)

∫
�

δuT (Lσ) d� = −
∫

�

δuT b d�, (34)∫
�t

δuT (Nσ) d� =
∫

�t

δut t d�. (35)

It follows that the bilinear form B(. . .) and the linear form F(·) can be written as:

B(U,V ) =
∫

�

δσT f σ d� +
∫

�

uT (Lδσ) d� −
∫

�t

uT
� (Nδσ) d�

+
∫

�

δuT (Lσ) d� +
∫

�t

δuT (Nσ) d�, (36)

F(V ) =
∫

�u

uT (Nδσ) d� −
∫

�

δuT b d� +
∫

�t

δuT t d�. (37)

It can be assumed [10] that the spaces U = (σ, u, u�) and V = (δσ, δu, δu�) can be
defined in XxY as:

X = {(σ, u, u�) : σ ∈ H1; σ, u, u� ∈ L2(�)}, (38)

Y = {(δσ, δu, δu�) : δσ ∈ H1; δσ, δu, δu� ∈ L2(�)}. (39)

Furthermore, the space U is endowed with the norm:

‖U‖2
x = ‖(σ, u, u�)‖2

x

=
∫

�

σ 2 d� +
∫

�

(Lσ)2 d� +
∫

�

u2 d� +
∫

�t

u2
� d�. (40)

Finally, from Equations (36) and (37), all matrices in Equation (30) can be de-
rived.

5 Inf-sup Test: Numerical Results

Here the methodology of the inf-sup test is now applied considering the problem
depicted in Figure 2. For reasons of simplification, no units for the elastic parameters
and dimensions are adopted in both problems. Furthermore, the Young’s modulus
and Poisson’s coefficient are assumed to be respectively: E = 1000 and ν = 0.3.

The problem considers a 5 units side square plate and stressed by a uniformly dis-
tributed force of p = 10 units applied along its length. Essential boundary conditions
are imposed over the left vertical side by constraining the plane displacement com-
ponents (ux = 0 and uy = 0). Essential boundary conditions are also imposed over
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Fig. 2. Uniformly tensioned plate.

the upper and lower horizontal sides by constraining the displacements in direction
y(uy = 0). The reference value of the strain energy in this problem is: 1.14.

The inf-sup test was applied to the HMSF by considering sequences of regular
quadrilateral element meshes indicated as (1× 1), (2× 2), (4× 4), (8×8) and (16×
16). The numbers in the preceding nomenclature represent the amount of regular di-
visions in the x ey directions respectively. Polynomials as indicated by Equation (13)
were often adopted as enrichment functions for the stress and displacement fields in
the domain and displacement field on the boundary.

For each mesh, the value of λ(n) was computed from the square root of the smal-
lest eigenvalue determined on solving Equation (30). The results were then plotted
on a log(λ(n)) − log(1/N), (N is the total number of degrees of freedom) scale.
The inf-sup test was considered to be satisfied if the (log(1/N) − log(λ(n))) curve
showed an asymptotic behavior towards positive values.

5.1 Numerical Results

The results of the inf-sup test applied to the sets of quadrilateral element meshes
without enrichment are presented in Figure 3.

Even though the inf-sup condition is not satisfied, we note that the patch test is
verified and there is convergence in terms of strain energy.

With the enrichment restricted to the stress field in all nodes in domain, one can
conclude that the quadrilateral element satisfies the inf-sup test, see Figure 4. This
test confirms the results predicted by the patch-test. Another conclusion derived from
the control of ‘spurious modes’ is that enrichment of the stress field eliminates such
modes, improving the solvability of the problem.
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Fig. 3. Results for regular meshes without enrichment.

Fig. 4. Results for regular meshes with enrichment of the stress field in the domain.

Figure 5 shows results obtained by adopting selective polynomial enrichments
over the stress field. It can be concluded that the number of enriched nodes, compared
to the total number of nodes, affects the inf-sup test results. In fact, the responses for
few enriched nodes are more comparable to the situation without enrichment.

The quadrilateral element with simultaneous enrichment of the domain fields
satisfies the inf-sup test as illustrated in Figure 6. Spurious displacement modes are
still present but not affecting solvability and convergence aspects.

In Figure 7 two other possibilities of enrichment satisfying the patch test are
presented. Enrichment limited to displacement field at all nodes of the domain is not
recommended (patch test fails). The enrichment of the boundary displacement field
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Fig. 5. Results for regular meshes with selective stress polynomial enrichment.

Fig. 6. Results for enrichment of the stress and displacement fields in the domain.

is effective if supplemented by enrichment of the stress fields. In such a case the
patch test is verified.

Although the inf-sup test fails, the convergence strain energy is verified when the
displacement field in the domain is enriched.
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Fig. 7. Results for enrichments of displacements field in the domain or displacements on the
boundary accompanied by enrichment over the stress field.

6 Conclusions

A study on the effectiveness of the Generalized Finite Element approximation spaces
in the context of Hybrid Mixed Stress Formulation problems was conducted. The
basic purpose was to discern appropriate enrichment combinations among multiple
possibilities involving the three independent fields involved in the formulation. The
issues of solvability and stability were then addressed by suggesting a patch test and
by carrying out numerically the inf-sup test. Polynomial functions were selected as
enrichment alternatives over regular clouds formed by quadrilateral and triangular
elements.

The conclusion that the inf-sup test confirms the efficacy of the patch test as a
necessary but not sufficient condition for solvability, at least in the sort of HMSF
problems analyzed, is highlighted. For instance, in spite of the fact that the patch test
was verified considering the basic case of partition of unity without enrichment, the
inf-sup test was able to identify cinematic spurious modes and for this reason was not
satisfied. Furthermore, in all situations of enrichment imposed over the basic fields
wherein the patch test was not verified, the inf-sup test was not satisfied as well.

In essence, in the framework of HMSF, the enrichment over the stress field is
always effective. However, enrichments over approximations for displacements in
the domain and displacements on boundary always introduce spurious modes. This
can be effective only if accompanied by stress field enrichment.
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Abstract. Stability analyses of Lagrangian and Semi-Lagrangian Reproducing Kernel (RK)
approximations for nonlinear solid mechanics are performed. It is shown that the semi-
Lagrangian RK discretization yields a convective term resulting from the non-conservative
coverage of material points under the kernel support. The von Neumann stability analysis
shows that the discrete equations of both Lagrangian and semi-Lagrangian discretizations are
stable when they are integrated using stabilized conforming nodal integration. On the other
hand, integrating the semi-Lagrangian discretization with a direct nodal integration yields an
unstable discrete system which resembles the tensile instability in SPH. Under the framework
of semi-Lagrangian discretization, it is shown that the inclusion of convective term yields a
more stable discrete system compared to the semi-Lagrangian discretization without convect-
ive term as was the case in SPH.

Key words: Semi-Lagrangian, reproducing kernel, nodal integration, meshfree method, large
deformation.

1 Introduction

Particle and meshfree methods offer considerable advantages over the finite ele-
ment method in modeling large deformation solid mechanics problems, where mesh
entanglement difficulty in the finite element method can be considerably reduced.
Smoothed Particle Hydrodynamics (SPH), originally introduced for astrophysics
[12, 15] has been extended to model large deformation problems in solids [16, 19].
SPH method, however, exhibits tensile instability [3, 17, 20]. This tension instabil-
ity has been corrected by the employment of Lagrangian kernel under the frame-
work of reproducing kernel particle method (RKPM) [5, 6]. The Lagrangian kernel
based RKPM has been applied to path-independent hyperelasticity [4, 6, 11] and
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path-dependent plasticity [5–8] large deformation problems. The Lagrangian kernel
based meshfree methods in nonlinear solid mechanics, however, have their inherent
difficulty due to the regularity requirement of the deformation gradient needed for
inverse mapping from deformed configuration to undeformed configuration. A semi-
Lagrangian formulation under the framework of reproducing kernel particle method
is proposed herein for extremely large deformation solid mechanics problems. Semi-
Lagrangian discretization defines kernel function distance measure in the deformed
configuration and thus avoids the need for inverse mapping from deformed to unde-
formed configurations.

The main difference between Lagrangian kernel and semi-Lagrangian kernel is
due to the definition of distance measure between point of evaluation and discrete
points. The Lagrangian kernel defined at the material discrete points yields vanish-
ing material time derivative of the Lagrangian kernel. On the other hand, material
time derivative of the semi-Lagrangian kernel does not vanish due to the advection
of materials covered under the kernel support during material deformation. Con-
sequently, nodal mass is not conservative when a continuum is discretized by the
semi-Lagrangian kernel, and an additional convective term appears in the conserva-
tion laws. Note that SPH is semi-Lagrangian in nature, but it was formulated without
considering the above mentioned non-conservative nodal mass and the convective
effect in the conservation laws.

Two types of instabilities have been discussed in meshfree literatures: the tensile
instability and the rank instability. The tensile instability in SPH has been analyzed
by Swegle et al. [20]. Stability analysis of element free Galerkin (EFG) method us-
ing Lagrangian and Eulerian kernels has been conducted [1, 2] and the method has
been applied to problems with moderate deformations [18]. Belytschko and Xiao
[1] showed that tensile instability can be resolved by using a Lagrangian kernel [6].
Other remedies for tensile instability in SPH such as the conservative smoothing ap-
proach by Guenther et al. [22] and Swegle et al. [23], the stress point approach by
Dyka and Ingel [21], and an artificial stress approach by Monaghan [17] have been
proposed. The rank instability due to direct nodal integration (DNI) has been pointed
out by Chen et al. [9, 10] and a stabilized conforming nodal integration (SCNI) has
been proposed.

In this work, stability analysis of Lagrangian and semi-Lagrangian Galerkin
meshfree formulations will be performed. The effects of domain integration using
direct nodal integration and stabilized conforming nodal integration on numerical
stability will also be analyzed. The remaining of the paper is arranged as follows. An
overview of Lagrangian discretization using reproducing kernel (RK) approximation
is given in Section 2. In Section 3, the semi-Lagrangian kernel and the corresponding
RK shape functions are presented, and the semi-Lagrangian discretizations of equa-
tion of motion are derived. The convective effect resulting from the non-conservative
nature of semi-Lagrangian kernel is also identified. Von Neumann stability analyses
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of Lagrangian and semi-Lagrangian discrete equations integrated by SCNI and DNI
are carried out in Section 4. Conclusion remarks are given in Section 5.

2 Lagrangian Reproducing Kernel Discretization

2.1 Reproducing Kernel (RK) Approximation

Let the problem domain � be discretized into a set of NP points {x1, x2, . . . , xNP },
where xI is the location of node I and NP denotes the total number of points. The
variable, for example, displacement ui(x) in solid mechanics, is approximated by:

uh
i (x) =

NP∑
I=1

�I(x)diI , (1)

where uh
i (x) is the approximation of ui(x), and �I and diI are the shape functions

and their associated coefficients, respectively. Under the framework of reproducing
kernel approximation, the shape function �I(x) is expressed as:

�I (x) = ( n∑
i+j=0

(x1 − x1I )
i (x2 − x2I )

i bij (x)
)
φa(x − xI ), (2)

where φa(x − xI ) is a kernel function that defines the smoothness and locality of
the approximation with a compact support a, which is the radius of the support. The
unknown coefficients b(x) in Equation (2) are obtained by enforcing the following
nth order reproducing conditions:

NP∑
I=1

�I(x) xα
1I x

β
2I = xα

1 x
β
2 , α + β = 0, 1, 2, . . . , n. (3)

Upon solving bij (x) from Equation (3), the shape functions are obtained:

�I(x) = HT (0)M−1(x)H(x − xI )φa(x − xI ), (4)

where

HT (x−xI ) = [1 x1−x1I x2−x2I (x1−x1I )
2 . . . . . . (x2−x2I )

n], (5)

M(x) =
NP∑
I=1

H(x − xI )H
T (x − xI )φa(x − xI ). (6)
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2.2 Lagrangian Description and Discretization of Equation of Motion

In solid mechanics large deformation problems, material motion from undeformed
(initial) domain �X to deformed (current) domain �x has to be defined. Consider
a material particle originally located at X in the undeformed domain �X . Under
certain action this material particle is moved to x at time t in the deformed do-
main �x . The motion of the material particle X is described by a mapping function
x = ϕ(X, t), and u(X, t) = x(X, t) − X is the displacement vector associated with
material particle originally positioned at X. In Lagrangian description, the weak form
of equation of motion expressed in the undeformed domain �X is expressed as:∫

�X

δuiρ
0 üi d� +

∫
�X

δFijPji d� =
∫

�X

δuib
0
i d� +

∫
	h

X

δuih
0
i d	, (7)

where Fij = ∂xi/∂Xj is the deformation gradient, Pij is the first Piola–Kirchhoff
stress which in general is a function of Fij and its rate, J is the determinant of the
deformation gradient, ρ0 is the initial density, b0

i is the body force defined in the
undeformed domain �X, and h0

i is the surface traction mapped onto the undeformed
traction (natural) boundary 	h

X .
In the Lagrangian discretization, the reproducing kernel approximation of mater-

ial displacements is expressed as [5, 6]:

uh
i (X, t) =

NP∑
I=1

�X
I (X)diI (t), (8)

where X is the material coordinate defined in the undeformed domain (configura-
tion). Based on RK approximation, the Lagrangian shape function is expressed as

�X
I (X) = HT (0)M−1(X)H(X − XI )φa(X − XI ), (9)

where the basis functions are defined as

HT (X − XI ) = [1 X1 − X1I X2 − X2I . . . (X2 − X2I )
N ] (10)

and the moment matrix is computed by

M(X) =
NP∑
I=1

H(X − XI )H
T (X − XI )φa(X − XI ). (11)

An example of kernel function is

φa(z) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 − 4z2 + 4z3 0 ≤ z ≤ 1

2

4
3 − 4z + 4z2 − 4

3z3 1
2 < z ≤ 1 z = ‖X−XI ‖

a

0 z > 1.

(12)
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Fig. 1. Representative integration domain for SCNI.

The shape functions �X
I (X) formulated using material coordinate X in the unde-

formed domain �X are called the Lagrangian shape functions.
A stabilized conforming nodal integration (SCNI) [9] has been introduced for

the integration of weak form to achieve computational efficiency and stability. Lin-
ear exactness in the Galerkin approximation requires (1) first order completeness of
the trial and test functions, and (2) a domain integration that satisfies integration con-
straints. To meet integration constraints for nodal integration of Equation (7) using
the deformation gradient as the primary kinematic variable, a smoothing of deforma-
tion gradient at a nodal point with material coordinate XL has been considered [10]:

F̄ij (XL) = 1

AL

∫
�L

Fij d� = 1

AL

∫
�L

∂ui

∂Xj

d� + δij , AL =
∫

�L

d�, (13)

where �L is the nodal representative domain of XL in the undeformed configuration
as shown in Figure 1. Applying the divergence theorem at the undeformed configur-
ation yields

F̄ij (XL) = 1

AL

∫
	L

uiNj d	 + δij = ēij (XL) + δij , (14)

where

ēij (XL) = 1

AL

∫
	L

uiNj d	. (15)

In Equation (15), 	L is the boundary of �L as shown in Figure 1, and Ni is the
surface normal of 	L. Generally, a Voronoi diagram is employed to generate the
representative domain. Introducing a Lagrangian shape function into Equation (15)
yields
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ēij (XL) =
∑

I

b̄L
jI diI , (16)

where

b̄L
iI = 1

AL

∫
	L

�X
I Ni d	. (17)

It has been shown that by introducing linear basis functions in material coordinate
in the reproducing kernel approximation (Equations (9)–(11)), and by employing the
above smoothed deformation gradient (Equations (14)–(17)) in the static Lagrangian
equilibrium equation integrated by nodal integration, exact solution can be obtained
in large deformation problems with homogeneous constant deformation field [10],
which is the large deformation version of linear patch test. The corresponding dis-
crete equation of Equation (7) is:

Mü = fext − fint, (18)

where
MIJ =

∑
L

ρ0�
X
I (XL)�X

J (XL)IAL, (19)

fext
I =

∑
K

�X
I (X̂K)h0(X̂K)WK +

∑
L

�X
I (XL)b0(XL)AL, (20)

fint
I =

∑
L

B̄T
I (XL)P(XL)AL, (21)

B̄I (XL) =

⎡
⎢⎢⎢⎢⎣

b̄L
1I 0

0 b̄L
2I

b̄L
2I 0

0 b̄L
1I

⎤
⎥⎥⎥⎥⎦ , P(XL) =

⎡
⎢⎢⎢⎢⎣

P11(XL)

P22(XL)

P12(XL)

P21(XL)

⎤
⎥⎥⎥⎥⎦ , (22)

b̄L
iI = 1

AL

∫
	L

�X
I Ni d	, AL =

∫
�L

d�, (23)

where XL and AL are the nodal point position and the corresponding weight asso-
ciated with domain integration in the undeformed domain �X, X̂K , and WK are the
nodal point position and weight associated with boundary integration on the unde-
formed natural boundary 	h

X , and 	L and Ni are the boundary and surface normal of
the nodal representative domain �L in the undeformed configuration. Note that the
area of nodal representative domain AL is used as the weight of nodal integration.

3 Semi-Lagrangian Reproducing Kernel Discretization

3.1 Semi-Lagrangian RK Shape Function

For problems involving path-dependent materials such as materials deformed in
plastic deformation, the internal energy is expressed as
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∫
�X

∂δui

∂Xk

Pki d� =
∫

�X

∂δui

∂Xk

F−1
kj σij J d�, (24)

where σij is Cauchy stress. Cauchy stress calculation requires the spatial derivative of
displacements approximated by Lagrangian shape functions, and thus the following
chain rule is employed:

∂�X
I (X)

∂xi

= ∂�X
I (X)

∂Xj

∂X

∂xi

= ∂�X
I (X)

∂Xj

F−1
ji , (25)

where F−1 is obtained by taking a direct inverse of F.
It is clear that this Lagrangian formulation in Equations (24) and (25) breaks

down when the mapping x = ϕ(X, t) or the inverse mapping X = ϕ−1(x, t) is no
longer regular (one-to-one). This happens in problems involve situations such as new
free surface formation in damage evolution or free surface closure that commonly ex-
ists in materials processing, earth moving, and penetration processes. To circumvent
this difficulty, a semi-Lagrangian discretization is proposed.

As has been mentioned, the distance measure, z = ‖X − XI‖/a for Lagrangian
kernel φa(z) is defined in the undeformed configuration. Therefore, the kernel sup-
port covers the same set of material particles before and after deformation in the Lag-
rangian discretization. Similar to the Lagrangian discretization, in semi-Lagrangian
discretization the discrete meshfree points follow the material motion, however, the
distance measure z = ‖x − x(XI , t)‖/a in the semi-Lagrangian kernel φa(z) is
defined in the deformed configuration. Under this definition, the material particles
covered under the kernel support vary during material deformation. These two dif-
ferent kernel functions are compared as follows:

φa(z) :
{

Lagrangian kernel: z = ‖X − XI‖/a,

Semi-Lagrangian kernel: z = ‖x − x(XI , t)‖/a.
(26)

Figure 2 schematically compares kernel supports in Lagrangian and semi-Lagrangian
kernels.

As shown in Figure 2, Lagrangian kernel deforms with the material, and the
kernel support covers the same group of material particles at all time. For the semi-
Lagrangian kernel, in general, material particles can move in and out of the kernel
support during the deformation processes.

In semi-Lagrangian discretization, the discrete points follow the material motion,
i.e., xI = x(XI , t), whereas the approximation is formulated in the current configur-
ation in the following form

ui(x, t) =
NP∑
I=1

�I (x)diI (t), (27)
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Fig. 2. Comparison of Lagrangian and semi-Lagrangian kernels.

where the semi-Lagrangian shape function ψI (x) is constructed based on (i) the cur-
rent position of material points and (ii) basis functions defined in the current config-
uration as follows

�I(x) =
n∑

i+j=0

[(x1 − x1(XI , t))
i (x2 − x2(XI , t))

j bij (x)]φa(x − x(XI , t)). (28)

The coefficients bij (x) are constructed by imposing the following semi-Lagrangian
reproducing conditions

NP∑
I=1

�I (x)x1(XI , t)
i x2(XI , t)

j = xi
1x

j

2 , i + j = 0, 1, 2, . . . , n . (29)

Solving bij (x) from Equation (29) yields the following semi-Lagrangian shape func-
tion:

�I (x) = C(x; x − x(XI , t))φa(x − x(XI , t)), (30)

where
C(x; x − x(XI , t)) = HT (0)M−1(x)H(x − x(XI , t)), (31)
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M(x) =
NP∑
I=1

H(x − x(XI , t))H
T (x − x(XI , t))φa(x − x(XI , t)), (32)

HT (x − x(XI , t)) = [1 x1 −x1(XI , t) x2 −x2(XI , t) . . . (x2 −x2(XI , t))
n].

(33)

3.2 Material Time Derivatives

The difference between Lagrangian and semi-Lagrangian approximations can be ob-
served in the material time derivative of Lagrangian and semi-Lagrangian kernels:

1. Lagrangian kernel: φ̇a

(‖X − XI‖
a

)
= 0 (34)

2. Semi-Lagrangian kernel: φ̇a

(‖x − x(XI , t)‖
a

)
(35)

= φ′
a

(‖x − x(XI , t)‖
a

)
n · (v − vI )

a
,

where

(˙) = ∂( )

∂t

∣∣∣∣[X]
is the material time derivative, and

n = x − x(XI , t)

‖x − x(XI , t)‖ . (36)

The term n · (v − vI ) in Equation (35) is the projection of relative velocity between
point of evaluation (x) and grid point (x(XI , t)) onto the kernel support radial dir-
ection centered at x(XI , t), and it represents the relative motion between the neigh-
boring material x and the kernel support center point x(XI , t) as shown in Figure 3.
Positive value of n · (v − vI ) indicates x moving away from x(XI , t), and negative
value of n · (v − vI ) indicates x moving towards x(XI , t).

3.3 Semi-Lagrangian Discrete Equation of Motion

The semi-Lagrangian discrete equation of motion is obtained by employing the fol-
lowing weak form of equation of motion expressed in the deformed domain �x :∫

�x

δu(i,j)σij d� +
∫

�x

δuiρüi d� =
∫

�x

δuibi d� +
∫

	h
x

δuihi d	, (37)

where σij is the Cauchy stress, u(i,j) = (∂ui/∂xj + ∂uj/∂xi)/2, ρ is the density at
the current state, bi is the body force defined in the deformed domain �x , and hi is
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Fig. 3. Relative motion between neighboring material x and kernel support center point xI =
x(XI , t).

the surface traction defined on the deformed traction boundary 	h
x . Let the velocity

νi be approximated by semi-Lagrangian shape functions,

νh
i (x, t) =

NP∑
I=1

�I (x)νiI (t). (38)

The corresponding semi-Lagrangian approximation of acceleration is given as

üh
i (x, t) = ν̇h

i (x, t) =
NP∑
I=1

(�I (x)ν̇iI (t) + �∗
I (x)νiI (t)), (39)

where �∗
I (x) is the correction due to time rate of the semi-Lagrangian kernel φ̇a

�∗
I (x) = C(x; x − x(XI , t))φ̇a(x − x(XI , t)). (40)

Substituting Equations (38) and (39) into formula (37), and considering strain
smoothing of u(i,j) with similar procedures discussed in Section 2, the following
discrete equation is obtained

Mv̇ + Nv = fext − fint, (41)

where
MIJ =

∑
L

ρ(x(XL, t))�I (x(XL, t))�J (x(XL, t))IaL, (42)

NIJ =
∑
L

ρ(x(XL, t))�I (x(XL, t))�∗
J (x(XL, t))IaL, (43)
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fext
I =

∑
K

�I(x(X̂K, t))h(x(X̂K, t))wk +
∑
L

�I (x(XL, t))b(x(XL, t))aL (44)

fint
I =

∑
L

B̄T
I (x(XL, t))�(x(XL, t))aL, (45)

B̄I (x(XL, t) =
⎡
⎢⎣

b̄L
1I 0

0 b̄L
2I

b̄L
2I b̄L

1I

⎤
⎥⎦ �(x(XL, t) =

⎡
⎢⎣

σ11(x(XL, t))

σ22(x(XL, t))

σ12(x(XL, t))

⎤
⎥⎦ , (46)

b̄L
iI = 1

aL

∫
γL

�Ini d	 aL =
∫

ωL

d�, (47)

where x(XL, t) and aL are the nodal point position and the corresponding weight as-
sociated with domain integration in the deformed domain �x , respectively, x(X̂K, t)

and wk are the nodal point position and weight associated with boundary integration
on the deformed natural boundary 	h

x , respectively, and γL and ni are the boundary
and surface normal of the nodal representative domain ωL in the deformed config-
uration, respectively. The second term on the left hand side of Equation (41) is a
convective term resulting from the material time derivative of the semi-Lagrangian
kernel function.

4 Stability Analysis of Lagrangian and Semi-Lagrangian Discrete
Equations

Von Neumann stability analyses of Lagrangian and semi-Lagrangian discrete equa-
tions are presented in this section. The following notations are used in stability ana-
lysis:

C(h) = C(xI ; xI+1 − xI ) φa(h) = φa(xI+1 − xI )

C(h/2) = C(xI ; xI+1/2 − xI ) φa(h/2) = φa(xI+1/2 − xI )

�I (0) = �I (xI ) �I (h) = �I (xI+1)

�I,x(h) = �I,x(xI+1) �I,xx(h) = �I,xx(xI+1).

where h = �x is the constant nodal spacing.

4.1 Lagrangian Discrete Equation of Motion Integrated by SCNI

The Lagrangian discrete equation of motion in one-dimension can be expressed as:

Mü = fext − fint, (48)

where
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F int
I =

∫
�x

�X
I (X),X P d�, (49)

F ext
I =

∫
�x

�X
I (X)b0 d� + �X

I (X)h0
∣∣∣∣
	h

X

. (50)

By employing SCNI, Equation (49) can be written as

f int
I =

NP∑
L=I

b̄L
I P (XL)AL, (51)

where b̄L
I is the smoothed gradient:

b̄L
I = 1

AL

[
�X

I (X+
L ) − �X

I (X−
L )

]
. (52)

In one-dimension, AL is the length of nodal representative domain �L = ]X−
L ,X+

L [
for node L, and X+

L and X−
L are the two end points of �L. The first Piola–Kirchhoff

stress P is defined as:
P = SF. (53)

Here S is the second Piola–Kirchhoff stress obtained by

�S = CSE�E (54)

and the Green strain E is given as

E = 1

2
(F 2 − 1). (55)

Further considering lumped mass, the Lagrangian discrete equation of motion at a
node I can be written as

mI üI = f ext
I − f int

I no summation on I . (56)

Assuming small perturbation in displacement, the perturbation equation of Equa-
tion (56) reads [2]:

mI
¨̃uI = −f̃ int

I . (57)

From Equation (51), we have

f̃ int
I =

NP∑
L=1

b̄L
I P̃ (XL)AL. (58)

The perturbation of the first Piola–Kirchhoff stress is
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P̃ (XL) = (CSEF 2 + S)f̃L, (59)

where

f̃L = ∂ũ

∂X

∣∣∣∣
L

=
NP∑
I=1

b̄L
I ũI . (60)

Consider uniform particle distribution in an infinite domain, Equation (57) can be
written as

¨̃uI = −CSEF 2 + S

ρ0

m∑
K=−m

[
b̄I+K

I

m∑
J=−m

b̄I−J
I ũI+J+K

]
, (61)

where m = int(R + 0.5) is an integer determined by the normalized support size R

(support size divided by nodal distance).
For plane wave, the perturbed displacement takes the form as

ũI = geikI�x=iωt , (62)

where g is the amplitude of the perturbation, k is the wave number, ω is the frequency,
and �x = h is the nodal spacing. Accordingly, the stability criterion is ω should be
real. Substituting Equation (62) into Equation (61) yields:

ω2 = CSEF 2 + S

ρ0

2m+1∑
K=1

[
b̂K

2m+1∑
L=1

b̂L cos(K − L)kh

]
, (63)

where
b̂K = b̄I+K−m−1

I . (64)

Note that since uniform nodal spacing and infinite domain is considered, the index I
is ignored in Equation (63) for notational simplicity. The frequency relations based
on Equation (63) are shown in Figure 4 for various normalized support sizes, and
c2 = (CSEF 2 + S)/ρ0. It is observed that the frequency is very close to zero near
the cut-off point (kh = π) for the case with very large support size (R = 3.5). This
implies that the stiffness matrix becomes more linearly dependent and ill conditioned
when very large support size is used and this should be avoided.

4.2 Stability of Semi-Lagrangian Discrete Equation

In one-dimension, with the employment of lumped mass and nodal integration, the
discrete equation of motion by the semi-Lagrangian approximation can be written
as:

mI ν̇I +
NP∑
J=I

NIJ νJ = f ext
I − f int

I no summation on I , (65)
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Fig. 4. Frequency characteristic of Lagrangian RK discretization with SCNI.

where

NIJ =
NP∑
K=1

ρ(xK)�I (xK)�∗
J (xK)aK, (66)

f int
I =

NP∑
K=1

B̄I (xK)σ(xK)aK, (67)

�∗
I (xK) = C(xK ; xK − xI )φ̇a(xK − xI ), (68)

σ(xK) = Cσ ε(xK) = Cσ
NP∑
J=1

B̄J (xK)uJ , (69)

φ̇a(xK − xI ) = φ′
a(xK − xI )

nIK(νK − νI )

a
, (70)

nIK = xK − xI

|xK − xI | . (71)

Here aK is the length of nodal representative domain of node K, xK = x(XK, t)

is the current position of material point XK , and Cσ is the material modulus. Note
that B̄I (xK) is the gradient of shape function which takes the smoothed form (Equa-
tion (46)) if SCNI is used, and B̄I (xK) = �I,x(xK) if a direct nodal integration
(DNI) is employed.
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4.2.1 Semi-Lagrangian Weak Form Integrated by Stabilized Conforming
Nodal Integration (SCNI)

When SCNI is employed for domain integration, the smoothed shape function gradi-
ent following Equation (46) is

B̄I (xK) = B̄K
I = 1

aK

[
�I(x

+
K) − �I (x

−
K)

]
. (72)

In one-dimension, aK is the length of nodal representative domain �K =]x−
K, x+

K [
for node K , and x+

K and x−
K are the two end points of �K . Under the assumption of

small perturbation in displacement and velocity, the perturbation in nodal mass can
be neglected, therefore, the perturbed equation corresponding to Equation (65) can
be written as

mI
˙̃νI +

NP∑
J=1

ÑIJ νJ +
NP∑
J=1

NIJ ν̃J = −f̃ int
I . (73)

It can be shown that Equation (73) can be expressed explicitly as

mI
˙̃νI +

NP∑
J=1

(
NP∑
K=1

mK�̃I (xK)�∗
J (xK)

)
νJ +

NP∑
J=1

(
NP∑
K=1

mK�I(xK)�∗
J (xK)

)
ν̃J

+
NP∑
K=1

˜̄BI (xK)σ(xK)aK +
NP∑
K=1

B̄I (xK)σ̃ (xK)aK +
NP∑
K=1

B̄I (xK)σK ãK = 0.(74)

The perturbed quantities such as �̃I (xK), σ̃ (xK), and ˜̄BI (xK) can be obtained ac-
cording to their definitions. For moderate normalized support size 1 < R < 2, by
approximating νI+1 = νI + Q�x, where

Q = ∂ν

∂x

∣∣∣∣
x=xI

,

and ν̃ = ˙̃uI , Equation (74) can be rewritten as

¨̃uI − 2Q2[C(h)φ′
a(h)]2

R2
(ũI+1 − 2ũI + ũI−1)

+ QC(h)φ′
a(h)

R

[
�I (0)(−˙̃uI+1 + ˙̃uI−1) + �I (h)(−˙̃uI+2 + ˙̃uI−2)

]
+ (Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(−ũI+2 + 2ũI − ũI−2) = 0. (75)

Substituting Equation (62) into Equation (75) leads to
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ω2 − 4Q2 [C(h)φ′
a(h)]2

R2
(1 − cos kh)

− 2Qω
C(h)φ′

a(h)

R
[�I(0) sin kh + �I (h) sin 2kh]

− 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1 − cos 2kh) = 0. (76)

Rewrite Equation (76) as
ω2 + Bω + C = 0, (77)

where

B = −2Q
C(h)φ′

a(h)

R
[�I(0) sin kh + �I (h) sin 2kh]

C = −4Q2 [C(h)φ′
a(h)]2

R2 (1 − cos kh)

− 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1 − cos 2kh). (78)

Define a frequency characteristic parameter D(ω) as

D(ω) = B2 − 4C. (79)

It is observed that if D(ω) ≥ 0, real solution for ω is obtained and the discrete system
is stable. Note that D(ω) ≥ 0 is satisfied as long as Cσ + σ ≥ 0, where Cσ + σ

represents the tangent modulus including geometric nonlinearity effect. Therefore,
under semi-Lagrangian discretization with SCNI, the sufficient condition for stability
is when the tangent modulus is positive (Cσ +σ ≥ 0). This stability condition for the
semi-Lagrangian discrete system integrated by SCNI is consistent with the stability
condition of a continuum.

Note that the sign of the velocity gradient Q does not affect the stability in semi-
Lagrangian discretization with SCNI, hence only a non-negative velocity gradient is
considered in the following study of the behavior of D(ω). Consider a discretization
with uniform particle distribution, normalized support size R = 1.5, small velocity
gradient 0 ≤ Q ≤ 2, and Cσ is assumed positive.

Figure 5 demonstrates frequency characteristic parameter D(ω) = B2 − 4C for
the case where the continuum system is stable (Cσ +σ > 0). It can be observed from
Figure 5 that in the cases when (Cσ + σ > 0) the frequency is real (D(ω) ≥ 0) for
all wavelengths, representing a stable discrete system compatible with the continuum
system. Figure 6 displays frequency characteristic parameter D(ω) = B2 − 4C for
the case where continuum system exhibits instability (Cσ + σ ≤ 0). It is shown in
Figure 6 that D(ω) < 0 in certain range of wavelengths leading to imaginary angular
frequency, and hence the discrete system is unstable. This instability in the discrete
system is consistent with the continuum instability [2].
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Fig. 5. Frequency characteristic parameter for semi-Lagrangian with SCNI and Cσ + σ > 0.

Fig. 6. Frequency characteristic parameter for semi-Lagrangian with SCNI and Cσ + σ < 0.

4.2.2 Semi-Lagrangian Weak Form Integrated by Direct Nodal Integration
(DNI)

When direct nodal integration is used for domain integration, the nodal value of
gradient is calculated as:

B̄I (xK) = �I,x(xK). (80)

Correspondingly, Equation (74) reduces to

¨̃uI − 2Q2[C(h)φ′
a(h)]2

R2
(ũI+1 − 2ũI + ũI−1)

+ QC(h)φ′
a(h)

R
[�I(0)(−˙̃uI+1 + ˙̃uI−1) + �I (h)(−˙̃uI+2 + ˙̃uI2)]

+ σ

ρ
�I,xx(h)(ũI+1 − 2ũI + ũI−1)
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− (Cσ + σ)

ρ
[�I,x(h)]2(ũI+2 − 2ũI + ũI−2) = 0 (81)

Substitution of Equation (62) into Equation (81) yields

ω2 − 4Q2 [C(h)φ′
a(h)]2

R2 (1 − cos kh)

− 2Qω
C(h)φ′

a(h)

R
[�I(0) sin kh + �I (h) sin 2kh]

+ 2
σ

ρ
�I,xx(h)(1 − cos kh) − 4

Cσ + σ

ρ
[�I,x(h)]2 sin2(kh) = 0. (82)

Equation (82) can be written as

ω2 + Bω + A = 0, (83)

where B is given in Equation (78), and

A =
{
−4Q2 [C(h)φ′

a(h)]2

R2 + 2
σ

ρ
�I,xx(h)

}
(1 − cos kh)

− 4
Cσ + σ

ρ
[�I,x(h)]2 sin2(kh). (84)

Define the frequency characteristic parameter D(ω) as

D(ω) = B2 − 4A. (85)

Note that the sign of σ�I,xx(h), and hence the sign of stress σ , plays an important
role in the stability of discrete system integrated by DNI.

In the stability analysis shown below, discretization with constant nodal distance
�x = 0.05 is employed. Figures 7 and 8 demonstrate frequency characteristic para-
meter D(ω) = B2 − 4A for different values of Q and σ/Cσ . The results in Figure 7
show that when a stable continuum is under tension (Cσ + σ > 0), imaginary fre-
quency occurs (D(ω) < 0) at certain wavelengths, leading to an unstable discrete
system constructed using DNI. This is referred to as the tensile instability observed
in SPH [20]. On a separate test as shown in Figure 8, the discrete system constructed
using DNI becomes stable when continuum instability occurs (Cσ + σ ≤ 0), and it
is unphysical.

4.3 Effect of Convective Term on Stability

To examine how the convective term in the semi-Lagrangian discretization affects
the stability of the discrete equation, consider removing the convective term (second
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Fig. 7. Frequency characteristic parameter for semi-Lagrangian with DNI for Cσ +σ > 0 and
σ > 0.

Fig. 8. Frequency characteristic parameter for semi-Lagrangian with DNI for σ + Cσ < 0.

term in Equation (65)) to yield the following dispersion equations constructed by
SCNI and DNI:

(1) SCNI

ω2 − 2(Cσ + σ)

ρh2

[
C

(
h

2

)
φa

(
h

2

)]2

(1 − cos 2kh) = 0 (86)
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(2) DNI (equivalent to SPH)

ω2 = 2
Cσ + σ

ρ
[�I,x(h)]2 (1 − cos 2kh) − 2

σ

ρ
�I,xx(h)(1 − cos kh). (87)

By comparing Equations (76) and (86) for the semi-Lagrangian discretization integ-
rated by SCNI, it is seen that inclusion of the convective term in the semi-Lagrangian
discretization does not have negative influence on the stability property of discrete
system. In fact, the stability is slightly improved when convective term is included in
the semi-Lagrangian discrete equation. Similar situation is observed by comparing
Equations (82) and (87) for the DNI case.

Equation (86) confirms that there is no tensile instability if SCNI is employed in
the semi-Lagrangian discretization. On the other hand, it is seen from Equation (87)
that if DNI is employed, tensile instability will occur. This tensile instability con-
dition in Equation (87) when σ�I,xx(h) > 0 reflects tensile instability in SPH as
has been identified by Swegle et al. [20]. Based on the stability analysis of semi-
Lagrangian discretization in Sections 4.2.1 and 4.2.2 and in this section, it is shown
that SCNI always yields a stable semi-Lagrangian discrete system regardless of the
inclusion of convective term if the continuum is stable, whereas instability is ob-
served when DNI is employed.

Note that the semi-Lagrangian discrete equation constructed with DNI and with
convective term removed yields an SPH type formulation. By comparing Equa-
tion (76) (semi-Lagrangian discretization integrated by SCNI and with convective
term included) and Equation (87) (semi-Lagrangian discretization integrated by DNI
and without convective term included, representing SPH), it is suggested the stability
of SPH can be improved by introducing strain smoothing of SCNI in the nodal strain
calculation and by including the convective term in the SPH equation of motion.

5 Conclusions

Lagrangian formulation breaks down when the one-to-one mapping of material point
position between undeformed domain and deformed domain cannot be defined. This
situation happens in the processes of new free surface formation in damage evolution
or free surface closure that commonly exists in materials processing, earth moving,
and penetration processes. To circumvent this difficulty, a semi-Lagrangian discretiz-
ation is proposed. In the Lagrangian discretization the distance measure in the kernel
function is defined in the initial undeformed domain, whereas in the semi-Lagrangian
discretization the distance measure in the kernel function is defined in the current de-
formed domain. It has been shown that the semi-Lagrangian discretization yields a
convective term resulting from the non-conservative coverage of material points un-
der the kernel support.

Von Neumann stability analyses have been performed for Reproducing Kernel
(RK) Lagrangian and semi-Lagrangian discretizations with weak forms integrated
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using stabilized conforming nodal integration (SCNI). In Lagrangian discretization
with SCNI, the stability of the discrete system is always consistent with the stabil-
ity of the continuum. In the semi-Lagrangian discrete equation, an additional con-
vective term exists due to the change of material particles covered under the semi-
Lagrangian kernel function during different states of material deformation. By com-
parison of stability conditions of Lagrangian and semi-Lagrangian discretizations
integrated by SCNI, it has been shown that the inclusion of the convective term in
the semi-Lagrangian discretization offers a slightly better stability compared to the
semi-Lagrangian discretization without convective term. The stability analysis also
showed similar stability conditions between Lagrangian and semi-Lagrangian dis-
cretizations if convective term is included in the semi-Lagrangian discretization.

The stability of semi-Lagrangian discretization with domain integration by a dir-
ect nodal integration (DNI) has also been analyzed. The analysis results demon-
strated that semi-Lagrangian discretization constructed by DNI yields instability un-
der tension, which is referred to as the tensile instability in SPH. Note that semi-
Lagrangian discretization integrated by DNI and with removal of convective term
resembles SPH. The stability analysis performed in this work suggests that the sta-
bility of SPH can be improved with the addition of convective term in the equation
of motion and by introducing strain smoothing employed in SCNI in the nodal strain
evaluation of SPH.
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Abstract. In this paper we review some of the authors’ more recent developments in the field
of Forming Processes simulation by means of meshless methods. In particular, all simulations
are performed by employing the Natural Element Method (NEM), which has shown some
particular characteristics that make it appear as an appealing tool for this kind of problems.
Applications include forging, aluminum extrusion and other related forming processes. Partic-
ularly, the treatment of the free surface deserves some comments, since it is done in this work
by means of alpha-shapes, a particular shape constructor.

Key words: Meshless methods, forming processes, natural element method, alpha-shapes.

1 Introduction

Forming processes constitute a field of engineering where very complex phenomena
occur and where very often multi-physic and coupled problems arise. In addition,
these usually involve large transformations (i.e., large strains or large displacements.)
This has traditionally posed some problems to the Finite Element technology, related
to mesh distortion, remeshing, etc. Thus, forming processes seem to be a natural
candidate for the use of meshless methods.

In this article we review some of the authors’ work on meshless simulation of
forming processes, particularly those related to aluminium extrusion and other pro-
cesses where coupled thermo-mechanical problems are of utmost importance.

Although many different meshless methods exist nowadays, our developments
have been focused on the so-called Natural Element Method (NEM) or, equivalently,
Natural Neighbour Galerkin methods [4, 18]. This choice has been motivated mainly
by the unique features of the NEM among meshless methods, that include, for in-
stance, its ability to exactly reproduce essential boundary conditions.
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The NEM also allows for an updated Lagrangian description of the movement,
and this is especially interesting when dealing with free surface flows, for instance.
This framework can thus be competitive to existing ALE formulations, avoiding ad-
vection terms in the equations of conservation and their associated numerical com-
plexity.

This article is organized as follows. Firstly, we describe the NEM and its main
properties. In Section 3 we describe the technique used to track the free-surface
during extrusion, forging or related processes. We then include some numerical ex-
amples showing the performance of the proposed method. The article is finished with
some conclusions.

2 The Natural Element Method

The NEM is basically a Galerkin procedure where the essential field is approximated
by any of the existing natural neighbour interpolation schemes [9, 15, 20]. Prior to
the description of these schemes, it is necessary to review some basic geometrical
concepts, such as the Voronoi diagram of a cloud of points or the Delaunay triangu-
lation.

2.1 Natural Neighbour Interpolation

Models are constructed in our version of the NEM based on nodes only. Consider a
cloud of irregularly distributed nodes N = {n1, n2, . . . , nN }. The Delaunay triangu-
lation [5] of the set N , D , is the only triangulation of the cloud that verifies the empty
circumcircle criterion, i.e., no circle containing the three nodes of a triangle contains
an additional node of the cloud, see Figure 1. The dual structure of a Delaunay trian-
gulation is the so-called Voronoi diagram [21], which is the unique decomposition of
the space into non-overlapping cells containing the locus of points closer to a given
node than to any other. Formally,

TI = {x ∈ R
n : d(x, xI ) < d(x, xJ ) ∀ J �= I }, (1)

where TI is the Voronoi cell and d(·, ·) represents the Euclidean distance. n repres-
ents the space dimension (two or three in the examples presented in this article). Two
nodes whose Voronoi cells share one edge are called natural neighbours and hence
the name of these interpolation schemes.

The first, and most obvious, interpolation scheme based on natural neighbours is
the so-called nearest neighbour or Thiessen interpolation [20]. If we give the nodal
value to the whole associated Voronoi cell, we obtain a C−1 interpolation scheme.
This interpolation scheme is not suitable for solving second-order partial differen-
tial equations, but has been employed in [8] to construct mixed velocity-pressure
approximations for the simulation of incompressible media.
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Fig. 1. Delaunay triangulation and Voronoi diagram of a cloud of points. On the right, an
example of a degenerate distribution of nodes, with the two possible triangulations depicted.
In this last case, four points lie in the same circumcircle and thus no single triangulation exists.

Fig. 2. Definition of the Natural Neighbour coordinates of a point x.

The most extended form of natural neighbour-based interpolation is due to Sib-
son [16]. For the definition of Sibson interpolation it is necessary to previously intro-
duce the concept of second-order Voronoi cell. It is defined as the locus of the points
that have the node nI as the closest node and the node nJ as the second closest node:

TIJ = {x ∈ R
n : d(x, xI ) < d(x, xJ ) < d(x, xK) ∀ K �= J ; ∀ K �= I }. (2)

If a new point is added to a given cloud of points, the Voronoi cells will be
modified by its presence. Sibson [15] defined the natural neighbour coordinates of
a point x with respect to one of its neighbours I as the ratio of the cell TI that is
transferred to Tx to the initial cloud of points to the total area of Tx . In other words,
being κ(x) and κI (x) the Lebesgue measures of Tx and TxI respectively, the natural
neighbour coordinates of x with respect to the node I is defined as

φsib
I (x) = κI (x)

κ(x)
. (3)
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Fig. 3. Natural Element (Sibson) shape function (courtesy N. Sukumar).

The resultant shape function depends obviously on the relative position of the nodes.
An example of a node surrounded by other six is depicted in Figure 3.

Recently, some new interpolation schemes based on the concept of natural neigh-
bors have been proposed [9]. One of them, coined as Laplace or non-Sibsonian in-
terpolation, has received considerable attention, since it involves magnitudes of one
order less of the space dimension (i.e., the calculus of areas in three-dimensional
problems, for instance, instead of volumes). If we define the cell intersection tIJ =
{x ∈ TI

⋂
TJ , J �= I } (note that tIJ may be an empty set) we can define the value

αJ (x) = |tIJ |
d(x, xJ )

. (4)

Thus, the point x shape function value with respect to node 4 in Figure 4 is
defined as

φns
4 (x) = α4(x)∑n

J=1 αJ (x)
= s4(x)/h4(x)∑n

J=1

[
sJ (x)/hJ (x)

] , (5)

where sJ represent the length of the Voronoi segment associated to node J and n

represents the number of natural neighbours of the point under consideration, x.
Derivatives of the Laplace shape function are not defined along the edges of the

Delaunay triangles that lie inside its support (see [19]). For the purposes of the work
here presented, Sibson’s interpolation has been considered.
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Fig. 4. Definition of non-Sibsonian coordinates.

2.2 Main Properties of the NEM

Firstly, unlike most approximation techniques used in meshless methods, Sibson’s
interpolation scheme is strictly interpolant, i.e., the approximated surface pass
through the data. This can be expressed as

φI (xJ ) = δIJ (6)

with δIJ the Kronecker delta tensor.
The natural neighbour (Sibson) interpolant possesses linear consistency, and thus

it is amenable to be used in the approximation of second-order partial differential
equations. This can be demonstrated from the before mentioned partition of unity
property and its ability to exactly reproduce linear fields (also known as local co-
ordinate property, see [16]):

n∑
I=1

φI (x)xI = x (7)

One important property that derives from Equation (6) is that the imposition of
essential boundary conditions in NE methods is straightforward. Like in the FEM,
it is sufficient to prescribe nodal values to reproduce essential boundary conditions.
In addition, natural neighbour interpolants can be strictly interpolant (up to linear
precision) on the boundaries (convex or not), under very weak conditions, as demon-
strated in [3] by using the theory of α-shapes. This proof was later generalised in
[2]. Idelsohn and co-workers later adopted this same approach based on α-shapes in
the context of the Meshless Finite Element Method [10]. Another method to impose
essential boundary conditions in the context of the NEM by employing visibility
criteria was developed by Chinesta and co-workers [22].

The exact imposition of essential boundary conditions means that no interior
point of the domain takes influence on the boundary. This is of first importance in the
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simulation of processes where friction or other phenomena occurring on the bound-
ary are significant.

In its application to two- and three-dimensional linear elasticity, the natural ele-
ment method has proved to render more accurate results than linear triangular and
tetrahedral finite elements respectively [1, 19].

But, maybe the most important characteristic of the Galerkin scheme obtained
by using natural neighbour interpolation is that the accuracy of the approximation is
not affected by the distortion of the triangulation [18]. This confers the method the
“meshless” character that allows us to implement updated Lagrangian descriptions
of the processes. It is also important to note that natural neighbour interpolation is
continuous when the data sites move continuously, while other mesh-based methods
(i.e., finite elements based on a Delaunay triangulation) are not. This is especially
important when dealing when updated Lagrangian descriptions of the movement.

In the following section we describe the technique used to track the free surface
appearing in the description of the different forming processes.

3 The α-Shapes-Based Natural Element Method

When dealing with processes involving a free surface – which is commonly the case
in classic forming processes simulations, such as forging or extrusion – it is ex-
tremely important to accurately track its position. In aluminium extrusion, for in-
stance, non-uniform fluxes of the hot billet through the die can lead to non-straight
profiles. Extrusion of hollow profiles, such as tubes, is particularly interesting from a
geometrical point of view, since the flow of the hot metal should divide in the interior
of the die and re-join just before exiting it.

In many Lagrangian or Lagrangian–Eulerian codes tracking of the free-surface
is done by means of markers. The free surface segments (in 2d) or facets (in 3d)
are detected and stored at each time step, see [11] for an elegant description of such
algorithms in mould filling simulations. Previously, checking of inter-penetration of
free-surfaces or development of holes should also be done. This is usually a cumber-
some process.

In our approach a different approach has been developed, based on the use of
shape constructors. Shape constructors are geometrical entities that give a continu-
ous shape to a discrete cloud of nodes. One of such constructors is the family of
α-shapes of the cloud [6].

3.1 The Family of α-Shapes of a Cloud of Points

A cloud of points defines a finite set of shapes that can be parameterized by the level
of detail up to which we want to represent the geometry. The idea behind α-shapes
is simple: the Delaunay triangulation will provide a straightforward connectivity of
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the nodes. We will eliminate from this triangulation those triangles (or tetrahedra)
whose circumradius is greater than the desired level of detail, say α.

Formally, an α-shape is a polytope that is not necessarily convex nor connected,
being triangulated by a subset of the Delaunay triangulation of the points. Let N be a
finite set of points in R

3 and α a real number, with 0 ≤ α < ∞. A k-simplex σT with
0 ≤ k ≤ 3 is defined as the convex hull of a subset T ⊆ N of size | T |= k+1. Let b

be an α-ball, that is, an open ball of radius α. A k-simplex σT is said to be α-exposed
if there exist an empty α-ball b with T = ∂b

⋂
N where ∂ means the boundary of

the ball. In other words, a k-simplex is said to be α-exposed if an α-ball that passes
through its defining points contains no other point of the set N .

Thus, we can define the family of sets Fk,α as the sets of α-exposed k-simplices
for the given set N . This allows us to define an α-shape of the set N as the polytope
whose boundary consists on the triangles in F2,α , the edges in F1,α and the vertices
or nodes in F0,α.

A three-dimensional simplicial complex is a collection, C, of closed k-simplices
(0 ≤ k ≤ 3) that satisfies:

(i) If σT ∈ C then σT ′ ∈ C for every T ′ ⊆ T .
(ii) The intersection of two simplexes in C is empty or is a face of both.

Each k-simplex σT included in the Delaunay triangulation, D , defines an open
ball bT whose bounding spherical surface (in the general case) ∂bT passes through
the k + 1 points of the simplex. Let �T be the radius of that bounding sphere, then,
the family Gk,α , is formed by all the k-simplexes σT ∈ D whose ball bT is empty
and �T < α . The family Gk,α does not necessarily form simplicial complexes, so
Edelsbrunner and Mücke [6] defined the α-complex, Cα, as the simplicial complex
whose k-simplexes are either in Gk,α, or else they bound (k + 1)-simplexes of Cα . If
we define the underlying space of Cα, |Cα|, as the union of all simplexes in Cα , the
following relationship between α-shapes and α-complexes is found:

Sα = |Cα| ∀0 ≤ α < ∞ (8)

In order to clarify the before presented concepts, consider some examples of α-
shapes computed from a cloud of points corresponding to one particular simulation
of a two-dimensional extrusion process. We restrict ourselves to geometrical con-
cepts only.

Consider the extrusion example shown in Figure 5, where the contour plot of
equivalent plastic strain rate is depicted. The key idea of the method here proposed
is to extract the shape of the domain at each time step by invoking the concept of
α-shape of the cloud of points. The α parameter will be obtained by geometrical
considerations. In this case the radius at the inlet of the die, for instance, seems
to be the smallest level of detail up to which the domain (i.e., the billet) must be
represented. In order to appropriately represent this value, the nodal distance h must
be accordingly chosen.
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Fig. 5. Two snapshots of a two-dimensional simulation of an extrusion process. Equivalent
plastic strain rate is depicted.

In Figure 6 some members of the family of α-shapes of the cloud of points in
its final configuration (corresponding to Figure 5(b)) are depicted. In Figure 6(a)
the member for α = 0, i.e., the cloud of points itself, is shown. Note how, as α is
increased, the number and size of the simplexes (in this case, triangles) that belong
to the shape is increasing. For α = 1.0 we obtain an appropriate shape for the cloud.
Note, however, that this is not an exact value to be determined at each time step.
Since the number of α-shapes is finite, there generally exists an interval of valid α

values for a single shape. Finally, by increasing the α value, we arrive to the convex
hull of the cloud of points (Figure 6(f)).

3.2 Properties of the α-Shapes-Based Natural Element Method

Constructing the model by taking into account the actual shape of the domain has
consequences not only in geometrical aspects of the method, but also in the qual-
ity of the approximation. As demonstrated in [3], the use of a proper α-shape for
the definition of the domain – which means that we reproduce the geometry to the
desired level of detail – ensures the linear interpolation of the essential field along
the boundary. This is extremely important, since many of the meshless methods lack
of the so-called Kronecker delta property, i.e., do not interpolate the field along the
boundary, thus complicating the imposition of essential boundary conditions.

In practice, this requirement means that an appropriate cloud of points should
be used in order to achieve a correct interpolation on the boundary. Here, the term
“appropriate” should be understood in the sense that the cloud of points is dense
enough so as to properly reproduce the geometry up to the desired level of detail.

Other methods exist to impose essential boundary conditions in the NEM, such
as the so-called C-NEM [22], that uses visibility criteria and renders exactly the same
approximation. Both methods can be considered equivalent.
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Fig. 6. Some members of the family of α-shapes of the cloud of points used in the extrusion
example. (a) S0 (the cloud of points) (b) S0.3 (c) S0.5 (d) S1.0 (e) S1.5 and (f) S∞ (the convex
hull of the set).
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4 Numerical Examples

4.1 Governing Equations

Many of the existing codes consider rigid-viscoplastic models for the constitutive
equations of metals during forming processes. The obvious advantage of this method
is that the material can be modelled as a non-Newtonian fluid. This approach is
usually known as the flow formulation of the problem [23]. Thus a mixed Sibson–
Thiessen approximation is used for the essential variables of the problem, namely,
velocity and pressure. Details of the stability of this formulation can be found in [8].

The deviatoric stresses will be, under this assumption,

s = 2µd, (9)

being, as usual,
σ = s − pI (10)

where p = −tr(σ )/3 and I stands for the second-order identity tensor. Obviously,
in the most general case, the parameter µ will depend on both the level of strain (and
hence the non-linear character of the behavior) and the temperature. To derive the
expression of the parameter µ it is a common practice to write the strain rate tensor
as emerging from a visco-plastic potential. Following Perzyna [13]

dvp = γ̇
∂Y (σ , q)

∂σ
, (11)

where Y is the viscoplastic potential – usually coincident with the plastic criterion as
has been considered here – γ̇ is a scalar function given by

γ̇ = 〈g(Y (σ , q))〉
η

with 〈x〉 = x + |x|
2

, (12)

〈g〉 is a monotonic function that takes zero value only if Y (σ , q) ≤ 0, η is a positive
parameter often called viscosity and q represents the hardening parameters. In what
follows we will avoid the use of the vp superscript to indicate viscoplastic if there is
no risk of confusion.

For metals, there exist well-defined plastic yield rules and for aluminium it is a
common practice to employ a von Mises criterion:

Y (σ , q) = σ(s) − σy(d, T ), (13)

where

σ =
√

3

2
s : s =

√
3J2

represents the effective stress and σy represents the uniaxial yield stress. d is the only
internal variable in this model and is sometimes called effective strain rate:
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d =
√

2

3
d : d. (14)

Among the most extended laws to account for the aluminium yield stress is the
so-called hyperbolic sine or Sellars–Tegart law [14]

σy(d) = Sm arcsinh

[[(
d

A

)
eQ/RT

]1/m
]

. (15)

Sm, m and A are material parameters. A is a factor that depends on the magnesium
and silicium matrix solute content (see [12] and references therein), Q represents the
activation energy of the deformation process, R is the universal gas constant and,
finally, T is the absolute temperature. Note that, as the temperature increases, the
yield stress decreases, as expected.

Following this model, a state of null strain rate will give a null yield stress, and
this is not in accordance to the well-known behavior of metals in general, and alu-
minium in particular. So it is a common practice to correct this effect by adding to
Equation (15) a initial strain rate, d0 so as to render a modified Sellars–Tegart law:

σy(d) = Sm arcsinh

[[(
d1

A

)
eQ/RT

]1/m
]

with d1 = max{d, d0}. (16)

If we combine now the general form of the strain rate tensor given in Equation
(11), with Equation (13), we arrive to

d = γ̇
3s

2σ
. (17)

It is immediate now, by combining Equation (14) and the definition of effective
stress, σ , to prove that γ̇ is precisely the effective strain rate:

d = γ̇

σ

√
3

2
s : s = γ̇ . (18)

On the other hand, and by following the Perzyna-like model employed in Equa-
tions (11) and (12) and taking g(f ) = f , we arrive to a relationship between equiv-
alent stress and equivalent strain rate:

d = γ̇ = 〈σ − σy〉
η

⇒ σ = ηd + σy if σ ≥ σy (19)

that, introduced in Equation (17), accounting Equation (18), gives the following
visco-plastic constitutive equation:

s = 2
ηd + σy(d)

3d
d. (20)
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Fig. 7. The piece to be forged (a) and schematic representation of the forging process (b)

Fig. 8. Geometry and dimensions of the forged piece.

Note that, depending on the η value, the return to the yield surface is done with
different velocity. Since it is common to describe aluminium behaviour as rigid-
plastic (rather than viscoplastic) we employ null viscosity, so as to enforce Y =
σ − σy = 0, leading to

s = 2σy

3d
d. (21)

Finally, the constitutive equation, accounting the incompressibility of plastic flow
results:

σ = 2µd − pI with µ = σy

3d
. (22)

Of course, this simple model has important limitations. Undoubtedly, the lack
of elastic behaviour is one of the most important. Thus, spring-back cannot be pre-
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Fig. 9. Equivalent strain rate distribution (s−1) throughout the forging process.

dicted. However, as mentioned before, it has rendered good results and seems to be
widely accepted in the forming processes community [12, 23, 24].

This same model can be employed to model a wide variety of polymers, for
instance, governed by a power law (also known as Norton–Hoff model):

µ = µ0d
n−1

(23)

where n is the so-called sensitivity index. The interested reader can consult [17] for
some applications on this class of problems.
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Fig. 10. Geometry and dimensions of the container and the die for the cross-shaped profile
problem.

4.2 Simulation of a Forging Process

In this example we consider the application of the proposed α-NEM method to the
simulation of the forge of a complex piece. In this case a viscoplastic behaviour
is assumed, given by Equation (23). We have considered µ0 = 1.0 and n = 0.3.
These values are obviously non-physical, but can help us to show the behavior of the
proposed technique when extremely high deformations are present.

The geometry of the piece is shown in Figure 7(a). The simulation deals with the
forging of the central region of the piece, justifying the assumption of plane strain
(see Figure 7(b)).

Accounting for the symmetry of the geometry, only one half of the domain was
simulated, by imposing appropriate boundary conditions. Slip boundary conditions
were assumed at the billet-punch-die contact region. The upper part of the punch, as-
sumed perfectly rigid, moves towards the lower part, fixed throughout the simulation.
Geometry and dimensions of the simulated region are shown in Figure 8.

The equivalent plastic strain at time steps 96, 120, 150 and 168 are shown in
Figure 9. Very accurate results were obtained in spite of the large strains and dis-
placements involved in the simulation.

It can be seen how the proposed method is a valuable tool to accurately predict
the formation of the flash.

4.3 Simulation of the Extrusion of a Cross-Shaped Profile

In [7] an analysis is made of the process of extrusion of a cross-shaped profile, with
particular interest on the effect of the misalignment between the die and the work-
piece. Geometry and dimensions of the die are shown in Figure 10.
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Fig. 11. Initial geometry of the mesh.

The hole of the die was misaligned 10 mm in order to study the influence of
this defects in the resulting quality of the extruded profile. The initial mesh is shown
in Figure 11. Only one half of the geometry was analyzed, by applying appropriate
symmetry boundary conditions.

The material is assumed to be lead, which is able to flow at room temperature, and
is therefore easily characterizable by simple experiments with an universal testing
machine. In [7], the flow rule of lead at room temperature was adjusted to a Norton–
Hoff law, giving

σ = 60ε̇0.05 [MPa] (24)

in a uniaxial test.
Various snapshots of the mesh at different time steps are shown in Figure 12. The

evolution of the equivalent strain rate is depicted in Figure 13.
Results are in good agreement with the experimental results performed by Filice

and colleagues [7] and the resulting deviation of the profile is only slightly underes-
timated.

This approach notably simplifies those of the ALE methods, especially when
large motion is produced in the direction perpendicular to the main flow of the ex-
trudate, which is traditionally treated as purely Eulerian, as in [24]. This is the case
when the flow is distorted by the misalignment of the die hole and the axis of the
extruder.
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Fig. 12. Evolution of the geometry of the extrudate throughout the process.

5 Conclusions

Forming processes usually involve large deformations and are therefore specially
interesting as an objective for meshless methods. We have reviewed some of the
more important characteristics of the α-shape-based Natural Element Method (α-
NEM, see [3]) and studied the more interesting features of the method applied to
such problems.

We believe that meshless methods and, in particular, the α-NEM are particularly
well-suited to simulate that class of processes. As is well-known for all meshless
methods, distortion of the cloud of points does not greatly affect the quality of the
results, and therefore remeshing is avoided, in the sense that the cloud of nodes is –
or can be – the same throughout the whole simulation. The connectivity is updated
by the method in a process transparent to the user, thus greatly alleviating the user
effort.
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Fig. 13. Evolution of the equivalent strain rate (s−1).

Other aspects, such as an improvement of the speed of calculation are currently
under investigation, since the computation of Sibson coordinates is known to be con-
siderably harder than the computation of FE shape functions.

In sum, we think that meshless methods, and particularly the NEM, are a good
choice for the simulation of problems involving large deformations in a Lagrangian
framework.
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Abstract. We explore in this work the connections between NN and MLS approximations,
coming from the introduction of the NN approximation functions as the weights in the scope
of MLS. Thus, it is easy to adjust the approximation consistency (with the possibility to en-
rich the approximation basis with some particular functions describing issues of the searched
solution) in the framework of the MLS techniques, precribing exactly essential boundary con-
ditions from the use of the NN approximation as MLS weight. This approach opens, as will
be proved in the present paper, the way to a wide range of formulations: (i) NN collocation
strategies; (ii) faster natural element discretizations; (iii) Hermite natural element formula-
tions; (iv) hierarchical bubbles functions in the natural element method; and (v) and NN en-
riched approximations.

Key words: Meshless methods, Moving Least Squares, RKPM, Natural Neighbor approxim-
ations, Natural Element Method, Diffuse Finite Elements, Element Free Galerkin.

1 Introduction

The meshfree methods based on Moving Least Squares (MLS) approximation have
been confronted to an active research during the last decade. These include Smooth
Particle Hydrodynamics, Element Free Galerkin, Diffuse Elements, Reproducing
Kernel Particle and other methods [4, 5, 12–14, 16]. However, one of the issues is the
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satisfaction of essential boundary conditions. This is due to the nature of the approx-
imation itself. In fact, the MLS nodal domains of influence are the same as those of
the corresponding weighting functions, who generally do not fit the boundary. The
choice of neighboring nodes is also an issue. The approach based in considering the
k closest nodes from any evaluation point results only in a C0 continuity. Moreover,
the geometrical complexity of the shape functions supports induces integration diffi-
culties. Simpler integration and an arbitrary degree of continuity are obtained when
nodes are associated with fixed, spherical or hexahedral domains of influence, whose
optimal size constitutes the main difficulty of that approach. On the other hand, the
Natural Neighbor (NN) approximation and associated family of computational meth-
ods [20] do not present these drawbacks. The boundary approximation is obtained
naturally due to the fact that NN shape functions of internal nodes vanish at the
boundary where only the boundary nodes contribute. The list of connected points –
the natural neighbors – is also known in advance. However, the NN do not present all
the advantages of the MLS. In particular, the shape function support is geometrically
complex. Moreover, the NN shape functions have only C0 continuity at the nodes
and only linear consistency is guaranteed. The goal of the present paper is to connect
the two approaches in order to get simultaneously the benefits of both NN and MLS
approximations. The main idea lies in using NN functions as the weights in the scope
of MLS. The two expected benefits are the imposition of the essential boundary con-
ditions and a systematic framework for the search of neighbors nodes based on the
Voronoi tessellation. In this way, the introduction of a visibility criterion in the NN
framework, the so called constrained natural neighbour approximation (CNN) or the
use of alpha-shapes – α-NEM – allow to remove the usual problems related to the
application of the MLS in non-convex domains. Moreover, it allows to define nodal
derivatives in the NN framework, which are required in thermomechanical simula-
tions in order to update the internal variables when one proceeds using an updated
Lagrangian formulation. This approach opens the way to a wide range of both vari-
ational and collocation formulations.

1.1 Meshless Techniques Based on the MLS Approximation: DFE and EFG
Methods

Let the following approximation scheme:

uh(x) = pT (x)a(x) (1)

with pT (x) a polynomial basis, i.e. pT (x) = [1, x, y, xy] and pT (x) =
[1, x, y, xy, x2, y2] for a bilinear and quadratic basis, respectively, in 2D, and a(x) a
vector of unknown coefficients. In order to determine a(x), we define the functional
J that must be minimized with respect to a(x) [16]:

J = 1

2

n∑
i=1

wi(x)
[
pT (xi )a(x) − ui

]2
(2)
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where ui are the nodal unknowns associated with the neighbors nodes xi of point
x and wi(x) is a weighting function whose value decreases as the distance between
xi and x increases (see [5] for more details about properties of this function and the
ones the most used). The minimization of J with respect to the unknown coefficient
aj (x) leads to:

∂J

∂aj (x)
=

n∑
k=1

ak

[
n∑

i=1

wi(x)pj (xi )pk(xi )

]
−

n∑
i=1

wi(x)pj (xi )ui = 0 (3)

which leads to the linear system:

A(x)a(x) = B(x)u (4)

where the matrix A(x) and B(x) are defined by:

Ajk(x) =
n∑

i=1

wi(x)pj (xi )pk(xi ) (5)

Bij (x) = wi(x)pj (xi ) (6)

Substituting a(x) in Equation (1), results in:

uh(x) = pT (x)A−1(x)B(x)u (7)

By identification, the new shape functions are given by:

ψT (x) = pT (x)A−1(x)B(x) (8)

The difference between the diffuse finite element and the element free Galerkin
schemes comes from the evaluation of the shape function derivatives. In the first
scheme only the term pT (x) in Equation (8) is derived, whereas all terms depending
on x are derived in the element free Galerkin approach.

1.2 Meshless Techniques Based on the Smooth Particles Approximation: The
RKPM and the Enriched RKPM Methods

Let � be a 1D domain where the problem is defined (all the results have a direct 2D
or 3D counterpart). The points within this domain will be noted by x or s.

1.2.1 Reproduction Conditions

The approximation uh(x) of u(x) is built from the convolution integral

uh(x) =
∫

�

w(x − s, h)u(s)d� (9)
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where w(x − s, h) is the kernel function and h a parameter defining the size of the
approximation support.

The main idea in the enriched RKPM method is to enforce the reproduction of a
general function that we can write in the form of a polynomial plus another function
noted by ue(x):

uh(x) = a0 + a1x + · · · + anx
n + an+1u

e(x) (10)

In the following paragraphs we analyze the required properties of the kernel func-
tion w(x − s, h) for reproducing a function expressed by (10).

From Equation (9), the reproduction of a constant function a0 is given by∫
�

w(x − s, h)a0d� = a0 (11)

which implies ∫
�

w(x − s, h)d� = 1 (12)

which constitutes the partition of unity.
Now, the required condition to reproduce a linear function ua(x) = a0 + a1x is∫

�

w(x − s, h)(a0 + a1s)d� = a0 + a1x (13)

By using the partition of unity (12), Equation (13) can be rewritten as{∫
� w(x − s, h)d� = 1∫
� w(x − s, h)sd� = x

(14)

which implies the linear consistency of the approximation. Repeating this reasoning,
we can write the n-order consistency as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
�

w(x − s, h)d� = 1∫
�

w(x − s, h)sd� = x

...∫
� w(x − s, h)snd� = xn

(15)

and consequently, the reproduction of the function given by (10) implies∫
�

w(x − s, h)(a0 + a1s + . . . + ans
n + an+1u

e(s))d�

= a0 + a1x + · · · + anx
n + an+1u

e(x) (16)
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from which it results ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
� w(x − s, h)d� = 1∫
� w(x − s, h)sd� = x

...∫
�

w(x − s, h)snd� = xn∫
�

w(x − s, h)ue(s)d� = ue(x)

(17)

In the original procedure proposed by Liu et al. [12] only n-order consistency
was imposed, but it can not be directly used to enforce the reproduction condition
associated with ue(x).

1.2.2 The Moment Matrix

We will note by ur(x) the approximation function verifying the conditions (17). Usu-
ally a cubic spline is considered as kernel function, and consequently the conditions
given by Equation (17) are not satisfied. Liu et al. [12] propose the introduction of a
correction function C(x, x−s) for satisfying the reproduction conditions. In our case
we consider the more general form C(x, s, x−s) whose pertinence will be discussed
later. Thus ur(x) will be expressed by

ur(x) =
∫

�

C(x, s, x − s)w(x − s, h)u(s)d� (18)

where C(x, s, x − s) is assumed to have the following form

C(x, s, x − s) = HT (x, s, x − s)b(x) (19)

where HT (x, s, x − s) represents the vector containing the functions considered in
the approximation basis, and b(x) is a vector containing unknown functions that will
be determined for satisfying the reproduction conditions. Thus, Equation (17) can be
rewritten as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

HT (x, s, x − s)b(x)w(x − s, h)d� = 1∫
�

HT (x, s, x − s)b(x)w(x − s, h)sd� = x

...∫
�

HT (x, s, x − s)b(x)w(x − s, h)snd� = xn∫
�

HT (x, s, x − s)b(x)w(x − s, h)ue(s)d� = ue(x)

(20)

In fact, the reproduction conditions must be enforced in a discrete form. For this
purpose we consider N points (also refereed as nodes) which allow to compute the
discrete form of Equation (20), i.e.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1 HT (x, xi, x − xi)b(x)w(x − xi, h)�xi = 1∑N
i=1 HT (x, xi, x − xi)b(x)w(x − xi, h)xi�xi = x

...∑N
i=1 HT (x, xi, x − xi)b(x)w(x − xi, h)xn

i �xi = xn

∑N
i=1 HT (x, xi, x − xi)b(x)w(x − xi, h)ue(xi)�xi = ue(x)

(21)

that in a matrix form results[
N∑

i=1

R(xi)HT (x, xi, x − xi)w(x − xi, h)�xi

]
b(x) = R(x) (22)

where R(x) is the reproduction vector

RT (x) = [
1, x, . . . , xn, ue(x)

]
(23)

Equation (22) allows the computation of vector b(x),

b(x) = M(x)−1R(x) (24)

where the moment matrix M(x) is defined by

M(x) =
N∑

i=1

R(xi)HT (x, xi, x − xi)w(x − xi, h)�xi (25)

This moment matrix differs from the usual moment matrix proposed in [12], and in
fact it becomes non symmetric.

1.2.3 Discrete Form of the Approximation Function

The discrete form ur(x) of uh(x) derives from Equations (18), (19) and (24)

ur(x) ∼=
N∑

i=1

HT (x, xi, x − xi)M(x)−1R(x)w(x − xi, h)u(xi)�xi

=
N∑

i=1

ψi(x)ui (26)

where ψi is the enriched RKP approximation shape function

ψi(x) = HT (x, xi, x − xi)M(x)−1R(x)w(x − xi, h)�xi (27)

As in the classical RKPM we take �xi = 1. Different quadrature rules exist and
they have been tested without a significant incidence on the reproducing condition
accuracy.
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Fig. 1. (Left) Voronoi diagram, Delaunay triangle and Delaunay circle. (Right) Construction
of the Sibson shape functions.

1.3 Meshless Techniques Based on the Natural Neighbor Approximation: The
NEM Method

We briefly touch upon the foundation of Sibson’s natural neighbor (NN) coordinates
(shape functions) that are used in the natural element method. For a more in-depth
discussion on the Sibson interpolant and its application for solving second-order
partial differential equations, the interested reader can refer to Sambridge and Braun
[19] and Sukumar et al. [20]. The NEM interpolant is constructed on the basis of the
Voronoi diagram (see Figure 1). The Delaunay tessellation is the topological dual of
the Voronoi diagram.

Consider a set of nodes S = {n1, n2, . . . , nN } in �dim. The Voronoi diagram is
the subdivision of �dim into regions Ti (Voronoi cells) defined by:

Ti = {x ∈ �dim : d(x, xi ) < d(x, xj ),∀j �= i}, ∀ i (28)

The Sibson coordinates of x with respect to a natural neighbor ni (see Figure 1
(right)) is defined as the ratio of the overlap area (volume in 3D) of their Voronoi
cells to the total area (volume in 3D) of the Voronoi cell related to point x. If we
consider the 2D example of Figure 1(a), we have:

φ1(x) = Area(afghe)

Area(abcde)
(29)

Remark. From now on, we denote by φi(x) the shape functions related to the
NEM, whereas ψi(x) is used to denote the ones associated with the MLS or RKPM
techniques.

If the point x coincides with the node ni , i.e. (x = xi), φi(xi ) = 1, and all other shape
functions are zero, i.e. φj (xi ) = δij (δij being the Kronecker delta). The properties
of positivity, interpolation, and partition of unity are then verified [20]:⎧⎪⎨

⎪⎩
0 ≤ φi(x) ≤ 1
φi(xj ) = δij∑n

i=1 φi(x) = 1

(30)
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where n is the number of neighbor nodes related to point x.
The natural neighbor shape functions also satisfy the local coordinate property

[22], namely:

x =
n∑

i=1

φi(x)xi (31)

which combined with Equation (30), implies that the natural neighbor interpolant
spans the space of linear polynomials (linear completeness).

Sibson natural neighbor shape functions are C1 at any point except at the nodes,
where they are only C0. The C1 continuity away from the nodes can be improved by
using special classes of natural neighbor shape functions [11].

The support (domain of influence) of a shape function φi is the union of the
Delaunay spheres (circumscribing the Delaunay tetrahedrons) containing the node
ni . This support is thus not radial and automatically adapts to the relative position
of ni and its neighbors, whether is the density or the regularity of the local nodal
distribution.

Another important property of this interpolant is its strict linearity over the
boundary of convex domains. The proof can be found in Sukumar et al. [20]. An
illustration is depicted in Figure 1: as the areas associated to points on the boundary
become infinite, the contribution of internal points vanish in the limit when the point
approaches the convex boundary, and the shape functions associated with nodes n1
and n2 become linear on the segment (n1 − n2). This is not true in the case of non
convex boundaries, and an appropriate treatment must be introduced to maintain this
property over non-convex boundaries [9, 24]. In tandem with the delta Kronecker
property, essential boundary conditions can thus be enforced directly, as in the finite
element method. This property also guarantees strict continuity of the approximation
across material interfaces [23], which is an issue in most meshfree methods.

Consider an interpolation scheme for a vector-valued function u(x) : � ⊂ �2 →
�, in the form:

uh(x) =
n∑

i=1

φi(x) ui (32)

where ui are the nodal values of the field at the n natural neighbor nodes of point
x, and φi(x) are the shape functions associated with each neighbor node. It is noted
that Equation (32) defines a local interpolation scheme. Thus, the trial and test func-
tions used in the discretization of the variational formulation describing the problems
treated in this paper take the form of Equation (32).
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2 Coupling NN and MLS Approximations

In this section, that constitutes the main contribution of this paper, different hybrid
schemes combining the natural neighbor and the moving least squares interpolations
will be proposed and analyzed.

2.1 Defining Natural-Neighbor Collocation Schemes

The proposed approximation scheme consists in using the NN shape functions as
weights in the MLS approximation. In this way we want to increase the consistency
of the NN approximation in an adjustable manner and get simpler formulas for com-
puting the derivatives. We will show firstly, that this approach does not change the
shape functions when choosing linear polynomial basis PT (x) = {1, x, y}. When we
minimize the usual moving least square criterion

J = 1

2

n∑
i=1

wi(x)
[
pT (xi )a(x) − ui

]2
(33)

with wi(x) the NN shape function, i.e. wi(x) = φi(x), it results (see [7] for details)
�i(x) = φi(x) and that diffuse derivatives are discontinuous at the nodes. The same
results are obtained by considering quadratic reproduction conditions, i.e. PT (x) =
{1, x, y, x2, xy, y2}.

Thus, the use of collocation techniques becomes delicate. To circumvent this dif-
ficulty, we consider another cloud of auxiliary points x∗

j , as in the double grid tech-
nique [6]. Now, the approximation field derivatives can be defined at those points,
and then the nodal approximation derivatives defined at nodes using the moving least
squares technique.

If we denote by uh the natural neighbor approximation, its derivative can by
calculated at points x∗

j . Now, the diffuse derivatives can be computed at any point x
using the standard MLS technique, from the functionals:

J = 1

2

m∑
j=1

wj (x)

[
pT (x∗

j )a(x) − ∂uh

∂x
(x∗

j )

]2

(34)

and

J = 1

2

m∑
j=1

wj (x)

[
pT (x∗

j )a(x) − ∂uh

∂y
(x∗

j )

]2

(35)

where m is the number of auxiliary points. Thus, after minimization, the coefficients
a(x) of both approximations are obtained, and then the shape function diffuse deriv-
atives, allowing to define the diffuse derivatives at any point x:
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δ2u

δx2 (x) =
m∑

j=1

�x,j (x)
∂uh

∂x
(x∗

j ) (36)

and
δ2u

δy2 (x) =
m∑

j=1

�y,j (x)
∂uh

∂y
(x∗

j ) (37)

where �x,j (x) and �y,j (x) denote the diffuse shape function derivatives related to
point x∗

j with respect to the x and y coordinates, evaluated at point x.
Now, considering that:

∂uh

∂x
(x∗

j ) =
n∑

i=1

φx,i(x∗
j )ui (38)

and
∂uh

∂y
(x∗

j ) =
n∑

i=1

φy,i(x∗
j )ui (39)

where φx,i(x∗
j ) and φy,i(x∗

j ) denote the Natural Neighbor shape function derivatives
related to node xi with respect to the x and y coordinates evaluated at point x∗

j ,
Equations (36) and (37) could be used to define collocation schemes.

Remark. When the point x approaches to xi , Equations (36) and (37) give the nodal
diffuse derivatives, that can be used in the postprocessing or in the context of a
collocation technique.

Linear convergence of the second derivative may be demonstrated for an appropriate
election of the auxiliary points. For this purpose we locate the auxiliary points (for
quadratic approximation consistency) verifying ∀x∗

j the following conditions:

n∑
i=1

{
φx,i(x∗

j )ui − φi(x∗)ux,i

}
= 0 (40)

and
n∑

i=1

{
φy,i(x∗

j )ui − φi(x∗)uy,i

}
= 0 (41)

where n is the number of neighbor nodes of point x∗
j , and⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ui = u(xi ) = a + bxi + cyi + dx2

i + exiyi + fy2
i

ux,i = ∂u
∂x

(xi ) = b + 2dxi + eyi

uy,i = ∂u
∂y

(xi ) = c + 2fyi + exi

(42)
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This strategy was successfully applied for solving second order partial differen-
tial equations using a collocation discretization in [7].

2.2 Faster Natural-Neighbor Interpolation Formulas

The natural neighbor meshfree method provides equivalent quality compared to
quadrilateral/hexaedral finite elements, but only uses the Delauny triangulation
(which is automatic and unique for a given cloud of nodes), to construct the shape
functions, which avoids the burden of mesh generation with these elements. Further-
more, as the shape functions satisfy the Kroenecker delta property, the imposition
of essential boundary conditions is direct, unlike in the vast majority of meshless
methods. Nevertheless, the computation of 3D natural neighbor shape functions is
complex and costly, involving geometric constructions in the Voronoi diagram.

The computation of the natural neighbor shape functions is not direct and re-
quires some geometric operations (intersection, volume and area computations) at
each integration point. A classical algorithm for the computation of the shape func-
tions at a point x involves the following steps: (a) Find the natural neighbor of the
point x; (b) Construct the new Voronoi cell associated with point x; (c) Compute the
volumes or areas associated with Voronoi cells entities used in the shape function
computations; and (d) Compute the shape functions. Step (a) can be performed in
constant time by performing local search in the Voronoi diagram. In our experience,
steps (b) and (c) are the most expensive from a CPU point of view. In the next sec-
tion, we propose new natural neighbor shape functions which avoid the geometric
operations involved in the steps (b) and (c).

For this purpose, a particular weight function wi(x) based on the Delaunay
spheres is used, which posses the main features of natural neighbor shape functions
support [25]. The introduction of this particular weight in the EFG methology leads
to shape functions which posses the same properties of the natural neighbor shape
functions (i.e. interpolation and connectivity based on the natural neighbors, and
linear consistency), but without any geometric construction based on the Voronoi
diagram, which simplifies the extension of the method to the 3D case and reduces
the computational costs.

2.2.1 Pseudo Natural Neighbor Weight Functions

When we consider the MLS technique, summarized in the first section of this paper,
the approximation of a field u(x), uh(x), can be written as:

uh(x) = pT (x)A−1Bu = ψT (x) u (43)

where ψ(x) is the vector containing the shape functions associated with neighbors of
point x. In the following, we are interested in defining an appropriate weight function
wi(x) such as the resulting shape functions satisfy: (a) the Kroenecker delta property
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Fig. 2. (Left) Eccentric conical function. (Center) Support of a cone function portion. (Right)
Weight function.

(ψi(xj ) = δij ); (b) the linear consistency (which is automatically satisfied in the
MLS framework); (c) the linearity of the shape functions on the domain boundary;
and (d) ψi(xj ) vanishes on the Delaunay spheres containing the node ni .

The following weight function is proposed to satisfy the former conditions. The
definition is given here in 2D, but is straightforward in 3D. Let a cone function which
basis matches one of the Delaunay circle containing the point x, and where the pro-
jection of the tip matches the node ni (see Figure 2).

The value of the conic function computed at point x is given by:

f (x) = ‖niP‖ − ‖nix‖
‖niP‖ (44)

with:

niP = −2

(
cni · nix
nix · nix

)
nix (45)

In order to avoid the overlapping of cone functions whereas conserving the con-
tinuity of the weight function, a cone portion is associated with each of the Delaunay
triangles connected to node ni . The cone function is thus non-zero if a point x belong
to the intersection between the Delaunay circumcircle and the portion of the plane
such as any point in the basis formed by the origin node ni and the vectors ni − nj

and ni − nk has positive coordinates in this basis. nj et nk are the other two vertices
of the triangle (see Figure 2). Due to the particular shape of its support, this weight
function guarantees interpolation conditions (wi(xj ) = δij ), as Delaunay circles
passes through the nodes. Furthermore, the properties of positiveness and monoton-
ically decreasing are verifed. As the cone functions are linear between two nodes,
the continuity of the weight function is guaranteed.

In order to guarantee strict linearity of the shape functions over the boundaries
of the domain, the shape functions associated with interior node must vanish on the
external boundaries. For this purpose, we multiply the weight function in Equation
(44) by a function 	(x) which vanish over the external boundaries. A simple solution
is to define 	(x) by:
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	(x) = NT (x)δ (46)

where N(x) is the vector containing the linear finite element shape functions associ-
ated with the Delaunay triangles, and δ the nodal values of a field taking a unit value
inside the domain, i.e. δi = 1 if xi ∈ �, vanishing on the domain boundary 
 ≡ ∂�,
i.e. δi = 0 if xi ∈ 
.

2.2.2 Numerical Example

The following Poisson’s problem is considered in a 3D unit cube:{
�u = 0 in � = ]0, 1[3

u(x) = ug(x) = 2x2 − y2 − z2 on 
 = ∂�
(47)

whose exact solution results:

uex(x) = 2x2 − y2 − z2 in � (48)

The weak form associated with the problem defined in Equation (47) is expressed
by:

Find u ∈ H 1(�) (u = ug on 
) such that:∫
�

∇u∗ · ∇u d� = 0, ∀u∗ ∈ H 1
0 (�) (49)

where H 1(�) and H 1
0 (�) are usual Sobolev functional spaces.

The problem has been solved by using several refined meshes: 3×3×3, 5×5×5,
7 ×7 ×7 and 10 ×10 ×10 nodes. The energy norm has been computed to determine
the convergence of the solution. Results are depicted in Figure 3. A comparison
between the computational times associated with standard Sibson and pseudo-NEM
shape functions is depicted in Figure 3 (right).

2.2.3 CPU Time Comparison between Different NN Approximations

As mentioned before, CPU time is one of the major drawbacks of the NEM, when
compared to that of the FEM. In order to compare how important this cost could
be, we analyze here a problem with know analytical solution, solved through the
four different techniques, namely, NEM-Sibson, NEM-Laplace, Pseudo-NEM and,
of course, FEM.

The problem here considered is the compression of a cubic block of a linear
elastic material (or, equivalently, a stress patch test). A displacement of 0.01 on z

direction is prescribed on the top face and the nodes of the bottom face are con-
strained in the z direction, see Figure 4.
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Fig. 3. (Left) Convergence analysis of the Poisson’s problem. (Right) Comparison of CPU
times of Sibson-NEM and pseudo-NEM discretizations.

Fig. 4. Geometry of the compression test.

Different clouds of nodes have been employed, both in regular and irregular dis-
tributions, in an attempt to check wether the relative location of the nodes has an
influence on the neighbour search time.

In the FEM context, Delaunay triangulation has been used, and three integration
points are used in each tetrahedron. All meshless simulations use the same integra-
tion points.

Figure 5 shows the time needed to solve different problems. It is obvious that
solving the problem using Sibson’s shape functions (denoted by NEM-S) employs
the highest amount of time, increasing very fastly with the number of nodes. Further-
more, the time needed for irregular distributions is higher than regular ones, since
regular ones have less Delaunay tetrahedra and thus less integration points.

It is also interesting to evaluate the ratio of total time employed in calculating
the shape functions and their derivatives, compared with the CPU time of the whole
simulation. This is shown in Figure 6, where the pseudo NEM (P-NEM) approach
needs less than 10% of total time and decreases comparatively when the size of the
problem increases. Laplace shape functions (NEM-L) also decreases, but takes about
30% of the total time. Again, Sibson approach is very time consuming.
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Fig. 5. Total computing time comparison.

Fig. 6. Time employed in shape function calculation vs. total simulation time.

2.3 Hermite Natural Element Formulation

In this section, quadratic approximation consistency is achieved through a diffuse
Hermite interpolation [18], by using natural neighbor weights in the moving least
square approximation. Compared to standard moving least square method, the min-
imization is performed both with respect to the primary variable, and the diffuse spa-
tial derivatives. For this purpose, we consider an interpolation scheme in the form:

uh(x) =
n∑

i=1

ψi(x)ui +
n∑

i=1

ψx
i (x)

∂ui

∂x
+

N∑
i=1

ψ
y

i (x)
∂ui

∂y
(50)
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where ψi(x) are the shape function associated with the unknown variable ui , ψx
i (x)

and ψ
y

i (x) are the shape function associated with the space derivative of ui with
respect to x and y, respectively. For the sake of simplicity, we consider the sum in
Equation (50) extended to all the nodes N instead to the n natural neighbors, but
both expressions are equivalent because the shape functions related to non-neighbor
nodes vanish. In the above framework, ui , ∂ui/∂x and ∂ui/∂y are unknown (degrees
of freedom). In order to construct the shape functions, we consider the following
approximation scheme:

uh(x) = p(x)T a(x) (51)

where p(x) is a polynomial basis, i.e. p(x) = {1, x, y, xy, x2, y2} and a(x) is a
vector of unknown coefficients. In order to determine a(x), we consider the following
functional:

J = 1

2

N∑
i=1

wi(x)

{[
pT (x)a − ui

]2 +

+ α

[
∂pT

∂x
(x)a − ∂ui

∂x

]2

+ α

[
∂pT

∂y
(x)a − ∂ui

∂y

]2
}

(52)

where wi(x) are the natural neighbor shape functions computed at point x, i.e.
wi(x) = φi(x), ∂pT /∂x(x) and ∂pT /∂y(x) represent the derivative of the basis p(x)

with respect to x and y, respectively. α is a dimensional parameter which is fixed to
1 in our simulations. Minimizing J with respect to a(x), (∂J/∂a(x) = 0), leads to
the following system of equations:

Aa(x) = Bq (53)

with

q =
{
u1,

∂u1

∂x
,
∂u1

∂y
, u2,

∂u2

∂x
,
∂u2

∂y
, . . . , uN ,

∂uN

∂x
,
∂uN

∂y

}
.

Derivatives of the shape functions are obtained through standard procedure [4],
involving the derivative of the weight functions wi(x). The derivatives involved in q
are in fact pseudo-derivatives (diffuse derivatives) and they cannot be used for dis-
cretizing variational formulations, however they can be used in a collocation frame-
work. Closed form of Sibson shape functions derivatives can be found in [17]. The
obtained shape functions are depicted in Figure 7.

According to Equation (52), the new degrees of freedom associated with the
derivatives can be interpreted like pseudo-derivatives which do not coincide with the
real derivatives. Thus, imposition of essential boundary conditions becomes delicate.
Nevertheless, in order to investigate the accuracy of the technique without being
polluted by this issue, we consider in next section a Poisson’s whose solution and its
derivatives on the boundary vanish.
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Fig. 7. Hermite natural neighbor shape functions.

2.3.1 Numerical Example

The boundary value problem is defined by:{−�u = f in � = ]0, 1[×]0, 1[
u = ug on 
 ≡ ∂�

(54)

we consider from now on:{
ug = 0,

f = 4π2 {2 cos(2πx) cos(2πy) − cos(2πx) − cos(2πy)} (55)

whose exact solution results in:

uex(x) = {1 − cos(2πx)} {1 − cos(2πy)} (56)

The weak form associated with Equation (54) is given by:
Find u ∈ H 1

0 (�) such that:∫
�

∇u · ∇δu d� =
∫

�

f δu d�, ∀ δu ∈ H 1
0 (�) (57)

where H 1
0 (�) is the usual Sobolev functional space. The Hermite-NEM interpola-

tion just described is used for approximating the trial and test functions u and δu,
respectively, which are built with the only contribution of internal nodes.

The error using the energy norm is computed according to:∥∥∥u − uh
∥∥∥

E(�)
=

(
1

2

∫
�

(∇uex − ∇uh)T (∇uex − ∇uh)

)1/2

(58)

For the evaluation of both Equation (57) and (58), the Voronoi cells associated
with each node are triangulated and a Gauss quadrature scheme is applied in each
subtriangle, using 3, 6 and 12 integration points. Figure 8 compares the accuracy
of the Hermite-NEM (H-NEM) approximation with the standard Sibson-NEM. If
only three Gauss points quadrature is used, the accuracy of the H-NEM exceeds the
accuracy of the NEM, but the difference in the convergence rate is not significant. If
a fine enough quadrature scheme is applied (6 points or more), the H-NEM reaches,
as expected, a second-order convergence rate.
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Fig. 8. Convergence analysis using the energy norm for the 2D Poisson’s problem.

2.4 Hierarchical Bubbles Functions in the Natural Element Method

The interest of this approach lies in the construction of mixed approximations to be
applied in the stable discretization of mixed variational formulations as encountered
in mechanics of incompressible media where the mixed approximation must verify
the well known LBB condition.

Consider an open bounded domain � ∈ �dim with boundary 
, dim being the
space dimension. Assume that � is discretized by a set of nodes S. Let D(S) the sim-
plicial complex associated with the Delaunay tesselation of S. A simplicial complex
K in �dim is a collection of simplices (hypertetrahedra) in �dim such that:

(i) Every face of a simplex K is in K;
(ii) The intersection of any two simplices of K is a face of each of them [15].

If we denote Fk the set of k − simplices (0 ≤ k ≤ 3), in R3 the Delaunay
tessellation D(S) will be defined as the simplicial complex defined by the tetrahedra
in F3, the triangles in F2, the edges in F1, and the vertices in F0. We denote these
collections T (S), F(S), E(S) and V (S), respectively.

In order to construct richer approximations, new shape functions can be associ-
ated with the different k-simplices. The case 1 < k < 3 is related to the concept
of hierarchical methods [27]. The concept of hierarchical bubble shape functions is
a very simple way to construct richer approximations. The extension to meshfree
methods is not an easy matter in general, in the absence of topology related to some
elements. In the natural element, the underlying Delaunay triangulation allows the
use of such approach.
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Fig. 9. Supports of the bubble shape functions associated with the Delaunay k-simplex; (a)
support of a Delaunay triangle χj ni − nj − nk ; (b) support of a Delaunay edge χj ni − nj .

The key idea is to associate new shape functions to the k-simplices of the
Delaunay tessellation, i.e. tetrahedra T ′ ∈ T (S), triangular facets F ′ ∈ F(S) and
edges connecting two nodes in the Delaunay triangulation E′ ∈ E(S) [26].

2.4.1 b-NEM Approximation

A k-simplex (K-S) (vertex, edge, triangular facet or tetrahedron) is generated by
K = k + 1 vertices (k = 0, 1, 2 and 3, respectively). The bubble shape function of
an entity χj generated by K vertices is computed like:

φ∗
j (x) =

K∏
p=1

φp(x) (59)

where φp(x) is the NEM shape function associated with node np computed at point
x.

The support of a K-S generated by K vertices (nodes) in S is the union of the
Delaunay spheres containing the K nodes. It results, in 2D:

(i) if χj is a Delaunay triangle (χ ∈ F(S)) (k = 2), the support of χj is composed
with one circle containing the 3 generating nodes of the triangle (see fig. 9 (a));

(ii) if χj is an edge of a Delaunay triangle (χ ∈ E(S)) (k = 1) , the support of χj is
composed with the union of two circles (if χj /∈ 
), or one circle if χj ∈ 
 (see
Figure 9(b)), containing the 2 generating nodes of χj .

We now consider the following approximation scheme:

uh(x) =
n∑

i=1

φi(x) ui +
m∑

j=1

φ∗
j (x) γj (60)

where n is the number of natural neighbors of point x, φi(x) is the NEM shape
function related to node ni ∈ S computed at point x, φ∗

j (x) is the bubble shape
function defined in Equation (59) associated with the m influent K-S, and γj is an
additional degree of freedom.
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Remarks.

(i) Different combinations can be chosen for enriching the approximation, i.e. using
only bubble functions associated with the edges, with the Delaunay triangles, or
both.

(ii) The evaluation of the bubble shape functions associated with the K-S is not
costly as it only requires the product of available NEM shape functions com-
puted at point x.

(iii) Despite that the approximation scheme defined in Equation (60) is richer than
standard NEM approximation, it does not satisfy any polynomial reproducing
property other than the linear consistency.

(iv) In this paper, two approximations schemes are investigated and compared: (i)
one using bubble functions associated with the Delaunay triangles (that we call
b1-NEM); and (ii) one using bubble functions associated with the Delaunay
edges (called b2-NEM).

2.4.2 b-NEM with Reproducing Properties

In this section we proceed to correct the shape functions previously constructed de-
fining the approximation scheme (60) within a standard moving least squares frame-
work, in order to evaluate the benefits provided by the higher approximation consist-
ency. The MLS procedure has been summarized in the first section. Let wi(x) some
weight function either associated with a standard or a bubble-NEM shape function,
i.e. wi(x) = φi(x) or wi(x) = φ∗

i (x), computed at point x.
The MLS procedure leads to:

uh(x) = pT (x)A−1(x)B(x)u (61)

where we can identify the vector containing the approximation shape functions:

ψT (x) = pT (x)A−1(x)B(x) (62)

As just commented, the reproducing b-NEM shape functions are computed by

setting wi(x) =
{
φi(x); φ∗

j (x)
}

, φi(x) and φ∗
j (x) being the shape functions defined

in (29) and (59).

Remark. The main difference between the reproducing-b-NEM and the b-NEM
without additional reproducing properties is that physical coordinates must be
associated with each K-S shape function, in order to evaluate the terms pj (xi ) and
pk(xi ) in Equations (5) and (6). A simple solution is to consider the K-S centroid
coordinates.

In the following, the b1-NEM and b2-NEM schemes just described are corrected
using the MLS procedure just described. In the most unfavourable case a point x is

116



Coupling Natural Element and Moving Least Squares Techniques

influenced by four shape functions in the b1-NEM (3 NEM shape functions, and 1
bubble shape function associated with the Delaunay triangle), and being these weight
functions independent, the method is stable if the basis pT (x) contains 4 monomials.
We call b1-NEM+ the enrichment of the b1-NEM from pT (x) = {1, x, y, xy}. Fol-
lowing similar assumptions, b2-NEM+ results from the enrichment of the b2-NEM
using pT (x) = {1, x, y, xy, x2, y2}.

We have shown in [26] that essential boundary conditions can be enforced dir-
ectly in all the proposed approximation schemes, as the bubble-NEM shape functions
vanish over all external boundaries. For further details, see the proofs for the different
schemes in that paper.

2.4.3 Natural Element Discretization

We consider the usual mixed variational formulation of the incompressible linear
elastostatics problem where displacement trial and test functions are interpolated
using the same shape functions, as the same for the pressure trial and test functions.
In the following, the pressure is interpolated using the standard (Sibson) NEM shape
functions, while the displacements are interpolated using the b-NEM or the b-NEM+
shape functions previously defined (see [26] for more details).

In order to perform the inf-sup test a sequence of successive refined meshes is
considered (uniform distributions) according to the procedure proposed in [2, 8].
The objective is to monitor the inf-sup values, λmin, when h decreases. If log λmin
decreases with logh the approximation scheme does not pass the LBB numerical
test, which requires that log λmin remains bounded by a positive constant when log h

decreases.
Figure 10 shows numerical test comparing some mixed NEM approximation

schemes, i.e. b-NEM/NEM, NEM/Thiessen [21] (NEM approximation for the dis-
placements and constant pressure within each Voronoi cell), and the P1/P0 and P2/P1
mixed FEM approximation schemes. The FEM computations are carried out using
directly the Delaunay triangles. As claimed in other previous works [10], the mixed
NEM/Thiessen approximation scheme does not pass the numerical inf/sup test. The
mixed FEM P1/P0 also violates the LBB condition [8]. All the bubble-NEM schemes
are clearly LBB compliant, being the results similar to the ones computed by using
the P2/P1 FEM, which satisfy the LBB condition.

As noticed previously, the NEM shape functions only possesses linear complete-
ness [22]. The enrichment of bubble in the context of MLS does not seem to increase
the convergence rate with standard integration despite the proved increase in the ap-
proximation consistency. The reasons of this strange behavior constitutes a work in
progress.
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Fig. 10. inf-sup numerical test.

2.5 Natural Neighbor Interpolation with Discontinuous Derivatives

To define NN-approximations with discontinuous derivatives we could proceed in
the context of the partition of unity (as in the extended finite element technique) [1].
However, in this work we propose an enrichment that does not involve additional
degrees of freedom. For this purpose we start introducing the enriched reproducing
kernel particle method, that by introducing the NN-interpolation as kernel function
leads to NN-interpolation functions with discontinuous derivatives.

2.5.1 Introducing NN Approximations into E-RKPM: The Enriched NEM
(E-NEM)

We consider a level set description �(x) of an interface where the field normal de-
rivatives (with respect to the interface) are discontinuous. Now, we can introduce as
enrichment function ue(x) the following function:

ue(x) = H0(�(x))�(x) (63)

where

�(x) =

⎧⎪⎨
⎪⎩

�(x) < 0 if x ∈ �1

�(x) > 0 if x ∈ �2

�(x) = 0 if x ∈ 
d

(64)

and {
H0(�(x)) = 1 if �(x) ≥ 0

H0(�(x)) = 0 if �(x) < 0
(65)
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Fig. 11. (Left) Enriched Natural Neighbor approximation with discontinuous normal derivat-
ives across a circular interface. (Right) x-derivative of the temperature field.

Now, we consider a linear consistency enriched with the function given by Equa-
tion (63) and the kernel function w(x − xi , h) = φi(x) (the natural neighbor shame
functions). The resulting approximation shape functions have the linear consistency
but allows also to reproduce discontinuous normal derivatives across the interface

d .

To illustrate the capabilities of the proposed technique we consider the exact
solution of the Laplace’s problem (modelling the temperature distribution in a steady
heat transfer problem) defined in a bi-material consisting of two cylinders with dif-
ferent thermal conductivities. The reproduction tests have been carried out using the
E-RKPM as well as the E-NEM, where the circular interface was modelled from the
distance to that interface that multiplies the Heaviside’s function related to that dis-
tance. Figure 11 illustrate a detail of the reconstructed temperature field where we
can notice the accurate interface description. The discontinuity in the field derivat-
ives is accurately accounted, as suggested by the representation of the x-derivative
depicted in Figure 11.

Finally, in order to quantify the results accuracy we compare in Figure 12 the
error (using the two usual norms) using the E-RKPM and the E-NEM techniques.
In Figure 12 (right) we can notice that the E-NEM error is not affected by the slope
change across the interface, that increases with the difference of thermal conductiv-
ities (for K1 = 10 the conductivities ratio is 10 whereas it is of 100 for k1 = 100.

3 Conclusions

We have explored the connections between NN and MLS approximations, coming
from the introduction of the NN approximation functions as the weights in the scope
of MLS. Thus, we can adjust the approximation consistency (with the possibility
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Fig. 12. (Left) Approximation errors using the E-RKPM and the E-NEM. (Right) E-NEM
approximation error for different conductivities ratios.

to enrich the approximation basis with some particular functions describing issues
of the searched solution) in the framework of the MLS techniques, imposing exactly
essential boundary conditions from the use of the NN approximation as MLS weight.

This approach opens, as proved in the present paper, the way to a wide range of
formulations: (i) NN collocation strategies; (ii) faster natural element discretizations;
(iii) Hermite natural element formulations; (iv) hierarchical bubbles functions in the
natural element method; and (v) and NN enriched approximations.
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Abstract. Meshfree methods are recent additions to the family of numerical techniques for
the solution of partial differential equations. Issues like shear locking are yet to be clarified.
Earlier expectations that these methods would be free from locking problems, were not con-
firmed. In particular, it is shown that, for the case of moderately thick structural beam and
plate theories, if the same approximation is used for both displacement and rotation(s), then
shear locking occurs.

Considering that reduced integration is not an option in the present context, a review
of the available methodologies is presented. It is proven that one of these methodologies,
that of consistent fields, i.e., where the rotation(s) approximation(s) are obtained from the
displacement approximation, always leads to linearly dependent approximations.

As an alternative, a shear deformable framework for structural theories is presented where,
instead of the rotations, the shear strain(s) are approximated in addition to that of the displace-
ment field. The particularization for beams and plates is presented and a comparison with the
traditional thin (irreducible) and moderately thick (shear deformable) theories is made. One
aspect to emphasize is the presence of second order differentials in the dual pair of equilibrium
and compatibility operators.

Key words: Meshless approximations, shear locking, structural models.

1 Introduction

1.1 A State-of-the-Art Review

The presence of locking (whether is shear, membrane or volumetric) in the numerical
solutions can lead to totally erroneous solutions.

In particular, shear-locking is a well studied phenomenon in the conventional
displacement approach of the Finite Element Method (FEM). In this case the problem
is caused by the use, and eventually abuse, of the same interpolation functions for
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all the generalized displacement fields. Although this approximation criteria is very
simple to implement and computationally inexpensive, it can not reproduce the real
behaviour of slender structures.

Although not in a very elegant manner (and lacking some mathematical back-
ground), the reduced integration technique proposed by Zienkiewicz et al. [27] in
the early 70s has been, in general, the preferred option to alleviate this problem.
The mathematical foundations of this procedure were latter given by Malkus and
Hughes [18] and is based on the equivalence theorem between the reduced integra-
tion displacement based approach and certain mixed models derived, e.g., from the
Hellinger-Reissner functional. Thus, the reduced/selective integration procedure can
be interpreted just as an efficient way to implement mixed methods.

The use of the equivalence theorem requires the construction of an auxiliary field
with nodal points, in each element, located on the sample points of the exact integ-
ration rule. Hence, this procedure is, in general, impracticable for meshless methods
due to the inexistence of such integration rule for the usual non-scattered data ap-
proximations. Examples of these approximations are provided by the Moving Least
Squares (MLS) [14], hp-clouds families F

k,p

N [9], the natural neighbour coordinates
(or Sibson coordinates) [22] or the reproducing kernel particle interpolation func-
tions [15], which are associated with the EFG method [3], the hp-cloud method
[9], the Natural Element Method (NEM) [22] and the Reproducing Kernel Particle
Method (RKPM) [15], respectively.

Other common alternatives used in the FEM, like the Assumed Natural Strain
(ANS) method [12] and the Enhanced Assumed Strain (EAS) method [21] are also
unsuitable for meshless methods.

Thus, alternative procedures were proposed to circumvent the shear-locking
problem. In the following, a brief review is presented:

• Increase of the degree of basis functions. It is well known that the increase of the
degree of the interpolation functions can alleviate the locking effects in the tradi-
tional FEM. However, the convergence rate of the approximation is not optimal
and there will exist spurious oscillations in the shear forces [20]. The equival-
ence in some meshless methods is the increase of the number of terms in the
enrichment basis functions, i.e., p-refinement. This approach, only available for
meshless methods with p capabilities, was investigated by Mendonça et al. [6]
to solve shear deformable beams and by Garcia et al. [10] to analise plates by
the h-p cloud method.

• Nodal integration. Several nodal schemes were devised for the underintegration
of the weak form. Usually this procedure suffers from spurious singular modes,
as noted by Beissel and Belytschko [2] and it requires some sort of stabiliza-
tion. Wang and Chen [26] used a curvature smoothing to solve shear deformable
beams and plates.

• Mixed formulation. With a mixed formulation, based on independent approxim-
ations of some interior fields, the volumetric locking can be eliminated, as shown
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by Dolbow and Belytschko [7] in the EFG context and De and Bathe [5] in the
Method of Finite Spheres (MFS)1 framework. This idea could also be extended
to the shear-locking problem.

• Consistency paradigm. This idea is based on the field-consistency paradigm sug-
gested by Prathap [20] (sometimes referred as unequal order of interpolation)
and was developed in the meshless framework by Donning and Liu [8] resorting
to cardinal splines for approximation. Of course, the original expression unequal
order of interpolation has to be restated in the context of the meshless methods,
as most of the meshless functions do not posses interpolatory character. This ap-
proach was later revisited by Kanok-Nukulchai et al. [13] and Tiago and Leitão
[23] in the EFG context.

• Change of variables. By a simple change of the independent variables, it is pos-
sible to construct a locking-free formulation, as the model proposed by Cho and
Atluri [4] for the analysis of Timoshenko beams by the Meshless Local Petrov–
Galerkin (MLPG) [1] method. This change does not increase the total number of
degrees of freedom.

As could be anticipated, the increase of the degree of basis functions does not elim-
inate completely the shear-locking, as can be seen in [10].

Although the nodal integration sounds very appealing to use in conjunction with
a meshless method, this approach can lead to singularities in the system matrix if
special procedures, like the addition of stabilization terms to the energy functional,
are not employed. Sometimes these stabilization terms involve second order derivat-
ives [2], which are specially expensive in MLS approximations. The weights of nodal
integration rules are, sometimes, based on the Voronoy diagram, which is, in fact, a
sort of cell structure. Another important fact is the complexity of the approximation
functions, which leads to awkward integrals, when used in conjunction with a weak
form. Thus, a poor integration of this form leads, in general, to unsatisfactory results.

The mixed formulation will work correctly as long as the Ladyzhenskaya–
Babǔska–Brezzi (LBB) stability criterion is satisfied. In general, this is not a trivial
task but efforts have been made in this direction in the aforementioned works [7, 5] to
identify the right combinations of approximations of the displacement and the pres-
sure fields that pass the LBB condition. Also, there is an increase in the dimension
on the problem.

Tiago and Leitão [23] proved that the consistency approach has a side effect:
gives rise to rank deficient systems of equations.

The change of variables approach seams very promising since it opens the pos-
sibility of employing a locking-free formulation but still using the same approxim-

1 The Method of Finite Spheres uses the Galerkin method with a particular set of the h-p

cloud approximation families, F
k,p
N

. More precisely, it employs k = 0, i.e. the partition
of unity is the Shepard function. It can also be shown that in MFS the essential boundary
conditions are implicitly imposed via the same modified variational principle as presented
by Lu et al. [17].
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ation functions for all the unknown fields. Surprisingly, in the original work of Cho
and Atluri [4] this possibility was not explored, since different2 approximations were
used for the generalized displacements and strains.

1.2 The Present Contribution

In Section 2 a unified framework for the derivation of structural theories is exposed.
The interest variables and operators of the structural theories are derived from the
three-dimensional continuum using the Principle of Virtual Work (PVW). The ad-
vantages of proceeding in this way are (i) a clear understanding of the assump-
tions needed, (ii) a distinction is made between the generalized displacements in
the domain and the generalized displacements needed to impose the boundary con-
ditions, here called pseudo-generalized displacements and (iii) all the loading terms
are naturally taken into account in a straightforward manner. As an example, the clas-
sical and first order models for beams and plates are rewritten in the aforementioned
framework.

In Section 3 the consistency approach is thoroughly analyzed. The reproducing
properties of the spaces spanned by the consistent approximations for the particular
cases of MLS/RKPM nodal functions are characterized. A proof of the linear de-
pendence of the consistent approximation is given and the exact number of linear
dependencies appearing in the approximation is identified. An alternative interpret-
ation, in which the compatibility operator is modified in order to allow the use of
equal approximations for all the generalized displacements, is also presented.

In Section 4 a Displacement-Strain Primary Variables (DSPV) formulation is de-
veloped. The motivation to develop a formulation in which the unknowns are the
transversal displacements and strains is the possibility of generating a locking-free
model that can be discretized and implemented in order to obtain solutions of plates
independently of their dimensions, i.e., they may should be regarded as thin or thick
and, at the same time, avoid the use of any additional resource in the approxima-
tion. In fact, the objective is to employ the same approximation functions for all
the unknown generalized displacements. This procedure provides an inherited eleg-
ance and simplicity of implementation. This formulation is a generalization of the
change of variables procedure whose enhancements are the use of the same frame-
work for both beams and plates and the unveil of the true meaning of all the variables
at stake. Notice that the original formulation was developed only for beams and the
actual problem being solved (governing equations and boundary conditions) was not
presented.

2 Although both approximations may share the designation GMLS they are, in fact, different.
This is due to the different norms used in the approximations functionals for displacements
(H 1) and strains (L2).
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As for the implementation aspects, the discretization should be exactly the same
for all the generalized displacements thus (i) simplifying the implementation and
(ii) increasing the performance.

By approximating directly the displacements and strains the model can reproduce
exactly the classical limit models3 by a simple direct elimination of the strains, which
is not possible in a model whose primary variables are the displacement and the
rotations (the first order theories).

A crucial aspect is the one order increase, relatively to the first order C0 formula-
tions, of the required continuity of the approximation for the displacement, which is
now C1. If in FEM this would be (almost) prohibitive (for problems with dimensions
greater than one), with meshless approximations this is trivial to achieve. Hence, this
approach is especially suited for meshless approximations.

The complete set of associated equations will be derived from the general frame-
work, clearly showing the meaning of all relations. The DSPV formulation includes
the classical theories as particular cases, i.e., the compatibility and equilibrium differ-
ential operators of second order that appear in the classical theories are also present
in this theory.

The shear-locking phenomenon is, usually, associated with high slenderness ra-
tios, typical of structures requiring geometrically non-linear analysis. Although only
linear structural theories will be addressed here, the use of some of the concepts
could be extended to geometrically non-linear analysis of structures, as in [24] for
beams and [25] for shells.

A comparison of the formulations (classical, first-order and DSPV) for beams
and plates in terms of the variables and operators is also made.

1.3 Notation

Summation convention over repeated indices is adopted in the entire text, with italic
Greek indices ranging from 1 to 2 and italic Latin subscripts from 1 to 3.

The notation

∂i = ∂

∂xi

and ∂ij = ∂2

∂xi∂xj

for derivatives is sometimes used along the text. Comma derivative notation is also
implied. The outward normal vector components are denoted by ni .[[

f
]]
(x) = f (x+) − f (x−) denotes the jump in the function f at point x.

A multi-index notation is used in Section 3. Let α = (α1, α2, . . . , αd) and
β = (β1, β2, . . . , βd) be multi-indexes such that αi, βi ∈ Z

+
0 and � ⊂ R

d be an
open set, where d is the dimension of the problem. The multi-index length of α is

3 Along the text the terminology classical limit is used to designate the classical Euler–
Bernoulli beam and the Kirchhoff–Love plate theories by opposition to the first order no-
menclature, used to coin the Timoshenko beam and the Reissner–Mindlin plate models.
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|α| = ∑d
i=1 αi , its factorial is α! = α1!α2! . . . αd !, the delta Kronecker symbol of αβ

is δαβ = δα1β1δα2β2 . . . δαdβd , xα stands for

xα = x
α1
1 x

α2
2 . . . x

αd

d (1)

and Dαu(x) is the Fréchet derivative of the function u at point x, given by the tensor

Dαu(x) = ∂ |α|u(x)

∂α1x1∂α2x2 . . . ∂αd xd

(2)

2 The Model Problem

2.1 The General Pattern

Assuming physical and geometrical linearity, the kinematic requirements, the equi-
librium conditions and the material law for the three-dimensional continuum are

ε = Du (3a)

D∗σ + f = 0 in V (3b)

σ = Cε (3c)

complemented by the boundary conditions

u = u on ∂Vu (4a)

NT σ = t on ∂Vt (4b)

and ∂V = ∂Vu ∪ ∂Vt , V = V ∪ ∂V , ∂Vu ∩ ∂Vt = ∅, where V denotes the do-
main, ∂Vu the Dirichlet boundary and ∂Vt the Neumann boundary. Moreover, ε is
the (infinitesimal) strain vector, σ is the (Cauchy) stress vector, u is the displacement
vector, u is the prescribed displacement vector, f is the prescribed body force vector,
t is the prescribed traction vector, C is a matrix of elastic coefficients, D is a matrix of
differential operators, D∗ is the adjoint of D and N is a matrix of the outward normal
components associated to D. For details on the sign convention, the collecting of the
variables and operators on the sets of equations (3) and (4), see [19].

Let T and W be appropriate trial and weighting spaces according to the con-
text where they are mentioned that satisfy the Dirichlet boundary conditions and
the homogeneous Dirichlet boundary conditions, respectively. For definition of these
spaces see, e.g., Hughes [11].

The PVW reads∫
V

δεT σdV −
∫

V

δuT fdV −
∫

∂Vt

δuT td∂Vt = 0 ∀ δu ∈ W (5)
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In general, a structural model is governed by the following set of compatibility
equations, equilibrium conditions and constitutive relations:

e = ∂d (6a)

∂∗s + p = 0 in � (6b)

s = Ee (6c)

and boundary conditions

d = d on ∂�u, (7a)

MT s = b on ∂�t. (7b)

and � = � ∪ ∂�, ∂� = ∂�u ∪ ∂�t , ∂�u ∩ ∂�t = ∅, where ∂�u denotes the
Dirichlet boundary and ∂�t the Neumann boundary. The precise definition of each
identity in the previous two sets of equations will be given in Section 2.2 for the
classical and first order models and in Section 4 for the DSPV model. These defin-
itions are based on the relations between the three-dimensional continuum and the
structural theories. For now, the sets of equations (6) and (7) are only the generalized
counterpart of (3) and (4), respectively.

The kinematics may be expressed as

u = Ar (8a)

r = Ld (8b)

ε = Be (8c)

where d is the generalized displacement vector, r is a generalized pseudo-
displacement vector, e is the generalized strain vector, A and B are matricial op-
erators and L is a differential operator. The introduction of the generalized pseudo-
displacement vector becomes necessary as the kinematic boundary conditions are
not always expressed in terms of the generalized displacements.

Let us assume the domain V and the boundary ∂V have the particular forms:

V = � × S (9a)

∂V = ∂� × S ∪ � × ∂S (9b)

and

∂Vt = ∂�t × S ∪ � × ∂S (10a)

∂Vu = ∂�u × S (10b)

Then, the internal virtual work (first term of the first member in (5)) reads4

4 The letter δ is used to denote both the variational operator and the delta Kronecker symbol.
The meaning in each type occurrence should be inferred from the context.
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V

δεT σdV =
∫

V

(Dδu)T σdV =
∫

V

(DAδr)T σdV =
∫

V

(DALδd)T σdV

=
∫

V

(BB−1DALδd)T σdV =
∫

V

(B−1DALδd)T BT σdV

=
∫

�

(∂δd)T
∫

S

BT σdSd� =
∫

�

δeT sd�

(11)

where the following definitions for the generalized compatibility operator and the
generalized stress vector emerge

∂ = B−1DAL (12a)

s =
∫

S

BT σdS (12b)

The external virtual work (second and third terms of the first member in (5)) reads

−
∫

V

δuT fdV −
∫

∂Vt

δuT tdSt = −
∫

V

δrT AT fdV −
∫

∂Vt

δrT AT td∂Vt

= −
∫

�

δrT

(∫
S

AT fdS +
∫

∂S

AT td∂S

)
d�

−
∫

∂�t

δrT

∫
S

AT tdSd∂�t

= −
∫

�

δrT qd� −
∫

∂�t

δrT gd∂�t

(13)

where the following definitions for the generalized pseudo-body force and pseudo-
surface traction vectors for the domain and Neumann boundary emerges

q =
∫

S

AT fdS +
∫

∂S

AT td∂S in � (14a)

g =
∫

S

AT tdS on ∂�t (14b)

Notice that the generalized pseudo-body force vector has a surface traction compon-
ent. The generalized constitutive relation (6c) can be derived from (12b)

s =
∫

S

BT σdS =
∫

S

BT CεdS =
∫

S

BT CBdSe = Ee (15)

with

E =
∫

S

BT CBdS (16)
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Usually further assumptions are introduced when evaluating the previous relation,
as particular stress/strain distributions or the introduction of extrinsic factors (e.g.,
shear factor).

Hence, the PVW for reads∫
�

δeT sd� −
∫

�

δrT qd� −
∫

∂�t

δrT gd∂�t = 0 ∀ δd ∈ W (17)

Notice that this equation holds irrespective of the variations δd, thus, by virtue
of (8b), also holds for arbitrary variations δr. Integration by parts on the first term of
the first member of (17) yields∫

�

δdT
(
∂∗s + p

)
d� −

∫
∂�t

δrT
(

MT s − b
)

d∂�t = 0 (18)

Here b is the generalized pseudo-boundary force vector

b =
∫

S

AT tdS on ∂�t (19)

Resorting to the fundamental lemma of the calculus of variations, the equilibrium
conditions in the domain (6b) and the boundary conditions (7) are identified.

The generalized compatibility and equilibrium operators ∂ and ∂∗ possess an
adjoint relationship. The pairs {s, e}, {d, p}, {d, b}, {r, q} and {r, g} are conjugated.

2.2 The Particular Cases

2.2.1 Beam Models

Consider the bending of a beam in the (x1, x3) plane. The domain problem is

V =
{
(x1, x2, x3) ∈ R

3|x3 ∈ � = [0, l] ⊂ R, (x1, x2) ∈ S ⊂ R
2
}

(20)

where � is the span, S is the cross section and l stands for the beam length. The
boundary is given by (9b), where ∂� = {0, l} are the end points of the beam and ∂S

is the contour of S. Hence, the first part of (9b) is the end surfaces, the second part
being the lateral surface. Notice that in the last part only static boundary conditions
are prescribed.

The standard models are expressed by the Euler–Bernoulli and Timoshenko the-
ories. These are not derived here, but all the relevant variables and operators were
expressed in the framework presented in the previous subsection and can be found
in Tables 1 and 2, in Section 4 in conjunction with the DSPV model, described in
Section 4.

In order to emphasize the common quantities and simplify the reading, in the
case that an element of the table is common to the adjacent element(s), this is written
only once.
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2.2.2 Plate Models

Consider the bending of a plate in the (x1, x2) plane. In this case

V =
{
(x1, x2, x3) ∈ R

3|(x1, x2) ∈ � ⊂ R
2, x3 ∈ S =

[
−h

2
,
h

2

]
⊂ R

}
(21)

where � is the middle plane, S is the out-of-plane dimension and h is the plate
thickness. The boundary is given by (9b), where ∂� is the middle surface contour
and ∂S = {−h

2 , h
2 } are the bottom and top surfaces. Notice that on the last part only

static boundary conditions are prescribed.
The most simple models are the Kirchhoff–Love and Reissner–Mindlin. Tables 3

and 4 gather the variables and operators of these models. In order to shorten the
notation some specific quantities were introduced. The tangential vector components
is denoted by tα . Note that t1 = −n2 and t2 = n1. Also ∂t = ∂αtα , ∂n = ∂αnα ,
mn = mαnα , mt = mαtα and mβ = mαβnα .

The Kirchhoff–Love model has one particularity which was omitted in Table 4,
namely, the fact that the boundary conditions are not only imposed along the edges
but also at the points where the boundary is non-smooth. This information is not
reproduced in the table as both shear deformable models do not posses this type of
constraints. Thus, for the Kirchhoff–Love model

w3 = 0 or
[[ − mt + m∂�

t

]] = 0 (22)

3 A Consistency Approximation Approach Analysis

3.1 Reproducing the Classical Models Limit

In the following it is sufficient to address only the one-dimensional domain problem,
the conclusion being later generalized. Consider the Timoshenko beam model. When
the thickness of the beam tends to zero, h → 0, the (engineering) shear strain of the
beam axis, η13, also tends to zero, η13 → 0. Therefore, the result for ∂ in Table 2
(Timoshenko model) and the last scalar equation of (6a) leads to ∂w1

∂x3
− θ2 = 0 or

θ2 = ∂w1

∂x3
(23)

Equivalent consistency results can be obtained for curved beams, as been reported
by Prathap [20] and Donning and Liu [8].

Notice that η13 = η13(x3) is the (engineering) strain at the beam axis and should
not be confused with the (engineering) strain γ13 = γ13(x1, x2, x3) included in vector
ε = ε(x1, x2, x3).
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Observe that, contrary to the usual FEM interpolations, an unequal order of ap-
proximation does not provide consistent fields, as was shown by Kanok-Nukulchai
et al. [13].5

For approximations based on linear combinations of functions

θ2 = �θ2θ2 (24a)

w1 = �w1w1 (24b)

equation (23) is expressed as

�θ2θ2 = ∂�w1

∂x3
w1 (25)

Hence, in the classical limit it is sufficient that the two following conditions hold:

�θ2 = ∂�w1

∂x3
(26a)

θ2 = w1 (26b)

Thus, the first of these conditions can be imposed to construct the consistent approx-
imation for the rotation field, the remainder of the EFG formulation (or for any other
meshless method) being exactly the same as in the classical form.

The equivalent conditions for plates can be derived in the same way as (26a) and
leads to

�θ1 = −∂�w3

∂x1
(27a)

�θ2 = −∂�w3

∂x2
(27b)

An awkward consequence of the approximations based on derivatives of the MLS
functions is the fact that, under certain conditions, the value of the approximation
at a given node may be independent of the nodal parameter associated to that node.
The conditions are associated with symmetries (of the weight function, of the basis
functions, the layout of the nodes and the non-intersection with the boundary) on the
support of the node.

3.2 Completeness

A result that proved to be very useful to study the properties of the consistent ap-
proximation is lemma 3.3, namely the m-consistency condition II, due to Liu et al.

5 The nomenclature employed in [13] is quite different from the one presented here. The
consistency and unequal order of approximation in the present work are designated by
matching and consistency approximation, respectively, in [13].
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[16]. This lemma was proposed for the so-called moving least-square reproducing
kernel methods and it establishes, for a complete m-order, 	 component polynomial
basis and a weight function W(x) ∈ Cm(�), the following reproducing conditions

NP∑
I=1

(xI − x)α D
β
α �I (x) = α!δαβ (28a)

NP∑
I=1

xα
I D

β
α �I (x) = α!

(α − β)!xα−β (28b)

where 0 ≤ |α|, |β| ≤ m and multi-index notation is used.
A crucial aspect for the convergence of the use of some approximation in a Galer-

kin method is the completeness of the set of approximation functions. For the set of
functions used to approximate the rotations this property can easily be revealed by
the m-consistency condition II, equation (28b). As the interest here is only on the
first order derivative, this equation is specialized in the following for that case. For
one-dimensional space with α = α and β = 1

NP∑
I=1

xα
1I

∂φI

∂x1
= α!

(α − 1)!x
α−1
1 (29)

and for two-dimensional space with α = (α1, α2) and β = (1, 0) and β = (0, 1)

NP∑
I=1

x
α1
1I x

α2
2I

∂φI

∂x1
= α1!

(α1 − 1)!x
α1−1
1 x

α2
2 (30a)

NP∑
I=1

x
α1
1I x

α2
2I

∂φI

∂x2
= α2!

(α2 − 1)!x
α1
1 x

α2−1
2 (30b)

In both cases, the approximation for rotations will only reproduce exactly complete
polynomials of degree (m−1). Hence, contrary to the usual MLS approximation, the
approximation based on the consistency conditions are not m complete. This should
not be interpreted as a drawback, e.g., when the exact solution for the generalized
displacements belongs to the space of polynomial of degree less or equal to m. In
this case, the approximation can still attain the (exact) desired solution.

The minimum degree of the polynomial basis to ensure the reproduction of con-
stant curvatures will be m = 2. This can readily be found by inspection of the
maximum order of differentiation in ∂ associated to the generalized rotations, see
Tables 2 and 4. As this is equal to one and the approximations are evaluated by the
derivative of the displacements, then m ≥ 2, in both cases, will yield the required
minimum reproducing requirement. This conclusion is similar to the Kirchhoff mode
reproducing conditions presented by Wang and Chen [26].
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3.3 Linear Dependence

However simple, the use of the approximations that fulfil a priori the consistency
conditions give rise to a singular global system because the approximation functions
are linearly dependent, i.e., given a set of n functions {u1(x), u2(x), . . . , un(x)|x ∈
�} there exists some set {ci ∈ R|i = 1, . . . , n} not all zero such that

n∑
I=1

cI uI (x) = 0, ∀ x ∈ � (31)

This will be proved by rewriting the consistency condition (28a) as the linear de-
pendency condition. For the one-dimensional case and β = 1

NP∑
I=1

(x1I − x1)
α ∂φI

∂x1
= α!δα1 (32)

and for two-dimensional space with α = (α1, α2) and β = (1, 0) and β = (0, 1)

NP∑
I=1

(x1I − x1)
α1 (x2I − x2)

α2
∂φI

∂x1
= α1!α2!δα11δα20 (33a)

NP∑
I=1

(x1I − x1)
α1 (x2I − x2)

α2
∂φI

∂x2
= α1!α2!δα10δα21 (33b)

From equation (32) and α = 0 the linear dependence condition arises with cI = 1
and uI = ∂φI

∂x
. This is the only value of α that fulfils the linear dependence condition,

hence, in one-dimensional problems only one deficiency per generalized rotations
field exists. Alternatively, these results could be revealed by using the partition of
unity paradigm. For the one dimensional case, from the differentiation of

NP∑
I=1

φI = 1 (34)

follows
NP∑
I=1

∂φI

∂x
= 0, ∀ x ∈ � (35)

which agrees with (32) for α = 0.
This means that for plane bending problems the rank deficiency of the global

matrix is one (besides the two rigid body motions, (RBM’s)) and for full three dimen-
sional beams the rank deficiency of the global matrix is two (besides the six RBM’s).
Of course, the RBM’s are suppressed by the imposition of the Dirichlet boundary
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conditions. Moreover, equation (35) shows that, in fact, a partition of nullity is used
in this case for the approximation of the rotation fields.

From equation (33a) and α1 = 0 there are
∑m

α2=0 α2 = m + 1 possibilities that
fulfil the linear dependence condition, {∀x|x ∈ �}. In this case, cI = (x2I − x2)

α2

and uI = ∂φI

∂x1
. Hence, contrary to the one-dimensional case, the number of deficien-

cies depend on the m-order of the polynomial basis. Similar conclusion can be drawn
from equations (33b) and the total number of the linear dependencies for a plate is
2(m + 1).

Remarkably, these facts, that were numerically confirmed, passed unnoticed until
now. This may be related to errors induced by the the non-exact integration of the
weak form appearing in a Galerkin method. Hence, linearly dependent approxima-
tions will only induce very ill-conditioned system matrices. Nevertheless, if an exact
integration procedure were to be carried out, the global system would be, in fact,
singular.

This conclusion does not mean that the consistency approach should not be used.
It only indicates that special care should be taken (i) in the solution algorithm of
the system of equations and (ii) when the number of null eigenvalues of the system
matrix plays an important role in the problem under analysis. An immediate applic-
ation of the last result is the detection of a cross of a limit or bifurcation point in a
geometrically non-linear analysis, where the rank deficiency caused by the approx-
imation has to be taken into account. Notice that this kind of problems is especially
pronounced in very slender elements, precisely where the shear locking phenomenon
frequently occurs.

3.4 An Alternative Interpretation

The implementation of the consistency approach can be made by the embedding
of the consistency conditions in the compatibility operators and by using the same
approximation functions for all the generalized displacements. The resulting com-
patibility operators for beams and plates are

∂ =
[ · ∂33
∂33 −1

]
and ∂ =

⎡
⎢⎢⎢⎢⎣

· −∂11 ·
· · −∂22
· −∂12 −∂12
∂1 −∂1 ·
∂2 · −∂2

⎤
⎥⎥⎥⎥⎦ (36)

respectively, where “·” is equal zero.
It can be shown that this modification on the compatibility equations has its dual

on the equilibrium equations. These new equilibrium equations can be obtained from
the usual ones by the application of a certain differential operators.

From the previous expressions, it is clear the appearance of second order deriv-
atives, which are typical of the classical theories.
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4 Displacement-Strain Primary Variables (DSPV) Formulation

4.1 Introduction

As established in the last section, the use of consistent approximations has some
drawbacks relatively to the usual Timoshenko formulation. In fact, the use of a linear
dependent basis gives rise to the appearance of spurious kinematic modes. In order to
circumvent this inconvenience, a first-order shear-deformation model for beams and
plates is developed in this section. The main idea in this theory is to use the strains as
primary variables instead of the rotations. An attempt to unify the concepts and the
notation is made in order to identify similarities and point-out differences between
the DSPV formulation and the traditional Euler–Bernoulli/Timoshenko (beams) and
Kirchhoff–Love/Reissner–Mindlin (plate) models.

Usually, structural theories are derived departing directly from the domain � sub-
jected to a certain loading. On the contrary, here the models are derived right from the
3D continuum, thus leading to the appearance of some loading terms which are not
usually considered. Nevertheless, all of them have a simple physical interpretation.

4.2 The Plane Beam Theory

Consider a linear shear-deformable straight beam whose axis is along x3 direction.
To simplify the exposition it is assumed that the axis of the beam is constrained to
lie in the (x1, x3) plane and not to twist or warp. In this case the domain V is given
by (20).

Let the generalized pseudo-displacement vector, r, the generalized displacement
vector, d, and the generalized strain vector, e, be

r =
[
w1
θ3

]
d =

[
w1
η13

]
e =

[
χ2
η13

]
(37)

where w1 is the transversal displacement, θ2 is the rotation along x2 axis, κ2 is the
curvature along x2 axis and η13 is the (engineering) strain.

Observe that the usual generalized displacement vector in the Timoshenko beam
theory agrees with the pseudo-generalized displacement vector in DSPV.

The matrix, A, the differential operator, L, and the matrix, B, read

A =
⎡
⎣1 ·

· ·
· −x1

⎤
⎦ L =

[
1 ·
∂3 −1

]
B =

⎡
⎢⎢⎢⎢⎢⎢⎣

· ·
· ·

−x1 ·
· ·
· 1
· ·

⎤
⎥⎥⎥⎥⎥⎥⎦ (38)

The compatibility operator given by (12a) results in
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∂ =
[
∂33 −∂3
· 1

]
(39)

The generalized stress vector is given by (12b) and reads

s =
[
M2
V1

]
=

∫
S

[−x1σ33
σ13

]
dS (40)

where M2 and V1 are the bending moment and shear force, respectively.
The generalized pseudo-body force and generalized pseudo-surface traction vec-

tors are given by (14) and read

q =
[
p�

1
m�

2

]
=

∫
S

[
f 1

−x1f 3

]
dS +

∫
∂S

[
t1

−x1t3

]
d∂S in � (41a)

g =
[
p∂�

1
m∂�

2

]
=

∫
S

[
t1

−x1t3

]
dS on ∂�t (41b)

Integration by parts on the first term of the first member of (17) yields a set of equa-
tions with the format of (18) where

∂∗ =
[−∂33 ·

−∂3 −1

]
p =

[
p�

1 − m�
2,3

−m�
2

]
(42)

and

MT =
[−n3∂3 ·

−n3 ·
]

b =
[
p∂�

1 + m�
2 n3

−m∂�
2

]
(43)

After the plane stress assumptions, σ11 = 0 and σ22 = 0, are introduced in (3c)
and after the introduction of the shear factor κx , the generalized constitutive operator
resulting from (16) is

E =
[
EI2 ·

· κ1GA

]
(44)

where G = E
2(1+ν)

is the shear rigidity.

4.3 The Plate Theory

Consider a linear shear-deformable plate lying in the (x1, x2) plane. In this case the
domain is given by (21).

Let the generalized pseudo-displacement vector, r, the generalized displacement
vector, d, and the generalized strain vector, e, be

r =
⎡
⎣w3

θ2
θ3

⎤
⎦ d =

⎡
⎣w3

η13
η23

⎤
⎦ e =

⎡
⎢⎢⎢⎢⎣

χ11
χ22

2χ12
η13
η23

⎤
⎥⎥⎥⎥⎦ (45)
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The variable θα introduced in the definition of r is justified because it simplifies the
subsequent expressions. Nevertheless, θα are not the rotations along xα. These are
denoted by θ̂ and the relations between them are θ̂1 = −θ2 and θ̂2 = θ1.

The matrix, A, the differential operator, L, and the matrix, B, are

A =
⎡
⎣ · x3 ·

· · x3
1 · ·

⎤
⎦ L =

⎡
⎣ 1 · ·

−∂1 1 ·
−∂2 · 1

⎤
⎦ B =

⎡
⎢⎢⎢⎢⎢⎢⎣

x3 · · · ·
· x3 · · ·
· · · · ·
· · x3 · ·
· · · 1 ·
· · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (46)

The compatibility operator is given by (12a) and results in

∂ =

⎡
⎢⎢⎢⎢⎣

−∂11 ∂1 ·
−∂22 · ∂2
−2∂12 ∂2 ∂1

· 1 ·
· · 1

⎤
⎥⎥⎥⎥⎦ (47)

The generalized stress vector is given by (12b) and reads

s =

⎡
⎢⎢⎢⎢⎣

m11
m22
m12
v1
v2

⎤
⎥⎥⎥⎥⎦ =

∫
S

⎡
⎢⎢⎢⎢⎣

x3σ11
x3σ22
x3σ12
σ13
σ23

⎤
⎥⎥⎥⎥⎦ dS (48)

The generalized pseudo-body force and pseudo-surface traction vectors are given
by (14) and read

q =
⎡
⎣p�

3
m�

1
m�

2

⎤
⎦ =

∫
S

⎡
⎣ f 3

−x3f 2
x3f 1

⎤
⎦ dS +

∫
∂S

⎡
⎣ t3

−x3t2
x3t1

⎤
⎦ d∂S in � (49a)

g =
⎡
⎣p∂�

3
m∂�

1
m∂�

2

⎤
⎦ =

∫
S

⎡
⎣ t3

−x3t2
x3t1

⎤
⎦ dS on ∂�t (49b)

Integration by parts on the first term of the first member of (17) yields equations with
the format of (18) where

∂∗ =
⎡
⎣∂11 ∂22 2∂12 · ·

∂1 · ∂2 −1 ·
· ∂2 ∂1 · −1

⎤
⎦ p =

⎡
⎣p�

z + m�
α,α

m�
1

m�
2

⎤
⎦ (50)
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Table 1. Variables for the Euler–Bernoulli, DSPV and Timoshenko beam models.

Variable Euler–Bernoulli DSPV Timoshenko

r
[
w1
θ2

]

d
[
w1

] [
w1
η13

] [
w1
θ2

]

e
[
χ2

] [
χ2
η13

]

s
[
M2

] [
M2
V1

]

q
[
p�

1
m�

2

]
= ∫

S

[
f 1

−x1f 3

]
dS + ∫

∂S

[
t1

−x1t3

]
d∂S

g
[
p∂�

1
m∂�

2

]
= ∫

S

[
t1

−x1t3

]
dS

p
[
p�

1 − m�
2,3

] [
p�

1 − m�
2,3

−m�
2

] [
p�

1−m�
2

]

b
[
p∂�

1 + m�
2 n3

m∂�
2

] [
p∂�

1 + m�
2 n3

−m∂�
2

] [
p∂�

1
m∂�

2

]

and

MT =
⎡
⎣n1∂1 n2∂2 nα∂α · ·

nx · ny · ·
· ny nx · ·

⎤
⎦ b =

⎡
⎣p∂�

z − m�
α nα

m∂�
1

m∂�
2

⎤
⎦ (51)

After the plane stress assumption, σzz = 0, are introduced in (3c) and the inclusion of
the shear factors, κ1 and κ2, the generalized constitutive operator resulting from (16)
is

E =

⎡
⎢⎢⎢⎢⎣

D νD · · ·
νD D · · ·
· · D 1−ν

2 · ·
· · · κ1Gh ·
· · · · κ2Gh

⎤
⎥⎥⎥⎥⎦ (52)

where D = Et3

12(1−ν2)
is the bending rigidity.

4.4 Comparison of DSPV with the Traditional Models

For an easy comparison between the DSPV and the traditional models the latter were
rewritten in the notation of the present text and are confronted in Tables 1 and 2 for
beams and Tables 3 and 4 for plates. These tables collect the variables or operators
of each model.
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Table 2. Operators for the Euler–Bernoulli, DSPV and Timoshenko beam models.

Operator Euler–Bernoulli DSPV Timoshenko

A

⎡
⎣1 ·

· ·
· −x1

⎤
⎦

L
[

1
∂3

] [
1 ·
∂3 −1

] [
1 ·
· 1

]

E
[
EI

] [
EI ·
· κGA

]

BT
[· · −x1 · · ·] [· · −x1 · · ·

· · · · 1 ·
]

∂
[
∂33

] [
∂33 −∂3
· 1

] [ · ∂3
∂3 −1

]

∂∗ [−∂33
] [−∂33 ·

−∂3 −1

] [ · ∂3
∂3 1

]

MT

[−n3∂3
n3

] [−n3∂3 ·
−n3 ·

] [ · n3
n3 ·

]

The analysis of the tables reveals the connection bridge character of the DSPV
between the Kirchhoff–Love and the Reissner–Mindlin models. As a shear deform-
able model it shares the constitutive models and the number of boundary conditions
with the Reissner–Mindlin formulation. As the shear strains can naturally tend to
zero, it includes second-order differentials in the compatibility and equilibrium op-
erators. Thus, it includes the governing equations of the Kirchhoff–Love model in
the domain. In practice, this implies the use of, at least, C1 approximations for the
discretization of w1(w3) for the transversal displacement and C0 approximations
for η13 (η12 and η13) in beam (plate) models. Thus, this model is not suitable for
FEM discretization, but can easily be implemented using meshfree approximations.
In fact, there is no inconvenient in employing the same approximation for all fields,
thus speeding up the numerical computations.

Hence, the DSPV theory can be regarded as a generalization of the thin models
to include shear deformation.

In the DSVP theory the Dirichlet boundary conditions are imposed over a spe-
cific set of pseudo generalized displacements, r, which are different from the general-
ized displacements d. This also happens in the classical models, where the Dirichlet
boundary conditions are imposed in terms of transversal displacement and rotations,
but the generalized displacements is only the transversal displacement. On the con-
trary, for the first-order traditional models, r = d.
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Table 3. Variables for the Kirchhoff–Love, DSPV and Reissner–Mindlin plate models.

Variable Kirchhoff–Love DSPV Reissner–Mindlin

r

⎡
⎣w3

θ1
θ2

⎤
⎦

d
[
w3

] ⎡
⎣w3

η13
η23

⎤
⎦

⎡
⎣w3

θ1
θ2

⎤
⎦

e

⎡
⎣ χ11

χ22
2χ12

⎤
⎦

⎡
⎢⎢⎢⎢⎣

χ11
χ22

2χ12
η13
η23

⎤
⎥⎥⎥⎥⎦

s

⎡
⎣m11

m22
m12

⎤
⎦

⎡
⎢⎢⎢⎢⎣

m11
m22
m12
v1
v2

⎤
⎥⎥⎥⎥⎦

q

⎡
⎣p�

3
m�

1
m�

2

⎤
⎦ = ∫

S

⎡
⎣ f 3

x3f 2
x3f 1

⎤
⎦ dS + ∫

∂S

⎡
⎣ t3

x3t2
x3t1

⎤
⎦ d∂S

g

⎡
⎢⎣p∂�

3
m∂�

1
m∂�

2

⎤
⎥⎦ = ∫

S

⎡
⎣ t1

x3t2
x3t1

⎤
⎦ dS

p
[
p�

3 + m�
α,α

] ⎡
⎣p�

3 + m�
α,α

m�
1

m�
2

⎤
⎦

⎡
⎣p�

3
m�

1
m�

2

⎤
⎦

b
[
p∂�

3 − m�
α nα + m∂�

t,t

m∂�
α nα

] ⎡
⎢⎣p∂�

3 − m�
α nα

m∂�
1

m∂�
2

⎤
⎥⎦

⎡
⎢⎣p∂�

3
m∂�

1
m∂�

2

⎤
⎥⎦

5 Conclusions

The shear locking phenomenon is undoubtedly present in the numerical solutions of
first order theories based on meshfree approximations. The traditional method used
for alleviating the problem in the FEM, based on the equivalence theorem, are not
appropriate for meshless methods because there is no exact integration rule for the
non-scattered data approximation.

The consistency approach is analyzed and (i) it is proved that it leads to a linear
dependent approximation (which gives rise to a singular system of equations within
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Table 4. Operators for the Kirchhoff–Love, DSPV and Reissner–Mindlin plate models.

Operator Kirchhoff–Love DSPV Reissner–Mindlin

A

⎡
⎣ · x3 ·

· · x3
1 · ·

⎤
⎦

L

⎡
⎣ 1

−∂1
−∂2

⎤
⎦

⎡
⎣ 1 · ·

−∂1 1 ·
−∂2 · 1

⎤
⎦

⎡
⎣1 · ·

· 1 ·
· · 1

⎤
⎦

E D

⎡
⎣1 ν ·

ν 1 ·
· · 1−ν

2

⎤
⎦

⎡
⎢⎢⎢⎢⎣

D νD · · ·
νD D · · ·
· · D 1−ν

2 · ·
· · · κ1Gh ·
· · · · κ2Gh

⎤
⎥⎥⎥⎥⎦

BT

⎡
⎣x3 · · · · ·

· x3 · · · ·
· · · x3 · ·

⎤
⎦

⎡
⎢⎢⎢⎢⎣

x3 · · · · ·
· x3 · · · ·
· · · x3 · ·
· · · · 1 ·
· · · · · 1

⎤
⎥⎥⎥⎥⎦

∂

⎡
⎣ −∂11

−∂22
−2∂12

⎤
⎦

⎡
⎢⎢⎢⎢⎣

−∂11 ∂1 ·
−∂22 · ∂2
−2∂12 ∂2 ∂1

· 1 ·
· · 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

· ∂1 ·
· · ∂2
· ∂2 ∂1

∂1 1 ·
∂2 · 1

⎤
⎥⎥⎥⎥⎦

∂∗ [
∂11 ∂22 2∂12

] ⎡
⎣∂11 ∂22 2∂12 · ·

∂1 · ∂2 −1 ·
· ∂2 ∂1 · −1

⎤
⎦

⎡
⎣ · · · ∂1 ∂2

∂1 · ∂2 −1 ·
· ∂2 ∂1 · −1

⎤
⎦

MT

[
−n1n2∂t + n1∂1 n1n2∂t + n2∂2 −

(
n2

2 − n2
1

)
∂t + n1∂2 + n2∂1

n2
1 n2

2 2n1n2

]
⎡
⎣ n1∂1 n2∂2 ∂n · ·

nx · ny · ·
· ny nx · ·

⎤
⎦

⎡
⎣ · · · n1 n2

n1 · n2 · ·
· n2 n1 · ·

⎤
⎦

a Galerkin method), (ii) the number of dependencies are6 one in a plane beam, two
in a spacial beam and 2(m + 1) in a plate and (iii) the reproducing properties are
reduced by one order.

Departing from the concept of change of variables, the DSPV first order model
for beams and plates is presented. As C1 continuity is required, (most of the) mesh-
free approximations are natural candidates for its numerical implementation, thus
taking advantage of a specific property of meshless approximations: the (arbitrary)
continuity. On the contrary, for the plates case the FEM is naturally excluded.

6 Besides the RBM’s, which are removed by the correct imposition of the essential boundary
conditions.
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The analysis of the consistency and the DSPV models seams to indicate a com-
mon and unavoidable path for the shear-locking free analysis of structures: the eval-
uation of second order derivatives of the approximation. This should be neither a
surprise nor a disappointment, since this is the case in the classical theories, which
we are trying to reproduce in the first place.
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Abstract. In this work, impact simulations using both meshfree Smooth Particle Hydro-
dynamics (SPH) and combined FEM/SPH Method were carried out for a sandwich composite
panel with carbon fibre fabric/epoxy face skins and polyetherimide (PEI)foam and hybrid
(Nomex/PEI foam) core. A numerical model was developed using the dynamic explicit finite
element (FE) structure analysis program PAM-CRASH. The carbon fibre/epoxy facings were
modelled with layered shell elements, whilst SPH particles replaced solid elements in the core.
The efficiency and the advantages of pure meshfree SPH and combined FEM/SPH methods
were demonstrated by comparing the core deformation modes and impact force pulses meas-
ured in the experiments to predicted structural impact response for a range of impact velocities.

Key words: High Velocity Impact (HVI), impact damage, sandwich composite, numerical
modelling, Finite Element Method (FEM), Smooth Particle Hydrodynamics (SPH).

1 Introduction

Composite sandwich construction consists of a lightweight core material sandwiched
between two stiff facings. There are essentially two different classes of cores, namely
foams and honeycombs, with a wide range of materials and properties within each
type. Composite facings are commonly made of laminated fibre reinforced plastics.
In terms of structural efficiency, with a small additional weight in the core it is pos-
sible to produce an improved shell structure compared with a monolithic composite
laminate, particularly under transverse and bending loads.

The application of polymeric composite sandwich structures in the aerospace in-
dustry has been continuously increasing as new fibre types, resin systems, adhesives,
new lightweight core materials and advanced manufacturing techniques have been
developed and introduced into the market. In aircraft structures, sandwich materi-
als may be used in ailerons, spoilers, passenger floors and numerous nacelles and
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fairings. The latest commercial aeroplane projects of Airbus and Boeing, the A380
and the 787, respectively, show the evolutionary growth in the use of composite ma-
terials. The main structure of Airbus A380 includes 25% of carbon fibre reinforced
plastic (CFRP) structures, compared to 15% in the Airbus A340 launched in 2002.

The development of a software tool that can be used to predict the resulting dam-
age from impact which is directly related to the structural integrity and safety re-
quirements of engineering structures is of interest to aircraft manufacturers. Despite
extensive research and development of sandwich structures, their impact response is
still not fully understood [1, 2]. Although experimental tests under impact conditions
provide considerable information about the tested specimen and their characteristic
parameters, the dynamic properties and failure behaviour of composite sandwich
structures are complex and test programmes are destructive, time consuming and
consequently expensive for industry [3, 4]. In order to reduce the development and
certification costs, computational methods can be used to predict structural integrity
under crash and impact loads. The development of sandwich models and their valid-
ation with experimental tests allow prediction of impact response of sandwich struc-
tures under different impact scenarios without extensive impact testing. Additionally,
geometry and material parameters can be varied in numerical models providing out-
put for engineers to design improved concept structures.

A drawback of structural sandwich components is their relatively low resistance
to impact damage due to the thin outer composite skins. When composite skin lam-
inates are subjected to impact by a projectile, many fracture processes, with their
associated energy absorbing capacities, can occur [5] such as matrix cracking, fibre
matrix debonding, delamination and fibre failure. Interaction of failure modes and the
effects of fibre type and lay-up, the matrix fibre resin bond and environmental effects
result in complex failure modes. After fracture of the skin an impacting projectile
may damage and penetrate into the core. For relatively low velocity projectiles, a
sandwich panel may respond by bending and no damage will occur if the energy
of the projectile can be accommodated by the elastic strain energy in the panel. At
higher impact velocities a critical condition is reached when a local contact stress
exceeds a local material strength, which may be a laminate bending strength, core
compression strength or interface delamination strength. Thus in order to improve
durability and damage tolerance of sandwich structures, a structural analysis of skin,
core and interface damage should be addressed within the design process.

Modelling of high velocity impact (HVI) and crash scenarios involving material
failure and large deformation using classical FEM is complex. Although the FEM is
established as an effective tool for predicting structural behaviour in different loading
conditions, FEM is less reliable for large deformations and structural failure model-
ling under dynamic loads. Additionally it is difficult to simulate structural failure
containing the fracture of material into fragments since FEM is based on a con-
tinuum mechanics formulation requiring element connectivity. The enhancement of
existing numerical methods based on FEM is a current research theme. Proposed
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adaptive remeshing seems promising however it is computationally expensive since
the procedure determining the error estimation for remeshing criteria requires long
computational time.

As an alternative to FEM, meshfree methods have been developed and applied
to numerical simulations involving material failure and damage. Meshfree methods
replace finite elements by a set of nodes or particles within the problem domain
and its boundaries. This feature makes meshfree methods very effective since mesh
connectivity is not as critical as in FEM. There are several meshfree methods and
new meshfree methods are being developed in current research. Among them SPH is
one of the earliest particle methods in computational mechanics. SPH was developed
by Lucy [6] to solve astrophysical problems in 3D open space. Since its invention
SPH has been extensively studied and extended to dynamic response with material
strength, fracture and impact simulations, failure of brittle solids and metal forming
simulations. The study presented here proposes the SPH Method and its combination
with FEM to overcome the limitations of explicit FEM such as too small time steps,
hour-glassing, mesh size dependency and element distortion during impact simula-
tions of composite structures.

2 High Velocity Impact Tests

DLR carries out high velocity gas gun impact tests, aiming to determine failure
modes, impact resistance, contact force-time curves and total energy dissipation of
impact events. In these tests various projectiles are fired against a test structure or
against a plate specimen mounted on a load cell. Hard projectiles, representative of
runway and engine debris impactors and soft projectiles, representative of bird strike
or burst tyre rubber fragments, are possible impact scenarios for an aircraft structure
[7, 8]. Impact velocity is varied in gas gun tests by changing the pressure in the pres-
sure vessel and calibration curves for vessel pressure and projectile velocity are used
to achieve the required impact velocity. The most important result of a HVI test is to
define modes of failure and failure thresholds, such as kinetic energy to cause dam-
age on skin and core. Impact loads as functions of time are recorded in a dynamic
impact test, if the impacted structure is mounted on a load cell.

A HVI test program was carried out at the DLR in which several sandwich plates
with three different core configurations were tested with two different projectile geo-
metries, representative of stones and runway debris. Sandwich plates were manu-
factured with PEI or Nomex core, 33 mm thick, with [0/45/0/45]2 carbon fibre fab-
ric/epoxy facings with a nominal thickness of 1.6 mm. As a third configuration called
demonstrator a hybrid cored sandwich plate consisting of PEI (1/3 of the thickness)
and Nomex (2/3 of the thickness) core was investigated under different impact velo-
cities (Figures 1 and 2). In this paper the impact test results are based on a projectile
26 mm in diameter, with length 37 mm and mass of 36.4 g impacting on PEI cored
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Fig. 1. PEI core sandwich plate. Fig. 2. Hybrid core.

Fig. 3. Concrete impactors. Fig. 4. Glass impactors.

sandwich plates and glass impactors 21 and 29 mm in diameter with mass of 13 and
31 g, respectively impacting on hybrid cored sandwich panels (Figures 3 and 4).

A nominal impact velocity of 60 m/s was chosen, which corresponds to the max-
imum expected impact speed of runway debris on an aircraft structure during start
and landing. The actual impact velocity is measured optically using two light beams
set 100 mm apart, which are broken by the passage of the projectile. Quantitative
test data are difficult to obtain in HVI gas gun tests, since it is not possible to instru-
ment the projectile which is the procedure adopted in low velocity drop tower tests.
The DLR has developed a procedure which measures the resultant force pulse on the
panel specimen by mounting it on a ring load cell.

3 Theoretical Fundamentals

This work aims at demonstrating the efficiency and the advantages of meshfree SPH
and combined FEM/SPH methods by comparing the core deformation modes and
impact force pulses measured in the experiments to predict the structural impact
response. Therefore in this section an overview about the SPH Method is given.

SPH is a Lagrangian technique which allows the numerical grid to be embedded
in the material as it deforms which reduces some of the material interface problems
associated with Eulerian codes. Furthermore, the ability to handle severe distortions
allows the SPH technique to be applied to problems with large deformations or severe
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element distortions. The SPH Method is generally not as efficient as FEM for struc-
tural response applications due to the high computational costs for particle methods.
On the other hand the advantage of SPH is that it is possible for both severe dis-
tortions and normal structural responses to be performed with a single Lagrangian
code.

First point to be considered is that the foundation of SPH is interpolation theory.
Second point is that the conservation laws of continuum dynamics, in the form of
partial differential equations, are transformed into integral equations in a weak for-
mulation of the field equations. Computational information is known only at discrete
points, so that the integrals are evaluated as sums over neighbouring particles.

SPH is based on two interpolation approximations: Kernel approximation and
particle approximation. Considering the function f (x) in Equation (1), value at a
point of f (x) over domain � could be extracted from its integral using the delta
function (δ) as a filter,

〈f (x)〉 =
∫

�

f (x ′)δ(x − x ′)dx ′. (1)

One can define delta function as follows:∫
�

δ(x − x ′)dx ′ = 1. (2)

As h → 0, δ(x − x ′) can be replaced by with a kernel function W(x − x ′, h) which
has a support domain determined by the parameter h,

lim
h→0

W(x − x ′, h) = δ(x − x ′). (3)

Therefore Equation (3) yields to the following:

〈f (x)〉 =
∫

�

f (x ′)W(x − x ′, h)dx ′. (4)

Since the domain is represented by discrete particles, the summation of the contri-
butions of each discrete particle within the kernel approximation range results the
smoothed value of f (x) at a point (particle approximation), as

〈f (x)〉 =
N∑

j=1

(
mj

ρj

)
fjW(|x − x ′|, h) (5)

in which N represents the number of discrete particles, mj and ρj stand for mass
and the density of the particle j , respectively.
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3.1 Approximation of Smoothing Function

Any numerical approximation should represent the physical equations such as dif-
ferential conservation equations, as the number of particles tends to infinity and as
the smoothing length tends to zero. By using Taylor series expansion it can be under-
stood how accurate is an SPH function and how well it represents the real behaviour
of the material.

Suppose that f (x) is a smooth function then applying the Taylor series expan-
sion:

f (x ′) = f (x) + f ′(x)(x ′ − x) + 1

2
f ′′(x)(x ′ − x)2 + · · · (6)

f (x ′) =
n∑

k=0

(−1)khkf k(x)

k!
(

x ′ − x

h

)k

+ rn

(
x ′ − x

h

)
(7)

where r is the reminder after approximating the derivative to order k. Substituting
Equation (7) into Equation (4) leads to:

f (x ′) =
n∑

k=0

Akf k(x) + rn

(
x ′ − x

h

)
(8)

where

Ak = (−1)khk

k!
∫ (

x ′ − x

h

)k

W(x ′ − x, h)dx ′ (9)

Finally, comparing the left and right hand sides of Equation (8), one can obtain the
coefficients A as

A0 =
∫

W(x ′ − x, h)dx ′ = 1

A1 = h

∫
(
x ′ − x

h
)W(x ′ − x, h)dx ′ = 0

...

An = (−1)nhn

k!
∫ (

x ′ − x

h

)n

W(x ′ − x, h)dx ′ = 0

(10)

or alternatively dividing the coefficients by smoothing length h one obtains

M0 =
∫

W(x ′ − x, h)dx ′ = 1

M1 =
∫

(x ′ − x)W(x ′ − x, h)dx ′ = 0

...

Mn = ∫
(x ′ − x)nW(x ′ − x, h)dx ′ = 0

(11)
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3.2 Approximation of Derivatives

The approximation of the first derivative can be obtained by replacing the function
f (x) with its derivative

f ′(x) =
∫
�

f ′(x ′)W(x ′ − x, h)dx ′ (12)

Reformulating Equation (12) using integration by parts one obtains

f ′(x) =
∫
S

f ′(x ′)W(x ′ − x, h) · n · ds −
∫

f ′(x ′)W ′(x ′ − x, h)dx ′ (13)

n is the unit vector of the surface and the first integral is carried on the surface s of
the computational domain. Using again the Taylor series expansion yields

f ′(x) =
∫
S

f ′(x ′)W(x ′ − x, h) · n · ds +
n∑

k=0

A′kf k(x) + rn

(
x ′ − x

h

)
(14)

A′k = (−1)k+1hk

k!
∫ (

x ′ − x

h

)k

W(x ′ − x, h)dx ′ (15)

And finally the simplified coefficients can be calculated as

M ′0 =
∫

W ′(x ′ − x, h)dx ′ = 0

M ′1 =
∫

(x ′ − x)W ′(x ′ − x, h)dx ′ = 1

...

M ′n =
∫

(x ′ − x)nW ′(x ′ − x, h)dx ′ = 0

(16)

Ws(x
′ − x, h) = 0 (17)

Equation (17) defines the smoothing function value on the surface to be zero, which
determines that the surface integration vanish for arbitrarily selected function f (x).
The first expression in Equation (16) is actually another representation of Equa-
tion (17) as can be observed from the following expression:∫

W ′(x ′ − x, h)dx ′ =
∫

1.W(x ′ − x, h)n · ds −
∫

(1)′W(x ′ − x, h)dx ′

=
s∫

0

W(x ′ − x, h)n · ds = 0 (18)
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The approximation of the second derivative can be obtained similarly to the first
derivative and the simplified coefficients can be derived as

M ′′ 0 =
∫

W ′′(x ′ − x, h)dx ′ = 0

M ′′ 1 =
∫

(x ′ − x)W ′′(x ′ − x, h)dx ′ = 0

M ′′ 2 =
∫

(x ′ − x)2W ′′(x ′ − x, h)dx ′ = 2

...

M ′ n =
∫

(x ′ − x)nW ′′(x ′ − x, h)dx ′ = 0

(19)

Ws(x
′ − x, h) = 0 (20)

W ′
s (x

′ − x, h) = 0 (21)

The last two equations determine the surface term to vanish for an arbitrary selected
function f (x) and its first derivative. In other words∫

W ′′(x ′ − x, h)dx ′ =
∫

1.W ′(x ′ − x, h)n · ds −
∫

(1)′W ′(x ′ − x, h)dx ′

=
s∫

0

W ′(x ′ − x, h)n · ds = 0 (22)

So it can be seen that the derivatives in SPH Method are computed via analytic
differentiation of smoothing function and there is no need for grid generation. It
is also clear that the previously discussed requirements on the smoothing function
are the representations of SPH approximations for a function and its derivatives. As
an illustration the compact supportness property of the smoothing function is also a
constituent of the surface Equation (21). Consequently approximating the smoothing
function and its derivatives allows estimations of accelerations, strain rates, etc. in
continuum equations and plays a very important role in forming the basis of SPH.

4 Modelling Composite Properties

For composite materials dynamic failure behaviour is very complex due to the differ-
ent fibres and matrices available, the different fibre reinforcement types such as uni-
directional (UD) fibres and fabrics, the possibility of both fibre dominated or matrix
dominated failure modes, and the rate dependency of the polymer resin properties.
Thus at present there are no universally accepted materials laws for crash and im-
pact simulations with composites. It was considered that a homogeneous orthotropic
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elastic damaging material was an appropriate model for UD and fabric laminates, as
this is applicable to brittle materials whose properties are degraded by micro crack-
ing. Constitutive laws for orthotropic elastic materials with internal damage paramet-
ers are described in [9], and take the general form

ε = Sσ (23)

where σ and ε are vectors of stress and strain and S is the elastic compliance matrix.
In the plane stress case required here to characterise the properties of composite
plies or shell elements with orthotropic symmetry axes (x1, x2), the in-plane stress
and strain components are

σ =
⎛
⎝σ11

σ22
σ12

⎞
⎠ ε =

⎛
⎝ ε11

ε22
2ε12

⎞
⎠ (24)

Using a strain equivalent damage mechanics formulation, the elastic compliance mat-
rix S may then be written as

S =
⎛
⎜⎝

1
E1(1−d1)

−ν12
E1

0
−ν12
E1

1
E2(1−d2)

0

0 0 1
G12(1−d12)

⎞
⎟⎠ (25)

where ν12 is the principal Poisson’s ratio, which for simplicity is assumed not to be
degraded. This general plane stress form for an orthotropic elastic material with dam-
age has 3 scalar damage parameters d1, d2, d12 and 4 ‘undamaged‘ elastic constants:
the Young’s moduli in the principal orthotropy directions E1, E2, the in-plane shear
modulus G12, and the principal Poisson’s ratio ν12. The damage parameters have
values 0 ≤ di ≤ 1 and represent modulus reductions under different loading condi-
tions due to progressive damage in the material. Thus for unidirectional (UD) plies
with fibres in the x1 direction, d1 is associated with damage or failure in the fibres,
d2 transverse to the fibres, and d12 with in-plane shear failure. For fabric reinforce-
ments then d2 is associated with the second fibre direction. In order to proceed further
evolution equations are required which relate the damage parameters to other state
variables. Several different models have been proposed in the literature. In [9, 10] it
is postulated that the damage parameters are functions of strain energy release rates
in the material, and this method has been developed further, to include plasticity and
rate effects in damage evolution. The damage mechanics formulation outlined above
is currently being implemented and tested along with a new approach to delamination
modelling described in [10]. The crash simulations of composite aircraft components
reported in [9, 11] are based on alternative models in which it is supposed that dam-
age evolution is dependent on the strain invariants, which can be determined from
measured stress-strain curves. The elastic damaging materials law for fabric rein-
forcements may be modelled in PAM-CRASH as a ‘degenerate bi-phase’ model in
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Fig. 5. Stress-strain diagram. Fig. 6. Corresponding fracturing dam-
age function.

which the UD fibre phase is omitted, and the ‘matrix’ phase is assumed to be ortho-
tropic. If the simplifying assumption is made that d1 = d2 = d12 = d , the composite
fabric ply has orthotropic stiffness properties, but a single ’isotropic’ damage func-
tion d which degrades all the stiffness constants equally. The code does however
allow different damage functions in tension and compression. This model has been
found to be easy to apply and appropriate for quasi-isotropic laminates, which are
commonly used in aircraft structures. An improved bi-phase model in [11] has been
developed and implemented, which allows two independent fibre directions in plies
and may be used when orthotropic damage effects are more significant.

It is necessary to determine parameters for the chosen composites model from
measured stress-strain curves. Uniaxial stress-strain curves are assumed to have a
damage evolution equation which is a bilinear function of strain, in which there are
two damage constants d1 and du to be determined (note d1 here should not be con-
fused with the damage parameter d1). Typical uniaxial stress-strain curves have the
general form shown in Figure 5 where εi is strain at the onset of initial damage, ε1 is
the strain at the peak failure stress, and εu is a limiting strain above which the stress
is assumed to take a constant value σu. Measured test data for fabric composites are
used to calibrate the materials model and to determine the damage parameters d1
and du for the analysis. The parameter d1 is related to the departure from linearity
at the first ’knee’ in the stress-strain curves, and is thus small in tension, whilst the
parameter du determines the residual stress value σu shown in Figure 6. For the FE
analysis it is not good practice to reduce the material stresses directly to zero at ma-
terial fracture, as this may lead to numerical instabilities. Thus under tensile stresses
typically du ≈ 0.95, indicating that the element is nearly fully damaged, whilst in
compression du ≈ 0.5 to model the residual compression crushing stresses. In this
way it is possible to attribute measured crush stresses to shell elements under axial
compression load so that energy absorption in composite structures may be simu-
lated with shell models. Materials rate dependence is not included in the modelling
presented here.
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Fig. 7. Stress-strain plot of PEI foam core.

5 Modelling of Sandwich Core Materials

5.1 Modelling of PEI Foam Core

Foam core materials are widely used in automotive and aerospace industry such as
energy absorbers and comfort enhancers. Because of high energy absorbing capabil-
ity of foams, they became very important in vehicle crashworthiness. However they
are susceptible to in-plane shear and core compression failure, buckling instability
and face sheet-to-core debonding. The core must be capable of taking a compressive
loading without premature failure. This helps to prevent the thin skins from wrink-
ling, and failing in a buckling mode. The DLR carried out compression tests on PEI
foam core and a typical stress-strain curve is shown in Figure 7. To model this be-
haviour in PAM-CRASH a crushable foam solid was used. The elastic behaviour of
this material is described by the shear modulus and the initial tangent modulus. The
inelastic behaviour exhibits both, volumetric (bulk) plasticity and deviatoric (shear)
plasticity. The coupling between both parts of the material response is established
via a pressure (p) dependent von Mises (J2 plasticity) yield surface.

φs = J2 − (a0 + a1p + a2p
2) = 0 (26)

where

J2 = 1

2
Sij Sij = 1

3
σY

2 (27)

is the second invariant of the deviatoric stress tensor on the yield surface. a0, a1
and a2 are user specified material parameters, which are linked to the user specified
pressure cutoff for tensile fracture.

Volumetric Plasticity. The volumetric plasticity is computed first. It is governed by
the volumetric yield function

φv(p) = p − fp(εv) (28)
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where the fp(εv) is a user specified volumetric strain-stress curve. The curve must
be specified such that its slope is nowhere greater than the unloading bulk modulus,
Ko.

Deviatoric Plasticity. The deviatoric plasticity part of the response is calculated next,
using a conventional plasticity theory with radial return. The program evaluates trial
deviatoric stresses as

Strial = Sn + 2G�en. (29)

where �[eij ]n = [ ˙eij ]n�tn is the increment of the deviatoric strain tensor. Using the
trial stress, the program calculates J2,trial and compares it with the present yield
level of J2 = a0 + a1p + a2p

2. If the trial value exceeds the yield value of J2, a
simple radial return is performed to obtain the stresses

Sn+1 = (J2/J2,trial)
1/2Strial (30)

at the end of this time step. The total stress is calculated from

σn+1 = Sn+1 − pn+1δ. (31)

Here, J2 is the second invariant of the deviatoric stress tensor on the von Mises
yield surface, a0, a1, a2 are user specified material parameters, p and σY stand for
pressure and effective yield stress, respectively. In order to overcome the high mesh
distortion which causes numerical problems with the timestep assignment in explicit
codes, the FE meshes in highly distorted local damage zone has been replaced by
interacting particles. The material response assigned for discrete SPH particles is an
isotropic elastic-plastic-hydrodynamics solid material model in which the pressure-
volume relation is modelled by an equation of state (EOS). This material model was
originally developed for ballistic impact in metals and describes an isotropic elastic-
plastic material at low pressure, whose properties are defined by the shear modulus
and tangent modulus or effective plastic stresses and effective plastic strains. Addi-
tionally with EOS describes the ‘hydrodynamic’ pressure-volume behaviour at high
pressures. In this case it is given as follows:

p = C0 + C1µ + C2µ
2 + C3µ

3 where µ = ρ

ρ0
− 1. (32)

C0, C1, C2, C3 are material constants, µ is a dimensionless compressibility para-
meter defined in terms of the ratio current density, ρ, to initial density, ρ0. The poly-
nomial form is an established approximation of the observed EOS for many materials
(for examples, see [12]), with the feature that it reduces to a dilatational elastic ma-
terials law with bulk modulus C1 when C0=C2=C3=0.

5.2 Modelling of Aramid Paper Honeycomb (Nomex) Core

Nomex honeycomb is made from Nomex paper, a form of paper based on aramid,
rather than cellulose fibres. The initial paper honeycomb is usually dipped in a phen-
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Fig. 8. Stress-strain plot of Nomex core.

olic resin to produce a honeycomb core with high compression strength and good
fire resistance.

The honeycomb core properties depend on the size of the cells and the thick-
ness and strength of the web material. They can give stiff and very light sandwich
laminates with composite skins and high-performance resin systems such as epoxy
provided that the necessary adhesion to the laminate skins can be achieved. Figure 8
shows the compression behaviour of the Nomex honeycomb as measured in tests
at the DLR. In PAM-CRASH a nonlinear fibre bi-phase solid, was chosen to simu-
late the material response. Material Model 31 corresponds to highly anisotropic and
nonlinear honeycomb cores which the through thickness compression properties are
modelled as elastic-plastic.

6 Numerical Analysis using Combined FEM/SPH Method

The proposed finite element mesh based model, described in [13], can be used for
prediction of failure modes in sandwich panels. However topological element con-
nectivity in FEM can lead to numerical instabilities (for higher velocities) and further
enhancement is needed for better quantitative correlations. Following this idea, car-
bon fibre/epoxy facings were modelled with standard layered shell elements, whilst
SPH particles are used for the PEI core where extensive crushing and fracture by the
rigid impactor occurs. Use of solid elements here leads to aforementioned difficulties
with excessive distortion. Beside the advantages of its meshfree nature, as a result
of the dynamic neighbouring search algorithm, the SPH Method is computationally
expensive. One alternative numerical solution technique that is commonly used is
coupling. Since SPH uses a Lagrangian formulation, a possible coupling between
SPH and standard Lagrangian FEM is straightforward using contact interfaces. This
means (for impact problems) a coupling between discrete smoothed particles for the
parts where large deformation occurs and finite elements for the parts where small
deformation takes place is possible. Such coupling would exploit the potential of
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Fig. 9. Numerical impact (FEM) model. Fig. 10. Maximum penetration.

Fig. 11. Numerical impact (SPH)
model.

Fig. 12. Maximum penetration.

Fig. 13. Numerical impact (FEM/SPH)
model.

Fig. 14. Maximum penetration.

each method while avoiding their deficiencies. In this work, coupling was applied
through a sliding interface condition. The mesh patterns or both discretizations can
be combined with a tied kinematic constraint type contact that connects two contact
interfaces defined on two meshed parts of a structure that are close to each other
but whose respective discretization grids are not necessarily matching. Discrete SPH
particles are generated with a transformation of finite element mesh into masspoints.

To make a qualitative comparison between FEM, SPH and combined FEM/SPH,
impact simulations were carried out for a sandwich composite panel mounted on a
ring load cell and impact at the centre. Normal impact from a rigid impactor was
considered at nominal impact velocity of 60 m/s, which corresponds to the typical
impact speed of runway debris on an aircraft structure during start and landing.
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Here three different approaches have been used to model the impact damage on
PEI core sandwich panels. In all three cases impactors first damage the upper skin
and penetrate into the sandwich core. Figures 9 and 10 show the maximum penet-
ration and post-impact core deformation with pure FEM. One can observe the large
deformation on the PEI core. The core material under impact load shows classical
elastic-plastic response. FEM approximations are continuum-based approximations
and the topological connectivity in FEM is very critical. The modelling of core de-
formation with higher impact velocities can cause element distortion problems res-
ulting in error termination. Therefore the core has been modelled using discrete SPH
particles. Figures 11 and 12 show the maximum penetration and core deformation
for the numerical impact simulation with SPH Method. In SPH the topological con-
nectivity is not as critical as in FEM and the core deformation can be modelled
without having element distortion problem. Since in SPH the number of discrete
particles and the domain of influence of each particle are decisive for the CPU
times, combined FEM/SPH Method, which combines the faster computation nature
of FEM and accuracy of SPH, is proposed. Figures 13 and 14 show the maximum
penetration and post-impact core deformation with proposed combined approach.
Here one can observe the interaction between the FEM-based and SPH-based mod-
elled impact damage zone. After damaging the upper skin the impactor penetrates
into the sandwich core. In both SPH and combined FEM/SPH approaches the im-
pactor compresses the particles in damage zone and its kinetic energy is absorbed
by the particles in the damage zone. However one can observe that the penetration
of the impactor in the pure SPH approach is larger that the pure FEM and combined
FEM/SPH cases. In experimental investigation the maximum penetration value has
been measured as 25 mm. The maximum penetration values are 20, 32 and 19.5 mm,
respectively, in the example computed here.

Contact force history comparison between experimental analysis and FEM simu-
lation in Figure 15 shows that the proposed FEM model provides reasonable accurate
contact force history of HVI on sandwich panel. As one can observe from the exper-
imental curve, the first peak load is about 7 kN and the second peak is about 4 kN.
Depending on the energy absorption mechanism of the sandwich plate, the projectile
loses its kinetic energy and this results in a lower second peak. Proposed FEM model
estimates especially the first peak value accurately, which is very critical value for
impact scenarios. However as Figures 9 and 10 show, FEM model produces very
severe deformation on core which can lead to numerical errors, inaccurate results
and numerical instabilities for higher velocities. In the SPH Method depending on
the deformation mechanism neighbouring particles can separate and as Figure 16
illustrates core deformation is much more realistic than that of FEM.

Figure 16 shows that the proposed SPH model for the sandwich core approxim-
ates the experimental impact force pulse quite accurately. However the initiation of
the peak force is later than the experimental one and the pulse is more oscillatory
than the FEM results and the experimental pulse. Figure 17 shows the comparison
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Fig. 15. Contact force history (FEM vs. experiment).

Fig. 16. Contact force history (SPH vs. experiment).

of the contact force histories between experimental and numerical simulation with
combined FEM/SPH. Here once can observe that the numerical pulse is not as oscil-
latory as in the SPH case since the topological connectivity is still in use outside the
damage zone. The combined FEM/SPH Method approximates the impact pulse more
accurately. The pulse duration which is important as well as the peak force value is
very similar to the experimental one and better than the approximations produced by
the pure SPH Method.

Additional to the PEI core sandwich panels the accuracy of combined FEM/SPH
Method has been tested in three different impact cases using a demonstrator hybrid
cored sandwich panel. Three different impact scenarios in which glass impactors
with 21 and 29 mm in diameter with the impact velocities of 65.8, 95.1 and 108 m/s
have been chosen. Therefore the efficiency of the combined FEM/SPH Method can
be tested in a range of impact velocities showing different damage modes.
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Fig. 17. Contact force history (FEM/SPH vs. experiment).

Fig. 18. Impact damage on upper skin. Fig. 19. Damage on upper skin and
core.

For the first comparison an impact case with a glass ball impactor 29 mm in
diameter with an impact velocity of 65.8 m/s has been chosen. The impactor damages
the upper skin introduces an impact load on the core and bounces back (Figure 18).
In the second scenario an impactor 21 mm in diameter has been impacted on the
plate with an impact velocity of 108 m/s. The impactor damages the upper skin,
penetrates into the core and since its remaining kinetic energy is absorbed by the core
it resides inside the sandwich plate. The damage zone is smaller that the previous
case since the diameter of the impactor is smaller (Figure 19). In the last case a
glass ball impactor 29 mm in diameter and with an impact velocity of 95.1 m/s
has been tested. The impactor damages the upper skin, penetrates into the core and
since its kinetic energy was not absorbed completely by the core it continues its
movement and damages the lower skin (Figures 20 and 21). Since the hybrid core
consists of both Nomex and PEI foam, the Nomex core has been modelled using
classical finite elements with discrete particles used for the PEI layer. For the Nomex
layer a non-linear fiber bi-phase material model with element elimination technique
has been used, as discussed above. This technique eliminates the elements which
reach a prescribed element strain threshold value. Note that Nomex is orthotropic
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Fig. 20. Damage on upper skin and
core.

Fig. 21. Backside damage.

Fig. 22. Impact state, t = 0.16 ms. Fig. 23. Impact state, t = 0.36 ms.

Fig. 24. Impact state, t = 0.72 ms. Fig. 25. Impact state, t = 1.2 ms.

in its mechanical properties and is thus less suitable for a particle model which is
intrinsically isotropic in the SPH formulation used here.

Figures 22–25 show the states of impact for the impact case with impactor 29 mm
in diameter and 65.8 m/s impact velocity. The impactor damages the upper skin and
compressed the PEI core. Discrete SPH particles compressed together and impactor
damages the Nomex core. After crushing the small area in Nomex core, the impactor
bounces back. The damage area in the numerical investigation is larger than the ex-
perimental cases because of the element elimination technique used for modelling
the damage of the composite skins. In real cases the damaged composite skin frag-
ments and it continues to carry reduced loads.

Figures 26–29 show the states of numerical impact simulation in which an im-
pactor 21 mm in diameter and with an impact velocity of 108 m/s. The impactor
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Fig. 26. Impact state, t = 0.16 ms. Fig. 27. Impact state, t = 0.2 ms.

Fig. 28. Impact state, t = 0.36 ms. Fig. 29. Impact state, t = 0.8 ms.

Fig. 30. Impact state, t = 0.16 ms. Fig. 31. Impact state, t = 0.28 ms.

damages the skin and firstly penetrates into the PEI core. The discrete particles are
compressed together and since the kinetic energy of the impactor is not yet zero, it
continues it movement. It penetrates into the Nomex core and causes a large deform-
ation. During this deformation process the residual kinetic energy of the impactor
absorbed by the Nomex core and impactor resides inside the sandwich plate. The
same impact scenario observed in the experimental impact test.

Figures 30–34 show the last impact case in which an impactor 29 mm in diameter
with 95.1 m/s impact velocity impact onto a hybrid core sandwich plate. The same
impact stages can be also observed in this case. However the residual kinetic en-
ergy of the impactor is not absorbed by the Nomex core and the impactor continues
its movement. The impactor damages the lower skin and rear face damage occurs.
Figure 35 shows the side view of the damage zone. Here one can also observe the de-
formation in the damage zone modelled with discrete particles. Again in this impact
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Fig. 32. Impact state, t = 0.52 ms. Fig. 33. Impact state, t = 0.88 ms.

Fig. 34. Impact state, t = 1 ms. Fig. 35. Backside damage, side view.

case the proposed combined FEM/SPH Method approximates the impact scenario
very accurate and realistically.

7 Conclusion

In this work the results of impact simulations carried out for a sandwich compos-
ite plate with carbon fibre fabric/epoxy face skins and PEI foam core using SPH
and FEM/SPH Methods have been presented. The deformation pattern and the con-
tact force histories obtained with pure SPH and combined FEM/SPH Methods have
been compared with that of experimental and pure FEM-based numerical results.
The both approaches give quite accurate results. However since the computational
time depends on the domain modelled by discrete particles, a combined FEM/SPH
Method has been shown to be a good alternative for the numerical simulations where
large deformation and element distortion are critical. Later to show the efficiency
of the combined FEM/SPH Method in different velocity ranges three impact scen-
arios in which a hybrid core consisting of PEI and Nomex sandwich plate impacted
by spherical glass impactors have been modelled. The combined FEM/SPH Method
reproduces the impact failure modes and observed damage on the sandwich plates
to a good approximation.The paper demonstrated the capability of meshfree SPH
Method and its combination with FEM to be an effective candidate to overcome the
drawbacks of FEM for modelling fragmentation failures in impact. Future work is
studying extensions of the method using a semi-adaptive coupling of SPH and FEM
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and applying this to study crush response in composite energy absorbing structural
elements.
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Abstract. This contribution concerns the construction of meshless Lagrangian particle meth-
ods for the numerical simulation of multiscale phenomena in linear transport problems, where
mass conservative discretization methods are essentially required. The proposed discretization
scheme works with a finite set of unstructured nodes, each corresponding to one flow particle.
In this method, corresponding particle average values are maintained during the simulation.
The discrete nodes are subject to adaptive modifications, leading to semi-Lagrangian particle
simulations, whose adaption rules rely on the insertion (refinement) and removal (coarsening)
of the nodes at each time step. The resulting meshless particle method is mass conservative by
construction. The required algebraic rules for the downstream particle advection and the local
redistribution of the particle masses are developed. Moreover, the implementation of bound-
ary conditions is addressed. The efficacy of the proposed conservative and meshless adaptive
particle method is finally shown by using one numerical simulation concerning the slotted
cylinder, a popular standard test case for passive advection.

Key words: Hyperbolic conservation problem, finite volume particle method, semi-
Lagrangian particle advection, mass conservative particle advection, mass conservative ad-
aption rules, slotted cylinder, passive advection, implementation of boundary conditions.

1 Introduction

Many physical phenomena in time-dependent evolution processes are modelled by
hyperbolic conservation laws, where relevant applications, e.g. from fluid flow sim-
ulation, essentially require conservative discretization schemes. The finite volume
method (FVM) is a standard conservative method to construct numerical approxim-
ations for solutions of hyperbolic conservation problems. The FVM relies on a suit-
able partitioning of the computational domain into small cells, the control volumes,
where each control volume of the partitioning bears a cell average value. To enforce
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mass conservation, fluxes are described at the cell interfaces, resulting in a expli-
cit one-step Eulerian discretization scheme. For a comprehensive treatment of finite
volume methods, see [10].

Therefore, the classical FVM is mesh-based by the domain partitioning, although
its construction relies merely on (mesh-independent) geometrical coefficients: cell
volumes, cell surfaces, and cell normal vectors [8]. This observation has recently
motivated the construction of a meshless finite volume particle method (FVPM) [6].

Another approach for solving linear hyperbolic equations is given by the method
of characteristics. This Lagrangian method relies on downstream advection of
particles along their streamlines, see [4, 11]. In contrast to Eulerian schemes, Lag-
rangian particle methods are better suited to construct meshless methods, leading to
highly flexible discretizations, which are particularly useful for problems with com-
plicated domain geometries, moving boundaries, and large-scale deformations of the
solution.

On the down side, Lagrangian methods are usually not conservative, although
considerable effort has been made recently in order to construct conservative Lag-
rangian advection methods, see [9, 12–14]. In our previous paper [7], a conservative
and adaptive semi-Lagrangian method for passive advection has finally been pro-
posed. Yet it seems to be difficult to combine the basic concepts of conservative
schemes with those of meshless methods.

This contribution combines three desirable requirements for the construction of
effective Lagrangian particle methods in linear hyperbolic conservation problems:

• mass conservation;
• adaptivity;
• mesh-independence.

To this end, algebraic rules for mass conservation are developed. The algeb-
raic rules, given by local mass balance equations, are concerning the mass transfer
for the advection step, the particle adaption (i.e., adaptive insertion and removal of
particles), and the implementation of boundary conditions. The proposed method can
be viewed as a generalization of our previous paper [7], which is conservative and
adaptive but not meshless.

The outline of this work is as follows. In the following Section 2, the governing
equations for passive advection are briefly reviewed, before some basic ingredients
of finite volume particle methods are introduced in Section 3. Then, in Section 4, the
mass conservative and meshless advection of particle averages is discussed. Sec-
tion 5 is concerning the adaption of the particles. The implementation of boundary
conditions is then explained in Section 6. The efficacy of the proposed conservative
and meshless adaptive particle advection is finally illustrated in Section 7 by one nu-
merical simulation concerning the slotted cylinder, a popular standard test case for
passive advection.
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2 Passive Advection and Mass Conservation

The numerical simulation of linear transport processes, passive advection, is gov-
erned by scalar time-dependent hyperbolic conservation laws of the form

∂u

∂t
+ ∇ · (au) = 0, (1)

where for a compact time interval I = [0, T ] ⊂ R, T > 0, and the computational
domain � = R

2, the velocity field

a = a(t, x), t ∈ I, x ∈ �,

is assumed to be given. The scalar solution u : I × � → R of (1) is the density
(or concentration) of a physical quantity, which is subject to a conservation law. We
consider solving (1) numerically under given initial condition

u(0, x) = u0(x), for x ∈ �. (2)

Later in Section 6, boundary conditions are added to the Cauchy problem (1), (2),
where the computational domain � ⊂ R

2 is assumed to be bounded.
In many relevant applications, mass conservation,

d

dt

∫
�

u(t, x) dx = 0, (3)

is an important requirement. The aim of this work is to construct mass conservative
particle advection methods satisfying (3).

3 Finite Volume Particle Methods

This section discusses selected features of finite volume particle methods, where we
combine basic ingredients from the classical Eulerian FVM with recent concepts
from particle methods. To this end, let us first briefly recall some basic details of the
(mesh-based) FVM, before we turn to a mesh-independent (re)formulation to design
meshless particle advection schemes.

3.1 Mesh-Based Formulation

According to the classical FVM discretization, the computational domain � is first
decomposed into a partition V = {V }V ∈V ⊂ � of finitely many pairwise disjoint
cells V , control volumes, so that

� =
⋃
V ∈V

V.
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In order to establish mass conservation, corresponding cell average values

ūV (t) = 1

|V |
∫

V

u(t, x) dx, for V ∈ V,

of the numerical solution u ≡ u(t, x) are maintained during the simulation. Here, for
any V ∈ V, |V | denotes the volume of the cell V ⊂ �, and so

mV (t) = |V | · ūV (t), for V ∈ V,

is the total mass contained in the cell V at time t . Therefore,

M(t) =
∫

�

u(t, x) dx =
∑
V ∈V

∫
V

u(t, x) dx =
∑
V ∈V

mV (t)

yields the total mass over the domain � at time t .
Note that a finite volume discretization of the above form cannot be meshless.

Indeed, as soon as the computational domain � is partitioned into finite control
volumes, this essentially requires a mesh.

3.2 Meshless Formulation

Now let us work with a more general (generic) formulation of the FVM to obtain
a particle advection method, which does not necessarily rely on a mesh, but which
is mass conservative by construction. This needs a few conceptual preparations and
some reformulations of the FVM, to be explained in the remainder of this subsection.

Meshless finite volume particle methods work with a finite set V = {v}v∈V ⊂ �

of nodes, each of which corresponds at a time t to one flow particle. The basic idea
of the meshless method, proposed in this work, is to assign, to any node v ∈ V, a
volume |v| and a particle average value

ūv(t) ≈ u(t, v), for v ∈ V,

so that
mv(t) = |v| · ūv(t), for v ∈ V,

is the total mass which is, at time t , attached to the node v.
The choice of this particular construction is motivated by the mean value the-

orem, which states that for an “influence area” V ∈ � surrounding node v ∈ V we
have the identity

ūv(t) ≈ ūV (t) = u(t, ξ), for some ξ ∈ V,

which establishes a one-to-one correspondence between the control volumes V =
{V }V ∈V of the previous subsection and the node set V = {v}v∈V of this subsection.
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This way, the meshless concept replaces the cell average values ūV (t) and the
cell volumes |V | of the mesh-based FVM by particle average values ūv(t) and
particle volumes |v|. In this modified concept, the volume |v| is for any v ∈ V
regarded as a geometric quantity that should depend on the local geometry of the
nodes V around v, rather than on any connectivities between the nodes. Moreover,
|v| should reflect the density of the nodes V in a local neighbourhood of v, and the
sum of the node volumes is required to make up the total volume |�| of the domain
�, i.e.,

|�| =
∑
v∈V

|v|.

Therefore, for any node v ∈ V, its corresponding volume |v| can be viewed as the
weight of v in V.

Initially, for a suitable node set V = {v}v∈V ⊂ �, the particle average values are
given by the initial condition (2), so that we let

ūv(0) = u0(v), for all v ∈ V. (4)

This in turn yields the total mass

M ≡ M(0) =
∑
v∈V

|v| · ūv(0) =
∑
v∈V

mv(0)

at initial time t = 0.
The aim of the subsequent construction is to solve the Cauchy problem (1), (2)

numerically, such that the total mass M ≡ M(0) is constant during the simulation.
To be more precise, at any time step t → t + τ , with given time step size τ > 0, we
wish to establish algebraic rules for the required identity M(t) = M(t + τ ), i.e.,

M(t) =
∑
v∈V

mv(t) =
∑
v∈V

mv(t + τ ) = M(t + τ ), for t, t + τ ∈ I, (5)

so that M ≡ M(t) holds for all t ∈ I and all V ≡ V(t). Later in Section 6, where the
implementation of boundary conditions is addressed, we replace the algebraic con-
ditions accordingly, by considering incoming and outgoing flow across the boundary
∂� of a bounded domain � ⊂ R

2.

4 Mass Conservation by Construction

This section explains the key ingredients for mass conservation in meshless particle
advection methods. To this end, we wish to compute, at any time step t → t + τ

and for a current node set V ≡ V(t), updated mass values {mv(t + τ ) : v ∈ V}
from the current masses {mv(t) : v ∈ V}, which are assumed to be known, where the
initial masses {mv(0) : v ∈ V} are given by (4). According to our mass conservative

173



A. Iske

construction (to be explained below), the updates on the masses are done, such that
the identity (5) holds.

To this end, we follow our previous paper [7], where a mesh-based conservative
advection method is proposed. The Lagrangian approach in [7] works with down-
stream mass advection from a finite set U of upstream cells onto a current set V of
(downstream) control cells. To be more precise, any upstream cell U ∈ U contains,
at time t , those particles, which by traversing along their streamlines arrive at time
t + τ in the corresponding control cell V ∈ V. By this duality relation, there is a
one-to-one correspondence between the upstream cells and the control cells.

4.1 Upstream Nodes

In what follows, we wish to establish a similar duality relation between current nodes
in V and upstream nodes, to be collected in a point set U. But this requires a few com-
ments concerning the streamlines of the particle flow in the context of Lagrangian
advection schemes. For any node v ∈ V, its corresponding upstream node is given by
u = x(t), where x denotes the unique solution of the ordinary differential equation
(ODE)

ẋ = dx
dt

= a(t, x), (6)

with initial condition x(t + τ ) = v.
Therefore, the upstream node u ≡ u(v) of v can be viewed as the unique location

of a flow particle at time t , which by traversing along its trajectory arrives at node v at
time t+τ , see Figure 1. In case of passive advection, governed by the linear transport
equation (1), the shape of the particles’ flow trajectories, termed streamlines, are
entirely and uniquely determined by the given velocity field a = a(t, x). Moreover,
the solution u of (1) is constant along these streamlines, and so the streamlines are
the characteristic curves of the hyperbolic equation (1).

Adopting some standard notation from dynamical systems [3], we express the
upstream node u of v as

u = �t,t+τ v, (7)

where �t,t+τ : � → � denotes the continuous evolution of the (backward) flow of
(6). An equivalent formulation for (7) is given by v = �t+τ,tu, since �t+τ,t is the
inverse of �t,t+τ .

Likewise, for the sake of notational simplicity, it is convenient to express any
approximation to upstream node u as

�t,t+τv ≈ u, for v ∈ V,

where �t,t+τ : � → � is the discrete evolution of the (backward) flow, and where
the operator �t,t+τ is given by any suitable numerical method for solving the above
ODE (6). Note that the implementation of �t,t+τ , and thus the numerical approxim-
ation to u, does not need a mesh.
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Fig. 1. Upstream node u of v ∈ V.

For details concerning the implementation of �t,t+τ we refer to our previous
paper [7], where the duality relation for the pair (U, V) is expressed as

U = �t,t+τV, for V ∈ V. (8)

Moreover, in the mesh-based setting of [7], global mass conservation is obtained by
establishing local mass conservation through the balance equation∫

U
uh(t, x) dx =

∫
V

uh(t + τ, x) dx, for every V ∈ V,

where uh denotes a piecewise linear approximation to the solution u of (1),(2).
In the meshless particle advection scheme proposed in this work, a corresponding

identity for local mass conservation is accommodated by the mass balance equation

mu(t) = mv(t + τ ), for every v ∈ V, (9)

where mu(t) denotes the portion of mass which is, at time step t → t + τ , advected
from u onto v. Note that (9) is equivalent to

ū(t + τ, v) = |u|
|v| ū(t, u), for every v ∈ V,

where |u| is the volume of u w.r.t. U. But neither the mass mu(t) nor the particle
average value ū(t, u) is known at time t , unless u is a current node in V.

4.2 Conservative Mass Transfer

For the sake of mass conservation, we determine the masses {mu(t) : u ∈ U} from
the current masses {mv(t) : v ∈ V}, such that the local mass balance equations (9) are
satisfied. This then yields the desired global mass conservation (5) by construction.
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To establish suitable algebraic conditions for local mass conservation (9), we
transfer for any node v ∈ V its entire mass mv(t) to upstream nodes {u}u∈U lying
in the local neighbourhood of v. This is accomplished as follows. Let γv→u ∈ [0, 1]
denote the fraction of mass which is being transferred from v ∈ V to any u ∈ U, so
that

mv→u(t) = γv→u · mv(t), for v ∈ V, u ∈ U,

is the portion of mass being transferred from v to u. Hence, if we let γv→u = 0, then
no mass is transferred from v to u. This is the case for upstream nodes u ∈ U which
are not lying in the local neighbourhood of v. In contrast, we select a positive value
γv→u > 0, whenever u ∈ U lies in the local neighbourhood of v.

Therefore, for any u ∈ U, the total mass mu, which is transferred from the nodes
in V to u, is given by the weighted sum

mu(t) =
∑
v∈V

mv→u(t) =
∑
v∈V

γv→u · mv(t). (10)

Now for the sake of mass conservation, we essentially require the property∑
u∈U

γv→u = 1, for all v ∈ V, (11)

i.e., the non-negative multipliers γv→u are required to form a partition of unity.
Note that the condition in (11) states that the total mass mv of any v ∈ V is

completely transferred to the nodes in U. But this immediately establishes the desired
identity (5) by the following simple calculations, where we use (9) (10), and (11).

M(t + τ ) =
∑
v∈V

mv(t + τ )

=
∑
u∈U

mu(t)

=
∑
u∈U

∑
v∈V

γv→u · mv(t)

=
∑
v∈V

mv(t)
∑
u∈U

γv→u

=
∑
v∈V

mv(t)

= M(t).

4.3 Barycentric Coordinates and Voronoi Coefficients

Yet it remains to determine the coefficients γv→u satisfying (11), whose construction
should depend on the node sets V and U, and so by the duality (8) also on the solution
u of (1), (2).
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One possible option for the construction of the coefficients γv→u is to work
with generalized barycentric coordinates [5]. In this case, non-negative coordinates
γv→u ∈ [0, 1] are computed subject to conditions

v =
∑
u∈U

γv→u · u with
∑
u∈U

γv→u = 1, for v ∈ V. (12)

Note that the linear system for the coordinates γv→u in (12) is overdetermined,
whenever U contains more than three points. In this case, the solution of (12) is
not unique. For different options and characterizations of generalized barycentric
coordinates, we refer to [5].

In the proposed particle advection method, however, we prefer to work with Voro-
noi coefficients, yielding another possibility for computing the non-negative multi-
pliers γv→u subject to constraints (11). As supported by our numerical experiments,
this leads to a very flexible mass conservative discretization with superior accuracy,
which moreover works particularly well in combination with particle adaption and
the implementation of boundary conditions.

In this method, we regard for any node v ∈ V, the Voronoi tile

VorV(v) = {x ∈ � : ‖x − v‖ ≤ ‖x − w‖ for all w ∈ V} ,

of v, and we let |v| = |VorV(v)| for the volume of v. Accordingly, for any u ∈ U, we
let |u| = |VorU(u)| for the particle volume of u, where

VorU(u) = {x ∈ � : ‖x − u‖ ≤ ‖x − w‖ for all w ∈ U} .

Then we let

γv→u = |VorV(v) ∩ VorU(u)|
|v| , for all u ∈ U, v ∈ V.

It is easy to see that for any v ∈ V the non-negative Voronoi coefficients γv→u form
a partition of unity, so that (11) holds.

Now the proposed utilization of Voronoi coefficients deserves a rather philosoph-
ical comment concerning meshless versus mesh-based methods. Note that the Voro-
noi coefficients are based on a very natural geometric concept which mainly relies
on the distribution of the nodes in U and V, rather than being dominated by the to-
pology of a mesh. Although the proposed construction is strictly speaking – through
the required Voronoi diagrams of U and V – not entirely mesh-independent, it does
not introduce any restriction to the spatial distribution of the moving particles in
V. This is particularly important for the construction of flexible adaption rules (as
discussed in the following section), where the (unconnected) moving particles are
subject to dynamic modifications during the simulation. Finally, it seems to be com-
mon practice in meshless methods to work with background Voronoi diagrams (or
similar geometric data structures), e.g. to handle geometric queries (such as nearest
neighbour search etc.), efficiently.
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4.4 Mass Conservative Particle Advection

We close this section by providing the following algorithm, which returns, at any
time step t → t + τ , on given masses {mv(t) : v ∈ V}, updated mass values {mv(t +
τ ) : v ∈ V} satisfying (5).

Algorithm 1 (Mass Conservative Particle Advection).

INPUT: Time step τ , node set V ⊂ �, mass values {mv(t) : v ∈ V}.
(1) Compute upstream nodes U = {u : u = �t,t+τv} from node set V.
(2) Compute coordinates {γv→u ∈ [0, 1] : v ∈ V, u ∈ U}, satisfying (11);

FOR each v ∈ V DO

(3a) Compute total mass mu(t) of u = �t,t+τv via (10);
(3b) Let mv(t + τ ) = mu(t).

OUTPUT: Mass values {mv(t + τ ) : v ∈ V}, satisfying (5).

5 Mass Conservative Adaption Rules

In order to balance the two conflicting requirements of good approximation quality
and small computational costs, we need to combine the proposed particle advection
scheme with a suitable strategy for particle adaption. Adaptivity requires customized
rules for the modification of the node set V after each time step t → t + τ of
Algorithm 1. Indeed, for the sake of reducing the computational complexity we wish
to reduce the size of the node set V, whereas for the sake of good approximation
quality we prefer to increase the density (and thus the size) of the node set V in �.

This section combines the robust and effective adaption strategy of our previous
work [1, 2, 7] with the basic requirements of mass conservation. To this end, we ex-
plain how the conservative distribution of mass is accomplished during the adaptive
modification of the node set V. But we do not intend to explain all details of the util-
ized node adaption scheme. For the purposes of this work, it is sufficient to say that
the node adaption is done by the removal of current nodes from V, coarsening, and
by the insertion of new nodes to V, refinement. The decision on the node removal
and insertion rely on a customized a posteriori error indicator. For details on this, we
refer to the previous work [1].

In the remainder of this section, it is explained how these two operations, coarsen-
ing and refinement, are accomplished, such that the total mass is conserved.

5.1 Coarsening (Node Removal)

A node v∗ ∈ V is coarsened by its removal from the current node set V, i.e., in
this case we let V = V \ v∗. Moreover, the portion of mass mv∗ , which is currently
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attached to v∗ is distributed to remaining nodes in the neighbourhood of v∗. In order
to further explain this, let V∗ ⊂ V \ v∗ denote a set of neighbouring nodes to v∗.

For the purpose of mass (re)distribution, we first compute coefficients γv∗→v ∈
[0, 1] satisfying ∑

v∈V∗
γv∗→v = 1.

Next, we update for any node v ∈ V \ v∗ its current mass by letting

m∗
v =

{
mv + γv∗→v · mv∗, for v ∈ V∗,

mv, for v ∈ V \ (V∗ ∪ v∗),

so that the mass mv, attached to v, is updated by m∗
v.

This leads to a mass conservative removal of the node v∗ from V by

M =
∑
v∈V

mv

=
∑

v∈V\v∗
mv + mv∗

=
∑

v∈V\v∗
mv +

∑
v∈V∗

γv∗→v · mv∗

=
∑

v∈V\(V∗∪v∗)
mv +

∑
v∈V∗

(mv + γv∗→v · mv∗)

=
∑

v∈V\v∗
m∗

v.

5.2 Refinement (Node Insertion)

A node v∗ ∈ V is refined by the insertion of new nodes V̂ in the neighbourhood of
v∗, so that V is updated accordingly by letting V = V ∪ V̂.

This modification requires (re)distributing the current masses of neighbouring
nodes V∗ around v∗ to the new nodes in V̂. This is done by working with coefficients
γv→v̂ ∈ (0, 1) satisfying

0 <
∑
v̂∈V̂

γv→v̂ < 1, for v ∈ V∗,

where each γv→v̂ yields the fraction of mass being distributed from v ∈ V∗ to v̂ ∈ V̂,
so that by 0 < m∗

v ≤ mv, for v ∈ V∗, the updated mass m∗
v of v ∈ V∗ is positive. For

notational convenience, we let γv→v̂ = 0 for all v ∈ V \ V∗.
Hence, for any v ∈ V, its current mass mv is updated by letting
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m∗
v =

⎛
⎝1 −

∑
v̂∈V̂

γv→v̂

⎞
⎠ · mv, for all v ∈ V.

Moreover, the mass m∗̂
v of any new node v̂ ∈ V̂ (to be inserted) is given by

m∗̂
v =

∑
v∈V∗

γv→v̂ · mv =
∑
v∈V

γv→v̂ · mv for v̂ ∈ V̂.

This leads to a mass conservative insertion of the new nodes V∗ by

M =
∑
v∈V

mv

=
∑
v∈V

⎡
⎣∑

v̂∈V̂

γv→v̂ · mv +
⎛
⎝1 −

∑
v̂∈V̂

γv→v̂

⎞
⎠ · mv

⎤
⎦

=
∑
v∈V

∑
v̂∈V̂

γv→v̂ · mv +
∑
v∈V

⎛
⎝1 −

∑
v̂∈V̂

γv→v̂

⎞
⎠ · mv

=
∑
v̂∈V̂

∑
v∈V

γv→v̂ · mv +
∑
v∈V

m∗
v

=
∑
v̂∈V̂

m∗̂
v +

∑
v∈V

m∗
v

=
∑

v∈V∪V̂

m∗
v.

6 Implementation of Boundary Conditions

Now let us finally turn to the implementation of boundary conditions. In the above
discussion until now, we have considered the special case where the computational
domain � is the whole plane, i.e., � = R

2, so that (U ∪ V) ⊂ � at any time t .
However, in specific applications of interest, � is bounded, and, moreover, boundary
conditions are of relevance. Therefore, suppose from now that � is bounded.

Recall that our proposed scheme works with a set V = {v}v∈V of finite nodes, and
corresponding upstream nodes U = {u}u∈U, satisfying u = �t,t+τ v for all v ∈ V.
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Fig. 2. Incoming flow from upstream node u ∈ U \ �, to corresponding downstream node
v = �t+τ,t u ∈ � across the domain boundary ∂�.

6.1 Incoming Flow

The following discussion is relevant, when an upstream node u ∈ U lies outside the
domain �, i.e., u ∈ U \ �, see Figure 2 for illustration. In this case, a fraction of
mass, γ∂�→u ∈ [0, 1], is advected from u to v = �t+τ,tu ∈ � across the boundary
∂�, where the coefficients γ∂�→u are required to form a partion of unity, i.e.,∑

u∈U\�
γ∂�→u = 1.

In order to implement boundary conditions concerning the incoming flow, we
assign a boundary value γ∂�→u · m∂� to each u ∈ U \ �, giving the portion of mass
which is advected from u into � across the boundary ∂�. Hence,

Min =
∑

u∈U\�
γ∂�→u · m∂� ≡ m∂�

is the total amount of incoming mass across the boundary ∂�.
Moreover, for any u ∈ U \ �, portions of mass from current nodes v ∈ V may

also be distributed to u. In this case, we obtain

mu = γ∂�→u · m∂� +
∑
v∈V

γv→u · mv, for u ∈ U \ �,

for the total mass which is assigned to the upstream node u.
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(a) (b)

Fig. 3. The slotted cylinder. (a) Initial condition and (b) velocity field.

6.2 Outgoing Flow

Let us regard the situation, where for v ∈ V all its coordinates γv→u vanish, i.e.,
γv→u = 0 for all u ∈ U. In this case, no mass is distributed from v to any point in
U. The amount of mass mv, attached to v, is then being advected from v ∈ � to the
exterior of � across the domain boundary ∂�.

In consequence, the total outgoing mass is given by

Mout =
∑

v∈Vout

mv,

where we let
Vout = {v ∈ V : γv→u = 0 for all u ∈ U} ⊂ V

for the set of nodes whose masses are advected across ∂� to the exterior of �.

7 The Slotted Cylinder – A Test for Passive Advection

In this section, the performance of our advection scheme is evaluated by using one
numerical experiment. In this experiment, taken from [7, Section 5], we consider the
rotating slotted cylinder, a popular test case suggested by Zalesak [15].

Here, � = [−0.5, 0.5]2 ⊂ R
2 and the initial condition is given by

u(0, x) =
{

1, for x ∈ D,
0, otherwise,

(13)

182



Conservative and Meshless Particle Advection

(a) t = t0 (c) t = t1080

(b) t = t0 (d) t = t1080

Fig. 4. The slotted cylinder. (a) 3D view, (b) node distribution, of the initial condition (left
column), and after six revolutions (right column), (c), (d).

where D ⊂ � is the slotted disc of radius r = 0.15, centered at (0, 0.25) with slot
width 0.06 and length 0.22, see Figure 3(a).

In the original test case of Zalesak, the slotted cylinder is rotated by a steady flow
field a(x) ∼ (x2,−x1), where x = (x1, x2). We decided to replace the velocity field
in [15] by the somewhat more complicated velocity field

a(x) = (x2,−x1)

{ 1
2 sin(2ϕ(x) − π

2 ) + 3
2 , for x2 < 0,

1, for x2 ≥ 0,

whose azimuth angle is given by

ϕ(x) =
{

arctan(−x2/x1), for x1 > 0,

arctan(x1/x2) + π
2 , for x1 ≤ 0.

This velocity field rotates the slotted cylinder clockwise with constant angular
velocity in the first and second quadrant, whereas the cylinder is accelerated in the
fourth quadrant, and decelerated in the third quadrant, see Figure 5. The maximum
angular velocity ω = 2 is attained in the lower half of the coordinate system, namely
at the points on the vertical line
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(a) t = t53 (b) t = t70

(c) t = t102 (d) t = t180

Fig. 5. The slotted cylinder. 3D view on ūv(t) during first revolution at four times.

{x = (x1, x2) : x1 = 0, x2 < 0}.
The slotted cylinder is stretched when passing through the acceleration part of the
velocity field in the fourth quadrant, whereas it is squashed in the deceleration part
of the third quadrant in order to recover its original shape of the initial condition at
each full revolution.

Initially, a set V ⊂ � of 1500 randomly distributed nodes is chosen. The initial
condition (13) is used in order to assign a particle average value ūv(0) in (4) to
each node v ∈ V at time t = t0. The nodes in V are automatically adapted to the
discontinuities of the initial condition u0, see Figure 4(b).

At each revolution of the slotted cylinder, the particle average values ūv are de-
creasing, as soon as the cylinder enters the acceleration part of the velocity field,
see Figure 5. This behaviour is due to the mass conservation of the scheme. In con-
trast to this, in the deceleration part, the particle average values ūv are increasing.
Moreover, in this region, the initial shape of slotted cylinder is gradually recovered,
see Figures 5(b)–(d).

Our simulation of this model problem comprises six full revolutions of the slot-
ted cylinder. Figure 4(a) shows the 3D view of the particle averages ūv, and Fig-
ure 4(b) shows the node distribution for the initial condition (13). In comparison,
Figures 4(c)–(d) shows to the corresponding numerical result after six full revolu-
tions. Observe that the shape of the cylinder is accurately maintained during the sim-
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(a) t = t53 (b) t = t70

(c) t = t102 (d) t = t180

Fig. 6. The slotted cylinder. Node distribution during first revolution at four times.

ulation, and numerical diffusion is widely suppressed. For more details concerning
the model problem and the discussion of the numerical results, we refer to [7].
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Abstract. The convergence of a meshless vortex method is studied numerically. The method
uses core spreading for diffusion and radial basis function interpolation for spatial adaption of
the Lagrangian particles. Spectral accuracy in space is observed in the absence of convection
error, and second order of convergence is obtained it its presence.

Key words: Vortex method, radial basis functions, convergence.

1 Introduction

We consider the accuracy and convergence of a meshless method for fluid dynam-
ics based on vortex particles. The vortex method has a long history, beginning with
the use of point vortices to study the instability of a vortex sheet [14]. Although
many important achievements have been produced since, there continue to be some
frustrations. In fact, the vortex method is still viewed in some circles as a model-
ling approach and not as direct simulation. The following opinion, expressed some
years ago, is relevant today: “There has been and perhaps there will always be some
skepticism about the use of vortices for flow simulation” [18]. For this reason, it is
important to make contributions to the validation and verification of vortex method
codes, and this work is a step in that direction.

The vortex method solves the Navier–Stokes equation in vorticity formulation,

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν�ω (1)

by discretizing the vorticity field into smooth Lagrangian particles:

ω(x, t) ≈ ωh(x, t) =
N∑

i=1

�i (t)ζσ (x − xi (t)) . (2)
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Here, �i is the vector circulation strength (a scalar in 2D) of a vortex particle loc-
ated at xi . The particle’s vorticity distribution function, ζσ , often called the cutoff
function, can be for example a Gaussian; in two dimensions:

ζσ (x) = 1

2πσ 2
exp

(−|x|2
2σ 2

)
. (3)

The particles are evolved by integrating their trajectories with the velocity at their
center, evaluated using the Biot–Savart law, which in 2D is:

u(x, t) = −1

2π

∫ (
x − x′) × ω(x′, t)k̂

|x − x′|2 dx′. (4)

Using the discretized form of the vorticity, Equation (2), in the Biot–Savart law,
the discretized velocity is obtained. The Gaussian cutoff function allows the integral
in (4) to be evaluated analytically, after which the velocity at one particle’s location
is obtained by summing the influence over all others. Clearly, the direct evaluation
of the discrete velocity is an N-body problem, for which reason the computational
efficiency can be greatly improved using a fast multipole method [10]. Once the
velocity is computed, the vortex method is expressed in the following system of
equations:

dxi

dt
= u(xi , t) (5)

dω

dt
= ν∇2ω + B.C. (6)

The above equations express the fact that the vorticity transport is solved by
moving the vortex-particle elements with the local velocity of the fluid. This is the
only part of the vortex method that is required for ideal flow. For viscous flow, the
method has been extended by providing a change in vorticity at the vortex particles
due to the viscous effects. This is generally accomplished in a split-step formulation.
In addition, the presence of boundaries in the flow can also be translated into changes
in the vorticity, which is expressed by the term “B.C.” in Equation (6).

The variety of schemes used in vortex methods to provide viscous effects are
reviewed in [6]. In this work, we have used the core spreading method, in which
particle core sizes are grown to exactly solve the diffusion part of the equation [12].
The representative length scale of the computational vortex elements, σ , is made to
grow according to the following equation:

dσ 2

dt
= 2ν, (7)

Note that this scheme is exact in its representation of the viscous effects, due to
the fact that the Gaussian function is an exact solution of the heat equation. It is
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important to realize that this method is formulated specifically for the Gaussian cutoff
in two dimensions. Some authors have neglected this fact, resulting in applications
of questionable consistency [3].

The core spreading method is fully localized and grid-free; however, it requires
core size control to tackle consistency issues brought up in [9]. Simply stated, the
characteristic length scale of the computational particles cannot be allowed to grow
uncontrolled, as they represent the smallest resolved scales. The consistency problem
arises due to the fact that the Gaussian elements are convected without deformation.
In the present vortex method, control of the particle sizes is provided in a spatial
adaption algorithm using radial basis function interpolation, as described later.

The rest of the paper will present a discussion of the discretization accuracy of the
vortex method, and in particular the so-called “convection error” of the Lagrangian
formulation (Section 2), and subsequently a report of numerical convergence studies
performed using a parallel implementation of the method described in [6]. We use
both axisymmetric test flows (for which an analytic solution allows precise error
measurements) and non-axisymmetric tests, which are more challenging.

The vortex method with core spreading for diffusion, and a spatial adaption pro-
cess that uses radial basis function (RBF) interpolation, was implemented in parallel
using the PETSc library [1] in a C++/MPI code. In this implementation, the RBF
interpolations are solved using the built-in pre-conditioners and GMRES solver of
PETSc. More details of the parallel implementation are given in [2].

2 Discretization Accuracy of the Vortex Method

The Lagrangian approach described above is devoid of numerically diffusive trunca-
tion errors, which makes the vortex method especially suited for the study of high-
Reynolds number vortical flows.

This often praised feature of Lagrangian particle methods too frequently remains
unexplained. The low numerical dissipation of the vortex method arises from the fact
that the nonlinear term in the Navier–Stokes equation is replaced by a set of ordinary
differential equations for the particle locations. As a result, the equivalent of a local
truncation error for the vortex method is what is called “convection error” in the
specialized literature.

Convection error in vortex methods refers to the error which originates from
convecting the vortex particles without deformation with the velocity at their centers.
A derivation of the estimate for this error when using Gaussian particles is presented
in [12]. The estimate is obtained by subtracting the discrete representation of the
velocity to the exact velocity in the nonlinear convective term, as follows:

ε(x) = ∇ ·
[

N∑
i=1

	i ζσ (x − xi )

(
u(x) − dxi

dt

)]
(8)
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which, after a Taylor expansion and some algebra results in the following estimate:

ε(x) = σ 2 ∂2ω

∂xj∂xk

∂uj

∂xk

. (9)

Thus, one sees that this error is second order in σ and that it does not diffuse
vorticity. The result in (9) also indicates that axisymmetric flows do not suffer from
convection error, as only the symmetric part of the velocity gradient tensor has a
contribution, hence the result of (9) in principal coordinates is zero for axisymmetric
flow. This observation is important to have in mind, as the use of axisymmetric test
problems for validation of vortex method codes is widespread practice.

In addition to convection error, the vortex method suffers from an increase of the
spatial discretization error over time, due to the vortex particles becoming disordered.
In the sense of function approximation, the spatial discretization using particles de-
pends on a measure of the particle density: smooth particles need to overlap at all
times to be able to represent a continuous field. As particles follow the flow map,
there is a chance of gaps appearing in the particle distribution, or particles clustering
together in other areas. This problem must be corrected with a scheme that adapts
the particle in such a way that overlap is always maintained, and clustering avoided.

The standard solution to this situation is applying a remeshing scheme, as in-
troduced in [11]. This has allowed long-time calculations with the vortex method by
effectively controlling the growth of discretization error, but at the cost of introducing
some numerical dissipation and grid-dependency. Remeshing schemes are based on
tensor product formulations, and are subject to interpolation errors.

An alternative to the standard remeshing schemes is using radial basis func-
tion (RBF) interpolation techniques in a fully meshless spatial adaption process;
the method is introduced and described in detail in [6]. It is basically a way to re-
discretize the vorticity field with a set of new vortex particles that are well-overlapped
and represent accurately the current flow field.

When interpreting the spatial discretization of the vortex method as an approx-
imation problem using RBFs, one can see the potential for spectral-like accuracy
in space. It has been established that RBF interpolation has spectral accuracy when
using Gaussian bases [19].

In this paper, we show numerical experiments that confirm spectral accuracy in
a vortex method in the absence of convection error. It is noteworthy that this res-
ult is obtained in a viscous calculation, showing that core spreading does not limit
the accuracy that can be obtained from the vortex method (unlike other viscous ap-
proaches; for example, the particle strength exchange method [8] is limited to second
order accuracy, and deteriorates as particles become disordered).

Convection error, however, will be present in the general case. Further numerical
experiments presented here verify observed second order accuracy in the presence of
convection error when using Gaussian bases. Hence, the possibility of increasing the
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convergence rate now lies in reducing convection error, perhaps by using deformable
basis functions or some other approach.

3 Numerical Convergence Study

3.1 Axisymmetric Test Flow

A first convergence study is performed using an axially symmetric viscous flow, for
which an analytic solution is available. This is the Lamb–Oseen vortex, for which
the vorticity evolves as follows, with r = x2 + y2:

ω(r, t) = 	0

4πνt
exp

(
− r2

4νt

)
. (10)

Here, 	0 represents the total circulation of the vortex, and ν is the fluid viscosity.
The Lamb–Oseen vortex simply spreads over time, while the maximum vorticity
decreases, in a self-similar way.

To minimize time-stepping errors in these numerical tests, a very small time step
was used of �t = 0.002 in a 4th order Runge–Kutta scheme. The calculations were
advanced for 200 time steps, and spatial adaption was performed every 5 steps. Al-
though no regular particle arrangement is required by the formulation, the particles
were placed in a triangular lattice, covering the vorticity support to a minimum cir-
culation level of 10−10 (i.e., after spatial adaption, particles with 	i < 10−10 are
deleted).

Several initial values of the inter-particle spacing h were chosen, and a run was
performed for each value. Then for each run, the pointwise errors were measured
at each time step, using the maximum norm. The largest value of the error in the
time-marching calculation was used for each run to produce the plot in Figure 1.
As shown by the functional fit added in the plot, the results of this numerical con-
vergence study are consistent with the spectral convergence of radial basis function
interpolation using Gaussians. Note that the measure of error chosen for the plot is
the maximum in both space and time, for each run. The curve slopes off around the
level 10−10, which is probably a result of our population control scheme (mentioned
above).

A similar result to the one presented in Figure 1 was included in [6], but for
stationary tests (no time stepping). There, it was simply a case of proving that the
discretization of the vorticity field using vortex particles could exhibit spectral con-
vergence. Here, we have incorporated time marching, with periodic spatial adaption
using radial basis functions, in a viscous calculation.

The numerical convergence result of Figure 1 likely shows the best accuracy that
can be obtained with the vortex method. This is because the Lamb–Oseen vortex flow
is a benign test, due to its infinite smoothness and more importantly to its immunity
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Fig. 1. Plot of the maximum vorticity errors during 200 time steps vs. the inter-particle spacing
h and an exponential fit to the error behavior.

to convection error. Nonetheless, it is an important result because it demonstrates
that the RBF-based spatial adaption scheme does not limit the accuracy of the vor-
tex method. This is in contrast to the standard remeshing schemes, based on tensor
products of 1D kernels (which furthermore require a Cartesian grid). It has been re-
cognized that the remeshing schemes do introduce some error; these were clearly
displayed in numerical experiments presented in [5].

Note again that the results above are produced by a viscous vortex method. The
use of core spreading with adequate core size control, therefore, does not slow the
rate of convergence of the spatial discretization. The core size control is provided
here in the RBF interpolation step, where the core sizes can be reset to any desired
value. This automatic form of core size control does not have an effect on the accur-
acy, unlike the vortex splitting technique of [15], which is numerically diffusive.

3.2 Non-Axisymmetric Test Flow

Next, a convergence study is presented using a non-axisymmetric flow, and thus sub-
ject to convection error. The initial vorticity consists of a quadrupole perturbation ω′
on a Gaussian vortex ωo, resulting in localized elliptical deformation of the core, and
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an evolution that develops filaments and exhibits a quasi-steady tripole for large amp-
litude of the perturbation. This flow was studied in [17], and used as proof-of-concept
for the vortex method developed in [2]. Furthermore, detailed parameter studies for
this flow problem have been performed recently [4]. The initial conditions are ob-
tained from the superposition of an axisymmetric eddy and the non-axisymmetric
perturbation, as ω = ωo + ω′:

ωo(x) = 1

4π
exp

(−|x|2
4

)
, ω′(x) = δ

4π
|x|2 exp

(−|x|2
4

)
cos 2θ. (11)

For the present calculations, the Reynolds number is 1000, defined as Re = 	/ν,
and the amplitude of the perturbation is δ = 0.25.

The use of a non-axisymmetric test problem to perform convergence studies is
usually hampered by the lack of an analytical solution. But, as explained in [13],
it is possible to extract the observed order of convergence from a grid-convergence
study, using three grid solutions. This verification technique was of course developed
for grid-based methods, but there is not obstacle to applying the same concepts in a
meshless method, if one uses an equivalent measure of “grid-refinement”.

The technique is as follows: if one obtains three numerical solutions of a given
problem with the same code, using three different spatial discretizations given by h1,
h2, and h3 with a fixed grid-refinement ratio r = h3/h2 = h2/h1 (the subscript 1
refering to the finest resolution), then one can obtain an empirical convergence order
p by the following relation:

p = ln

(
uh3 − uh2

uh2 − uh1

) /
ln(r). (12)

In the case of the vortex particle method, we take as the resolution parameter
the initial inter-particle spacing, at the time of discretization. In reality, the vortex
method has two resolution parameters: the inter-particle spacing, and the overlap
ratio (defined as the inter-particle spacing divided by the particle size). We chose
to leave the value of the overlap ratio unchanged for this study, and thus base the
refinement study on the inter-particle spacing. Moreover, as the discretization used
is based on placing the vortex particles on a triangular lattice, we use a measure h

which corresponds to the equivalent square lattice, providing the same cell area as in
the triangular lattice used.

Three solutions were computed of the flow with initial vorticity as in (11), with
a grid-refinement ratio of r = 1.4. The runs were carried for 740 time steps, with
�t = 0.05. The vorticity was sampled on the same mesh for all runs, corresponding
to the finer value of h. Spatial adaption was performed every 10 steps with the same
procedure described before, using radial basis function interpolation. Table 2, below,
shows the problem sizes for this convergence study, in terms of the total number
of vortex particles needed to cover the vorticity support down to a level of particle
circulation of 10−10.
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Fig. 2. Vorticity contours for the non-axisymmetric test flow, at the times used for the con-
vergence study. Note that the white filled contour corresponds to negative inclusions in the
vorticity field. This flow is undergoing a markedly non-steady re-organization of vorticity.

Table 1. Problem sizes for convergence study runs.

particle spacing N(t = 0) N(t = 37)

h1 = 0.09 20389 21978

h2 = 0.126 10361 11418

h3 = 0.1764 5309 5957

Table 2. Observed order of convergence for time-marching runs.

time-slice \ norm used: EL2

ω E
rel,max
ω

t = 10 2.0282 2.0271

t = 20 2.026 2.027

t = 35 2.0175 2.0191

By means of a comparison of the point-by-point value of vorticity at each three
time-slices, t = 10, 20, 35, and taking both a discrete L2-norm and a maximum
norm (normalized by the maximum vorticity), measurements of the observed order of
convergence were performed by applying (12). The results are presented in Table 2,
where the table values correspond to the computed value of p.

The results above are perhaps surprisingly consistent, giving an observed second-
order of convergence. Since the principal difference between this test problem, and
the Lamb–Oseen vortex used previously is the lack of axisymmetry in the present
case, we conclude that the observed order of convergence is fundamentally due to
convection error.

In other words, the vortex method exhibits spectral order of convergence in the
spatial discretization, as demonstrated in the experiments of Section 3.1, but in a
time-marching algorithm it is limited by the second order of the convection error.
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This result is specific for the second order Gaussian cutoff used in the particle discret-
ization of these simulations, however. There have been several proposals for using
higher-order cutoff functions, but as shown in practice by the numerical experiments
in [5], higher-order cutoffs are more sensitive to overlap, and thus require more fre-
quent spatial adaption. This results in a considerable penalty, to the point that some
authors opt for spatially adapting on every time step. Another means of achieving
higher-order with the vortex method including convection error is the use of de-
formable basis functions; the recent work of Rossi [16] demonstrates fourth-order
accuracy with elliptical Gaussian bases.

As a final note, we add that the theory of convergence of vortex methods (see [7]
for details and further references) establishes second order convergence when using
a Gaussian cutoff. However, the analysis assumes a standard initialization based on
the local vorticity value multiplied by h2 on a Cartesian grid, as an estimate of the
particle circulation strengths. Thus, initialization of the method is already limited to
second order. Using instead RBF interpolation to obtain the initial particle circula-
tions allows for spectral accuracy in space in the absence of convection.

4 Conclusion

Extensive numerical experiments performed previously [2], both with standard
remeshing and with the radial basis function interpolation, demonstrate that the
remeshing schemes impose an accuracy limitation on the vortex method. By using
instead radial basis function interpolation, the accuracy limitation of the spatial ad-
aption process is removed, and convection error is left to dominate on the rate of con-
vergence. We have demonstrated using numerical experiments that in the absence of
convection error, spectral accuracy is possible is space. With convection error being
present in a non-axisymmetric unsteady flow, we have shown by means of a refine-
ment study an observed second order of convergence of the method. This result is a
manifestation of the convection error produced when using simple Gaussians as basis
functions. Higher order vortex methods are thus possible with techniques to reduce
convection error, such as using deformable basis functions. Two important implica-
tions of the present study are the fact that there is no accuracy limitation imposed by
the method used for spatial adaption, as radial basis function interpolation is spectral
order, and that the viscous scheme of core spreading is also able to preserve the high
accuracy and convergence.
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Abstract. A hybrid approximation scheme for the shallow-water equations on the sphere is
proposed which utilizes spectral-element approximation coupled with regional meshless col-
location. The issue of satisfying continuity conditions across spectral-element to meshless col-
location interfaces for this domain decomposition method is discussed and gives an example
of a meshless collocation framework which can be successfully coupled with spectral-element
approximation. We conclude the paper with numerical examples using the proposed hybrid
scheme on two well-known standardized test problems for the rotational shallow-water equa-
tions on the sphere.

Key words: Meshless methods, spectral-element approximation, shallow-water equations.

1 Introduction and Motivations

The purpose of this paper will focus on constructing an innovative hybrid approxima-
tion method for geophysical fluid dynamics. To accomplish such a task, we will focus
on the shallow-water equations which provide a useful model to global climate mod-
eling because their solutions include nonlinear effects and wave structures similar to
those of the full primitive equations of the atmosphere. The main backbone of this
hybrid meshless/spectral-element shallow-water model will be focusing on incorpor-
ating a unique regional scale approximation method. This regional scale method will
be accomplished by using a robust meshless approximation scheme called the empir-
ical Backus-Gilbert reproducing kernel developed by Blakely in [5]. The advantage
of such a hybrid approximation is two-fold: (1) high-order approximation results
can be obtained in complex shaped geometries without the need of a mesh. Thus,
no remeshing of a local region into smaller rectangles is needed, ultimately speed-
ing up the computation time; (2) the Backus–Gilbert reproducing kernel method has
been shown to be endowed with the unique power of ignoring oscillatory effects
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in scattered data. This will be useful when the spectral approximation forms high
oscillations due to discontinuities in the data.

This article is organized as follows. Section 2 begins with a brief review of
the shallow-water equations defined on the cubed-sphere and its discretization in
time using a semi-implicit time stepping scheme. We follow this discussion in Sec-
tion 3 with a brief review of the spectral-element and Backus-Gilbert reproducing
kernel discretization methods of the time-discrete shallow-water equations. Next,
we present the three-field variational formulation which effectively couples the two
types of approximations in a weak sense by introducing two additional approxim-
ation spaces on the interfaces between the approximation, akin to domain decom-
positon and the mortar element method. Implementation of the coupling is then given
and then finally, in order to verify the mathematical correctness of the algorithms
presented in this paper and to validate the performance hybrid model, we conclude
the paper with some standardized test cases which were proposed by Williamson et
al. in [22].

2 The Shallow-Water Equations on the Cubed-Sphere

Being the simplest form of motion equations that can approximate the horizontal
structure of the atmosphere or the dynamics of oceans, the shallow-water equations
have been used as a robust testing model in atmospheric and oceanic sciences. The
solutions can represent certain types of motion including Rossby waves and inertia-
gravity waves while describing an incompressible fluid subject to gravitational and
rotating acceleration. The governing equations for the inviscid flow of a thin layer of
fluid in 2-D are the horizontal momentum and continuity equations for the velocity
u = (u1, u2) and the geopotential height η .

While there are many different ways of defining the shallow-water equations, we
focus in this model on cubed-sphere geometry originally proposed by Sadourny in
[17] and used in other global models in recent years such as [20] and [21]. We begin
by a brief review of the cubed-sphere while adopting notational conventions from
[20]. Consider a cube inscribed inside a sphere where each corner of the cube is a
pointin the sphere and where each face of the cube is subdivided into NE subregions.
The goal is to project each face of the cube onto the sphere and in effect, obtain a
quasi-uniform spherical grid of 6 × NE subregions which can be further subdivided
into many spectral element and meshless collocation subregions. In the mapping of
the cube to sphere, each face of the cube is constructed with a local coordinate system
and employs metric terms for transforming between the cube and the sphere which
will now be defined.

Let (α, β) be equal angular coordinates such that −π/4 ≤ α, β ≤ π/4. Then
any x1 and x2 on a face Pi of the cube is related through x1 = tan α, x2 = tan β.
We denote r the corresponding position vector on the sphere with longitude λ and
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latitude θ . For such an equiangular projection, we define basis vectors a1 = rα and
a2 = rβ which may be written as

rα = 1

cos2 α
rx1, rβ = 1

cos2 β
rx2, (1)

where rx1 and rx2 are defined as rx1 = (cos θ λx1 , θx1) and rx2 = (cos θ λx2 , θx2)

The metric tensor gij , i, j ∈ [1, 2] can be derived as

gij = ai · aj = 1

r4 cos2 α cos2 β

[
1 + tan2 α − tan α tan β

− tan α tan β 1 + tan2 β

]
,

where r2 = 1+ tan2 α+ tan2 β and the Jacobian of the transformation and the matrix
Ã are, respectively,

√
g = [det(gij )]1/2 = 1

r3 cos2 α cos2 β
, Ã =

[
cos θ λα cos θ λα

θα θβ

]
.

While using the definition of gij given in (2), we can write transformations between
covariant and contravariant components of a vector v as[

u2

u2

]
=

[
g11 g12

g21 g22

] [
u1

u2

]
,

[
u1

u2

]
=

[
g11 g12

g21 g22

][
u1

u2

]
. (2)

With the metric terms defined, we can now write the shallow water equations in
in the curvilinear coordinates system to be integrated on the cubed-sphere. In such a
coordinate system, the shallow-water equations can be written as follows

∂ui

∂t
= −gij

[
εjku

kg(f + ζ ) + ∂

∂xj

(1

2
uku

k
)

+ ∂η

∂xj

]
,

∂η′

∂t
= −uj ∂η

∂xj
− η

g

∂

∂xj
(g uj ).

Here, we define η = η′ +η0, f is the Coriolis force and ζ is the relative vorticity.
Covariant and contravariant vectors are defined through the short-hand metric tensor
notation ui = gij uj , gij = (gij )

−1. Furthermore, using εij as the two-dimensional
permutation matrix.the divergence and relative vorticity can be calculated as

g ∇ · v = ∂

∂xj
(g uj ), gζ = εij

∂uj

∂xi
. (3)
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Fig. 1. Hybrid cube.

We note that the metric terms can be precalculated and stored once the issue of
discretizing the cube has been resolved. To this end, we discuss the discretization of
the cubed-sphere using the spectral element method in Section 3.1 and the meshless
collocation method in Section 3.2. An example of the resulting discretized cube is
shown in Figure 1.

2.1 Semi-Implicit Time Discretization

As an integral part of the hybrid meshless/spectral-element model, the semi-implicit
time stepping scheme which we discuss in this subsection has many computational
advantages. Semi-implicit time-stepping schemes were first used in atmospheric
models in order to aleviate the problem of stability constraints ultimately due to
the fast moving gravity waves in the discrete shallow water equations [20]. They
have been successfully applied for allowing an increase in the time step without af-
fecting the atmospherically important Rossby waves. Such a semi-implicit method
is described in this subsection and was originally proposed in the spectral element
model developed in [20].

In the hybrid meshless/spectral-element method, the semi-implicit time stepping
is composed of an explicit leapfrog scheme for the advection terms combined with a
Crank–Nicholson scheme for the gradient and divergence terms. Adopting the differ-
ence notation δui = ui(n+1)−ui(n−1) and δηi = η(n+1)−η(n−1), the time discretized
shallow water equations in curvilinear coordinates can be written as
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δui + �tgij ∂

∂xj
(δ η) = 2�t

[
− gij ∂

∂xj
(η)n−1 + f i(n)

u

]
,

δηi + �t
η0

g

∂

∂xj
(gδuj ) = 2�t

[η0

g

∂

∂xj
(guj )n−1 + f i(n)

η

]
,

where the tendencies fu and fη contain nonlinear terms along with the Coriolis term,
namely

fu = −gij
[
εjku

k(n)g(f + ζ n) + ∂

∂xj

(1

2
uku

k
)n]

,

and

fη = −uj ∂η

∂xj
.

Lastly, bringing the implicit terms to the left hand side of the equation and the explicit
terms to the right, we end up with the time discrete evolution form of the shallow
water equations

ui(n+1) + �tgij ∂

∂xj
(η)n+1 = ui(n−1) − �tgij ∂

∂xj
(η)n−1 + 2�tf i(n)

u (4)

ηn+1 + �t
η0

g

∂

∂xj
(guj )n+1 = ηn−1 − �t

η0

g

∂

∂xj
(guj )n+1 + 2�tf n

η (5)

which is now in the form needed for spatial discretization using the hybrid
meshless/spectral-element. Because of the Crank–Nicholson terms, the storage of
two previous time steps is needed. The overall performance of this semi-implicit
method is reduced to the performance of a robust solver that can ultimately be paral-
lelizable in an efficient manner for obtaining the solution at the n + 1 time step. The
preconditioned conjugate gradient method using a block-jacobi type preconditioner
offers such an approach but at the cost of inter-elemental communication at every
iteration step of the iterative solver. The method is of course highly dependent on
the spatial approximation scheme and will be discussed in the next two subsections.
To this end, we first briefly review the construction of the nodal spectral element
spproximation on the cubed-sphere.

3 Hybrid Meshless/Spectral-Element Discretization

3.1 Spectral-Element Discretization

The spectral element formulation for the cubed sphere begins by decomposing each
face on the unit cube denoted by Pi, i = 1, . . . , 6 into Ne nonoverlapping subdomain
elements �e of equal area which are each referenced to a standard element �st =
[−1, 1]2 by a mapping xe(r, s) ∈ �e for (r, s) ∈ �st . The mapping also has a well
defined inverse (r, s)e(x) ∈ �st, x ∈ �e. Since two fields are being approximated in
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the discrete shallow water equations, namely the velocity and the geopotential, two
different approximation spaces are needed. As in most shallow water models, we
adapt the so-called staggered grid approach to discretization. We begin by defining
the approximation space for the velocity as VN := PN,Ne ∩ H 1(Pi), where PN,Ne is
the space of piecewise continuous functions that map to polynomials of degree less
than or equal N to the reference element on face i. Namely,

PN,NE (Pi) := v(xe(r, s))|�e ∈ PN(r) ⊗ PN(s), e = 1, . . . , Ne,

where PN(r) is the space of all polynomials of degree less than or equal to N . In or-
der to facilitate inter-element continuity on �e for all e ∈ [1, Ne] and more globally,
inter-face continuity on Pi , i = 1, . . . , 6, nodal Lagrangian interpolants are used to
construct the basis within each element. In this paper, we use Lagrangian interpolants
constructed from orthogonal Legendre functions of degree p.

While many spectral-element and spectral collocation models of fluid dynam-
ics such as the ones found in [19] have utilized a staggered grid where the pres-
sure/geopotential field on each element is discretized on an N − 2 Gauss–Legendre
distribution which does not include the boundaries of the element, this hybrid
meshless/spectral-element model relies on boundary information of the geopoten-
tial field as explained in the next section on the three-field formulation for the
shallow water equations. We thus build a staggered grid for the geopotential field
which includes the boundaries of each element �e by considering the space MN :=
P(N−2,Ne) ∩ L2(Pi) and distributing (N − 2)2 Gauss–Lobotto–Legendre points
(ξ1

i , ξ2
j ).

Using the space MN , the geopotential is expanded in a similar manner to the
velocity components by using the (N − 2)-th degree Lagrangian interpolants π̃i as

η(r, s)|�e =
N−2∑
i=0

N−2∑
j=0

ηe
ij π̃i(r)π̃j (s),

with ηe
ij being the nodal values of the geopotential at (ξ1

i , ξ2
j ). This expansion will

require evaluation not only on the geopotential grid, but on the velocity grid as well.
As will be shown later, the geopotential field provides the means for coupling the
spectral element and meshless collocation approximations.

With the definitions of the Lagrangian nodal expansion and quadrature rule in
place for each element, we can now apply weak formulation to the semi-implicit
time discretized shallow water equations. Find (ui , η) ∈ VN × MN such that for all
(vi , q) ∈ VN × MN
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〈ui(n+1), vi〉 − �tgij
〈
ηn+1,

∂

∂xj
vi

〉
= 〈ui(n−1), vi〉 + �tgij

〈
ηn−1,

∂

∂xj
vi

〉
+ 2�t〈f i(n)

u , vi〉,

〈ηn+1, q〉 + �t
η0

g

〈
q,

∂

∂xj
(guj )n+1

〉

= 〈ηn−1, q〉 − �t
η0

g

〈
q,

∂

∂xj
(guj )n+1

〉
+ 2�t〈f n

η , q〉. (6)

With the matrices, cubed-sphere metrics, and Coriolis forcing constructed on
each element, the semi-implicit scheme can now be formulated into Ne local Helm-
holtz problems where the geopotential is solved at every timestep from a discrete
Helmholtz problem and then ‘communicated’ to the velocity field. Writing the as-
sembled discrete shallow water system from the previous subsection in matrix-vector
form, we get [

Bt −Dt

Dt B̃t

] [
un+1

ηn+1

]
=

[
Rt

u

Rt
η

]
, (7)

where

Bt = B
�t

, Rt
u = Ru

�t
, B̃t = B̃

�tη0
, Rt

η = Rη

�tη0
. (8)

The Helmholtz problem for the geopotential perturbation at each timestep is obtained
by solving for the velocity un+1 in the above block system to arrive at

un+1 = B−1(Rt
u + �tgij DT ηn+1), (9)

and then applying back-substitution to obtain an equation for the geopotential

gB̃ηn+1 + �t2η0DgB−1gij DT ηn+1 = R′
η, (10)

where
R′

η ≡ gRη − �tη0DgB−1Ru. (11)

Once the geopotential ηn+1 is computed, the velocity components u1, u2 are com-
puted from (9) where thereafter, shared local nodal values on element boundaries of
the velocity components are then averaged.

Furthermore, due to the fact that η0, g, B̃ and B−1 are diagonal, and gij can
be shown to be symmetric, it is easy to see that the matrix HSE is symmetric and
positive definite. In effect, an efficient preconditioned conjugate gradient method
can be constructed by using local element direct solvers for the Helmholtz prob-
lem with zero Neumann pressure gradient boundary conditions. The inverse of each
local Helmholtz operator matrix restricted to an element H|�e is computed once and
stored for use as a block-Jacobi preconditioner. This preconditioning technique en-
joys a computational structure ideal for parallel processors due to the fact that the
preconditioner is strictly local to an element and requires no global communication.
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3.2 The Empirical Backus-Gilbert Reproducing Kernel Discretization

Coupled with the global spectral-element method for use in regional approximation
of the shallow-water model, the empirical Backus–Gilbert reproducing kernel dis-
cretization method, originally introduced in Blakely [5] has been demonstrated to
produce highly accurate solutions to time-dependent nonlinear PDEs while being
endowed with great freedom in choosing the approximation space for building the
reproducing kernel. Furthermore, as the name of the method suggests, the EBGRK is
completely empirical with respect to the distribution of meshless nodes in the domain
of interest. For complete details of the method the reader is referred to [5].

The EBGRK method considers a quasi-interpolant of the form

Pu(x) =
N∑

i=1

u(xi)�i(x), (12)

where u = [u(x1), . . . , u(xN)]T represents the given data on a set of N distinct
evaluation nodes X = {x1, . . . , xN } on a bounded domain � ⊂ R

2. The finite set of
nodes X is endowed with a separation distance defined as

qX := 1

2
min

xj �=xi

‖xi − xj‖2.

The quasi-interpolant �i(x), or discrete reproducing kernel in some literature, is
constructed to be minimized in a discrete quadratic expression subject to some ap-
proximation space reproduction constraints. Details on constructing the empirical
reproducing kernel is out of the scope of this paper. We refer the reader to Blakely
[5] for the construction of the kernel and efficient numerical implementation.

To initiate regional meshless approximation on the cubed-sphere, consider the
domain �M = ∪M

i=1�
ei constructed of M contiguous elements on the discret-

ized cubed-sphere. For simplicity, we will assume �M lies on only one face of
the the cube. Building a meshless approximation space V�,X begins by randomly
distributing two sets of NM distinct collocation nodes in �M and on its bound-
ary ∂�M giving two sets XV

M , X
η
M such that XV

M = X
η
M . Using the EBGRK

method, the kernels �i(·) and �i(·) are constructed to form the discrete spaces
V�,X = span{�i(·), i = 1, . . . , NM } and M�,X = span{�i(·), i = 1, . . . , NM }
and with respect to the sets XV

M and X
η
M , respectively.

For writing the cubed-sphere shallow water equations in strong form, we utilize
the matrix-vector form of the equations originally given in [21]. As in any other
collocation method, we construct the set of Dirac delta test functionals �XV

M
=

{δx1, . . . , δxNM
} ⊂ (H 1)′(�M) and multiply each of the velocity components and

geopotential by each Dirac delta test functional δxi ∈ �XV
M

evaluated which gives
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〈δxj , u
i(n+1)〉 + �t

〈
δxj , g

ij ∂

∂xj
(η)n+1

〉
= 〈δxj , u

i(n−1)〉 − �tgij
〈
δxj ,

∂

∂xj
(η)n−1

〉
+ 2�t〈f i(n)

u , δxj 〉,

〈δxj , η
n+1〉 + �t

〈
δxj ,

η0

g

∂

∂xj
(guj )n+1

〉

= 〈δxj , η
n−1〉 − �t

〈
δxj ,

η0

g

∂

∂xj
(guj )n+1

〉
+ 2�t〈δxj , f

n
η 〉 (13)

with

〈δxj , f
i(n)
u 〉 = −εjk〈δxj , g

ij uk(n)gf 〉 −
〈
δxj , g

ij un
k

∂

∂xj
uk(n)

〉
,

and

〈δxj , f
n
η 〉 = −

〈
δxj , u

j ∂ηn

∂xj

〉
.

In order to approximate these equations spatially with the EBGRK method, we look
for a solution u ∈ (V�,X)2 ⊂ (H 1(�M))2 and η ∈ V�,X by taking for all n ≥ 0

un
k(xj ) =

NM∑
i=1

ũn
k (xi )�i(xj ), ηn(xj ) =

NM∑
i=1

η̃n(xi )�i(xj ) for xk ∈ XV
M,

where ũn
k (xi) and η̃n(xi ) are the approximated values at the collocation nodes xi at

time step n. Substituting these into (13) and applying the Dirac delta functionals, we
get for all δxj ∈ �XV

M〈
δxj ,

NM∑
i=1

ũk(n+1)(xi )�i(x)

〉
+

〈
�tgij ∂

∂xj
δxj ,

NM∑
i=1

η̃n+1(xi )�i(x)

〉

=
〈
δxj ,

NM∑
i=1

ũk(n−1)(xi)�i(x)

〉
+

〈
�tgij ∂

∂xj
δxj ,

NM∑
i=1

η̃n−1(xi )�i(x)

〉

+ 〈2�tδxj , f
i(n)
u 〉,

〈
δxj ,

NM∑
i=1

η̃n+1�i(x)

〉
+

〈
�t

η0

g

∂

∂xj
δxj , g

NM∑
i=1

ũj (n+1)(xi)�i(x)

〉

=
〈
δxj ,

NM∑
i=1

η̃n−1(x)�i(x)

〉
−

〈
�t

η0

g

∂

∂xj
δxj , g

NM∑
i=1

ũj (n−1)(xi)�i(x)

〉

+ 2〈�tδxj , f
n
η 〉. (14)
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The calculation of

gxj

∂�i(xj )

∂xk
, xj ∈ XV

M,

which is used in the divergence terms of the strong form shallow water system is
made prior to time stepping and stored as matrices in the form

Dk =

⎛
⎜⎜⎜⎝

gx1ϒ1(x1) gx1ϒ2(x1) · · · gx1ϒNM (x1)

gx2ϒ1(x2) gx2ϒ2(x2) · · · gx2ϒNM (x2)
...

gxNM
ϒ1(xNM ) gxNM

ϒ2(xNM ) · · · gxNM
ϒN(xNM )

⎞
⎟⎟⎟⎠ , (15)

where ϒj (·) denotes the differential operator ∂
∂xk acting on the kernel �j(·), which

was shown how to be constructed in Section 3.2. A similar matrix gijD
T
k used in cal-

culating the gradient of the geopotential in strong form is also computed and stored
prior to time stepping. These matrices are akin to the two-dimensional derivative
matrix Di of size N2 × N2 in the spectral element formulation.

Using notation borrowed form the spectral element formulation, we write the
discretized equations in matrix form with D = (D1,D2) as the derivative matrices
with respect to the collocation nodes and B, B̃ as the collocation matrices for the
velocity and geopotential, respectively. This leads to the system[

Bt −Dt

Dt B̃t

] [
ũn+1

η̃n+1

]
=

[
Rt

u

Rt
η

]
,

where

Bt = B
�t

, Rt
u = Rt

u

�t
, (16)

B̃t = B̃

�tη0
, Rt

η = Rη

�tη0
. (17)

Performing the Uzawa velocity-geopotential decoupling algorithm where we solve
for the velocity un+1 in the above block system to arrive at

ũn+1 = B−1(Rt
u + �tgij DT η̃n+1), (18)

and then applying back-substitution to obtain an equation for the geopotential at the
time step n + 1.

gB̃η̃n+1 + �t2η0DgB−1gij DT η̃n+1 = R′
η, (19)

where
R′

η ≡ gRη − �tη0DgB−1Ru.
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As with the spectral element case, we are now concerned with the solution to the
Helmholtz problem for the geopotential. Although the meshless collocation method
yields a strong form of the discrete shallow water model, the resulting discrete Helm-
holtz equation is similar to the spectral element Helmholtz equation in that the matrix
operator

HMM = gB̃ + �t2η0DgB−1gij DT (20)

is symmetric and positive definite and of size NM ×NM . It is important to notice that
the term

DgB−1gij DT

is a discrete pseudo-Laplacian operator on �M , a local domain on the sphere S2.
Because of the fact that the domain is locally defined on the sphere, essential bound-
ary conditions on ∂�M are needed in order to show direct equivalence to a local
Helmholtz elliptic problem on �M . This was not the case with the spectral element
discretization on the sphere since no boundary conditions are needed for the global
shallow water model. As a result, the boundary information on ∂�M must come
from the spectral element approximation in order to produce a unique solution to the
discrete Helmholtz problem (19). As we propose in the next section, if η̃n+1 is the
unique solution to this local Helmholtz problem at time n + 1 with respect to the
boundary information given by a global spectral element discretization at time n+1,
then η̃n+1 is an approximation to the geopotential field restricted to �M at time step
n + 1. To accomplish this task, we adapt the three-field domain decomposition al-
gorithm developed in [7] for coupling the two Helmholtz discretizations, which is
discussed in the next section.

4 Coupling the Meshless and SE Approximations

Because the meshless approximation is done locally utilizing the strong formulation
of the shallow-water equations on a local domain �M , certain transition conditions
are needed on the boundary of the subdomain connecting the meshless and spectral-
element approximations in order to satisfy continuity and flux conditions of the solu-
tion along with the artificial fluxes of the field variables. In 1994, Brezzi and Marini
(see [7]) developed a method termed the three-field formulation for hybrid finite-
element formulations where the goal was to give the possibility of coupling different
finite-element approximations using different meshes and basis functions from one
subdomain to another.

In this paper, we extend the idea of the three-field technique to couple spectral-
element and meshless collocation methods. As shown in the previous sections,
the manner in which we couple the two approximation schemes is done implicity.
Namely, after deriving the semi-implicit method, a symmetric positive definite dis-
crete Helmholtz type equation was left to be solved at each time step for the geo-
potential. With the solution of the geopotential at hand, it could then be used to
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approximate the velocity field at the same time step. So the question that remains
is how to solve Helmholtz equations for the coupled meshless/spectral-element ap-
proximation. In this section we consider solving the elliptic problem

Hu = �u(x) + g(x)u(x) = f (x), ∈ S2, (21)

where S2 is the unit sphere which is discretized via the cubed-sphere method dis-
cussed in Section 2. The fact that spatial discretization is not performed with spher-
ical harmonics but rather on a cubed-sphere mesh allows for an adaptive localized
approximation using meshless collocation via domain decomposition. Thus the heart
of the hybrid shallow water model lies in the efficient handling of the Helmholtz
equation on the sphere using the meshless/spectral-element formulation.

For proper stability analysis of this new three-field formulation for coupling
spectral-elements and meshless collocation including Babuška–Brezzi inf-sup type
conditions, the reader is referred to the paper by Blakely [6]. In order to introduce
the method, we must first discuss the necessary approximation spaces that will be
used in the formulation and discretization and their relevant physical meaning.

4.1 The Continuous Three-Field Formulation

Using the notation from the previous subsections, suppose we have are given a sub-
domain of M unioned elements �M = ∪M

i=1�
ei . For simplicity of exposition of the

three-field method, we assume �M is on one face of the cube. Let �SE/M denote
the boundary of �M which we will call the interface of the hybrid method between
the spectral element and meshless collocation approximations. Finally, we denote
�SE = � − �M , namely the collection of spectral elements not in �M and then set
�1 := �SE , �2 := �M and �i := ∂�i , for i = [1, 2], which are the boundaries of
these domains sharing the interface �SE/M .

In addition to the Sobolev space H 1
0 (�i) on each domain �i , utilizing the inter-

face �SE/M leads to two additional types of spaces that will be needed for domain
decomposition. We define a trace space and two dual spaces on �SE/M by consider-
ing H 1/2(�SE/M) with corresponding norm ‖ · ‖� := ‖ · ‖H 1/2(�SE/M) and denote the

dual of this space as H−1/2(�). Furthermore we introduce two spaces of Lagrangian
multipliers which provide the role of enforcing necessary boundary continuity over
the interface �SE/M and are defined as �i := H−1/2(�i) for i = [1, 2] which can
be regarded as the dual of the trace spaces associated with the two Hilbert spaces
H 1(�1) and H 1(�2). The Lagrangian multiplier space is endowed with the stand-
ard scalar inner product L2(�), 〈�i,H 1/2〉� = ∫

� λiu
ids for ui ∈ H 1(�). The third

function space which acts as the global continuity space for the hybrid approxima-
tion is defined on the interface � as restrictions of functions on the sphere S2 to the
interface. Namely

� := {υ ∈ L2(�) : ∃u ∈ H 1(S2), u = υ on �}. (22)
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Global norms for the spaces Vi := H 1
0 (�i) and �i can be given as broken norms

over �i

‖u‖V :=
( 2∑

i=1

‖ui‖2
1,�i

)
, ‖λ‖� :=

( 2∑
i=1

‖λi‖2

H
− 1

2
(�i)

)
,

and can easily be shown to be Hilbert spaces with these induced norms. Furthermore,
with the use of extension operators, the interface continuity space is endowed with
the norm

‖ϕ‖� := inf
u|�=ϕ

‖u‖1,�.

With the three approximation spaces at hand, the three-field formulation of the
Helmholtz problem can be written for the two subdomains utilizing the additional
two interface spaces �i and the global continuity space �. Using the dual product
notation 〈·, ·〉i = 〈H−1/2(�i),H

1/2(�i)〉 the following variational form is called the
three-field formulation. Find u ∈ V, λ ∈ �, and ϕ ∈ � such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)
2∑

i=1

(
a�i (u

i, vi) − 〈λi, vi 〉�i

) =
2∑

i=1

(f, vi )�i , ∀v ∈ V,

(ii)
2∑

i=1

〈µi, ui − ϕ〉�i = 0, ∀µ ∈ �

(iii)
2∑

i=1

〈λi, ψ〉�i = 0, ∀ψ ∈ �

(23)

The bilinear operator a�i stems from the weak formulation of the Helmholtz
equation and is defined as

a�i (u
i, vi) =

∫
�i

∇ui∇vi + guivid�i.

Furthermore, the inner products of the form

〈H−1/2(�i),H
1/2(�i)〉�i

signify the artificial boundary or interface matching conditions. To be more specific,
the second equation enforces weak continuity along the interface �i with the solution
ui on �i with respect to the interface continuity variable ϕ. The third equation serves
two purposes: (1) it further constraines the space of Lagrangian multipliers � by
adding orthogonality conditions with the interface space �, and (2) it renders the
discrete formulation of the above system as a symmetric positive definite system
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which can then be solved for the global solution (u, λ, ϕ) using a preconditioned
conjugate gradient method as will be shown in the next subsection.

We first note that a key observation in the three-field formulation comes from the
first two equations of (23). For a given ϕ on the skeleton �, the first two equations
are local Dirichlet problems where the boundary conditions on �i are imposed in
the weak sense. Because of this, one can show that the local problems are well-
posed for a given sufficient ϕ. For a complete analysis of the three field method for
coupling meshless and spectral-element approximations for elliptic equations, the
reader is referred to the paper by Blakely [6]. The thesis by Rabin [16] and relevent
references therein also give much insight to the three-field variational formulation in
the finite-element context.

4.2 Discrete Version of the Three-Field Formulation

The difficulty in passing to the discrete formulation the variational problem (23) is in
choosing the appropriate discrete subspaces of V, �, and �. Arbitrarily choosing the
subspaces can lead to unstable solutions of the discrete variational problem primarily
due to not satisfying the discrete versions of the inf-sup conditions, so careful con-
sideration of the spaces is necessary. In past approaches to the method, usually the
discretization of the space V is chosen first and then � and � are chosen thereafter
to satisfy the inf-sup requirements. In this section, we propose a discrete approxima-
tion to the three-fields formulation by considering the spectral-element and meshless
collocation methods as the discretization tools which will then lead to the hybrid
meshless/spectral-element method for the shallow water equations on the sphere.

With �1 defining the domain for the spectral element approximation and the
regional domain �2 being allocated for meshless collocation, we define the space
V 1

N := PN,Ne ∩H 1(�1), where PN,Ne is the space of piecewise continuous functions
that map to polynomials of degree less than or equal N to the reference element �e.
Namely,

PN,E(�1) := {
v(xe(r))|�e ∈ PN(r) ⊗ PN(s), e = 1, . . . , Ne such that �e ∈ �1

}
,

where PN(r) is the space of all polynomials of degree less than or equal to N . To
restrict this space to �1, we include all �e such that �1 ∩ �e �= 0. This approxima-
tion space will provide each component of the velocity field on the spectral element
partition �1. As described in Section 3.1, the discrete geopotential space is obtained
by utilizing the staggered grid approach and setting M1

N := PN−2,Ne ∩ H 1(�1).
Since the bounderies on each element �e are essential to the three-field method, the
N − 2 Gauss–Lobatto–Legendre distribution of nodes is used for the geopotential
grid, which is contrary to many spectral element staggered grids which use Gauss–
Legendre nodes for the geopotential/pressure field.

The regional domain �2 allocates a collocation approximation by considering a
random (or uniform) distribution of NM distinct collocation nodes �M and on its
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boundary ∂�M giving two sets XV
M , X

η
M such that XV

M = X
η
M . We then construct

the approximation space M2
NM

= V 2
NM

:= span{�1(x), . . . , �NM (x)} as defined in
Section 3.2.

With the spaces defined for the velocity and geopotential fields on each subdo-
main �i , the Lagrangian multiplier spaces �i for the interface boundaries �i can
now be constructed by using the spaces M1

N and M2
NM

. Since M1
N defines a spectral

approximation of order N − 2, we define the Lagrangian multiplier space for �1 as
the space of Lagrangian interpolants of order less that or equal to N and restricted to
�1. This is given by

�1
N = PN,E(�1) (24)

:= {
λ(xe(r))|�e ∈ PN−4(r)|�1, e = 1, . . . , Ne such that �e ∩ �1 �= 0

}
.

Using such a space for H− 1
2 (�1), it can be shown that the discrete inf-sup condition

for the interface inner product on �1 is satisfied. Namely, for some constant C1,N

dependent on the degree N of the spectral elements, we have

inf
λ1

N∈�1
N /{0}

sup
η1
N∈M1

N/{0}

〈Bλ1
N , η1

N 〉�1

‖η1
N‖M1

NM

‖λ1
N‖�1

N

= 〈λ1
N, η1

N 〉1

‖η1
N‖M1

NM

‖λ1
N‖�1

N

> C1,N

is satisfied. This result is proved in the paper on the Mortar Spectral Element method
by Ben Belgacem et al. [3] in a similar interface inner product using Lagrangian
multipliers.

In order to complete the space � we need the additional interface space on �2.
On the boundary �2, a second meshless collocation space for �2

N is constructed
using a random distribution of NM� nodes restricted to the interface �2 producing
the set X�2 . Using the EBGRK method presented in Section 3.2, the Lagrangian
multiplier space for �2 is taken to be �2

NM
= span{�λ

1 (x), . . . , �λ
NM

(x) : x ∈
�2} ⊂ H−1/2(�2) where �λ

i (·) denotes the i-th discrete reproducing kernel function
on X�2 .

Lastly, in order to connect the two pairs of approximation spaces (M1
N,�1

N) and
(M2

NM
,�2

NM
) on �1 and �2, respectively, we build a suitable discrete subspace of

� by taking the Lagrangian interpolants constructed from Legendre polynomials of
degree N − 2 restricted to �. Namely,

�N := {ϕ(xe(r))|�e ∈ PN−2(r)|�, e = 1, . . . , Ne, such that �e ∩ ∂� �= 0}.
This will ensure that the discrete inf-sup condition for � and �1

N on �1 is satisfied.
The last issue we need to resolve in this three field formulation is complying

with the strong form of the shallow water equations on �2. To this end, since �2
utilizes a meshless collocation technique, we define the set of test distributions on
�2 as M2

δ,NM
= {δxi : xi ∈ X

NM
η } where δxi is the Dirac delta function at node xi .
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The original variational formulation in (23) can now be modified as follows. Find
(η1

N, λ1
N , η2

N, λ2
N , ϕ) ∈ M1

N ⊗ �1
N ⊗ M2

NM
⊗ �2

NM
⊗ � such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) a�1(η
1
N, χ1

N) − 〈λ1
N , χ1

N 〉�1 = (f, χ1
N)�1, ∀χ1

N ∈ M1
N,

(ii) 〈µ1
N, η1

N − ϕN 〉�1 = 0, ∀µ1
N ∈ �1

N,

(iii) 〈λ1
N ,ψN 〉�1 = 0, ∀ψN ∈ �,

(25)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) a�2(η
2
N, χ2

N) − 〈λ2
N, χ2

N 〉�2 = (f, χ2
N)�2 , ∀χ2

N ∈ M2
δ,NM

,

(ii) 〈µ2
N, η2

N − ϕN 〉�2 = 0, ∀µ2
N ∈ �2

NM
,

(iii) 〈λ2
N ,ψN 〉�1 = 0 ∀ψN ∈ �.

(26)

Once the discrete approximation spaces have been chosen and numerical integ-
ration has been done, an efficient manner in solving this is to construct the Schur
compliment system and then apply a conjugate gradient method. To do this, we first
write (25) and (26) in algebraic form as:

Aiηi − BT
i λi = fi ,

−Biηi + CT
i ϕ = 0,

Ciλi = 0,

for i = 1, 2. Now applying block Gaussian elimination to the linear system, we
obtain a linear system for ϕ as

Sϕ = g, (27)

where S = S1 + S2, g = g1 + g2 and

Si := CiD
−1
i CT

i , gi := CiD
−1
i BiA

−1
i fi , Di := BiA

−1
i BT

i , i = 1, 2. (28)

The S matrix can be considered as the Schur compliment matrix with respect to u and
λ of the entire system defined above. Furthermore, it was shown by Brezzi in [7] that
the Schur compliment S is symmetric and positive definite if the matrices BT

i and Ci

have full rank. One can then apply a conjugate gradient method to the system (27) to
obtain the solution of the elliptic problem on the global domain. It can be remarked
that by definition of gi , the calculation of a conjugate gradient iteration requires the
solution to the local Helmholtz equation in each subdomain �i , i = 1, 2. Block-
Jacobi preconditioning is used to solve each of these local Helmholtz problems by
considering zero Neumann conditions for each local problem. This way, each local
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Helmholtz problem has a unique solution and in effect, the matrix Ai has an inverse
which can be calculated before time-stepping.

The last issue of the discrete three-field formulation is related to the efficient
construction of the matrices C and B. As they include the integration of the basis
functions for the Lagrangian multiplier spaces and the interface space and are inde-
pendent of the data, they can be calculated and stored prior to time stepping as well.
The matrices have the form

Ci (j, k) = 〈µi,j , φk〉�, µi,j ∈ �i
N, φi,k ∈ �N, (29)

Bi (j, k) = 〈ηi,j , µi,k〉�i , µi,j ∈ �i
N, ηi,k ∈ Mi

N . (30)

For i = 2, the above calculations involve integration on a spectral grid using
meshless reproducing kernels. The choice of the β parameter and NM for a given
radial basis that constructs the reproducing kernel determines the stability of the
entire hybrid model. A study on these parameters is given in full detail in Blakely
[6].

5 Numerical Experiments

As is it well established that the spherical rotational shallow-water equations rep-
resent a simplified model of the dynamica of the atmosphere, Williamson et al. [22]
have proposed a series of eight test cases for the equations in spherical geometry.
It is proposed by the authors that in order to have any type of success with a new
numerical scheme for an a climate model, successful integrations of the numerical
scheme with these test cases are imperative. The purpose of the tests are to examen
the sensitivites of a numerical scheme with many computational challenges faced in
atmospheric modeling such as stabilization of the scheme for large time steps over
a long period of time, the pole problem, simulating flows which have discontinu-
ous first-derivatives in the potential vorticity, and simulating flows over mountain
topographies.

5.1 Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

As the second test case, a steady state flow to the full non-linear shallow water equa-
tions is prescribed and the challenge for a numerical scheme is simply to test its
numerical stability with respect to l1, linf errors over time. Since the flow is steady,
the numerical scheme should be able to integrate the model for many steps without
the addition any filtering. The velocity field is given as

u = u0(cos θ cos α + cos λ sin θ sin α),

v = −u0 sin λ sin α,
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Fig. 2. Plot of l1 errors of the spectral element and meshless geopotential solutions on face 2
of the cubed sphere using 256 (64 per element) nodes for the evaluation of the solutions.

which is non-divergent. The analytic geopotential field is give by

η = gh0 −
(
a�u0 + u2

0

2

)
(− cos λ cos θ sin α + sin θ cos α)2,

with constants u0 = 2πa/(12 days) and gh0 = 2.94 × 104 m2/s2.
For this numerical experiment, we began with 24 total spectral elements (4 on

each face) and ran the model for 121 days without any additional filtering. A second
integration was performed using on face number 2 of the cube the meshless col-
location approximation built from compactly supported radial functions (see [18]).
Figure 2 shows the l1 errors over time of the geopotential solution on face 2 for both
the spectral element and meshless collocation approximations.

Notice how errors in the meshless approximation do not grow nearly as fast as in
the spectral element approximation, despite not being as accurate. This is due to the
collocation properties of the radial basis used. For the geopotential grid, a total 256
Gaussian–Lobatto–Legendre nodes (64 per element) were used at each time step.
Furthermore, to obtain an accurate error comparison between the methods, the col-
location approximation was evaluated at the spectral element nodes. Similar results
for the linf error were also obtained.

5.2 Test Case 6: Rossby-Haurwitz Waves

The most interesting of the test cases features an initial condition for the velocity
which is actually the analytical solution to the non divergent nonlinear Barotropic
equation on the sphere, given as a vorticity equation. We refer the reader to [22] for
the initial conditions of the velocity components and geopotential field.
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Fig. 3. Plots of geopotential approximation using 20 spectral elements and 4 elements alloc-
ated to meshless collocation. Plot after 10 and 60 days.

As originally proposed, these waves were expected to evolve nearly steadily with
wavenumber 4. However, Thuburn and Li showed that this case is actually weakly
unstable in that it will eventually break down once perturbed. This usually occurs
after about 40 days depending on the model and parameters used. Figure 3 shows the
geopotential layed out on rectangular coordinates for easier viewing. The figure to
the left shows the field after 10 days at an angle where the hybrid mesh structure on
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the cubed-sphere can easily be seen. Notice that the continuity along the interfaces
between the meshless and spectral-element approximations are preserved, meaning
the inf-sup conditions along the interface are satisfied.

6 Conclusion

In this article, we proposed and developed a new hybrid numerical scheme for the
shallow water equations on the sphere based on the merging of several numerical
tools including meshless collocation, spectral elements, and the three-field vari-
ational formulation. Furthermore, a high-performance Fortran 90 software suite has
been developed for the hybrid method for use on distributed memory parallel pro-
cessors with the message passing interface. Such a successful high-performance im-
plementation ultimately required the use of other Fortran 90 numerical packages for
almost half of the computational tasks in the model, such as the domain decomposi-
tion. Although much work still remains with theoretical issues of the hybrid approx-
imation scheme such as stability and convergence, the numerical examples in the
previous section have clearly shown the method’s robustness in approximating the
global solution with spectral elements along with localized regions using meshless
collocation.
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Abstract. The radial basis function interpolant is known to be the best approximation to a set
of scattered data when the error is measured in the native space norm. The approximate moving
least squares method, on the other hand, was recently proposed as an efficient approximation
method that avoids the solution of the system of linear equations associated with the radial
basis function interpolant. In this paper we propose and analyze an algorithm that iterates
on the residuals of an approximate moving least squares approximation. We show that this
algorithm yields the radial basis interpolant in the limit. Supporting numerical experiments
are also included.

Key words: RBP interpolation, MLS approximation, approximate approximation, residual
iteration.

1 Introduction

In this paper we will be interested in solving the following approximation problem.
For a given set of data {(xi, f (xi), i = 1, 2, . . . , N, xi ∈ � ⊆ R

s , f (xi) ∈ R}, we
seek a continuous function Pf : R

s → R that either interpolates the data, i.e.,

Pf (xi) = f (xi), i = 1, 2, . . . , N, (1)

or such that Pf provides a close approximation to f measured in some appropriate
norm.

We will be using radial basis functions (RBFs) to solve this problem, and one of
the main features of RBFs is the fact that they can be applied without any restriction
on the location of the data sites. Approximate moving least squares (AMLS) approx-
imation on the other hand is in its current form mainly applicable to uniformly spaced
data. This is due to the fact that it is known that the formulation of an approximate
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approximation method for scattered data is significantly more complicated than in
the case of uniform data (see, e.g., [8, 9]).

We are interested in the use and comparison of these two multivariate approxima-
tion methods. Radial basis function interpolation, on the one hand, is known to yield
the best approximation to given (scattered) data with respect to the native space norm
of the basic function used. The benefits of this optimality property are somewhat re-
duced by the need to solve a (generally) large system of linear equations which can
also be ill-conditioned. To avoid the solution of such a system of linear equations
we recently proposed an alternative meshfree method which we refer to as the ap-
proximate moving least squares method (see, e.g., [2–5]). Using the AMLS method
the solution is obtained via a simple sum based directly on the given data. Thus, the
AMLS method is a quasi-interpolation approach. The drawback associated with the
simplicity of the AMLS method is its lesser degree of accuracy.

We will see later that an algorithm which iterates on AMLS residuals converges
to the RBF interpolant, and therefore a few iterations can be considered as an ef-
ficient and numerically stable alternative to the RBF interpolation approach. While
the initial iterate of the algorithm will be an AMLS approximation designed for uni-
formly spaced data, we will see that the algorithm can generate an equivalently nice
solution even when the data sites are irregularly distributed.

The remainder of the paper is organized as follows. In Section 2 we set our nota-
tion and present some of the salient facts for the two approximation methods we are
interested in. The iterative algorithm is described in Section 3 which also contains
an analysis of its convergence. Numerical experiments that demonstrate the perform-
ance of the algorithm are presented in Section 4. The paper is concluded with some
remarks and an outlook on future work in Section 5.

2 The Two Approximation Methods

2.1 RBF Interpolation

The standard RBF interpolation approach for our data fitting problem is to assume
that the interpolant Pf is a linear combination of radial basis functions �j , i.e.,

Pf (x) =
N∑

j=1

cj�j (x) . (2)

where the �j : R
s → R are defined by shifting a single basic function to the data

sites, i.e.,

�j(x) = ϕ

(∥∥∥∥x − xj

h

∥∥∥∥
)

(3)

for some univariate function ϕ : [0,∞) → R. Note that we include a scale factor h

in the definition of the basic function. This scale factor is given by the fill distance
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h = supx∈� minxj , j=1,...,N ‖x − xj‖2 of the data sites. Note that our definition of
the radial basis functions is reminiscent of the stationary approximation paradigm,
i.e., the basis functions are scaled proportional to the fill distance. On the one hand it
is known that most RBFs do not yield a convergent stationary approximation scheme
(except when we use such functions as polyharmonic splines). However, it is exactly
the stationary setting that is studied in the approximate approximation context, and
there one can observe convergence subject to a saturation error whose size can be
controlled by an initial scaling of the basic function (see, e.g., [5, 9]).

Now, equation (2) can be rewritten as

Pf (x) =
N∑

j=1

cjϕ

(∥∥∥∥x − xj

h

∥∥∥∥
)

, (4)

and with condition (1) this leads to finding the coefficients cj from the linear system

Ac = f. (5)

Here A is an N × N interpolation matrix given by

A =
{
ϕ

(∥∥∥∥xi − xj

h

∥∥∥∥
)}N

i,j=1
or A = {

�j (xi)
}N

i,j=1 ,

c = [c1, c2, . . . , cN ]T , and f = [f (x1), f (x2), . . . , f (xN)]T . The interpolation mat-
rix A is guaranteed to be non-singular if ϕ is a strictly positive definite radial function
on R

s .
Examples of basic functions we could consider for the purpose of interpolation

are the strictly positive definite Gaussians ϕ(r) = e−ε2r2
or the inverse multiquad-

rics ϕ(r) = 1√
1+ε2r2

. Note that the shape parameter ε will play the role of the initial

scaling of the basic function just mentioned in the context of saturated approxim-
ate approximation. However, throughout this paper we will use the following set of
strictly positive definite functions defined as

ϕ(r) := 1√
πs

e−r2
L

s/2
n (r2), (6)

with

L
s/2
n (t) := et t−s/2

n!
dn

dtn

(
e−t tn+s/2

)
, n = 0, 1, 2, . . . ,

being the generalized Laguerre polynomials. We will refer to ϕ as a Laguerre–
Gaussian. Note that we did not include the shape parameter ε here in order to keep
the formulas transparent. Later we will consider the functions ϕε = ϕ(ε·).

The Laguerre–Gaussian functions are oscillatory. They can be explicitly written
as
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ϕ(r) =
n∑

k=0

(−1)k(n + s/2)!
n!(k + s/2)!

(
n

k

)
r2ke−r2

.

It is known that a (radial) function ϕ is strictly positive definite and radial on R
s

if its (radial) Fourier transform is non-negative and not identically equal to zero. For
the Laguerre–Gaussians one can show

ϕ̂(t) = e− t2
4√

2s

n∑
k=0

t2k

k!4k
≥ 0,

and it is obvious that equality holds only when t = 0.
Note that the definition of ϕ depends on the space dimension s, and therefore ϕ

is strictly positive definite and radial only on R
s for certain values of s. However,

in the special case n = 0 the basic function ϕ becomes the regular Gaussian whose
definition is independent of the space dimension s and thus it is strictly positive
definite on R

s for all s.
The primary motivation for us to investigate Laguerre–Gaussians lies in the fact

that they satisfy certain continuous moment conditions. These moment conditions
come up when one generates basis functions for approximate moving least squares
approximation. Details are given in next section.

2.2 Approximate Moving Least Squares Approximation

Roughly speaking, approximate moving least squares approximation is an approx-
imate version of the standard moving least squares method which does not require
the solution of any linear systems. The concept of approximate approximations was
first suggested by Maz’ya in the early 1990s. A key ingredient in this approach are
the continuous moment conditions for the basic function ϕ. A radial version of this
requirement may be described as∫

Rs

‖x‖kϕ(‖x‖)dx = δα,0 for 0 ≤ k ≤ d. (7)

According to the theory (see, e.g., [9]), a basic function ϕ that satisfies these
conditions provides the following results.

For uniformly spaced xj ∈ R
s and ε > 0, the quasi-interpolant

Qf (x) := εs
N∑

j=1

f (xj )ϕ

(
ε

∥∥∥∥x − xj

h

∥∥∥∥
)

(8)

approximately solves the data fitting problem (1) with a guaranteed convergence

‖f − Qf ‖∞ = O(hd+1) + ε(ϕ, ε).
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As before, h is the fill distance of the given data points. The quantity ε(ϕ, ε) is
referred to as a saturation error, and it depends only on the basic function ϕ and the
initial scale factor ε. By choosing an appropriate scaling parameter ε, this saturation
error may be pushed to the order of machine accuracy on any given computer.

One major advantage of the AMLS method is that the continuous moment con-
ditions (7) provide a possibility to explicitly derive such a basic function ϕ. For ex-
ample, any normalized integrable ϕ will satisfy (7) for d = 0. In fact, as mentioned
earlier, the Laguerre–Gaussian functions satisfy (7) with d = 2n + 1 for each cor-
responding s-dimensional space. Thus, Laguerre–Gaussians are admissible for both
RBF interpolation and AMLS approximation.

Unlike the standard RBF interpolation or moving least squares method, AMLS
approximation is a completely matrix free method and hence significantly improves
computational efficiency and successfully avoids the difficulties associated with ill-
conditioned system matrices. However, if we are interested in an approximation that
exactly interpolates the data given in (8), then the quasi-interpolant Qf requires that
its generating functions are cardinal functions. In other words, the approximant Qf

will naturally involve an error at the data sites in addition to the saturation error
ε(ϕ, ε). On the other hand, as we pointed out earlier, the interpolant Pf is the “best”
solution to problem (1) in the Hilbert function space defined by the chosen basis
functions. Therefore, we are motivated to seek a method that comes close to both
ideals, i.e., to find a solution that, on the one hand, does not require solving a linear
system but, on the other hand, is closer to the RBF interpolant than the plain AMLS
approximant.

Next, we will formulate a residual iteration algorithm that can achieve this goal
with an acceptable amount of additional computations.

3 Interpolation via Iterated AMLS Approximation

As shown in the previous section, it is possible that a standard RBF interpolant Pf

and an AMLS quasi-interpolant Qf share the same set of basis functions, e.g., basis
functions generated by a basic Laguerre–Gaussian function. In this section we will
explain how an initial approximant Qf can be pushed closer towards the corres-
ponding interpolant Pf by a residual iteration process. We will also provide some
theoretical analysis of the convergence of such an iteration.

3.1 The Iterative Algorithm

We will now combine all constant parameters h, ε, and εs into the definition of the
basic function ϕ. That is, we redefine (4) and (8) in the simple form
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Pf (x) :=
N∑

j=1

cjϕ
(‖x − xj‖

)
, (9)

Qf (x) :=
N∑

j=1

f (xj )ϕ
(‖x − xj‖

)
. (10)

Note that now each of Pf and Qf is a linear combination with the same basic
function ϕ. For example, we can use the scaled s-dimensional Gaussian,

ϕ(r) = εs

√
πs

e−ε2r2/h2
.

Clearly, the interpolation matrix based on (9) becomes

A = {
ϕ

(‖xi − xj‖
)}N

i,j=1 , (11)

and the linear system is still in the form Ac = f, where the vectors c and f are as
defined earlier.

To construct an algorithm that iterates on residuals, we start with an initial AMLS
quasi-interpolant

Q(0)
f (x) =

N∑
j=1

f (xj )ϕ
(‖x − xj‖

)
. (12)

We then iteratively define

Q(n)
f (x) = Q(n−1)

f (x) +
N∑

j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖x − xj‖
)
. (13)

That is, the current approximant is successively updated by a residual function which
is also constructed by AMLS approximation on the same set of data points.

Certainly, so far we have no evidence that the sequence of these approximating
functions {Q(n)

f } converges in any form as n → ∞, or what its limit will be if it is
convergent. Next, we will show that under some appropriate assumptions Qf does
converge to the interpolant Pf as n → ∞.

3.2 A Necessary and Sufficient Condition

Theorem 1. The sequence of functions {Q(n)
f } defined by (12) and (13) converges to

the interpolant Pf defined in (9) if and only if the chosen basic function ϕ generates
an interpolation matrix A that satisfies ‖I − A‖2 < 1 for a given set of distinct data
points {xj } ⊆ � ⊆ R

s .
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Proof. First, we convert our notation to matrix-vector form. Define a column
vector of functions

	(x) := [ϕ (‖x − x1‖) , ϕ (‖x − x2‖) , . . . , ϕ (‖x − xN‖)]T .

Clearly, 	(x) is related to the interpolation matrix A, i.e., due to the symmetry,

AT = [	(x1) | 	(x2) | · · · | 	(xN)] (= A) . (14)

The interpolant Pf defined in (9) can also be expressed in matrix-vector form
using the vector 	(x), i.e.,

Pf (x) = 	(x)T c. (15)

Next, we will inductively prove that the functions Q(n)
f defined in (13) can also

be explicitly expressed in matrix-vector notation

Q(n)
f (x) = 	(x)T

[
n∑

k=0

(I − A)k

]
f, for all n = 0, 1, 2, . . . , (16)

where f = [f (x1), f (x2), . . . , f (xN)]T as before.
The initial case n = 0 is clear. Suppose (16) holds up to an index n. We need to

show that

Q(n+1)
f (x) = 	(x)T

[
n+1∑
k=0

(I − A)k

]
f.

Using the induction hypothesis, the definition of f and the relation (14) between the
interpolation matrix A and the vector function 	 we have

Q(n+1)
f (x) = Q(n)

f (x) +
N∑

j=1

[
f (xj ) − Q(n)

f (xj )
]
ϕ

(‖x − xj‖
)

= 	(x)T

[
n∑

k=0

(I − A)k

]
f

+
N∑

j=1

[
f (xj ) − 	(xj )

T

[
n∑

k=0

(I − A)k

]
f

]
ϕ

(‖x − xj‖
)

= 	(x)T

[
n∑

k=0

(I − A)k

]
f

+ 	(x)T

[
f − AT

[
n∑

k=0

(I − A)k

]
f

]
.
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Now, straightforward algebra yields

Q(n+1)
f (x) = 	(x)T

[
I +

n∑
k=0

(I − A)k+1

]
f

= 	(x)T

[
n+1∑
k=0

(I − A)k

]
f.

As (16) shows, it is clear that each updated approximant Q(n)
f is still a linear

combination of the same basis functions but with an updated coefficient vector of the
form [

n∑
k=0

(I − A)k

]
f.

Thus, the fact that Q(n)
f → Pf as n → ∞ is equivalent to[

n∑
k=0

(I − A)k

]
f → c as n → ∞.

Since c is determined by the linear system (5) defined by the interpolation problem,
i.e., c = A−1f, the convergence is therefore equivalent to[

n∑
k=0

(I − A)k

]
f → A−1f as n → ∞,

or,
n∑

k=0

(I − A)k → A−1 as n → ∞.

The proof is completed by noting that a Neumann series satisfies

∞∑
k=0

(I − A)k = A−1

if and only if ‖I − A‖2 < 1. �
If the assumption of Theorem 1 holds, then a discrete 
2 error of this iterated approx-
imation with respect to the given data can be computed.

Corollary 1. Let

q(n) = [Q(n)
f (x1),Q

(n)
f (x2), . . . ,Q

(n)
f (xN)]T .

If ‖I − A‖2 < 1 then ‖f − q(n)‖2 → 0 for n → ∞.
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Proof.

‖f − q(n)‖2 =
∥∥∥∥∥AA−1f −

[
A

n∑
k=0

(I − A)k

]
f

∥∥∥∥∥
2

≤ ‖A‖2

∥∥∥∥∥A−1 −
n∑

k=0

(I − A)k

∥∥∥∥∥
2

‖f‖2.

Since the matrix A−1 is invertible, using the formula for the sum of a finite geometric
series, we have

‖f − q(n)‖2 ≤ ‖A‖2
∥∥A−1(I − A)n+1

∥∥
2‖f‖2

≤ ‖A‖2‖A−1‖2‖I − A‖n+1
2 ‖f‖2

= cond(A)‖I − A‖n+1
2 ‖f‖2 → 0,

where cond(A) is the 
2-condition number of A. �
If the assumption of Theorem 1 holds, then we can also estimate the norm of the
residual functions.

Corollary 2. If ‖I − A‖2 < 1 then

‖R(n)‖2 =
∥∥∥∥∥∥

N∑
j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖· − xj‖
)∥∥∥∥∥∥

2

→ 0

for n → ∞.

Proof. From (13) we have

R(n) =
N∑

j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖· − xj‖
)

= Q(n)
f − Q(n−1)

f .

But now, using matrix-vector notation,

∥∥Q(n)
f − Q(n−1)

f

∥∥
2 =

∥∥∥∥∥	(·)T
[

n∑
k=0

(I − A)k

]
f − 	(·)T

[
n−1∑
k=0

(I − A)k

]
f

∥∥∥∥∥
2

≤ ‖	(·)‖2 ‖I − A‖n
2 ‖f‖2 → 0,
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and thus the statement follows. �
Clearly, the speed of convergence is governed by the entries in the interpolation mat-
rix A, and thus by the choice of ϕ (see (11)). A basic function that is strictly positive
definite and satisfies the continuous moment conditions does not automatically guar-
antee such a matrix A. This may easily be demonstrated by counterexamples.

3.3 A Sufficient Condition

Theorem 2. Using the same notation as in Theorem 1, if a basic function ϕ is strictly
positive definite and generates an interpolation matrix A so that

max
i=1,2,...,N

⎧⎨
⎩

N∑
j=1

| Ai,j |
⎫⎬
⎭ < 2, (17)

then Q(n)
f converges to Pf as n → ∞.

Proof. Let λk for k = 1, 2, . . . , N be the eigenvalues of A. That is, 1 −λk are the
eigenvalues of the matrix I − A for k = 1, 2, . . . , N .

Since ϕ is a strictly positive definite function, the matrix A is positive definite,
i.e.,

λk > 0 for k = 1, 2, . . . , N.

Thus,
1 − λk < 1 for k = 1, 2, . . . , N. (18)

Recall that

Ai,j = ϕ‖xi − xj‖, for i, j = 1, 2, . . . , N.

This shows that all diagonal entries in A are identical and equal to ϕ(0). Hence,
Gerschgorin’s Theorem implies that

|λk − ϕ(0)| ≤ max
i=1,2,...,N

⎧⎨
⎩

N∑
j=1

| Ai,j |
⎫⎬
⎭ − ϕ(0), for k = 1, 2, . . . , N.

Using the assumption (17) we get

| λk − ϕ(0) |< 2 − ϕ(0),

which is equivalent to

ϕ(0) − 2 < λk − ϕ(0) < 2 − ϕ(0).
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Rearranging these inequalities yields

−1 < 1 − λk < 3 − 2ϕ(0), for k = 1, 2, . . . , N. (19)

Combining (18) and (19) we have

−1 < 1 − λk < 1, for k = 1, 2, . . . , N,

or
max

k=1,2,...,N
{|1 − λk |} < 1.

Since the matrix I−A is also symmetric, standard results from linear algebra tell
us that the 2-norm of the matrix I − A is given by

‖I − A‖2 = max
k=1,2,...,N

{|1 − λk|}.

So
‖I − A‖2 < 1,

and the convergence of Q(n)
f to Pf follows from Theorem 1. �

A simple example that illustrates Theorem 2 is obtained if we use Shepard’s partition
of unity functions. We define the set of basis functions as

wj(x) = ϕ(‖x − xj‖)
/ N∑


=1

ϕ(‖x − x
‖)

with a strictly positive definite and positive basic function ϕ. If an interpolant is
constructed with these basic functions, i.e.,

Pf (x) =
N∑

j=1

cjwj (x),

then one can easily show that the interpolation matrix W = {wj(xi)}Ni,j=1 is invert-
ible. Moreover, summation of the entries in any row of W always results in a row sum
equal to one due to the partition of unity property. Therefore, if the residual iteration
algorithm is started with a quasi-interpolant using the wj as generating functions,
then it will converge to Pf .

In order to ensure convergence of the residual iteration algorithm via Theorem 2
in the first place, and to increase its speed of convergence as much as possible, The-
orem 2 and its proof tell us that we want to have an interpolation matrix A whose
entries are not too large in magnitude. From the definition of the basic functions ϕ

we know that the entries of the matrix A carry a multiplicative factor εs . This simply
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implies that at least the diagonal entries in A could become arbitrarily large for ε > 0
being large (recall that Aj,j are indeed positive since ϕ is strictly positive definite).
Therefore, ε must be chosen to be small. On the other hand, however, it is known
that for many commonly used strictly positive definite functions (e.g., the Gaussian)
a small shape parameter ε implies that the smallest eigenvalue of A, λmin (which
again is always positive), will likely be very close to zero (see, e.g., Chapter 12 in
[10]). Therefore, again according to the proof of Theorem 2, ‖I−A‖2 will be at least
1 − λmin which is very close to 1. Thus, for such a choice of ε the convergence of
the iteration will be extremely slow. We will use a set of experiments to demonstrate
this trade-off phenomenon caused by the scaling parameter ε.

To conclude this section, we would like to come back to the data point distribu-
tion issue as mentioned earlier. Once Q(n)

f is guaranteed to converge to Pf it is not
so crucial how the initial approximant was constructed since Pf is still the “best”
solution to the problem even when data points are scattered. That is to say, although
Q(0)

f is an AMLS quasi-interpolant formulated with a scaling designed for the uni-
form data problem, the iterated approximant is still good when the data points are
scattered. From the experimental results presented in the next section, we will see
that this iterative method does work equivalently well for both regular and irregular
grid points.

4 Numerical Experiments

In this sections, we use a set of numerical experiments to illustrate some of the ad-
vantages and features of the iterated AMLS approximation method described in pre-
vious sections. We will study the behavior of the method with respect to the data
size N and the shape parameter ε used in the definition of the basic function ϕ.
Throughout the rest of this section the test function f we use for our experiments is
a mollified linear combination of exponentials similar to the famous Franke function.
More precisely, in the case s = 1 we use

f (x) = 15e
− 1

1−(2x−1)2

(
3

4
e− (9x−2)2

4 + 3

4
e− (9x+1)2

49 + 1

2
e− (9x−7)2

4 − 1

5
e−(9x−4)2

)
(20)

on the interval [0, 1], and for s = 2 we let

g(x, y) = 3

4
e−1/4((9x−2)2+(9y−2)2) + 3

4
e−(1/49)(9x+1)2−(1/10)(9y+1)2

+1

2
e−1/4((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)2−(9y−7)2

f (x, y) = 15g(x, y)e
− 1

1−(2x−1)2 e
− 1

1−(2y−1)2 (21)

which we will sample in the unit cube [0, 1]2. The basic function used to generate
the basis functions for all experiments presented here is the scaled s-dimensional
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Fig. 1. Comparison of accuracy and stability of the RBF interpolant, AMLS approximant, and
iterated AMLS approximant for 1089 Halton data points in 2D.

Gaussian

ϕ(r) = εs

√
πs

e−ε2r2/h2
, (22)

where h is the fill-distance corresponding to a uniform distribution of points in the
domain. This manner of scaling the basic function proportional to the fill-distance is
known as the stationary approximation paradigm. We have performed the same set of
experiments also with first-order Laguerre–Gaussians (see (6)). Due to the similarity
of these results to those for Gaussians we focus only on Gaussians here.

Although it is known that RBF interpolation theoretically yields the native space
best approximation for scattered data fitting problems, the results obtained in prac-
tice are sometimes unreliable due to poor numerical stability of the solution of the
associated linear system (5). For a given set of data the accuracy of an interpolant
may strongly depend on the scale parameter ε that is often part of the definition of
the basic function, e.g., the Gaussian function (22).

Generally speaking, when ε is too large, the basic function is very peaked, and
thus the resulting interpolant will be very “spiky” so that it can not be considered as
a good approximant to the true function. On the other hand, a small ε makes a flat
basic function which will generate an ill-conditioned interpolation matrix A giving
rise to computational difficulty (in the extreme case, when ε → 0, the matrix A
becomes a constant matrix which is singular). The interpolant resulting from such an
ill-conditioned calculation is obviously to be trusted less. Figure 1 illustrates both of
these observations.

In both plots of Figure 1 we display the root-mean-squared error of the inter-
polant (f-qf, dashed line), the AMLS approximant (f-pf0, dash-dotted line), and
the result of ten iterations of the iterated AMLS method (f-pf10, solid line) versus
the scale parameter ε as used in (22). The data were obtained by sampling the two-
dimensional modified Franke function (21) at 1089 non-uniform Halton points (see,
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Fig. 2. Maximum row sum, maximum eigenvalue, ‖I − A‖, and cond(A), for the matrix A
used in Figure 1.

e.g., [11] for more information on Halton points). The error was computed on a grid
of 40 × 40 equally spaced evaluation points.

In this example ε should be characterized as being “large” if its value is greater
than approximately 1.2. For these values the error of the interpolant is not signific-
antly different from that of the AMLS approximation, and a plot of the interpolant
would be a very “spiky” surface as mentioned earlier. Within this range for the scale
parameter we can distinguish two different behaviors of the iterative algorithm. If ε

is so large that convergence of the iterative algorithm is no longer ensured then the
iterated approximant blows up. Figure 2 shows that the maximum row sum of the
matrix A is greater than two if ε > 1.5. In fact, the iterated algorithm does not blow
up until about ε = 1.8 (when the maximum eigenvalue of A > 1). This also indicates
that the maximum row sum criterion is a relatively easy to check and safe criterion
to ensure convergence of the iterative algorithm. Clearly, one wants to avoid the use
of these “large” ε values.

Moreover, within the “large” ε range we can usually find those values for which
the iterative algorithm converges rapidly to the interpolant. For the example shown in
Figure 1 this corresponds to about 1.2 < ε < 1.8. Since the interpolant is still rather
“spiky” for these ε-values neither the interpolant nor the iterated approximant are
desirable in this case. However, the (iterated) AMLS apprimant is usually smoother
for this range of ε-values and there may be certain circumstances in which this may
be more desirable than the interpolant.

A third range of values of the scale parameter corresponds to a “good” inter-
polant – usually accompanied by slow convergence of the iterative algorithm. For
the example shown in Figure 1 this corresponds to about 0.4 < ε < 1.2. For most
problems of small to modest size (for which we were able to compute the inter-
polant in Matlab) the smallest achievable RMS-error for the interpolant falls into
this range. However, for larger problems the optimal interpolant may be associated
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with an ε-value that leads to an ill-conditioned system matrix. This brings us to the
last ε-range.

If ε is in the range that causes instability (roughly ε < 0.4 in Figure 1), then the
iterated AMLS method can successfully overcome the computational difficulty asso-
ciated with the solution of the ill-conditioned interpolation system. To illustrate this
more clearly we have displayed a “zoomed-in” view for this range of small ε in the
right part of Figure 1. Even pure AMLS quasi-interpolation may work better than in-
terpolation for this range of ε. In addition, the error between the test function and the
iterated AMLS approximant is significantly improved after only 10 iterations. It is
clear that if the number of iterations is much smaller than the number of data points,
then the iterated AMLS method requires far less computational work compared to
solving for the interpolant. In the experiments reported here we always perform 10
iterations. That is, the computational complexity is of order O(10N2) while direct
computation of the interpolant usually requires a computational complexity on the
order of O(N3). Of course, fast summation techniques such as the fast (non-uniform)
Fourier transform (see, e.g., [6, 7] or [5]) can be used to improve the efficiency of
both approaches.

In order to study the connection between the convergence behavior of the inter-
polant and that of the iterated AMLS approximant we will now focus on an ε that
falls into the “reasonable” range for both the interpolant and the iterative algorithm,
say, 0.4 ≤ ε ≤ 0.8 for the examples we present.

It is well-known (see, e.g., [1]) that stationary interpolation with Gaussians is
saturated. However, to our knowledge until now no one has provided an explicit es-
timate for the saturation error. In the quasi-interpolation setting, on the other hand,
which is discussed in the literature on approximate approximations (see, e.g., [9])
the saturation error is well understood. This begs the question whether the saturation
error of stationary RBF interpolation can be explained by the one of AMLS ap-
proximation via the residual iteration process. Since we have shown convergence of
iterated approximate MLS approximation to the RBF interpolant we may expect the
saturation error of the approximate approximation setting to propagate to the inter-
polant. This may be intuitively reasonable since the residual function is constructed
with the same AMLS functions as the initial AMLS approximant. Further detailed
analysis of this phenomenon is required.

The graphs in Figure 3 illustrate how the convergence behavior of the iterated
AMLS approximation matches that of the interpolant. The graphs shows RMS-errors
versus N , the number of data points, for a 1D approximation problem with data
function (20). The graphs in the left column are for uniformly spaced data, and in the
right column for Halton points. Each row corresponds to a different (fixed) value of
ε.

We see that the behavior is very similar in both the uniform and the non-uniform
(Halton) setting. The main difference is the larger error for the basic AMLS approx-
imation (f-pf0, dash-dotted line) in the Halton setting. This is easily explained by the
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Fig. 3. Saturated convergence of stationary RBF interpolation and iterated AMLS approxima-
tion for ε = 0.8, 0.6, 0.4 from top down with uniform (left) and Halton data (right).

fact that we have not adapted the scaling of the basis functions for the non-uniform
point distribution (see (22)). The similarity of the errors for the iterated AMLS ap-
proximant in the Halton and uniform settings clearly illustrates how the iterative
algorithm automatically adapts the AMLS method to the non-uniform setting.

In Figure 4 we collect the error curves for the iterated AMLS approximants from
the two columns of Figure 3 in one graph each. We can now clearly see that a larger
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Fig. 4. Saturation errors of iterated AMLS approximation for uniform (left) and Halton (right)
data in 1D.

ε makes the saturation error come in earlier, i.e., the drop in the error stops at a larger
error value and at a smaller data size N .

5 Conclusions

In this report we have presented a residual iterative algorithm for solving the
scattered data fitting problem. As shown by the analysis and numerical results in
the previous sections, the method works well for both uniform data and Halton data
(an example of irregular data). This is true in terms of accuracy, convergence speed,
numerical stability and computational cost.

As illustrated above, the residual iterative algorithm provides a mechanism to
transfer the saturation error associated with (stationary) AMLS approximation to
RBF interpolation. We plan to investigate this connection more carefully in the fu-
ture.

As is well known, RBF interpolation is the best approximation in the native space
for the data fitting problem. However, in practice, this “best” solution might not be
“good enough” – especially if the choice of the shape parameter ε is bad. Moreover,
in some cases one may not really desire an interpolant as the “best” solution. This
will be true, for example, when the data are obtained from some inaccurate noisy
experiments. In this case the residual iterative method will definitely provide a more
stable and more reliable solution for the problem.

Clearly, the success of our iterative method is determined by several components
such as the scaling parameter ε and the basic function itself. As pointed out above,
we want the basic function to be strictly positive definite to ensure uniqueness of the
RBF interpolant. Moreover, we want the basic function to satisfy a set of continuous
moment conditions defined in (7) required for AMLS approximation. As an example
of a class of functions that carry both of these properties we presented the Laguerre–
Gaussian functions. In order to obtain more insight and carry out a deeper analysis of
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the performance of this iterative method, it is desirable to test the method with some
other basic functions besides the Laguerre–Gaussians. Presently we are not aware
of any direct connection between strict positive definiteness of a function and the
set of continuous moment conditions (7). Of course, it is a simple matter to verify
that any integrable normalized strictly positive definite function satisfies condition
(7) for (at least) d = 0. On the other hand, a function that satisfies condition (7) is
not guaranteed to be strictly positive definite. For example, let ϕ : [0,∞) → R be
defined as

ϕ(r) = 1 + r2

1 + r2 + r4 .

Then its one-dimensional radial version

ϕ(‖x‖) =
√

3

2π

1 + ‖x‖2

1 + ‖x‖2 + ‖x‖4
, x ∈ R

satisfies condition (7) for d = 0. But it can be verified that the Fourier transform of
ϕ is negative at some points. Therefore ϕ is not strictly positive definite.

Since finding strictly positive definite functions that satisfy the continuous mo-
ment conditions seems to be a non-trivial task, we plan to search for additional func-
tion classes that carry both of these properties.
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Abstract. A Kansa type modification of the Method of Fundamental Solutions (MFS) is
presented. This allows us to apply the MFS to a larger class of elliptic problems. In the case of
inhomogeneous problems we reduce to a single linear system, contrary to previous methods
where two linear systems are solved, one for the particular solution and one for the homogen-
eous solution of the problem. Here the solution is approximated using fundamental solutions
of the Helmholtz equation. Several numerical tests in 2D will be presented in order to illus-
trate the convergence of the method. Mixed, Dirichlet–Neumann, boundary conditions will be
considered.

Key words: Elliptic boundary value problems, Method of Fundamental Solutions, Helmholtz
fundamental solution.

1 Introduction

Since its introduction, in 1964 by Kupradze and Aleksidze [9], the Method of Funda-
mental Solutions has been widely used by mathematicians and engineers for solving
homogeneous problems (e.g. [4, 5, 10]). More recently the MFS has also been ap-
plied for inhomogeneous problems using radial basis functions (e.g. [10]), or using
fundamental solutions from an associated eigenvalue equation, cf. [2]. The mathem-
atical justification for the MFS approximation has been made using density results,
cf. [1, 5].

Here we propose a modification of classical MFS methods, using Helmholtz fun-
damental solutions to simplify Laplacian terms, in a similar manner as RBFs are used
in Kansa’s method, e.g. [8]. This can be used for the numerical solution of a large
class of homogeneous and inhomogeneous elliptic problems.1 We consider a general

1 In this work, a boundary value problem, for instance (1), is called homogeneous if the right
hand side f = 0 and inhomogeneous if f �= 0.
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elliptic PDE with mixed, Dirichlet–Neumann boundary conditions, given by:⎧⎪⎪⎨
⎪⎪⎩

a�u + bu = f in �

u = g1 on �1

∂u

∂ν
= g2 on �2,

(1)

where � is a bounded, simply connected domain with a smooth boundary � = ∂� =
�1

⋃
�2 and a, b, f , g1, g2 are given functions.

2 Theoretical Aspects

We will not discuss in detail the well posedness of problem (1). From a simple clas-
sical approach (e.g. [7]) we know that for an elliptic PDE with |a(x)| ≥ ε > 0
a.e. x ∈ �, a, b ∈ L∞(�), f ∈ L2(�) the Dirichlet problem has a weak solu-
tion u ∈ H 1

0 (�), which is unique except for a countable number of eigenvalues for
some differential operators (for instance, the Helmholtz operator with a, b positive
constants). On the other hand for the Neumann problem, to ensure existence, a com-
patibility condition is sometimes required, for instance for b = 0, we must force∫
�

g2 = ∫
�

f/a.

We will assume that the problem (1) is known to be well posed.
The application of the MFS for the solution of boundary value problems in-

volving elliptic differential equations has been justified by density results on the
boundary (eg. [5]) and in the whole domain cf. [2]. These density results are how-
ever restricted to some elliptic differential operators with constant coefficients.

Since here we consider general variable coefficients explicit fundamental solu-
tions are not available, and we propose to use fundamental solutions of Helmholtz
operators:

�k(x) =

⎧⎪⎪⎨
⎪⎪⎩

i

4
H

(1)
0 (k|x|) in 2D

eik|x|

4π |x| in 3D
(2)

i.e. �k satisfies −(� + k2)�k = δ, where δ represents the Dirac delta and k is a
positive frequency. Here |x| represents the Euclidian norm of x and H

(1)
0 := J0 + iY0

is the first Hänkel function, defined through the Bessel functions of first and second
kind, J0 and Y0, respectively.

The main idea consists in using Helmholtz fundamental solutions since they re-
duce the application of the differential operator to algebraic manipulation. In fact, de-
fining P(1, x) = b+ax, the differential operator is given by P(1,�)u = bu+a�u

and in particular for �k we have
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P(1,�)�k = P(1,−k2)�k

(except at the origin).
Moreover, considering an appropriate admissible domain �̂ ⊂ �̄c with boundary

�̂ = ∂�̂, for instance an open set �̂ such that �̂c ⊃ � we have the density result,
established in [2]:

S� = span{�κ(· − y)|� : y ∈ �̂, κ ∈ I ⊂ R+} is dense in L2(�). (3)

where I is an open interval.
This density result motivates the approximation of a solution u by a sequence

of linear combinations of fundamental solutions. Assuming the L2(�) sense in the
differential equality, we may say that u is given by an infinite sum from S�

u(x) =
(∞)∑
κ,y

βκ,y�κ(x − y), (x ∈ �). (4)

We first justify that the approximation of the differential equation, in the domain �

is possible using Helmholtz fundamental solutions.

Theorem 1. (i) If fb/b ∈ L2(�) there exists a sequence (vn) with vn ∈ S� such that
bvn → fb in L2(�).

(ii) If fa/a ∈ L2(�) there exists a sequence (un) with un ∈ S� such that
a�un → fa in L2(�).

Thus if f = fa + fb and fa/a, fb/b ∈ L2(�) then a�un + bvn → f in L2(�).

Proof. (i) is a trivial consequence of the density result (3). To prove (ii), since
fa/a ∈ L2(�) we also consider (3) with

fa(x)/a(x) =
(∞)∑
κ,y

ακ,y�κ(x − y), (x ∈ �)

then

un(x) =
(n)∑
κ,y

ακ,y

−κ2 �κ(x − y), (x ∈ �)

and

�un(x) =
(n)∑
κ,y

ακ,y�κ(x − y), (x ∈ �)

converges in L2(�) to fa/a. Therefore a�un → fa in L2(�). �
This does not prove that the solution exists, it only shows that it is possible to use
sequences of fundamental solutions to approximate the right hand side of the equa-
tion. In simple situations, such as a, b constant, we can construct un = vn giving an
explicit solution.
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Theorem 2. Consider a, b constants and S� with
√

b/a �∈ I. If f ∈ L2(�) with

f (x) =
(∞)∑
κ,y

ακ,y�κ(x − y), (x ∈ �)

then

u(x) =
(∞)∑
κ,y

ακ,y

b − aκ2 �κ(x − y), (x ∈ �)

is a particular solution for a�u + bu = f in L2(�).

Proof. Applying the differential operator a� + bI to �k(x − y) we obtain

(a� + bI)�k(x − y) = (−aκ2 + b)�k(x − y)

and applying it to the sum that defines u gives exactly f .
The choice of the set of frequencies I ensures that κ2 �= b/a. �

To obtain the solution of the full problem the boundary conditions must also be
imposed on � using the expansion (4).

We will solve simultaneously the domain equation and the boundary conditions
in a discrete linear system defined by a finite number of test frequencies and point
sources.

3 The Numerical Method

We consider m source-points yj , distributed on the admissible source set �̂ (cf. [1]),
and p positive test frequencies kr, and approximate the solution by

ũ(x) =
p∑

r=1

m∑
j=1

αr,j�kr (x − yj ). (5)

The unknown coefficients αr,j will be fitted such that ũ(x) satisfies the boundary
conditions as well as the inhomogeneous elliptic equation, on some prescribed col-
location points xi. This ideia is similar to the Kansa technique, where instead of the
RBFs we use fundamental solutions of the Helmholtz equation (e.g. [8]). This leads
to a discrete problem that consists in solving a three block linear system of the form⎡

⎢⎢⎢⎢⎣
A

− − −
B

− − −
C

⎤
⎥⎥⎥⎥⎦

n×(pm)

⎡
⎢⎢⎢⎢⎣

α1,1
α1,2
. . .

αp,m−1
αp,m

⎤
⎥⎥⎥⎥⎦

(pm)×1

=

⎡
⎢⎢⎢⎢⎣

f (xd
i )

− − −
g1(x

∗
i )

− − −
g2(x

∗∗
i )

⎤
⎥⎥⎥⎥⎦

n×1

(6)
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where xd
i ∈ W ⊆ �, x∗

i ∈ �1 and x∗∗
i ∈ �2 are the nd, n∗ and n∗∗ collocation

points and n := nd + n∗ + n∗∗. The three submatrices are defined as follows:

• associated with the elliptic differential equation

A = [(b(xd
i ) − k2

r a(xd
i ))�kr (x

d
i − yj )]nd×(pm)

• associated with the Dirichlet boundary condition

B = [�kr (x
∗
i − yj )]n∗×(pm)

• associated with the Neumann boundary condition

C = [νx∗∗
i

· ∇�kr (x
∗∗
i − yj )]n∗∗×(pm)

Here νx∗∗
i

represents the unitary normal vector at x∗∗
i ∈ �2. The linear system

(6) can be solved by direct collocation, taking n = pm, or in the least squares sense,
taking n > pm. In this work we used the Gauss method with partial pivoting for the
solution of the linear system.

4 Numerical Simulations

We focus on the 2D case of problem (1), the 3D case can be considered in a sim-
ilar way. In the first three simulations, we will consider a circular domain �1 =
S1 = {x ∈ R2 : |x| ≤ 1} and smooth boundary data. Any other domain can be
considered, noting that there should exist an uniquely defined normal vector ν at
any point x∗∗

i ∈ �2. In the other two examples we will test the performance of the
method in more general settings. More precisely, we will consider irregular boundary
and non-smooth boundary data.

As we will consider only real functions a, b, u, f, g1, g2, from an implement-
ation point of view, we can take only the smooth, non-singular, J0, part of the fun-
damental solution (2). Density results are still applicable, see [2]. Additionally, the
source-points yj can be chosen on the boundary ∂� (Boundary Knot-type Method,
see [6]) or even inside the domain.

Note that the normal derivative of the non-singular part of the fundamental solu-
tion in 2D is given by

∂

∂ν

(
J0(k|x − y|)

4

)
= −k

νx · (x − y)

4|x − y| J1(k|x − y|).

4.1 Helmholtz-Type Equations

We start by taking a(x) = b(x) = 1. In this case equation (1) resumes to an unitary
Helmholtz inhomogeneous problem with mixed boundary conditions. In [2] such
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Fig. 1. The knots xd
i , left and x∗

i (dots), x∗∗
i (circles) and yj ∈ ∂B(0, 2), right.

problem was studied, but only with Dirichlet boundary conditions. Let the exact
solution be given by

u1(x) = sin(πx1)x2 + cos(πx2)x1

and f, g1, g2, calculated accordingly.
From the numerical point of view, we consider nd = 1401 collocation points

xd
i ∈ �̄1 and m = 100 source-points, evenly distributed on ∂B(0, 2) = {x ∈ R2 :

|x| = 2}, see Figure 1. We took p = 10 integer test frequencies {1, 2, . . . , 10}. The
knots x∗

i and x∗∗
i were also evenly distributed on �1 and �2, according to the type of

boundary conditions (BC).
In Figure 2 we present the plots of the absolute error (the relative error is of the

same order of magnitude) for three simulations. On the first plot, a pure Dirichlet BC
problem (n∗ = 200, n∗∗ = 0), on the second plot a mixed BC problem (n∗ = n∗∗ =
100), where the Neumann condition is imposed on the upper half of ∂�1, and finally
on the third plot a pure Neumann BC problem (n∗ = 0, n∗∗ = 200).

The method showed excellent numerical results, absolute (relative) errors of
magnitude less than 10−6 were observed in the three cases. It is worth noting that
our method performs worse when a Dirichlet BC problem is considered (Figure 2,
first plot, error 10−6) than in the pure Neumann case (Figure 2, third plot, error 10−8).
For mixed BC the numerical results are intermediate. This behavior is observed for
any knot distribution and test frequencies as we illustrate in Table 1.

Here (see Table 1) we vary the number of boundary collocation points and the
number of source-points, yj ∈ ∂B(0, 2). Two sets of p = 10 tests frequencies were
also considered: F1 = {2, 4, . . . , 20} and F2 = {1, 2, . . . , 10}. Note that the choice
of the test frequencies is a delicate problem and the behavior of the exact solution
should be studied carefully in order to choose an appropriate set. A highly oscillating
exact solution will require higher test frequencies.
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Fig. 2. Plots of the absolute error of ũ1 for a Dirichlet (first plot), Dirichlet–Neumann (second
plot) and Neumann (third plot) boundary conditions problem.

Table 1. The maximum absolute error of ũ1 for several knot and frequency choices, measured
over 2000 random points on the annulus {x ∈ R2 : 0.95 ≤ |x| ≤ 1.0}.

n∗ + n∗∗ m Dirichlet BC mixed BC Neumann BC

F1 100 50 1.005E − 04 2.525E − 05 1.933E − 05
100 100 5.075E − 05 3.810E − 04 1.970E − 05
200 100 5.515E − 05 2.563E − 05 2.256E − 05

F2 100 50 3.310E − 06 1.157E − 06 4.823E − 07
100 100 2.189E − 05 3.269E − 06 2.655E − 07
200 100 8.895E − 06 9.673E − 07 6.574E − 08

The numerical results shown in Table 1 confirm the convergence of the method.
The relative errors are lower than 0.04%.

Our method can also be applied to Poisson (take a(x) = 1, b(x) = 0) or mod-
ified Helmholtz (take a(x) = 1, b(x) = −1) problems. It is also not a problem to
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Fig. 3. Plots of the absolute error of ũ2 for a Dirichlet (first plot), Dirichlet–Neumann (second
plot) and Neumann (third plot) boundary conditions problem.

approximate the solution of a general homogeneous equation as we will see in the
following subsection.

4.2 Homogeneous Elliptic Equations of Type (1)

Here we consider a homogeneous elliptic equation of type (1), i.e. f = 0, and take

a(x) = sin(x1 + x2) and b(x) = 4(1 − x2
1 − x2

2) sin(x1 + x2)

(1 + x2
1 + x2

2)2
.

For this particular choice, the exact solution is given by

u2(x) = 1

1 + x2
1 + x2

2

and the boundary conditions are calculated accordingly.
In Figure 3 we show the numerical results for the three types of boundary condi-

tions as in the previous example. We took nd = 1301 and n∗+n∗∗ = 100 collocation
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Fig. 4. Absolute error of ũ2 (left) and ∂ũ2
∂ν (right), on the boundary ∂�1, for a Dirichlet bound-

ary conditions problem.

Fig. 5. Absolute error of ũ2 (left) and ∂ũ2
∂ν

(right), on the boundary ∂�1, for a Dirichlet–
Neumann boundary conditions problem.

points and p = 15 integer test frequencies {1, 2, . . . , 15}. For the source points yj

we considered m = 100 knots, uniformly distributed on ∂B(0, 1.5).

For this example the numerical method shows absolute errors of magnitude lower
than 10−6 in the three cases. The best results are observed in the Dirichlet BC case.
On the other hand, the method shows higher numerical errors in the mixed BC case.

In Figures 4, 5 and 6 we illustrate the absolute error of the approximate solution
ũ2 (left plots) and its normal derivative ∂ũ2/∂ν (right plots) on the boundary ∂�1,

for the three types of boundary conditions. In general, we may conclude that if we
impose a Dirichlet type BC on a portion �1 of the boundary then ũ will show lower
absolute error near �1 than its normal derivative ∂ũ/∂ν.

As we mentioned in Section 2 the mathematical justification of the MFS is given
in terms of density results on the L2(�1) norm. In Table 2 we present some numerical
results for the absolute error of ũ2, measured on a discrete l2 norm. More precisely,
we measured the quantity

||u − ũ||2,N := 1

N

(
N∑

i=1

|u(ti) − ũ(ti)|2
)1/2

,

where {ti} are N random error test points in �̄1.
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Fig. 6. Absolute error of ũ2 (left) and ∂ũ2
∂ν (right), on the boundary ∂�1, for a Neumann

boundary conditions problem.

Table 2. The absolute error ||u2 − ũ2||2,N for several knot choices, measured over N = 5000
random points in �̄1.

n∗ + n∗∗ m Dirichlet BC mixed BC Neumann BC

100 50 1.657E − 09 7.936E − 09 1.123E − 09
100 100 4.294E − 10 1.544E − 08 2.630E − 09
200 100 5.650E − 10 3.078E − 10 4.344E − 10

The numerical results confirm the convergence of the method on the discrete
norm. Note that as the exact and approximate solutions are smooth functions and N

is finite the two norms || · ||∞ and || · ||2,N are equivalent.

4.3 Inhomogeneous Elliptic Equations of Type (1)

We now consider a more general, inhomogeneous, example of problem (1). Let
a(x) = e−(x2

1+x2
2 ), b(x) = cos(x1) + cos(x2) and for the exact solution we took

u3(x) = sin(x1x2)x1x2,

with f, g1 and g2 calculated accordingly, using equation (1).
For the mixed boundary condition case we will impose a Neumann condition

on the first and third quadrants of R2 and Dirichlet BC on the second and fourth
quadrants, see Figure 7.

In Figure 8 we present the numerical results for nd = 1401 knots xd
i ∈ �̄1 and

m = 100 source-points, evenly distributed on ∂B(0, 2). We took p = 10 integer test
frequencies {1, 2, . . . , 10} and n∗ + n∗∗ = 200 evenly distributed boundary knots.

The absolute error behavior for the Dirichlet BC problem (see Figure 8, first plot)
is similar to the one observed for the previous two examples. On the other hand, the
error plots for the mixed BC (second plot) and Neumann BC (third plot) problems
differ significantly. For the current example we can no longer state that the maximum
error occurs at the boundary as for the Helmholtz-type example. We also note that
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Fig. 7. The knots x∗
i (dots), x∗∗

i (circles) and yj ∈ ∂B(0, 2).

Fig. 8. Plots of the absolute error of ũ3 for a Dirichlet (first plot), Dirichlet–Neumann (second
plot) and Neumann (third plot) boundary conditions problem.
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Table 3. The maximum absolute error of ũ3 for several knot choices, measured over 104

random points on �̄1.

n∗ + n∗∗ m Dirichlet BC mixed BC Neumann BC

100 50 1.374E − 06 4.226E − 07 4.236E − 07
100 100 3.723E − 07 7.919E − 07 1.895E − 07
200 100 4.418E − 07 2.533E − 06 3.692E − 07

in the mixed BC problem the approximate solution is worse near �2 than near �1,

contrary to what was observed in Section 4.1.
In Table 3 we present some numerical results varying the number of source and

boundary collocation points. Note that, as ||u3||∞ ≈ 0.24, the relative error is of the
same magnitude as the measured absolute error.

Numerical tests were also performed for source-points located inside the domain.
For example we took yj ∈ ∂B(0, 0.99), mixed BC and the same collocation knots
and test frequencies as in Figure 8, center. The observed absolute errors were slightly
lower. The Boundary Knot-type method (yj ∈ ∂�1) showed similar results for the
Dirichlet BC problem.

4.4 Non-Smooth Boundary Data

In this simulation we consider the same circular domain, �1 = S1, as before and a
pure Dirichlet BC problem. Let a(x) = x2

1 +x2
2 and b(x) = sin(x1 +x2). For the for-

cing term we take a non-smooth function f (x) = |x1x2|, which is not diferentiable
at the axes x1 = 0 and x2 = 0. The Dirichlet BC will be given by

g1(x) = | sin(x1)| + cos(ex2),

which has two singularities of the gradient at the points (0, 1) and (0,−1).

As the exact solution of this problem is not known we will measure the error of
the approximate solution on the boundary ∂�1. Here we took n∗ = 90, n∗∗ = 0,

m = 30 with yj ∈ ∂B(0, 1.5) and p = 15 with F = {1, 2, . . . , 15}. For the domain
collocation knots xd

i we chose nd = 721 quasi equally spaced points, see [3], shown
in Figure 9, first plot.

In Figure 9, second plot, we show the approximate solution of this problem in �1.

In the same figure we present also a joint plot of the exact and approximate solutions
on ∂�1. Clearly the numerical method fits the boundary data almost perfectly. The
error is approximately 4.69E −02 on the || · ||∞ norm and 3.28E −04 on the || · ||2,N

norm, when measured on N = 500 random points on ∂�1.

As the approximating functions, i.e. the Bessel functions of the first kind, are
smooth functions we expect to find some difficulties in approximating the boundary
data near the two singularities at (0, 1) and (0,−1). In Figure 10 (left) we show the
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Fig. 9. The nd = 721 domain collocation knots xd
i

(first plot), the approximate solution in the
domain (second plot) and the exact (black line) and approximate (red line) solutions on the
boundary (third plot).

Fig. 10. The absolute error on the boundary (left) and a zoom of the exact (black line) and
approximate (red line) solutions near the second singularity of the boundary data (right).

plot of the absolute error on the boundary. Two local maxima, corresponding to the
values π/2 and 3π/2 of the angular parameter of ∂�1 are clearly visible. In order to
illustrate these local problems we also include a zoom of one of the referred regions
(see Figure 10, right).

Note that this local problems do not affect the global convergence of the method
on the discrete Euclidian norm.
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Fig. 11. The L-shaped polygonal domain �2 (left), the domain collocation knots xd
i (center)

and the boundary and source points (right).

4.5 Polygonal Domains

In the last simulation we will apply our method for a Dirichlet BC problem on a
polygonal, L-shaped domain (see Figure 11, left). The domain collocation points and
the boundary collocation points, as well as the source points, are shown in Figure 11,
center and right.

We will consider the following Boundary Value Problem{
�u(x) + x1x2u(x) = sin(x1 + x2), x ∈ �2
u(x) = g1(x), x ∈ ∂�2

where the Dirichlet BC is given by

g1(x) =
{

x2(1 − x2) if x1 = 0
0 otherwise

, x ∈ ∂�2.

As in the previous example, the exact solution for this problem is not known and
we measure the absolute error only on the boundary ∂�2.

In Figure 12 we present the approximate solution for n∗ = 352, n∗∗ = 0, nd =
1134, m = 132, p = 5 and F = {1, 2, . . . , 5}.

The absolute error on the boundary was approximately 3.5E − 02, and its max-
imum was measured on the vertex (1/3, 1/3). In Figure 13 we show the plots of the
absolute error on the six segments of the boundary, after parametrization.

Note that, for this example, due to numerical instabilities of the method, the res-
ulting linear system can only be solved in the least squares sense. Several knot dis-
tributions and artificial boundaries were tested but absolute error less than 10−2 was
not observed.

5 Concluding Remarks

We presented a Kansa type modification of the MFS that can be used for the numer-
ical solution of a large class of elliptic problems. The method can be applied for ho-
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Fig. 12. The approximate solution in �2.

Fig. 13. The absolute error on ∂�2, starting from the vertex (0, 0) and proceeding in contra
clockwise direction.

mogeneous or inhomogeneous problems and several boundary conditions (Dirichlet,
Neumann or mixed). The method is based on the solution of a single linear system,
contrary to previous two-stage methods, where a system is solved for the particu-
lar solution and another, for the homogeneous solution. The use of the fundamental
solution of the Helmholtz equation avoids the calculation of the Laplacian operator.
No numerical/analytical integration or derivation is necessary for the application of
our method. The choice of the collocation and source points may be random, but we
should avoid close knots in order to avoid linear dependence of rows or columns in
the linear system.

In the first three simulations the method shows excellent numerical results and
low approximation errors. We may conclude that our method is indicated for the
solution of PDEs with smooth boundary conditions and in domains with regular
boundaries. On the other hand, in the last two examples, the method failed to decrease
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the error. In this case, the lowest absolute (relative) error we measured was of order
10−2, on the ‖ · ‖∞ norm.

One disadvantage to be mentioned is that the resulting linear systems are highly
ill conditioned. The same problem was also observed for the classical Method of
Fundamental Solutions and in its modifications, e.g. [2]. Regularization techniques
may be a solution for this problem.

Current investigation is being conducted over a more general class of PDEs. Bet-
ter knot distributions are being tested.
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Abstract. This article introduces basic concepts of meshless methods for solving partial dif-
ferential equations in their strong form by collocation or least squares approximation. Global
and local formulations are defined. The current achievements, based on the local form and col-
location with radial basis functions are explained in detail. Heat transfer and fluid flow prob-
lems are treated. These achievements represent a simple, and at the same time more efficient
version of the classical meshless radial basis function collocation (Kansa) method. Instead of
global, the collocation is made locally over a set of overlapping domains of influence and the
time-stepping is performed in an explicit way. Only small systems of linear equations with
the dimension of the number of nodes included in the domain of influence have to be solved
for each node. The computational effort thus grows roughly linearly with the number of the
nodes. The represented approach thus overcomes the principal large scale bottleneck of the
original Kansa method and widely opens space for industrial applications of the method. The
purpose of this article is to give a concentrated information on this new method, which has
already been successfully applied in macroscopic and microscopic transport phenomena field,
accompanied with research requirements for the future. It is devoted to practicing engineers
and researchers.

Key words: Radial basis function collocation method, transport phenomena, strong formula-
tion, multiquadrics.

Nomenclature

Latin Symbols
b = augmented vector of the system of linear equations
c = coefficient of the weight function
D = diffusion tensor
f = body force
K = number of global approximation functions
N = number of gridpoints
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p = position vector
P = pressure
P̃ = pressure correction
S = source
t = time
T = deviatoric part of the stress tensor
v = velocity
ṽ = velocity correction
v̂ = velocity estimate

Greek Symbols
α = coefficient of the global approximation function
�t = time-step
�tP = pressure iteration time-step
ρ = density
ψ = global approximation function
ψ = system matrix
� = system matrix (boundary condition information included)
� = general transport variable
θ = scalar inhomogeneous part in Poisson equation
� = vector inhomogeneous part in Poisson equation
A = transported-diffused variable relation function
ϒ = boundary condition indicator function
� = boundary
ω = sub-domain

 = domain

Superscripts
l = sub-domain indicator
D = Dirichlet boundary indicator
N = Neumann boundary indicator
R = Robin boundary indicator

Subscripts
0 = initial time
x = Cartesian coordinate
y = Cartesian coordinate
z = Cartesian coordinate
ς = coordinate indicator
ζ = coordinate indicator
ξ = coordinate indicator
τ = coordinate indicator
ι = time level indicator

Mathematical Symbols
∇ = divergence operator
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∇2 = Laplace operator∑
= sum

1 Introduction

1.1 Motivation

The development of efficient as well as simple algorithms for the numerical solution
of partial differential equations (PDEs) is of major interest in applied sciences and
engineering. The most popular discrete approximate methods for PDEs are nowadays
the finite difference (FDM) [22], the finite volume (FVM) [35], the finite element
(FEM) [41], the spectral (SM) [3], and the boundary-domain integral (BDIM) [40]
methods. Despite the powerful features of these methods, there are often substantial
difficulties in applying them to realistic, geometrically complex three-dimensional
transient problems. A common element of the mentioned methods is the need to
create a polygonisation, either in the domain and/or on its boundary. This type of
meshing is often the most time consuming part of the solution process and is far
from being fully automated.

Figure 1 shows the most common types of space discretisation arrangements in
numerical methods used for non-linear transport phenomena. The FDM discretisa-
tion shown in Figure 1(a), involves pointisation only. However, the points are re-
stricted to coordinate directions and uniformity. The FVM discretisation shown in
Figure 1(b) includes polygonisation with rectangles. The rectangles are restricted to
coordinate directions. The FEM discretisation is shown in Figure 1(c) and includes
polygonisation with triangles. The triangles might be of arbitrary dimension and ori-
entation. The triangles can be exchanged with other types of polygons. The BDIM
discretisation is shown in Figure 1(c) as well. It includes discretisation of the domain
with polygons (cells) and discretisation of the boundary with straight lines (boundary
elements). The DRBEM discretisation is shown in Figure 1(d). Instead of the discret-
isation of the domain with polygons (cells), the domain is discretised by pointisation
and the boundary is discretised with straight lines (boundary elements). This method
belongs to the so-called mesh reduction techniques, since the domain polygonisation
is replaced by the domain pointisation. However, boundary polygonisation remains.
A discretisation used in the Meshless or Mesh-free (MSM) methods is shown in Fig-
ure 1(e). It includes pointisation of the domain and boundary. The gridpoints can
be arbitrarily spaced and non-uniform. The question mark at the right lower corner
of Figure 1 stands for our inability of solving PDEs without gridpoints (Grid-less,
Grid-free methods).

The numerical solution of coupled heat and mass transfer problems is becom-
ing increasingly important as a result of the computational modelling needs in di-
verse modern technologies. A broad class of such heat, mass, momentum, and solute
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Fig. 1. Schematics of the domain discretisations used in numerical methods for the solution of
partial differential equations. The question mark represents post-meshless methods.

transfer problems involves two or more phases, separated by free (steady-state) or
moving (transient) interphase boundaries. Due to the existence of complex shaped
interphase boundaries, most of the numerical simulations of engineering gas-liquid
and liquid-solid two-phase flows conducted so far, have been based on averaged field
equations with constitutive interphase relations solved on a fixed mesh. However,
the diversity of the possibly involved length scales, inhomogeneities, and anisotrop-
ies, usually requires the adaptation of the mesh with respect to high field gradients
and subsequent re-meshing. The most physically sound information can be directly
perceived only from the numerical approaches that explicitly take into account the
moving boundaries. The principal bottleneck in these types of numerical methods is
the time consuming re-meshing of the evolving interphase boundaries and phase do-
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mains which limits such methods to problems with quite trivial phase patterns. The
polygonisation problem is thus even more pronounced in such type of front-tracking
approach.

1.2 Definition and Characteristics of Meshless Methods

The meshless, sometimes also called meshfree or mesh reduction methods establish
a system of algebraic equations for the whole problem domain and boundary without
polygonisation [1, 2, 15, 16]. Meshless methods use a set of nodes scattered within
the problem domain as well as sets of nodes scattered on the boundaries of the do-
main to represent the problem domain and its boundaries. These sets of scattered
nodes do not form a polygonisation (mesh), which means that no information on the
geometrical connections between the nodes is required.

There exist a number of meshless methods such as the Element free Galer-
kin methods, the Meshless local Petrov–Galerkin method, the Point interpolation
method, the Point assembly method, the Finite point method, the Finite difference
method with arbitrary irregular grids, Smoothed particle hydrodynamics, Reprodu-
cing kernel particle method, Kansa method, etc.

The discussion in this article is limited to the very recent generation of meshless
methods only. They are characterised by the following features:

• The governing equation is solved in its strong form.
• The formulation is almost independent on the problem dimension.
• The complicated geometry is easy to cope with.
• No polygonisation is needed.
• No integrations are needed.
• The method is very efficient.
• The method is very accurate.
• The methods is simple to learn.
• The method is simple to code.

2 Governing Equations

This part introduces the general transport equation, relevant types of boundary con-
ditions and the reformulation of the governing transport equation into non-linear
Poisson equation. It discusses the basic strategies of solving the non-linear Poisson
equation in cases of weak and strong non-linearities.

2.1 General Transport Equation

Let us limit our discussion to solution of the general transport equation [32], defined
on a fixed domain 
 with boundary �, standing for a reasonably broad spectra of
mass, energy, momentum, and species transfer problems
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∂

∂t
[ρA(�)] + ∇ · [ρv A(�)] = ∇ · (D∇�) + S, (1)

with ρ,�, t, v, D, and S standing for density, transport variable, time, velocity, dif-
fusion matrix

D ≡
⎡
⎢⎣

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ , (2)

and source, respectively. The scalar function A stands for possible more involved
constitutive relations between the conserved A(�) and diffused � quantities. The
solution of the governing equation for the transport variable at the final time t0 + �t

is sought, where t0 represents the initial time and �t the positive time increment. The
solution is constructed by the initial and boundary conditions that follow. The initial
value of the transport variable �(p, t) at a point with position vector p and time t0 is
defined through the known function �0

�(p, t) = φ0(p, t); p ∈ 
 + �. (3)

The boundary � is divided into not necessarily connected parts � = �D ∪ �N ∪
�R with Dirichlet, Neumann and Robin type boundary conditions, respectively. At
the boundary point p with normal n� and time t0 ≤ t ≤ t0 + �t , these boundary
conditions are defined through known functions �D

� ,�N
� ,�R

�,�R
� ref

� = �D
� ; p ∈ �D, (4)

∂

∂n�

� = �N
� ; p ∈ �N, (5)

∂

∂n�

� = �R
�(� − �R

� ref); p ∈ �R. (6)

2.2 Poisson Reformulation of the General Transport Equation

The general transport equation (Equation 1) can be reformulated into Poisson form.
This form sometimes permits an easier theoretical treatment. The inhomogeneous
part of the Poisson equation can be split into a scalar part and a divergence of the
vector part

∇2� = θ + ∇ · �, (7)

θ =
{

∂
∂t

[ρ A(�)] − S
}

D
, (8)

� = [ρ v A(�) − D′∇�]
D

. (9)



From Global to Local RBF Collocation Method for Transport Phenomena 263

The diffusion matrix is split into a constant isotropic part DI and a remaining an-
isotropic part D′,

D + DI + D′, D′ ≡
⎡
⎢⎣

D11 − D D12 D13

D21 D22 − D D23

D31 D32 D33 − D

⎤
⎥⎦ . (10)

The partial time derivative might be approximated by a two

∂

∂t
[ρ A(�)] ≈ 1

�t
[ρ A(�) − ρ0 A(�0)], (11)

or by a three-level finite difference scheme

∂

∂t
[ρ A(�)] ≈ 1

2�t
[3ρ A(�) − 4ρ0 A(�0) + ρ−1 A(�−1)], (12)

with the following notation
A−1 ≡ A(t0 − �t), (13)

A0 ≡ A(t0), (14)

A ≡ A(t0 + �t). (15)

The unknown can be discretized in time by a two level scheme with a time level
indicator 0 ≤ ι ≤ 1. This gives the fully implicit scheme for ι = 1, the fully explicit
scheme for ι = 0, and the Crank–Nicolson scheme for ι = 1/2.

∇2� ≈ ι∇2� + (ι − 1)∇2�0, (16)

θ ≈
{

∂
∂t

[ρ A(�)] − ιS − (ι − 1)S0
}

D
, (17)

� ≈ [ιρv A(�) + (ι − 1)ρ0v0 A(�0) − ιD′∇� − (ι − 1)D′
0∇�0]

D
. (18)

The involved parameters of the governing equation and boundary conditions are
assumed to be dependent on the transport variable, space, and time. The solution of
such type of non-linear equation requires iterations. Let us (for the sake of compact
notation) assume further discussion in non-time discretized form. The inhomogen-
eous terms are, due to non-linearity, respectively expanded as

θ = θ + ∂θ̄

∂�
(� − �̄), (19)

� = �̄ + ∂�̄

∂�
(� − �̄), (20)
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with the over-bar denoting the value from previous iteration. The final form of the
transformed equation, suitable for iterative solution then becomes

∇2� = Q(�), (21)

Q(�) = θ̄ + ∂θ̄

∂�
(� − �̄) + ∇ · �̄ + ∇ · ∂�̄

∂�
(� − �̄). (22)

The source term can be treated by under-relaxation (recommended in case of weak
non-linearity)

∇2� = Q(�̄) + crel

[
Q(�̄) − Q( ¯̄�)

]
, (23)

with an under-relaxation coefficient crel < 1. The two-fold over-bar denotes the
known value two iterations ago. Alternatively, the source term can be treated expli-
citly (recommended in case of strong non-linearity)[

∇2 − ∂θ̄

∂�
− ∇ · ∂�̄

∂�

]
� = θ̄ − ∂θ̄

∂�
�̄ + ∇ · �̄ − ∇ · ∂�̄

∂�
�̄. (24)

The discretisation of Equations (23) and (24) and subsequent set-up of the algeb-
raic equation systems is quite different. In case of Equation (23), the system matrix
of the algebraic equation system need not to be recalculated each iteration and in
the case of Equation (24), the system matrix of the algebraic equation system needs
to be recalculated ateach iteration. Strategy used in Equation (24) usually requires
less iterations than strategy used in Equation (23), however, each iteration is com-
putationally more costly. Therefore, the strategy in Equation (23) is used for weak
non-linear problems, and the strategy in Equation (24) is for the strong non-linear
problems. For the strong non-linear problems the strategy in Equation (23) might
require a very small under-relaxation and a huge number of iterations. The iterations
over one time-step are completed when the criterion in Equation (25) is satisfied in
all computational nodes n = 1, 2, . . . , N

max |�n − �̄n| ≤ �itr. (25)

The steady-state is achieved when the criterion in Equation (26) is satisfied in all
computational nodes n = 1, 2, . . . , N

max |�n − �0| ≤ �ste. (26)

The parameters �itr and �ste are denoted as iteration and steady-state limits. The
iteration limit has to be an order of magnitude lower as the steady-state limit. If
this is not true, a non-convergent virtual steady-state can be achieved. The derived
formulas in this part are universally valid for all known spatial discretization types,
including meshless.
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Fig. 2. Schematics of the polygon-free domain and boundary node arrangement.

Fig. 3. Left: Schematics of the concept of contiguous (non-overlapping) sub-domains (typical
for FEM). Right: Schematics of the concept of non-contiguous (overlapping) sub-domains
(typical for MSM).

3 Spatial Discretisation in Meshless Methods

This part introduces the spatial discretisation (pointisation) in Meshless methods and
the concept of overlapping sub-domain (Figures 2 to 6).

3.1 Pointisation

The value of the transport variable �n is solved in a set of nodes pn; n = 1, 2, . . . , N

of which N
 belong to the domain and N� to the boundary, i.e. N = N� + N
.

4 Representation of Function over a Set of Nodes

This part introduces the concept of the representation of the function with global
shape functions and the concepts of the calculation of shape function coefficients by
collocation (interpolation) and by the approximation.



266 B. Šarler

Fig. 4. Schematics of the local influence area (small circle) that encompasses only 4 nodes and
global influence area (big circle) that encompasses all 43 nodes.

Fig. 5. Schematics of the sub-domains. In the left case the sub-domain is defined by the geo-
metry of the circle. In the right case, the sub-domain is defined by the four nearest nodes to
the central node.

4.1 Global Representation of Function

The representation of function over a set l of (in general) non-equally spaced lN

nodes lpn; n = 1, 2, . . . , lN is made in the following way

�(p) ≈
lK∑
k=1

lψk(p) lαk (27)

lψk stand for the shape functions, lαk for the coefficients of the shape functions, and
lK represents the number of the shape functions. The left lower index on entries
of Equation (27) represents the sub-domain lω on which the coefficients lαk are
determined. The total number of sub-domains is denoted by L. The sub-domains
lω can in general be contiguous (overlapping) or non-contiguous (non-overlapping).
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Fig. 6. Schematics of the definition of two quantities that measure the density of the data set.
In the left case the fill distance is defined, which measures the maximum distance between
two nodes in a sub-domain, and in the right case, the separation distance is defined, which
measures the minimum distance between the two nodes in a sub-domain.

Each of the sub-domains lω includes lN grid-points of which lN
 are in the domain
and lN� are on the boundary.

lN =l N
 +l N�. (28)

For each of the sub-domains lω, a separation distance is defined, which is the
minimum distance between the two nodes, and the fill distance is defined, which is
the maximum distance between the two nodes. In case the sub-domains are overlap-
ping, the following is valid

L∑
l=1

lN > N. (29)

The coefficients can be calculated from the sub-domain nodes in two distinct ways.
The first way is collocation (interpolation) and the second way is approximation by
the least squares method (see Figures 7 and 8, respectively).

Approximation is needed where data smoothing rather than interpolation is
needed. This is because data are often inaccurate, contain noise or – as happens
sometimes in practical applications – are too plentiful and cannot and need not be
reasonably all interpolated at once. Moreover, smoothing is almost always required
as long as problems are ill-posed, which means that their solution for theoretical
reasons, is extremely sensitive to even the smallest changes in input data.

4.2 Calculation of Coefficients by Collocation

Let us assume the known function values l�n in the nodes lpn of sub-domain lω.
The collocation implies

lK∑
k=1

lψk(lpn) lαk = �(lpn); lK = lN. (30)
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Fig. 7. A one-dimensional example of interpolation of the function.

Fig. 8. A one-dimensional example of the least squares approximation of the function.

For the coefficients to be computable, the number of the shape functions has to
match the number of the collocation points, and the collocation matrix has to be
non-singular.

lK∑
k=1

lψk(lpn) lαk = �(lpn); lK = lN. (31)

The system of Equations (31) can be written in matrix-vector notation

lψ lα = l�, (32)

with
lψkn

= lψk(lpn), (33)

l�n = �(lpn). (34)
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The coefficients lα can be computed by inverting the system (32)

lα = lψ
−1

l�. (35)

The matrices ψ and ψ−1 have dimension lN × lN and the vectors lα and l� have
dimension lN .

4.3 Calculation of Coefficients by Approximation

Let us assume the known function values l�n in the nodes lpn of sub-domain ωl . The
least squares approximation implies that the following functional should be minim-
ized

�[lα(p)] =
lN∑
n=1

lυn(p)

lK∑
k=1

[ψk(lpn) lαk(p) − �(lpn)]2, (36)

with respect to change of lα(p), i.e.

∂

∂ lα(p)
�[lα(p)] = 0. (37)

The number of the nodes lN used in the approximation has to be greater or equal
to the number of the shape functions lK . Weight functions lυn have been introduced
in Equation (36) in addition to the shape functions. The weight functions measure
the relative importance of the node. The coefficients lα(p) depend on the center of
the weight function p. The coefficients lα(p) are respectively calculated from the
system of linear equations

l
�
ψ (p) lα(p) = l

�
ψ (p) l�. (38)

The matrices l
�
ψ and l

�
ψ are of the dimensions lK × lK and lK × lN respectively.

Their entries are

l
�
ψ

ik
(p) =

lN∑
n=1

lυn(p) lψi(lpn) lψk(lpn), (39)

l

�
ψ

in
(p) = lυn(p) lψi(lpn). (40)

The coefficients lα(p) in general depend on the weight function center p. For prac-
tical reasons, their calculation is fixed to the central node of the sub-domain lω,
denoted by lp

l
�
ψ≡ l

�
ψ (lp), (41)

l

�
ψ≡ l

�
ψ (lp), (42)
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lα ≡ lα(lp). (43)

Similarly as in the case of collocation, an explicit expression for the calculation of
the coefficients lα can be written

lα = lψ
−1

l�, (44)

with

lψ
−1 = l

�
ψ −1

l

�
ψ . (45)

The main difference between collocation and approximation is as follows: In
collocation, the representation of the function exactly satisfies the nodal values l�n.
In approximation, the nodal values are approximated in the least squares sense. The
advantage of approximation compared to collocation is that it usually gives better
estimation of the derivatives, particularly in cases with sharp gradients (see Figures 7
and 8). The drawback over collocation is obvious. The nodal values are not exactly
satisfied in approximation.

4.4 From the Representation of the Function to the Representation of the
Partial Derivatives

By taking into account the expressions for the calculation of the coefficients lα (by
collocation or by approximation), the representation of function �(p) can be ex-
pressed as

�(p) ≈
lK∑
k=1

lψk(p)

lN∑
n=1

lψ
−1
kn l �n (46)

The first partial derivatives of �(p) can be expressed as

∂

∂pς

�(p) ≈
lK∑
k=1

∂

∂pς

ψk(p)

lN∑
n=1

lψ
−1
kn lφn; ς = x, y, z. (47)

The second partial derivatives of �(p) can be expressed as

∂2

∂pςpξ

�(p) ≈
lK∑
k=1

∂2

∂pςpξ
lψk(p)

lN∑
n=1

lψ
−1
kn l�n; ς, ξ = x, y, z. (48)

4.5 Selection of Global Representation Functions

Let us introduce the Cartesian coordinate system with base vectors iς ; ς = x, y, z

and coordinates pς ; ς = x, y, z, i.e.

p = iςpς ; ς = x, y, z. (49)
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The following six polynomials can be used in 2D to represent the quadratic basis:

�1 = 1, ψ2 = px, ψ3 = py, ψ4 = pxpx, ψ5 = pxpy, ψ6 = pypy. (50)

The following additional four polynomials have to be used in 3D to represent the
quadratic basis:

ψ7 = pz, ψ8 = pxpz, ψ9 = pypz, ψ10 = pzpz. (51)

The radial basis functions [4, 28, 33] such as multi-quadrics

ψk(p) = [(p − pk) · (p − pk) + c2]1/2, (52)

or inverse multi-quadrics

ψk(p) = [(p − pk) · (p − pk) + c2]1/2, (53)

can be used in 2D or 3D. The calculation of the coefficients lα can be made by
collocation or by approximation.

4.6 Selection of Weight Functions

As a weight function typically a radial basis function is chosen. A typical example is
the polynomial-like shape function

lυn(p) =

⎧⎪⎨
⎪⎩

[
(p− lpn)·(p− lpn)− lσn

(p− lpn)·(p− lpn) lσn

]
; |p − lpn| < σn,

0; |p − lpn| ≥ σn,

(54)

or the Gaussian function

lυn(p) =
{

exp(−lc(p − lpn) · (p − lpn)/σ
2
n ; |p − lpn| < σn,

0; |p − lpn| ≥ σn.
(55)

The size of the circular (2D) or spherical (3D) support lσn is chosen to contain an
appropriate number of nodes. The weight function shape factor lcn depends on the
mesh (non-)uniformity. In case of a uniform mesh, the best results are obtained with
a large shape factor. In case of the non-uniform node arrangements, a smaller shape
factor has to be chosen. The size of the shape factor depends on the non-uniformity
of the node arrangement (see [23]).

4.7 Diffuse Approximation

A limited number of applications using the polynomial basis functions in connection
with the least squares approximation and strong formulation has been developed
under the name Diffuse Approximation (DA) [21, 25] for heat transfer and fluid flow
problems.
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4.8 Kansa Method

A broad class of meshfree methods in development today are based on Radial Basis
Functions (RBFs) [4]. The RBF collocation method or Kansa method [11] is the
simplest of them. This method has been further upgraded to symmetric collocation
[10, 24], to modified collocation [8] and to indirect collocation [20]. The method has
been already used in a broad spectrum of computational fluid dynamics problems
[29] such as the solution of Navier–Stokes equations [17, 18] or porous media flow
[28, 31] and the solution of solid-liquid phase change problems [12]. In contrast to
advantages over mesh generation, all the listed attempts unfortunately fail to perform
for large problems, because they produce fully populated matrices, sensitive to the
choice of the free parameters in RBFs. Sparse matrices can be generated by the intro-
duction of the compactly supported RBFs and the accuracy of such approach can be
improved by the multilevel technique [7]. One of the possibilities for mitigating the
large fully populated matrix problem is to employ the domain decomposition [19].
However, the domain decomposition re-introduces some sort of meshing which is
not attractive. The concept of local collocation in the context of RBF-based solution
of Poisson equation has been introduced in [14, 34]. For interpolation of the func-
tion value in a certain node the authors use only data in the (neighbouring) nodes
that fall into the domain of influence of this node. The procedure results in a mat-
rix that is of the same size as the matrix in the original Kansa method, however it
is sparse. Circular domains of influence have been used in [14] and stencil-shaped
domains in [34]. In [14], the one-dimensional and two-dimensional Poisson equa-
tion has been solved by using multiquadrics and inverse multiquadrics RBFs with
a detailed analysis of the influence of the free parameter on the results. In [34], a
class of linear and non-linear elasticity problems have been solved with a fixed free
parameter. The differential quadrature method, that calculates the derivatives of a
function by a weighted linear sum of functional values at its neighbouring nodes has
been structured with the RBFs in [26]. Despite the local properties, the matrix still
has a similar form as in [14, 34]. This paper reviews a new, even more simple mesh-
free solution procedure for solving the transport phenomena, which overcomes even
the solution of the large sparse matrices.

5 Semi-Explicit Solution of the General Transport Equation

5.1 Reformulation

This part elaborates the semi-explicit solution of the general transport equation
(Equation 1), subject to the initial condition presented in Equation (3) and the bound-
ary conditions presented in Equations (4–6). The general transport equation can be
transformed into following expression by taking into account the explicit discretiza-
tion
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ρA(�) − ρ0A0

�t
+ ∇ · [ρ0v0A0] = ∇ · (D0∇�0) + S. (56)

At time t = t0 + �t , the functions A(�) and S(�) can be expanded as

A(�) ≈ Ā + ∂Ā

∂�
(� − �̄), (57)

S(�) ≈ S̄ + ∂S̄

∂φ
(� − �̄), (58)

ρĀ + ρĀl�(� − �̄) − ρ0 A0

�t
+ ∇ · [ρ0v0 A0]

= ∇ · (D0∇�0) + S̄ + S̄l�(� − �̄). (59)

The unknown function value can be extracted from the above equation

� = ρ0 A0 − ρĀ + ρ ∂Ā
∂�

�̄

ρ ∂Ā
∂�

− � ∂S̄
∂�

+
�t

[
∇ · (D0∇�0) − ∇ · (ρ0v0 A0) + S̄ − ∂S̄

∂�
�̄

]
ρ ∂Ā

∂�
− �t ∂S̄

∂�

. (60)

The solution of the above equation in grid-point pn can be calculated as

�n = ρn0 An0 − ρnĀn + ρn
∂Ā

∂�n
�̄n

ρ ∂Ā
∂�n

− �t ∂S̄
∂�n

+
�t

[
∇ · (D0n∇�0n) − ∇ · (ρ0nv0n A0n) + S̄n − ∂S̄

∂�n
�̄n

]
ρ ∂Ā

∂�n
− �t ∂S̄

∂�n

. (61)

The calculation of the convective term ∇ · (ρ0nv0nA0n) includes derivatives of the
form (see Appendix)

∂

∂pς
ρ0n νς0n A0n ≈ ς = x, y, z. (62)

These derivatives can be evaluated as

∂

∂pς

ρ0n νς0n A0n ≈
K∑

k=1

∂

∂pς

ψk(pn)

lN∑
n=1

lψ
−1
kn l(ρ0 νς0 A0)n; ς = x, y, z. (63)
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The calculation of the diffusive term ∇·(D0n ∇ �0n) includes derivatives of the form
(see Appendix)

∂

∂pς

D0nζξ ,
∂2

∂pς∂pτ

D0nζξ ,
∂

∂pς

�0nζ ,
∂2

∂pς∂pτ

�0nζ ; ς, τ, ζ, ξ = x, y, z. (64)

These derivatives can be evaluated as

∂

∂pς

D0nξζ ≈
K∑

k=1

∂

∂pς

ψk(pn)

lN∑
n=1

lψ
−1
kn lD0nξζ ; ς = x, y, z, (65)

∂2

∂pς∂pτ

D0nξζ ≈
K∑

k=1

∂2

∂pς∂pτ

ψk(pn)

lN∑
n=1

lψ
−1
kn lD0nξζ ; ς = x, y, z. (66)

The solution procedure for the governing Equation (1) and the boundary conditions
presented in Equations (4–6) now follow the below defined steps 1–5:

Step 1:
First, the initial conditions are set in the domain and boundary nodes and the
derivatives required in the convective and diffusive terms are calculated from the
known nodal values.

Step 2:
Equation (61) is employed to calculate the new values of the variable �n at time
t0 + �t in the domain nodes.

What follows defines variable �n at time t0 + �t in the Dirichlet, Neumann,
and Robin boundary nodes. For this purpose, the coefficients lα have to be determ-
ined from the new values in the domain and from the information on the boundary
conditions.

Let us introduce domain, Dirichlet, Neumann, and Robin boundary indicators.
These indicators are defined as

ϒ
n =
{

1; pn ∈ 
,

0; pn /∈ 
,
ϒD

�n =
{

1; pn ∈ �D,

0; pn /∈ �D,

ϒN
�n =

{
1; pn ∈ �N,

0; pn /∈ �N,
ϒR

�n =
{

1; pn ∈ �R,

0; pn /∈ �R.
(67)

Step 3: The collocation version
Consider the collocation version for the calculation of the coefficients. This implies

lN∑
k=1

lϒ
n lψk(lpn) lαk +
lN∑
k=1

lϒ
D
�n lψk(lpn) lαk
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+
lN∑
k=1

lϒ
N
�n

∂

∂n�
lψk(lpn) lαk +

lN∑
k=1

lϒ
R
�n

∂

∂n�
lψk(lpn) lαk

= lϒ
n l�n + lϒ
D
�n l�

D
n + lϒ

N
�n l�

N
n

+ lϒ
R
�n l�

R
�n

⎛
⎝ lN∑

k=1

lψk(lpn) lαk − l�
R
� ref n

⎞
⎠ . (68)

The Robin boundary conditions have been represented by

l�
R
�n(l�n − l�

R
� ref n) ≈ l�

R
�n

⎛
⎝ lN∑

k=1

lψk(lpn) lαk − l�
R
� ref n

⎞
⎠ . (69)

The calculation of the coefficients lα follows from the following system of linear
equations

l� lα = lb, (70)

with the system matrix coefficients

l�nk = lϒ
n lψk(lpn) + lϒ
D
�n lψk(lpn) + lϒ

N
�n

∂

∂n�
lψk(lpn)

+ lϒ
R
�n

⎡
⎣ ∂

∂n�
lψk(lpn) − l�

R
�n

lN∑
k=1

lψk(lpn)

⎤
⎦ , (71)

and with the augmented right-hand side vector

lbn = lϒ
n�n + lϒ
D
�n�

D
n + lϒ

N
�n�

N
n − lϒ

R
�n l�

R
�n l�

R
� ref n. (72)

Step 4: The approximation version
Consider the least squares approximation version for the calculation of the coeffi-
cients. This implies

�[lα] =
lN∑
n=1

lϒ
n lυn(lp)

lN∑
k=1

[lψk(lpn)lαk − l�n]2

+
lN∑
n=1

lϒ
D
�n lυn(lp)

lK∑
k=1

[lψk(lpn)lαk − l�n]2

+
lN∑
n=1

lϒ
N
�n lυn(lp)

lK∑
k=1

[
∂

∂n�
lψk(lpn)lαk − l�

N
�n

]2

(73)

+
Nl∑

n=1

lϒ
R
�n lυn(lp)

lK∑
k=1

[
∂

∂n�
lψk(lpn)lαk − l�

R
�n(lψk(lpn)lαk − l�

R
� ref n)

]2

.
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The same representation of the Robin boundary conditions is made as in the colloc-
ation case.

The minimisation of the functional �[lα] with respect to the coefficients lα gives
the following system of linear equations

l� lα = lb, (74)

with the system matrix coefficients

l�ik =
lN∑
n=1

lϒ
nυn(lp) lψk(pn) lψk(pn)

+
lN∑
n=1

lϒ
D
�nυn(lp) lψi(pn) lψk(pn)

+
lN∑
n=1

lϒ
N
�nυn(lp)

∂

∂n�
lψi(lpn)

∂

∂n�
lψk(lpn)

+
lN∑
n=1

lϒ
R
�nυn(lp)

(
l�

R
� ref nψi(lpn) + ∂

∂n�
lψi(lpn)

)

×
(

l�
R
� ref n lψk(lpn) + ∂

∂n�
lψk(lpn)

)
(75)

and with the augmented right-hand side vector

lbi =
lN∑
n=1

lϒ
n lυn(lp) lψi(lpn) l�n +
lN∑
n=1

lϒ
D
�n lυn(lp) lψi(lpn) l�

D
�n

+
lN∑
n=1

lϒ
N
�n lυn(lp)

∂

∂n�
lψi(lpn) l�

N
�n (76)

+
lN∑
n=1

lϒ
R
�n lυn(lp)

(
(l�

R
�n)

2
l�

R
� ref n lψi(lpn) + l�

R
�n l�

R
� ref n

∂

∂n�
lψi(lpn)

)
.

After the coefficients are calculated, the unknown values of the unknown l� in
the Dirichlet, Neumann, and Robin nodes at time t0 + �t are determined from the
global representation Equation (27).

Step 5
The iteration and steady-state checks are performed. In case the iteration criterion is
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passed, calculation of the new time-step is performed. In case the steady-state cri-
terion is passed or the time of calculation exceeds the predetermined time of interest,
the calculation is stopped.

The performance of the presented method for diffusion problems can be found
in [27], for convection-diffusion problems in [36], and for moving boundary prob-
lems with moving interfaces and moving domains in [38]. The microscopic species
transfer problems have been dealt with by Kovačević and Šarler [13], based on the
dynamic r-adaptivity of the nodal arrangement.

6 Explicit Solution of the Coupled Mass and Momentum
Transport Equations

This part discusses the special issues encountered in mesh-free solution of the
coupled mass

∂

∂t
ρ + ∇ · (ρv) = 0, (77)

and momentum conservation equation

∂

∂t
(ρv) + ∇ · (ρvv) = −∇P + ∇ · T + f, (78)

where P , T, and f represent the pressure, the deviatoric part of the stress tensor, and
the body force, respectively. For the sake of brevity, initial conditions and only the
Dirichlet velocity boundary conditions are assumed

v(p, t) = v0(p, t); p ∈ 
 + �, (79)

v = vD
� ; p ∈ �D. (80)

We seek the solution of the pressure field at time t0 and the pressure and velocity
fields at time t0 + �t . The main goal is to formulate the equations that can be solved
by the “local” methodology, described in the previous part.

The pressure field is solved by taking the divergence of the momentum conser-
vation equation

∇2P = − ∂

∂t
∇ · (ρv) − ∇ · [∇ · (ρvv)] + ∇ · (∇ · T) + ∇ · f. (81)

The pressure is actually calculated from a false transient of the following equation
towards the steady-state:

∂

∂t
P = −∇2P − ∂

∂t
∇ · (ρv) − ∇ · [∇ · (ρvv)] + ∇ · (∇ · T) + ∇ · f. (82)
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Neumann boundary conditions for the Pressure Poisson equation are obtained by
multiplication of the momentum equation with the normal derivative

∂P

∂n�

=
[
− ∂

∂t
(ρvD

� ) − ∇ · (ρvD
� vD

� ) + ∇ · (∇ · T) + ∇ · f
]

· n�. (83)

The initial pressure is calculated as

P0 = P̄0 + [ − ∇2P̄0 − ∇ · [∇ · (ρ0v0v0] + ∇ · [∇ · T0) + ∇ · f0
]
�tP , (84)

where P̄ represents the value from previous iteration and �tP the artificial pressure
transient time-step. The initial value of P̄0 can be set to 0. After the calculation of
the pressure field at time t0, the new velocity field at time t0 + �t is calculated from

v̂ =
[ρ0v0

�t
− ∇ · (ρv0v0) − ∇P0 + ∇ · T + f

] �t

ρ
. (85)

The calculated velocity is denoted by v̂, because it does not comply with the mass
conservation in general. In order to assure the compliance of the new velocity field
with the mass conservation, the following pressure and velocity corrections are made.
The calculated velocity is corrected by ṽ, which ensures

∇ · (ρv) = ∇ · [ρ(v̂ + ṽ)] = −∂ρ

∂t
. (86)

Consider that the velocity correction occurs exclusively due to action of the pressure
correction

ρ

�t
ṽ = −∇P̃ , (87)

∇2P̃ = 1

�t
∇ · (ρv̂) + 1

�t

∂ρ

∂t
(88)

with the pressure correction Neumann boundary conditions

∂P̃

∂n�

= 0. (89)

The pressure correction is actually calculated from a false transient of the following
equation towards the steady-state:

∂P̃

∂t
= −∇2P̃ + 1

�t
∇ · (ρv̂) + 1

�t

∂ρ

∂t
. (90)

The pressure correction is calculated as

P̃ = ¯̃
P +

[
−∇2P̃ + 1

�t
∇ · (ρv̂) + ρ − ρ0

�t2

]
�tP . (91)
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After calculation of the pressure correction, the pressure and velocity fields are up-
dated

P = P + P̃ , (92)

v = v̂ − ∇P̃
�t

ρ
, (93)

and the solution procedure is advanced to a new time-step. The formulation, de-
scribed here, for solving fluid flow problems, has been numerically implemented by
Perko [23] in the context of Diffuse Approximation and by Divo and Kassab [9] in
the context of local Kansa method.

7 Conclusions

This article reviews a new (very) simple meshfree formulation for solving a wide
range of transport phenomena. The numerical tests [6], included in the cited refer-
ences of the new method, show much higher accuracy of the method as compared
with the classical FDM. The only exception observed is the solution at short times
immediately after Dirichlet jump where similar numerical observation properties are
observed [27]. The time-marching is performed in a simple explicit way. The gov-
erning equation is solved in its strong form. No polygonisation and integrations are
needed. The developed method is almost independent of the problem dimension. The
complicated geometry can easily be coped with. The method appears efficient, be-
cause it does not require a solution of a large system of equations like the original
Kansa method. Instead, small systems of linear equations have to be solved in each
time-step for each node and associated domain of influence, probably representing
the most natural and automatic domain decomposition. This feature of the developed
method represents its principal difference from the other related local approaches,
where the resultant matrix is large and sparse [7, 14, 19, 34]. The method is simple
to learn and simple to code. The method can cope with very large problems since
the computational effort grows approximately linear with the number of the nodes.
The local approach, described in this article could be extended in a straightforward
way to tackle other types of partial differential equations. Despite the fact that the
represented method behaves excellent, the underlying basic mathematical theory is
still lacking. First systematic numerical experiments with uniform and non-uniform
local collocation for very simple cases are expected to appear in [5].

Appendix

Calculation of the convective term in three-dimensional Cartesian coordinates

∇ · (ρv�) = ∂

∂px

(ρvx�) + ∂

∂py

(ρvy�) + ∂

∂pz

(ρvz�).
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Calculation of the diffusive term in three-dimensional Cartesian coordinates

∇ · (D · ∇�) =

+ ∂Dxx

∂px

∂�x

∂px
+ ∂Dxy

∂px

∂�y

∂py
+ ∂Dxz

∂px

∂�z

∂pz
+ Dxx

∂2�x

∂p2
x

+ Dxy
∂2�y

∂pxpy
+ Dxz

∂2�z

∂pxpz

+ ∂Dyx

∂py

∂�x

∂px
+ ∂Dyy

∂py

∂�y

∂py
+ ∂Dyz

∂py

∂�z

∂pz
+ Dyx

∂2�x

∂px∂py
+ Dyy

∂2�y

∂p2
y

+ Dyz
∂2�z

∂px∂pz

+ ∂Dzx

∂pz

∂�x

∂px
+ ∂Dzy

∂pz

∂�y

∂py
+ ∂Dzz

∂pz

∂�z

∂pz
+ Dzx

∂2�x

∂px∂pz
+ Dzy

∂2�y

∂py∂pz
+ Dzz

∂2�z

∂p2
z

.

Acknowledgements

The author wishes to thank his students Igor Kovačević, Dr. Janez Perko, Dr. Miha
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13. Kovačević I. and Šarler B. Solution of a phase-field model for dissolution of primary
particles in binary aluminium alloys by an r-adaptive mesh-free method. Materials Sci-
ence and Engineering, 413/414A:423–428, 2005.

14. Lee C.K., Liu X. and Fan S.C. Local muliquadric approximation for solving boundary
value problems. Computational Mechanics, 30:395–409, 2003.

15. Liu G.R. Mesh Free Methods. CRC Press, Boca Raton, FL, 2003.
16. Liu G.R. and Gu Y.T. An Introduction to Meshfree Methods and Their Programming.

Springer, Dordrecht, 2005.
17. Mai-Duy N. and Tran-Cong T. Numerical solution of differential equations using multi-

quadrics radial basis function networks. International Journal for Numerical Methods in
Engineering, 23:1807–1829, 2001.

18. Mai-Duy N. and Tran-Cong T. Numerical solution of Navier–Stokes equations using mul-
tiquadric radial basis function networks. Neural Networks, 14:185–199, 2001.

19. Mai-Duy N. and Tran-Cong T. Mesh-free radial basis function network methods with do-
main decomposition for approximation of functions and numerical solution of Poisson’s
equations. Engineering Analysis with Boundary Elements, 26:133–156, 2002.

20. Mai-Duy N. and Tran-Cong T. Indirect RBFN method with thin plate splines for numer-
ical solution of differential equations. Computer Modeling in Engineering and Sciences,
4:85–102, 2003.

21. Nayroles B., Touzot G. and Villon P. The diffuse approximation. C.R. Acad. Sci. Paris
313-II:293–296, 1991.

22. Özisik M.N. Finite Difference Methods in Heat Transfer. CRC Press, Boca Raton, FL,
1994.

23. Perko J. Modelling of Transport Phenomena by the Diffuse Approximate Method. Ph.D.
Thesis, School of Applied Sciences, Nova Gorica Polytechnic, Nova Gorica, 2005.

24. Power H. and Barraco W.A. Comparison analysis between unsymmetric and symmetric
RBFCMs for the numerical solution of PDE’s. Computers and Mathematics with Applic-
ations, 43:551–583, 2002.

25. Sadat H. and Prax C. Application of the diffuse approximation for solving fluid flow and
heat transfer problems. International Journal of Heat and Mass Transer, 39:214–218,
1996.

26. Shu C., Ding H. and Yeo K.S. Local radial basis function-based differential quadrature
method and its application to solve two-dimensional incompressible Navier–Stokes equa-
tions. Computer Methods in Applied Mechanics and Engineering, 192:941–954, 2003.

27. Šarler B. and Vertnik R. Meshfree explicit local radial basis function collocation method
for diffusion problems. Computers and Mathematics with Applications, 51:1269–1282,
2006.
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Abstract. A study of static deformations and free vibration of shear flexible isotropic and
laminated composite plates is presented. The analysis is based on a new numerical scheme
where collocation by radial basis functions is viewed as a pseudospectral method to produce
highly accurate results. A cross-validation technique is used to optimize the shape parameter
for the basis functions. Numerical results for isotropic and symmetric laminated composite
plates are presented and discussed for various thickness-to-length ratios.

Key words: Radial basis functions, pseudospectral method, free vibrations, plates.

1 Introduction

The static and vibration analysis of plates is an important subject in the design of
mechanical, civil and aerospace applications. While most classical theories usually
neglect the transverse shear and the rotatory inertia, these effects are really non-
negligible due to the thickness of most parts of beams and plates. Therefore the
first-order theory, also known as Mindlin–Reissner theory for plates should be used
in a general analysis.

The analysis of static deformations and free vibration of Mindlin plates is best
performed by numerical techniques. The differential quadrature method [1–3], the
boundary characteristic orthogonal polynomials [4] and the pseudospectral method
[5] were used in recent years. A good survey on thick plate vibration analysis was
performed by Liew and colleagues [36]. The finite element method also proved to be
very adequate for this type of problems (see, e.g., [6–8]). More recently the analysis
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of Mindlin plates by Kansa’s non-symmetric radial basis function (RBF) collocation
method was performed by Ferreira [10–17].

In the present work we illustrate for the first time the application of radial basis
functions in a pseudospectral framework and an optimization technique to the auto-
matic selection of the shape parameter to the analysis of Mindlin plates. The method
proves to be elegant and of very high quality when compared to analytical solutions
and Kansa’s collocation method [10]. Kansa’s collocation method needs the compu-
tation of coefficients first while the present method does not. This is an advantage
for many engineering problems, particularly for structural dynamics. Some early
experiments with Kansa’s method [10–14, 16] show its good ability for solving en-
gineering problems, but there are other possibilities such as the method presented in
this paper.

2 RBF-PS Methods

Pseudospectral (PS) methods (see [24] or [25] for an introduction to the subject) are
known as highly accurate solvers for partial differential equations (PDEs). Generally
speaking, one represents the spatial part of the approximate solution û of a given PDE
by a linear combination of certain smooth basis functions φj , j = 1, . . . , N , i.e.,

û(x) =
N∑

j=1

cjφj (x), x ∈ R. (1)

Traditionally, polynomial basis functions are used, and therefore the formulation
above is a univariate one. This leads to the well-known limitation for PS methods:
for higher space dimensions their use is pretty much limited to tensor-product grids.
In this paper, however, we will use radial basis functions (RBFs) instead of polyno-
mials. This opens up the possibility to work with irregular grids, and on irregular
geometries while maintaining a degree of accuracy similar to that obtained with PS
methods.

The usual approach to solving PDEs with an RBF collocation method is fre-
quently referred to as Kansa’s method. For this method one also starts with an ex-
pansion of the form (1), now with x ∈ R

s . However, one then imposes the boundary
conditions for the PDE, and forces the PDE and its boundary conditions to be satis-
fied at a set of collocation points. This leads to a system of linear equations which
is solved for the expansion coefficients cj in (1). Having these coefficients, one can
then evaluate the approximate solution û at any point x via (1). Thus, with Kansa’s
collocation method we end up with an approximate solution that is given in terms of
a (continuous) function. For more details see, e.g., [26].

Recently Fornberg et al. (see, e.g., [18, 19]) and Schaback [20] showed that cer-
tain limiting cases of radial basis functions correspond to polynomial interpolants.
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This new insight has led to the idea of using pseudospectral methods combined with
radial basis functions to solve PDEs (see, e.g., [21–23]). It is this numerical approach
that we use for the eigenvalue analysis presented below. For the sake of completeness
we summarize the main ideas of this approach.

Consider the linear elliptic PDE problem

Lu = f in � (2)

with Dirichlet boundary condition

u = g on � = ∂�. (3)

For the pseudospectral approach we start with an expansion of the form

û(x) =
N∑

j=1

cjϕ(‖x − ξ j‖), x ∈ � ⊆ IRs, (4)

where the points ξ j , j = 1, . . . , N , are the centers of the basis functions φj =
ϕ(‖ · −ξ j‖) and ϕ is one of the usual radial basic functions such as the inverse
multiquadric

ϕ(r) = 1√
1 + (εr)2

, (5)

the multiquadric
ϕ(r) =

√
1 + (εr)2, (6)

the Gaussian
ϕ(r) = e−(εr)2

, (7)

or a Wendland compactly supported function such as

ϕ(r) = (1 − εr)8+
(

32(εr)3 + 25(εr)2 + 8εr + 1
)

. (8)

The first three of these functions are infinitely differentiable, the Wendland func-
tion is six times continuously differentiable. The inverse multiquadric, Gaussian and
Wendland function are positive definite, while the multiquadric is conditionally neg-
ative definite. Note that all of our examples contain a positive shape parameter ε.
For (inverse) multiquadrics our notation differs from another popular one for which
the shape parameter is denoted by c (not to be confused with the coefficients cj in
the expansion (4)), e.g., ϕ(r) = 1/

√
r2 + c2. However, the two formulations are

equivalent if we set ε = 1/c. For the Wendland function the shape parameter de-
termines the size of the support radius (since the + notation indicates that the func-
tion is identically equal to zero outside a sphere of radius r/ε). The advantage of our
representation is that all RBFs behave similarly under changes of ε. In particular,
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ε → 0 always leads to “flat” basic functions, and it is exactly for this limiting case
that the connection to polynomials mentioned at the beginning of this section arises.
To be precise, since the compactly supported Wendland functions have possess only
a limited amount of smoothness they will not be able to provide the full spectral ac-
curacy that polynomials and the other infinitely smooth basic functions are able to.
However, the experiments below show that they still provide very high accuracy, and
moreover behave in a more stable way than the other basic functions which proved
to be beneficial for our eigenvalue analysis.

If we evaluate (4) at a set of collocation points xi , i = 1, . . . , N , then we get

û(xi ) =
N∑

j=1

cjϕ(‖xi − ξ j‖), i = 1, . . . , N,

or in matrix-vector notation
u = Ac, (9)

where c = [c1, . . . , cN ]T is the coefficient vector, the evaluation matrix A has entries
Aij = ϕ(‖xi − ξ j‖), and u = [û(x1), . . . , û(xM)]T is a vector of values of the
approximate solution at the collocation points.

An important feature of pseudospectral methods is the fact that one usually is
content with obtaining an approximation to the solution on a discrete set of grid
points xi , i = 1, . . . , N instead of at an arbitrary point x, as in the popular non-
symmetric RBF collocation approach (or Kansa’s method). One of several ways to
implement the pseudospectral method is via so-called differentiation matrices, i.e.,
one finds a matrix L such that at the grid points xi we have

uL = Lu. (10)

Here u = [û(x1), . . . , û(xN)]T is the vector of values of û at the grid points men-
tioned above, and uL is the vector of values of the “derivatives” of u at the same
points.

Therefore, instead of computing the coefficients c by solving a collocation sys-
tem – as is done in the standard RBF collocation approach (Kansa’s method) – we
want to use the differentiation matrix L so that in the end we will have a discrete
version of the PDE in the form

Lu = f , (11)

where u is as above, and f is the vector of values of the right-hand side f of (2)
evaluated at the collocation points.

Since the differential equation for our problem is Lu = f , we will apply the
differential operator L to the approximate solution û as given by (4). By linearity
we get

Lû(x) =
N∑

j=1

cjLϕ(‖x − ξ j‖).
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Evaluation of this formula at the collocation points xi yields a system of linear al-
gebraic equations which can be written in matrix-vector notation as

Lu = ALc, (12)

where u and c are as in (9) above, and the matrix AL has entries Lϕ(‖x − ξ j‖)
∣∣
x=xi

.
The coefficients – which we do not explicitly compute – are given by (9), i.e., c =
A−1u, so that we formally get

Lu = ALA−1u, (13)

and we see that the differentiation matrix L is given by L = ALA−1. The name
differentiation matrix is due to the fact that L takes the vector u of function values
to the vector Lu = uL of “derivative” values (cf. (10)).

Note that this matrix involves inverting the standard RBF interpolation matrix A

which is known to be non-singular for all distributions of centers ξ j and (coinciding)
collocation points xi . This property of A ensures that (at this point in our discussion)
we will not run into the problems of possible non-invertibility of the collocation
matrix encountered in the popular Kansa method.

Also note that we have not yet enforced the boundary conditions. This, however,
is – for the Dirichlet case we are considering here – an absolutely trivial matter. We
simply replace those rows of L corresponding to the boundary collocation points (at
which we want to enforce the boundary conditions) by standard unit vectors with
a one in the diagonal position and zeros elsewhere, and replace the corresponding
f (xk) on the right-hand side by g(xk) (cf. (3)). It is obvious that this works since
the resulting product of (boundary) row k of L with the vector u now corresponds to
û(xk) = g(xk) (see, e.g., [25]). One can show that the resulting matrix LBC which
also enforces the boundary condition is very closely related to the Kansa matrix, i.e.,
after a possible permutation of rows we obtain

LBCu =
[

ÃL

Ã

]
A−1u,

where the block matrix on the right-hand side is exactly Kansa’s matrix.
To obtain a numerical approximation to the solution of the elliptic problem (2)–

(3) we actually need to compute

u = L−1
BC

[
f

g

]
=

[[
ÃL

Ã

]
A−1

]−1 [
f

g

]
, (14)

which is the solution of the fully discretized problem (including both the differential
operator and the boundary conditions). Assuming invertibility of the two matrix
factors this gives

u = A

[
ÃL

Ã

]−1 [
f

g

]
.
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This is the same end result as one obtains if the approximate solution for the
non-symmetric collocation method (Kansa’s method) is evaluated at the collocation
points. Note, that in this formulation we now do require invertibility of the Kansa
matrix (just as in Kansa’s method).

However, as noted above, we do not work with the individual matrices A, ÃL,
and Ã, but instead use only the differentiation matrix LBC , so that

u = L−1
BC

[
f

g

]

as stated in (14). Moreover, the coefficient vector c is never computed. This can be
especially beneficial in time-dependent problems.

3 Finding an “Optimal” Shape Parameter

As mentioned above, a small shape parameter ε → 0 will always lead to “flat” basic
functions. In fact, the shape parameter ε can be used to influence the accuracy of our
numerical method: smaller values of ε generally lead to higher accuracy. However,
it is known that there exists a so-called trade-off principle (for infinitely smooth
RBFs), i.e., high accuracy can only be achieved at the cost of low numerical stability
or vice versa (see, e.g., [27]). This means that it is very difficult to get near the
polynomial limit in practice. On the other hand, the optimal value of ε, i.e., the value
that produces the smallest error, is usually a positive value [19]. For the Wendland
functions we use below the trade-off linked to the variation of ε balances higher
accuracy (for small ε) against numerical efficiency (since higher values or ε lead to
increasingly sparse matrices). Numerical stability is not so much of an issue with
these functions, and that is why we use them here.

A popular strategy for estimating the parameter of a model based on the given
data is known as cross validation. In [28] Rippa describes an algorithm that cor-
responds to a variant of cross validation known as “leave-one-out” cross validation
(LOOCV). This method is rather popular in the statistics literature where it is also
known as PRESS (Predictive REsidual Sum of Squares). In this algorithm an “op-
timal” value of ε for the RBF interpolation problem is selected by minimizing the
error for a fit to the data based on an interpolant for which one of the centers was
“left out”. This method takes into account the dependence of the error on the data
function. Therefore, the predicted “optimal” shape parameter is usually close to the
actual optimum value (which we can only find if we know the exact solution of the
interpolation problem). We will adapt Rippa’s strategy to find the “optimal” shape
parameter ε of the basic function used in the RBF-PS method.

First, we explain how the LOOCV method was used in [28] for the interpolation
problem. Specifically, if P [k]

f is the radial basis function interpolant to the data
{f1, . . . , fk−1, fk+1, . . . , fN }, i.e.,
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P [k]
f (x) =

N∑
j=1
j �=k

c
[k]
j ϕ(‖x − xj‖),

and if Ek is the error
Ek = fk − P [k]

f (xk),

then the quality of the fit is determined by the norm of the vector of errors E =
[E1, . . . , EN ]T obtained by removing in turn one of the data points and comparing
the resulting fit with the (known) value at the removed point. The norm of E as a
function of ε will serve as a cost function for the shape parameter.

While a naive implementation of the leave-one-out algorithm is rather expensive
(on the order of N4) Rippa shows that the algorithm can be simplified to a single
formula

Ek = ck

A−1
kk

, (15)

where ck is the kth coefficient in the interpolant Pf based on the full data set, and
A−1

kk is the kth diagonal element of the inverse of the corresponding interpolation
matrix. This results in O(N3) computational complexity. Note that all entries in the
error vector E can be computed in a single statement in Matlab if we vectorize the
component formula (15) (see line 4 in Program 3.1). In order to find a good value of
the shape parameter as quickly as possible we can use the Matlab function fminbnd
to find the minimum of the cost function for ε.

Thus, we can implement the cost function in the subroutine CostEpsilon.m
displayed in Program 3.1. Here the pseudoinverse of A was used to ensure maximum
stability in the solution of the linear system. The cost is computed via the 2-norm.

Program 3.1 CostEpsilon.m

1 function ceps = CostEpsilon(ep,rbf,r,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 EF = (invA*rhs)./diag(invA);
5 ceps = norm(EF(:));

The calling sequence for CostEpsilon will look something like

[ep,fval] = fminbnd(@(ep) CostEpsilon(ep,rbf,DM,rhs),mine,maxe);

where mine and maxe define the interval to search in for the optimal ε value, and
DM is a distance matrix with entries ‖xi − ξ j‖ used to evaluate the RBF (in the
interpolation setting).

The original algorithm in Rippa’s paper [28] was intended for the interpolation
problem. Therefore, in the context of RBF-PS methods we use a modification of
the basic routine CostEpsilon which we call CostEpsilonDRBF (see Program 3.2
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below). Instead of finding an optimal ε for the interpolation problem Ac = f we
now need to optimize the choice of ε for the matrix problem (c.f. (13))

L = ALA−1 ⇐⇒ LA = AL ⇐⇒ AT LT = (AL)T .

For simplicity we illustrate the procedure with a first-order derivative ∂
∂x

. In this case
we will write Ax instead of the generic AL. Any other differential operator can be
implemented analogously. As long as the differential operator is of odd order we
will have to provide both a distance matrix and a difference matrix. For differential
operators of even order such as the Laplacian a distance matrix will suffice. For more
details see [26].

Program 3.2 CostEpsilonDRBF.m

% ceps = CostEpsilonDRBF(ep,r,dx,rbf,dxrbf)
% Provides the "cost of epsilon" function for LOOCV optimization
% of shape parameter
% Input: ep, values of shape parameter
% r, dx, distance and difference matrices
% rbf, dxrbf, definition of rbf and its derivative
1 function ceps = CostEpsilonDRBF(ep,r,dx,rbf,dxrbf)
2 [m,n] = size(r);
3 A = rbf(ep,r); % = A^T since A is symmetric
4 rhs = dxrbf(ep,r,dx)’; % A_x^T
5 invA = pinv(A);
6 EF = (invA*rhs)./repmat(diag(invA),1,m);
7 ceps = norm(EF(:));

Note that CostEpsilonDRBF.m is very similar to CostEpsilon.m (c.f. Pro-
gram 3.1). Now, however, we compute a right-hand side matrix corresponding to
the transpose of Ax . Therefore, the denominator – which remains the same for all
right-hand sides (see formula (15)) – needs to be cloned on line 6 via the repmat
command. The cost of ε is now again the (Frobenius) norm of the matrix EF. Other
measures for the error may also be appropriate. For the standard interpolation setting
Rippa compared the use of the �1 and �2 norms (see [28]) and concluded that the �1
norm yields more accurate “optima”. For the RBF-PS problems to be presented here
we have observed very good results with the �2 (or Frobenius) norm, and therefore
that is what is used on line 7 of Program 3.2.

A program that calls CostEpsilonDRBF and computes the differentiation matrix
(with optimal ε) is given by

Program 3.3 DRBF.m

% [D,x] = DRBF(N,rbf,dxrbf)
% Computes the differentiation matrix D for 1-D derivative
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% using Chebyshev points and LOOCV for optimal shape parameter
% Input: N, number of points -1
% rbf, dxrbf function handles for rbf and its derivative
% Calls on: DistanceMatrix, DifferenceMatrix
% Requires: CostEpsilonDRBF
1 function [D,x] = DRBF(N,rbf,dxrbf)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 mine = .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7 ep = fminbnd(@(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),mine,maxe);
8 fprintf(’Using epsilon = %f\n’, ep)
9 A = rbf(ep,r);

10 DA = dxrbf(ep,r,dx); 11 D = DA/A;

4 Free Vibration Analysis of Symmetric Laminated Plates

4.1 Governing Equations

Based on the FSDT (first-order shear deformation theory), the transverse displace-
ment w(x, y) and the rotations θx(x, y) and θy(x, y) about the y− and x−axes are
independently interpolated due to uncoupling between inplane displacements and
bending displacements for symmetrically laminated plates. The equations for iso-
tropic plates can be readily obtained from the following. The equations of motion
for the free vibration of laminated plates [31, 32] are:

D11
∂2θx

∂x2 +D16
∂2θy

∂x2 +(D12 +D66)
∂2θy

∂x∂y
+2D16

∂2θx

∂x∂y
+D66

∂2θx

∂y2 +D26
∂2θy

∂y2 +

− kA45

(
θy + ∂w

∂y

)
− kA55

(
θx + ∂w

∂x

)
= I2

∂2θx

∂t2
(16)

D16
∂2θx

∂x2 +D66
∂2θy

∂x2 +(D12 +D66)
∂2θx

∂x∂y
+2D26

∂2θy

∂x∂y
+D26

∂2θx

∂y2 +D22
∂2θy

∂y2 +

− kA44

(
θy + ∂w

∂y

)
− kA45

(
θx + ∂w

∂x

)
= I2

∂2θy

∂t2
(17)
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∂

∂x

[
kA45

(
θy + ∂w

∂y

)
+ kA55

(
θx + ∂w

∂x

)]
+

∂

∂y

[
kA44

(
θy + ∂w

∂y

)
+ kA45

(
θx + ∂w

∂x

)]
+ P = I0

∂2w

∂t2 , (18)

where Dij and Aij are the bending and shear stiffness components, k is the shear
correction factor, and Ii are the mass inertias defined as [31], and P is the external
load applied to the plate, as illustrated in Figure 1.

I0 =
∫ h

2

− h
2

ρdz, I2 =
∫ h

2

− h
2

ρz2dz. (19)

Here ρ and h denote the density and the total thickness of the composite plate, re-
spectively. The bending moments Mx , My and Mxy and the shear forces Qx and Qy

are expressed as functions of the displacement gradients and the material constitutive
equations by

Mx = D11
∂θx

∂x
+ D12

∂θy

∂y
+ D16

(
∂θx

∂y
+ ∂θy

∂x

)
(20)

My = D12
∂θx

∂x
+ D22

∂θy

∂y
+ D26

(
∂θx

∂y
+ ∂θy

∂x

)
(21)

Mxy = D16
∂θx

∂x
+ D26

∂θy

∂y
+ D66

(
∂θx

∂y
+ ∂θy

∂x

)
(22)

Qx = kA55

(
θx + ∂w

∂x

)
+ kA45

(
θy + ∂w

∂y

)
(23)

Qy = kA45

(
θx + ∂w

∂x

)
+ kA55

(
θy + ∂w

∂y

)
. (24)

For free vibration problems we assume a harmonic solution in terms of the dis-
placements w, θx, θy in the form

w(x, y, t) = W(x, y)eiλt (25)

θx(x, y, t) = �x(x, y)eiλt (26)

θy(x, y, t) = �y(x, y)eiλt , (27)

where λ is the frequency of natural vibration. Substituting the harmonic expansion
into the equations of motion (16-18) we obtain the following equations in terms of
the amplitudes W,�x,�y
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D11
∂2�x

∂x2
+D16

∂2�y

∂x2
+(D12+D66)

∂2�y

∂x∂y
+2D16

∂2�x

∂x∂y
+D66

∂2�x

∂y2
+D26

∂2�y

∂y2
−

− kA45

(
�y + ∂W

∂y

)
− kA55

(
�x + ∂W

∂x

)
= −I2λ

2�x (28)

D16
∂2�x

∂x2 +D66
∂2�y

∂x2 +(D12+D66)
∂2�x

∂x∂y
+2D26

∂2�y

∂x∂y
+D26

∂2�x

∂y2 +D22
∂2�y

∂y2 −

− kA44

(
�y + ∂W

∂y

)
− kA45

(
�x + ∂W

∂x

)
= −I2λ

2�y (29)

∂

∂x

[
kA45

(
�y + ∂W

∂y

)
+ kA55

(
�x + ∂W

∂x

)]
+

+ ∂

∂y

[
kA44

(
�y + ∂W

∂y

)
+ kA45

(
�x + ∂W

∂x

)]
= −I0λ

2W (30)

4.2 Boundary Conditions

The boundary conditions for an arbitrary edge with simply supported, clamped or
free edge conditions are as follows:

(a) Simply supported
• SS1, w = 0; Mn = 0; Mns = 0.
• SS2, w = 0; Mn = 0; θs = 0.

(b) Clamped, w = 0; θn = 0; θs = 0.
(c) Free, Qn = 0; Mn = 0; Mns = 0.

In previous equations, the subscripts n and s refer to the normal and tangential
directions of the edge, respectively; Mn,Mns and Qn represent the normal bending
moment, twisting moment and shear force on the plate edge; θn and θs represent the
rotations about the tangential and normal coordinates at the plate edge. The stress
resultants on an edge whose normal is represented by n = (nx, ny) can be expressed
as

Mn = n2
xMx + 2nxnyMxy + n2

yMy, (31)

Mns = (n2
x − n2

y)Mxy − nxny(My − Mx), (32)

Qn = nxQx + nyQy, (33)

θn = nxθx + nyθy, (34)

θs = nxθy − nyθx, (35)

where nx and ny are the direction cosines of a unit normal vector at a point at the
laminated plate boundary [31, 32].
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Fig. 1. Plate geometry.

Note that we can easily analyze Mindlin isotropic plates by considering

D11 = D22 = D = Eh3

12(1 − ν2)
, D12 = νD11, D66 = Gh3

12
,

A55 = A44 = kGh and D16 = D26 = A45 = 0,

where E is the modulus of elasticity and ν Poisson’s ratio of an isotropic material.

4.3 Shear Correction Factors

At layer interfaces, continuity of transverse shear stresses is required, for laminates
with distinct materials across the thickness direction. According to the first-order
shear deformation assumptions, the transverse shear deformation is constant through
the thickness, which is a coarse approximation to the actual variation even for a ho-
mogeneous cross-section. For homogeneous cross-sections, the shear deformation
is commonly accepted to be a parabolic function of z. Therefore a shear correction
factor k must be introduced to approximate on an average basis the transverse de-
formation energy. Assuming a heterogeneous plate free of tangential tractions, the
equilibrium equation in the x direction can be expressed as

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0 (36)

Assuming, for simplicity, cylindrical bending, then
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τxz = −
∫ z

−h/2

∂σx

∂x
dz = −

∫ z

−h/2

∂Mx

∂x

D1(z)

R1
zdz

= −Qx

R1

∫ z

−h/2
D1(z)zdz = Qx

R1
g(z) (37)

where Qx is the shear force on the xz plane; R1 = ∫ h/2
−h/2 D1(z)z

2dz is the flexural
plate stiffness in the x direction; z is the coordinate through the thickness; g(z) =
− ∫ z

−h/2 D1(z)zdz is the shear shape function.
The function g(z) that shapes the shear stress diagram is independent of loadings,

becoming the well known parabolic function g(z) = [D1h
2/8][1 − 4(z/h)2] for the

case of a homogeneous cross-section. The strain energy component is given as

ws =
∫ h/2

−h/2

τ 2
xz

G13(z)
dz = Q2

x

R2
1

∫ h/2

−h/2

g2(z)

G13(z)
dz (38)

where G13(z) is the shear modulus, variable through the thickness, in the xz plane.
The strain energy component, under the assumption of constant shear strain, is given
as

ws =
∫ h/2

−h/2
γ xzG13(z)γ xzdz = Q2

x

h2G
2
1

hG1 = Q2
x

hG1
(39)

where

hG1 =
∫ h/2

−h/2
G13(z)dz (40)

and γ xz is the mean value of the shear strains. Therefore it is now possible to evaluate
the correction factor k1 in the xz plane to be

k1 = ws

ws

= R2
1

hG1

∫ h/2

−h/2
g2(z)/G13(z)dz

(41)

For k2 we proceed the same way. This can be applied to symmetric or non-
symmetric cross-sections [44]. Here we use the same correction factor (k = k1 =
k2).

For numerical implementation, all integrals are replaced by summation over the
layer thicknesses in the case of composite laminated structures with different mater-
ial layers [44].

5 Discretization of the Equations of Motion

The equations of motion can now be discretized according to the radial basis function
method as
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D11

N∑
j=1

α
�x

j

∂2φj

∂x2
+ D16

N∑
j=1

α
�y

j

∂2φj

∂x2
+ (D12 + D66)

N∑
j=1

α
�y

j

∂2φj

∂x∂y
+

+ 2D16

N∑
j=1

α
�x

j

∂2φj

∂x∂y
+ D66

N∑
j=1

α
�x

j

∂2φj

∂y2 + D26

N∑
j=1

α
�y

j

∂2φj

∂y2 −

− kA45

⎛
⎝ N∑

j=1

α
�y

j φj +
N∑

j=1

αW
j

∂φj

∂y

⎞
⎠−

− kA55

⎛
⎝ N∑

j=1

α
�x

j φj +
N∑

j=1

αW
j

∂φj

∂x

⎞
⎠ = −I2ω

2
N∑

j=1

α
�x

j φj (42)

D16

N∑
j=1

α
�x

j

∂2φj

∂x2 + D66

N∑
j=1

α
�y

j

∂2φj

∂x2 + (D12 + D66)

N∑
j=1

α
�x

j

∂2φj

∂x∂y
+

+ 2D26

N∑
j=1

α
�y

j

∂2φj

∂x∂y
+ D26

N∑
j=1

α
�x

j

∂2φj

∂y2
+ D22

N∑
j=1

α
�y

j

∂2φj

∂y2
−

− kA44

⎛
⎝ N∑

j=1

α
�y

j φj +
N∑

j=1

αW
j

∂φj

∂y

⎞
⎠−

− kA45

⎛
⎝ N∑

j=1

α
�x

j φj +
N∑

j=1

αW
j

∂φj

∂x

⎞
⎠ = −I2ω

2
N∑

j=1

α
�y

j φj (43)

∂

∂x

⎡
⎣kA45

⎛
⎝ N∑

j=1

α
�y

j φj +
N∑

j=1

αW
j

∂φj

∂y

⎞
⎠ + kA55

⎛
⎝ N∑

j=1

α
�x

j φj +
N∑

j=1

αW
j

∂φj

∂x

⎞
⎠

⎤
⎦+

+ ∂

∂y

⎡
⎣kA44

⎛
⎝ N∑

j=1

α
�y

j φj +
N∑

j=1

αW
j

∂φj

∂y

⎞
⎠ + kA45

⎛
⎝ N∑

j=1

α
�x

j φj +
N∑

j=1

αW
j

∂φj

∂x

⎞
⎠

⎤
⎦+P

= −I0ω
2

N∑
j=1

αW
j φj (44)

where N represents the total number of points of the structure. The vector α�x

corresponds to the vector of unknowns related to rotation �x . For free vibration
problems, P is set to zero.
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6 Calculation of Transverse Shear Stresses

In the following examples, transverse shear stresses are calculated through the equi-
librium equations. For the calculation of τxz we consider first the equilibrium equa-
tion

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0 (45)

or

τxz = −
∫ z

−h/2

(
∂σx

∂x
+ ∂τxy

∂y

)
dz (46)

By integrating through the k laminate layers we can then obtain the transverse
shear stresses at any point in z direction, by using the derivatives of radial basis
functions. It will be clearer in the following examples.

7 Numerical Examples

7.1 Square Isotropic Thick Plate under Uniform Load

In this first example we consider a simply supported square isotropic plate (side
length a and thickness h) under uniform pressure. The modulus of elasticity (E) and
the Poisson’s ratio (ν) are taken as 10920 and 0.25, respectively. The normalized
transverse displacement, w, and the normalized normal x-stress, σxx are obtained as

w = Eh3102wmax

qa4 σxx = σxxh
2

qa2

In Table 1 the normalized results are compared with finite element results of
Reddy [8] and exact (analytical) results [9]. Results are also compared with a pre-
vious higher-order formulation with RBFs presented by Ferreira et al. [13]. We use
9×9, 13×13, 17×17 and 21×21 Chebyshev grids for both the internal and bound-
ary nodes, with an optimal shape parameter together with the Wendland compactly
supported function

ϕ3,3(r) = (1 − εr)8+(32(εr)3 + 25(εr)2 + 8εr + 1). (47)

The boundary conditions are of SS2 type and the collocation points we consider
lie on Chebyshev grids. For all a/h ratios the present formulation is better than [13]
and Reddy [9] when compared with exact solutions, for transverse displacements
and normal xx stress. The results converge rapidly to exact values.
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Table 1. Square isotropic plate under uniform load.

a
h Method w σxx

10 Reddy [8] 4.770 0.2899
exact [9] 4.791 0.2762
Ferreira et al. [13] (N=21) 4.7866 0.2777
present (9 × 9) 4.7349 0.2681
present (13 × 13) 4.7881 0.2754
present (17 × 17) 4.7908 0.2762
present (21 × 21) 4.7911 0.2762

20 Reddy [8] 4.570 0.2683
exact [9] 4.625 0.2762
Ferreira et al. [13] (N=21) 4.6132 0.2761
present (9 × 9) 4.570 0.2596
present (13 × 13) 4.6206 0.2749
present (17 × 17) 4.6246 0.2761
present (21 × 21) 4.6253 0.2762

50 Reddy [8] 4.496 0.2667
exact [9] 4.579 0.2762
Ferreira et al. [13] (N=21) 4.5753 0.2762
present (9 × 9) 4.9485 0.3078
present (13 × 13) 4.5615 0.2806
present (17 × 17) 4.5758 0.2766
present (21 × 21) 4.5784 0.2762

100 Reddy [8] 4.482 0.2664
exact [9] 4.572 0.2762
Ferreira et al. [13] (N=21) 4.5737 0.2764
present (9 × 9) 5.3071 0.3322
present (13 × 13) 4.4498 0.2665
present (17 × 17) 4.5597 0.2745
present (21 × 21) 4.5755 0.2752

7.2 Four Layer [0◦/90◦/90◦/0◦] Square Cross-Ply Laminated Plate under
Sinusoidal Load

A simply supported square laminated plate of side a and thickness h is composed of
four equal layers oriented at [0◦/90◦/90◦/0◦]. The plate is subjected to a sinusoidal
vertical pressure of the form:

pz = P sin
(πx

a

)
sin

(πy

a

)
with the origin of the coordinate system located at the lower left corner on the mid-
plane.

The orthotropic material properties are given by
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Table 2. [0◦/90◦/90◦/0◦] square laminated plate under sinusoidal load.

a
h Method w σxx σyy τzx τ xy

4 3 strip [39] 1.8939 0.6806 0.6463 0.2109 0.0450
HSDT [41] 1.8937 0.6651 0.6322 0.2064 0.0440
FSDT [40] 1.7100 0.4059 0.5765 0.1398 0.0308
elasticity [42] 1.954 0.720 0.666 0.270 0.0467
Ferreira et al. [13] (N=21) 1.8864 0.6659 0.6313 0.1352 0.0433
present (9 × 9) 1.7103 0.4339 0.6150 0.2542 0.0308
present (13 × 13) 1.7109 0.4336 0.6145 0.2598 0.0309
present (17 × 17) 1.7110 0.4335 0.6144 0.2607 0.0309
present (21 × 21) 1.7110 0.4335 0.6144 0.2610 0.0309

10 3 strip [39] 0.7149 0.5589 0.3974 0.2697 0.0273
HSDT [41] 0.7147 0.5456 0.3888 0.2640 0.0268
FSDT [40] 0.6628 0.4989 0.3615 0.1667 0.0241
elasticity [42] 0.743 0.559 0.403 0.301 0.0276
Ferreira et al. [13] (N=21) 0.7153 0.5466 0.4383 0.3347 0.0267
present (9 × 9) 0.6633 0.5324 0.3853 0.3104 0.0241
present (13 × 13) 0.6638 0.5321 0.3854 0.3174 0.0240
present (17 × 17) 0.6638 0.5321 0.3854 0.3186 0.0242
present (21 × 21) 0.6638 0.5321 0.3854 0.3189 0.0242

100 3 strip [39] 0.4343 0.5507 0.2769 0.2948 0.0217
HSDT [41] 0.4343 0.5387 0.2708 0.2897 0.0213
FSDT [40] 0.4337 0.5382 0.2705 0.1780 0.0213
elasticity [42] 0.4347 0.539 0.271 0.339 0.0214
Ferreira et al. [13] (N=21) 0.4365 0.5413 0.3359 0.4106 0.0215
present (9 × 9) 0.4343 0.5663 0.2852 0.3319 0.0203
present (13 × 13) 0.4344 0.5734 0.2889 0.3399 0.0213
present (17 × 17) 0.4346 0.5738 0.2884 0.3425 0.0214
present (21 × 21) 0.4347 0.5739 0.2884 0.3433 0.0214

E1 = 25.0E2 G12 = G13 = 0.5E2 G23 = 0.2E2 ν12 = 0.25

In Table 2 the present method is compared with a finite strip formulation by
Akhras [39, 40] who used three strips, an analytical solution by Reddy [41] using
a higher-order formulation and an exact three dimensional solution by Pagano [42].
The present solution is also compared with another higher-order solution by the au-
thors [13]. The in-plane displacements, the transverse displacements, the normal
stresses and the in-plane and transverse shear stresses are presented in normalized
form as

w = 102wmaxh
3E2

Pa4 σxx = σxxh2

Pa2 σ yy = σyyh
2

Pa2

τzx = τzxh

Pa
τxy = τxyh

2

Pa2
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The membrane stresses were evaluated at the following locations:
σxx(a/2, b/2, h

2 ), σ yy(a/2, b/2, h
4 ), and σxy(a, b,−h

2 ). The transverse shear
stresses are calculated using the equilibrium equations at locations τ zx(0, b/2, 0).

We used four nodal grids, with 9 × 9, 13 × 13, 17 × 17 and 21 × 21 points.
The present shear deformation theory discretized with Wendland compact support
functions present good results in line of the FSDT used by other authors. For higher
thicknesses the need for higher order theories becomes quite clear.

As mentioned before we can evaluate the transverse shear stresses at any point in
the z direction.

In this example, we can calculate explicitly τxz as

τxz = −
∫ z

−h/2

(
∂σx

∂x
+ ∂τxy

∂y

)
dz = −

∫ z

−h/2

(
zek

11
∂2θx

∂x2
+ zek

12
∂2θy

∂x∂y

)
dz (48)

with ek
11 being one of the components of the elasticity matrix for the k layer, given

by

ek
11 = Ek

1

1 − ν2
12

(49)

where Ek
1 is the modulus of elasticity in the composite fiber direction for the material

in the k-th layer, and ν12 the major Poisson’s ratio. Other components are obtained
in a similar way. For this laminate the z = 0 stress is given by

τxz(z = 0) = ∂2θx

∂x2

[
3h2

32
e
(1)
11 + h2

32
e
(2)
11

]
+

+ ∂2θx

∂x∂y

[
3h2

32
e
(1)
12 + h2

32
e
(2)
12

]
+ ∂2θy

∂y2

[
3h2

32
e
(1)
22 + h2

32
e
(2)
22

]
(50)

7.3 Three Layer Square Sandwich Plate under Uniform Load

The well-known sandwich example of Srinivas [37] is presented and discussed. It
considers a simply supported square sandwich plate under uniform pressure. The
ratio of side to thickness, a/h is taken as 10. The sandwich laminate considers two
outside layers (skins) of thickness h1 = h3 = 0.1h and one inner layer (core) of
thickness h2 = 0.8h. The skin orthotropic properties are obtained by multiplying an
integer, R, by the core orthotropic properties, given by

Qcore =

⎡
⎢⎢⎢⎢⎣

0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0

0 0 0.262931 0 0
0 0 0 0.266810 0
0 0 0 0 0.159914

⎤
⎥⎥⎥⎥⎦
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Table 3. Square laminated plate under uniform load, R = 5.

Method w σ 1
xx σ 2

xx σ3
xx τ1

xz τ2
xz

(a/2,a/2,0) (a/2,a/2,h/2) (a/2,a/2,2h/5) (a/2,a/2,2h/5) (0,a/2,0) (0,a/2,-2h/5)

HSDT [38] 256.13 62.38 46.91 9.382 3.089 2.566
FSDT [38] 236.10 61.87 49.50 9.899 3.313 2.444
CLT 216.94 61.141 48.623 9.783 4.5899 3.386
Ferreira & Barbosa [43] 258.74 59.21 45.61 9.122 3.593 3.593
Ferreira (N=15) [12] 257.38 58.725 46.980 9.396 3.848 2.839
exact [37] 258.97 60.353 46.623 9.340 4.3641 3.2675
Ferreira et al. [13] (HSDT)(N=21) 257.1100 60.3660 47.0028 9.4006 4.5481 2.3910
Ferreira (layerwise) [15] (N=21) 257.5231 59.9675 46.2906 9.2581 4.0463 2.3901
present (9 × 9) 257.65 58.9449 47.1559 9.4312 3.8626 2.4523
present (13 × 13) 259.17 59.0723 47.2578 9.4516 4.0282 2.6002
present (17 × 17) 259.26 59.1129 47.2904 9.4581 4.0508 2.6232
present (21 × 21) 259.27 59.1189 47.2951 9.4590 4.0554 2.6280

Table 4. Square laminated plate under uniform load, R = 10.

Method w σ 1
xx σ 2

xx σ3
xx τ1

xz τ2
xz

(a/2,a/2,0) (a/2,a/2,h/2) (a/2,a/2,2h/5) (a/2,a/2,2h/5) (0,a/2,0) (0,a/2,-2h/5)

HSDT [38] 152.33 64.65 51.31 5.131 3.147 2.587
FSDT [38] 131.095 67.80 54.24 4.424 3.152 2.676
CLT 118.87 65.332 48.857 5.356 4.3666 3.7075
Ferreira & Barbosa [43] 159.402 64.16 47.72 4.772 3.518 3.518
Ferreira (N=15) [12] 158.55 62.723 50.16 5.01 3.596 3.053
exact [37] 159.38 65.332 48.857 4.903 4.0959 3.5154
Ferreira et al. [13] (HSDT)(N=21) 154.6581 65.3809 49.9729 4.9973 3.5280 2.3984
Ferreira (layerwise) [15] (N=21) 158.3799 64.8462 48.4434 4.8443 3.9237 2.8809
present (9 × 9) 158.92 63.3129 50.6503 5.0650 3.8274 2.6466
present (13 × 13) 159.56 63.1135 50.4908 5.0491 3.9542 2.7979
present (17 × 17) 159.60 63.1318 50.5055 5.0505 3.9706 2.8216
present (21 × 21) 159.61 63.1358 50.5087 5.0509 3.9739 2.8267

The skin properties are obtained by

Qskin = RQcore

In this example we considered four nodal grids, as in previous example. Results
are compared with exact results of Srinivas [37] and finite element results of Pandya
and Kant [38]. We also compare results with a shell finite formulation by Ferreira
and Barbosa [43] and first order shear formulation with multiquadrics by Ferreira
[12]. The present solution is also compared with another higher-order solution with
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Table 5. Square laminated plate under uniform load, R = 15.

Method w σ 1
xx σ 2

xx σ3
xx τ1

xz τ2
xz

(a/2,a/2,0) (a/2,a/2,h/2) (a/2,a/2,2h/5) (a/2,a/2,2h/5) (0,a/2,0) (0,a/2,-2h/5)

HSDT [38] 110.43 66.62 51.97 3.465 3.035 2.691
FSDT [38] 90.85 70.04 56.03 3.753 3.091 2.764
CLT 81.768 69.135 55.308 3.687 4.2825 3.8287
Ferreira & Barbosa [43] 121.821 65.650 47.09 3.140 3.466 3.466
Ferreira (N=15) [12] 121.184 63.214 50.571 3.371 3.466 3.099
exact [37] 121.72 66.787 48.299 3.238 3.9638 3.5768
Ferreira et al. [13] (HSDT)(N=21) 114.6442 66.9196 50.3230 3.3549 3.0213 2.2750
Ferreira (layerwise) [15] (N=21) 120.9883 66.2911 47.8992 3.1933 3.8311 3.2562
present (9 × 9) 121.51 64.0033 51.2026 3.4135 3.8104 2.6892
present (13 × 13) 121.89 63.6445 50.9156 3.3944 3.9214 2.8412
present (17 × 17) 121.93 63.6517 50.9213 3.3948 3.9353 2.8651
present (21 × 21) 121.93 63.6547 50.9238 3.3949 3.9382 2.8702

Table 6. Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a = 0.1, k =
0.8601, ν = 0.3.

Mode no. m n 9 × 9 13 × 13 17 × 17 Rayleygh-Ritz [33] Liew et al. [34]
1 1 1 1.5967 1.5911 1.5913 1.5940 1.5582
2 2 1 3.0157 3.0393 3.0388 3.0390 3.0182
3 1 2 3.0157 3.0393 3.0390 3.0390 3.0182
4 2 2 4.1762 4.2641 4.2620 4.2650 4.1711
5 3 1 4.9579 5.0290 5.0244 5.0350 5.1218
6 1 3 5.0333 5.0756 5.0645 5.0350 5.1594
7 3 2 5.9067 6.0890 6.0769 6.0178
8 2 3 5.9067 6.0890 6.0771 6.0178
9 4 1 7.4848 7.4323 7.4113 7.5169

10 1 4 7.9839 7.4323 7.4129 7.5169

multiquadrics by Ferreira et al. [13] and a layerwise formulation by Ferreira [15].
In-plane displacements, transverse displacement and stresses are normalized through
factors

w = w
0.999781

hq
σαα = σαα

q
ταβ = ταβ

q

The locations are given in Tables 3 to 5, where various values of R are considered (5,
10 and 15). The present formulation produces results that are in excellent agreement
with all higher order formulations and with exact results.
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Table 7. Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a = 0.01, k =
0.8601, ν = 0.3.

Mode no. m n 9 × 9 13 × 13 17 × 17 Rayleygh-Ritz [33] Liew et al. [34]
1 1 1 0.1011 0.1846 0.1753 0.1754 0.1743
2 2 1 0.2764 0.3787 0.3575 0.3576 0.3576
3 1 2 0.2764 0.3787 0.3575 0.3576 0.3576
4 2 2 0.4817 0.5615 0.5280 0.5274 0.5240
5 3 1 1.1218 0.6525 0.6433 0.6402 0.6465
6 1 3 1.1307 0.6596 0.6462 0.6432 0.6505
7 3 2 1.5977 0.7722 0.8136 0.8015
8 2 3 1.5977 0.7722 0.8137 0.8015
9 4 1 2.9106 0.8870 1.0440 1.0426

10 1 4 3.9583 1.0703 1.0440 1.0426

Fig. 2. Mode shapes (1 to 4) for CCCC plate with h/a = 0.1.

7.4 Natural Frequencies of Mindlin Plates

In Tables 6 and 7 we compare natural frequencies for fully clamped plates with Ritz
solution [33] and a competitive meshless solution by Liew et al. [34]. Results show
excellent agreement with analytical solution for both h/a cases.
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Fig. 3. Mode shapes (1 to 4) for CCCC plate with h/a = 0.1.

In Figure 2 the first 4 modes for CCCC plates are illustrated in three-dimensional
form. Also the first 8 modes are illustrated in two-dimensional form in Figures 3 and
4.

Secondly, fully simply supported (SSSS) Mindlin/Reissner square plates with
different thickness-to-side ratios are considered. The first 13 modes of vibration
are calculated for two cases of thickness-to-side ratios h/a = 0.01 and 0.1. For
h/a = 0.01 we use 13 × 13, 17 × 17 and 21 × 21 grids due to poor results for 9 × 9
grid. Results are compared with 3D-Elasticity and Mindlin closed form solutions
[35], and results by Liew et al. [34]. Results are listed in Tables 8 and 9 and show
excellent agreement with closed form solutions.

In Figure 5 the first 4 modes for SSSS plates are illustrated in three-dimensional
form.

7.5 Natural Frequencies of Composite Plates

We now consider square laminated plates, where all layers of the laminate are as-
sumed to be of the same thickness, density and made of the same linearly elastic
composite material. The following material parameters of a layer are used:
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Fig. 4. Mode shapes (5 to 8) for CCCC plate with h/a = 0.1.

Table 8. Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a = 0.1, k =
0.833, ν = 0.3 (* – closed form).

Mode no. m n 9 × 9 13 × 13 17 × 17 3D * Mindlin * Liew et al. [34]
1 1 1 0.9309 0.9303 0.9303 0.9320 0.9300 0.9220
2 2 1 2.2140 2.2195 2.2193 2.2260 2.2190 2.2050
3 1 2 2.2140 2.2195 2.2193 2.2260 2.2190 2.2050
4 2 2 3.4157 3.4062 3.4057 3.4210 3.4060 3.3770
5 3 1 4.1208 4.1509 4.1495 4.1710 4.1490 4.1390
6 1 3 4.1254 4.1510 4.1495 4.1710 4.1490 4.1390
7 3 2 5.2197 5.2087 5.2059 5.2390 5.2060 5.1700
8 2 3 5.2197 5.2087 5.2059 5.2390 5.2060 5.1700
9 4 1 6.8810 6.5309 6.5207 - 6.5200 6.5240

10 1 4 6.8810 6.5309 6.5207 - 6.5200 6.5240

E1

E2
= 10, 20, 30 or 40; G12 = G13 = 0.6E2; G3 = 0.5E2; ν12 = 0.25

The subscripts 1 and 2 denote the directions normal and transverse to the fiber dir-
ection in a lamina, which may be oriented at an angle to the plate axes. The ply
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Fig. 5. Mode shapes (1 to 4) for SSSS plate with h/a = 0.1.

Table 9. Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a = 0.01, k =
0.833, ν = 0.3 (* – closed form).

Mode no. m n 13 × 13 17 × 17 21 × 21 Mindlin * Liew et al. [34]
1 1 1 0.0965 0.0963 0.0963 0.0963 0.0961
2 2 1 0.2417 0.2407 0.2363 0.2406 0.2419
3 1 2 0.2417 0.2407 0.2393 0.2406 0.2419
4 2 2 0.3884 0.3851 0.3847 0.3848 0.3860
5 3 1 0.4775 0.4818 0.4809 0.4809 0.4898
6 1 3 0.4788 0.4819 0.4864 0.4809 0.4898
7 3 2 0.6290 0.6267 0.6243 0.6249 0.6315
8 2 3 0.6290 0.6267 0.6243 0.6249 0.6315
9 4 1 0.8145 0.8238 0.8290 0.8167 0.8447

10 1 4 0.8145 0.8238 0.8390 0.8167 0.8447

angle of each layer is measured from the global x-axis to the fiber direction. Unless
otherwise stated, the simply supported boundary condition is taken to be the hard
type SS2 condition. In all examples we use a shear correction factor k = π2/12, as
proposed in [32].
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Table 10. The normalized fundamental frequency of the simply-supported cross-ply laminated
square plate [0◦/90◦/90◦/0◦] (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2).

Method Grid E1/E2
10 20 30 40

Liew [32] 8.2924 9.5613 10.320 10.849
Exact (Reddy)[31] 8.2982 9.5671 10.326 10.854
Present 9 × 9 8.2694 9.5320 10.2856 10.8097

13 × 13 8.2670 9.5297 10.2835 10.8077
17 × 17 8.2669 9.5296 10.2833 10.8076

The example considered is a simply supported square plate of the cross-ply lam-
ination [0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted by h and
a, respectively. The thickness-to-span ratio h/a = 0.2 is employed in the compu-
tation. Table 10 lists the fundamental frequency of the simply supported laminate
made of various modulus ratios of E1/E2. It is found that the results are in very
close agreement with the values of [31] and the meshfree results of Liew [32] based
on the FSDT. The relative errors between the analytical and present solutions are
below 1.0%.

The influence of mixed boundary conditions and span-to-thickness ratio is now
considered. The plate is simply supported along the edges parallel to the x-axis while
the other two edges are subjected to simply supported (S) and clamped (C) boundary
conditions. Notations SS, SC, CC refer to the boundary conditions of the two edges
parallel to the y-axis only. The three layer cross-ply [0◦/90◦/0◦] square laminate is
here considered with E1/E2 = 40. The plate is discretized with 9 × 9, 13 × 13 and
17×17 grids. In Table 11, results are compared with Liew [32] and Reddy [31]. It is
found that the present results are in excellent agreement with exact results and very
close to Liew’s results. The boundary conditions play no essential role in the quality
of solution. For SS and SC conditions the difference of present results to exact are
below 1%. For CC conditions difference to exact results are below 0.6% except for
a/h = 100 where error is 1.7%.

8 Conclusions

A study of static deformations and free vibration of Mindlin plates was presented.
Equations of motion and boundary conditions for Mindlin plates were presented us-
ing a first-order shear deformation theory for plates with a shear correction algorithm.
Numerical results were presented and discussed for various thickness-to-length ra-
tios. The analysis is based on a new numerical scheme, where collocation by radial
basis functions are viewed in the sense of pseudospectral methods in order to produce
highly accurate results. This method allows the use of non-rectangular geometries
and promotes a more flexible framework for pseudospectral methods. Furthermore a
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Table 11. The normalized fundamental frequency of the 3-layer [0◦/90◦/0◦] lamin-
ated square plate with various boundary conditions and span to thickness ratios (w̄ =
(wa2/h)

√
ρ/E2, E1/E2 = 40).

a/h Method Grid SS SC CC
2 Liew [32] 5.205 5.210 5.257

Exact (Reddy) [31] 5.205 5.211 5.257
Present 9 × 9 5.2052 5.1846 5.2301

13 × 13 5.2047 5.1842 5.2297
17 × 17 5.2046 5.1841 5.2296

5 Liew [32] 10.290 10.647 11.266
Exact (Reddy) [31] 10.290 10.646 11.266
Present 9 × 9 10.2900 10.5964 11.2068

13 × 13 10.2882 10.5949 11.2057
17 × 17 10.2881 10.5948 11.2056

10 Liew [32] 14.767 17.176 19.669
Exact (Reddy) [31] 14.767 17.175 19.669
Present 9 × 9 14.7688 17.1106 19.5777

13 × 13 14.7638 17.1061 19.5733
17 × 17 14.7635 17.1059 19.5733

100 Liew [32] 18.769 28.164 40.004
Exact (Reddy) [31] 18.891 28.501 40.743
Present 9 × 9 18.8224 28.1989 39.6371

13 × 13 18.8311 28.2375 40.0557
17 × 17 18.8262 28.2360 40.0610

cross-validation technique was used to optimize the shape parameter in radial basis
functions. Compact support functions were used in this paper, showing high stability
and convergence of results, when compared with existing finite element or meshless
schemes.

The present method is a simple yet powerful alternative to other finite element or
meshless methods in the static deformation and free vibration analysis of isotropic
and laminated composite plates.
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