

Arabic Computational Morphology

Text, Speech and Language Technology

VOLUME 38

Series Editors

Nancy Ide, Vassar College, New York
Jean Véronis, Université de Provence and CNRS, France

Editorial Board

Harald Baayen, Max Planck Institute for Psycholinguistics, The Netherlands
Kenneth W. Church, Microsoft Research Labs, Redmond WA, USA
Judith Klavans, Columbia University, New York, USA
David T. Barnard, University of Regina, Canada
Dan Tufis, Romanian Academy of Sciences, Romania
Joaquim Llisterri, Universitat Autonoma de Barcelona, Spain
Stig Johansson, University of Oslo, Norway
Joseph Mariani, LIMSI-CNRS, France

Arabic Computational
Morphology
Knowledge-based and Empirical
Methods

Edited by

Abdelhadi Soudi
Ecole Nationale de I’Industrie Minérale, Rabat, Morocco

Antal van den Bosch
Tilburg University, The Netherlands

Günter Neumann
Deutsches Forschungszentrum für Künstliche Intelligenz,
Saarbrücken, Germany

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-6045-8 (HB)
ISBN 978-1-4020-6046-5 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
C© 2007 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Contents

Preface vii

Part 1: Introduction

1. Arabic Computational Morphology: Knowledge-based
and Empirical Methods 3
Abdelhadi Soudi, Günter Neumann and Antal van den Bosch

2. On Arabic Transliteration 15
Nizar Habash, Abdelhadi Soudi and Timothy Buckwalter

3. Issues in Arabic Morphological Analysis 23
Timothy Buckwalter

Part 2: Knowledge-Based Methods

4. A Syllable-based Account of Arabic Morphology 45
Lynne Cahill

5. Inheritance-Based Approach to Arabic Verbal Root-and-Pattern
Morphology 67
Salah R. Al-Najem

6. Arabic Computational Morphology: A Trade-off Between Multiple
Operations and Multiple Stems 89
Violetta Cavalli-Sforza and Abdelhadi Soudi

7. Grammar-Lexis Relations in the Computational Morphology of Arabic 115
Joseph Dichy and Ali Farghaly

Part 3: Empirical Methods

8. Learning to Identify Semitic Roots 143
Ezra Daya, Dan Roth and Shuly Wintner

v

vi Contents

9. Automatic Processing of Modern Standard Arabic Text 159
Mona Diab, Kadri Hacioglu and Daniel Jurafsky

10. Supervised and Unsupervised Learning of Arabic Morphology 181
Alexander Clark

11. Memory-based Morphological Analysis and Part-of-speech
Tagging of Arabic 201
Antal van den Bosch, Erwin Marsi, and Abdelhadi Soudi

Part 4: Integration of Arabic Morphology
in Larger Applications

12. Light Stemming for Arabic Information Retrieval 221
Leah S. Larkey, Lisa Ballesteros and Margaret E. Connell

13. Adapting Morphology for Arabic Information Retrieval 245
Kareem Darwish and Douglas W. Oard

14. Arabic Morphological Representations for Machine Translation 263
Nizar Habash

15. Arabic Morphological Generation and its Impact on the Quality
of Machine Translation to Arabic 287
Ahmed Guessoum and Rached Zantout

Index 303

Preface

One of the advantages of having worked in a field for twenty years is that you have
an opportunity to watch research areas grow from infancy into maturity. The present
book represents a marriage of two such fields: computational morphology and Arabic
computational linguistics.

In the mid 1980s, Koskenniemi had just published his landmark (1983) thesis
on Two-Level Morphology. Prior to Koskenniemi there had of course been work
on computational morphology dating back all the way to the 1960s, but the field
had never been a major focus of research. Koskenniemi changed that by taking the
computational framework of finite-state transducers, proposed by Ron Kaplan and
Martin Kay, and making it actually work in a real system. Koskenniemi provided
a practical implementation of a well-defined computational model, and this in turn
led to an explosion of work in finite-state and other approaches to morphology over
the ensuing twenty years. Data-driven methods, which gained popularity in the late
1980s took a few years to make an impact on computational morphology, but in the
last decade there has been a significant amount of work, particularly in the area of
self-organizing methods for morphological induction.

In the mid 1980s, with notable exceptions like early work by Beesley, there was
next to nothing being done on Arabic. There simply were not the resources, nor
were there very many people who both had the linguistic training and knowledge of
Arabic, as well as training in natural language processing. All of this has changed.
Now there are quite a few resources for Arabic including the roughly 400 million
words of Modern Standard Arabic newswire text in the Arabic Gigaword corpus, the
Penn Arabic Treebank, the Prague Dependency treebank, Tim Buckwalter’s publicly
available morphological analyzer, as well as a growing set of resources for Colloquial
Arabic, including the Egyptian, Levantine, Iraqi and Gulf dialects. As evidenced
by the contributors to this volume, there are now a large number of computational
linguists with a knowledge of Arabic. And perhaps most importantly, there is a
widespread interest in the community as a whole in Arabic language processing.

Like all good marriages, the union of computational morphology with Arabic
language processing is one fraught with complexity; for Arabic seems almost to have
been specially engineered to maximize the difficulties for automatic processing. The
famous Semitic “root-and-pattern” morphology defies a straightforward implemen-
tation in terms of morpheme concatenation, and this has spawned a wide variety
of different computational solutions, many of which are represented in various
chapters in this volume. Students of writing systems have speculated that this

vii

viii Preface

root-and-pattern morphology was ultimately responsible for the second interesting
and difficult property of Arabic (and several other Semitic languages), namely that
the writing system is impoverished in that a fair amount of phonological information
is simply missing in the script. In its normal everyday use, the script systemati-
cally fails to represent not only most vowel information (is DRS /darasa/,
/durisa/, KTB /kataba/
or /kattaba/?), as well as both vowel and nunation information in the nominal case
system (is WLD /waladu/, /waladun/, /waladin/,
as Tim Buckwalter shows, the advent of Unicode has failed to standardize Arabic
encoding, so that in dealing with real texts, one has to be prepared to do a fair amount
of low level normalization; to some extent the differences reflect regional variants
(such as the use of /alif maq ¯ for /ya/ in Egyptian texts), but in other cases they
reflect the fact that for all of its attempts at rigid design, Unicode still allows for a fair
amount of “wiggle room”: the same issue comes up in the encoding of South Asian
languages using Brahmi-derived scripts.

The chapters in this volume attest both to the wide variety, and to the sophistication
of the work being done on the computational analysis of Arabic morphology, both
in terms of approaches to morphological analysis, as well as in applications of such
work to other areas such as machine translation and information retrieval. To be sure,
part of the reason for the increased interest in Arabic language processing is due to
greater funding opportunities for work on Arabic, and this in turn has been fueled by
various important political events of the past few years. But it would be shortsighted
to view this as the sole justification for an increased interest in Arabic. Forms of
Arabic are spoken by roughly 250 million people in an area spanning North Africa
to the Persian Gulf. It is the official language of over 20 countries. It is a significant
minority language of a number of sub-saharan African countries. And there is a
large expatriate population spread throughout the world. Arabic is thus one of the
world’s major languages. History, especially that of the last hundred years, has not
been kind to the Arabic-speaking peoples, and they have not had an economic clout
proportional to their population. This is bound to change sooner or later, and there
will be an increasing need for tools that allow one to use Arabic in the digital world
as easily as one can now use English.

The work represented in this book is an important milestone along the path
towards that goal. I commend the editors — Abdelhadi Soudi, Antal van den Bosch,
and — and all of the contributing authors on its publication.

I wish to thank Elabbas Benmamoun for helpful feedback on an earlier draft of
this preface.

Richard Sproat
University of Illinois at Urbana-Champaign

Sura/

Günter Neumann

 ...?), but also information on consonant gemination (is

 ...?). If this weren’t enough,

PART I

Introduction

1

Arabic Computational Morphology: Knowledge-based
and Empirical Methods

Abdelhadi Soudi1, Günter Neumann2 and Antal van den Bosch3

1 Ecole Nationale de l’Industrie Minérale, Rabat, Morocco

2 Deutsches Forschungszentrum für Künstliche Intelligenz, Saarbrücken, Germany

3 Tilburg University, The Netherlands

1.1 Overview

The morphology of Arabic poses special challenges to computational natural
language processing systems. The exceptional degree of ambiguity in the writing
system, the rich morphology, and the highly complex word formation process of
roots and patterns all contribute to making computational approaches to Arabic very
challenging. Indeed, many computational linguists across the world have taken up
this challenge over time, and we have been able to commit many of the researchers
with a track record in this research area to contribute to this book.

The book’s subtitle aims to reflect that widely different computational approaches
to the Arabic morphological system have been proposed. These accounts fall
into two main paradigms: the knowledge-based and the empirical. Since morpho-
logical knowledge plays an essential role in any higher-level understanding and
processing of Arabic text, the book also features a part on the integration of Arabic
morphology in larger applications, namely Information Retrieval (IR) and Machine
Translation (MT).

The book is unique in the following ways:

• It is the first comprehensive text that covers both knowledge-based and data-
driven approaches to Arabic morphology;

• It provides broad but rigorous coverage of the computational techniques for the
processing of Arabic morphology as well as a detailed discussion of the linguistic
approaches on which each computational treatment is based;

• Compared and contrary to already published books in the area, the proposed
book includes contributions in which authors demonstrate how their approaches

3

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 3–14.
C© 2007 Springer.

asoudi@gmail.com

Neumann@dfki.de

Antal.vdnBosch@uvt.nl

4 Soudi et al.

to morphology improve the performance of Natural Language Processing Appli-
cations, namely IR and MT, including experiments and results;

• While the book focuses primarily on Arabic computational morphology, the
authors do show how their approaches could be extended to other Semitic
languages;

• It brings together original and extended contributions from the most distin-
guished actors in knowledge-based and empirical paradigms as well as in Arabic
MT and IR.

First, we offer a brief roadmap for the book. The book is opened by a Preface
by Professor Richard Sproat who has a long-standing experience in computational
morphology. Chapter 2 introduces the transliteration scheme used in this book to
represent Arabic words for readers who cannot read the Arabic script and presents
guidelines for pronouncing Arabic given this transliteration. Chapter 3 provides
a review of the salient issues in Arabic computational morphology. Among the
issues discussed are: the status of non-standard Arabic characters (e.g., Persian
characters), problems in orthography relating to non-standard uses of Arabic
characters, problems in orthography that affect tokenization, defining standard vs.
non-standard orthography, defining contemporary morphological features (e.g., is
the energetic verb form archaic, or simply rare?), designing a maintainable system
(e.g., what level of specialized knowledge is required to make new entries in the
lexicon?), and the need to extend the analysis to written colloquial Arabic, in view
of its increasing and widespread use on the Internet.

1.2 Knowledge-based Approaches

Benefiting from the findings of modern phonology and morphology, the contri-
butions in Part 2 of the book, “Knowledge-based methods”, present computa-
tional treatments built on solid linguistic grounds. This part of the book brings
together aspects of phonology, morphology and computational morphology with
the aim of providing a linguistically tractable account of Arabic morphology. The
following four major linguistic frameworks are presented in the four chapters of
this part:

Syllable-based Morphology (SBM): In SBM, morphological realisations are defined
in terms of their syllable structure. Although most work in syllable-based
morphology has addressed European languages (especially the Germanic languages)
the theory was always intended to apply to all languages. One of the language
groups that appears on the surface to offer the biggest challenge to this theory is the
Semitic language group. In Chapter 4, Cahill presents a syllable-based analysis of
Arabic morphology which demonstrates that, not only is such an analysis possible
for Semitic languages, but the resulting analysis is not significantly different from
syllable-based analyses of European languages such as English and German. While
the account presented in this chapter does not require the separation of morphemes
à la McCarthy as is described in the previous chapter, the organisation of the lexicon

Arabic Computational Morphology 5

reflects this separation: information about the pattern1, root and vowel inflections
is provided by separate nodes. Interestingly, this chapter also captures the depen-
dencies between the Arabic binyanim forms with only a few equations using DATR’s
inheritance techniques.

Root-and-Pattern Morphology: The type of account of Arabic morphology
that is generally accepted by (computational) linguists is that proposed by
McCarthy (1979, 1981). In his proposal, stems are formed by a derivational combi-
nation of a root morpheme and a vowel melody. The two are arranged according
to canonical patterns. Roots are said to interdigitate with patterns to form stems.
McCarthy’s analysis differs from Harris’ (1941) in abstracting out or autosegmental-
izing the vowels from the pattern and placing them on a separate tier of the analysis.
Rules of association then match consonants with C slots and vowels with V slots to
form the abstract stem.

Harris’ segmental analysis consisted of:

Root: k t b “notion of writing”
Pattern _a_a_
Stem katab “wrote”

McCarthy (ibid) autosegmentalizes the vowels from the pattern, as is shown below:

Root Tier

Pattern Tier

Vocalization Tier

CVCVC

k

a

bt

Note that the difference between the segmental analysis and the autosegmental
analysis is not just in the notation. The autosegmental approach is introduced to
capture some linguistic phenomena in Arabic, such as Spreading, a process that
involves consonant copying over intervening phonemes.

McCarthy’s autosegmental approach is reflected in most of the computational
attempts to model Arabic morphology, especially in the systems written within finite-
state morphology (Beesley, 1990, 1996; Kay, 1987; Kiraz, 1994, 2000). Since, to
our knowledge, no recent attempts have been made to improve the results of already
published work on Arabic Finite-state morphology, there is no contribution in this
book within this framework. However, it would be useful to briefly review one of
the largest systems ever built for Arabic morphology on the basis of finite-state
technology, namely the Arabic morphology system implemented using Xerox finite-
state technology.

Using Xerox lexical and rule compilers, Beesley (1998) argues that the interdig-
itation of semitic roots and patterns is simply an intersection process. It is argued
that triliteral roots are represented as ?∗C?∗C?∗C?∗, where ∗ denotes zero or more

1 Also called measure or binyan (singular of binyanim).

6 Soudi et al.

concatenations of ? (=any symbol) and C represents any consonant. The root drs “the
notion of studying”, for example, can be represented as ?∗d?∗r?∗s?∗. The intersection
of this representation with the pattern CaCaC produces daras “studied”:

(1) [drs & CaCaC] (where the square brackets are symbols that delimit the stem and
the symbol & denotes the intersection of drs and CaCaC.)
Abstract intersected level = daras

The voweling of the pattern can also be abstracted:

(2) Abstract lexical level: [drs & CVCVC] [a]
Abstract intersected level: daras

For each root and pattern, a rule of the form in (1) is generated automatically. The
generated rule is compiled into its corresponding transducer.2 The latter maps the
string [drs & CaCaC] into daras.

In order to develop these ideas further, let us consider how hollow verbs are
treated. Hollow verbs have a weak middle radical (cf. Chapter 6 for details). In
Beesley’s system, qwl “the notion of saying” is the underlying spelling of the root.
This is what appears in the root dictionary. As for all roots, the dictionary lists
all the forms that the root can take. For form 1, it is also necessary to specify the
stem vowels. Thus, in the Xerox system, the underlying form 1 perfective pattern
for qwl is CaCuC. The underlying interdigitated stem is therefore qawul. The third
person masculine singular suffix -a is added, and the underlying form qawul+a is
yielded:

(3) Levels of derivation of qaAla “he said”
Upper level: [qwl & CaCuC] + a
Intermediate level: qawul+a
Fully voweled: qaAla

The dictionary is first compiled into a finite-state transducer that recognizes strings
like [qwl & CaCuC]+a. An algorithm then interdigitates the root and pattern into
qawul and creates a transducer that maps between [qwl & CaCuC]+a and qawul+a.
The mapping from the intermediate level to the fully voweled level is performed
by alternation rules that map qawul+a to qaAla. These alternation rules are rather
complex, especially for the handling of w and y, but they are normal finite-state
alternation rules. All the rules are compiled into a transducer, as well as the lexicon.
The two are then combined via a finite-state operation called composition (denoted
.o. in regular expressions). In the case at hand, w is deleted in the surface word and
the vowel a is lengthened (and spelled with Alif A).

2 A finite transducer is like an ordinary finite-state automaton except that it considers two
strings rather than one. In a transducer, the arc labels are symbol pairs having the form x:y.
The first member of the pair (the upper level), x, belongs to the input string, and the second
symbol (the lower symbol), y, is part of the output string. If the members are identical, the
pair is written as a single symbol.

Arabic Computational Morphology 7

The result, after composition of the rules, is a single two-level finite-state trans-
ducer that maps directly between strings like the following:

(4) Upper level: [qwl & CaCuC] + a
Fully voweled: qaAla

The intermediate level disappears in the composition. Thus, if we look up qaAla,
we get [qwl & CaCuC]+a, and if we generate from [qwl & CaCuC]+a, we get
qaAla. Generation is just the reverse of analysis. These transducers are inherently
bi-directional. Bi-directionality is maintained by a direct mapping of each root and
pattern pair to their respective surface realizations.

In Beesley’s system, the intersection mechanism requires the application of a rule
conveying a linguistic phenomenon to every single stem of the language. According
to Kiraz’ (2000) computational evaluation of the lexical compilation of Beesley’s
system, the intersection approach needs m rules of the form in (1) above (i.e., m
intersections) to be compiled into their respective transducers (where r << m <
(r × v × p), r=roots, v=vocalisms, p=patterns). That is, m is far greater than r, but
less than r times v times p.

Another problem is that a full recompilation is required for new dictionary entries.
Beesley (personal communication) pointed out that, in the Arabic system (and most
others at Xerox), there is a premium placed on fast runtime performance.

Although the existing finite-state accounts have tried to show that finite-state and
two-level morphology techniques are adequate for Arabic morphology, they fall
short of capturing linguistic generalizations. There are two interesting points not
dealt with in these models. The first point relates to the syncretism cases exhibited
in the Arabic verbal and noun systems.3 Chapters 5 and 6 of this book provide
linguistic evidence that an adequate theory of morphology must incorporate rules
of referral in order to account for some kinds of inflectional syncretism.4 (cf. these
chapters for further details). The second point relates to the dependencies between
the Arabic verbal patterns. That is some patterns can be derived from other patterns
(see Chapters 4 and 5).

Adopting McCarthy’s multilinear formalization of Arabic morphology, Al-Najem,
introduces an inheritance-based approach that computationally captures the general-
izations, dependencies and syncretisms existing in Arabic morphology in Chapter 5.
For this, Al-Najem uses the lexical knowledge representation language DATR which
enables the definition of inheritance networks in a relatively simple way.5

Lexeme-based Morphology (LBM): LBM supports the claim that the stem is the only
morphologically relevant form of a lexeme. Chapter 6, by Cavalli-Sforza and Soudi,
provides linguistic evidence that the stem is the phonological domain of realization

3 Syncretism refers to any instance of what (Carstairs 1987:91) calls “systematic inflectional
homonymy”.

4 A referral is defined as the stipulation “that certain combinations of features have the same
realization as certain others” (Zwicky 1985:372).

5 http://www.cogs.susx.ac.uk/lab/nlp/datr/datr.html

8 Soudi et al.

rules. It is demonstrated that this claim is appropriate and necessary for capturing
the linguistic facts in a computational account. On the one hand, the authors have
done this by showing the advantages Lexeme-based Morphology has over the Lexical
Morpheme Hypothesis. On the other hand, the authors have provided a computa-
tional implementation that allows them to test the approach with a non-fragmented
lexicon (i.e., without sub-lexicons: a sub-lexicon for vocalism, a sub-lexicon for roots
and another sub-lexicon for patterns). In this approach, the stem and operations on
the stem become the focus of the representation. Thus, the approach differs from the
previous computational representations of Arabic morphology that have essentially
granted equal status to all the constituents of an Arabic word (the root, the pattern
and the vocalism) by placing them in separate lexicons.

Stem-based Arabic Lexicon with Grammar and Lexis Specifications: The central
claim of this approach is that stem-grounded lexical databases, with entries
associated with grammar and lexis specifications, is the most appropriate organi-
sation for the storage of pertinent information for Arabic. In Chapter 7, Dichy and
Farghaly provide an in-depth discussion of the role of grammar-lexis relations in the
computational morphology of Arabic. After presenting the limits of the pattern and
root representation as well as other approaches to Arabic morphology, the authors
argue that entries associated with a finite set of morphosyntactic w-specifiers can
guarantee a complete coverage of data within the boundaries of the word-form.
The contents of this chapter are based on two experiences in Arabic NLP devel-
opment, that of the DIINAR.1 “DIctionnaire Informatisé de l’Arabe”, a compre-
hensive Arabic lexical resource of around 121.000 lemma-entries and that of the
lexical database and analyzers embedded in the SYSTRAN Arabic-English trans-
lator, a fully automatic transfer system (Dichy et al., 2002).

1.3 Empirical Approaches

A major benefit of the knowledge-based methods is that the rules and constraints
for recognizing and classifying the internal structure of words are defined on a
precise linguistic basis. Thus, under the assumption that the set of morphological
rules and constraints define a linguistically consistent system, then, if a word can
be morphologically analysed, we can be sure that the resulting structure is correct.
Of course, this requires the computational basis of the analysis to be sound and
complete; however, since we also assume this for the computational basis of the
empirical methods, we do not consider this as a unique feature of knowledge-based
methods. Furthermore, it is also often assumed that the modelled linguistic system
is domain independent that is valid and applicable in any domain. As a conse-
quence, the ultimate goal is to implement a linguistic knowledge base -in our case,
a morphological system- that covers all possible allowable structures and only these.
However, this requires not only that all possible allowable structures are known by
the linguist, but that they can be formalized and implemented consistently preferable
as non-redundant as possible.

Arabic Computational Morphology 9

As everybody who has implemented large-scale real-life NLP components might
have experienced, such a strict perspective has at least the following drawbacks:

- Ambiguity: The aim of formalizing all possible allowable structures means that
an NLP component is to be expected to return all possible analyses (or readings)
for a given input for further processing (by a human or another NLP component),
as long as the system does not dispose of any decision criteria on how to
rank or select between the alternative readings relative to a given domain or
application.

- Coverage: Even if a linguistic domain is completely understood, it is extremely
challenging to provide a complete implementation of all phenomena from
scratch, because it might still be unclear how to represent a certain linguistic
entity using the implementation formalism at hand or because not all possible
ways and constraints (e.g., about the nature of the input data) are known
in order to properly embed the NLP component into a larger application
context.

As a solution direction for these kinds of problems, empirical-based methods are
explored and developed in computational linguistics since the 1990s, cf. Cardie
and Mooney (1999). Empirical methods employ machine learning techniques to
automatically extract linguistic knowledge from natural language data directly rather
than require the system developer to manually encode the requisite knowledge.
Since these methods are by definition data-driven, they actually also learn how
to weight between alternative solutions and how to predict useful information
(e.g., a missing class label) for unknown entities through a rigorous statistically
analysis of the data. In the beginning of the development of the new field of
empirical methods for NLP, the proposed approaches have often been considered
as alternative or even competing approaches to the corresponding knowledge-based
methods, cf. Magerman (1995). However, in recent years the trend has become to
consider both approaches more as complementary to each other, and new ways
of integrating knowledge-based and empirical-methods are envisaged and actively
explored.

Part 3 of the book, “Empirical methods”, presents four accounts of data-driven
processing models of Arabic morphology. The contributions reflect key advances in
the field of machine learning and statistical models applied to natural language.

The Part’s first chapter, Chapter 8, by Daya, Roth, and Wintner, acts as a bridge to
the second part, Knowledge-based methods, by addressing the question whether the
performance of machine-learning-based models of morphology can be boosted by
constraining them according to externally coded linguistic knowledge. As argued in
Chapter 8, this is indeed the case. The task studied in Chapter 8 is the identification
of the root of a wordform; a hard task central to morphological analysis. The chapter
describes experiments performed with SNoW (Carlson et al., 1999), based on the
Winnow classifier (Littlestone, 1988). In this chapter another bridge is made; results
obtained on Arabic are combined with results obtained on Hebrew.

10 Soudi et al.

Subsequently, In Chapter 9, by Diab, Hacioglu, and Jurafsky, a completely
machine-learning-based account of Arabic morpho-syntax is presented using support
vector machines (Cortes and Vapnik, 1995). In this approach, morphology is seen
as an integral part of the larger problem of part-of-speech tagging and constituent
chunking. Rather than full morphological analysis, the authors focus on clitic
segmentation, while a subsequent part-of-speech tagger assigns detailed morpho-
syntactic tags to the segmented token sequences. Using the recent annotated data that
have become available, i.e. the Arabic Treebank, via the Linguistic Data Consortium,
this chapter sets a standard in an integrative machine-learning approach to shallow
Arabic parsing.

Chapters 10, by Clark, and 11, by Van den Bosch, Marsi, and Soudi, both present
memory-based models, the one in Chapter 10 being essentially unsupervised, and
the one in Chapter 11 supervised, drawing on the same Arabic Treebank data as
used in Chapter 9. Compared to the other chapters in this part, in Chapter 10 Clark
provides a counterpoint in showing the potential strength of unsupervised machine
learning techniques, i.e., techniques for which un-annotated training corpora suffice.
Clark shows how stochastic transducers, trained with the unsupervised expectation-
maximization algorithm (Dempster, Laird, and Rubin, 1977) can be trained to map
base forms to inflected forms, even if the examples are not paired for particular words,
but are merely collected into two unordered sets of base forms and inflected forms.

In Chapter 11, Van den Bosch, Marsi and Soudi use a similar but supervised
memory-based approach (Daelemans and Van den Bosch, 2005), which as in
Chapter 9 integrates the task of morphological analysis with part-of-speech tagging.
Rather than in Chapter 9, which focuses on clitic segmentation, Arabic morpho-
logical analysis is defined as encompassing the segmentation and tagging of all
morphemes in a wordform, including spelling changes. This is then formulated as
a lattice generation task, which the memory-based classification approach generates
in overlapping fragments. Analysis, in other words, is reduced to sequences of
classifications that each encode character-by-character segmentation codes, part-
of-speech information, and spelling information; post-processing is subsequently
needed to construct a lattice that ideally does not overgenerate nor undergenerate too
much. Finally, the authors show that their morphological analysis module could be
integrated into a part-of-speech tagger.

The issues played out in Part 3 are, in sum:

(i) The integration and co-learnability of morphological analysis with part-of-
speech tagging and shallow parsing (constituent chunking).

(ii) The limitations of single-step morphological analysis “by classification”.
(iii) The relation of analysis, which is easily rephrased as a classification task

learnable by machine learning algorithms, to generation, which is much harder
to model in the standard machine learning representation frameworks.

(iv) The role of linguistic knowledge in features or constraints used in the super-
vised learning of morphological analysis.

(v) The transferability of results attained with machine-learning algorithms
between models trained on Hebrew and on Arabic.

Arabic Computational Morphology 11

1.4 Applications of Arabic Computational Morphology

In the two parts 2 and 3, morphological processing has been considered mainly from
a strict isolated or modular point of perspective. In the final part 4, “Integration of
Arabic morphology into larger applications”, morphological processing is mainly
considered as a sub-component of a large-scale end-to-end NLP system, viz. systems
for performing Information Retrieval (IR) or Machine Translations (MT). Under
such a system—integration perspective, it has to be carefully exploited how effec-
tively a morphological component – which might have been mainly developed
with a generic “plug-and-play” design goal – can be embedded into such a larger
application environment. In particular, the specific input and output requirements
of the application dictate not only constraints on the representation of structure,
but also on the needed depth of the structural analysis. For example, in a full—
text search engine, the main task of the morphological component might be the
part-of-speech tagging and a stem-based segmentation, whereby in the context of
a MT system, additionally morphosyntactic information has to be computed in
order to support the parsing and generation engines. Furthermore, the interplay with
other components which are applied on the same input level has to be considered
carefully. Consider, for example, the case of Named Entity recognition (NER),
i.e., the classification of token sequences as a person name, a location name,
a date expression, etc. Here, it depends on the larger application environment,
whether NER is seen as a pre-processor to morphology, as a post-processor or as
mutually independent processes. However, this has a direct influence on the scala-
bility and robustness of both components. For example, if NER acts as a pre-
processor, then its performance will doubtless influence the performance of the
morphology.

The chapters in Part 4 focus on aspects of Arabic morphology as an integral
part of IR and MT. Recently, further large-scale applications are in the focus of
attention, e.g., cross-lingual open-domain question answering (cf. Al-Maskari and
Sanderson, 2006; Awadallah and Rauber, 2006; Hammo et al., 2002) and infor-
mation extraction (cf. Abuleil, 2004; Florian et al., 2004; Maloney and Niv, 1998),
but also the recently launched pilot evaluation for Entity translation as part of the
ACE (Automatic Content Extraction) program.6

Part 4, “Integration of Arabic morphology into larger applications”, addresses
key issues relevant to the deployment of Arabic morphological information in
information retrieval and machine translation. One of the salient issues discussed
(and empirically tested through evaluation) is whether a root-based or a stem-
based approach to Arabic morphology would allow effective information retrieval.
Chapter 12 demonstrates that light stemming allows remarkably good information
retrieval without providing correct morphological analyses. In this context, the
authors have addressed the question as to why, given the complexity of Arabic
morphology, a morphological analyzer does not perform better than a simple
stemmer. It might be the case that for future content-based retrieval systems

6 http://www.nist.gov/speech/tests/ace/index.htm.

12 Soudi et al.

morphological components are at least as important as simpler stemmers in order to
support semantic information annotation and access.

Chapter 13 presents a rapid method of developing a shallow statistical Arabic
morphological analyzer. The analyzer is concerned with generating possible roots
and stems of a given Arabic word along with a probability estimate of deriving the
word from each of the possible roots. The use of the generated roots and stems along
with their probability estimates as index terms is evaluated in an information retrieval
application and the results are compared to index terms generated from a rule-based
Arabic morphology tool and an Arabic light stemmer.

With respect to the employment of Arabic morphology in MT, two key points are
addressed:

(i) Multiple representations of morphological information in resources for MT:
Arabic resources (morphological systems, dictionaries, etc.).often use various
morphological representations (e.g., lexeme, stem, root) that are not neces-
sarily compatible with each other, hence the need for machine translation
researchers to relate Arabic resources in differing morphological representa-
tions. Chapter 14 describes the different representations used by many resources
and their usability in different machine translation approaches (symbolic, statis-
tical and hybrids) for Arabic as source language and as target language.
A framework addressing this compatibility issue in a specific hybrid MT system
is discussed in detail. In this context, the lexeme-and-feature level of represen-
tation is motivated.

(ii) The role of Arabic morphology generation in MT: Chapter 15 investigates
the impact of Arabic Morphological Generation on the quality of English
to Arabic Machine Translation. To this end, the authors have translated
thousands of sentences from English to Arabic using an online MT system
and have categorized the main morphological information/errors relevant
to Arabic MT into various types of features. A detailed scrutiny of the
translated sentences, with a focus on morphological information/errors, has
revealed that the morphological information captures various linguistic aspects
(syntactic, pragmatic, etc.) and hence affects quite heavily the quality of the
translation.

1.5 A BLARK for Arabic

7 http://www.nemlar.org.

Data-driven processing models of Arabic morphology as well as Natural Language
processing applications involving Arabic rely heavily on the existence of Language
Resources (LRs). During a recent EU project on Arabic language resources,
NEMLAR (Network for Euro-Mediterranean Language Resources), two surveys
on the availability of Arabic LRs and on industrial requirements were carried out.
Several tools and LRs have been identified.7 Interestingly, the project also worked

Arabic Computational Morphology 13

out a BLARK (Basic LAnguage Resource Kit) for Arabic.8 In this context, three
important issues are discussed:

(i) Availability: the availability of LRs depends on three key factors: (1) Accessi-
bility (an LR that is existent but only company-internal, an LR that is existent
and freely usable for precompetitive research, and an LR that is existent
and freely usable for both precompetitive research and product development;
(2) affordability (resources at a very high cost should not be listed as fully
available); (3) customizability (the degree of manipulability of resources).

(ii) Quality: the soundness, standard-compliance and interoperability of the LR
with other LRs.

(iii) Quantity: what counts as a sufficiently large LR (lexicon, corpus etc.).

Based on this BLARK, several LRs have been developed.9

References

Abuleil, S. (2004). Extracting names from Arabic text for question-answering systems. In
Proceedings of RIAO’2004, pp. 638–647, France, 2004.

Al-Maskari, A. and Sanderson, M. (2006). The affect of machine translation on the perfor-
mance of Arabic-English QA system. In Proceedings of the EACL’2006 Workshop on Multi-
lingual Question Answering, MLQA06, pp. 9–14, Trento, Italy.

Awadallah, R., and Rauber, A. (2006). Web-based multiple choice question answering for
English and Arabic questions. In Proceedings of the 28th European Conference on Infor-
mation Retrieval, ECIR 2006, pp. 515–518, London, UK.

Beesley, K. (1990). Finite-state description of Arabic morphology. In Proceedings of the
Second Cambridge Conference: Bilingual Computing in Arabic and English.

Beesley, K. (1996). Arabic finite-State morphological analysis and generation. In Proceedings
COLING’96, Vol. 1, pp. 89–94.

Beesley, K. (1998). Consonant spreading in Arabic stems. In Proceedings of COLING’98,
pp. 117–123.

Cardie, C., and Mooney, R. (1999). Guest editors’ introduction: Machine learning and natural
language. Machine Learning, 11:1–3, pp. 1–5, 1999.

Carlson, A., Cumby, C., Rosen, J., and Roth, D. (1999). SNoW user guide. Technical Report
UIUCDCS-R-99-2101, Cognitive Computation Group, Computer Science Department,
University of Illinois.

Carstairs, A. (1987). Allomorphy in Inflexion. Groom Helm, London.
Cortes, C., and Vapnik, V. (1995). Support vector networks. Machine Learning, 20,

pp. 273–297.
Daelemans, W., and Van den Bosch, A. (2005). Memory-based Language Processing.

Cambridge, UK: Cambridge University Press.

8 The BLARK initiative was initially launched in the Netherlands with the aim of setting up
an organized infrastructure for Dutch-based Human Language Technology.

9 The BLARK for Arabic as well as the tools and the resources that have been identified and
developed are available at the NEMLAR website.

14 Soudi et al.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological),
39:1, pp. 1–38.

Dichy, J., Braham, A., Ghazali, S., and Hassoun, A. (2002). La base de connaissances linguis-
tiques DIINAR.1 (DIctionnaire INformatisé de l’ARabe, version 1). In A. Braham (Ed.),
Proceedings of the International Symposium on The Processing of Arabic (April 18–20,
2002). Université de la Manouba, Tunis.

Florian, R., Hassan, H., Ittycheriah, A., Jing, H., Kambhatla, N., Luo, X., Nicolov, N., and
Roukos, S. (2004). A statistical model for multilingual entity detection and tracking. In
Proceedings of NAACL/HLT-2004, pp. 1–8, Boston, MA, USA.

Hammo, B., Abu-Salem, H., Lytinen, S., and Evens, M. (2002) QARAB: A question
answering system to support the Arabic language. In Proceedings of the ACL-02 Workshop
on Computational Approaches to Semitic Languages, pp. 55–65.

Harris, Z.S. (1941). The Linguistic Structure of Hebrew. In Journal of the American Oriental
Society, 62, pp. 143–67.

Kay, M. (1987). Non-concatenative finite-state morphology. In Proceedings of the Third
Conference of the European Chapter of the Association for Computational Linguistics,
Copenhagen, Denmark, pp. 2–10.

Kiraz, G. (1994). Multi-tape two-level morphology: A case study in semitic non-linear
Morphology. In Proceedings of COLING’94, Vol. 1, pp. 180–186.

Kiraz, G. (2000). A Multi-tiered Nonlinear Morphology using Multi-tape Finite State
Automata: A Case Study on Syriac and Arabic. In Computational Linguistics, 26:1,
pp. 77–105.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2, pp. 285–318.

McCarthy, J.A. (1979). Formal Problems in Semitic Phonology and Morphology. Doctoral
Dissertation, MIT.

McCarthy, J.A. (1981). Prosodic Theory of Non-Concatenative Morphology.” In Linguistic
Inquiry, 12, pp. 373–418.

Magerman, D.M. (1995). Statistical decision-tree models for parsing. In Proceedings of
the 43rdAnnual Meeting of the Association for Computational Linguistics, ACL-95.
pp. 276–283. ACL: Ann Arbor, MI, USA.

Maloney, J., and Niv, M. (1998). TAGARAB: A fast, accurate Arabic name recognizer.
In Proceedings of the Workshop on Computational Approaches to Semitic Languages,
pp. 8–15. Montreal, Canada.

Zwicky, A. (1985). How to Describe Inflection. In Berkeley Linguistic Society, pp. 372–386.

2

On Arabic Transliteration

Nizar Habash , Abdelhadi Soudi and Timothy Buckwalter

2.1 Introduction

In this chapter, we introduce the transliteration scheme used in this book to
represent Arabic words for readers who cannot read the Arabic script. We follow
the definition of the terms transcription and transliteration given by Beesley
(1998): the term transcription denotes an orthography that characterizes the
phonology or morpho-phonology of a language, whereas the term transliteration
denotes an orthography using carefully substituted orthographical symbols in a
one-to-one, fully reversible mapping with that language’s customary orthography.
This specific definition of transliteration is sometimes called a “strict
transliteration” or “orthographical transliteration” (Beesley, 1998).1

For Arabic script, as used in writing Modern Standard Arabic, there are many
ways to define the orthographic symbol set. The basic Arabic alphabet has 28 let-
ters and eight diacritical marks. However, there are eight additional symbols that
can be treated as separate letters and/or special combinations of letter and addi-
tional diacritics. One example is the Hamza (hamza) which can be a separate

15

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 15–22.
C© 2007 Springer.

1 We do not consider non-one-to-one schemes because of their potential to add ambiguity
(Beesley, 1998) or become excessively cumbersome to deal with, e.g., SATTS translit-
eration (“Standard Arabic Technical Transliteration System,” 2006).

1 2 3

1

2

3

Abstract: This chapter introduces the transliteration scheme used to represent Arabic characters
in this book. The scheme is a one-to-one transliteration of the Arabic script that is
complete, easy to read, and consistent with Arabic computer encodings. We present
guidelines for Arabic pronunciation using this transliteration scheme and discuss
various idiosyncrasies of Arabic orthography

 Center for Computational Learning Systems, Columbia University, United States
 habash@cs.columbia.edu
 Ecole Nationale de l’Industrie Minérale, Morocco

 asoudi@gmail.com
 Linguistic Data Consortium, University of Pennsylvania, United States

 timbuck2@ldc.upenn.edu

The Buckwalter Arabic transliteration (Buckwalter, 2001) is a transliteration
scheme that follows the standard encoding choices made for representing Arabic
characters for computers. The Buckwalter transliteration has been used in many
publications in natural language processing and in resources developed at the
Linguistic Data Consortium (LDC). The main advantages of the Buckwalter
transliteration are that it is a strict transliteration (i.e., one-to-one) and that it is written
in ASCII characters. However, the Buckwalter transliteration is not always intuitively
easy to read. We address this problem in our transliteration scheme by extending the
Buckwalter transliteration scheme to include non-ASCII characters whose
pronunciation is easier to remember. For example, instead of Buckwalter’s non-
intuitive * for /ð/, v for / / and K for the diacritic /in/, we use ð, , and ,
respectively. Buckwalter transliteration choices that imitate Arabic pronunciations are
kept unchanged, e.g., b for /b/ and k for /k/. Since non-ASCII characters are less
accessible through standard American keyboards (as opposed to ASCII characters),
this is clearly a trade-off between typing/coding simplicity and ease of readability.

To our knowledge, there has been no earlier attempt to create a one-to-one
transliteration of the Arabic script that is complete and easy-to-read, and that is
consistent with Arabic computer encodings. Almost all of the previously created
schemes to represent Arabic characters for western readers have focused on
representing phonology and morphology (transcription) or mixing between
phonology and orthography, making exceptions for transliteration of morphemes
such as the definite article (“Arabic Transliteration,” 2006; Buckwalter, 2001).
Two transliteration schemes, ISO 233 (“ISO 233,” 2006) and El-Dahdah’s
transliteration (El-Dahdah, 1992), get close to achieving our goal except that they
are not consistent with computer encodings. For example, in ISO 233, the Hamza
(hamza) is treated as a diacritic that combines with other characters whereas
all standard encodings of Arabic treat it as an inseparable letter part.

In the Section 2.2 we introduce our transliteration scheme for Arabic script as
used in Modern Standard Arabic. In Section 2.3 we present guidelines for
pronunciation of Arabic using this transliteration scheme and address various
idiosyncrasies of Arabic orthography.

computer encodings of Arabic, such as CP1256, ISO-8859, and Unicode2, do not
 all consider the additional eight symbols as separate letters.3 do that. They

2 Unicode actually implements both approaches, but the use of Hamza as a diacritic in

Unicode is not that common to our knowledge
3 Arabic letters also have multiple shapes (allographs) that fully depend on their position

in the word, e.g. the letter has the forms , - , - , and in its initial, middle, final
and standalone positions, respectively. There are also additional ligatures such as for
+ . We do not discuss the possibility of defining an orthographic symbol set that
considers allographs and ligatures as base symbols since Arabic’s simple graphotactic
rules are abstracted away in all of its standard encodings. Considering sub-letter dots in
Arabic as separate symbols is also not discussed for the same reason

–

.

.

but also a diacritic with a limited number of combinations. In fact, standard

16 Habash et al.

letter () or can combine with other letters: , , . As a result, it is possible to
define an orthographic symbol set of Arabic where the Hamza is not just a letter

2.2 This Book’s Arabic Transliteration Scheme

Table 2.1 provides the full list of Arabic transliterations used in this book. The
first three columns contain the symbols for the characters in Arabic script and
contrast our transliteration with the Buckwalter transliteration. Cases where our
transliteration differs from Buckwalter’s are highlighted. The last four columns

Table 2.1. This book’s Arabic transliteration scheme with examples

Characters Examples
Arabic Transliteration Buckwalter Arabic Transliteration Transcription Gloss
 ' ' samaA' /sam '/ sky
 | mana /' mana/ he believed
 Â > saÂala /sa'ala/ he asked
 & mu tamar /mu'tamar/ conference
 < intarnit /'intarnit/ internet
 } saA il /s 'il/ liquid

 A A kaAna /k na/ he was
 b bariyd /bar d/ mail

 maktaba
maktaba

/maktaba/
/maktabatun/

Library a li-
brary [nom.]

 t tanaAfus /tan fus/ competition

 alaA a / al a/ three

 j jamiyl /jam l/ beautiful
 H H HaAd~ /H dd/ sharp
 x xuwða /xuwða/ helmet
 d daliyl /dal l/ guide
 ð * ðahab /ðahab/ gold
 r rafiy /raf / thin
 z ziyna /z na/ decoration
 s samaA' /sam '/ sky
 š $ šariyf /šar f/ honest
 S S Sawt /Sawt/ sound
 D D Dariyr /Dar r/ blind

 T T Tawiyl /Taw l/ tall
 Z ulm / ulm/ injustice
 E amal / amal/ work
 ariyb / ar b/ strange
 f fiylm /f lm/ movie
 q qaAdir /q dir/ capable
 k kariym /kar m/ generous
 l laðiyð /lað ð/ delicious
 m mudiyr /mud r/ manager
 n nuwr /n r/ light
 h hawl /hawl/ devastation
 w w waSl /waSl/ receipt

b

p

t
v

j

x
d

r
z
s

g
f

m

q

n

k

h

l

(Continued)

On Arabic Transliteration 17

Characters Examples
Arabic Transliteration Buckwalter Arabic Transliteration Transcription Gloss

 ý Y alaý / ala/ on
 y y tiyn /t n/ figs

 a a dahana /dahana/ he painted
 u u duhina /duhina/ it was painted
 i i duhina /duhina/ it was painted
 ã F kitaAbAã /kit ban/ a book [nom.]
 N kitaAb /kit bun/ a book [acc.]
 K kitaAb /kit bin/ a book [gen.]
 † ~ ~ kas~ara /kassara/ he smashed

 ‡ . o mas.jid
or masjid /masjid/ mosque

 § _ _ mas._jid /masjid/ mosque

† Shadda (šad~a) is a symbol marking consonant doubling.
‡ Sukun (sukuwn) is a symbol marking lack of vowel. It can be used for contrastive

purposes in the transliteration. However, it is not required in this book for the purpose of
improving readability.

§ Tatweel (taTwiyl) or Kashida (kašiyda) is an orthographic elongation
symbol with no phonetic value.

present English-glossed examples in Arabic script, our transliteration, and a
phonological transcription. Since Arabic words can be written fully diacritized,
partially diacritized or non-diacritized, a transliteration should preserve fully how an
Arabic word is constructed. This includes preserving all possible ambiguities. For
example, the Arabic word ktb could represent one of many diacritized words
with different meanings and pronunciations: the noun kutub ‘books’ or the verb

 katab ‘he wrote’ among others. Of course, most naturally occurring Arabic text
is not diacritized; however, in this book, diacritized transliterations are always used
for readability unless the point is to discuss diacritization ambiguity. In Table 2.1,
we show examples in fully diacritized transliteration to contrast with the
corresponding transcriptions, but the Arabic text examples are not fully diacritized.4

Table 2.1. (Continued)

4 In this book, there are very few cases that slightly deviate from our transliteration

scheme:
(i) A special transcription variant is used where the one-to-one transliteration of the Ara-

bic script interferes with the author’s explanation of some linguistic phenomena. For
example, in Chapter 4 “A Syllable-based Account of Arabic Morphology, the author
represents vowel lengthening and gemination by vowel doubling and consonant dou-
bling, respectively. The use of transliteration to represent these phenomena would in-
terfere with the syllabification process. In some cases, the authors use a phonetic
transcription.

(ii) Snapshots from LDC resources that use the Buckwalter transliteration are pre-
sented in the Buckwalter transliteration. This is done in some of the chapters in the
third, empirical part of the book.

18 Habash et al.

2.3 Pronunciation Guidelines

Arabic script, as is used in Modern Standard Arabic, is mostly a phonemic system
with one-to-one mappings of sounds to letters and diacritics. When fully
diacritized, Arabic is almost perfectly phonologically reproducible by readers
given the following few rules and exceptions:

Table 2.2. Arabic consonant pronunciation

Arabic Transliteration Pronunciation
 b Boy
 t Toy
 Three
 j Jordan
 H Voiceless pharyngeal fricative. Sounds like a sharp h.
 x Scottish Loch; Yiddish Chutzpa;

 d Door
 ð The
 r Road
 z Zoo

 s Sue
 š Shoe
 S Emphatic s
 D Emphatic d

 T Emphatic t
 Emphatic ð

Emphasis is a bass effect giving an
acoustic impression of hollow reso-
nance to the basic sounds [0].

 Voiced pharyngeal fricative. Sounds like a sharp a.
 Parisian French r
 f Film
 q Uvular stop. Sounds like a deep k.
 k Kite
 l Cool
 m Man
 n Man
 h Hot
 w Would
 y Yoke

1. For most consonants, there is no issue in mapping letters to sounds. Some
are easier for English speakers than others. The transcription and translitera-
tion are the same for these cases. Table 2.2 describes how to pronounce these
consonants.

On Arabic Transliteration 19

Table 2.3. Hamza (glottal stop) forms

Arabic

Transliteration ' Â

2. The consonant Hamza (hamza) has multiple forms in Arabic script.
There are complex rules for Hamza spelling that depend on its vocalic con-
text. For a reader, however, all of these forms are pronounced the same way: a
glottal stop as in the value of ‘tt’ in the London Cockney pronunciation of
bottle. Table 2.3 relates the different forms of Hamza in Arabic script and our
transliteration. The form of the transliteration is intended to evoke the form
used in the Arabic variant as much as possible. For instance, a circumflex is
used with A (), w () and y () to create their corresponding hamzated forms
Â (), () and ().

3. Arabic has three short vowel diacritics that are represented using a, u and i.

Arabic also has three nunation diacritics. These are short vowels pronounced
followed by an /n/. They are not nasalized vowels. Nunation is a mark of
nominal indefiniteness in Standard Arabic. Finally, Arabic has a consonant
doubling diacritic which repeats previous consonant and also a diacritic for
marking when there is no diacritic. Table 2.4 lists these diacritics, their
names, and corresponding transliteration and transcription values. Diacritics
are largely restricted to religious texts and Arabic language school textbooks.
In this respect, the Arabic writing system depends on the background
knowledge of the reader to accurately pronounce the written word—much as
a reader in English needs to decide on the basis of context whether “read” is
pronounced /r d/ (present tense) or /r d/ (past tense).

Table 2.4. Arabic diacritics

Diacritic Name Transliteration Transcription

 fatHa a /a/

 Dam~a u /u/
 kasra i /i/

 tanwiyn fatH ã /an/

 tanwiyn Dam~ /un/ tanwiyn kasr /in/
 šad~a ~ Double previous consonant

 sukuwn . No vowel

20 Habash et al.

Table 2.5. Long vowels and diphthongs

Arabic
Transliteration aA uw iy aw ay
Transcription / / (long a) / / (long u) / / (long i) /aw/ /ay/

4. Long vowels and diphthongs in Arabic are indicated by a combination of a
short vowel and a consonant. Table 2.5 lists the various Arabic long vowels and
diphthongs together with their transliteration and transcription.

5. The letter Alif (A) is used to (a.) hold vowels at the beginning of words, (b.)

represent the long vowel / /, and (c.) mark a couple of morphophonemic
symbols in which Alif is not pronounced (See note 8).

6. The /t ’ marb Ta/ (tA’ marbuwTa), , is typically a feminine

ending. It can only appear at the end of a word and can only be followed by a
diacritic. In standard Arabic it is always pronounced as /t/ unless it is not fol-
lowed by a diacritic, in which case it is silent.5

7. The /alif maqS ra/ (Âlif maqSuwra), ý, is a dotless Ya (y). In

standard Arabic, it is silent and always follows a short vowel a at the end of a
word. For example, rawaý ‘to tell a story’ is pronounced /rawa/.6

8. There are few exceptions to the guidelines above:

a. The Arabic definite article, Al /al/, is a prefix that assimilates to the
first consonant in the noun it modifies if this consonant is an alveolar or
dental sound (except for j). This set of letters is called Sun Letters.
They include t, , d, ð, r, z, s, š, S, D, T, ,
l, and n. For example, the word Alšams ‘the sun’ is pronounced
/aššams/ not */alšams/. The rest of the consonants are called Moon Let-
ters; the definite article is not assimilated with them. For example, the
word Alqamar ‘the moon’ is pronounced /alqamar/ not */aqqamar/.

b. A silent Alif appears in the morpheme + +uwA / / which indicates
masculine plural conjugation in verbs. Another silent Alif appears after
some nunated nouns, e.g., kitaAbAã /kit ban/. In some poetic readings,
this Alif can be produced as the long vowel / /: /kit b /.

c. A common odd spelling is that of the proper name amrw/ amr/
‘Amr’ where the final w is silent.

5 In modern dialects of Arabic, the /t ’ marb Ta/ is always silent except when the noun

ending with it is part of an (/‘id fa/ iDAfa) compound, in which case it is pro-
nounced as /t/

6 In some Arab countries such as Egypt, a common orthographic variation is to use ý
for the letter y in word-final position. Orthographic variation in Arabic is further
discussed in Chapter 3

.

.

On Arabic Transliteration 21

2.4 Conclusion

In this chapter, we presented the transliteration scheme used in the rest of this
book. This transliteration is a one-to-one easy-to-read complete transliteration of
the Arabic script consistent with Arabic computer encodings. We also presented
guidelines for pronouncing Arabic given this transliteration. We hope that this
transliteration scheme will become a standard to follow in the natural language
processing research community working on Arabic.

Acknowledgements

We would like to thank Ali Farghaly, Joseph Dichy and Owen Rambow for
helpful discussions.

References

Arabic Transliteration. (2006, April 6). In Wikipedia, The Free Encyclopedia. Retrieved
June 19, 2006, from http://en.wikipedia.org/ wiki/Arabic_transliteration

Beesley, K. (1998). Romanization, Transcription and Transliteration. Retrieved June 19,
2006, from the Xerox Research Center Europe web site: http://www.xrce.xerox.
com/competencies/content-analysis/arabic/ info/romanization.html

Buckwalter, T. (2001). Arabic Transliteration. Retrieved June 19, 2006, from
http://www.qamus.org/transliteration.htm

El-Dahdah, A. (1992). Dictionary of Universal Arabic Grammar. Beirut: Librairie du Liban.
ISO 233. (2006, June 18). In Wikipedia, The Free Encyclopedia. Retrieved June 19, 2006,

from http://en.wikipedia.org/wiki/ISO_233
Standard Arabic Technical Transliteration System. (2006, April 6). In Wikipedia, The Free

Encyclopedia. Retrieved June 19, 2006, from http://en.wikipedia.org/wiki/SATTS

22 Habash et al.

3

Issues in Arabic Morphological Analysis

Timothy Buckwalter
Linguistic Data Consortium, University of Pennsylvania

This chapter is a review of issues in Arabic morphological analysis that have gained
prominence in just the last decade as a result of specific worldwide advancements in
information science and technology. Among these developments are the successful
deployment and widespread use of the Unicode character set, which has greatly ex-
tended the set of available characters for representing Arabic electronically, thus im-
pacting the orthography of the language. Thanks to the proliferation of personal
computers and the widespread success of Web publishing, Arabic texts are now au-
thored primarily in electronic format and are often published without passing first
through the traditional scrutiny of copy editors and other standardizing and normal-
izing filters. These raw published texts are today readily available for computational
analysis, and they reveal various features that are relevant to morphological analysis.
The most salient feature is orthographic variation, and much of it derives from
purely mechanical factors, such as the manner in which specific letter combinations
are displayed on different computer platforms. Other forms of orthographic variation

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, .
C© 2007 Springer.

23

23–41

Abstract: The salient issues facing contemporary Arabic morphological analysis are summarized as
predominantly orthographic in nature, although the issue of how to integrate morphologi-
cal analysis of the dialects into the existing morphological analysis of Modern Standard
Arabic is identified as the primary challenge of the next decade. Issues of orthography that
impact morphological analysis stem in part from the successful deployment of the Unicode
standard and the subsequent increase in usage of the expanded Arabic character set, includ-
ing what are properly Persian and Urdu characters. Additional orthographic issues
impacting morphological analysis arise from the persistent and widespread variation in the
spelling of letters such as hamza and t ’ marb Ta, and the increasing lack of differentia-
tion between word-final y ’ and alif maqS ra. The tokenization of Arabic input strings is
also affected by orthography, as typists often neglect to insert a space after words that end
with a non-connector letter. An increasing number of archaic morphological features and
dated lexical items can be observed in Web-based Islamic publications and cannot be over-
looked in contemporary analysis. Finally, the accuracy and completeness of current Arabic
morphological analysis can be questioned in light of the almost complete absence of anno-
tation for lexically-determined features of gender, number, and humanness

3.1 Introduction

timbuck2@ldc.upenn.edu

of the dialects is far from standardized, increasing popular use and dissemination
on the Web are resulting in observable and measurable orthographic conventions.
In the discussion that follows we will review in more detail these basic issues that
affect Arabic morphological analysis, beginning with issues involving the nature
of the input text which impact the pre-processing phase of morphological analysis,
such as tokenization and normalization, and concluding with a brief discussion of
the nature of the analysis itself, especially the set of lexical and grammatical fea-
tures in use today. All textual examples that we cite come from actual corpus data.

3.2 Expansion of the Arabic Character Set

The implementation of the Unicode character set on systems used for authoring
Arabic texts for publication on the Web has dramatically expanded the set of char-
acters available for representing Arabic electronically, and this has had an impact,
both positive and negative, on the orthography of the language, which ultimately
impacts morphological analysis as well. The positive impact is seen in more accu-
rate representations of non-Arabic sounds, and in some cases this facilitates dis-
ambiguation of what would otherwise be homographs, such as with the word /v n/
(the name “Van” or the type of vehicle commonly called a “van”). This word is
now occasionally spelled VAn (V = = U+06A4). Normally it would be
spelled fAn, which would result in an additional possible analysis /fa-’inna/.
The negative impact of easy access to numerous extended Arabic characters in the
Unicode character set is seen in new and unpredictable orthographic variation that
is linguistically unjustified and hard to detect visually—in fact, much of this varia-
tion can only be detected electronically. Before we examine some individual cases
of anomalous orthography resulting from the richness of Unicode, we will present
some preliminary and basic facts on the Arabic character set.

are less artificial and more a reflection of true idiosyncratic and regional spelling
tendencies, although the design of specific Arabic glyphs, such as hamza in combi-
nation with various characters functioning as orthographic props or “chairs,” appears
to influence typists’ habits as well.

The greatest impact that personal computers and Web publishing have had on
Arabic morphological analysis today is the change they are bringing about in the
language itself. What Hans Wehr (1979) called “modern written Arabic” has long
been synonymous with Modern Standard Arabic. Today, however, modern written
Arabic includes increasing quantities of dialectal Arabic. A simple Web search of
high-frequency dialectal words will yield thousands of Web pages in which dia-
lectal and standard Arabic commingle in written form as they do in spoken form in
real life. This emerging modern written Arabic manifests usage ranging from in-
formal to formal and makes appropriate use of both dialectal Arabic and MSA—and
some hybrid forms—to reflect changing social registers. Although the orthography

24 Buckwalter

(0x21-0x3A, 0x41-0x4A), along with a supplementary set of eight short vowels
and diacritics (0x4B-0x52) whose usage has always been treated as optional. The
fact that these eight short vowels and diacritic needed to be represented with zero-
width glyphs may have deterred some early developers from implementing them
and dealing with the technical difficulties of displaying them correctly. Even

zilla Firefox will first solve complex as-
pects of Arabic display, such as bidirectional rendering and multiple character en-
coding schemes, but will postpone solving the problem of displaying the short
vowels and diacritics correctly. These characters are currently displayed in their
own dedicated spaces rather than as zero-width glyphs positioned above or below
the preceding character (see Figure 3.1).

The eight Arabic short vowels and diacritics have been excluded from input
methods designed for portable devices such as mobile phones, which lack space
for their keypad display. When cell phones were first Arabized for short text mes-
saging in the late 1990s, the author was assigned the task of designing an Arabic
telephone keypad layout for the T9 predictive text input method, whereby tapping
the number sequence 5–9–3–8, for example, would automatically spell out the
word slAm. (The same numeric sequence spells out the words skAn and

 SlA , but they are used less frequently than slAm, which is displayed
first when using this input method). Although the keypad layout that we proposed

Fig. 3.1. Short vowels and diacritics as displayed in Mozilla Firefox version 1.0

today, successful Web browsers such as Mo

The basic and minimal character set for representing Arabic textual data in
electronic format was defined in the 1980s in the ASMO 449 code page (see
Table 3.1), which identified a minimal character set of 36 Arabic letters

Table 3.1. ASMO 449 Arabic character set

clearly showed that there was insufficient room to display the eight short vowels
and diacritics (see Figure 3.2), the cell phone manufacturers replied that this was

Issues in Arabic Morphological Analysis 25

usage remains associated with specific genres of writing, such as poetry and reli-
gious texts, which by their very nature require extensive, if not full vocalization.

Contemporary electronic storage and transmission of Arabic textual data con-
tinues to make use of the basic set of 36 characters defined in ASMO 449, al-
though four non-standard Arabic characters were introduced into popular use in the
1990s via platform-specific 8-bit encodings such as Mac Arabic (see Table 3.2)
that aimed at providing word processing capabilities for other Arabic-alphabet
based languages, chiefly Persian. The four non-standard letters that are occa-
sionally used alongside the standard Arabic character set (see Table 3.3) typically
represent sounds that are considered non-native to Arabic, although usage may
vary from one region to another in the Arabic-speaking world. For example,
whereas in Egypt J (U+0686) would represent the non-Egyptian Arabic /j/, as in
the name JwrJ /j rj/ and the loan word jrAJ /gar j/, in Iraq the letter J
(U+0686) would be used to represent the sound / /, as in the name Jlby
/ alab / and the dialectal word šlwnJ /šl ni /. The remaining characters –
P (U+067E), V (U+06A4), and G (U+06AF) – are used to represent the
sounds /p/, /v/, and /g/, respectively. The G (U+06AF) is not used in Egypt be-
cause /g/ is already the normal pronunciation of j (U+062C) in that region of the
Arab world.

It is important to note that before these non-standard characters were intro-
duced, Arabic orthography simply made use of their standard counterparts: the let-
ters U+0628, U+062C, U+0641, and U+0643 (see Table 3.3). The
corresponding non-standard characters U+067E, U+0686, U+06A4, and
U+06AF were adopted not necessarily because the existing orthography was
deemed to be inadequate, but simply because the emerging technology made the

Fig. 3.2. T9 Arabic keypad

not a problem because their consumer research had shown that customers did not
need to use short vowels and diacritics. Although it can be debated that the Arabic
language can survive without these eight short vowels and diacritics—and charac-
ter frequency counts of newswire corpora and informal writing show clearly that
short vowels and diacritics play only a marginal role in the language—
computerization has provided easier access to these characters. Nevertheless, their

26 Buckwalter

Table 3.3. Non-standard Arabic characters

Non-standard character Standard counterpart
 P U+067E b U+0628
 J U+0686 j U+062C
 V U+06A4 f U+0641
 G U+06AF k U+0643

new characters more accessible to the common user. A key and obvious factor in
determining the use of these characters is the display, or lack thereof, of these ex-
tended characters on the text input keyboard itself. It should be noted that although
three of these extended Arabic characters (U+067E, U+0686, and U+06AF)
are included in the Windows 1256 codepage, they have not been mapped directly
to the Arabic keyboard and must be entered via the awkward sequence of Alt + 4-
digit number representing their decimal value in the codepage.

Today’s Unicode-enabled platforms and word processors have made the entire
extended Arabic alphabet character set (U+0600 to U+06FF) available to users,
and this has resulted in occasional, and relatively isolated, odd electronic encod-
ings of Arabic text on Internet publications. For example, a character frequency
count that we recently conducted using UTF-8 data posted during 2004–2005 on
the CNN Arabic website (arabic.cnn.com) showed statistically significant usage of

 U+06A9 (ARABIC LETTER KEHEH), which is used for Persian and Urdu
texts. When examining the source data we discovered that this extended character
was being used in lieu of U+0643 (ARABIC LETTER KAF), and for no
apparent reason, because the same text contained as many instances of ordinary
KAF as it did of the Persian/Urdu KEHEH. The text data in Figure 3.3 contains
both characters, and because the display glyphs are practically identical, the

Table 3.2. Mac Arabic codepage

Issues in Arabic Morphological Analysis 27

Fig. 3.4. Arabic text encoded logically (left-to-right) with presentation forms

separate shapes of each letter for Arabic (U+FE70 – U+FEFF), for Persian, Urdu,
and other Arabic-script languages (U+FB50 – U+FBFF), and a large inventory of
Arabic ligatures (U+FC00 – U+FDFF).

Arabic Web pages that make use of Arabic presentation forms are quite rare
because use of presentation forms requires encoding each line of text in reverse
order, which carries with it the assumption that all lines end in carriage return and
do not wrap. This so-called “visual” encoding of Arabic, which makes use of dis-
play characters or glyphs—as opposed to “logical” encoding, which makes use of
abstract characters, not their display glyphs—was used briefly in the early days of
Web publishing in Arabic, and has survived in a few legacy Web sites, such as the
Al-Ahram mirror site originally created for non-Arabic enabled browsers
(www.ahram-eg.com). Although the Al-Ahram example involves visual encoding
using a proprietary font and presentation forms, we found at least one example on
the Web involving Unicode presentation forms, where the Arabic names of Old

The easy availability of Unicode extended characters and presentation forms is
producing anomalies in Arabic orthography that appear unexpectedly and in a va-
riety of forms that can often be detected only through statistical analyses, such as
character frequency counts of electronic texts. These anomalies must be resolved,
i.e., corrected or normalized, before the text can be submitted to morphological
analysis.

Testament books were encoded logically but with presentation forms (see Figure 3.4;
observed April 2005 at http://bible.gospelcom.net/versions/).

underlying encoding difference is hard to detect visually. The words containing
KEHEH have been underlined.

Whereas 8-bit encoding formats such as Mac Arabic and Windows 1256 usually
ensured that Arabic would be represented with the basic set of 36 characters and
eight optional diacritics plus no more than four non-standard Arabic characters, to-
day’s multi-byte encoding allows authors and publishers of electronic texts to make
direct use of even the very glyphs reserved for rendering on output devises (moni-
tors and printers) and not intended for text storage and text interchange—the so-
called Presentation Forms. These glyphs include the initial, medial, final, and

Fig. 3.3. Arabic text with KAF (U+0643) and KEHEH (U+06A9)

28 Buckwalter

which in turn affects a writer or typist’s choice of keyboard input characters. We
will begin by discussing normal orthographic variation.

Certain types of orthographic variation in Arabic can be observed in all regions
and countries where Arabic is written. An example of this variation is the ten-
dency to regard stem-initial hamza + alif (U+0623, U+0625) and madda + alif
(U+0622) as instances of alif + optional diacritics, which means that bare alif
(U+0627) can substitute for all three (see Table 3.4). In stem-medial and stem-
final positions these same characters are treated as optional diacritics only if their
removal does not result in ambiguity (see Tables 3.5 and 3.6). The orthographic

Table 3.4. hamza + alif (U+0623, U+0625) and madda + alif (U+0622) in stem-
initial position

 = = / = / =
 = = / = / =

Table 3.5. hamza + alif (U+0623, U+0625) and madda + alif
 (U+0622) in stem-medial and stem-final positions – ambiguity
prevents variation in orthography

Table 3.6. hamza + alif (U+0623, U+0625) and madda + alif (U+0622) in stem-medial and
stem-final positions – lack of ambiguity allows for variation in orthography

 = = = =
 = = = =

3.3 Orthographic Variation

Orthographic variation poses a challenge to morphological analysis simply be-
cause variation in surface orthography expands the inventory of unique character
sequences that constitute valid input words. The existence of multiple surface
forms for each word creates a need for additional methods for matching surface
forms with what is usually a single canonical form in the morphological analysis
lexicon. This matching of surface orthography with system-internal canonical
forms is done either through orthography-specific two-level morphological rules
(Beesley, 2001) or through a combination of pattern matching and generation of
orthographic variants (Buckwalter, 2004a). We would like to distinguish two types
of Arabic orthographic variation: (1) normal variation, which is caused by the per-
ception among writers and typists of what is orthographically correct or at least
permissible, and (2) mechanical variation, which is caused by how specific char-
acters and character combinations are displayed on different computer platforms,

Issues in Arabic Morphological Analysis 29

Table 3.7. t ’ marb Ta (U+0629) spelled as h ’
(U+0647)

 = =
 = =

 =

The most significant orthographic variation that occurs in Arabic today in-
volves the so-called Egyptian spelling of word-final y ’ (U+064A), which in
Egypt, and in various regions where Egyptian spelling predominates, is typically
spelled as undotted y ’ (see Table 3.8).

In the Unicode character set this word-final undotted y ’ is represented by
U+06CC (ARABIC LETTER FARSI YEH). The Unicode standard (2003, p. 59)
states that this letter “yeh” is written with dots in initial and medial positions, in
which case it maps to Arabic y ’ (U+064A), and that in final and separate posi-
tions it maps to alif maqS ra (U+0649). Systems using 8-bit encoding schemes
have implemented this undotted y ’ in two different ways, which we will refer to
by their codepages: Mac Arabic and Windows 1256 (both of which antedated the
Unicode standard). The Mac Arabic implementation came first, and it reflects the
basic definition of Farsi “yeh” found in the Unicode documentation: the letter is
dotted in initial and medial positions, and undotted in final and separate positions.
However, because the Mac Arabic codepage also needed to provide a word-final

Table 3.8. Word-final undotted y ’

 = =
 = =

 = =

Arabic spellcheckers would flag these variants as errors. From a morphological
analysis perspective these unambiguous words should be labeled simply as in-
stances of sub-standard orthography, and the ability to analyze them should be re-
garded as basic robust parsing.

The general perception that the two dots on t ’ marb Ta (U+0629) are dia-
critics is seen in this letter’s orthographic variation with word-final and separate
h ’ (U+0629; see Table 3.7), although this use of h ’ as a substitute for t ’
marb Ta is restricted primarily to informal written Arabic. Our impression is that
there is a tendency to write h ’ in contexts where the t ’ marb Ta would not be
pronounced, such as in noun-adjective phrases (e.g., /madrasa

nawiyya/), but to preserve the two dots of the t ’ marb Ta in iD fa (genitive or
possessive) constructions (e.g., /madrasatu l-ban t/). We are unaware
of any corpus-based research conducted in this area of orthography.

variation observed in Table 3.6 challenges one’s definition of typographical error:
although the variants with bare alif (U+0627) are unambiguous to readers, most

30 Buckwalter

Corrected:

Fig. 3.5. Arabic text with alif maqS ra in initial and medial positions

Arabic text data that is created on the Mac platform will probably have in-

stances of alif maqS ra in word-initial and word-medial positions, and when this
text is ported to platforms where alif maqS ra is used only in word-final position
these orthographically anomalous words become quite obvious (see Figure 3.5).
For morphological analysis it is clear that alif maqS ra and y ’ must be treated as
two different characters, regardless of what glyphs are used to display either ac-
cording to Egyptian or non-Egyptian preferences. Therefore, all instances of initial
and medial alif maqS ra need to be mapped to y ’.

initial or medial dotted y ’ is seen as a flexible feature by typists, but this has re-
sulted in mechanical orthographic variation (see below), because words such as

 /ra’ s/ can now be spelled two different ways electronically (see Table 3.9),
and both spellings are attested on the Web with significant Google scores.

dotted y ’, which is needed outside the areas where Egyptian orthography pre-
dominates, two overlapping character-to-glyph mappings were created: the char-
acter known as y ’ (U+064A) was assigned four glyphs (initial, medial, final and
separate:) all dotted, and the character known as alif maqS ra was also
assigned four glyphs, two dotted (initial and medial:), and two undotted (final
and separate:). The fact that one can type either y ’ or alif maqS ra to create

The orthographic variation noted above in so-called Egyptian spelling of undot-
ted word-final y ’ has undergone an interesting additional and unexpected develop-
ment since the mid 1990s: the use of word-final dotted y ’ (U+064A) has been in-
troduced gradually, but it has been extended to all words that should be spelled with
alif maqS ra (U+0649), such as /matta/, /m sa/, /al-’a la/ and
/’uxra/. Coupled with the continuing normal use of undotted word-final y ’, this un-
fortunate practice of dotting alif maqS ra has resulted in orthographic ambiguity for
both y ’ and alif maqS ra. The upshot for morphological analysis is that, when
processing text that comes from Egypt or any region under the influence of Egyptian
orthography, one needs to keep in mind that word-final y ’ may actually represent
alif maqS ra, and vice versa (which is the normal case).

There is one additional form of mechanical orthographic variation that should
be mentioned, and that is the tendency of certain typists to reverse the normal alif
+ fatHat n sequence (U+0627 U+064B) because fatHat n + alif appears to “look

Table 3.9. Two electronic representations of the word

Unicode character sequence Google score (April 2005)
U+0631 U+0626 U+0649 U+0633 967,000
U+0631 U+0626 U+064A U+0633 6,870

Issues in Arabic Morphological Analysis 31

A final case of orthographic variation that merits discussion is the neglected area

of “run-on” words, by which we mean the observed habit of writing certain types of
two-word combinations without intervening or separating space. We regard this as a
tokenization problem and we discuss it in full in the section that follows.

3.4 Tokenization of Arabic Words

By tokenization we mean the process of identifying minimal orthographic units or
“words” that can be submitted for individual morphological analysis. The working
definition of an Arabic word token is straightforward: Arabic words consist of one
or more contiguous “alphabetic” characters (i.e., the set of 36 characters, hamza
through y ’, or Unicode U+0621 through U+064A), the set of eight short vowels
and diacritics (U+064B through U+0652), the lengthening character (U+0640),
and the set of four extended characters associated mainly with Persian usage (
U+067E, U+0686, U+06A4, and U+06AF). Additional extended Arabic
characters may enter the Arabic orthographic mainstream as various non-Arab
ethnic groups increase their publishing presence and influence on the Web.

For tokenization to work correctly a certain amount of pre-processing is neces-
sary in order to deal with the use of alphabetical characters in non-alphabetical
contexts, such as use of the letter r ' (U+0631) as numeric comma (see Figure 3.6),
and use of the lengthening character (U+0640) as punctuation (e.g., hyphen or

better,” although the reverse could also be argued, as seen in the following ortho-
graphic word pairs: / , / , / , / . The fact that glyph
design and implementation influences people’s typing habits can also be observed
in several types of hamza + hamza-chair combinations, such as word-final hamza-
on-y ’ (U+0626; see Table 3.10), and hamza-on-w w (U+0624; see Table 3.11).
The arrows in the tables show the direction in which orthographic normalization
should be implemented. In both cases normalization involves mapping two-
character sequences to single characters: U+0649 U+0621 to U+0626, and
U+0648 U+0621 to U+0624. Note the relative small size of the hamza glyph
placed on the w w chair, which makes it difficult to read.

Table 3.11. hamza-on-waw orthographic variation

Table 3.10. Word-final hamza-on-y ’ orthographic variation

32 Buckwalter

creative ways as punctuation (in the same manner that Latin lower case “o” is used
for bullets), and because of their zero-width display characteristics these Arabic
diacritics also have a tendency to become detached from the words they were in-
tended to accompany. Isolated short vowels and diacritics must be treated as punc-
tuation or excluded from the morphological analysis input altogether.

The current approach to Arabic tokenization has overlooked the problem of
“run-on” words, which is the writing of two words without intervening space, a
condition that typically occurs when the first word ends with any of the thirteen
“non-connector” letters: (U+0621-U+0625, U+0627, U+0629,
U+062F-U+0632, U+0648-U+0649). Depending on the glyph design (i.e., the
perceived width) of the non-connecting letter, the person composing the text may
feel free not to insert a space between the non-connector and the first letter of the
next word. These “run-on” words are difficult to detect visually, but their presence
in digital data is detected immediately and usually flagged as a typographical er-
ror. These mistakes are relatively frequent, as witnessed by their Google scores
(see Table 3.12).

The most frequent “run-on” words in Arabic are combinations of the high-
frequency function words /al-/ and /m / – which end in the non-connector alif
– with following perfect or imperfect verbs, such as /l -yaz l/, /m -
yaz l/, and /m -z l/. The /l / of “absolute negation” concatenates freely
with nouns, as in /l -budda/ and /l -šakka/. It can be argued that these are
lexicalized collocations, but their spelling with an intervening space (,
and) is generally more frequent than their spelling as single word units
(see Table 3.13).

Proper noun phrases, such as / abdallah /, / abdurraHm n/,
 /j rallah/ and /n rudd n/ are also written with or without intervening

Fig. 3.6. Arabic letter r ’ used as numeric comma

Fig. 3.7. Arabic lengthening character used as punctuation

mdash; see Figure 3.7). Short vowels and diacritics are occasionally used in

Issues in Arabic Morphological Analysis 33

3.5 Archaic Lexical Items and Morphological Features

Morphological analysis of Arabic typically means the analysis of Modern Stan-
dard Arabic, which implies the exclusion of archaic vocabulary, orthography and
morphological features associated exclusively with the literature and religious
texts of the Classical period of Arabic literature. Also excluded from MSA are
written forms of the vernacular, although this situation is changing rapidly and
will probably become the greatest challenge in contemporary Arabic NLP (see be-
low, “Integrating the dialects in Arabic morphological analysis”). It is not un-
common for MSA texts dealing with religious topics, or with political topics in a
religious context, to include quotations from the Qur’an and the Hadith, and these
may be a source of archaic lexical items and rare morphological features. Al-
though the orthography of religious quotations could be archaic as well, it is cus-
tomary to use contemporary orthography (e.g. SlA , rather than Slw).

Table 3.13. 1-word and 2-word frequencies of run-on words

Google score (4/2006) Google score (4/2005)
as 2-words as 1-word as 2-words as 1-word

Run-on
words

3,540,000 717,000 412,000 44,300
4,420,000 1,850,000 792,000 87,100
2,210,000 2,010,000 188,000 276,000
1,120,000 192,000 106,000 15,500
1,190,000 155,000 97,500 7,680
1,160,000 210,000 96,500 8,470

928,000 356,000 83,500 30,300
910,000 749,000 83,400 67,800
170 ,000 30,500 12,700 3,760

Table 3.12. Run-on words and their frequencies

Google score
April 2006 April 2005 March 2004

Run-on
words

17,100 4,420 846
16,200 1,270 719

658 352 162
919 493 158
703 358 130

space. These name compounds may be regarded as lexicalized units, but syntacti-
cally they are also iD fa constructions, and should be treated accordingly as two
separate word tokens. Some run-on words can have more than one reading, although
this is extremely rare, as in fqdtm, which could be read as two words, /fa-qad
tamma/, or as a single word, /faqadtum/. The proper solution to this problem is to
pre-process input strings and decouple run-on words (Buckwalter, 2004b).

34 Buckwalter

of archaic feature is the use of direct and indirect object pronoun clitics, as in the
word zwjnAkhA /zawwajn kah /, from Qur. 33:37 (al-Ahzab), “We gave
her to you as a wife.” Because these morphological features are limited to specific
lexical items in their source religious texts, they should probably be treated as ex-
ceptions in the morphological analysis lexicon.

We will conclude by discussing two verbal features that have been categorized
as archaic. The first concerns the usage of two alternative forms for the jussive
mood of the doubled verb: the short assimilated form of the stem (e.g., ymr
/yamurra/) or the long unassimilated form (e.g., ymrr /yamrur/). Some text-
books and references cite only the assimilated form, ymr /yamurra/, and this is
correct because the unassimilated form is not attested in contemporary Arabic and
is now considered archaic (Badawi et al., 2004, p. 65). The second feature con-
cerns use of the energetic form, which is rare but not archaic, and requires some
attention because it is typically confused in morphological analysis with the femi-
nine plural form. Badawi et al. (2004, pp. 441–2) provide several citations, and we
encountered the following citation during the morphological annotation and POS
tagging of the first 700,000 words of newswire in the Penn Arabic Treebank
(Maamouri et al., 2004). The actual citation is:
/l yanxadi anna ’aHadun bi-’anna-hu Sad qun ’aw Hal fun li-’amr k /. Native in-
formants assure us that the energetic is not uncommon, and can be heard in force-
ful statements such /l yaq manna ’aHad/ and /l taq lanna/.
Until we have tagged a substantially larger corpus we cannot assess adequately the
extent to which the energetic form is used in contemporary Arabic.

3.6 Lexicon Design and Maintenance

After all aspects of morphological analysis have been adequately addressed, the
only way to improve the quality of the analysis is by improving the lexicon. The
lexicon can be enhanced in terms of its lexical coverage, by adding new words and

An example of an archaic lexical item that was used in MSA context not too
long ago and disseminated widely in the media is the word Dyzý, which is
not found in any dictionary of Modern Standard Arabic. This word comes from
Qur. 53:22 (al-Najam) /tilka ’iðan qismatun D za/, “This, therefore, is an unjust
division.” This verse was alluded to in a taped speech by Usama bin Laden which
was broadcast widely by the media in November 2002. The implication of this
event for morphological analysis of contemporary Arabic is that MSA can be ex-
pected to include occasional quotations from the established corpus of traditional
religious texts (i.e., Qur’an and Hadith), and that it is advisable to extend the lexi-
cal coverage of morphological analysis to such texts, especially since corpus-
based lexicography is able to detect the usage and frequency of these archaic lexi-
cal items. The phrase qsm Dyzý /qismatun D za/, for example, is now
relatively well attested on the Web.

Certain archaic morphological features are restricted to religious texts and one
does not find these features used in new MSA contexts. An example of this kind

Issues in Arabic Morphological Analysis 35

roots and patterns, these morphemes are used in the analysis mechanism itself. The
combination, or interdigitation, of these two morphemes produces the equivalent of
a stem entry in the lexicon, but not necessarily the equivalent of that stem’s canoni-
cal surface orthographic form—hence the need for two-level morphology.

Lexicon entries in a two-level morphology system represent not the familiar
normalized surface orthography of traditional Arabic dictionary entries, but rather
their abstract lexical level. For example, the words maktaba, majalla, and maq la,
are entered in the Xerox lexicon as maktaba, *majlala, and *maqwala, respec-
tively. Furthermore, because root and pattern morphemes are entered in separate
dictionaries, the actual lexicon entries consist of root morphemes (k-t-b, j-l-l, and
q-w-l, in this example) and pattern morphemes (maf ala, in this example). In the
Xerox lexicon Arabic prefixes and suffixes are assigned individual entries in lexi-
cons that group items belonging to the same morpheme class, i.e., items that ex-
hibit the same morphotactic behavior. Hence, in addition to the main lexicons of
roots and pattern morphemes, there are various lexicons for morpheme classes
such as prepositions, conjunctions, verb subject and object markers, the definite
article, noun case endings, and verb mood markers. The morphotactic constraints
are implemented via rules that state in which sequence the various lexicons can be
accessed by the morphological analysis engine (Beesley et al., 1989).

Our design of a stem-based system of morphological analysis was motivated in
part by the complexities we experienced with developing the Xerox lexicon (which
was known as the Alpnet lexicon at the time), and with the intricacies in defining
the morphotactic constraints. Therefore, in designing our own system we pursued
an alternate design that (1) simplified lexicon management by representing lexical
items according to their normalized surface orthography, and (2) greatly simplified
the morphotactic component of the system by representing all valid concatenations
of prefixes and suffixes in the lexicon entries themselves. Maintaining three lexi-
cons—of prefixes, stems, and suffixes—is vastly simpler than maintaining a dozen
or more. But the greatest advantage in not using a two-level morphology approach

new meanings to old words, and also by increasing the level of grammatical detail
that is described. We are familiar with two major different types of morphological
analysis lexicons: the Xerox lexicon (Beesley, 2001), whose entries are based on
root and pattern morphemes, and our own lexicon (Buckwalter, 2004a), whose en-
tries make use of word stems. In the argument over which method represents the
correct approach to analyzing a Semitic language such as Arabic, it should be
mentioned that although root and pattern morphology is pervasive in the language,
approximately seven percent of the entries in the lexicon contain no discernable
pattern morpheme (and thus no discernable root morpheme, although Arabs are
often capable of extracting root candidates from many non-Semitic words), and
that these words must be treated with a stem-based approach. It should also be men-
tioned that if root and pattern morpheme information is encoded appropriately in the
lexicon, it can be reported in the analysis output, regardless of which approach one
uses in the analysis. The major difference, of course, is that in a system based on

is that lexicon entries are not orthographic abstractions but rather the familiar

36 Buckwalter

searching for high-frequency dialectal words (see Table 3.14). Whereas some
dialectal words are common to all major dialects (e.g., /ill /), a search for
groups of words used only in a given dialect will lead to Web pages with text writ-
ten mostly in that dialect. For example, a search for the words /bidd /, /š /,
 /l š/ and /halla’/ can be used to locate written samples of Levantine
Arabic, and a search for /an-nah r-da/, /H-a’ l/, /di-l-wa’t /
and /ma-Hadš/ can be used to find Web pages with Egyptian Arabic. The
text on these Web pages typically contains a mixture of colloquial Arabic and
MSA. If the text is a transcription of speech, such as an interview from a
television show, it often becomes clear that some sections of the transcript could
be sufficiently formal to warrant the use of MSA case endings in the
morphological analysis, but that other sections would sound awkward (too
formal) with these features present, and that sections abounding in colloquial
lexical items and constructions would preclude the presence of almost all case
 endings (see Figure 3.8). The main point is that these samples of modern written
Arabic reflect the full range of registers one hears in modern spoken Arabic, with-
out any clear-cut division between dialect and MSA.

The morphological analysis of Arabic dialects is complicated by the relative
absence of orthographic standards and by orthographic variation among different
dialects. However, the rising use of dialectal Arabic on the Web is changing this
situation and some orthographic conventions are taking shape. For example, it can
already be observed that while Egyptians prefer to spell the word /ba’ l/ “I say”
with the alif subject marker (bAqwl), Levantine speakers prefer to write it
without the alif (bqwl). The verbal paradigms of the dialects differ radically
from MSA paradigms (e.g., imperative forms such as /q l/, /r H/,
/š f/, and /xall /) and include additional affixes that increase the complexity of

not require a thorough knowledge of Arabic derivational morphology, which few
native speakers learn as well as non-native Arabists, who are often known for their
ability to cite the form number of any given verb, regular or irregular, followed by
its respective active and passive participles and verbal noun.

3.7 Integrating the Dialects in Arabic Morphological Analysis

Modern written Arabic is exhibiting a growing influx of dialectal Arabic, largely
as the result of unedited and uncensored publication on the Web. Significant quan-
tities of dialectal Arabic in written form can readily be found on the Web by

the morphotactic component of morphological analysis (e.g., /ma-’ulti-
llak-š/ and /Ha-yib’ -lak/). In addition, the dialectal lexicon makes use of
many MSA lexical items, such as /xal S/, /l zim/, /mumkin/,
/m š /, /b yin/, /ya n /, /m l/, /S r/, and /r H/, but with very

canonical forms of printed dictionaries. This means that dictionary maintenance need

Issues in Arabic Morphological Analysis 37

Fig. 3.8. Sample of modern written Arabic (www.almanara.org/Audio/2-2-05.htm)

Table 3.14. High-frequency dialectal words

in the dialects—such as /naSS, nuSS/, / ulya, alayya/, and /bi-qadrin,

different dialect-specific meanings and grammatical functions. Special attention
needs to be given to homographs—items read one way in MSA and another way

ba’dar/. In order to sort out dialectal and MSA features in the analysis, it may be
necessary to maintain separate lexicons and analysis modules for each dialect. The

38 Buckwalter

By “current morphological analysis” we mean the output of the two systems with
which we are familiar: the Xerox two-level morphology system (Beesley, 2001)
and our own (Buckwalter, 2004). (Other systems are described in this publication,
but we have not yet had access to adequate output data samples in order to evalu-
ate them). The Buckwalter system has received considerable exposure and scru-
tiny because of its use in the Penn Arabic Treebank project (Maamouri et al.,
2004). Some incisive criticism of both the Xerox and Buckwalter systems has
been provided by Otakar Smrž (in prep.), of the Prague Arabic Dependency Tree-
bank research group at Charles University, especially in areas concerning the lexi-
con’s coverage of gender, number, and humanness features. Essentially, the Xerox
and Buckwalter analyzer lexicons provide the default gender and number part-of-
speech labels for noun suffixes based on their form without any regard to their ac-
tual semantic value or function in the word. For example, the suffix (U+0629) is
labeled FEM_SG regardless of whether it occurs in the word /madrasa/
(fem. sg. non-human), /xal fa/ (masc. sg. human) or /ma riba/ (masc.
pl. human). This can only be remedied by systematically entering the necessary in-
formation on gender, number and humanness for each lexical item.

The set of grammatical features that are currently encoded in the Buckwalter
morphological analyzer lexicon have been to a great extent determined by the re-
quirements of the Penn Arabic Treebank project. The Buckwalter system was
originally designed for simple word identification, as a first step towards generat-
ing lemmatized concordances for use in lexicography. Since its adoption for use in
treebanking it has undergone considerable change, mainly in the addition of POS
tags, with fairly precise distinctions applied especially to function words
(Maamouri et al., 2004). However, it is surprising that many of the traditional

3.8 Adequacy and Accuracy of Current
Morphological Analysis

analysis of MSA data that occurs in a predominantly dialectal context is also not free
of complications. For example, should it be vocalized internally according to MSA
canonical lexical forms or according to how it is pronounced? What is the vocaliza-
tion of the MSA word , for example, in view of its numerous pronunciations:
/minTaqa, manTiqa, munTiqa/? These are just a few of the questions that arise when
dialectal Arabic commingles with what is traditionally labeled as MSA. In fact, the
presence of dialectal Arabic in a text immediately brings into question whether the
remaining non-dialectal portion of the text should bear any case endings and mood
markers at all in its corresponding morphological analysis.

grammatical categories that are discussed in all treatments of Arabic morphology
have not been needed for successful treebanking, at least as defined in the phrase-
structure Penn Treebank model. It is anticipated that forthcoming pedagogical

Issues in Arabic Morphological Analysis 39

We expect the next decade of Arabic morphological analysis to be challenged by
added complexity in the input data, as the orthography undergoes unpredictable
usage of Unicode characters beyond the basic set required for Arabic, and as the
written language itself is transformed by a steady influx of dialectal forms, forcing
morphological analysis to deal with diglossic texts. The output analysis itself will
be enriched by the complexities and challenges of the input data, and new gram-
matical features will be added to increase the level of detail and accuracy of the
description. Developments in automated syntactic analysis will also influence the
priorities that are followed in developing and improving morphological analysis
algorithms and lexicons. Arabic morphological analysis as a discipline is still in its
early stages.

References

3.9 Conclusion

E. Badawi, M.G. Carter, and A. Wallace. 2004. Modern Written Arabic: A Comprehensive
Grammar. Routledge, London.

Kenneth R. Beesley. 2001. Finite-state Morphological Analysis and Generation of Arabic at
Xerox Research: Status and Plans in 2001, In EALC 2001 Workshop Proceedings
on Arabic Language Processing: Status and Prospects, pp. 1–8, Toulouse, France,
July 2001.

Kenneth R. Beesley, S. Newton, and T. Buckwalter. 1989. Two-Level Finite-State Analysis
of Arabic Morphology, In Proceedings of the Seminar on Bilingual Computing in
Arabic and English, no pagination, University of Cambridge, U.K., September 1989.

following traditional grammatical labels:

 Gender, number, and humanness.
 Active and passive participles and verbal nouns. These categories are already

labeled and cross-linked in the Xerox system, although verbal nouns of Form I
need to be linked explicitly to their respective verb.

 Elative. This category needs to be linked to its related adjectival form (e.g.
/’akbar/ /kab r/).

 Instance noun, unit noun, and collective noun.
 Verb features such as transitive, intransitive, grammatical collocations, etc.

applications of the Buckwalter system will soon require the implementation of the

T. Buckwalter. 2004a. Buckwalter Arabic Morphological Analyzer Version 2.0. Linguistic
Data Consortium, catalog number LDC2004L02 and ISBN 1-58563-324-0.

40 Buckwalter

T. Buckwalter. 2004b. Issues in Arabic Orthography and Morphology Analysis. In
Proceedings of the Workshop on Computational Approaches to Arabic Script-based
Languages, COLING 2004, pp. 31–34, Geneva, August 2004.

M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki. 2004. The Penn Arabic Treebank: Build-
ing a Large-Scale Annotated Arabic Corpus. Paper presented at the NEMLAR International
Conference on Arabic Language Resources and Tools, Cairo, Sept. 22–23, 2004.

Otakar Smrž. in prep. Functional Arabic Morphology. Formal System and Implementation.
Ph.D. thesis, Charles University in Prague.

The Unicode Consortium. 2003. The Unicode Standard, version 4.0. Boston, Addison-
Wesley.

H. Wehr. 1979 A Dictionary of Modern Written Arabic. 4th edition, edited. by J. Milton
Cowan. Wiesbaden, Harrassowitz.

Issues in Arabic Morphological Analysis 41

PART II

Knowledge-Based Methods

4

A Syllable-based Account of Arabic Morphology

Lynne Cahill
Natural Language Technology Group, University of Brighton
lynneca@sussex.ac.uk

Abstract: Syllable-based morphology is an approach to morphology that considers syllables to be the
primary concept in morphological description. The theory proposes that, other than simple
affixation, morphological processes or operations are best defined in terms of the resulting
syllabic structure, with syllable constituents (onset, peak, coda) being defined according to
the morphosyntactic status of the form. Although most work in syllable-based morphology
has addressed European languages (especially the Germanic languages) the theory was
always intended to apply to all languages. One of the language groups that appears on the
surface to offer the biggest challenge to this theory is the Semitic language group. In this
chapter a syllable-based analysis of Arabic morphology is presented which demonstrates
that, not only is such an analysis possible for Semitic languages, but the resulting analysis
is not significantly different from syllable-based analyses of European languages such as
English and German

4.1 Introduction

Approaches to the morphology of the semitic languages have tended to assume
that different mechanisms are required to account for a system which, on the
face of it, appears very different from typical European morphology such as affix-
ation and ablaut. However, the syllable-based approach to morphology does not
require the radically differentiated accounts of such morphological systems. In this
approach to morphology, morphological realisations are defined in terms of their
syllable structure, with the values of syllabic constituents defined according to a
range of possible factors including morphosyntactic features, phonological context
and lexical information. It transpires that defining semitic morphology in terms of
Syllable Based Morphology (henceforth SBM) requires very similar mechanisms
to those required for defining the morphology of European languages. The chief
difference between the mechanisms required to define, for example, the various
ablaut processes in German and English, is of degree rather than nature. That is,
semitic languages may require more different constituents to be defined for each
inflected form, but the actual definitions are identical.

It should be stressed that SBM was developed with the intention of being able to
define morphological alternations of a wide variety of types from a wide variety of

45

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 45–66.
C© 2007 Springer.

46 Cahill

languages from across the world. The theory assumes a model of lexical represen-
tation that defines all word forms in terms of their syllable structure.

In this chapter, we present an account of the triliteral verbal morphology of
Classical Arabic verbs. We do not set out to provide a comprehensive account of
the verbal morphological system of Arabic, as many aspects do not differ in any
significant way from the systems of European languages (for example, the affixation
processes marking person and number). We begin by giving a brief description of the
theory of syllable-based morphology, with examples from English and German. We
then outline the Arabic data which we aim to cover. Next, we describe our syllable-
based account of Arabic. We then compare this account with previous accounts of
English and German, finally giving our conclusions.

4.2 Syllable-based Morphology

The theory of syllable-based morphology is described in Cahill and Gazdar (1997,
1999a, 1999b). The fundamental assumption is that morphological alternations can
all be defined in terms of the syllabic structure of a stem. A stem is assumed to
consist of a linear string of syllables, and syllables within a string are identified
by simple indexing from either end. Syllables are simply numbered from one end
or the other. So, for English and German, both of which exhibit extensive suffix-
ation, together with adaptations to the right-hand end of stems, we assume a system
of counting from the rightmost, or final, syllable. Their syllable strings therefore
have the final syllable as syl1, the penultimate syllable as syl2 and so on. This
ignores higher level structures such as feet or tone groups, as well as lower level
structures such as mora. However, as argued in Cahill (1990), the indexing appears
to be sufficiently powerful to define in elegant terms a wide range of morpho-
logical alternations from languages as diverse as English, Bontoc, Sanskrit and
Arabic.

The internal structure of a syllable is that given in Pike and Pike (1947), which
we take to be relatively uncontroversial. That is, we assume that a syllable consists
of an onset and a rhyme. An onset consists of a number of consonants from 0 to 3
(the exact number possible depends on the phonotactic constraints of the language
in question). A rhyme consists of a peak (or nucleus) and a coda. A peak is either
a vowel or a syllabic consonant. We assume here that long vowels and diphthongs
have the same syllabic status as short vowels, although this is not an assumption that
will lead to correct analyses of precise phonotactic constraints in many languages.
However, this assumption has no implications for the analysis of Arabic presented
here and so it is unnecessary to discuss this further. A coda is a number of
consonants from 0 to 4 (again, dependent on the phonotactic constraints of the
language).

Another assumption of the account presented here is that the syllable structure
definitions are embedded within a lexicon structured as a default inheritance
hierarchy. For this we use the lexical knowledge representation language DATR
(Evans and Gazdar, 1996). This enables the definition of default inheritance networks

A Syllable-based Account of Arabic Morphology 47

in a relatively simple and elegant way. In this chapter, we focus on those parts of
DATR which are necessary for the exposition of the account of Arabic morphology.
It should be stressed that the use of DATR is not essential to the definition of the
morphology in a syllable-based way, but merely a convenient way of expressing the
information.
DATR allows us to define nodes in a hierarchy which are linked by inheritance

paths. So a very simple inheritance network might be something like:

Mammal:
<legs> == 4
<fur> == yes
<young> == live.

Human:
<> == Mammal
<legs> == 2.

Platypus:
<> == Mammal
<young> == egg.

Here we define a few simple facts about mammals. We then define two subtypes of
mammal, both of which inherit by default from Mammal (via the <> paths). They
each have one piece of information that is not inherited from the node for Mammal,
but which needs to override the default value from Mammal. These equations consist
of a path (enclosed in angle brackets) on one side and a value on the other side (of
the ==). The path consists of zero or more attributes.

We assume that lexemes are typically the bottom-most nodes in the hierarchy, and
they inherit information from nodes above them in the hierarchy. A fairly typical
account of English verbs, for example, would involve nodes representing the inflec-
tional subclasses (sing-sang-sung, bring-brought etc.) each of which would in turn
inherit from a Verb node. The kind of information that is involved depends very
much on the intended application, but might be semantic, syntactic, morphological
or phonological. In the case of syllable-based morphology, we are interested in
morphology and (to a limited degree) phonology.

The most simple type of morphological alternation is affixation. This is handled
in a slightly different way from other alternations, but only in the sense that it is
adding material to the stem structure, rather than making adaptations to the existing
structure. Affixation is treated simply as concatenation of two or more strings of
syllables. Reduplicative affixation is treated in the same way, but has elements of the
affix determined (in whole or in part) by elements of the stem.1

1 It can be argued that reduplication is in fact just an extreme example of context sensitivity
such as that exhibited by the English plural suffix -s. In the case of the English suffix, the
voicing feature of the suffix is determined by the final segment of the stem, whereas in
the case of reduplication, every feature of the segments of the affix is determined by some
element of the stem.

48 Cahill

An affix is assumed to have the same structure as a stem, i.e. a linear sequence of
syllables. In practice, most affixes are monosyllabic, or even single segments, but the
assumed structure is capable of defining all types of affixation.

Other types of morphological alternation involve defining different values for
various constituents of syllables within the stem. A vowel alternation such as the
umlaut seen in German (Haus – Häuser) or any of the ablaut alternations seen in
English (meet – met, sing – sang, choose – chose) can be defined by specifying
different values for the peak in the stem. For example, the lexical entry for meet has
the following values defined by default2:

Meet:<> == Verb
<syl1 onset> == m
<syl1 peak> == i:
<syl1 coda> == t.

This defines the peak by default to have the value /i:/ in all forms of the verb. The
peak value for the past tense form can then be defined as follows:

<syl1 peak past> == E

This states that the peak of the past tense and participle forms is /ε/. Note that the
DATR language allows us to define both forms by means of underspecification. That
is, we can further specify either the tense or participle forms by adding this attribute
to the definitional path:

<syl1 peak past tense> == E

Any constituent of the syllable string can be defined in this way, dependent on the
morphosyntactic features that the form realises. We can use two main types of rule:
rules of realisation and rules of referral. The rules above are all rules of realisation.
That is, they define explicitly how the form is realised (phonologically). Rules of
referral, on the other hand, define relations between forms. They involve rules such
as the following default rule for German verb forms:

<phn form second> == <phn form third>

This rule states that (by default) all second person forms are the same as third person
forms. Rules of referral can refer to the local node (as above) or to the global node:

<phn form second> == "<phn form third>"

This will refer back to the original node (or lexeme) that was queried. These notions
will be explained further as they become relevant for the Arabic account.

4.3 The Arabic Data

The data we will cover in this chapter is from Standard Arabic. We will include the
forms for the various different binyanim, as well as the perfective and imperfective
active and passive forms. We will not address bi- and quadriliteral roots, even though

2 Note that, in the DATR code, we make use of the SAMPA computer readable phonetic
alphabet (Wells, 1989).

A Syllable-based Account of Arabic Morphology 49

the latter do occur in Classical Arabic. The aim of this chapter is to demonstrate that
there is nothing about Arabic morphology that requires special mechanisms, rather
than to present a fully comprehensive account of the morphological system of Arabic.

We do not include minimal coverage of the inflections for person and number.
As they consist primarily of simple affixation, they do not present any problems for
our account. The data we aim to account for is shown in Table 4.1. The full set of
forms as generated by the SBM account is shown in Appendix B. The data we cover
here is from a single verb, “to write”. The forms provided in Table 4.1 are not all
actual forms, as not all of the different binyanim actually occur for all verb roots.
We, therefore, do not provide glosses for these forms. The meanings of the different
binyanim are all related to the stem meaning. For example, the third binyan carries
the meaning “to correspond”.

The most important observation about the Arabic verbal system is that there appear
to be three morphemes that combine to produce a single form. The first of these
is the root morpheme, which consists of a skeleton of consonants. In most cases,
these are three consonant, or triliteral, roots. These three consonants usually appear
in all forms of the verb in question and usually appear in the same order. The second
morpheme is the vowel component, which represents the inflection for the word
form (active/passive etc.). The final morpheme involved is the CV template, which
defines the arrangement of the consonants and vowels. So, a form like kattab, which
is the perfective active form of the verb “to write”, consists of the stem morpheme
ktb, the verbal inflection aa and the template morpheme CVCCVC. In order to fully
specify the form, the ordering of the Cs and Vs needs to be stated. There are many
accounts in the literature of ways of ensuring that the correct consonants get mapped

Table 4.1. Complete set of verb stems for k-t-b “to write” (from McCarthy, 1981, 381)

Binyan Perfective Imperfective Participle

Active Passive Active Passive Active Passive

I katab kutib aktub uktab kaatib maktuub
II kattab kuttib ukattib ukattab mukattib mukattab
III kaatab kuutib ukaatib ukaatab mukaatib mukaatab
IV Paktab Puktib uPaktib uPaktab muPaktib muPaktab
V takattab tukuttib atakattab utakattab mutakattib mutakattab
VI takaatab takuutib atakaatab utakaatab mutakaatib mutakaatab
VII nkatab nkutib ankatib unkatab munkatib munkatab
VIII ktatab ktutib aktatib uktatab muktatib muktatab
IX ktabab aktabib muktabib
X staktab stuktib astaktib ustaktab mustaktib mustaktab
XI ktaabab aktaabib muktaabib
XII ktawtab aktawtib muktawtib
XIII ktawwab aktawwib muktawwib
XIV ktanbab aktanbib muktanbib
XV ktanbay aktanbiy muktanbiy

50 Cahill

to the correct slots (the eighth binyan flop rule is a particularly nice example!)
(McCarthy 1981, 1990). However, our account does not require any special rules to
ensure this, as the consonant and vowel values are defined for all forms in exactly
the same way.

The system appears to lend itself to such a separation of the morphemes. The root
morpheme provides the underlying sense of the forms, the vowel morpheme provides
the inflectional form and the template provides the derived form, or binyan. This in
turn provides more information about the interpretation of the sense. The account
presented here, while not requiring a separation of morphemes, retains this separation
of the kinds of information provided. The organisation of the lexicon reflects the
separation, with information about the binyan provided by a set of nodes designed
for that purpose, information about the root provided by what we would consider the
true lexeme nodes and information about the vowel inflections provided by a set of
inflectional nodes accessed by all verbs in the lexicon. This organisation is analogous
to the organisation of verbs in English and German, with the slight exception of the
binyan nodes. These, however, can be viewed as similar to derived forms of words
that use fully productive and transparent processes, such as the un- prefix in English.

4.4 A syllable-based Account of Arabic

In this section we will present our account of Arabic morphology in three sections.
The first section will describe the overall approach, and in particular, the definition
of the lexeme entries. The second section will look at the verbal inflections realised
as vowel patterns. The third section will describe the derivation of the different
binyanim.

4.4.1 The Overall Approach

First, we must examine the verbal forms and determine exactly which parts are deter-
mined by what. A fully inflected form of an Arabic verb may consist of prefixes, a
stem and suffixes. The suffixes are person and number agreement markers while the
prefixes may indicate things like conjunctions. The stem is comprised of arrange-
ments of consonants and vowels which indicate the root, the tense and the mood.
We will not look in any detail at the agreement prefixes and suffixes, but we will
concentrate on the stem, to which these affixes may attach.

The stem in question consists of the root consonants, the tense/mood vowels and
in some cases prefixes that indicate tense and mood.3 In our account, we distinguish
between agreement prefixes and tense prefixes, which always come closest to the
root and form part of the stem to which the agreement affixes attach.

The basic lexeme entries in our account of Arabic define the consonantal roots.
However, in our theory, all roots, stems and affixes must be defined as syllable

3 As will be explained below, we choose to define elements that come before the initial root
consonant as prefixes, rather than defining a different syllable structure.

A Syllable-based Account of Arabic Morphology 51

root

syl2 syl1

t

b

k

Fig. 4.1. The default structure of the form katab

strings. We must therefore define a default syllable structure for triliteral stems, with
default positions for the stem consonants. We assume the most simple structure, as
exemplified by the stem katab. The standard phonotactics of Arabic require syllables
of CV (preferred) or CVC structure. Our root must be divided into two syllables,
because there are three consonants, and syllables in Arabic may have a maximum
of two consonants. The syllable boundary must be before the middle consonant,
as syllables with a VC structure are not allowed. This therefore gives us a syllable
structure as in Figure 4.1. Note that this structure has no values specified for either
peak, nor for the coda of the first syllable. There is an underlying assumption in
our theory that any constituents whose values remain unspecified when all infor-
mation (from the lexeme, inflection and derivation parts) is taken into account are 0.
Note also that we count the syllables from the right-hand end, so the final syllable
is labelled as syl1, the penultimate syllable is syl2 and so on. For the majority of
forms, this is not significant as they all have two syllables. However, there are forms
(binyanim 5 and 6) which add a syllable. As they both add the syllable at the front, it
makes more sense to count from the right-hand end so as not to disrupt the syllables
that are shared (in large part) by all binyanim. It should be noted that we opt for
an account that involves several cases of incomplete (illegal) syllables, for example,
syllables that lack a peak. As we will discuss in Section 4.3, this assumption of a
resyllabification process is required in virtually any phonologically based account of
morphology in any language.

The underlying syllable structure is defined by default for all languages with the
following three nodes:

Null:
<> == .

Syllable:
<> == Null
<phn root> == <phn syl1>

<phn $yll form> == "<phn $yll onset>"
"<phn $yll rhyme>"

52 Cahill

<phn $yll rhyme> == "<phn $yll peak>"
"<phn $yll coda>".

Disyllable:
<> == Syllable
<phn root> == <phn syl2> <phn syl1>.

The first of these simply provides the ultimate default value, as discussed above, as
being a zero realisation. The second node defines the default syllable structure, as
well as the default value for a root as being monosyllabic. The obvious default for
English and German is monosyllabic. This is not necessarily the same for Arabic,
as we know that verbs and nouns virtually all have disyllabic (or at least, triliteral)
roots. However, as there are plenty of monosyllables in Arabic (e.g. function words),
the default value is valid, as these specifications can be given at the nodes for nouns
and verbs. Attributes that begin with a $ symbol are variables. The variable $yll here
ranges over the values syl1, syl2, syl3 etc., indicating that the statements here apply
to any syllable.

The statements simply say that the phonological form of a syllable is the value of
the onset followed by the value of the rhyme. The rhyme, in turn, is the value of the
peak followed by the value of the coda.

For Arabic, we can define the default verb structure to be disyllabic, with the
following definition as one part of the information defined for verbs:

Verb:
<> == Disyllable

The values to be specified for the lexeme katab can then be defined simply as follows:

Katab:
<> == Verb
<phn syl2 onset> == k
<phn syl1 onset> == t
<phn syl1 coda> == b.

In fact, however, we abstract from this to define the default root for verbs as follows4:

<phn syl2 onset> == Root:<c1>
<phn syl1 onset> == Root:<c2>
<phn syl1 coda> == Root:<c3>

Then, for katab, we need only:

<c1> == k
<c2> == t
<c3> == b

The nature of the default inheritance we assume means that any of the values defined
in any of these nodes can be redefined (overridden). This will be seen extensively in
the definition of the derived forms (or binyanim) below.

4 The node name Root here refers to whichever lexeme node is being queried.

A Syllable-based Account of Arabic Morphology 53

So, to sum up, at the top of the inheritance hierarchy we have a number of nodes
that define the overall structure of the account. The very top is identical to the hierar-
chies for English and German. This part defines the default structure of syllables,
and defines roots as being monosyllables by default. This part of the hierarchy also
defines a word as consisting of a root and a suffix, again by default.

The next part of the hierarchy, the Verb node, defines the default values for Arabic
verbs, including the default definition of verbs as disyllabic as already mentioned.
This performs two main functions. The first of these is to define default values for
the vowels for some of the inflected forms. The second is to map definitions relating
to the fifteen different binyanim to individual nodes providing these definitions, for
example5:

<bin1> == "Bin1:<>"

The next level of the analysis is the set of binyan nodes, which define the structure
(position of the consonants) and the vowels for the various binyan forms. These
nodes also define tense prefixes, which consist of either a single vowel or a consonant
and a vowel.

Finally, the lowest level of the hierarchy comprises the lexeme nodes. For our
purposes, these nodes consist of nothing more than the three consonants of the root,
but in a lexicon for a real application, they would include syntactic and semantic
information relating to that lexeme.

4.4.2 The Vowel Inflections

In many languages, including English and German, many morphological alternations
are characterised by vowel changes or ablaut. The main difference between these
ablaut processes and the vowel patterns seen in Arabic morphology is that typically
English and German ablaut processes only affect a single vowel (or peak) in a stem.
In fact, most of the words that undergo ablaut processes in these languages are
monosyllabic anyway. However, we do have one instance of multiple vowel change
in English, with the word woman/women. Although orthographically only the second
vowel changes, phonologically both vowels change:

/wUm@n/ – /wImIn/

Of course, we would not want to claim that a single example means that this is a
common thing in English morphology, but the fact that it exists at all does at least
demonstrate that any comprehensive account of English morphology will need to
account for such phenomena. We could, of course, simply say that this is a lexical
exception which cannot (or should not) be accounted for in a rule-governed way.
However, we feel that this is a get-out that is not really satisfactory. The forms in
question are not random suppletive forms, but simply forms that exhibit an unusual
set of changes.

5 The quotes here indicate that the node Bin1 now becomes the global node. This is why
the equations above require reference to the original query node via Root.

54 Cahill

It is worth stressing at this point that, although cases of disyllabic stems where both
vowels exhibit alternations are rare, cases of more than one constituent in the stem
changing, or other combinations of alternation types are not unusual in English and
German. German has nouns whose plural is formed with a combination of umlaut
and a suffix (Haus – Häuser). English has nouns whose plural is formed with a
combination of a suffix and a change in the final consonant (wife – wives).

So we need to define, for the main verbal inflections, two vowel slots. In the most
basic form, the perfective active form of binyan I, the two vowels are both /a/. We
can define these values very simply, as follows:

Verb:
<> == Disyllable
<phn syl2 peak> == a
<phn syl1 peak> == a

These lines tell us simply that unless otherwise specified, the vowels in both syllables
have the value /a/.

For some specific inflections, we give the different default vowels as follows:

<phn syl2 peak perf pass> == u
<phn syl1 peak perf pass> == i
<phn syl1 peak imp act> == i
<phn syl1 peak part act> == i

These lines tell us that the vowels for the perfective passive are /u/ and /i/, giving
kutib. The imperfective active has the second vowel specified here as /i/ and the active
participle form specifies the second vowel as /i/. These values are merely defaults,
and do not necessarily represent any individual form. In fact, for binyan I, the first
vowel in each of the last two cases is zero (the forms aktub and uktab).

In addition to the vowel specifications, we also define here the tense prefixes:

<tense prefix imp act> == a
<tense prefix imp pass> == u
<tense prefix part> == m u

These definitions complete the default values.

4.4.3 The Binyanim

The different binyanim are defined in terms of the positions of the vowels and conso-
nants. The first few are all defined in their own terms, but there is a certain amount of
inheritance possible, especially in the later binyanim. The exact inheritance structure
we use is given in Figure 4.2.

This figure shows that binyanim 1 – 5, 7 and 8 all inherit from the Verb node, with
binyan 10 inheriting from binyan 4 and binyan 6 inheriting from 5. Binyanim 9 and
12 inherit from 8, binyan 13 inherits from 12, 11 and 14 inherit from 9 and finally
binyan 15 inherits from binyan 14. With these inheritance patterns it is possible to

A Syllable-based Account of Arabic Morphology 55

Bin1 Bin2 Bin3 Bin4 Bin5 Bin7 Bin8

Bin6 Bin9 Bin12

Bin11 Bin14 Bin13

Bin15

Verb

Bin10

Fig. 4.2. The inheritance structure of the binyanim

define all of the binyanim forms with relatively few equations. Let us now look at
how we do this.

The forms for binyan 1 are as follows:

perfective imperfective participle
active passive active passive active passive
katab kutib aktub uktab kaatib maktuub

The binyan I form is the most basic (semantically), the most widely used and, as
we might expect from the more frequently used areas of a morphological system,
the one with the most irregularities. We analyse the forms as follows. Any elements
that occur before the initial root consonant (in this case, /k/) are considered to be
prefixes. Thus the imperfective forms have prefixes /a/ and /u/, and the participle
passive form has the prefix /ma/. The three consonants all occur only once, and
in the correct order, so we do not need to say any more about those. The vowels,
on the other hand, show a large amount of variation. We see the following six
patterns:

a a
u i
0 u
0 a
aa i
0 uu

56 Cahill

The first pair is the default value for verbs anyway, so does not need to be specified
here (see below). The second pair, likewise, is specified at the Verb node. The third
pair is specified here, and the zero value for the fourth pair is also covered in the same
definition, specifying the zero for both imperfective forms (by underspecification).
The /a/ of this pair is inherited from Verb. The participle active form is /aa/. The final
pair above is given explicitly in full. In addition to the vowel pairs above, we need
to define the prefixes. For this, we need to specify two that are different from the
definitions given at Verb. These are the two participle forms. For the other prefixes,
we just need to inherit the Verb definitions.

The whole node for binyan I forms is given below:

Bin1:
<> == Verb
<phn syl1 peak imp act> == u
<phn syl2 peak imp> ==
<phn syl2 peak part pass> ==
<phn syl2 peak part act> == a a
<phn syl1 peak part pass> == u u
<tense prefix part act> ==
<tense prefix part pass> == m a.

There are a number of points that deserve some comment here. The first line here
says (uncontroversially) that this node inherits by default from the Verb node. The
next line tells us that in the imperfective active form, the peak of the second syllable
is /u/. The next line tells us that the first peak of this (and the imperfective passive
form) is zero. These lines, together with the default values above give us the form
/aktub/ for the first binyan imperfective active forms. There are five more equations,
all of which relate to the participle forms. The participle passive form has a null
vowel in the first syllable (like the imperfect forms) and could indeed be defined with
a rule of referral:

<phn syl2 peak part pass> == <phn syl2 peak imp>

We have not opted to do this, as it does not save anything, and is not a mapping that
we want to apply in any other context.

The other binyan definitions are much simpler to describe. Binyan 2 needs the
middle consonant to be doubled. We do this by specifying that the coda of the initial
syllable is the second root consonant. The prefix of the imperfective active form is
also defined to be /u/.

Bin2:
<> == Verb
<phn syl2 coda> == Root:<c2>
<tense prefix imp act> == u.

The third binyan form has the first vowel doubled and defines the prefix of the imper-
fective active form to be the same as that for Binyan 2. The doubled vowel is defined
as two “copies” of the vowel as defined at the Verb node. It is arguable whether this

A Syllable-based Account of Arabic Morphology 57

is actually a sensible way to define this value. Would it not be simpler and more
efficient to just state that its value is /aa/? The answer is that, in this case, this would
be a more sensible approach, but in a situation where the same mapping applied to
more than one value for that path, the generalisation would be worth making. The
fourth binyan has a switch of consonants, with the glottal stop /P/ becoming the onset
of the first syllable throughout and the initial root consonant becoming the coda of
the initial syllable. This gives forms like /Paktab/ and /Puktib/. Although we might
want to consider the glottal stop part of a prefix, as it comes before the initial root
consonant, this analysis does not fit well with the remainder of the forms. If we take
the approach we have taken, we can inherit all of the other definitions from the nodes
higher up in the hierarchy.

Bin3:
<> == Verb
<phn syl2 peak> == Verb Verb
<tense prefix imp act> == Bin2.

Bin4:
<> == Verb
<phn syl2 onset> == ’?’
<phn syl2 coda> == Root:<c1>
<tense prefix imp act> == Bin2.

Binyan 10 inherits from binyan 4, with two differences. The first sees the two
consonants /st/ replacing the first consonant, instead of the glottal stop. The second
is the prefix for the imperfective active form, which comes direct from Verb, rather
than from binyan 4.

Bin10:
<> == Bin4
<phn syl2 onset> == s t
<tense prefix imp act> == Verb.

The binyan 5 forms are interesting, in that they appear at first glance to require an
additional prefix of /ta/:

perfective imperfective participle
active passive active passive active passive
takattab tukuttib atakattab utakattab mutakattib mutakattab

However, it can be seen from the imperfective and participle forms that this “prefix”
attaches to the root, after the tense prefixes. We therefore account for this set of forms
by defining this root as a trisyllabic root, with the additional syllable consisting of
/t/, together with the vowel of the second syllable. There are only two other small
elements that need definition here: the final peak of the imperfective active form is
/a/ (rather than the /i/ that we might expect from the other binyanim), and the coda
of the second syllable is the same as for binyan 2. There might be an argument that
we should make binyan 5 inherit from binyan 2. This is a valid position, but we

58 Cahill

have not chosen to do this, because, although many forms are virtually the same as
the binyan 2 forms, with the additional syllable, there are two forms which require
different specifications, and so the definitions would not benefit from being inherited
from binyan 2.

Bin5:
<> == Verb
<phn root> == Trisyllable
<phn syl3 onset> == t
<phn syl3 peak> == "<phn syl2 peak>"
<phn syl1 peak imp act> == a
<phn syl2 coda> == Bin2.

Binyan 6 similarly looks very much like binyan 3, but with the extra syllable.
However, we define this as inheriting from binyan 5, with three small differences.
The peak of the additional syllable is always /a/, rather than being dependent on
the second peak. The middle consonant is not doubled here, so the coda value is
referred back to the Verb node, and the second peak is doubled, which it inherits
from binyan 3.

Bin6:
<> == Bin5
<phn syl2 coda> == Verb
<phn syl3 peak> == a
<phn syl2 peak> == Bin3.

The seventh binyan forms are also defined as trisyllabic, with the extra syllable
being defined as having only a coda, /n/. This binyan picks up the default values
from Verb for the vowels (which are significantly different from the binyan
1 forms).

Bin7:
<> == Verb
<phn root> == Trisyllable
<phn syl3 coda> == n.

Binyan 8 is the start of a more interesting set of inheritances involving seven of the
remaining sets of forms. Binyan 8 itself is very simply defined as inheriting from
Verb, with just one difference: the second consonant is added to the first onset (after
the first consonant). This gives the forms like /ktatab/.6 Binyan 9 inherits this infor-
mation, but changes the onset of the second syllable to be the third root consonant,
rather than the second. The forms for binyan 11 are similarly related to binyan
9 forms, but with the single difference that the initial vowel is doubled, which is
inherited from binyan 3.

6 The onset of this form is not a legal onset in Arabic syllables. However, these forms will
have other affixes added and a process of resyllabification will result in the surface forms
having legal syllable structures.

A Syllable-based Account of Arabic Morphology 59

Bin8:
<> == Verb
<phn syl2 onset> == Verb Root:<c2>.

Bin9:
<> == Bin8
<phn syl1 onset> == Root:<c3>.

Bin11:
<> == Bin9
<phn syl2 peak> == Bin3.

Binyanim 14 and 15 also inherit from binyan 9. The forms for binyan 14 simply
add the consonant /n/ as the initial coda (/ktanbab/) and for 15, the final coda is also
changed to be /y/ (/ktanbay/).

Bin14:
<> == Bin9
<phn syl2 coda> == n.

Bin15:
<> == Bin14
<phn syl1 coda> == y.

The forms for binyanim 12 and 13 are also inherited from binyan 8. The binyan 12
forms differ from those of binyan 8 only in having a /w/ as the first coda (/ktawtab/),
while 13 changes the second consonant also to /w/ (/ktawwab/).

Bin12:
<> == Bin8
<phn syl2 coda> == w.

Bin13:
<> == Bin12
<phn syl1 onset> == w.

4.5 Comparison Between Accounts of Arabic and English
and German

One of the most striking features of this account of the verbal system of Arabic is that
the equations used look, for the most part, no different from the equations required to
define English and German morphology. The comprehensive accounts of the verbal
morphology of English and German that have been implemented in a syllable-based
framework have structures that are very similar at the top. That is, they define a
default structure with syllables counted from the right-hand end of the stem. They
define a default structure consisting of a root and a suffix (with possible prefixes, in

60 Cahill

German). Many definitions for the sub-regular classes of verbs in both English and
German define values for peaks.

One aspect of the English and German accounts that does not occur in (this
fragment of) the Arabic verbal system is the question of “active affixes” (Cahill and
Gazdar, 1999). We thus define affixes whose precise realisation may vary depending
on morphosyntactic or phonological context. Although our account does not look
at such details in the Arabic system, and so this may well turn out to have similar
features, what is interesting is that the areas of the Arabic account that appear to
differ most from the English or German, namely the binyan definitions, do resemble
the active affix definitions more than the stem definitions. The definition of different
consonants and different syllable positions for consonants does not happen very
much within the stems in English and German, but it does happen within the affixes.
For example, German verb suffixes are defined as varying between -e, -te, -et, -est,
-test etc.

One aspect of the Arabic account which may appear to present problems is also
a potential problem for the accounts of English and German. This is the question
of resyllabification. The roots, affixes and final forms are all defined in terms of
full syllable structures, but in many cases, the final syllable structure is different
from the structures at earlier stages of the derivation. To cite a simple example, the
English word inform, has the consonant /m/ as the final coda. However, when it has
the suffix -ation added, the /m/ moves to the onset of the following syllable. This
is a very simple example of the kind of thing that will always have to be dealt with
in any account of morphology that assumes underlying phonological structures. We
therefore feel that having to account for situations like that in binyan 7, where we
have introduced a syllable that consists of only a coda /n/, is no more problematic
than dealing with the suffixation example above.

4.6 Conclusions

We have presented an account of Arabic verbal morphology within the theory
of syllable-based morphology. This approach allows us to use precisely the same
mechanisms as used for defining the morphological systems of languages such as
English and German. In addition to this fact, it can be seen from the code defining
all the different binyanim (see Appendix A) that these widely varying, but obviously
related, sets of forms can be defined very simply with only a few equations within a
fairly simple inheritance network.

We have not provided accounts of the other variations found within Semitic
languages, notably the quadriliteral and biliteral roots and the so-called weak forms,
where one of the root consonants is either /y/ or /w/. However, we are confident
that accounts of these forms could be simply defined within the overall framework
defined above. The quadriliteral and biliteral forms display similar form sets from
the triliteral roots. The quadriliteral roots have a restricted set of binyanim, all of
which have positions for all four consonants. The biliteral roots simply have to
specify which of the two root consonants takes the place of the (missing) third

A Syllable-based Account of Arabic Morphology 61

consonant in each form. The situation with weak forms is actually very much the
kind of phenomenon that syllable-based morphology has been used to address within
English and German morphology, namely phonologically-conditioned variation.
Again, to take a simple example, the English plural suffix -s has three different
phonetic realisations, depending on the phonological form of the final coda of the
stem. This kind of variation is equivalent to the variation seen in weak forms in
Arabic.

In conclusion, we believe that this account of Arabic, in addition to being a
linguistically interesting and computationally efficient way of representing the verbal
system of Arabic, demonstrates the wide applicability of the theory of syllable-based
morphology.

References

Cahill, L. 1990. “Syllable-based morphology”, In COLING-90, Vol.3 pp. 48–53, Helsinki.
Cahill, L. and G. Gazdar. 1997. “The inflectional phonology of German adjectives, deter-

miners and pronouns”, In Linguistics 35:2, pp. 211–245.
Cahill, L. and G. Gazdar. 1999a. “The PolyLex architecture: multilingual lexicons for related

languages”, In Traitement Automatique des Langues, 40:2, pp. 5–23.
Cahill, L. and G. Gazdar. 1999b. “German noun inflection”, In Journal of Linguistics 35:1,

pp. 211–245.
Evans, R. and G. Gazdar. 1996. “DATR: A language for lexical knowledge representation”, In

Computational Linguistics 22:2, pp. 167–216.
McCarthy, J. 1981. “A prosodic theory of nonconcatenative morphology” In Linguistic Inquiry

12, pp. 373–418.
McCarthy, J. and A. Prince. 1990. “Prosodic morphology and templatic morphology” In

M. Eid and J. McCarthy (eds) Perspectives on Arabic Linguistics: Papers from the Second
Symposium pp. 1–54.

Pike, K.L. and E.V. Pike. 1947. “Immediate constituents of mazateco syllables”, In Interna-
tional Journal of American Linguistics 13, 1947, pp. 78–91.

Wells, J. 1989. “Computer-coded phonemic notation of individual languages of the
European Community”, In Journal of the International Phonetic Association, 19:1,
pp. 31–54.

Appendix A: The DATR Code

The code listed here is available in the DATR archive at www.datr.org.

% The structure of syllables and syllable sequences

vars $yll: syl1 syl2 syl3.

Null:
<> == .

Syllable:
<> == Null

62 Cahill

<phn root> == <phn syl1>

<phn $yll form> == "<phn $yll onset>" "<phn $yll rhyme>"
<phn $yll rhyme> == "<phn $yll peak>" "<phn $yll coda>"
<phn $yll coda> == "<phn $yll body>" "<phn $yll tail>".

Disyllable:
<> == Syllable
<phn root> == <phn syl2> <phn syl1>.

Trisyllable:
<> == Syllable
<phn root> == <phn syl3> <phn syl2> <phn syl1>.

% %

% The (default) structure of affixes and words

Affix:
<> == Syllable.

Word:
<> == Syllable

<mor word> == "<phn root form>" "<mor suffix>".

Verb:
<> == Disyllable
<mor word> == "<agr prefix>" "<tense prefix>"

"<phn root form>" "<agr suffix>"

% <agr prefix> and <agr suffix> are not defined
% further here - they will be realised as 0.

% basic root structure
<phn syl2 onset> == Root:<c1>
<phn syl1 onset> == Root:<c2>
<phn syl1 coda> == Root:<c3>

<phn syl2 peak> == a
<phn syl1 peak> == a

% default vowels for different tenses
<phn syl2 peak perf pass> == u
<phn syl1 peak perf pass> == i
<phn syl1 peak imp act> == i
<phn syl1 peak part act> == i

% prefixes for different tenses
<tense prefix imp act> == a
<tense prefix imp pass> == u
<tense prefix part> == m u

% mapping different binyan forms to binyan nodes.

A Syllable-based Account of Arabic Morphology 63

<bin1> == "Bin1:<>"
<bin2> == "Bin2:<>"
<bin3> == "Bin3:<>"
<bin4> == "Bin4:<>"
<bin5> == "Bin5:<>"
<bin6> == "Bin6:<>"
<bin7> == "Bin7:<>"
<bin8> == "Bin8:<>"
<bin9> == "Bin9:<>"
<bin10> == "Bin10:<>"
<bin11> == "Bin11:<>"
<bin12> == "Bin12:<>"
<bin13> == "Bin13:<>"
<bin14> == "Bin14:<>"
<bin15> == "Bin15:<>".

% Binyan I - the most basic and with the most
% "irregularities"
Bin1:

<> == Verb
<phn syl2 coda imp act> == "<c1>"
<phn syl1 peak imp act> == u
<phn syl2 peak imp> ==
<phn syl2 peak part pass> ==
<phn syl2 peak part act> == a a
<phn syl1 peak part pass> == u u
<tense prefix part act> ==
<tense prefix part pass> == m a.

% Binyan II - doubled middle consonant, one prefix
% difference
Bin2:

<> == Verb
<phn syl2 coda> == Root:<c2>
<tense prefix imp act> == u.

% Binyan III - doubled first vowel, prefix difference
% as above
Bin3:

<> == Verb
<phn syl2 peak> == Verb Verb
<tense prefix imp act> == Bin2.

% Binyan IV - c1 moved and /?/ added in its place,
% prefix as above
Bin4:

<> == Verb
<phn syl2 onset> == ’?’
<phn syl2 coda> == Root:<c1>
<tense prefix imp act> == Bin2.

% Binyan V - trisyllable, has extra syllable’s
% values defined, different final peak, consonant doubling

64 Cahill

% as for Bin II.
Bin5:

<> == Verb
<phn root> == Trisyllable
<phn syl3 onset> == t
<phn syl3 peak> == "<phn syl2 peak>"
<phn syl1 peak imp act> == a
<phn syl2 coda> == Bin2.

% Binyan VI - as Bin V but no consonant doubling,
% first peak fixed, second doubled as Bin III.
Bin6:

<> == Bin5
<phn syl2 coda> == Verb
<phn syl3 peak> == a
<phn syl2 peak> == Bin3.

% Binyan VII - trisyllable, coda only defined for
% first syllable
Bin7:

<> == Verb
<phn root> == Trisyllable
<phn syl3 coda> == n.

% Binyan VIII - adds second consonant to first onset.
Bin8:

<> == Verb
<phn syl2 onset> == Verb Root:<c2>.

% Binyan IX - as Bin VIII but second coda is third,
% not second, consonant
Bin9:

<> == Bin8
<phn syl1 onset> == Root:<c3>.

% Binyan X - as Bin VI, but with /st/ in place
% of first consonant
Bin10:

<> == Bin4
<phn syl2 onset> == s t
<tense prefix imp act> == Verb.

% Binyan XI - as Bin IX, but vowel doubled as in Bin III
Bin11:

<> == Bin9
<phn syl2 peak> == Bin3.

% Binyan XII - as Bin VIII, first coda /w/
Bin12:

<> == Bin8
<phn syl2 coda> == w.

% Binyan XIII - as Bin XII, second onset also /w/
Bin13:

A Syllable-based Account of Arabic Morphology 65

<> == Bin12
<phn syl1 onset> == w.

% Binyan XIV - as Bin IX, first coda /n/
Bin14:

<> == Bin9
<phn syl2 coda> == n.

% Binyan XV - as Bin XIV, final consonant /y/
Bin15:

<> == Bin14
<phn syl1 coda> == y.

Write:
<> == Verb
<c1> == k
<c2> == t
<c3> == b.

Appendix B: The Output of the Theory

Write:<bin1 mor word perf act> = k a t a b.
Write:<bin2 mor word perf act> = k a t t a b.
Write:<bin3 mor word perf act> = k a a t a b.
Write:<bin4 mor word perf act> = ? a k t a b.
Write:<bin5 mor word perf act> = t a k a t t a b.
Write:<bin6 mor word perf act> = t a k a a t a b.
Write:<bin7 mor word perf act> = n k a t a b.
Write:<bin8 mor word perf act> = k t a t a b.
Write:<bin9 mor word perf act> = k t a b a b.
Write:<bin10 mor word perf act> = s t a k t a b.
Write:<bin11 mor word perf act> = k t a a b a b.
Write:<bin12 mor word perf act> = k t a w t a b.
Write:<bin13 mor word perf act> = k t a w w a b.
Write:<bin14 mor word perf act> = k t a n b a b.
Write:<bin15 mor word perf act> = k t a n b a y.
Write:<bin1 mor word perf pass> = k u t i b.
Write:<bin2 mor word perf pass> = k u t t i b.
Write:<bin3 mor word perf pass> = k u u t i b.
Write:<bin4 mor word perf pass> = ? u k t i b.
Write:<bin5 mor word perf pass> = t u k u t t i b.
Write:<bin6 mor word perf pass> = t a k u u t i b.
Write:<bin7 mor word perf pass> = n k u t i b.
Write:<bin8 mor word perf pass> = k t u t i b.
Write:<bin10 mor word perf pass> = s t u k t i b.
Write:<bin1 mor word imp act> = a k t u b.
Write:<bin2 mor word imp act> = u k a t t i b.
Write:<bin3 mor word imp act> = u k a a t i b.
Write:<bin4 mor word imp act> = u ? a k t i b.
Write:<bin5 mor word imp act> = a t a k a t t a b.
Write:<bin6 mor word imp act> = a t a k a a t a b.

66 Cahill

Write:<bin7 mor word imp act> = a n k a t i b.
Write:<bin8 mor word imp act> = a k t a t i b.
Write:<bin9 mor word imp act> = a k t a b i b.
Write:<bin10 mor word imp act> = a s t a k t i b.
Write:<bin11 mor word imp act> = a k t a a b i b.
Write:<bin12 mor word imp act> = a k t a w t i b.
Write:<bin13 mor word imp act> = a k t a w w i b.
Write:<bin14 mor word imp act> = a k t a n b i b.
Write:<bin15 mor word imp act> = a k t a n b i y.
Write:<bin1 mor word imp pass> = u k t a b.
Write:<bin2 mor word imp pass> = u k a t t a b.
Write:<bin3 mor word imp pass> = u k a a t a b.
Write:<bin4 mor word imp pass> = u ? a k t a b.
Write:<bin5 mor word imp pass> = u t a k a t t a b.
Write:<bin6 mor word imp pass> = u t a k a a t a b.
Write:<bin7 mor word imp pass> = u n k a t a b.
Write:<bin8 mor word imp pass> = u k t a t a b.
Write:<bin10 mor word imp pass> = u s t a k t a b.
Write:<bin1 mor word part act> = k a a t i b.
Write:<bin2 mor word part act> = m u k a t t i b.
Write:<bin3 mor word part act> = m u k a a t i b.
Write:<bin4 mor word part act> = m u ? a k t i b.
Write:<bin5 mor word part act> = m u t a k a t t i b.
Write:<bin6 mor word part act> = m u t a k a a t i b.
Write:<bin7 mor word part act> = m u n k a t i b.
Write:<bin8 mor word part act> = m u k t a t i b.
Write:<bin9 mor word part act> = m u k t a b i b.
Write:<bin10 mor word part act> = m u s t a k t i b.
Write:<bin11 mor word part act> = m u k t a a b i b.
Write:<bin12 mor word part act> = m u k t a w t i b.
Write:<bin13 mor word part act> = m u k t a w w i b.
Write:<bin14 mor word part act> = m u k t a n b i b.
Write:<bin15 mor word part act> = m u k t a n b i y.
Write:<bin1 mor word part pass> = m a k t u u b.
Write:<bin2 mor word part pass> = m u k a t t a b.
Write:<bin3 mor word part pass> = m u k a a t a b.
Write:<bin4 mor word part pass> = m u ? a k t a b.
Write:<bin5 mor word part pass> = m u t a k a t t a b.
Write:<bin6 mor word part pass> = m u t a k a a t a b.
Write:<bin7 mor word part pass> = m u n k a t a b.
Write:<bin8 mor word part pass> = m u k t a t a b.
Write:<bin10 mor word part pass> = m u s t a k t a b.

5

Inheritance-based Approach to Arabic Verbal
Root-and-Pattern Morphology

Salah R. Al-Najem
Department of Arabic, Faculty of Arts, Kuwait University, P.O. Box: 23558, Safat, Kuwait

Abstract: This chapter introduces a computational approach to the derivation and inflection of Arabic
verbs. The approach attempts to capture generalizations, dependencies, and syncretisms
existing in Arabic verbal morphology in a compact non-redundant manner. The approach
is represented by a computational implementation in DATR lexical knowledge repre-
sentation language. Generalizations will be captured through the use of Default Inheri-
tance technique. Dependencies will be handled through the use of Multiple Inheritance
technique. Default Inference technique will be used to capture syncretisms

5.1 Introduction

Arabic morphology is a system governed by a number of generalizations, depen-
dencies, and syncretisms that explain the overt aspects of regularity in the deriva-
tional and inflectional structure of Arabic. A generalization is a statement about the
facts of a language, which holds true in all cases or in nearly all cases (Trask 1993).
A dependency is a case in which a (dependent) form is derived from another
form. Finally, a syncretism is the case in which two or more morphemes that are
morphosyntactically distinct appear identical in form.

In the context of implementing Arabic morphology computationally, these gener-
alizations, dependencies, and syncretisms should be taken into consideration.
Capturing such generalizations, dependencies, and syncretisms in a computational
implementation of Arabic morphology can save that implementation from redun-
dancy and can make it more compact, which is a vital issue in linguistics and
computer science. This chapter introduces a computational approach to Arabic
verbal morphology in which these generalizations, dependencies, and syncretisms
are used to systematize Arabic in a concise manner. The approach is repre-
sented by an implementation written in the DATR lexical knowledge representation
language.

67

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 67–88.
C© 2007 Springer.

alnajem@arts.kuniv.edu.kw

68 Al-Najem

5.2 Linguistic Data

Verbs in Arabic are formed from roots consisting of three or four letters
(known as radical letters). From these roots, verbal stems are constructed using
a number of canonical forms known as measures. Measures are sequences of
consonants and vowels that represent word structure. They may also contain
stem derivational affixes. Each measure is normally associated with perfective
(active and passive), imperfective (active and passive), and imperative patterns,
which are used to form perfective, imperfective, and imperative verbal stems.
The perfective verbs indicate a completed act, while imperfective verbs denote
an unfinished act, which is just beginning or in progress. Measures that are
intransitive or express a state of being do not normally associate with passive
voice inflection. The stems formed using the above patterns are used to
construct verbs through prefixing and/or suffixing inflectional prefixes and/or
suffixes.

Verbs in Arabic are either triliteral (having three radical letters) or quadriliteral
(having four). The triliteral verbal stems are formed using fifteen verbal measures
while the quadriliteral verbal stems use four. Table 5.1 shows seven of these measures
with examples that demonstrate how verbal stems are constructed using them. The
stems are given in this table without inflectional prefixes and suffixes. For the
triliteral verbs, the root ksr (breaking) will be used as an example root, while the
root dHrj (rolling) will be used for the quadriliteral verbs. Roman numbers are used
for reference with the prefix Q denoting a quadriliteral verbal measure. It should be

Table 5.1. The verbal measures

No Measure Active
Perfective

Passive
Perfective

Active
Imperfective
and
Imperative

Passive
Imperfective

I faς al C1aC2aC3

kasar
C1uC2iC3

kusir
C1C2iC3

ksir
C1C2aC3

ksar
II faς∼al C1aC2∼aC3

kas∼ar
C1uC2∼iC3

kus∼ir
C1aC2∼iC3

kas∼ir
C1aC2∼aC3

kas∼ar
III faAςal C1aAC2aC3

kaAsar
C1uwC2iC3

kuwsir
C1aAC2iC3

kaAsir
C1aAC2aC3

kaAsar
IV Âafςal ÂaC1C2aC3

Âaksar
ÂuC1C2iC3

Âuksir
ÂaC1C2iC3

Âaksir
ÂaC1C2aC3

Âaksar
V tafaς∼al taC1aC2∼aC3

takas∼ar
tuC1uC2∼iC3

tukus∼ir
taC1aC2∼aC3

takas∼ar
taC1aC2∼aC3

takas∼ar
QI faςlal C1aC2C3aC4

daHraj
C1uC2C3iC4

duHrij
C1aC2C3iC4

daHrij
C1aC2C3aC4

daHraj
QII tafaςlal taC1aC2C3aC4

tadaHraj
tuC1uC2C3iC4

tuduHrij
taC1aC2C3aC4

tadaHraj
taC1aC2C3aC4

tadaHraj

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 69

noted that not all measures are applicable with every root. The roots ksr and dHrj,
for example, do not occur with some measures. For instance, *Âaksar (Measure IV)
is unacceptable in Standard Arabic while kasar (Measure I) is acceptable. It should
also be noted that some stems undergo certain additional phonological processes. In
addition, in this table, I will use CV arrays to represent the perfective, imperfective,
and imperative stems (patterns) of each measure.1

Measure I (the stem kasar) is considered the basic measure (stem) from which
the other 14 triliteral verbal stems are derived. The derivation is done throgh various
modifications of the meaning associated with that basic stem. Similarly, measure QI
(the stem daHraj) can be considered a basic form (stem) from which the remaining
three quadriliteral verbal stems are derived.

So far, we have considered the derivation of verbs. We turn now to verb inflection.
The inflection of verbs in Arabic is mainly achieved through the use of prefixes and
suffixes denoting person, number, and gender. These non-stem prefixes and suffixes
are affixed to the perfective, imperfective, and imperative stems, which are produced
using the verbal measures from roots as shown in Table 5.1. The reader should note
that further changes in stem structure, such as radical letter rejection, vowel rejection,
and radical letter transformation, are also applied in the inflection process when we
deal with some roots.

As mentioned above, Arabic verbs have perfective, imperfective, and imper-
ative stems. The perfective verbs indicate a completed act, while imperfective
verbs denote an unfinished act which is just commencing or in progress. Table 5.2
shows a partial inflection paradigm illustrating the perfective active, imper-
fective active, and imperative inflection for the second person masculine and
feminine.

Table 5.2. The perfective, imperfective, and imperative
paradigm

Perfective Imperfective Imperative

2nd Person Singular
Mas kasar-ta ta-ksir-u ksir2

Fem kasar-ti ta-ksir-iyn ksir-iy

2nd Person Dual
Mas kasar-tumaA ta-ksir-aAn ksir-aA
Fem kasar-tumaA ta-ksir-aAn ksir-aA

2nd Person Plural
Mas kasar-tum ta-ksir-uwn ksir-uw
Fem kasar-tun∼a ta-ksir-na ksir-na

1 So a measure can actually produce up to four different stems.
2 The imperfective stem ksir has the surface form Ǎiksir with the epenthetic Ǎi prefixed to it.

70 Al-Najem

There are a number of generalizations that can be captured in relation to Arabic
verbal inflections. These generalizations are:

(1) Generalizations about Verbal Inflectional Paradigms:

a) Perfective active and passive inflectional paradigms are constructed by
suffixing a perfective inflectional suffix (like: {-tu}) to a perfective stem (like
kasar). There are no perfective inflectional prefixes.

b) Imperfective active and passive inflectional paradigms are constructed by
prefixing an imperfective inflectional prefix (like:{ya-}) to an imperfective
stem (like: staksir) and suffixing an imperfective inflectional suffix (like {-u}).

c) Imperative inflectional paradigms are constructed by suffixing an imperative
inflectional suffix (like: {-aA}) to an imperative stem (like: staksir). There
are no imperative inflectional prefixes.

d) The imperative stems are the same as the imperfective active stems.
e) The imperfective active prefixes end with the vowel ‘a.’ The imperfective

passive prefixes are the same as the imperfective active prefixes except that
the prefix vowel becomes ‘u.’

Besides the previous generalizations relating to the formation of verbal paradigms,
there is a sub-generalization related to the inflectional paradigms that correspond to
the verbal measures II, III, IV, and QI. The inflectional paradigms that correspond to
these measures are constructed in the same way that the verbal inflectional paradigms
mentioned in (1) are except that the imperfective active prefix will end with the vowel
‘u’ instead of ‘a.’ In other words, the vowel ‘a’ of the imperfective active prefixes is
changed to ‘u’ when these prefixes are used with the imperfective active stems that
consist of exactly two heavy syllables. A heavy syllable is a syllable with a branching
nucleus (CVV) or a branching rime (CVC). These dual heavy syllable stems are
those imperfective active stems produced using the measures, II, III, IV, and QI, such
as the stem kas∼ir (Measure II).

In addition, there are dependencies between verbal measures. There are, in fact,
overt dependencies between the basic verbal measure I and most of the derived
triliteral verbal measures. There are also overt dependencies between the basic
quadriliteral verbal measure QI and most of the derived quadriliteral verbal measures.
We can capture these dependencies by means of the following generalizations:

(2) Dependencies between Verbal Measures:

a) The perfective active and passive patterns (stems) of the triliteral derived
measures are constructed with the perfective active and passive patterns
(stems) of the basic triliteral measure I (C1aC2aC3

3 and C1uC2iC3) by

3 The final syllable vowel (a) of Measure I perfective active pattern (C1aC2aC3) is changed
to ‘u’ or ‘i’ according to stem root (see Table 5.1). For example, the perfective active stem
formed from the roots Hsn and ςlm using Measure I are Hasun (C1aC2uC3) and ςalim
(C1aC2iC3) not * Hasan and * ςalam.

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 71

changing the pattern (stem) portion that precedes the final C2VC3 syllable of
these derived patterns (stems).
The imperfective active and passive patterns of the triliteral derived measures
are constructed with the imperfective active and passive patterns of the basic
triliteral measure I (C1C2iC3

4 and C1C2aC3) by changing the pattern portion
that precedes the final C2VC3 syllable of these derived patterns.

b) The perfective active and passive patterns of the quadriliteral derived measures
are derived from the perfective active and passive patterns of the basic
quadriliteral measure QI (C1aC2C3aC4 and C1uC2C3iC4) by changing the
pattern portion that precedes the final C3VC4 syllable of these derived patterns.
The imperfective active and passive patterns of the quadriliteral derived
measures are derived from the imperfective active and passive patterns of the
basic quadriliteral measure QI (C1aC2C3iC4 and C1aC2C3aC4) by changing
the pattern portion that precedes the final C3VC4 syllable of these derived
patterns.
The changes include the gemination of radical letters, the deletion of vowels,
and the insertion of affixes. For example, the Measure II perfective active
pattern C1aC2 ∼aC3 (such as kas∼ar) and the Measure VII perfective active
pattern nC1aC2aC3 (such as nkasar) are derived from the perfective active
pattern of the basic triliteral measure I C1aC2aC3 (such as kasar), but at the
same time geminating the second radical letter in C1aC2 ∼aC3 (kas∼ar) and
prefixing the derivational stem-prefix {n−} in nC1aC2aC3 (nkasar). Notice
here that the derived patterns share with the basic pattern the same final
C2VC3 syllable (sar).

c) The ta-prefixed verbal measures (V, VI, and QII) also change the vowel of the
final CVC syllable of the basic measure I/QI active voice imperfective pattern
(C1C2iC3/ C1aC2C3iC4) from ‘i’ to ‘a’ in the derived patterns. For example,
we can get takas∼ar (Imperf Act, Measure V) and tadaHraj (Imperf Act,
Measure QII) but not *takas∼ir or *tadaHrij.

The verbal inflectional paradigms also exhibit a number of syncretisms. To show
these syncretisms, let us consider the perfective and imperfective paradigms. First,
the following is the perfective paradigm formed from the root ksr using Measure II:
First, Table 5.3 provides the perfective paradigm formed from the root ksr using
Measure II. As the table shows, there are a number of syncretisms present in the
suffixes:

• {-tu}, which indicates perfective first singular
• {-naA}, which indicates perfective first dual or plural
• {-tumaA}, which indicates perfective second dual

4 The final syllable vowel (i) of the Measure I imperfective active pattern (C1C2iC3) is
changed to ‘u’ or ‘a’ according to stem root (see Table 5.1). For example, the imperfective
active stem formed from the roots ktb and ftH using Measure I are ktub (C1C2uC3) and
ftaH (C1C2aC3) not * ktib and * ftiH.

72 Al-Najem

Table 5.3. The perfective paradigm

Mas Fem

Perfective Active
Singular
1st kas∼ar-tu kas∼ar-tu
2nd kas∼ar-ta kas∼ar-ti
3rd kas∼ar-a kas∼ar-at

Dual
1st kas∼ar-naA kas∼ar-naA
2nd kas∼ar-tumaA kas∼ar-tumaA
3rd kas∼ar-aA kas∼ar-ataA

Plural
1st kas∼ar-naA kas∼ar-naA
2nd kas∼ar-tum kas∼ar-tun∼a
3rd kas∼ar-uw kas∼ar-na

Perfective Passive
Singular
1st kus∼ir-tu kus∼ir-tu
2nd kus∼ir-ta kus∼ir-ti
3rd kus∼ir-a kus∼ir-at

Dual
1st kus∼ir-naA kus∼ir-naA
2nd kus∼ir-tumaA kus∼ir-tumaA
3rd kus∼ir-aA kus∼ir-ataA

Plural
1st kus∼ir-naA kus∼ir-naA
2nd kus∼ir-tum kus∼ir-tun∼a
3rd kus∼ir-uw kus∼ir-na

There is also a partial syncretism expressed by the incorporated (connected) subject
pronoun ‘aA,’ which indicates the dual number. In this context, the incorporated
pronoun ‘aA’ is used as a complete suffix, as in {-aA}, and as parts of suffixes,
as in {-ataA} and {-tumaA}. The reader will note that the morphosyntactic feature
lists, which correspond to the three suffixes, share the dual number. Another
partial syncretism is expressed by the incorporated subject pronoun ‘at,’ which
indicates the third person singular feminine and which appears as a complete suffix
({-at}) and as part of a suffix ({-ataA}).5 A third partial syncretism in the perfective
paradigm is expressed by ‘t,’ which indicates the second person in the suffixes
{-tumaA}, {-ta}, {-ti}, {-tun∼a}, and {-tum}. All these suffixes share the second
person.

5 Notice that ‘at’ constitutes a third person dual feminine suffix when it is used with the dual
‘aA’ in the suffix {-ataA}.

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 73

Table 5.4. The imperfective paradigm

Mas Fem

Imperfective Active
Singular
1st Âa-ksir-u Âa-ksir-u
2nd ta-ksir-u ta-ksir-iyn
3rd ya-ksir-u ta-ksir-u

Dual
1st na-ksir-u na-ksir-u
2nd ta-ksir-aAn ta-ksir-aAn
3rd ya-ksir-aAn ta-ksir-aAn

Plural
1st na-ksir-u na-ksir-u
2nd ta-ksir-uwn ta-ksir-na
3rd ya-ksir-uwn ya-ksir-na

Imperfective Passive
Singular
1st Âu-ksar-u Âu-ksar-u
2nd tu-ksar-u tu-ksar-iyn
3rd yu-ksar-u tu-ksar-u

Dual
1st nu-ksar-u nu-ksar-u
2nd tu-ksar-aAn tu-ksar-aAn
3rd yu-ksar-aAn tu-ksar-aAn

Plural
1st nu-ksar-u nu-ksar-u
2nd tu-ksar-uwn tu-ksar-na
3rd yu-ksar-uwn yu-ksar-na

Syncretisms in the imperfective paradigm can be seen by considering the imper-
fective paradigm formed from the root ksr using Measure I, listed in Table 5.4. As
this table shows, there are a number of syncretisms present in the prefixes:

• { ÂV-}, which indicates imperfective first singular
• {nV-}, which indicates imperfective first person
• {tV-}, which generally indicates imperfective second person
• {yV-}, which indicates imperfective third person.

Additionally, there are syncretisms among the imperfective suffixes, which are
evident in the following:

• {-u} , which corresponds to half the imperfective morphosyntactic feature lists
• {-aAn}, which indicates imperfective dual
• {-uwn}, which indicates imperfective masculine plural
• {-na}, which indicates imperfective feminine plural

74 Al-Najem

Table 5.5. The imperative paradigm

Mas Fem

Singular
2nd kas∼ir kas∼ir-iy

Dual
2nd kas∼ir-aA kas∼ir-aA

Plural
2nd kas∼ir-uw kas∼ir-na

The above paradigm also shows that the incorporated subject pronouns ‘aA’ (dual)
and ‘uw’ (Mas Plural) have been used as part of the imperfective suffixes {-aAn}
and {-uwn}. Hence, they represent a kind of partial syncretism here.

Finally, we turn to the imperative paradigm. Table 5.5 lists the imperative inflec-
tional paradigm formed from the root ksr using Measure II. In this paradigm, we
observe that there is a syncretism represented by the suffix {-aA}, which indicates
the imperative dual. We also observe, when we compare this paradigm with the
perfective paradigm, that there are syncretisms between the imperative and perfective
paradigms represented by the suffixes (incorporated subject pronouns) {-uw} (Mas
Plural), {-na} (Fem Plural), and {-aA} (Dual), which correspond to the following
morphosyntactic feature lists:

• {-uw}: Imp 2nd Plural Mas, Perf 3rd Plural Mas
• {-na} : Imp 2nd Plural Fem, Perf 3rd Plural Fem
• {-aA} : Imp 2nd Dual Mas/Fem, Perf 3rd Dual Mas

When we compare the imperative paradigm with the imperfective paradigm, we
see that the incorporated subject pronouns ‘aA’and ‘uw’ represent a kind of partial
syncretism if we consider the imperative suffixes {-aA}and {-uw} on the one hand
and the imperfective suffixes {-aAn} and {-uwn} on the other. The incorporated
subject pronouns ‘aA’and ‘uw’ in the imperative and imperfective suffixes indicate
Dual and Mas Plural, respectively. We also notice that the imperative suffix (incor-
porated subject pronoun) {-na} (Imp 2nd Plural Fem) represents a syncretism with
the imperfective suffix {-na} (Imperf 3rd Plural Fem). The two suffixes indicate
Plural Fem.

5.3 The Computational Approach

In a good computational approach to Arabic verbal morphology, the above general-
izations, dependencies, and syncretisms should be employed. Capturing such gener-
alizations, dependencies, and syncretisms in a computational implementation of
Arabic morphology can save the system from redundancy and make it more compact.

To show how such generalizations, dependencies, and syncretisms can be used, in
this chapter, I will introduce a computational approach to Arabic verbal morphology,

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 75

which is constructed with DATR.6 DATR is a lexical knowledge representation
language based on the inheritance technique.7 The approach will capture the above
generalizations, dependencies, and syncretisms about Arabic verbal morphology in a
compact non-redundant manner. The approach adopts the multilinear formalization
of Arabic morphology introduced by McCarthy (1981, 1982), which organizes
Arabic verbal stem structure using multiple layers of representation known as tiers.
This approach has been also applied in Al-Najem (1998) to capture generalizations,
dependencies, and syncretisms about Arabic nominal morphology using DATR.

The abovementioned generalizations will be handled in the implementation by
encoding the generalizations once they are in generalization nodes higher in the
inheritance hierarchy (inheritance network). Then, using default inheritance, other
nodes lower in the inheritance hierarchy inherit, by default, information from these
generalization nodes, and override, in some cases, some of the inherited default
information. Thus, nodes lower in the inheritance hierarchy will inherit general-
ization information, which has been encoded once higher in the hierarchy, without
re-encoding this information.

The dependencies between verbal measures will be systematized through stem
partitioning and through the multiple inheritance technique. In this context, a node
in this implementation that represents a derived (dependant) measure will inherit a
shared stem portion (the final CVC syllable) from the node representing its corre-
sponding original measure. The node representing the derived form defines the
remaining portion, which precedes the final CVC shared portion.

Syncretisms in inflectional paradigms are handled mainly using default inference
technique. Using a default interference technique, the implementation can infer, from
a single (usually underspecified) statement about the inflectional paradigm, more
statements about that paradigm. These statements are implicitly inferred, by default,
from the original single statement without re-encoding them explicitly.

The following is a demonstration of how generalizations are handled in the
implementation. The abovementioned generalizations about verb inflection will be
encoded in our implementation in the node Verb, which contains the following
information

Verb:

<$vform syn cat> == verb

<$vform mor stem> == "<$vform p l>" "<$vform p r>"

<$vform mor stem imp> == "<$vform mor stem imperf act>"

<$vform mor> == "<$vform mor stem>" Verb_Infl_Aff:<mor

6 For more details about the computational approach introduced in this chapter and for
details on other computational approaches to Arabic morphology, see Al-Najem (1998).

7 For an introduction to DATR, see Evans (1990) and Evans and Gazdar (1990, 1996).

76 Al-Najem

suf>

<$vform mor imperf> == Verb_Infl_Aff:<mor pre imperf>

Imperf_Pre_V:<a> "<$vform mor stem imperf>"

Verb_Infl_Aff:<mor suf imperf>

<$vform mor imperf pass> == Verb_Infl_Aff:<mor pre

imperf pass> Imperf_Pre_V:<u> "<$vform mor stem imperf

pass>" Verb_Infl_Aff:<mor suf imperf pass>.

Notice here that the imperfective prefix, in this implementation, consists of an
imperfective prefix consonant inherited from the node Verb_Infl_Aff and an
imperfective prefix vowel inherited from the node Imperf_Pre_V. This allows
for the generalization that the imperfective active prefix vowel is normally ’a’ but
is changed to ’u’ when imperfective active prefixes are used with imperfective
active stems of Measures II, III, IV, and QI. In addition, as previously indicated,
the passive imperfective prefixes are the same as the active imperfective prefixes
except that the vowel ’u’ is used instead of ’a.’ The imperfective prefix begins with
a consonant (’n’, ’Â’, ’y’, or ’t’), which has no variation with respect to a measure
or a voice (imperfective active/passive). The variation in the imperfective prefixes
occurs just to the prefixes’ vowel (’a’ or ’u’), as we have already seen, according
to the measure and the voice. Thus, instead of explicitly encoding the prefixes with
the two variations of vowel, which yields two sets of prefixes: {na, Âa, ya, ta}
and {nu, Âu, yu, tu}, we have only encoded the consonants of the prefixes in the
node Verb_Infl_Aff, and the vowel is chosen by inheritance from the node
Imperf_Pre_V.

The sixth statement of Verb partially overrides the third statement, declaring
that the imperfective passive inflection paradigms are constructed by prefixing an
imperfective passive prefix ending with the vowel ’u’ to an imperfective passive
stem and suffixing an imperfective suffix. The fifth and sixth statements, using
default interference, provide the imperfective active and passive paradigms. In other
words, they allow the generation of all the 36 active and passive imperfective verb
forms.

The node Verb, which encoded generalizations about verbal paradigm formation,
occurs high in the inheritance hierarchy. It will be inherited, by default, several times
by other nodes lower in the inheritance hierarchy without re-encoding the gener-
alizations of Verb again in those nodes. Deault inheritance permits us to encode
these linguistic generalizations in a compact, non-redundant manner. Note also that
the use of default inference in the last three statements of Verb is crucial to allow
the generation of 78 verb forms, that is, virtually all the Arabic morphology verb
forms.

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 77

The lower nodes inheriting from Verb represent measures, and these nodes
produce the inflectional stems8 that correspond to each measure from radical letters
inherited globally from root nodes. These stems will be used in the formation of
the inflectional paradigms. A difficulty could arise here. The node Verb states that
the (default) way of constructing the imperfective active paradigm is by prefixing an
imperfective active prefix ending with the vowel ’a’ to an imperfective active stem
and suffixing an imperfective suffix. This holds for most of the measures. However,
some measures construct the imperfective active paradigm by prefixing an imper-
fective active prefix ending with the vowel ’u’ instead of ’a.’ These are Measures
II, III, IV, and QI, as previously stated. The use of the vowel ’u’ in imperfective
active prefixes represents a sub-generalization (sub-regularity) emerging from the
generalizations (regularities) of the node Verb, which encoded the generalizations
previously stated in (1). So, we need a way to define this sub-generalization in a node
that can be inherited by specific nodes representing Measures II, III, IV, and QI. This
is achieved by defining an intermediate node9 (Verb2), which inherits, by default,
all the information of the default (regular) node Verb but overrides the inherited
statement that encodes the imperfective active paradigm by changing the original
prefix vowel ’a’ to ’u.’

Verb2:

<> == Verb

<$vform mor imperf> == Verb_Infl_Aff:<mor pre imperf>

Imperf_Pre_V:<u> "<$vform mor stem imperf>"

Verb_Infl_Aff:<mor suf imperf>.

Thus, while the node Verb represents the default way of constructing the verbal
paradigms, Verb2 represents the sub-generalization (sub-regularity) that is related
to the vowel of the imperfective active prefixes used with the imperfective active
stems of Measures II, III, IV, and QI.

So far, we have considered how generalizations about verb formation can
be encoded in our implementation. Now, we turn to generalizations relating to the
dependencies between verbal measures. Recall in this context, as stated in (2), that
the patterns of most of the triliteral verbal measures are normally derived from
the corresponding patterns of the triliteral verbal measure I by means of changing
the pattern portion that precedes the final C2VC3 syllable of these derived patterns.
In addition, most of the patterns of the verbal quadriliteral measures are derived
from the corresponding patterns of the verbal quadriliteral measure QI by changing

8 Examples of these inflectional stems are the imperfective active and imperfective passive
stems.

9 The use of intermediate nodes is a common way adopted in DATR literature to capture
sub-regularities. See Corbett and Fraser (1993) for example.

78 Al-Najem

the pattern portion that precedes the final C3VC4 syllable of these derived patterns.
This means that to capture the dependencies between the verbal measures, we need
to split the verbal stem (pattern) into two parts: the final CVC syllable, which
is normally invariably shared between the stems (patterns) of the derived and the
original measures and a remainder, which is the part of the stem (pattern) preceding
the final CVC syllable.10 To achieve this, the verbal stem in our implementation will
consist of two parts: a right part that represents the final CVC syllable of the stem
and a left part that represents the remainder of the stem preceding the final CVC
syllable.

To demonstrate how the dependencies between verbal measures are captured in
our implementation, we take the following example, involving the dependencies
between Measures III (faAςal) and VIII (ftaςal) on the one hand and the basic verbal
Measure I (faςal) on the other hand. The following is a definition of the node Faςal,
which represents the basic verbal Measure I:

% The CV-patterns of the Measure I (faςal)

Faςal:

<> == Verb

<faςal p l> == C:<1> V:<>

<faςal p l imperf> == C:<1>

<faςal p r> == C:<2> V:<*> C:<3>.

The node V below encodes the consonants of a root through global inheritance
from nodes representing roots, and the node C encodes perfective and imperfective
vocalisms:

%The Vocalism Tier
V:

<perf act> == Perf_Act:<>

<perf pass> == Perf_Pass:<>

<* perf act> == <perf act *>

<* perf pass> == <perf pass *>

10 This remainder is not always a single complete free standing syllable. It may become part
of a syllabic structure through the insertion of the epenthetic ‘ÂV,’ as in (Âi)nC1a C2aC3

(Measure VII, Perf Act), which yields the syllabic structure CVCCV. It may also become
part of a syllabic structure by the prefixation of an inflectional prefix like {ya-} as in (ya)C1

C2iC3 (Measure I, Imperf Act), which yields the syllabic structure CVC.

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 79

<imperf act> == Imperf_Act:<>

<imperf pass> == Imperf_Pass:<>

<* imperf act> == <imperf act *>

% "<* ... >" represents a terminal non-default vowel

%Vocalism Generalizations

Perf_Act:

<> == a.

Perf_Pass:

<> == u

<*> == i.

Imperf_Act:

<> == a

<*> == i.

Imperf_Pass:

<> == a.

% The association of the root tier elements (radical

% letters) to the C slots of the pattern tier

vars $n: 1 2 3 4.

C:

<$n> == "<$n>".

80 Al-Najem

The node Faςal encodes the right parts (final CVC syllables) and the left parts,
which correspond to the perfective and imperfective stems (patterns) of Measure I.
Notice also that we have not encoded the right and left parts of the imperative stems
since the imperative and imperfective active stems are the same as is indicated by the
statement (generalization):

<$vform mor stem imp> == "<$vform mor stem imperf act>"

of the node Verb, which is inherited, by default, by the current node. This gener-
alization about imperative stems has been encoded once in Verb higher in the
inheritance hierarchy, and it is then inherited by the measure nodes lower in the
hierarchy. The right and left parts of the perfective and imperfective stems are
combined together to form complete perfective and imperfective stems by one
statement encoded once in the node Verb higher in the inheritance hierarchy,
which is inherited, by default, by Faςal and the measure nodes lower in the
hierarchy:

<$vform mor stem> == "<$vform p l>" "<$vform p r>"

This line states that a verbal stem consists of a left part followed by a right part.
Default inference will fill the gaps, allowing the formation of all the perfective and
imperfective stems. For instance, this single, short, and general line will (implicitly)
stand for longer more specific lines like the following, which constructs a perfective
active stem:

<$vform mor stem perf act> == "<$vform p l perf act>"

"<$vform p r perf act>"

Then, the node FaAςal inherits the right parts (final CVC syllables) of Faςal, but
it defines its left parts in a different way:

% The CV -- patterns of the Measure III (faAςal)

FaAςal:

<> == Verb2

<faAςal p r> == Faςal:<faςal p r>

<faAςal p l> == C:<1> V:<> V:<>.

The underspecified line:

<faAςal p l> == C:<1> V:<> V:<>

states, using default inference, that the (default) left part of all the perfective and
imperfective stems (patterns) of FaAςal is constructed as the first radical letter of
a root followed by a long vowel. The vowel is inherited from the vocalism node V.

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 81

In addition, the node FaAςal inherits, by default, the generalizations encoded in
Verb2.11 The reader will, therefore, notice that in this node, we adopt a multiple
inheritance by allowing the node FaAςal to inherit from two nodes, Verb2 and
Faςal.

Thus, in the node FaAςal, we have captured the dependency between Measures
III (faAςal) and I (faςal) using multiple inheritance. We inherited the general-
izations about verbs from Verb2 and inherited the invariant right parts (final
CVC syllables) that are shared with Measure I from the node Faςal. Measure
III (faAςal) is derived from I (faςal) except that the left parts of the stems of
faςal are changed to C1aA (faA) (and C1uw in the perfective passive). In other
words, the dependency generally involves the lengthening of the first vowel. Notice
here that since we have encoded verb generalizations once in the higher node
Verb, from which the intermediate node Verb2 inherits, we do not need to re-
encode these generalizations again in the node FaAςal. We have simply inherited
these generalizations, by default, from Verb2. Notice also that we have not re-
encoded the right parts (the final CVC syllables) of the stems of FaAςal since
we encoded these parts once in Faςal and passed them on from this node.
Defining the left parts of FaAςal is accomplished in a compact non-redundant
manner by using default inference through underspecifying the left part using the
statement:

<faAςal p l> == C:<1> V:<> V:<>

This means that this statement, using default inference, will represent all the left
parts of all the perfective and imperfective stems of FaAςal. Thus, the dependency
between measures III (faAςal) and I (faςal) has been captured by means of multiple
inheritance in a compact non-redundant manner, without the need to repeat encoding
information which has previously been encoded in higher nodes.

In a similar fashion, the dependency between Measure VIII (ftaςal) and I (faςal)
can be captured:

% The CV-patterns of the Measure VIII (ftaςal)

Ftaςal:

<> == Verb

<ftaςal p r> == Faςal:<faςal p r>

<ftaςal p l> == C:<1> Affix:<t> V:<>.

This node illustrates that the stems of Measure VIII (ftaςal) are derived from the
stems of Measure I (faςal) by inserting the infix {t} after the first radical letter in the

11 As previously seen, the node Verb2 is a sub-generalization intermediate node, which
inherits, by default, the information of the generalization node Verb.

82 Al-Najem

left part of the stems of ftaςal. The node Affix defines derivational affixes used in
the CV-pattern tier and is defined below:

Affix:

<t> == t

<n> == n

<st> == s t

<Â> == Â

<w> == w.

The affixation of derivational affixes is indicated in the pattern tier by inheritance
descriptors like Affix:<t>, which indicates (inherits) the reflexive infix {t}.

The other dependencies between verbal measures are captured using a similar
method to that used with the dependencies between the previous verbal measures.
The inheritance hierarchy below demonstrates how the dependencies between verbal
measures are captured in our implementation:

Note that some derived measures inherit from multiple nodes (multiple inheri-
tance). Multiple inheritance is indicated in this diagram by having a derived measure
node which inherits from more than one node (receiving more than one IN arrow).

So far, we have considered how generalizations relating to verb formation and
generalizations about the dependencies between verbal measures are captured in our
implementation. We will now discuss syncretisms in inflectional paradigms and how
these are encoded in our DATR implementation.

The verbal inflectional paradigms are handled in our implementation by means of
the node Verb_Infl_Aff. In this node, we define paths representing morphosyn-
tactic feature lists and assign these paths values representing inflectional affixes
(prefixes and suffixes) that correspond to the paths’ morphosyntactic feature lists,
as we will see shortly. The inflectional paradigms themselves are built through the
generalization nodes Verb and Verb2 using statements like the following state-
ments taken from the definition of the node Verb:

<$vform mor> == "<$vform mor stem>" Verb_Infl_Aff:<mor

suf>

<$vform mor imperf> == Verb_Infl_Aff:<mor pre imperf>

Imperf_Pre_V:<a> "<$vform mor stem imperf>"

Verb_Infl_Aff:<mor suf imperf>

<$vform mor imperf pass> == Verb_Infl_Aff:<mor pre

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 83

Fig. 5.1. An inheritance hierarchy showing dependencies between verbal measures

imperf pass> Imperf_Pre_V:<u> "<$vform mor stem imperf

pass>" Verb_Infl_Aff:<mor suf imperf pass>

These three statements, by inheriting the affixes from Verb_Infl_Aff and
especially through default inference, allow the construction of the whole verbal
paradigm of Arabic morphology in a compact, non-redundant manner, as we have
already seen from consideration of the node Verb.

In our implementation, syncretisms in paradigms are handled mainly using default
inference. Default inference represents a useful means of expressing generalizations
and encoding repeated information in a compact non-redundant manner. It saves us
from re-encoding information which can be inferred, by default, from one (usually
underspecified) path. Consider in this context the statement:

<mor suf imperf act> == u

of the node Verb_Infl_Aff, which is the node where inflectional verbal affixes
of the inflectional paradigms were encoded. From this single statement, which is

84 Al-Najem

underspecified for person, number, and gender, we can infer that, roughly, the default
suffix of the imperfective active paradigm is {-u}. This is because the suffix {-u} is
associated with half of the morphosyntactic feature lists of the imperfective active
paradigm. Then, we partially override this statement to encode the other imperfective
active suffixes, which are associated with the remaining morphosyntactic feature
lists of the imperfective active paradigm. From the previous single path (<mor suf
imperf act>), we can infer, by default, other more specific paths, which include
the following:

<mor suf imperf act first sing mas>

<mor suf imperf act first dual mas>

<mor suf imperf act first plural mas>

These paths are implicitly inferred, by default, from the previous single underspec-
ified path without re-encoding them explicitly. This is a better method than others
like local inheritance from (referral to) a specific local path, as in the following:

<mor suf imperf act first sing mas> == u

<mor suf imperf act first dual mas> == <mor suf
imperf act

first sing mas>

<mor suf imperf act first plural mas> == <mor suf
imperf act

first sing mas>

which is not a compact way in comparison to default inference.
Thus, the previous example clearly shows how default inference represents a

useful means to capture syncretisms in paradigms in a compact non-redundant
manner. Using a single short (usually underspecified) path, we can infer, by default,
multiple longer more specific paths without re-encoding these inferred paths and
their values explicitly.

As previously noted, there are some partial syncretisms in the verbal inflec-
tional paradigms, which can be captured in the implementation. Partial syncretisms
mainly concern incorporated subject pronouns, which materialize as part of suffixes
or as complete suffixes. To handle partial syncretisms in our implementation, we
encoded (generalizations about) such incorporated pronouns once in a node called
Part_Sync:

Part_Sync:

<dual> == a A

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 85

<plural mas> == u w

<plural fem> == n a

<sing fem> == a t

<second> == t.

Using this node, such incorporated pronouns will not be re-encoded explicitly in
the node Verb_Infl_Aff, which encodes the syncretism in verbal inflectional
paradigms. Instead, we refer to the node Part_Sync to inherit those incorporated
pronouns, which represent partial syncretisms. An example that shows this is the
following statement from the node Verb_Infl_Aff:

<mor suf imperf act $2nd_3rd $dual_plural> ==

Part_Sync:<$dual_plural> n12

Through this statement, the incorporated pronouns ‘aA’ (Dual) and ‘uw’ (Plural
Mas) are inherited from Part_Sync. The incorporated pronouns ‘aA’ and ‘uw’ are
parts of the suffixes {-aAn} and {-uwn} associated with the morphosyntactic feature
lists :

• {-aAn} :

Imperf Act 2nd Dual Mas, Imperf Act 3rd Dual Mas, Imperf Act 2nd Dual Fem, and
Imperf Act 3rd Dual Fem.

• {-uwn} :

Imperf Act 2nd Plural Mas, and Imperf Act 3rd Plural Mas.
The previous statement encodes this using the node Part_Sync and default
inference. This statement is partially overridden to encode the other suffixes which
are associated with the imperfective active second singular feminine in addition to the
imperfective active second and third plural feminine. At the same time, the incorpo-
rated pronouns ‘aA’ and ‘uw’ (and other incorporated pronouns) also form complete
suffixes, as can be seen in the following statement from the node

Verb_Infl_Aff:

<mor suf perf act third> == Part_Sync:<>

12 The variables $2nd_3rd and $dual_plural have the following definitions,
respectively:
vars $2nd_3rd: second third.
vars $dual_plural: dual plural.

86 Al-Najem

Using this single statement, the incorporated pronouns ‘aA’ and ‘uw’, in addition
to other incorporated pronouns, will form complete perfective active third person
suffixes corresponding to morphosyntactic feature lists, including Perf Act 3rd Dual
Mas and Perf Act 3rd Plural Mas. The single underspecified paths of that statement
will stand for paths such as:

<mor suf perf act third dual mas> == Part_Sync:
<dual mas>

<mor suf perf act third plural mas> == Part_Sync:
<plural mas>

in addition to others using default inference.
In addition to the above nodes, which define how verbal stems and inflectional

paradigms are constructed, the implementation contains other nodes known as the
lexical nodes. The lexical nodes are those representing roots and defining the radical
letters of these roots. The radical letters will be inherited, using global inheritance, by
other nodes in the implementation representing verbal measures to form verbs. The
lexical nodes also inherit (select) verbal measures, which can be used to form verbs
using the roots represented by those lexical nodes. These nodes are the query nodes
of our implementation, and they represent the initial (global) context of inheritance.
The queries that will be entered into the implementation will be queries about these
lexical nodes. An example of the lexical nodes is the node KSR, which represents the
root ksr.

KSR:

<c1> == k

<c2> == s

<c3> == r

% Verb forms

<faςal> == Faςal

<faς∼al> == Faς∼al

<nfaςal> == Nfaςal

<tafaς∼al> == Tafaς∼al

Inheritance-based Approach to Arabic Verbal Root-and-Pattern Morphology 87

So, using a node like this one and through the use of the other abovementioned nodes,
we can enter queries like the following and obtain their corresponding results:

| ? datr_theorem (’KSR’, [faςal, mor, imperf, act,
third, dual, mas]).
yaksiraAn

| ? datr_theorem (’KSR’ [faς∼al, mor, perf, act, first,
sing, mas]).
kas∼artu

| ? datr_theorem (’KSR’ [tafaς∼al, mor, perf, act,
third, sing, mas]).
takas∼ara

| ? datr_theorem (’KSR’ [faςal, mor, perf, pass, third,
sing, mas]).
kusira

| ? datr_theorem (’KSR’, [faς∼al, mor, imp, second,
sing, fem]).

kas∼iriy

DATR was originally used for generation (synthesis) only, not for recognition
(analysis). Information is obtained from DATR theories via queries that cause DATR
to generate results which take forms like theorem dumps.

5.4 Conclusion

In this chapter, we have computationally systematized generalizations, dependencies,
and syncretisms existing in Arabic verbal morphology in a compact, non-redundant
manner. Generalizations have been handled through the use of DATR default inher-
itance, as seen in the node Verb. Dependencies have been handled through the use
of DATR multiple inheritance, as seen in nodes like Faςal and FaAςal. Finally,
syncretisms have been handled through the use of DATR default inference, as seen
in the node Verbs_Infl_Aff. As has been mentioned earlier, capturing such
generalizations, dependencies, and syncretisms in a computational implementation
of Arabic morphology can save that implementation from redundancy and can make
it more compact.

88 Al-Najem

References

Al-Najem, Salah. “Computational Approaches to Arabic Morphology.” Diss. Essex
University, 1998.

Corbett, Greville and Norman Fraser. “Network Morphology: a DATR A Account of Russian
Nominal Inflection.” Journal of Linguistics 29 (1993): 113–142

Evans, Roger. “An Introduction to the Sussex PROLOG DATR System.” The DATR Papers.
Eds. Roger Evans and Gerald Gazdar . Brighton: University of Sussex, 1990. 63–70.

Evans, Roger and Gerald Gazdar, eds. The DATR Papers. Vol. 1. Brighton: University of
Sussex, 1990.

Evans, Roger and Gerald Gazdar. “DATR: A Language for Lexical Knowledge Represen-
tation.” Computational Linguistics 22.2 (1996): 167–216.

McCarthy, John. “A Prosodic Theory of Nonconcatenative Morphology.” Linguistic Inquiry
12 (1981): 373–418.

McCarthy, John. “Formal Problems in Semitic Phonology and Morphology.” Diss. Indiana
University, 1982.

Trask, R. L. A Dictionary of Grammatical Terms in Linguistics. London: Routledge, 1993.

6

Arabic Computational Morphology: A Trade-off
Between Multiple Operations and Multiple Stems

Violetta Cavalli-Sforza1 and Abdelhadi Soudi2
1 Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA

15217, U.S.A.

2 Ecole Nationale de l’Industrie Minerale, Avenue Hadj Ahmed Cherkaoui, B.P. 753, Agdal, Rabat,
Morocco.

Abstract: We present a computational approach to Arabic morphology description that draws from
Lexeme-Based Morphology (Aronoff, 1994; Beard, 1995), giving priority to stems and
granting a subordinate status to inflectional prefixes and suffixes. Although the morphology
of Arabic is non-concatenative, we make the process of generating inflected forms concate-
native by separating the generation of stems from that of other inflectional affixes. Our
approach is implemented in an extension of the MORPHĒ tool (Leavitt, 1994), which has
been enhanced in order to provide a representational formalism that embodies Lexeme-
Based Morphology theory and minimizes the number of rules required for the description
of Arabic morphology

6.1 Introduction

The morphology of Arabic poses special problems for computational natural
language processing systems. The exceptional degree of ambiguity in the writing
system, the rich morphology, and the unique word formation process of roots
and patterns all contribute to making computational approaches to Arabic very
challenging. The non-concatenative morphology of Arabic has spurred the devel-
opment of sophisticated formalisms and computational engines, as well as produced
brute force approaches. Among the more elegant formalisms, the finite-state
models proposed by (Koskenniemi, 1983), (Kay, 1987), (Beesley, 1996, 1998) and
(Kiraz, 1994, 1998, 2000), based on the autosegmental approach of (McCarthy,
1979, 1981), distinguish themselves for their effective computational implemen-
tation, but have essentially granted equal status to all the constituents of an
Arabic word (the root, the pattern and the vocalism) by placing them in separate
lexicons. Our approach differs from these in giving priority to stems in accordance
with the theory of Lexeme-Based Morphology (Aronoff, 1994; Beard, 1995) and

89

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 89–114.
C© 2007 Springer.

violetta@cs.cmu.edu

asoudi@gmail.com

90 Cavalli-Sforza and Soudi

not treating inflectional prefixes and suffixes as fully-fledged dictionary entries.
Using the stem as a basis for morphological transformations we linearize, i.e.,
make concatenative, the process of morphology generation, by separating the
generation of the correct stem from the generation of inflectional prefixes and
suffixes. Based on linguistic evidence, we place regularly predictable morphological
transformations in rules and non-predictable lexeme-specific information in the
lexicon.

We describe the implementation of our approach in the context of MORPHĒ, a
morphological description tool (Leavitt, 1994), which we have enhanced with the
objective of providing a representational formalism that embodies Lexeme-Based
Morphology theory and minimizes the number of inflectional rules required for the
description of Arabic morphology. Ongoing enhancements to the tool, and primarily
the introduction of inheritance, reduce the representation of the two-step linearization
model to a single step, making the morphological description more elegant and
increasing system performance.

6.2 Lexeme-Based Morphology

In this section, we briefly outline the premises of the theory of Lexeme-Based
Morphology (LBM) (Aronoff, 1994; Beard, 1995) on which our computational
model is based. LBM comprises several claims about the nature of morphology and
its relation to syntax. The most central claim is the collection of theses that fall under
the rubric of the Separation Hypothesis. A standard morphological analysis would
claim that a word such as ‘cats’ consists of two morphemes: the base ‘cat’ and the
plural morpheme ‘-s’. The base and the plural morpheme would have the following
representations:

(i) cat: <[+ Noun], /kaet/, CAT, where the first entry represents a set of grammatical
features, the second a phonological representation and the third a set of semantic
features.

(ii) –s: <[+ Noun], +PL, /z/, PL

The basic thesis is that all morphemes, be they lexemes such as [cat] or grammatical
morphemes such as the plural morpheme, are lexical entries consisting of
grammatical, phonological and semantic information, that is, minimal grammatical
units of analysis.

In a lexeme-based model, however, only lexemes (vocabulary items belonging to
the major lexical categories of verb, noun, adjective and adverb) and free morphemes
(e.g. detached pronouns) are minimal grammatical elements. Inflectional or deriva-
tional morphemes – suffixes, prefixes, infixes and reduplication – are not themselves
grammatical elements. Instead, these are merely the phonological expression of
operations that apply to basic grammatical elements. For example, given the forms
‘cat’ and ‘cats’, we would say that there is a lexeme [cat] that has two word forms
‘cat’ and ‘cats’ and that the description of the singular/plural of [cat] is a grammatical

Arabic Computational Morphology 91

word. It follows that affixes and other grammatical morphemes differ from major
class lexical stems. The proposed model of Arabic morphology is compatible
with this conclusion in that it does not include affixes and lexemes in the same
component.

6.3 Arabic Verbal Morphology

The most puzzling problem in the study of Arabic is its verbal system, which is
very rich in forms. Arabic verbs are based on three or four radicals (the letters that
constitute the skeleton of the verb). An Arabic verb can be conjugated according
to one of the traditionally recognized Forms or patterns. There are 15 triliteral
patterns (i.e., with 3 radicals), of which at least 9 are in common, and 4 less
common quadriliteral patterns (i.e., with 4 radicals), with some quite rare. Within
each pattern, an entire paradigm is found: two aspects/tenses (perfect and imperfect),
two voices (active and passive) and five moods (indicative, subjunctive, jussive,
imperative and energetic). In addition to prefixation and suffixation, inflectional
and derivational processes may cause stems to undergo infixational modification
in the presence of different syntactic features as well as certain consonants. Verb
roots in Arabic can be classified as shown in Fig. 6.1. A primary distinction is
made between weak and strong verbs. Weak verbs have a weak consonant (‘w’ or
‘y’) as one of their radicals. A handful of doubly weak verbs contain two weak
radicals.

In this section, we address two main issues in Arabic verbal morphology. The first
relates to weak (suppletive) verbs, which undergo stem changes. Weak consonants

triliteral

strong weak

regular hamzated doubled
radical

weak initial
radical

(assimilated)

tense

imperative subjunctive jussive energeticindicativepreterit
(perfect)

present
(imperfect)

active passive

participle

mood

weak middle
radical

(hollow)

weak final
radical

(defective)

Fig. 6.1. Classification of Arabic triliteral verbal roots and mood tense system

92 Cavalli-Sforza and Soudi

are quite common in triliteral verb patterns, but they do not always cause morpho-
logical irregularities. They are seldom present in quadriliteral patterns except for
in the second radical position, where they do not give rise to morphological irreg-
ularities (Badawi et al., 2004). The second issue relates to apophony attested in
Arabic Form 1 verbs. We conclude by describing our generation model and how
Arabic verbal morphology is implemented in an enhanced version of MORPHĒ
(Leavitt, 1994; Cavalli-Sforza & Soudi, 2003).

6.3.1 Weak Verbs

We focus on triliteral hollow verbs, but a comparable analysis is applicable to other
types of weak verbs as well. In both perfect and imperfect tenses, depending on the
person, number and gender, hollow verbs are realized by two stems: one long, with
a weak middle radical (glide), and one short, where the glide disappears and there is
a vowel change.

Hollow Verb Classes:

1. Verbs of the pattern CawaC have the perfective stem patterns CuC and CuwC
and the imperfective stem patterns CuC and CuwC. For example, zaAr (from
[zawar]) “to visit” has the perfective zur and zaAr and the imperfective stems zur
and zuwr. E.g.:
PERFECT: zurtu “I visited” and zaArat “she visited”
IMPERFECT: yazurna “they (fem.) visit” and yazuwru “he visits”

2. Verbs of the pattern CawiC have the perfective stem patterns CiC and CaAC
and the imperfective stem patterns CaC and CaAC. For example, naAm (from
[nawim]) “to sleep,” has the perfective stems nim and naAm and the imperfective
stems nam and naAm. E.g.:
PERFECT: nimtu “I slept” and naAmat “she slept”
IMPERFECT: yanamna “they (fem.) sleep” and yanaAmu “he sleeps”

3. Verbs of the pattern CayaC have the perfective stem patterns CiC and CaAC and
the imperfective stem patterns CiC and CiyC. For example, baAς (from [bayaς])
“to sell” has the perfective biς and baAς and the imperfective stems biς and
biyς. E.g.:
PERFECT: biςtu “I sold” and baAςat “she sold”
IMPERFECT: yabiςna “they (fem.) sell” and yabiyςu “he sells”

4. Verbs of the pattern CayiC have the perfective stem patterns CiC and CaAC and
the imperfective stem patterns CaC and CaAC. For example, haAb (from [hayib])
“to fear”, has the perfective stems hib and haAb and the imperfective stems hab
and haAb. E.g.:
PERFECT: hibtu “I feared” and haAbat “she feared”
IMPERFECT: yahabna “they (fem.) fear” and yahaAbu “he fears”

In generation of the perfective and imperfective, classes 2 and 4 of the verb can be
merged because they have the same perfect and imperfect stems. A different grouping

Arabic Computational Morphology 93

is necessary for the passive participle: verbs of classes 1 and 2 behave similarly as
do verbs of classes 3 and 4. E.g.:

Class 1: [zawar]→ mazuwr “visited” and Class 2 [nawil]→ manuwl “obtained”
Class 3: [bayaς]→ mabiyς “sold” and Class 4: [hayib]→ mahiyb “feared”.

For details on the origin of the glides and the second vowel in the examples above
see (Soudi et al., 2001, 2002).

To deal with weak verbs, one might list separate stems in the lexicon or one
might derive the stems by rules. The latter solution is preferable because suppletion
operates at the stem level and involves a single root consonant. It also permits
capturing generalizations by providing a unified treatment of strong and weak verbs.

Table 6.1 shows that there are cases of syncretism (opportunities for general-
ization) in the perfective conjugation paradigms of both strong and hollow verbs.
Some combinations of features have the same realization as some others; equiva-
lently, certain inflected verbs have the same word form as others. The number of
rules required to capture generalizations depends on how we handle syncretism in
the paradigms of strong and hollow verbs: at the whole word form (the stem and
the affixes) or simply at the stem level. In the perfective paradigm for non-hollow
verbs in Table 6.1, there are three evident instances of syncretism. Such instances are
expressed by the following rules of referral:

(i) The first person singular masculine and feminine word forms are identical;
(ii) The first person dual masculine or feminine and first person plural masculine or

feminine word forms are identical;
(iii) The second person dual masculine and second person dual feminine word forms

are identical.

Given these instances of syncretism, the 18 word forms resulting from the 18 person-
number-gender combinations collapse to 13 forms.

Table 6.1. Perfective active conjugation of katab “to write” and zawar “to visit”

Strong Verb Hollow Verb

Person Number Masculine Feminine Masculine Feminine

singular katab-tu katab-tu zur-tu zur-tu
1st dual katab-naA katab-naA zur-naA zur-naA

plural katab-naA katab-naA zur-naA zur-naA
singular katab-ta katab-ti zur-ta zur-ti

2nd dual katab-tumaA katab-tumaA zur-tumaA zur-tumaA

plural katab-tum katab-tun∼a zur-tum zur-tun∼a
singular katab-a katab-at zaAr-a zaAr-at

3rd dual katab-aA katab-ataA zaAr-aA zaAr-ataA
plural katab-uwA katab-na zaAr-uwA zur-na

94 Cavalli-Sforza and Soudi

Strong verbs show syncretism in the person-number-gender suffixes, with the
stem remaining unchanged throughout. Whether we deal with syncretism at the
word form level or simply at the stem level, the 13 forms are derivable by 13
rules that add the appropriate suffix to an invariable stem. Hollow verbs and other
weak verbs, however, show two kinds of syncretism: in the person-number-gender
suffixes and in the stems. By considering syncretism at the whole word form level,
we would need 13 more rules (an additional rule for every person, number and
gender combination yielding a distinct surface form), for a total of 26 rules, to
account for the stem changes in Table 6.1. However, by handling syncretism at
the stem level, that is, by separating stem generation from suffix generation, we
reduce the 13 additional rules to 3. In the hollow verb paradigm shown in Table 6.1,
the first person and second person word forms have the same stem. (i.e., zur).
To capture this generalization most economically, we: 1) postulate a {+/− 3rd
person} feature so that the first and second person can form a coherent class with its
associated stem change rule; 2) postulate a default rule that applies to all third person-
number-gender combinations; and 3) provide another more specific overriding
rule, identical to the rule in 1) to account for the third person plural feminine
combination.

Our lexeme-based approach to syncretism corroborates the conclusions in
(Zwicky, 1985) and (Stump, 1993), namely that an adequate theory of morphology
must incorporate rules of referral in order to account for some kinds of inflectional
syncretism. Such a theory also claims that syncretisms do not always encompass
whole word forms and that two or more rules of referral may participate in the
definition of a single instance of syncretism.

6.3.2 Apophony in Strong Verbs

In this subsection, we briefly address the issue of apophony (vowel alternation) in
Arabic triliteral Form 1 strong verbs. The perfective stems are typically faςal, faςil
and faςul. The first vowel is invariably ‘a’, in the active voice; the second vowel (V2),
called stem vowel, is variable. The imperfective stems are fςal, fςil and fςul. In the
imperfect, the first vowel drops out (is replaced by lack of vowel ‘.’) and the stem
vowel varies. The basic question is whether the perfective-imperfective apophonic
alternations are predictable or must be lexically recorded.

Table 6.2 shows that when the stem vowel is ‘a’ in the perfective, the imperfective
vowel can be ‘i’, ‘u’, or occasionally ‘a’ (the latter occurs mostly in the presence
of certain neighboring radicals). When the stem vowel is ‘i’ in the perfective, the
imperfective vowel is usually ‘a’ and occasionally ‘i’. When the stem vowel is ‘u’
in the perfective, the imperfective vowel is always ‘u’. Occasionally a verb will have
multiple imperfective forms and, rarely, have multiple perfective forms each with its
own imperfective form (e.g. Hasib “to assume, to compute”).

(Guerssel & Lowenstamm, 1996) provides a different account for Arabic apophony,
neither of which permits predicting vowel alternations reliably. In our approach
we provide information on the imperfective vowel for strong verbs in the lexicon.

Arabic Computational Morphology 95

Table 6.2. Apophonic alternations attested in Arabic

Stem Vowel Perfective Stem Imperfective Stem Gloss

jalas jlis to sit down
sakan skun to live

a katab ktub to write
qaTaς qTaς to cut
fataH ftaH to open
Hasab Hsub to assume
fahim fham to understand

i fariH fraH to be happy
samiς smaς to hear
Hasib Hsib, Hsab to assume
sahul shul to become easy

u karum krum to be generous
šaru f šru f to be noble

6.3.3 Generation Model and Implementation

In order to capture the generalizations related to the conjugation of strong verbs
and in view of the irregularities exhibited in the paradigms of the different types
and classes of weak verbs, the process of Arabic verbal morphology generation
should have two steps: first, stem changes are processed, then inflectional prefixes
and suffixes. This is indeed the approach we have taken in our work, as illustrated in
Section 6.3.3.3 below. Sections 6.3.3.1 and 6.3.3.2 introduce the morphological tool
and its enhancements.

6.3.3.1 The Basic MORPHĒ Tool

The MORPHĒ tool (Leavitt, 1994), written in Common Lisp, is based on two major
constructs: 1) a Morphological Form Hierarchy (MFH), which relates and distin-
guishes morphological forms, and 2) transformational rules, attached to leaf nodes
of the hierarchy, that operate on the input representation to produce a surface form.
To provide a morphological description of a language one must specify a MFH and
the corresponding rules. ‘Compiling’ the morphological description in MORPHĒ
produces a Common Lisp program, optionally compiled into object code. The
compiled morphological description is used at runtime to generate surface forms.

Runtime Input and Output MORPHĒ’s runtime input is a Feature Structure (FS),
which describes the lexical item that MORPHĒ must transform. A FS is implemented
as a recursive Lisp list. Each element of the FS is a Feature-Value Pair (FVP), where
the value can be atomic or complex. A complex value is itself a FS. For example, the
FS for generating the Arabic zurtu “I visited” is:

((LEXEME "zawar") (CAT V) (FORM 1) (IMPV HOL)

(TENSE PERF) (MOOD IND) (VOICE ACT) (NUMBER SG) (PERSON 1))
(6.1)

96 Cavalli-Sforza and Soudi

The feature LEXEME identifies the ‘base’ form of the lexical item to be transformed
and is used as the basis for rule matching. The FVPs in a FS come from one of
two sources. Static features, such as CAT (part of speech) and LEXEME, come from
the lexicon, which can also contain morphological and syntactic features. Dynamic
features, such as tense and number, are set by MORPHĒ’s caller. MORPHĒ’s output
is a string.

The Morphological Form Hierarchy The Morphological Form Hierarchy (MFH)
or tree describes the relationship of all morphological forms to each other. The root
of the MFH binds all subtrees together. Each internal node of the tree specifies a
piece of the FS that is common to that entire subtree. The leaf nodes of the tree
correspond to distinct morphological forms in the language. Each node in the tree
below the root is built by using a MORPH-FORM declaration that specifies the name
of the node, the name of its parent node and the conjunction or disjunction of FVPs
that define the node and distinguish it from its parent and siblings. For example, the
declaration

(MORPH-FORM V-STEM-F1-ACT-PERF-1/2 V-STEM-F1-ACT-PERF (6.2)

(PERSON (*OR* 1 2)))

says that the node V-STEM-F1-ACT-PERF-1/2 is a child of V-STEM-F1-
ACT-PERF and is reached if person feature has value 1 or 2.

Transformational Rules A rule attached to each leaf node of the MFH effects the
desired morphological transformations for that node. A rule consists of one or more
mutually exclusive clauses. The ‘if’ part of a clause is a regular expression, which
is matched against the string value of the feature LEXEME. The ‘then’ part includes
zero or more operators, applied in the given order. Operators include addition,
deletion, and replacement of prefixes, infixes, and suffixes. Applying the relevant
clause produces the transformed LEXEME string. For example, the transformational
rule that produces the zur part of zurtu “I visited” is:

Short Stem Rule:

(MORPH-RULE V-STEM-F1-ACT-PERF-1/2 (6.3)

("ˆ%{CONS}(awa)%{CONS}$" (RI *1* "u")) ;; CLASS 1

("ˆ%{CONS}(a[wy]i)%{CONS}$" (RI *1* "i")) ;; CLASSES 2 & 4

("ˆ%{CONS}(aya)%{CONS}$" (RI *1* "i")) ;; CLASS 3

)

The syntax %{VAR} is used to indicate a variable whose possible values are defined
outside the rule, for example:

(VARIABLE CONS (... "b" " " "t" " " "j" "H" "x" "d" ...)) (6.4)

Arabic Computational Morphology 97

Enclosing a part of a regular expression in parenthesis associates it with a numbered
register, so that an operator can access it for substitution. In the above rule, the first
clause says that if the value of the LEXEME feature is a consonant, followed by the
string “awa”, followed by another consonant, MORPHĒ should apply the Replace
Infix (RI) operator and substitute “awa” with “u”. Hence "zawar" becomes “zur”.

Runtime Process Logic In generation, the MFH acts as a discrimination network.
The lexical item to be inflected is pushed down through the hierarchy, by matching
features in its FS against the features defining each subtree, until a leaf is reached. At
that point, MORPHĒ first checks in the irregular forms lexicon for an entry indexed
by the name of the leaf node (as specified by the morph-form declaration) and the
value of the LEXEME feature in the FS. If an irregular form is found, MORPHĒ
outputs it; otherwise it tries to apply a rule attached to the node. If no rule is found
or no clause of the applicable rule matches, MORPHĒ returns the value of LEXEME
unchanged. An input can also fall through the MFH because the combination of FVPs
does not lead to a leaf node, in which case the value of LEXEME does not undergo
any changes.

Limitations of the Basic MORPHĒ Tool A major limitation of the basic MORPHĒ
system is that it currently cannot be used to perform morphological analysis.
MORPHĒ was developed in the context of a Knowledge-Based Machine Translation
system (Nyberg & Mitamura, 1992) whose primary application was translation from
English into other languages. MORPHĒ was used for generating target language
morphology but not for morphological analysis of English. Hence, while MORPHĒ
was planned to perform both analysis and generation, the analyzer was never fully
implemented. Whereas the enhancements described in the following section and in
Section 6.4.3.1 have addressed several other limitations in the original implemen-
tation of MORPHĒ, the addition of an analysis capability will need to wait until after
the set of enhancements currently in progress (Section 6.5) is completed.

6.3.3.2 MORPHĒ Enhancements to Support Verbal Morphology

Our initial use of the original MORPHĒ tool to describe Arabic verbal morphology
(Cavalli-Sforza et al., 2000; Soudi et al., 2001) and the realization that our approach
fits in well with the LBM theory (Aronoff, 1994; Beard, 1995) prompted us to
enhance MORPHĒ in a number of ways. Some of the new features in the enhanced
MORPHĒ system (EMORPHĒ) are designed to explicitly support the LBM theory
approach. Others are primarily intended to facilitate the management of a large
morphology description. Cumulatively, the enhancements increase modularity and
decrease redundancy. All of the enhancements described in this section operate at
morphology compilation time and do not affect the MORPHĒ runtime process logic.

Default Rules In the original MORPHĒ system (Leavitt, 1994), a transformational
rule could only be attached to leaf nodes. In EMORPHĒ, it is also possible to attach
a rule to a pre-leaf node, where it acts as a default rule: if the input FS matches up

98 Cavalli-Sforza and Soudi

to the pre-leaf node (the general case) but does not match any of its children (the
special cases), the default rule is applied instead. Default rules reduce the number
of leaf nodes and avoid the (possibly) complex specification of the complement to
special cases. For example, considering hollow verb morphology in the perfect tense,
one can attach a default rule that generates a third person long stem (e.g., zaAr) to
a pre-leaf node and use a more specific rule, attached to a leaf node) for the third
person feminine plural to generate a short stem (e.g., zur).

Rule Equivalencing The original MORPHĒ system required the MFH to be a tree.
If several leaf nodes required the same transformational rule, the rule had to be dupli-
cated. In contrast, EMORPHĒ can avoid rule duplication in one of two ways:

Implicit equivalencing. Different paths in the MFH (i.e., different FVP
sequences), can lead to the same node and share information attached to that node.
Effectively, the MFH becomes a graph instead of a tree.
Explicit equivalencing. Distinct nodes reached by different paths in the MFH can
be explicitly declared to share the same rule by using the declaration syntax:

(MORPH-EQUIVALENCE <REFERENCE NODE NAME> <EQUIVALENT NODE LIST>)
(6.5)

<EQUIVALENT NODE LIST> is a list of one or more names of actual nodes that
share a common rule; <REFERENCE NODE NAME> is used to attach the rule and
can be either the name of an actual node in the hierarchy or a new virtual node. Used
in combination with careful design and default rules, rule equivalencing reduces
rule duplication, highlights syncretisms, and embodies the rules of referral of LBM
theory.

Other Enhancements The original MORPHĒ tool only allowed the use of ROOT
as the name of the base form of the lexical item on which transformational rules act,
and expected the morphology description to be a single file, which was extremely
unwieldy for extensive morphology descriptions. EMORPHĒ allows the user to
specify at compilation time, the desired feature name (e.g. LEXEME, STEM, ROOT)
and allows a morphology description to be split across multiple files. The only
restriction is that a file can make external references only to previously declared
information.

6.3.3.3 Arabic Verbal Morphology in MORPHĒ

The linguistic results of Sections 6.3.1 and 6.3.2 suggest that the generation of Arabic
verbal morphology be performed in two steps. Figure 6.2 sketches the Arabic MFH
and the division of the verb subtree into stem changes and prefix/suffix additions. It
also partly fleshes out the perfect tense subtrees for strong and hollow verbs of Form
1 (i.e., pattern CVCVC) and shows some of the features used to traverse the MFH.

MORPHĒ is first called with the feature GEN (generate) set to stem. After
MORPHĒ has traversed the nodes branching from (GEN STEM), the required stem
is returned and temporarily substituted for the value of the LEXEME feature. The

Arabic Computational Morphology 99

ROOT

(CAT V) (CAT N) (CAT ADJ)

(FORM 1)

(GEN STEM) (GEN PSFIX)

(TENSE PERF)

other

(VOICE ACT) (VOICE PAS)

(TENSE IMPERF)

(PERSON (*OR* 1 2)) (PERSON 3)

(NUMBER PL) (GENDER F)

long stemshort stem

(TENSE PERF) (TENSE IMPERF)

(PERSON 1)
(NUMBER SG)

(PERSON 1)
(NUMBER (*OR* DL PL))

other
persons

forms

Fig. 6.2. The basic MFH and partially detailed perfective subtrees

second call to MORPHĒ with the feature GEN set to PSFIX (prefixation and suffix-
ation) applies further rules to the previously computed stem in order to add inflec-
tional prefixes and/or suffixes. The output is a fully inflected verb. (The use of two
branches of the tree for the two steps is a constraint of MORPHĒ’s current imple-
mentation, which does not support multiple trees.)

To demonstrate how the system works, we present the case of hollow verbs
(Section 6.3.1) in the perfective and imperfective, relating it to the generation of
strong verbs.

Strong and Hollow Verbs in the Perfective As shown in Table 6.1, unlike regular
strong verbs, which do not undergo any stem changes in the perfect active voice,
hollow verbs use a long stem with a middle Âalif (i.e., ‘A’) for third person singular
and dual (masculine and feminine) and for third person plural masculine (e.g. daAm
“to last”). The remaining person-number-gender combinations take a short stem
whose voweling depends on the underlying root of the verb. These syncretisms
are evident in the MFH shown in Figure 6.2: the MFH has a branch for first and
second person and a branch for third person. A short stem rule is attached to the
first/second person leaf node and a long stem rule is attached to the third person pre-
leaf node. The node for third person plural feminine, which requires a short stem,
uses a MORPH-EQUIVALENCE (represented by the arrow) to refer to the node/rule
for first /second person and explicitly embodies a rule of referral. All other cases
of syncretism are treated implicitly by using only the shared features that determine

100 Cavalli-Sforza and Soudi

the stem to specify the node and its corresponding rule. The MORPHĒ declarations
representing these morphological forms and their relationship are given below.

(MORPH-FORM V-STEM-F1-ACT-PERF-1/2 V-STEM-F1-ACT-PERF (6.6)

(PERSON (*OR* 1 2)))

(MORPH-FORM V-STEM-F1-ACT-PERF-3 V-STEM-F1-ACT-PERF (6.7)

(PERSON 3))

(MORPH-FORM V-STEM-F1-ACT-PERF-3-PL-F V-STEM-F1-ACT-PERF-3
(6.8)

(NUMBER PLURAL) (GENDER F))

(MORPH-EQUIVALENCE V-STEM-F1-ACT-PERF-1/2 (6.9)

(V-STEM-F1-ACT-PERF-3-PL-F))

The short stem rule, used by first and second persons and by the third person plural
feminine, was given in (6.3); (6.10) shows the default long stem rule for the third
person.

Long Stem Rule:

(MORPH-RULE V-STEM-F1-ACT-PERF-3 (6.10)

("ˆ%{CONS}A([WY][AI])%{CONS}$" (RI *1* "A")))

As mentioned in Section 6.3.1, hollow verb classes 2 and 4 can be merged because
they have the same perfect (and imperfect) stems. Inside the short stem change rule,
the four different classes of hollow verbs are treated as three separate conditions by
matching on the middle radical and the adjacent vowels and replacing them with the
appropriate vowel. The long stem is the same for all classes, therefore only one clause
is necessary. Strong verbs do not match any clauses in the rules and fall through
with no stem changes. Note that there are different ways of expressing the same
syncretisms but, in all cases, only 2 stem change rules need to be specified instead of
18 separate and redundant ones.

An example using the verb nawim “to sleep” illustrates how the generation process
works. Assume the input FS is:

((LEXEME “nawim”) (CAT V) (FORM 1) (IMPV HOL) (6.11)

(VOICE ACT) (TENSE PERF) (PERSON 1) (NUMBER SG))

In the first call to MORPHĒ, the (GEN STEM) subtree is traversed until the
node V-STEM-F1-ACT-PERF-1/2 is reached. MORPHĒ matches the second
clause of rule (6.3) (the short stem rule), and returns the stem nim for use in
the second call. In the second call, the (GEN PSFIX) subtree is traversed until
the node labelled V-PSFIX-PERF-1-SG (corresponding to the (PERSON 1)

Arabic Computational Morphology 101

(NUMBER SG) FVP combination) is reached. MORPHĒ then applies the rule
attached to this node, namely:

(MORPH-RULE V-PSFIX-PERF-1-SG ("" (+S "tu"))) (6.12)

This rule adds the suffix tu to the stem nim and MORPHĒ returns the fully inflected
verb nim.tu “I slept”. The path through both the stem and psfix subtrees taken in
generating this example are shown with thicker lines in Figure 6.2.

Strong and Hollow Verbs in the Imperfective Figure 6.3 shows the imperfect
subtree for strong and hollow verbs of Form 1 (pattern CVCVC). Strong verbs are
treated by three rules branching on the middle radical vowel, given as the value of
IMPV. The consonant-vowel pattern of the computed stem is shown. For example,
for katab “to write”, the lexicon contains the FVP (IMPV u) and the imperfect
stem would be ktub in the pattern CCuC. The imperfect vowel is stored in the
lexicon because it is not always determined by the perfect vowel, as is explained in
Section 6.3.2 (though, in the presence of certain second and third radicals, the stem
vowel is more precisely determined).

For hollow verbs, the imperfective vowel depends on the middle weak radical and
the vowel immediately following it in the underlying stem. As for the perfective, it
is computed by transformational rules, and is not stored in the lexicon. Hence the
feature IMPV is only used to distinguish hollow and other kinds of verbs from strong
verbs. To show the syncretisms present in this inflectional paradigm, while avoiding
visual clutter, in Figure 6.3 we have used the labels “short stem” and “long stem”
(e.g., for nawim “to sleep” the stems would be nam and naAm respectively) instead

(MOOD (*or* IND SUB)) (MOOD JUS)

(PERSON (*or* 2 3))
(GENDER F)

(NUMBER PL)

(GENDER M) (GENDER F)

(TENSE IMPERF)

short stem long stem

(NUMBER (*or* sg dl))
long stem

short stem

(PERSON 1)
long stem

(PERSON (*or* 2 3))
(GENDER M)

long stem

(PERSON 2)

(NUMBER SG) (NUMBER PL)

(PERSON (*or* 1 3))

short stem

(NUMBER DL)
long stem

(PERSON 1)
short stem

(PERSON (*or* 2 3))
(GENDER F)

short stem

(PERSON (*or*2 3))
(GENDER M)

long stem

(IMPV HOL) (IMPV a) (IMPV i) (IMPV u)
CCaC CCiC CCuC

Fig. 6.3. Imperfect stem change subtree for strong and hollow verbs of form 1

102 Cavalli-Sforza and Soudi

of using arrows to represent the MORPH-EQUIVALENCE declarations actually used
in the morphology description.

The hollow verb subtree shown in Figure 6.3 is not as small for the imperfect as
it is for the perfect, since the stem depends not only on the mood but also on the
person, gender, and number. It is still advantageous to decouple stem changes from
prefixation and suffixation since only two stem change rules are needed for a given
voice and prefix and suffix rules are largely shared with other verb forms/patterns
and types of verbs.

6.4 The Arabic Noun System

There are three number categories for Arabic nouns (including adjectives): singular
(mufrad), dual (muθan∼aý), and plural (jamς). The plural is further divided into
sound (Aljamςu Als∼aAlimu), the use of which is practically confined (at least in
the masculine) to participles and nouns indicating profession and habit, and broken
(Aljamςu Almukas∼aru) types. Broken plurals are then divided into “plurals of
paucity” (jamςu Alqil∼a�i), denoting three to ten items, and “plurals of multiplicity”
(jamςu Alkaθra�i), denoting more than ten items. There are four forms of the plural
of paucity and at least 23 forms of the plural of multiplicity (Abu Al-Suud, 1971).
Several singulars have more than one plural form. There are also underived nouns
with plural or collective sense (usually indicating a group of animals or plants). These
are treated as singular but may form a ‘singulative’ (Ǎismu AlwaH.da�i), indicating
an individual of the group, by attachment of the suffix ‘�’ (tA’ marbuwTa�).

In this section, we provide both linguistic and statistical evidence against gener-
ating broken plurals from the singular or the root. We propose instead a multiple-
stem approach to nouns with a broken plural pattern that dispenses with the complex
rules required to account for the highly allomorphic broken plural system. For sound
nouns we specify the suffix type in the lexicon (Soudi et al., 2002).

6.4.1 The Arabic Broken Plural System

The Arabic broken plural system is highly allomorphic: for a given singular pattern,
two different plural forms may be equally frequent, and there may be no way to
predict which of the two a particular singular will take. For some singulars as many
as three further statistically minor patterns are also possible. The range of allomorphy
is, in general, from two to five. For example, a singular noun with the pattern
CVCC would have one or two of the following plural patterns: CuCuwC, ÂaCCaAC,
CiCaAC or ÂaCCuC. Examples showing the broken plural of the singular pattern
CVCC are as follows:

singular plural gloss

wazn ÂawzaAn measure
kalb kilaAb dog
ςayn ςuyuwn,Âaςyun eye

(6.13)

Arabic Computational Morphology 103

To evaluate the statistical productivity in the Arabic plural system, we, following
(Ratcliffe, 1992, 1998), used Levy’s (1971) study, reproduced in Table 6.4, which
includes statistical information on common plural types, based on Wehr’s (1980)
dictionary. Singulars based on quadriliteral roots are not included. An older
study by Murtonen (1964), based on the dictionary of Lane (1893), gives
somewhat different results and makes different assumptions, but both demon-
strate that while the association between singular and plural forms is not
random, there is no way to predict exactly which plural pattern a singular
will take.

The left-most column in the tables indicates the singular patterns and the top
row indicates the most frequent plural forms. There are two numbers at every
co-ordinate where the singular line crosses the plural one. The first indicates the
percentage of the particular singular in relation to all singulars of a given plural.
The second indicates the percentage of the particular plural as a proportion of
all the plurals taken by a given singular type. By way of example, the inter-
section of the singular pattern CaCC and the broken plural pattern CuCuwC in
Table 6.4 shows the numbers 73/49. These numbers indicate that 73 percent of all the
singulars of a plural pattern CuCuwC have a singular of the pattern CaCC and that
49 percent of all singulars with the pattern CaCC will have CuCuwC as their plural
pattern.

The allomorphy exhibited by the Arabic broken plural system can be handled by
providing the broken plural pattern in the lexicon and a series of rules that operate on
the singular noun to generate the plural noun in the morphological component. These
rules would act at the internal level to convert the singular stem to the plural stem
and at the external level to add the inflectional affixes (e.g., Case affixes: nominative,
genitive or accusative suffixes). Alternatively, one could provide the singular and
plural stems in the lexicon and then have inflectional morphology act on these stems
(Soudi et al., 2002).

The first approach would obviously involve several rules, since nouns with a
broken plural pattern have in general complex stem alternants. The multiple-stem
approach is more promising. Nouns with a broken pattern commonly display two
major stem alternants: the singular/dual allostem and the plural allostem. To capture
the fact that there are two forms and that these forms are systematically distributed,
the lexeme is given an inventory of two stems, labeled by Number. For generation,
only one plural stem suffices, since there is no good criterion for selecting among
multiple stems.

6.4.2 Nouns and Inflection

In this section, we look at the inflection of the Arabic noun system and consider some
syncretism cases in the noun inflection of Arabic. Tables 6.5 and 6.6 show that the
accusative and genitive Cases are realized homonymously in the sound plural but not
in the broken plural. (The definite article Al is not included in the table.)

In the relevant literature, the main morphological distinction in declension is that
between the broken plurals and the rest. The examples in Table 6.5, however, show

104 Cavalli-Sforza and Soudi

Table 6.4. Singular/plural distribution based on (Levy, 1971)

Plural
Singular

ÂaCCuC CuCuwC ÂaCCaAC CiCaAC CiCaC CuCaC -aAt (sfp) CawaACiC

CaCC 82 /6 73/49 26/27 29/12
CiCC 12/3 13/23 23/67 5/7
CuCC 6/2 6/16 17/73 5/9
CvCvC 6/9 33/85 5/6
CaCCa 18/18 14/5 6/3 43/74
CiCCa 1/4 86/84 2/12
CuCCa 6/8 6/15 94/77 6/8
CaCvCa 5/18 13/82
CaACiCa 3/4 1/2 3/2 5/16 58/84
CaACiC 2/3 42/24→
CuCuwCa 1/86 →
CaCaACa 7/74 →
CuCaACa 4/87 →
CiCaACa 4/44 →
CaCuwCa 0/14 →
CaCiyCa →
CuCuwC 1/100 →
CaCaAC 4/27 →
CuCaAC 1/16 →
CiCaAC 6/20 →
CaCuwC 21/16 →
CaCiyC →

(continued below)

Plural
Singular

CuCCaAC CuCCaC CaCaCah CuCaCa CaCaACiC aCCiCa CuCuC

CaACiC ← 100/26 100/10 98/14 100/11 5/2
CuCuwCa ← 0/14
CaCaACa ← 4/26
CuCaACa ← 1/13
CiCaACa ← 11/56
CaCuwCa ← 2/86
CaCiyCa 70/95 7/5
CuCuwC ←
CaCaAC ← 1/5 22/52 6/13
CuCaAC ← 8/48
CiCaAC ← 1/1 48/45 38/34
CaCuwC ← 3/20 3/11 16/63
CaCiyC 6/4 18/17 29/11

Arabic Computational Morphology 105

Table 6.5. Paradigm of word forms of the sound nouns muςal∼im “instructor” and
HayawaAn “animal”

Definiteness Case Sound Plural Masculine Sound Plural Feminine

Singular Plural Singular Plural

Indefinite Nominative muςal∼imũ muςal∼imuwna HayawaAnũ HayawanaAtũ
Accusative muςal∼imã muςal∼imiyna HayawaAnã HayawanaAtĩ
Genitive muςal∼imĩ muςal∼imiyna HayawaAnĩ HayawanaAtĩ

Definite Nominative muςal∼imu muςal∼imuwna HayawaAnu HayawanaAtu
Accusative muςal∼ima muςal∼imiyna HayawaAna HayawanaAti
Genitive muςal∼imi muςal∼imiyna HayawaAni HayawanaAti

that there is another fundamental distinction between two types of sound plurals,
related to the spell-out of the Number marker and the Case marker. The exponent of
Plural in sound plural masculines is uwn (as in muςal∼imuwna) while in the sound
plural feminine it is aAt (as in HayawanaAtu), using the nominative Case marker as
the default Case for sound nouns. Case is realized in the two types of sound plural in
different positions with respect to the Plural marker (uwna, iyna vs. aAtu, aAti).

6.4.3 Arabic Noun Morphology in MORPHĒ

The Arabic plural noun system imposes different demands on the morphological
representation than the verb system. As discussed above, a minority of nouns form
their plural by regular processes of suffixation, but the majority of nouns have one or
more broken plural forms, whose pattern is not predictable from the singular pattern.
Therefore, drawing from Lexeme-Based Morphology (Aronoff, 1994; Beard, 1995),
we choose to give priority to stems and store the broken plural stem in the lexicon.

6.4.3.1 MORPHĒ Enhancements to Support Noun Morphology

With the broken plural stem of nouns in the lexicon, we can employ the same
two-stage approach we used for verbal morphology to generate inflected nouns,
after introducing a further enhancement to MORPHĒ: allomorph substitutions. As

Table 6.6. Paradigm of word forms of the broken noun rajul “man”

Definiteness Case Singular Plural

Indefinite Nominative rajulũ rijaAlũ
Accusative rajulã rijaAlF
Genitive rajulĩ rijaAlĩ

Definite Nominative rajulu rijaA1u
Accusative rajula rijaAla
Genitive rajuli rijaAli

106 Cavalli-Sforza and Soudi

mentioned in Section 6.3.3, transformational rules act upon the value of a feature
that, in EMORPHĒ, is specified at morphology compilation time (e.g. LEXEME). An
allomorph substitution attached to a leaf node indicates that a different feature in the
FS should be the source of the string to be transformed. The syntax of an allomorph
substitution declaration is:

(MORPH-ALLOMORPH <NODE NAME> <FEATURE NAME>) (6.14)

The addition of allomorph substitutions does modify somewhat the runtime process
logic of the original MORPHĒ system, as described in Section 6.3.3.1, by intro-
ducing the allomorph substitution step. The resulting logic is shown in Figure 6.4.

6.4.3.2 The Noun Morphological Form Hierarchy

Figure 6.5 shows a portion of the computational implementation of noun generation
in EMORPHĒ. The MFH is fully fleshed out only for nominative indefinite noun
inflection, but the accusative and genitive cases and definite nouns are handled in
a parallel fashion. Definite nouns, with FVP (DEF +), have a different suffix and
the prefix Al which, depending on the initial consonant of the noun, may either
have a sukuwn or undergo assimilation and cause gemination (‘∼’) of the initial
consonant. Figure 6.5 shows node names for the subset of nodes referenced in the
following discussion but only the distinguishing FVPs for the remainder of the
nodes.

As for verbs, the noun subtree of the MFH is split into two subtrees, one for
producing the correct stem and one for adding the necessary suffixes. Correspond-
ingly, generation of a fully inflected noun requires two calls to EMORPHĒ: the first,
to generate the required stem, temporarily adds the FVP (GEN STEM) to the FS;
the second, to generate the appropriate inflectional prefixes and suffixes, adds (GEN
PSFIX).

For singular and dual nouns, there is no stem change, therefore, no branches for
(NUMBER SG) or (NUMBER DL) appear in the MFH under the (GEN STEM)

discriminate
(MFH)

FS

irregular
lexicon
lookup

entry?
yes

no

return
irregular

entry

apply rule
(if there is one)

return
(transformed)

string

allomorph
yes

no

use alternate
feature

use base
feature

Fig. 6.4. EMORPHĒ’s runtime process logic

Arabic Computational Morphology 107

N-PSFIX-PL-DEF--NOM-
SPAT

N-PSFIX-DL-
DEF--NOM
 (CASE NOM)

RULE:+aAt

N-STEM-PL
(NUMBER PL)

(GEN STEM) (GEN PSFIX)

(DEF +)

N-PSFIX-DL-DEF--
GEN/ACC
(CASE
 (*OR* GEN ACC))

(NUMBER SG) (NUMBER PL)

(DEF –) (DEF +)

N-PSFIX-SG-
DEF--NOM
(CASE NOM)

(NUMBER DL)

(CASE GEN)
(CASE ACC)

(DEF –) (DEF +)
allomorph:

N-PSFIX-SG-
DEF--GEN
(CASE GEN)

N-PSFIX-SG-
DEF--ACC
 (CASE ACC)

N-PSFIX-PL-DEF--NOM-
SPUN

N-PSFIX-PL-DEF--NOM
 (CASE NOM)

(CAT N)

(DEF –)

RULE:+

RULE:+uwna

Fig. 6.5. The noun Morphological Form Hierarchy (MFH)

node. The FS just falls through the tree (GEN STEM) subtree in the first call, and
processing through the (GEN PSFIX) subtree proceeds normally during the second
call. For plural nouns, an allomorph rule is attached to the node N-STEM-PL using
the declaration:

(MORPH-ALLOMORPH N-STEM-PL BPSTEM) (6.15)

It specifies that, if node N-STEM-PL is reached, EMORPHĒ should look in the
FS for a feature named BPSTEM, which, if present, should be used in subse-
quent processing instead of the value of the LEXEME feature. The second call
to EMORPHĒ, traverses the (GEN PSFIX) subtree, using the rule of referral
attached to N-PSFIX-PL-DEF--NOM (represented by the thick arrow) to add
inflectional suffixes to broken plurals and regular transformational rules attached
to N-PSFIX-PL-DEF--NOM-UN and N-PSFIX-PL-DEF--NOM-AT for sound
plurals. Specific examples of processing are presented below.

Noun with a Sound Plural

Input FS:((LEXEME “mudar∼is”)(SP UN) (NUMBER PL)(CASE NOM)(DEF -))

In the first call to EMORPHĒ, the (GEN STEM) subtree is traversed using the
feature (NUMBER PL) to reach the leaf node N-STEM-PL. Since no BPSTEM
feature is found in the FS, the allomorph substitution is ignored and "mudar∼is"
is returned for use in the second call. Then the (GEN PSFIX) subtree is traversed
until the node labeled N-PSFIX-PL-DEF-NOM-SPUN is reached. The transforma-
tional rule in (6.16) produces the result Almudar∼isuwna “the teachers”.

108 Cavalli-Sforza and Soudi

(MORPH-RULE N-PSFIX-PL-DEF+-NOM-SPUN (6.16)

(""

(+P "AL")

(+S "UWNA")

))

The condition part of the rule is the empty string “”, which matches any input. The
operator +P prefixes the definite article Al and the operator +S suffixes uwna, a
portmanteau morpheme for the Number and Case exponents.

Noun with a Broken Plural

Input FS: ((LEXEME “rajul”)(BPSTEM “rijaAl”)

(NUMBER PL)(CASE NOM)(DEF -))

In the first call to EMORPHĒ, the (GEN STEM) subtree is traversed, reaching
the leaf node N-STEM-PL. The value of the feature BPSTEM – rijaAl “men”–
is retrieved from the FS via the allomorph substitution attached to that node
and is returned for use in the second call. Traversing the (GEN PSFIX)
subtree on the second call, the node N-PSFIX-PL-DEF-NOM is reached. No
SP feature is found in the feature structure, so MORPHĒ defaults to the rule
attached to N-PSFIX-PL-DEF--NOM, which refers to the rule attached to node
N-PSFIX-SG-DEF-NOM:

(MORPH-RULE N-PSFIX-SG-DEF-NOM (6.17)

(""

(+S "N")

))

In Figure 6.5, the thick arrow represents the explicit equivalence:

(MORPH-EQUIVALENCE N-PSFIX-SG-DEF--NOM (N-PSFIX-PL-DEF--NOM))
(6.18)

It says that the suffix for an indefinite nominative plural noun is the same as that for
an indefinite nominative singular noun. The equivalence works together with default
rules, allowing the default rule to be equivalenced to a rule on a different node.

6.5 Work in Progress

While EMORPHĒ significantly enhances the expressiveness and convenience of
original MORPHĒ, it still falls short of providing an optimally concise and
elegant framework for generating Arabic morphology. It can be further enhanced to

Arabic Computational Morphology 109

both improve runtime efficiency and to more elegantly capture regularities in
morphological descriptions. In the two-stage approach used to generate the fully
inflected form of a lexical item, redundant work is performed in checking the features
in the input FS twice, once for determining the appropriate stem, then again for deter-
mining the prefix and suffix. Since the stem subtree is relatively shallow, at least for
nouns and for sound and hollow verbs, the cost in time is not high, but avoiding it
altogether would be better. In addition, the two-stage process complicates extending
EMORPHĒ to perform analysis.

Work in progress addresses this issue by introducing inheritance of rules and other
information associated with internal nodes of the MFH, thereby allowing the MFH
to be traversed only once while collecting and adjusting the information required
to generate the inflected form. The final version of EMORPHĒ will allow internal
nodes of the hierarchy to have allomorph substitutions attached to them, and will
allow explicit equivalences to use internal nodes of the MFH as reference nodes
(implicit equivalencing of subtrees is already supported). In the remainder of this
section we sketch, mostly via figures, how the enhancements in progress will affect
the representation of Arabic morphology in EMORPHĒ.

Figure 6.6 shows a portion of the MFH for Arabic verb morphology when stem
changes and prefix/suffix additions are merged into a single hierarchy using inheri-
tance. For lack of space, the feature names GENDER, NUMBER, and PERSON have
been abbreviated to GEN, NUM, and PER respectively.

As an example of how processing works, consider again the feature structure for
obtaining the Arabic zurtu “I visited” given by (6.1) in Section 6.3.3.1. The short
stem rule in (6.3), which yields zur, is attached to the internal node labeled with
(PERSON 1). Other parts of the MFH where this rule is required make reference
to it through explicit equivalencing. As the FS is pushed down through the MFH

ROOT

(CAT V) (CAT N) (CAT ADJ)

(FORM 1)

(TENSE PERF)

other forms(FORM 2)

(VOICE ACT) (VOICE PAS)

(TENSE IMPERF)

(PER 1) (PER 3)

(GEN M)

RULE:
short
stem

RULE
LONG
STEM(PER 2)

(NUM SG) (NUM PL) (NUM SG)
(GEN M)

(NUM SG)
(GEN F)

(NUM DL) (NUM PL)
(GEN M)

(NUM PL)
(GEN F)

(NUM SG)

(GEN F)

(NUM PL)
(GEN M)

(NUM PL)
(GEN F)

(GEN M)

(NUM DL)

(GEN F)

RULE:
+.tu

RULE:
+. naA RULE:

+.ta
RULE:
+.ti

RULE:
+.tumaA RULE:

+.tum.
RULE:
+.tun~a

RULE:
+a

RULE:
+at.

RULE:
+aA

RULE:
+ataA

RULE:
+.na

RULE:
+uwA

Fig. 6.6. Partially detailed perfective verb MFH with inheritance

110 Cavalli-Sforza and Soudi

and reaches the nodes labeled with (PERSON 1), the stem rule is picked up first.
Then, as the FS is discriminated down to the more specific leaf node labeled with
(NUMBER SG), the rule that adds the suffix tu is also picked up. Both rules are
applied to produce the final form zurtu. FSs containing the FVP (PERSON 2) are
processed similarly. For FSs containing the FVP (PERSON 3), the MFH shows a
long stem rule attached to the node labeled (PERSON 3), but if the FS also contains
(NUMBER PL) (GENDER F) the short stem rule referenced via an explicit equiv-
alence overrides the long stem rule.

Noun morphology can also be represented more succinctly with inheritance.
Figure 6.7 shows an MFH similar to that shown in Figure 6.5 (Section 6.4.3.2)
but with allomorph substitution for broken plurals attached high in the tree and
overridden at leaf nodes for sound plurals, and prefixation/suffixation information at
the leaf and pre-leaf nodes. For lack of space, the feature CASE and its values NOM,
GEN, ACC, have been abbreviated to CS, N, G, and A, respectively. We note that it
is possible to rearrange the noun MFH to exploit inheritance more fully, and we are
currently examining this option.

Figures 6.6 and 6.7 show how ongoing enhancements to EMORPHĒ can linearize
a non-linear morphology. Stem changes common to two or more word forms are
effected by transformational rules attached higher in the MFH and overridden, if
necessary, at lower levels. Form-specific prefixation/suffixation rules are attached to
nodes lower in the hierarchy, usually leaf or pre-leaf nodes (in the case of default
rules). What the figures do not show are the design and implementation implications

(NUMBER PL)

(DEF –) (DEF +)

N-PSFIX-DL-DEF-
-GEN/ACC
 (CS (*OR* G A))

(NUMBER SG)

(DEF –)
(DEF +)

N-
PSFIX-
SG-DEF-
-NOM
(CS N)

(NUMBER DL)

(CS G)

(CS A)

(DEF –) (DEF +)

allomorph:
bpstem

N-
PSFIX-
SG-DEF-
-GEN
(CS G)

N-
PSFIX-
SG-DEF-
-ACC
(CS A)

N-
PSFIX-
DL-DEF-
-NOM
(CS N)

N-PSFIX-PL-DEF--NOM-UN
(SP UN)

N-PSFIX-PL-DEF--NOM-AT
(SP AT)

N-PSFIX-PL-DEF--NOM
(CS N)

(CAT N)

RULE:+

RULE:+aAt RULE:+uwna

Fig. 6.7. Partially detailed noun MFH with inheritance

Arabic Computational Morphology 111

of adding inheritance to EMORPHĒ, which recall issues associated with object-
oriented programming languages. We also leave discussion of these for future work.

6.6 Conclusions and Future Work

This chapter has presented our approach to generating Arabic morphology from
a combination of empirical, theoretical and implementation perspectives. We
have reviewed the linguistic framework – Lexeme-Based Morphology (LBM) –
that has accompanied the development of the approach, provided and analyzed
morphological data in its support, and described its implementation within the
Enhanced MORPHĒ (EMORPHĒ) system. EMORPHĒ presents a number of
significant extensions with respect to the original MORPHĒ system, targeted
at making the system both more suitable for expressing linguistic phenomena
found in Arabic and more convenient to use. The result is a morphological
description tool that elegantly and concisely captures the transformations undergone
by a lexeme during inflection and highlights the characteristics and regular-
ities of Arabic morphology while distinguishing among different behaviors.
In concluding, we examine our implementation of Arabic morphology gener-
ation in EMORPHĒ and the tool itself, from both linguistic and computational
viewpoints.

From a linguistic viewpoint, our approach reflects an empirically and theoreti-
cally motivated decision to share the information required to generate fully inflected
forms between the lexicon – in the form of multiple stems – and the morphology
description – in the form of allomorph substitutions and transformational rules
operating on those stems. Allomorph substitutions support alternate stems for Arabic
broken plurals. Acting in combination with the broken plural stems in the lexicon,
they indicate that a change in the stem is expected, but cannot be reliably predicted,
and therefore one must look to lexeme-specific information in the lexicon. In
contrast, transformational rules express regular inflectional operations shared by a
class of verbs and inflected forms and are lexeme-independent. The specification
of transformational rules applicable to particular (classes of) inflected forms is
further aided by default rules and explicit equivalencing. Default rules support
the representation of morphological operations that are shared by several inflected
forms, allowing operations associated with particular combinations of features to be
specified as exceptions, while explicit equivalencing vividly displays the syncretisms
present in inflectional paradigms.

From a computational viewpoint, EMORPHĒ supports the development of
morphological descriptions that are significantly more modular and concise than
those possible with the original MORPHĒ tool, and therefore easier to work with
and maintain. Multiple morphology files allow a complex morphology description
to be broken down into coherent modules with clear relationships to the remaining
modules and the sole restriction that references to constructs outside the module
require the targets of those references to have been previously declared. Explicit
equivalencing allows transformational rules to be attached to only one node in

112 Cavalli-Sforza and Soudi

the morphological form hierarchy and be referred to elsewhere, thereby reducing
the need for rule duplication in several places in the hierarchy. Syntax changes to
transformational rules, related to the introduction of inheritance, will completely
eliminate rule redundancy. Inheritance of information from internal morpho-
logical hierarchy nodes, in combination with the existing implicit equivalencing
mechanism, will permit leaf nodes representing fully inflected forms to inherit infor-
mation associated with entire subtrees of the morphological hierarchy and allow
EMORPHĒ to encapsulate in a single processing pass the two-stage linearization
that underlies our approach to generating Arabic morphology. While inheritance
will necessarily render compilation of a morphology description more complex and
time-consuming, it will result in faster runtime performance and will simplify the
extension of EMORPHĒ to perform morphological analysis. Work on inheritance-
based EMORPHĒ is underway (Cavalli-Sforza & Soudi, 2006).

At present, our coverage of Arabic morphology is limited to nouns (excluding
nouns that do not nunnate) and some verb forms (sound and hollow verbs). Current
efforts on extending coverage are driving many of the in-progress enhancements of
the system. We expect the fully-fledged EMORPHĒ tool with inheritance will treat
not only isolated verb and noun forms but also be able to represent proclitics (e.g.,
the prepositions bi, li, and ka; the conjunctions wa and fa; and the future particle
sa) and enclitics (e.g. the suffixed possessive and direct object pronouns). We also
note that, while to date we have focused exclusively on inflectional morphology
of Arabic, the same framework can be used to describe derivational morphology
as well.

Another future work with respect to EMORPHĒ, will be its extension to perform
morphological analysis as well as generation. The currently working version of the
tool does not immediately lend itself to reversibility. In generation, a specific FS
uniquely describes the path through (E)MORPHĒ’s MFH but, in analysis, the path
that leads from the input surface form (a string) to the FS output is not neces-
sarily unique. The system must search through several potential paths, discard most
of them, and eventually arrive at one or more analyses that are consistent with
the input surface form. Hence morphological analysis requires embedding a search
strategy into the process. Modifications to support analysis await the completion of
inheritance-related work.

References

Abu Al-Suud, A. (1971). Al-Faisal fi Alwaan Al-Jumuu [The Distinction among the Colors of
the Plurals]. Cairo: Daar Al-maarif.

Aronoff, M. (1994). Morphology by Itself: Stems and Inflectional Classes. Cambridge, MA:
MIT Press.

Badawi, E., Carter, M.G. & Gully, A. (2004). Modern Written Arabic: A Comprehensive
Grammar. New York: Routledge.

Beard, R. (1995). Lexeme-Morpheme Base Morphology: A General Theory of Inflection and
Word Formation. Albany: State University of New York Press.

Arabic Computational Morphology 113

Beesley, K. (1996). Arabic Finite-State Morphological Analysis and Generation. In
Proceedings of COLING-96 (Vol. 1, pp. 89–94).

Beesley, K. (1998). Consonant Spreading in Arabic Stems. In Proceedings of COLING-98
(pp. 117–123).

Cavalli-Sforza, V. & Soudi A. (2003). Enhancements to a Morphological Generator to Capture
Arabic Morphology. In Proceedings of the Eighth International Symposium on Social
Communication (pp. 565–570), Center of Applied Linguistics, Santiago de Cuba.

Cavalli-Sforza, V. & Soudi A. (2006). IMORPHĒ: An Inheritance and Equivalence Based
Morphology Description Compiler. In Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC-06, pp.13–18), Genova, Italy.

Cavalli-Sforza, V., Soudi, A. & Mitamura, T. (2000). Arabic Morphology Generation Using a
Concatenative Strategy. In Proceedings of the 1st Meeting of the North American Chapter
of the Association for Computational Linguistics (NAACL-00, pp. 86–93), Seattle.

Guerssel, M. & Lowenstamm, J. (1996). Ablaut in Classical Arabic Measure 1 Active Verbal
Forms. In Lecarme, J., Lowenstamm, J. & Shlonsky, U. (Eds.), Studies in Afroasiatic
Grammar (pp. 123–134). The Hague: Holland Academic Graphics.

Kay, M. (1987). Non-concatenative Finite-state Morphology. In Proceedings of the Third
Conference of the European Chapter of the Association for Computational Linguistics
(pp. 2–10), Copenhagen, Denmark.

Kiraz, G. (1994). Multi-tape Two-level Morphology: A Case study in Semitic Non-Linear
Morphology. In Proceedings of COLING-94 (Vol. 1, pp. 180–186).

Kiraz, G. (1998). Arabic Computational Morphology in the West. In Proceedings of the 6th
International Conference and Exhibition on Multi-lingual Computing, Cambridge.

Kiraz, G. (2000). A Multi-tiered Nonlinear Morphology using Multi-tape Finite State Auto-
mata: A Case Study on Syriac and Arabic. In Computational Linguistics, 26(1), 77–105.

Koskenniemi, K. (1983). Two-level morphology: A General Computational Model for Word-
Form Recognition and Production. Ph.D. dissertation, University of Helsinki.

Lane, E.W. (1863–93). An Arabic-English Lexicon (8 volumes). London: Williams and
Norgate.

Leavitt, J.R. (1994). MORPHĒ: A Morphological Rule Compiler. Technical Report, CMU-
CMT-94-MEMO.

Levy, M.M. (1971). The Plural of the Noun in Modern Standard Arabic. Doctoral Dissertation,
University of Michigan.

McCarthy, J. (1979). On Stress and Syllabification. Linguistic Inquiry, 10, 443–465.
McCarthy, J.A. (1981). Prosodic Theory of Non-Concatenative Morphology. Linguistic

Inquiry, 12, 373–418.
Murtonen, A. (1964). Broken Plurals, the Origin and Development of the System. Leiden:

E.J. Brill.
Nyberg, E. & Mitamura, T. (1992). The KANT system: Fast, accurate, high-quality translation

in practical domains. Proceedings of COLING-92 (pp. 1254–1258).
Ratcliffe, R.R. (1992). The Broken Plural Problem in Arabic, Semitic and Afroasiatic: A

Solution Based on the Diachronic Application of Prosodic Analysis. Ph.D. Dissertation,
Yale University.

Ratcliffe, R.R. (1998). The ’Broken’ Plural Problem in Arabic and Comparative Semitic:
Allomorphy and Analogy in Non-concatenative Morphology. Amsterdam/Philadelphia:
John Benjamins.

Soudi, A., Cavalli-Sforza, V. & Jamari, A. (2001). A Computational Lexeme-based Treatment
of Arabic Morphology. In Proceedings of the ACL-01 Workshop on Arabic Language
Processing: Status and Prospects (pp. 155–162), Toulouse, France.

114 Cavalli-Sforza and Soudi

Soudi, A., Cavalli-Sforza, V. & Jamari, A. (2002). The Arabic Noun System Generation. In
Proceedings of the International Symposium on The Processing of Arabic (pp. 69–87),
University of Manouba, Tunisia.

Stump, G.T. (1993). On Rules of Referral. Language, 69(3), 449–479.
Wehr, H. (1980). A Dictionary of Modern Written Arabic (Milton Cowan, J., Ed., 4th ed.).

Ithaca, NY: Spoken Language Services.
Zwicky, A. (1985). How to Describe Inflection. Berkeley Linguistic Society, 372–386.

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology,
C© 2007 Springer.

7

Grammar-Lexis Relations in the Computational
Morphology of Arabic

Joseph Dichy1 and Ali Farghaly2
1 Université Lumière-Lyon 2, ICAR research lab (CNRS/Lyon 2), 86, rue Pasteur,

69365 Lyon Cedex 07 – France
 Joseph.Dichy@univ-lyon2.fr
2 Oracle USA, 400 Oracle Parkway, Redwood Shores, California 94065 – USA

Ali.Farghaly@oracle.com

Abstract: Grammar-lexis rules and relations ensuring correct insertion of major lexical entries (nouns,
verbs and deverbals) play an essential part in the computational morphology of Arabic. This
chapter, which is based on the experiences of the DIINAR.1 Arabic lexical resource and re-
lated software, and on that of the first version of the SYSTRAN Arabic-English MT system,
outlines previous approaches of the computational morphology of the language (Section 2):
root and pattern (shortly recalled); lexeme-based; machine learning and statistical; stems,
based on roots and patterns, and finally, the stem-based approach, including root and pattern
as well as grammar-lexis information. The latter, which is the most compliant to the re-
quirements of machine-translation and other high-level applications, is further developed in

e of the Arabic word-form and a mapping of
rules and relations accounting for grammar-lexis relations operating within the boundaries of
that complex unit. In the Word-Formatives Grammar, rules and relations involving the lexi-
cal nucleus of the word-form play a crucial part and are formalised in a computational per-
spective. The stem either coincides with, or is the core of the nucleus, because lexical entries
include two overall categories: in the first, stem and entry coincide; in the second, the lexical
entry corresponds to a morphological compound encompassing the stem and a lexicalized
extension (in most cases, a suffix which is part of the entry). Correct relations between the
lexical nucleus and the other formatives included in the word-form are ensured through
morphosyntactic specifiers associated to each entry of the lexical database. These relations,
which have been included in the DIINAR.1 database, are both finite in number and exhaus-
tive in coverage. They also allow computational morphology and other applications to rely
on a good restriction of the generated lexica: only cliticized or affixed formatives that can ef-
fectively be associated with a given lexical nucleus are added, and ‘illegal’ ones are ruled
out. In the DIINAR.1 resource, the effective number of inflected word-forms is 7,774,938
(about nine times less than one would obtain through ‘blind’ generation). A comprehensive
mapping of examples is given. Their compatibility with applications going beyond computa-
tional morphology is also outlined

Section 3. Authors go on presenting the structur

115

115 –140.

7.1 Introduction

The present chapter is fundamentally concerned with the role, which will be
shown to be crucial, of grammar-lexis relations in the computational morphology
of the written form of Modern Standard Arabic (henceforth ‘Arabic’). Computa-
tional morphology is the component of the linguistic engineering of the language
that deals with the analysis and/or generation of the grammatical and lexical mor-
phemes encompassed in the boundaries of the word-form, the structure of which
proves, in Arabic, to be that of a complex unit. The contents of this contribution
are based on two experiences in Arabic NLP development, that of the DIINAR.1
Arabic lexical resource and related analyzers and software, and that of the lexical
database and analyzers embedded in the SYSTRAN Arabic-English machine
translation system.

DIINAR.1 (DIctionnaire INformatisé de l’ARabe, version 1), Arabic acronym
Ma aAliy (Mu jam Al- arabiy~a Al- liy~, /Mu jam al- arabiyya(t)
al-’ liyy/ –)1, is a comprehensive Arabic lexical resource of
around 120.000 lemma-entries operating at word-form level. It has been com-
pleted in close cooperation by IRSIT in Tunis (A. Braham and S. Ghazali), and in
France, by the Lumière-Lyon 2 University (J. Dichy) and ENSSIB (M. Hassoun).
Main related software are the word-form (or morphological) analyzer developed
by M. Ghenima (1998), which was followed by R. Ouersighni’s AraParse syntac-
tic analyzer (2001, 2002), R. Zaafrani’s Al-Mu al~im () Computer-aided
learning system (2002) and R. Abbès’s AraMorph morphological analyzer and
AraConc concordance software (2004) – all of which have been devised to support
the analysis of unvowelled Arabic script, and the generation, when needed, of
fully vowelled written words-forms.2

The SYSTRAN’s Arabic-English MT system is a fully automatic transfer sys-
tem. A first version has been developed at SYSTRAN’s offices in San Diego and
Paris between 2002 and 2004 by a team of computational linguists and lexicogra-
phers including Jean Sénellart, Ali Farghaly, Dina Abu Qaoud, Mats Attnas and
Sylvie Poirier.

Both experiences show that grammar-lexis relations are associated to actual
lexical entries, and can, subsequently, only be implemented in a stem-based lexi-
cal resource (including root and pattern information), as opposed to a resource
founded on pure root-and-pattern combination (Dichy & Farghaly, 2003).

1 Whenever needed, simplified and more traditionally phonological transcription has been

added between slashes (//) to the very comprehensive and in many cases original trans-
literation system reflecting Arabic script introduced in the present volume.

2 See Dichy, Braham, Ghazali & Hassoun (2002); Abbès, Dichy & Hassoun (2004).
Availability: through ELDA, European Evaluation and Language Resources Distri-
bution Agency, 55, rue Brillat-Savarin, 75013 Paris – www.elda.org . Contact:
joseph.dichy@univ-lyon2.fr

116 Dichy and Farghaly

Section 7.2 begins with a short survey of different approaches to the treatment
of Arabic morphology, presenting them from both theoretical perspectives and
from a computational viewpoint.

Authors go on (Section 7.3) to present a typology of grammar-lexis relations,
which are formalised in a computational perspective. They recall the structure of
the word-form in Arabic, focusing on the far less familiar fact that two fields can
be distinguished within that unit (presented in Figure 7.2):

[a] the lexical stem, or nucleus formative (NF) – except in word-forms that only
include grammatical morphemes –, and

[b] extension formatives (EF-s), which are bound grammatical morphemes.

Rules and relations involved in what can be called a Word-Formatives Grammar
(WFG) belong to three general types: [a] NF EF and [b] EF EF rules and re-
lations, to which [c] NFa – NFb morphological derivation links must be added.
Rules and/or relations are typified and exemplified, with the purpose of presenting
a mapping of grammar-lexis relations at stake in the computational morphology of
Arabic.

7.2 Arabic Morphology: Theoretical
and Computational Perspectives

The first module of a lexical resource is based on morphological description of the
well formed internal structure of morphemes and words in the language in consid-
eration. Grammar-lexis relations are thus dependent on what constitutes the basic
units in the morphology, and how these units interact with other morphological
entities to form higher and more complex word-form and syntactic structures. In
this section, we give a brief account of Arabic morphology, recalling, from both
theoretical and computational perspectives, some of the approaches that have dealt
with the complexity of that component of the language.

Arabic morphology received a lot of attention from engineers and computa-
tional linguists particularly in the early eighties. Pioneering work on the computa-
tional morphology of Arabic goes back to the 1970s (Hlal, 1979, 1985a). The re-
trieval of the consonantal root from fully inflected words represented a challenge
both from a theoretical point of view (Farghaly, 1987, 1994; McCarthy, 1981) and
from a computational perspective that has, under certain conditions, proved liable
to bring forth crucial theoretical advances and a better coverage of linguistic data,
which we will endeavour to illustrate.

7.2.1 Arabic Morphology from a Theoretical Perspective

The notion of the morpheme as a meaningful string of segments delimited by the
morpheme boundary symbol “+”, and containing no internal morpheme boundary,

Grammer-Lexis Relations in the Computational Morphology of Arabic 117

is challenged by the facts of Arabic morphology, which exhibits properties that
can be recalled, in very short words, as follows:

– Roots are, strictly speaking, built of three or four consonants. Each root
dominates a clustering of Arabic lexical morphemes around a semantic field,
which can be single, subdivided or multiple.

– Certain changes in nouns, verbs or adjectives based on these consonantal
roots yield derivatives. Some vowel and syllabic patterns seem, subsequently,
to be associated with a constant set of meanings.

– Traditional treatment of Arabic morphology – especially in computational
morphology – sometimes remains taxonomic, abstracting away from the par-
ticular root and citing or generating all possible patterns.

These questions have been presented in the preceding chapters. Let us nevertheless
recall a few points. McCarthy (1981) revisited the view according to which an
Arabic verb of form I, for example, is better analysed as consisting of two separate
linguistic units: a consonantal root and a vocalism (Cantineau, 1950a, 1950b). He
proposes that each should be assigned to a different tier. Together, they make a
prosodic template. McCarthy also mentions the fact that there are certain con-
straints that apply to the root: some Arabic roots, for instance, may reduplicate the
second radical as in šad~a, ‘to pull’ and haz~a, ‘to shake’, but never the
first.3 (Such facts have been described at length in medieval Arabic linguistic trea-
tises.) Founding their discussion on the facts of Arabic morphology and other lan-
guages, McCarthy and Prince (1996) argue that a templatic morphology based on
prosodic theory can better accommodate the properties of the non-concatenative
nature of Arabic morphology and that of some other languages. Farghaly (1994)
suggests that the Arabic lexicon may consist of underspecified entries to represent
the discontinuous nature of Arabic morphemes. Farghaly (1987) argues that an
adequate description of Arabic morphology has to recognize three levels: (a) that
of the root, which is neither pronounceable nor belongs to any grammatical cate-
gory, (b) that of the stem, which is pronounceable and has to be a member of the
word classes of the language, and (c) that of the inflected word, where inflectional
affixes are attached observing well defined rules to form the majority of actual
Arabic words.

In the same period, many crucial theoretical and descriptive developments
founded on other approaches occurred in the computational morphology of the
language.

3 See, for instance, Al-suyuwTiy~ (d. around 1505), Al-muzhir () – a

medieval linguistic treatise known by most readers with general knowledge in Arabic
grammar or linguistics, the title of which cannot be relevantly translated.

118 Dichy and Farghaly

7.2.2 Arabic Morphology in a Computational and Theoretical Perspective

The fact that Arabic word formation involves not only attaching prefixes and suf-
fixes to stems, but also a large number of infixes with many morphophonemic
processes, makes recovering the root and analyzing the internal structure of Arabic
words a real challenge for both computer processing and linguistic theory and de-
scription. Linguists, engineers and computational linguists took up the task of the
analysis and/or generation of Arabic words early on. In this section we present a
brief description of the main approaches in the treatment of Arabic morphology.

7.2.2.1 The Root and Pattern Approach

The ‘root and pattern’ approach has already been presented in preceding chapters,
and also in Dichy and Farghaly (2003). We will therefore focus very shortly, in
this subsection, on historical aspects. The ‘discovery’ of consonantal Semitic roots
by Western Semiticists goes back to the XVIIIth-XIXth cent. French traveller and
Orientalist Constantin Volney (Rousseau, 1987). Linguistic discussion of the
question including many references, can be found, for Arabic in Dichy (1990,
1993), and in Cassuto & Larcher (2000) for Semitic studies in general.4 The partly
traditional notions of ‘root’ and ‘pattern’ should by no means be abandoned, but
they need to be limited and submitted to the constraints of formal definition (the
set of which is proposed in (Dichy, 2003)). Decisive psycho-cognitive evidence
has been given on roots and patterns in Hebrew (Bentin & Frost, 1995; Frost,
Forster & Deutsch, 1997), and on the role of roots in the recognition of Arabic
written words (Grainger et al., 2003). In the second half of the XXth century (on the
whole, after Cantineau (1950a, 1950b)), most linguists and grammarians of Arabic
and akin Semitic languages – in the West and in Arab countries alike – came to
regard consonantal roots and patterns as basic linguistic components of the mor-
phological description of the languages in consideration. Most researchers and
linguistic engineers posited patterns, which are called in Arabic ÂawzaAn /’awz n/

 (originally: ‘weight, measure, balance, poetic meter’), as presenting formal
definitions of well formed Arabic words. These patterns were – and in many pro-
jects still are – considered as applicable to any root to generate Arabic lexical en-
tries. D. Cohen (1961) gave a very elegant formulation of this view, which has
later been described as a ‘neo-Leibnitzian myth’ (Dichy, 1993). It is nevertheless
crucial to note that some of the forms which could be generated by patterns may
have never existed in the Arabic language, and represent, as such, lexical gaps in
the Arabic lexicon, which can be used to coin new words as needed, instead of

4 On roots and patterns in the medieval Hebraic tradition, see, among many others, Zwiep

(1996), in modern Hebrew dictionaries, Cassuto (2000); in the Arabic tradition, Trou-
peau (1984); also: Roman (1999), pp. 198–205 – “Brève histoire de la langue arabe”),
which includes a strong refutation of the conjecture on roots as non-ordered consonant
triples formulated by Ibn Jinniyy (IVth/Xth century), or as bi-consonantal ‘roots’ or
‘etymons’ constituted of non-ordered pairs taken up in the XXth century by G. Bohas.

Grammer-Lexis Relations in the Computational Morphology of Arabic 119

borrowing foreign words that may violate the morphological and/or phonological
rules of Arabic (Fassi Fehri, 1997).

The pioneering work of D. Cohen (1961) introduced a sophisticated representa-
tion of Arabic word-form structure, some revisited essentials of which are still in
force to-day (Section 7.3 below). Hlal (1979, 1985a), Geith and El Saadany (1987)
and many others designed computer systems for the analysis and/or generation of
Arabic words relying heavily on the traditional description of Arabic morphology
in terms of roots and patterns. The main approach, which has been followed with
some variations, was to compile a dictionary of Arabic roots and dictionaries of
affixes while maintaining a distinction between prefixes, suffixes and infixes, or to
build lexicons of roots and patterns, to which lists of pre- or suffixed elements
were added. Continuous look up of elements that could belong to any of these
classes is then supposed to yield an analysis of Arabic word-forms.

7.2.2.2 The Lexeme-based Approach

Soudi et al. (2001) propose adopting a lexeme-based morphology, and describe
MORPHE, which is a morphological rule compiler for implementation. The lex-
eme is an abstract concept representing a lexical meaning. Word-forms that share
the same lexical meaning are related to a lexeme as members. For example,
WORK is a verbal lexeme that includes as members: work, works, worked and
working. All four word-forms share the lexical meaning (‘working’). The varia-
tions among them are grammatical, such as past tense versus non past, etc., but not
lexical.

An interesting question is: where does the Arabic root fit in a lexeme-based
theory? Can we regard the root as a lexeme? The root represents a broad semantic
field. In a Lexeme-based model (Aronoff, 1994) all the word forms of a lexeme
belong to the same word class whereas the words generated by a particular Arabic
root belong to various word classes. Clearly, two different verbs like kataba,
‘to write’ and iktataba /’iktataba/, ‘to enter one’s name, to subscribe, to
contribute, to invest in’ respectively belong to two different lexemes although they
are clearly related to the same root. This root also includes the verb istaktaba
/’istktaba/, ‘to get someone to write’, ‘to dictate to someone’, which partly
shares the same meaning as kataba, but has a different argument structure. This
implies that roots should not be regarded as lexemes à la Aronoff, which raises the
question of what is exactly a ‘lexeme’ in Arabic. One possible answer (Soudi
et al., 2001) is that it can, as is the case in English, be defined as an abstract concept
covering all the different grammatical forms of a given stem. Thus katabnaA,
‘we wrote’ – yaktubu, ‘he writes’ – sayaktubu, ‘he will write’, etc.,
respectively belong to one lexeme since they all share the same lexical meaning
and they only vary in tense, which is a grammatical feature. This otherwise
efficient lemmatization procedure nevertheless leaves unanswered the question of
the grouping of lexemes sharing a same root in a ‘morphological family’, or the
issue of the derivational role of patterns, as well as pattern-to-pattern derivational
links, within a given root. Such a grouping of lexemes had already been outlined

120 Dichy and Farghaly

within a given root. Such a grouping of lexemes had already been outlined in

7.2.2.3 The Machine Learning and Statistical Approach

Machine learning approaches to building NLP systems have become very popular
in recent years. While rule-based NLP systems are usually time-consuming and
require solid linguistic expertise, machine learning techniques are deemed to be
fast, inexpensive, and requiring only large corpora. Surprisingly, machine learning
techniques produce impressive results in a very short time and without the need
for expensive linguistic knowledge (Forster et al., 2003) – although doubts could
be raised in the case of languages for which heavy rule-based computational lin-
guistic work has been conducted prior to the use of statistic-based methods. The
fact is, one does not witness purely statistical systems, but rather mixed statistical
and rule-based approaches (such as Dien et al., 2003). As has been mentioned in
the final discussions of the IXth Machine Translation summit conference (New-
Orleans, Sept. 2003), purely statistical methods may not at all yield the same re-
sults in less studied languages.

For languages like Arabic where solid computational linguistic knowledge and
elaborate language resources (lexica, annotated corpora, tree-banks, etc.) are still
rare (Nikkhou, 2004), statistical approaches nevertheless came to the rescue when
national security needed to deal with millions of documents in Arabic, and little
R&D funds, compared with ‘big’ languages such as English, Spanish, French or
German. The underlying assumption here is that linguistic knowledge is present in
linguistic data and that machine learning techniques can extract this knowledge
going through cycles of training and retraining until it ‘learns’ the language. This
assumption is immediately limited by the fact that researchers usually mention the
existence of supervised learning modes, where the training data are annotated,
thus facilitating the learning process (for instance, Schafer & Yarowsky (2003)).
Effective annotation of corpora needs to be based on heavy previous linguistic
development, traditional grammar being, for such a purpose, very far from being
state-of-the-art, especially in Arabic, where traditional medieval grammar has not
been sufficiently revisited in the light of modern linguistics. One can nevertheless
mention unsupervised learning techniques, which are very important when anno-
tated corpora of the language are unavailable.

The recent availability of parallel corpora for Arabic-English prompted many
researchers to use machine learning techniques to salvage all kinds of linguistic in-
formation. For example, Diab and Resnik (2001) describe how they used a parallel
corpus for word sense disambiguation under the assumption that different mean-
ings of the same word in the source language will be translated into distinct words
in the target language.

Rogati et al. (2003) followed the unsupervised learning approach for develop-
ing a prototype of a non-English Arabic stemmer. Their objective is to build a lan-
guage-independent stemmer. The model they use is based on statistical machine

Hassoun (1987) and further described in Dichy and Hassoun (1989).

Grammer-Lexis Relations in the Computational Morphology of Arabic 121

translation using an English stemmer and a small parallel corpus for training pur-
poses. Their main approach is to remove prefixes and suffixes from Arabic words.
Although they did not remove infixes nor deal with morpho-phonological trans-
formation, they report achieving an improvement of 22–38% on average over un-
stemmed text and 96% of the performance of a proprietary stemmer built using
rules, affix lists and human annotation.

7.2.2.4 The Stem-based Approach

The above approaches aim at analysing and/or generating Arabic word-forms. The
problem in any Arabic NLP system, such as tagging, document categorization,
automated summarization, speech recognition, machine translation, etc., is that it
is not enough just to recognize or generate forms. In NLP programs related to ef-
fective application results, important information needs to be associated with each
morpheme and lexical entry. There is information coming from the morphological
level, such as gender, number, person, mode and tense, definiteness, part of speech
(POS), etc. There are also syntactic features, such as Count/Mass nouns, sub-
categorization frames, what type of a subject or an object a verb takes, etc. One
will also have to add semantic information, such as categorizing a noun as refer-
ring to human/non human, animate/inanimate entities, or to place and/or time, etc.

The more elaborate the information associated with the lexical entry, the more
sophisticated the grammar becomes, and the more powerful the NLP system as a
whole turns out to be. In machine translation applications, for instance, such so-
phisticated linguistic information cannot be done without. It can, on the other
hand, never be associated with an Arabic root or with a pattern, because neither
Arabic root nor pattern belongs to word classes (the terms refer to linguistic ab-
straction, not to actual parts of speech). However, combined roots and patterns
may form the nucleus of nouns, verbs and adjectives. The linguistic information
under consideration, including indispensable grammar-lexis relations for Arabic
NLP applications, can only be associated to stems, since a stem, by definition,
belongs to a syntactic category, and never to roots or to a mere combination or
root and pattern (Dichy & Farghaly, 2003). In the case of a homograph (a very
frequent case in standard vowel-free Arabic writing), a given stem could belong to
several syntactic categories.

The stem-based approach to Arabic morphology reduces the complexity of Ara-
bic word structure, eliminates large numbers of lexical gaps, and makes it possible to
associate relevant and specific morphological, syntactic and semantic features with
each entry. Figure 7.1 shows a small subset of the morphological information asso-
ciated with the lexical entry of an Arabic verb in the SYSTRAN monolingual Arabic
dictionary, built as a component of the Arabic-English translator.

7.2.2.5 Stems, Based on Roots and Patterns

One of the most advanced treatments of Arabic morphology using both the root-
and-pattern and stem approaches is the work done at Xerox Research Centre in

122 Dichy and Farghaly

France by K. Beesley and his colleagues (Beesley, 2001). Beesley’s implementa-
tion is based on the insights of Karttunen (1994) that morphotactics and variations
in morphology can be expressed in regular expressions and can then be compiled
into finite state automata which are very efficient, fast and bidirectional. It elabo-
rates on Kimmo Koskenniemi’s two-level morphology (Beesley & Karttunen,
2003; Karttunen & Beesley, 2005), on the basis of a partial revisiting of
McCarthy’s representation (Beesley, 1989), and integrates a first version of Tim
Buckwalter’s lexicon (Buckwalter, 2002).

The approach should therefore not be described as founded on mere root and
pattern combination: in fact, it includes as an essential step the checking of candi-
date entries generated from root and pattern ‘merging’, and pre- or suffixes com-
bination, against existing lexical entries, as attested by a reference dictionary such
as Hans Wehr (1979), and fully takes into consideration the complexity of Arabic
morphology. The Xerox Arabic Lexicon included, four years ago (Beesley, 2001):
4,930 roots, 400 patterns, and 90,000 stems based on roots and patterns. The latter
correspond to 70,000 root-pattern intersections on the lower side of the two-level
morphological representation, the differences depending on information associated
to stems on the higher side (see Beesley & Karttunen (2003)), which clearly shows
that, in this approach, morphological and word-form grammar-lexis information is
associated to stems. The figure of 90,000 stems also shows that the blind combina-
tion of roots and patterns (4,930 roots x 400 patterns = 1,972,000 root-pattern vir-
tual links) has been severely restricted.

 [perfect=],[imperfect=],[imperative=],
[passperf=],[passimperf=]

Fig. 7.1. A sample of SYSTRAN’s monolingual dictionary entry of the Arabic verb zara a
 ‘to plant’

7.2.2.6 Stem-based Lexical Resources, Including Root-Pattern
and Grammar-lexis Information

Another advanced treatment of Arabic morphology was initiated in France in the
early 1980s, in what was known as the SAMIA project5 (Desclés et al., 1983;
Dichy, 1984, 1987; Dichy & Hassoun, 1989; Hassoun, 1987), and has been going on
since. It has led to the completion, in collaboration with a Tunisian research centre
(IRSIT, now IT.COM), of the DIINAR.1 Arabic lexical resource. Morphological
analyzers drawing on this resource have been completed on a parallel basis. The
approach can be described as deliberately stem-based, including root and pattern
information on the one hand, and a comprehensive coverage of word-form
grammar-lexis relations on the other. This makes it closer to the requirements of

5 SAMIA is the acronym for “Synthèse et Analyse Morphosyntaxiques Informatisées de

l’Arabe”.

Grammer-Lexis Relations in the Computational Morphology of Arabic 123

machine translation, such as has been illustrated, in many couples of languages, by
the SYSTRAN engines.

In this approach, representations of word-form structures and of word-level
grammar-lexis relations are very explicit. This is due to the database structure of
DIINAR.1, the subsequent declarative programming of the associated software
(Abbès, 2004; Ghenima, 1998; Ouersighni, 2001; Zaafrani, 2002), and also, to the
comprehensiveness of the coverage of Arabic morpho-lexical data.

The concepts and methods at stake in that representation of Arabic computa-
tional morphology, which is centred on grammar-lexis relations, are presented in
some detail in the following section.

7.3 Mapping the Arabic Lexicon: Word-form Structure, Rules
and Grammar-lexis Relations in Arabic

7.3.1 Structure of the Word-form in Arabic (Short Recall)

Word-form units feature in Arabic a complex, albeit very regular, structure.
Standard word-forms comprise one lexical nucleus and one only.6 On the right
and left sides of that nucleus, specified sets of bound morphemes can be found,
in either affixed or cliticized position (Cohen, 1961; Desclés, 1983; Dichy, 1990,
1997; Dichy & Hassoun, 1989).

The structure encompasses:7

– proclitics (PCL), which consist of mono-consonantal conjunctions (such as
wa-, ‘and’ , li-, ‘in order to’), prepositions (i.e. bi-, ‘in’, ‘at’ or ‘by’, li-,
 “for”), the pre-verb sa-, (indicating the future), the article Al- /’al/, etc.;

– a prefix (PRF). The category, after D. Cohen’s representation of the word-
form (1961), only includes the prefixes of the imperfective, such as Âa- /’a/,
 , morpheme of the 1st person sing., etc.;

– a stem. Stems are divided in two general categories (Dichy, 1984):

 • Type 1 stems: this first subset consists of major lexical categories that are
liable be represented in terms of a PATTERN and of a 3-consonant or 4-
consonant ROOT. (Major lexical categories encompass nouns, adjectives,

6 Poly-lexical entries are, in Arabic, either composed of more than one word-form (e.g.

Al-quruwn Al-wusTý, /’al-qur n al-wusT / ‘the Middle Ages’) or reduced
by the morphological system of the language to a mono-lexical unit, e.g. qarwasaTiy~,

 ‘medieval’. The meaning of the Arabic lexicographical term naHt,
‘coinage’, which describes the phenomenon, refers to the above reduction, which brings
the compound to comply with (a) the model of 3-consonant or 4-cons. roots, and (b) the
structure of the mono-lexical word-form (Dichy, 2003).

7 Hebrew word-forms feature similar complex structures (Sampson, 1985), pp. 90–91; for
a psycholinguistic approach, see Frost, Deutsch & Forster (2000).

124 Dichy and Farghaly

verbs and deverbals.)8 By convention, the terms ‘root’ and ‘pattern’ will be
henceforth presented in small capital letters, referring to the formal defini-
tion above (Dichy, 2003). A ROOT is an ordered triple of consonants (3-C)
or, by extension of the system, a quadruple (4-C).9 A PATTERN is, in short
words, a template of syllables, the consonants of which are that of the 3-C
or 4-C ROOT, with the addition of mono-consonantal affixes (belonging to
mono-consonantal roots10), such as the t ‘echo-morpheme’ (Roman, 1990).
Consider for instance the stem takab~ar, ‘to be haughty’. This stem
can be analysed into the 3-C ROOT /k-b-r/, and the PATTERN
/taR1aR2R2aR3/ (), which includes the mono-consonantal root /t/ and the
1st, 2nd and 3rd consonant of the 3-C ROOT (respectively: R1 = k, R2 = b,
R3 = r). It is crucial to remember that type 1 stems include all the verbs and
deverbals of the language (Dichy, 1984).

 • Type 2 stems: the second subset of stems contains only nouns that cannot
be represented in terms of PATTERN and ROOT, such as: /’ism l/,
‘Ishmael’, fiyziyaA', ‘Physics’. There are no verbs in this category of
stems (a corollary of the fact, which has just been mentioned, that all verbs
belong to type 1 stems);

– suffixes (SUF), such as verbal inflexions, nominal cases, the nominal femi-
nine ending +a , /a(t)/ +, etc.;

– enclitics (ECL). In Arabic, enclitics are complement pronouns. Some verbs
can have a double ECL, for example: al~am+tum-uw-niy-haA, / allam+tum-

-n -h /, “you [plur. masc.] have taught-me-it” (this / / sequence

8 The term ‘deverbal’ refers to what could also be called ‘verbal-nominal forms’, i.e.,

nominal forms that include syntactic-semantic verbal features, such as transitivity, etc.
These are, in Arabic, the infinitive form, maSdar, , the active participle, ism Al-
faA il, /ism al-f ‘il/, , and the passive participle, ism Al-maf uwl, /ism al-
maf‘ l/, . Note that other subcategories have been included in deverbals in the
DIINAR.1 lexical resource (see § 7.3.3.2, Figure 7.4), following the categorisation of
traditional Arabic grammar. This has proven not to be consistent beyond morphological
analysis. Concerning the three subcategories above, research conducted in the
DIINAR.1 project has shown that traditional Arabic grammatical terminology obscures
the fact that the forms in consideration are liable to be either deverbals, or nouns. Con-
sider for instance the sentence ÂanaA saAkin fiy ruwmaA, /’an s kin f r m /

, ‘I’m living in Rome. The active participle saAkin () admits suffixed plural
forms, e.g., naHnu saAkinuwn (masc.) or saAkinaAt (fem.) fiy ruwmaA, but
excludes the ‘broken plural’ form suk~aAn, which refers to the meaning of ‘in-
habitant(s). The former is a deverbal, the latter (saAkin, plur. suk~aAn, , ,)
has undergone a nominalization process, i.e. has left the deverbal category to become a
‘purely’ nominal lexical entry (see § 7.3.5.1[b]). Such cases require two distinct entries,
each associated with its own grammar-lexis specifiers.

9 5-consonant so-called ‘roots’, included for instance in i ranfaza, /’ i ranfaza/,
‘to almost die from cold’, which can only be found in ancient poetry or medieval dic-
tionaries, have been neglected.

10 Mono-consonantal roots in Arabic and Semitic languages have been disclosed by
Roman (1990, 1999).

Grammer-Lexis Relations in the Computational Morphology of Arabic 125

only appears with the plural masculine form of the subject pronoun when an
ECL pronoun is attached).

Figure 7.2 (Dichy, 1997) illustrates this structure, in the case of Type 1 stems
(conventions in the lower part are explained immediately after):

Conventions (not already encountered here): ## = ‘word boundary’; # = ‘clitic
boundary’; + = ‘pre- or suffix boundary’. NF = ‘nucleus formative’ (referring to
the lexical nucleus of the word-form); EF = ‘extension formative’ (referring to

Fig. 7.2. Arabic word-form structure (with ROOT-and-PATTERN stems) –

bound grammatical morphemes); aEF, pEF = ‘ante-positioned’ or ‘post-positioned’
EF. The set of aEF-s includes {PCL, PRF}, that of pEF-s comprises {SUF, ECL}.

7.3.2 Word Formatives, Word Specifiers and Word Formatives Grammar

The Word Formatives Grammar (WFG) accounts for the rules and relations
that ensure correct combination of formatives within the boundaries of the word-
form (Dichy, 1987). This grammar includes morpho-phonological transformation
rules, and various contextual rules, which will be outlined below (Subsection
7.3.4). Phonological transformations were not accounted for in the morphological
analysis of vowelled Arabic words initiated by Cohen (1961) or Hlal (1979,
1985a). They have on the other hand been included in the approach developed in
the SAMIA project for the analysis or the generation of vowel-free word-forms,

126 Dichy and Farghaly

and the subsequent elaboration of the DIINAR.1 lexical database. One of the postu-
lates of this approach is that linguistic formatives must be specified in terms of
morpo-syntactic rules and relations according to the syntagmatic extension of the unit
they are inserted in (Dichy, 1987, 1997). Owing to the structure of the Arabic word-
form, one is brought to give special attention to rules and grammar-lexis relations, ac-
counting, in short, for insertion rules operating within the scope of that syntagmatic
unit. The following concepts and conventions have been subsequently adopted:

– Word formatives, i.e., morphemes considered in the frame of the word-form
structure, are associated with grammar-lexis word-specifiers (w-specifiers).

 – Sentence formatives need to be associated with s-specifiers, and text forma-
tives, with t-specifiers.

This can be considered as an overall framework. It could easily be shown that the
three types of specifiers above involve different types of phenomena (Dichy,
2005). Specifiers involving word and sentence formatives can be described as
morphosyntactic specifiers.

7.3.3 Grammar-Lexis Relations in the Processing of Written Arabic

7.3.3.1 Multiple Analyses at Word-form and Sentence Level

Let us recall that, in the morphological analysis of Arabic, the complex operation
referred to as the ‘segmentation’ of the word-form into morphemes (or formatives)
is rendered the more difficult because standard writing is ‘unvowelled’ or ‘vowel-
free’, i.e. bare of secondary diacritical signs indicating short vowels (HarakaAt,

), consonant doubling (šad~a,), diacritical case-endings (tanwiyn,),
etc. This has been presented in previous chapters. It has been shown in some de-
tails, quite a few years ago (Desclés, 1983; Dichy, 1984), that the resulting homo-
graphs entail a high number of potential existing analyses for a relevant percentage
of word-forms (Abbès, 2004; Ghenima, 1998).11 This is indeed the case be-
cause computational morphology, when it is not included in a syntactic analyzer
(Ditters, 1992; Ouersighni, 2001, 2002), deals with word-forms context-free.

Ambiguity due to multiple analyses should subsequently not be considered a
problem in itself: morphological and morpho-syntactic analyzers aim at assigning
word-forms with all the analyses that comply with the rules and lexicon of the
language, and them only. It is on the other hand necessary to restrict the combina-
tion of word-formatives to forms that are ‘legal’ according to the morpho-
syntactic system (including the morphotactics of the writing system) and the lexi-
con of the language. This is also required to prevent the number of analyses per
word-form to climb much higher than allowed by the language and its writing

11 This could also be tested, in addition to the morphological analyzers drawing on the

DIINAR.1 resource (Abbès, 2004; Ghenima, 1998; Zaafrani, 2002), with the morpho-
logical analyzer put on the Internet by the Xerox European Research Centre (Beesley,
2001).

Grammer-Lexis Relations in the Computational Morphology of Arabic 127

system. Non existing analyses should therefore be ruled out: the vowel-free word-
form ’ lnt, , for instance, should not be analysed as *Âa luntu, */’a luntu/,

 or *Âa lunat, */’a lunat/, (no meaning in both cases), but – among
other forms – as Âa lantu, /’a lantu/, or Âa lanat, /’a lanat/, ‘I’ or
‘she declared publicly’.

7.3.3.2 Restricting Generated Lexica

Ruling out what could be described as ‘morphological noises’ is an equally crucial
issue when it comes to restricting the number of entries of a lexical resource.

Let us consider a few figures:

1) In the DIINAR.1 lexical resource, the number of combined proclitics and suf-
fixes which are effectively in use in Modern Standard Arabic, and that of pre-
fixes and enclitics is shown below (Abbès, Dichy & Hassoun, 2004):

Comments:

(a) Prefixes do not combine (see § 7.3.1 above).
(b) Enclitics may combine in doubly transitive verbs, which seldom occurs in

present-day Arabic, where one of the complements is usually preceded by a
preposition; e.g.: Ancient Arabic manaH+tu-ka-hu, ‘I have given_you_it’
is currently realized as manaH+tu-hu la-ka, ‘I have given_it to_you’.

Proclitics (combined) 64
Prefixes 8
Suffixes (combined) 67
Enclitics 13

Fig. 7.3. Number of EF-s in DIINAR.1

 (c) In the above numbers, extension formatives (EF-s) combinations have been
restricted to effective use. Ancient Arabic proclitic combinations, such as
Âa-fa-bi-ka-Al-, /’a-fa-bi-ka-’l/ //// ‘interrogative-then-by-such_as-
the (generic article)’, or bi-ka, ‘by-such_as’, and a few others, have not
been included.

(d) In Figure 7.3, suffixes that only include secondary diacritics, (traditionally
called ‘vowel-signs’, HarakaAt,), i.e. basic case-endings in nouns and
a subset of mode markers in verbs, have not been included. This ensures a
‘lower-hypothesis’ interpretation of the calculations presented in the demon-
stration below.

2) The number of lemma-entries belonging to major lexical categories is the
following:

128 Dichy and Farghaly

Comments:
In the DIINAR.1 lexical resource, following traditional Arabic grammar, adjec-
tives have been included in nominal stems, and two morphological subcategories
have been added to deverbals. These are, as shown in Figure 7.4: (a) ‘analogous
adjectives’ () and (b) ‘nouns of time and place’ (). Both
categorisations, which remained acceptable in the context of computational mor-
phology, have proved inconsistent when extending grammar-lexis relations to syn-
tactic features. Clearly, (a) are adjectives and (b) are nouns. This bias can be cor-
rected in the related analyzers and generators, through modifying the
(sub)category in specifiers associated with lexical entries.

Let us now undergo a bit of ab absurdo reasoning:
On the basis of Figure 7.3, blind combination of bound grammatical mor-

phemes would give:

64 8 67 13 = 445,952 ‘virtual’ extension formatives (EF-s).

Fig. 7.4. Number of lemma-entries in the DIINAR.1 Lexical resource

Unconstrained combination with the total number of stems in Figure 7.4 leads to a
generated lexicon of ‘virtual’ word-forms of:

445,952 EF-s 129,258 stems = 57,642,863,616 ‘virtual’ word-forms.

Limiting the figures to inflected forms, the combination would still yield:

8 prefixes 67 suffixes 129,258 stems = 69,282,288 ‘virtual’ forms.

In the DIINAR.1 resource, the effective number of inflected word-forms is
7,774,938 (Abbès, Dichy and Hassoun, 2004, which includes a breakdown accord-
ing to lexical categories), i.e. 11.22% of the ‘virtual’ figure above.

Grammer-Lexis Relations in the Computational Morphology of Arabic 129

As for the lexical nuclei of word-forms, knowing that the amount of ROOTS in
DIINAR.1 is 6,546, with an estimated number of 400 patterns, the figure would be:

6,546 ROOTS 400 PATTERNS = 2,618,400 ROOT-PATTERN virtual links.

This comes against 119,693 lexical existing lemma-entries (and 129,258 ex-
isting stems including ‘broken plurals’, proper names being for obvious reasons
left out). We have seen in § 7.2.2.5 that the Buckwalter-Xerox lexicon includes
90,000 entries, based on 4,930 ROOTS and 400 PATTERNS, the blind combination of
which would have led to 1,972,000 ROOT-PATTERN virtual links.

Remarkably – knowing that sources and research contexts did in fact differ –, the
ratios of overall entries per ROOT in the two lexical resources are next to identical:

– DIINAR.1 lexical database: 119,693 entries / 6,546 ROOTS = 18.28
– Buckwalter-Xerox lexicon: appr. 90,000 entries / 4,930 ROOTS = 18.25.

One is therefore brought to the conclusion that the ‘virtual results’ above are not
only absurdly enormous, they are also blurred: for lack of explicit decision proce-
dures, there would be no way in which a given analysed or generated ‘form’
could, or not, be deemed part of the language. Restricting generated lexica through
rules involving grammar-lexis relations associated to actual lexical entries is there-
fore necessary both for computational generation and analysis, and in the building
of efficient lexical resources. Let us now consider the general types of rules and
relations that are valid within the boundaries of Arabic word-forms.

7.3.4 General Types of Rules and Relations
in the Word-Formatives Grammar

7.3.4.1 The Three Types of Contextual Relations Involved in the WFG

Rules involving word-formatives (NF and EF-s) are based on three types of rela-
tions (Dichy, 1987): ‘entails’, ‘excludes’, ** ‘is compatible with’ or ‘ad-
mits’, the third of which is attached to the opposed pair of the first two as an
‘elsewhere’ relation of a special kind, directly connected to ambiguity in language
analysis processes. In generation, all ‘compatibility’ (or ‘admit’) relations can in fact
be rewritten in terms of either ‘entail’ or ‘exclude’ rules. ‘Compatibility’ relations
are mostly useful in the formalization of recognition rules, when ambiguity is at
stake. They express relations that only appear in analysis.12

It is essential to note that automatic analysis and generation of linguistic data
are not to be considered as reverse processes (Desclés, 1983; Dichy, 1984, 1990,
1997).

12 Developments on ambiguity in Arabic NLP have been presented in Dichy (1990, 2000).

Statistics on ambiguity in ‘unvowelled’ written Arabic are given in Abbès (2004). For a
general reference on ambiguity in Arabic, see Arar (2003), and A. Farghaly’s contribu-
tion on “Lexical Ambiguity in Arabic Machine Translation Systems” in the same vol-
ume.

130 Dichy and Farghaly

7.3.4.2 Rules Related to the Two General Fields of the Word-form Structure

Grammar-lexis relations are connected to the word-Formatives Grammar
(WFG), which accounts for the rules and relations involved in Arabic word-form
structures (Dichy, 1987, 1990). In the well-known representation recalled in the
upper half of Figure 7.2 (see § 7.3.1 above), two general types of word-formatives
can be distinguished:

– Formatives pertaining to the bound grammatical morphemes of the language,
and encompassed within the boundaries of the word-form, are called EF-s
(Extension Formatives).

– The lexical nucleus of the word form (except in word-forms that only include
grammatical morphemes) is called a NF (Nucleus Formative).

The WFG includes, accordingly, three types of rules and/or relations, which are
directly attached to the triangle featured in the lower part of Figure 7.2. By con-
vention, in ‘PCL SUF’, the arrow ‘ ’ can be read either as ‘determine’ (either

 ‘entails’, or ‘excludes’) or ‘are compatible with’ (**), with reference to the
three types of rules mentioned in § 7.3.4.1. The two-headed arrow ‘ ’ is read in
the same way, with the addition of ‘reciprocity’ (‘and vice-versa’).

Types of rules and relations involved are:

[a] EF EF contextual rules and relations, such as PCL SUF rules, e.g.:

PCL = Prep. {bi#, li#} SUF = {+i, +in,+a, +n, +iyna, +iy, +ayni, +ay}

 which can be phrased as: ‘if the proclitic is a preposition (i.e., a member of
the set between braces), it follows (or: this entails) that the suffix is one of the
indirect (or genitive, majruwr) case suffixes’, the set of which is listed
between braces. The selection of the correct case-ending in the list is per-
formed through different types of morphological and syntactic rules.

[b] NF EF rules and relations. A simple example involves the major lexical
category to which the NF belongs, such as PCL NF category. The above
rule, for instance, needs to be completed by the following:

PCL = Prep. NF = Noun.

[c] NF – NF relations are morphological derivation links, which are, in a great
number of cases, not rule-predictable. Consider, in nouns, singular – ‘broken
plural’ links, for instance: sing. kitaAb, – plur. kutub, ‘book(s) vs
sing. sinaAn, – plur. Âasin~a , /’asinna(t)/, ‘spearhead(s)’, sing.
HimaAr, – plur. Hamiyr, Humur, and ÂaHmira , /’aHmira(t)/,

 ‘donkey(s)’. In these nouns, the PATTERN of the singular is /R1iR2 R3/,
 ; the PATTERNS of ‘broken plurals’ appear to be, sometimes /R1uR2uR3/,
, sometimes /’aR1R2iR3a(t)/, , and sometimes another ‘broken plural’

form, including, in some cases, a suffixation plural form, e.g.: qiTaAr,
‘train’, shows two plural forms, quTur, , which pertains to the

Grammer-Lexis Relations in the Computational Morphology of Arabic 131

/R1uR2uR3/, PATTERN of ‘broken plurals’, and qiTaAraAt, , which
is constructed with the suffix +aAt, .

7.3.5 Rules of the WFG and Grammar-Lexis Specifiers

Rules and relations involved in the Word Formatives Grammar entail the need, for
the entries of a lexical database, to be associated with grammar-lexis relations.
The latter are essentially attached, in computational morphology, to types [b] and
[c] above. As mentioned above, they are called in the SAMIA-DIINAR.1 ap-
proach, word-specifiers (w-specifiers).

7.3.5.1 The Two Types of NF EF Contextual Rules and Relations

A crucial point in the overall structure of the Arabic lexicon, which seems to have
been widely overlooked, appeared in the elaboration of the DIINAR.1 resource.
Grammar-lexis relations concerned with the nucleus are liable to involve, in addi-
tion to compositional combinations of nucleus and extension formatives, non-
compositional ones, i.e. ‘frozen’ or ‘lexicalized’ combinations (Dichy, 1984,
1990, 1997). Let us consider these two types:

[a] NF EF compositional relations, and related w-specifiers
Compositional NF EF combinations are, on the whole, easy to grasp, al-

though they include a few tricky aspects (see § 7.3.5.3). A simple example is that
of: Stem SUF rules, e.g.:

Stem = diptote SUF = {u, a, i}

This rule can be rephrased as: ‘a stem whose declension is diptote (mamnuw
mina AlS~arf, /mamn mina S-Sarf/,) entails case-endings be-
longing to the listed set’. An additional rule restricts the occurrence of SUF /i/ with
diptote nouns and adjectives to construct-state syntactic structures (iDaAfa ,
/’iD fa(t)/,), e.g.: min ma aAlimi Al- aASima , /min ma limi Al- Sima(t)/,

 ‘from the monuments of the capital’. Other suffixes are accounted
for in different rules.

Many other examples could be given: nouns with ‘broken plurals’ often ex-
clude () suffixed plural forms; intransitive verbs exclude ECL complement pro-
nouns; verbs that only admit non-human complements exclude a subset of the
ECL-s, such as -hum, 3rd person plur. masc. or -ki, 2nd person sing. fem., which
can only refer to human entities.

[b] NF EF non-compositional lexicalized relations, and related w-specifiers
In Arabic, as in other Semitic languages of the same family, in addition to

ROOT and PATTERN derivation, one finds lexical derivation by means, essentially,

132 Dichy and Farghaly

of suffixation.13 With Type 1 stems (§ 7.3.1) featuring ROOT and PATTERN combi-
nation, the two means of derivation are liable to add up. Letting aside, in the pre-
sent contribution, phrasal compound expressions in which a given syntactic struc-
ture is frozen (as in majma ilmiy~, ‘Science Academy’, jam Al-
ma luwmaAt, ‘data gathering’, or ÂaHaATa fulaAnAã ilmAã bi-,
/’aH Ta ful nan ilman bi-/, ‘to inform someone of’), one can dis-
tinguish between two types of lexical entries based on strict morphological means
(Dichy, 1997):

[1] ‘Simple’ lexical entries coincide with the stem (or nucleus), e.g.: mak-
tab, “office”, “bureau”. The entry can, as expected, be inserted in a
word-form, such as wa-bi-maktab-i-naA, “and by our office”
(“and-by-office-genitive case /i/-of us”).

[2] Morphological compound entries (as opposed to phrasal compounds)
feature a ‘lexical freezing’ of the combination of a given nucleus with a
given extension formative. The morphological compound is coded in the
database as a full entry of its own (a w-specifier is, in addition associated
with the stem, in order to account for occurrences that have not under-
gone a ‘lexical freezing’ of the NF – EF relation). The lexical entry
SuHuf-iy, ‘journalist’, for instance, is a compound entry:

(a) it does not coincide with the stem, or nucleus, it encompasses. The
stem is, here: SuHuf, (otherwise meaning ‘sheets’, ‘papers’),
which features a combination of ROOT /S-H-f/ and PATTERN
/R1uR2uR3/ ();

(b) it includes on the other hand the extension formative +iy~ (yaA' Al-
n~isba , /y ’ al-nisba(t)/, ‘relative adjective or noun’
morpheme). An analogous example, going as far back as the IInd
cent. of Hijra/VIIIth cent. c.e., is kutub+iy~, , ‘librarian’ (in the
medieval meaning of the word).
– A given word can be either a frozen morphological compound,

or result from composition: jaAmi a , /j mi a(t)/, can be
analysed either as the morphological compound jaAmi +a ,
/j mi +a(t)/, meaning ‘mosque’, which is linked in the lexicon
with the ‘broken plural’ jawaAmi , or as the feminine of the
active participle jaAmi +a , /j mi +a(t)/, meaning ‘collecting’,
i.e. ‘she who collects’, or ‘compiles’ or ‘brings together’. This is a
very frequent phenomenon.

– Morphological compounds can, of course, also be inserted in a
word-form, e.g. wa-bi-SuHuf+iy~+i-naA, ‘and by our
journalist’ (= ‘and_by_ journalist_genitive case /i/_of us’).

13 In this representation, affixed elements included in PATTERNS, such as /ma/ in maw id,

 ‘promise’, ‘pledge’ (or ‘appointment’, ‘date’) are not considered as prefixes or
suffixes (following Cohen (1961) and Desclés (1983), as well as traditional Arabic
grammar) – see § 7.3.1.

Grammer-Lexis Relations in the Computational Morphology of Arabic 133

Another example is found in proper names, such as (Al-Kuwayt,
 in which the lexicalized EF is the proclitic article Al-.

The above distinction is methodologically crucial. It gives additional interpretative
evidence to the demonstration presented in § 7.3.3.2, according to which deriva-
tion of ‘virtual’ lexical entries from ROOT and PATTERN is no sufficient basis for
the Arabic lexicon. But the issue goes much further: ROOT and PATTERN deriva-
tion is complemented by ‘external’ derivation, i.e. by the lexicalization of the NF
– EF combination, which is only found in nouns (Dichy, 1984), and cannot be
predicted by rules, because the process described above only occurs to answer the
need, for the lexicon of a given language, to build a new entry, when a newly en-
countered entity requires nomination. This is correlated to the non-compositional
nature of the NF – EF relation. It follows, in a computational perspective, that
morphological compounds can only be recognized or generated with the help of a
lexical resource.

7.3.5.2 Morphological NF – NF Derivation Links, and Related W-Specifiers

Another type of relation is NF – NF linking combinations, also called, in Semitic
studies, ‘internal’ derivation, because these links feature a variation in PATTERN,
the ROOT remaining constant. Such derivations have to be encoded as w-specifiers,
whenever the morphological link is not strictly rule-predictable, which occurs in a
majority of stems (Dichy, 1987, 1990; Hassoun, 1987).

This is the case, for instance, in a wide number of singular ‘broken plural’
links in nouns or adjectives (exemplified in § 7.3.4.2[c]), as well as in most ‘per-
fective’ ‘imperfective’ links (maAD , /m din/ muDaAri , /muD ri /,
), in verbs of ‘simple’ PATTERNS (Al-fi l Al-mujar~ad,). In the
same subcategory of verbs, the verb infinitive form link (fi l maSdar,

), and other similar ones (such as verb analogous adjective,
fi l Sifa mušab~aha , /Sifa(t) mušabbaha(t)/,) also need to
be encoded lexically.

Restrictions on conjugation paradigms, such as the passive or the imperative,
which can be described in terms of semantic rules (based on features such as agen-
tivity, and human/non human complements, etc., cf. Ammar & Dichy (1999), pp.
17, 19–20), also pertain to NF NF links. In a lexical resource, they need to be
encoded as w-specifiers, because the entries are not actual linguistic signs (with
‘signifiant’ and ‘signifié’ features), but mere chains of characters associated with a
set of linguistic specifiers (Dichy, 1997).

7.3.5.3 Morphological Derivation Links Including a Morphological Compound

In many cases, morphological compound entries also feature a morphological
derivation link. For example: the morphological compound madras+a ,
/madras+a(t)/, , ‘school’ is associated with the broken plural form madaAris,

. By contrast, the analogous entry maktab+a , /maktab+a(t)/, ‘library’,

134 Dichy and Farghaly

has a suffixed plural form maktaba+At, . This is due to the fact that the ex-
pected broken plural makaAtib, is already associated in the lexicon with
maktab, “office”, “bureau” (which is a ‘simple’ lexical entry – see
§ 7.3.5.1[b] above).

7.4 Conclusion: Exhaustive Coverage of Morphological
Features, and the Question of what Lays Beyond

The third section of this contribution has presented the main types of grammar-
lexis relations that can be observed at word-form level in Arabic, and produced
evidence for the crucial need for a comprehensive mapping of rules and relations
involving the lexical nucleus of words in the computational morphology of the
language.

To make this presentation clearer, three questions remain to be answered:
(1) Are the rules and relations in consideration finite in number? (2) What is the
actual extent of their coverage of word-form structures, relations and rules? (3)
And what lays ahead, beyond word-level analysis? These issues are crucial in a
computational perspective, because they are concerned with, respectively, the fea-
sibility of the task of associating a whole lexicon with w-specifiers, the reliability
of the software drawing on the lexical resource in consideration, and the compati-
bility of the results achieved in computational morphology with further develop-
ments involving sentence and text analyses.

7.4.1 Finiteness in Number of W-Specifiers, and the Feasibility
of their Association with the Entries of an Entire Lexical Database

Arabic EF EF rules belong to finite sets for obvious reasons: EF-s are finite in
number, and a finite set of relations are at stake, because EF-s belong to the
grammatical morphemes of the language.

Altough lexical NF-s belong to open sets, the finiteness of NF EF w-
specifiers, i.e. of the number of w-specifiers to be associated with the entire set of
lexical entries, can be demonstrated as follows (Dichy, 1997):

(a) Because EF-s belong to finite sets, it follows that a finite set of features con-
stricting NF EF relations can be established.

(b) This finite set of features, which corresponds to morpho-syntactic w-
specifiers, can in turn be associated with every entry of a lexical database, i.e.,
to each NF.

In other word, both morphological grammar-lexis relations and the task of assign-
ing every entry of a lexical resource with specifiers operating at word-level can be
demonstrated as limited. Though lengthy, the task can subsequently be performed
in a limited period of time.

Grammer-Lexis Relations in the Computational Morphology of Arabic 135

7.4.2 Finiteness and Exhaustiveness in the Coverage of Data
at Morphological Level, and the Reliability of Resulting Lexical
Resources and Analyzers

Because grammar-lexis relations are liable to be embedded in finite sets of w-
specifiers, it follows that the coverage of data at word (or morphological) level can
be exhaustive. In other terms, finite sets of w-specifiers can produce exhaustive
coverage of data within the boundaries of the word-form. This ensures a very high
level of reliability in the software and analyzers drawing on a language resource
such as DIINAR.1.

The above demonstration naturally goes beyond the mere case of the Arabic
language. The criteria of finiteness and exhaustiveness in linguistic sets of features
have been introduced by Mel’ uk (1982) in the general context of morphological
description, and later taken up by him in lexicography. On the other hand, the
demonstration also partly explains, in our view, why morphological and morphotac-
tic rules and relations accounting for word-form generation and/or analysis, can be
implemented very effectively using finite state transducers (Beesley & Karttunnen,
2003; Karttunnen, 1994).

7.4.3 Beyond Computational Morphology: Grammar-lexis Relations
at Sentence and Text Levels

We now come to our conclusive remark, which deals with the usefulness of mor-
phosyntactic specifiers included in rules and relations operating at word-form
level in sentence and text analysis. Grammar-lexis relations at sentence level (s-
specifiers), and furthermore at text level (t-specifiers) will, for obvious reasons,
require different approaches. In the related resources, contextual relations need to
be established between categories and sets of morphemes on the one hand, and
sets of denotative and referential semantic categories and features on the other.
The mapping of grammar-lexis relations already performed in the finite domain of
computational morphology can nevertheless be considered a substantial progress
towards lexical resources needed at sentence and text-level, owing the high degree
of complexity of word-form structures in Arabic, compared to, say, French or
English. W-specifiers already include a number of semantically related syntactic
features needed at higher levels of analysis, such as (in)transitivity (including re-
lated prepositional structures) in verbs, type of plural according to the lexical sub-
category a given nominal form belongs to and many other lexical categorisations
and descriptions, which have been exemplified in various sections of this chapter.

References

Abbès, R. (2004). La conception et la réalisation d’un concordancier électronique pour
l’arabe. Thèse de doctorat en sciences de l’information, ENSSIB/INSA, Lyon.

136 Dichy and Farghaly

Abbès, R., Dichy, J. & Hassoun, M. (2004). The Architecture of a Standard Arabic lexical
database: some figures, ratios and categories from the DIINAR.1 source program. In
Proceedings of the COLING-04 Workshop on Computational Approaches to Arabic
Script-based Languages (pp. 15–22), Geneva.

Ammar, S. & Dichy, J. (1999). Les verbes arabe. Paris: Hatier. Fully Arabic version, with
specific introduction: Al-’af lu l- arabiyya, (same publisher and year).

Arar, M. (2003). D hiratu l-labsi f l- arabiyya [The phenomenon of ambiguity in Ara-
bic,]. Amman: D r W ’il.

Aronoff, M. (1994). Morphology by Itself: Stems and Inflectional Classes. Cambridge, MA:
MIT Press.

Beesley, K. (1989). Computer Analysis of Arabic Morphology: A two-level approach with
detours. In Comrie, B. & Eid, M. (Eds.) (1991), Perspectives on Arabic Linguistics III:
Papers from the Third Annual Symposium on Arabic Linguistics (pp. 155–172).
Amsterdam: John Benjamins.

Beesley, K. (2001). Finite-state morphological analysis and generation of Arabic at Xerox
research: Status and plans in 2001. In Proceedings of the ACL-01 Workshop on Arabic
Language Processing: Status and Prospects (pp. 1–8), Toulouse, France.

Beesley, K. & Karttunen, L. (2003). Finite State Morphology. Stanford, CA: CSLI Publications.
Bentin, S. & Frost, R. (1995). Morphological factors in visual word identification in

Hebrew. In Feldman L.B., (Ed.), Morphological aspects of language processing
(pp. 271–292). Hillsdale, NJ: Erlbaum.

Buckwalter, T. (2002). Buckwalter Arabic Morphological Analyzer Version 1.0. Lin-
guistic Data Consortium, Philadelphia. LDC catalog number LDC2002L49 and ISBN
1-58563-257-0.14

Cantineau, J. (1950a). La notion de ‘schème’ et son altération dans diverses langues sémiti-
ques. In Semitica, 3, 73–83.

Cantineau, J. (1950b). Racines et schèmes. In Mélanges offerts à William Marçais. Paris :
Maisonneuve.

Cassuto, P. (2000). Le classement dans les dictionnaires de l’hébreu. In Cassuto, P. &
Larcher, P. (Eds.), La sémitologie, aujourd’hui (pp. 133–158).

Cassuto. P. & Larcher, P. (Eds.). (2000). La sémitologie, aujourd’hui. Travaux du Cercle
linguistique d’Aix-en-Provence n°16, Publications de l’université de Provence:

Cohen, D. (1961). Essai d'une analyse automatique de l'arabe. T.A. informations. Reprod. in
Cohen, D. Études de linguistique sémitique et arabe (pp. 49–78). The Hague/Paris:
Mouton.

Desclés, J.-P., dir. (1983). (H. Abaab, J.-P. Desclés, J. Dichy, D.E. Kouloughli, M.S. Ziadah).
Conception d’un synthétiseur et d’un analyseur morphologiques de l’arabe, en vue
d’une utilisation en Enseignement assisté par Ordinateur. Rapport rédigé à la demande
du Ministère des Affaires étrangères.

Diab, M. & Resnik, P. (2001). An unsupervised method for word sense tagging using paral-
lel corpora. In Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics (pp. 255–262), Philadelphia, PA.

Dichy, J. (1984). Vers un modèle d’analyse automatique du mot graphique non-vocalisé en
arabe. Presented at the Conference on “Communication entre langues européennes et

14 Retrieved December 16, 2006, from http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?

catalogId=LDC2002L49

Grammer-Lexis Relations in the Computational Morphology of Arabic 137

langues orientales”, Montvillargenne, Oise. Revised version in Dichy, J. & Hassoun, M.
(Eds.), (1989), pp. 92–158.

Dichy, J. (1987). The SAMIA Research Program, Year Four, Progress and Prospects. In
Processing Arabic Report 2 (pp. 1–26). T.C.M.O., Nijmegen University, Netherlands.

Dichy, J. (1990). L'écriture dans la représentation de la langue : la lettre et le mot en
arabe. Doctorat d'État, Université Lumière Lyon 2, Lyon.

Dichy, J. (1993). Deux grands ‘mythes scientifiques’ relatifs au système d’écriture de
l’arabe. In Savoir, images, mirages, Journées d’Études arabes, Special issue of
l’Arabisant (pp. 32–33). Paris: Association Française des Arabisants.

Dichy, J. (1997). Pour une lexicomatique de l’arabe : l’unité lexicale simple et l’inventaire
fini des spécificateurs du domaine du mot. Meta 42, 291–306. Presses de l’Université
de Montréal.

Dichy, J. (2000). Morphosyntactic Specifiers to be associated to Arabic Lexical Entries -
Methodological and Theoretical Aspects. In Proceedings of ACIDA 2000 (Vol. ‘Cor-
pora and Natural Language Processing’, pp. 55–60), Monastir, Tunisia.

Dichy, J. (2003). Sens des schèmes et sens des racines en arabe: le principe de figement
lexical (PFL) et ses effets sur le lexique d’une langue sémitique. In Rémi-Giraud, S. &
Panier, L., dir., La polysémie ou l’empire des sens (pp. 189–211). Lyon: Presses Uni-
versitaires de Lyon.

Dichy, J. (2005). Spécificateurs engendrés par les traits [±animé], [±humain], [±concret] et
structures d’arguments en arabe et en français. In Béjoint, H. & Maniez, F. (Eds.), De
la mesure dans les termes, Actes du colloque en hommage à Philippe Thoiron (pp.
151–181). Lyon: Presses Universitaires de Lyon.

Dichy, J. Braham, A., Ghazali, S. & Hassoun, M. (2002). La base de connaissances linguis-
tiques DIINAR.1 (DIctionnaire INformatisé de l’ARabe, version 1). In Braham, A.
(Ed.), Proceedings of the International Symposium on the Processing of Arabic, Uni-
versité de la Manouba, Tunisia.

Dichy, J. & Farghaly, A. (2003). Roots and Patterns vs. Stems plus Grammar-Lexis Speci-
fications: on what basis should a multilingual lexical database centred on Arabic be
built? In Proceedings of the IXth MT Summit Workshop on Machine Translation for
Semitic Languages: Issues and Approaches (pp. 1–8), New Orleans.

Dichy, J. & Hassoun, M. (Eds.) (1989). Simulation de modèles linguistiques et Enseigne-
ment Assisté par Ordinateur de l’arabe – Travaux SAMIA I. Paris: Conseil Internatio-
nal de la Langue Française.

Dien, D., Kiem, H. & Hovy, E. (2003). BTL: a Hybrid Model for English-Vietnamese Ma-
chine Translation. In Proceedings of the IXth MT Summit (pp. 87–94), New Orleans.

Ditters, E. (1992). A Formal Approach to Arabic Syntax: The Noun phrase and the Verb
Phrase. Ph.D. dissertation, Catholic University of Nijmegen, Netherlands.

Farghaly, A. (1987). Three Level Morphology. Paper presented at the Arabic Morphology
Workshop, Linguistic Summer Institute, Stanford, CA.

Farghaly, A. (1994). Discontinuity in the Lexicon: A Case from Arabic Morphology. In In-
ternational Conference on Arabic Linguistics, The American University in Cairo,
Cairo, Egypt.

Fassi-Fehri, A. (1997). Al-Ma jama wa-t-taxT T – NaDar t jad da f qaD y l-lu a l-
arabiyya [Lexicography and language planning. Arabic Language matters reconsid-

ered, –]. Casablanca, Morocco: Al-Markaz
al-thaq fiyy al- arabiyy.

138 Dichy and Farghaly

Forster, G., Grandrabur, S., Langlais, P., Plamondon, P., Russel, G. & Simard, M. (2003).
Statistical Machine Translation: Rapid Development with limited Resources. In Pro-
ceedings of the IXth MT Summit (pp. 110–117), New Orleans.

Frost, R., Deutsch, A. & Forster, K.I. (2000). Decomposing morphologically complex
words in a non linear morphology. Journal of Experimental Psychology: Learning,
Memory and Cognition, 26, 751–65.

Frost, R., Forster, K.I. & Deutsch, A. (1997). What can we learn from the morphology of
Hebrew? A masked priming investigation of morphological representation. Journal of
Experimental Psychology: Learning, Memory and Cognition, 23, 829–856.

Geith, M. & El-Saadany, T. (1987). Arabic morphological analyzer on a personal computer.
Presented at the Arabic Morphology Workshop, Linguistic Summer Institute, Stanford,
CA.

Ghenima, M. (1998). Analyse morpho-syntaxique en vue de la voyellation assistée par or-
dinateur des textes écrits en arabe. Ph.D. dissertation, ENSSIB/Université Lyon 2.

Grainger, J., Dichy, J., El-Halfaoui, M. & Bamhamed, M. (2003). Approche expérimentale
de la reconnaissance du mot écrit en arabe. In Jaffré, J.-P. (Ed.), Dynamiques de
l’écriture: approches pluridisciplinaires. Faits de langue, 22, 77–86.

Hans Wehr. (1979) A dictionary of modern written Arabic. 4th edition, edited. by J. Milton
Cowan. Wiesbaden, Harrassowitz.

Hassoun, M. (1987). Conception d'un dictionnaire pour le traitement automatique de
l'arabe dans différents contextes d'application., Ph.D. (thèse d’État), Université
Lyon 1.

Hlal, Y. (1979). Méthode d'apprentissage pour l'analyse morphosyntaxique (expérimentée
dans le cas de l'arabe et du français). Ph.D. dissertation, Université Paris-Sud, Centre
d'Orsay.

Hlal, Y. (1985a). Morphology and syntax of the Arabic language. Arab School of Sciences
and Technology: Informatics 4C, 1–8.

Hlal, Y. (1985b). Morphological analysis of Arabic speech. In Workshop Papers
Kuwait/Proceedings of Kuwait Conference on Computer Processing of the Arabic
Language (Section 13, pp. 273–294).

Karttunnen, L. (1994). Constructing Lexical Transducers. In Proceedings of COLING-94,
(pp. 206–411), Tokyo, Japan.

Karttunnen, L. & Beesley, K.R. (2005). Twenty-five years of finite-state morphology. In
Arppe, A., Carlson, L., Lindén, K., Piitulainen, J., Suominen, M., Vainio, M., Westerlund,
H. & Yli-Jyrä, A. (Eds.), Inquiries into Words, Constraints and Contexts. Festschrift
for Kimmo Koskenniemi on his 60th Birthday (2005). CSLI Studies in Computa-
tional Linguistics ONLINE, pp. 71–83. Copestake, A. (Series Ed.). Stanford, CA:
CSLI Publications.

McCarthy, J. (1981). A Prosodic Theory of Nonconcatenative Morphology. Linguistic In-
quiry, 12, 373–418.

McCarthy, John J. & Prince, Alan S. (1996). Prosodic morphology. Technical report 32,
Rutgers University Center for Cognitive science.

Mel uk, I. A. (1982). Towards a Language of Linguistics: A System of Formal Notions for
Theoretical Morphology. München: Wilhem Fink Verlag.

Nikkhou, M. (Ed.) (2004). NEMLAR International Conference on Arabic Language Re-
sources and Tools, Cairo. Paris: ELDA.

Grammer-Lexis Relations in the Computational Morphology of Arabic 139

Ouersighni, R. (2001). A major offshoot of the DIINAR-MBC project: AraParse, a mor-
pho-syntactic analyzer of unvowelled Arabic texts. In ACL-01 Workshop on Arabic
Language Processing: Status and Prospects (pp. 66–72), Toulouse, France.

Ouersighni, R. (2002). La conception et la réalisation d’un système d’analyse morpho-
syntaxique robuste pour l’arabe: utilisation pour la détection et le diagnostic des fau-
tes d’accord. Ph.D. dissertation, ENSSIB/Université Lyon 2.

Rogati, M., McCarley, S. & Yang, Y. (2003). Unsupervised Learning of Arabic Stemming
Using a Parallel Corpus. In 41st Annual Meeting of the Association of Computational
Linguistics (pp. 391–398), Sapporo, Japan.

Roman, A. (1990). Grammaire de l’arabe. Paris: P.U.F., coll. “Que sais-je?”.
Roman, A. (1999). La création lexicale en arabe, ressources et limites de la nomination

dans une langue humaine naturelle. Presses Universitaires de Lyon.
Rousseau, J. (1987). La découverte de la racine en sémitique par l’idéologue Volney. His-

toriographia Linguistica, 14(3), 341–365.
Sampson, G. (1985). Writing systems. Stanford University Press.
Schafer, C. & Yarowsky, D. (2003). A Two-Level Syntax-Based Approach to Arabic-

English Statistical Machine Translation. In Proceedings of the IXth MT Summit Work-
shop on Machine Translation for Semitic Languages: Issues and Approaches (pp. 45–52),
New Orleans.

Soudi, A., Cavalli-Sforza, V. & Jamari, A. (2001). A Computational Lexeme-Based Treat-
ment of Arabic Morphology. In ACL-01 Workshop on Arabic Language Processing:
Status and Prospects (pp. 155–162), Toulouse, France.

Troupeau, G. (1984). La notion de ‘racine’ chez les grammairiens arabes anciens. In
Auroux, S., Glatiny, M., Joly, A., Nicolas, A. & Rosier, I. (Eds.), Matériaux pour une
histoire des théories linguistiques, pp. 239–245. Presses Universitaires de Lille.

Zaafrani, R. (2002). Développement d’un environnement interactif d’apprentissage avec
ordinateur de l’arabe langue étrangère. Ph.D. dissertation, ENSSIB/Université
Lyon 2.

Zwiep, I. E. (1996). The Hebrew linguistic tradition of the Middle Ages. Histoire Épistémologie
Langage, 18(1), 41–61.

140 Dichy and Farghaly

PART III

Empirical Methods

8

Learning to Identify Semitic Roots

Ezra Daya1, Dan Roth2 and Shuly Wintner3

1 Department of Computer Science, University of Haifa and ClearForest Ltd.
Ezra.Daya@ClearForest.com

2 Department of Computer Science, University of Illinois at Urbana-Champaign
danr@cs.uiuc.edu

3 Department of Computer Science, University of Haifa
shuly@cs.haifa.ac.il

Abstract: The morphology of Semitic languages is unique in the sense that the major word-formation
mechanism is an inherently non-concatenative process of interdigitation, whereby two
morphemes, a root and a pattern, are interwoven. Identifying the root of a given word in
a Semitic language is an important task, in some cases a crucial part of morphological
analysis. It is also a non-trivial task, which many humans find challenging. We present a
machine learning approach to the problem of extracting roots of Semitic words. Given the
large number of potential roots (thousands), we address the problem as one of combining
several classifiers, each predicting the value of one of the root’s consonants. We show that
when these predictors are combined by enforcing some fairly simple linguistics constraints,
high accuracy, which compares favorably with human performance on this task, can be
achieved

8.1 Introduction

The standard account of word-formation processes in Semitic languages describes
words as combinations of two morphemes: a root and a pattern.1 The root consists of
consonants only, by default three (although longer roots are known), called radicals.
The pattern is a combination of vowels and, possibly, consonants too, with ‘slots’ into
which the root consonants can be inserted. Words are created by interdigitating roots
into patterns: the first radical is inserted into the first consonantal slot of the pattern,
the second radical fills the second slot and the third fills the last slot. See Shimron
(2003) for a survey of linguistic and psycho-linguistic issues in Semitic root-based
morphology.

Identifying the root of a given word is an important task. Although existing
morphological analyzers for Hebrew only provide a lexeme (which is a combination

1 An additional morpheme, vocalization, is used to abstract the pattern further; for the
present purposes, this distinction is irrelevant.

143

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 143–158.
C© 2007 Springer.

144 Daya et al.

of a root and a pattern), for other Semitic languages, notably Arabic, the root is
an essential part of any morphological analysis simply because traditional dictio-
naries are organized by root, rather than by lexeme. Furthermore, roots are known to
carry some meaning, albeit vague. We believe that this information can be useful for
computational applications.

We present a machine learning approach, augmented by limited linguistic
knowledge, to the problem of identifying the roots of Semitic words. To the
best of our knowledge, this is the first application of machine learning to this
problem (but see also Marsi, van den Bosch, and Soudi, 2005; Habash and
Rambow, 2005). While there exist programs that can extract the roots of words
in Arabic (Beesley, 1998a; Beesley, 1998b) and Hebrew (Choueka, 1990), they
are all dependent on labor-intensive construction of large-scale lexicons which are
components of full-scale morphological analyzers. Note that Buckwalter (2002)’s
Arabic morphological analyzer only uses “word stems – rather than root and
pattern morphemes – to identify lexical items. (The information on root and pattern
morphemes could be added to each stem entry if this were desired.)” The challenge
of our work is to automate this process, avoiding the bottleneck of having to
laboriously list the root and pattern of each lexeme in the language, and thereby
gain insights that can be used for more detailed morphological analysis of Semitic
languages.

As we show in Section 8.2, identifying roots is a non-trivial problem even
for humans, due to the complex nature of Semitic derivational and inflectional
morphology and the peculiarities of the orthography. From a machine learning
perspective, this is an interesting test case of interactions among different yet inter-
dependent classifiers. We focus on Hebrew in the first part of this chapter; after
presenting the linguistic data in Section 8.3, we discuss a simple baseline learning
approach (Section 8.4) and then propose two methods for combining the results of
interdependent classifiers (Section 8.5), one which is purely statistical and one which
incorporates linguistic constraints, demonstrating the improvement of the hybrid
approach. Then, the same technique is applied to Arabic in Section 8.6 and we
demonstrate comparable improvements. We conclude with suggestions for future
research. An early version of this work was published as Daya, Roth, and Wintner
(2004).

8.2 Linguistic Background

In this section we refer to Hebrew only, although much of the description is
valid for other Semitic languages as well. As an example of root-and-pattern
morphology, consider the Hebrew roots g.d.l, k.t.b and r.$.m and the patterns
haCCaCa, hitCaCCut and miCCaC, where the ‘C’s indicate the slots. When the roots
combine with these patterns the resulting lexemes are hagdala, hitgadlut, migdal,
haktaba, hitkatbut, miktab, har$ama, hitra$mut, mir$am, respectively. After the root
combines with the pattern, some morpho-phonological alternations take place, which

Learning to Identify Semitic Roots 145

may be non-trivial: for example, the hitCaCCut pattern triggers assimilation when
the first consonant of the root is t or d: thus, d.r.$+hitCaCCut yields hiddar$ut. The
same pattern triggers metathesis when the first radical is s or $: s.d.r+hitCaCCut
yields histadrut rather than the expected *hitsadrut. Semi-vowels such as w or
y in the root are frequently combined with the vowels of the pattern, so that
q.w.m+haCCaCa yields haqama, etc. Frequently, root consonants such as w or y are
altogether missing from the resulting form.

These matters are complicated further due to two sources: first, the standard
Hebrew orthography leaves most of the vowels unspecified. It does not explicate a
and e vowels, does not distinguish between o and u vowels and leaves many of the i
vowels unspecified. Furthermore, the single letter w is used both for the vowels o and
u and for the consonant v, whereas i is similarly used both for the vowel i and for the
consonant y. On top of that, the script dictates that many particles, including four of
the most frequent prepositions, the definite article, the coordinating conjunction and
some subordinating conjunctions all attach to the words which immediately follow
them. Thus, a form such as mhgr can be read as a lexeme (“immigrant”), as m-hgr
“from Hagar”or even as m-h-gr “from the foreigner”. Note that there is no determin-
istic way to tell whether the first m of the form is part of the pattern, the root or a
prefixing particle (the preposition m “from”).

The Hebrew script has 22 letters, all of which can be considered consonants.
The number of tri-consonantal roots is thus theoretically bounded by 223, although
several phonological constraints limit this number to a much smaller value. For
example, while roots whose second and third radicals are identical abound in Semitic
languages, roots whose first and second radicals are identical are extremely rare
(see McCarthy (1981) for a theoretical explanation). To estimate the number of roots
in Hebrew we compiled a list of roots from two sources: a dictionary (Even-Shoshan,
1993) and the verb paradigm tables of Zdaqa (1974). The union of these yields a list
of 2152 roots.2

While most Hebrew roots are regular, many belong to weak paradigms, which
means that root consonants undergo changes in some patterns. Examples include i
or n as the first root consonant, w or i as the second, i as the third and roots whose
second and third consonants are identical. For example, consider the pattern hCCCh.
Regular roots such as p.s.q yield forms such as hpsqh. However, the irregular roots
n.p.l, i.c.g, q.w.m and g.n.n in this pattern yield the seemingly similar forms hplh,
hcgh, hqmh and hgnh, respectively. Note that in the first and second examples, the
first radical (n or i) is missing, in the third the second radical (w) is omitted and in
the last example one of the two identical radicals is omitted. Consequently, a form
such as hC1C2h can have any of the roots n.C1.C2, C1.w.C2, C1.i.C2, C1.C2.C2 and
even, in some cases, i.C1.C2.

While the Hebrew script is highly ambiguous, ambiguity is somewhat reduced for
the task we consider here, as many of the possible lexemes of a given form share

2 Only tri-consonantal roots are counted. Ornan (2003) mentions 3407 roots, whereas the
number of roots in Arabic is estimated to be 10,000 (Darwish, 2002).

146 Daya et al.

the same root. Still, in order to correctly identify the root of a given word, context
must be taken into consideration. For example, the form $mnh has more than a dozen
readings, including the adjective “fat” (feminine singular), which has the root $.m.n,
and the verb “count”, whose root is m.n.i, preceded by a subordinating conjunction.
In the experiments we describe below we ignore context completely, so our results
are handicapped by design.

8.3 Data and Methodology

We take a machine learning approach to the problem of determining the root of a
given word. For training and testing, a Hebrew linguist manually tagged a corpus
of 15,000 words (a set of newspaper articles). Of these, only 9752 were annotated
with root information; the reason for the gap is that some Hebrew words, mainly
borrowed but also some frequent words such as prepositions, do not have roots; we
further eliminated 168 roots with more than three consonants and were left with 5242
annotated word types, exhibiting 1043 different roots. Table 8.1 shows the distri-
bution of word types according to root ambiguity.

Table 8.2 provides the distribution of the roots of the 5242 word types in our
corpus according to root type, where Ci is the i-th radical (note that some roots may
belong to more than one group, so the total is greater than 100%).

As assurance for statistical reliability, in all the experiments discussed in the
remainder of this chapter (unless otherwise mentioned) we performed 10-fold cross
validation runs for every classification task during evaluation. We also divided the
test corpus into two sets: a development set of 4800 words and a held-out set
of 442 words. Only the development set was used for parameter tuning. A given
example is a word type with all its (manually tagged) possible roots. In the exper-
iments we describe below, our system produces one or more root candidates for
each example. For each example, we define tp as the number of candidates correctly
produced by the system; fp as the number of candidates which are not correct
roots; and fn as the number of correct roots the system did not produce. As usual,
we define recall as tp

tp+fp and precision as tp
tp+fn ; we then compute F-measure for

each example (with β = 1) and (macro-) average to obtain the system’s overall
F-measure.

To estimate the difficulty of this task, we asked six human subjects to perform it.
Subjects were asked to identify all the possible roots of all the words in a list of 200
words (without context), randomly chosen from the test corpus. All subjects were
computer science graduates, native Hebrew speakers with no linguistic background.
The average precision of humans on this task is 83.52%, and with recall at 80.27%,

Table 8.1. Root ambiguity in the corpus

Number of roots 1 2 3 4
Number of words 4886 335 18 3

Learning to Identify Semitic Roots 147

Table 8.2. Distribution of root
paradigms

Paradigm Number Percentage (%)

C1 = i 414 7.90
C1 = w 28 0.53
C1 = n 419 7.99
C2 = i 297 5.66
C2 = w 517 9.86
C3 = h 18 0.19
C3 = i 677 12.92
C2 = C3 445 8.49
Regular 3061 58.41

F-measure is 81.86%. Two main reasons for the low performance of humans are the
lack of context and the ambiguity of some of the weak paradigms.

8.4 A Machine Learning Approach

To establish a baseline, we first performed two experiments with simple baseline
classifiers. In all the experiments described in this chapter we use SNoW (Roth,
1998) as the learning environment, with winnow as the update rule (using perceptron
yielded comparable results). SNoW is a multi-class classifier that is specifically
tailored for learning in domains in which the potential number of information sources
(features) taking part in decisions is very large. It works by learning a sparse network
of linear functions over a pre-defined or incrementally learned feature space. SNoW
has already been used successfully as the learning vehicle in a large collection of
natural language related tasks, including POS tagging, shallow parsing, information
extraction tasks, etc., and compared favorably with other classifiers (Florian, 2002;
Punyakanok and Roth, 2001; Roth, 1998). Typically, SNoW is used as a classifier,
and predicts using a winner-take-all mechanism over the activation values of the
target classes. However, in addition to the prediction, it provides a reliable confidence
level in the prediction, which enables its use in an inference algorithm that combines
predictors to produce a coherent inference.

8.4.1 Feature Types

All the experiments we describe in this work share the same features and differ only
in the target classifiers. The features that are used to characterize a word are both
grammatical and statistical:

• Location of letters (e.g., the third letter of the word is b). We limit word length
to 20, thus obtaining 440 features of this type (recall the the size of the alphabet
is 22).

148 Daya et al.

• Bigrams of letters, independently of their location (e.g., the substring gd occurs
in the word). This yields 484 features.

• Prefixes (e.g., the word is prefixed by k$h “when the”). We have 292 features of
this type, corresponding to 17 prefixes and sequences thereof.

• Suffixes (e.g., the word ends with im, a plural suffix). There are 26 such features.

8.4.2 Direct Prediction

In the first of the two experiments, referred to as Experiment A, we trained a classifier
to learn roots as a single unit. The two obvious drawbacks of this approach are the
large set of targets and the sparseness of the training data. Of course, defining a multi-
class classification task with 2152 targets, when only half of them are manifested
in the training corpus, does not leave much hope for ever learning to identify the
missing targets.

In Experiment A, the macro-average precision of ten-fold cross validation runs
of this classification problem is 45.72%; recall is 44.37%, yielding an F-score of
45.03%. In order to demonstrate the inadequacy of this method, we repeated the
same experiment with a different organization of the training data. We chose 30 roots
and collected all their occurrences in the corpus into a test file. We then trained the
classifier on the remainder of the corpus and tested on the test file. As expected, the
accuracy was close to 0%.

8.4.3 Decoupling the Problem

In the second experiment, referred to as Experiment B, we separated the problem
into three different tasks. We trained three classifiers to learn each of the root conso-
nants in isolation and then combined the results straightforwardly, conjoining the
decisions of the three classifiers. This is still a multi-class classification but the
number of targets in every classification task is only 22 (the number of letters in the
Hebrew alphabet) and data sparseness is no longer a problem. As we show below,
each classifier achieves much better generalization, but the clear limitation of this
method is that it completely ignores interdependencies between different targets: the
decision on the first radical is completely independent of the decision on the second
and the third.

We observed a difference between recognizing the first and third radicals and
recognizing the second one, as can be seen in Table 8.3. These results correspond
well to our linguistic intuitions: the most difficult cases for humans are those in
which the second radical is w or i, and those where the second and the third conso-
nants are identical. Combining the three classifiers using logical conjunction yields
an F-measure of 52.84%. Here, repeating the same experiment with the organization
of the corpus such that testing is done on unseen roots yielded 18.1% accuracy.

To demonstrate the difficulty of the problem, we conducted yet another exper-
iment. Here, we trained the system as above but we tested it on different words whose
roots were known to be in the training set. The results of experiment A here were

Learning to Identify Semitic Roots 149

Table 8.3. Accuracy of SNoW identifying the
correct radical

C1 C2 C3 root

Precision: 82.25 72.29 81.85 53.60
Recall: 80.13 70.00 80.51 52.09
F-measure: 81.17 71.13 81.18 52.84

46.35%, whereas experiment B was accurate in 57.66% of the cases. Evidently, even
when testing only on previously seen roots, both naïve methods are unsuccessful.

8.5 Combining Interdependent Classifiers

Evidently, simply combining the results of the three classifiers leaves much room
for improvement. Therefore we explore other ways for combining these results. We
can rely on the fact that SNoW provides insight into the decisions of the classi-
fiers – it lists not only the selected target, but rather all candidates, with an associated
confidence measure. Apparently, the correct radical is chosen among SNoW’s top-n
candidates with reasonable accuracy, as the data in Table 8.3 reveal.

This observation calls for a different way of combining the results of the classifiers
which takes into account not only the first candidate but also others, along with their
confidence scores.

8.5.1 HMM Combination

We considered several ways, e.g., via HMMs, of appealing to the sequential nature
of the task (C1 followed by C2, followed by C3). Not surprisingly, direct applications
of HMMs are too weak to provide satisfactory results, as suggested by the following
discussion. The approach we eventually opted for combines the predictive power of
a classifier to estimate more accurate state probabilities.

Given the sequential nature of the data and the fact that our classifier returns a
distribution over the possible outcomes for each radical, a natural approach is to
combine SNoW’s outcomes via a Markovian approach. Variations of this approach
are used in the context of several NLP problems, including POS tagging (Schütze
and Singer, 1994), shallow parsing (Punyakanok and Roth, 2001) and named entity
recognition (Tjong Kim Sang and De Meulder, 2003).

Formally, we assume that the confidence supplied by the classifier is the proba-
bility of a state (radical, c) given the observation o (the word), P(c|o). This infor-
mation can be used in the HMM framework by applying Bayes rule to compute

P(o|c) =
P(c|o)P(o)

P(c)
,

where P(o) and P(c) are the probabilities of observing o and being at c, respectively.
That is, instead of estimating the observation probability P(o|c) directly from training

150 Daya et al.

data, we compute it from the classifiers’ output. Omitting details (see Punyakanok
and Roth, 2001), we can now combine the predictions of the classifiers by finding
the most likely root for a given observation, as

r = argmaxP(c1c2c3|o, θ)

where θ is a Markov model that, in this case, can be easily learned from the super-
vised data. Clearly, given the short root and the relatively small number of values
of ci that are supported by the outcomes of SNoW, there is no need to use dynamic
programming here and a direct computation is possible.

However, perhaps not surprisingly given the difficulty of the problem, this model
turns out to be too simplistic. In fact, performance deteriorated. We conjecture that
the static probabilities (the model) are too biased and cause the system to abandon
good choices obtained from SNoW in favor of worse candidates whose global
behavior is better.

For example, the root &.b.d was correctly generated by SNoW as the best
candidate for the word &obdim, but since P(C3 = b|C2 = b), which is 0.1, is higher
than P(C3 = d|C2 = b), which is 0.04, the root &.b.b was produced instead. Note that
in the above example the root &.b.b cannot possibly be the correct root of &obdim
since no pattern in Hebrew contains the letter d, which must therefore be part of the
root. It is this kind of observations that motivates the addition of linguistic knowledge
as a vehicle for combining the results of the classifiers. An alternative approach,
which we intend to investigate in the future, is the introduction of higher-level classi-
fiers which take into account interactions between the radicals (Punyakanok and
Roth, 2001).

8.5.2 Adding Linguistic Constraints

The experiments discussed in Section 8.4 are completely devoid of linguistic
knowledge. In particular, experiment B inherently assumes that any sequence of three
consonants can be the root of a given word. This is obviously not the case: with very
few exceptions, all radicals must be present in any inflected form (in fact, only w, i,
n and in an exceptional case l can be deleted when roots combine with patterns). We
therefore trained the classifiers to consider as targets only letters that occurred in the
observed word, plus w, i, n and l, rather than any of the alphabet letters. The average
number of targets is now 7.2 for the first radical, 5.7 for the second and 5.2 for the
third (compared to 22 each in the previous setup).

In this model, known as the sequential model (Even-Zohar and Roth, 2001), the
performance of SNoW improved slightly, as can be seen in Table 8.4 (compare to
Table 8.3). Combining the results in the straightforward way yields an F-measure
of 58.89%, a small improvement over the 52.84% performance of the basic method.
This new result should be considered baseline. In what follows we always employ the
sequential model for training and testing the classifiers, using the same constraints.
However, we employ more linguistic knowledge for a more sophisticated combi-
nation of the classifiers.

Learning to Identify Semitic Roots 151

Table 8.4. Accuracy of SNoW’s identifying
the correct radical, sequential model

C1 C2 C3 root

Precision: 83.06 72.52 83.88 59.83
Recall: 80.88 70.20 82.50 57.98
F-measure: 81.96 71.34 83.18 58.89

8.5.3 Combining Classifiers Using Linguistic Knowledge

SNoW provides a ranking on all possible roots. We now describe the use of linguistic
constraints to re-rank this list. We implemented a function which uses knowledge
pertaining to word-formation processes in Hebrew in order to estimate the likelihood
of a given candidate being the root of a given word. The function practically classifies
the candidate roots into one of three classes: good candidates, which are likely to be
the root of the word; bad candidates, which are highly unlikely; and average cases.

The decision of the function is based on the observation that when a root is regular
it either occurs in a word consecutively or with a single w or i between any two of
its radicals. The scoring function checks, given a root and a word, whether this is the
case. Furthermore, the suffix of the word, after matching the root, must be a valid
Hebrew suffix (there is only a small number of such suffixes in Hebrew). If both
conditions hold, the scoring function returns a high value. Then, the function checks
if the root is an unlikely candidate for the given word. For example, if the root is
regular its consonants must occur in the word in the same order they occur in the
root. If this is not the case, the function returns a low value. We also make use in this
function of our pre-compiled list of roots. A root candidate which does not occur in
the list is assigned the low score. In all other cases, a middle value is returned.

The actual values that the function returns were chosen empirically by counting
the number of occurrences of each class in the training data. For example, “good”
candidates make up 74.26% of the data, hence the value the function returns for
“good” roots is set to 0.7426. Similarly, the middle value is set to 0.2416 and the low
value to 0.0155.

As an example, consider hipltm, whose root is n.p.l (note that the first n is missing
in this form). Here, the correct candidate will be assigned the middle score while p.l.t
and l.t.m will score high.

In addition to the scoring function we implemented a simple edit distance function
which returns, for a given root and a given word, the inverse of the edit distance
between the two. For example, for hipltm, the (correct) root n.p.l scores 1/4 whereas
p.l.t scores 1/3. When the edit distance is 0, an empirically chosen high value is used.

We then run SNoW on the test data and rank the results of the three classifiers
globally, where the order is determined by the product of the three different classi-
fiers. This induces an order on roots, which are combinations of the decisions of three
independent classifiers. Each candidate root is assigned three scores: the product of
the confidence measures of the three classifiers; the result of the scoring function;

152 Daya et al.

Table 8.5. Performance of the system when
producing top-i candidates

i = 1 2 3 4

Precision 82.02 46.17 32.81 25.19
Recall 79.10 87.83 92.93 94.91
F-measure 80.53 60.52 48.50 39.81

and the inverse edit distance between the candidate and the observed word. We rank
the candidates according to the product of the three scores (i.e., we give each score
an equal weight in the final ranking).

In order to determine which of the candidates to produce for each example, we
experimented with two methods. First, the system produced the top-i candidates for
a fixed value of i. The results on the development set are given in Table 8.5.

Obviously, since most words have only one root, precision drops dramatically
when the system produces more than one candidate. This calls for a better threshold,
facilitating a non-fixed number of outputs for each example. We observed that in the
“difficult” examples, the top ranking candidates are assigned close scores, whereas
in the easier cases, the top candidate is usually scored much higher than the next
one. We therefore decided to produce all those candidates whose scores are not much
lower than the score of the top ranking candidate. The drop in the score, δ, was deter-
mined empirically on the development set. The results are listed in Table 8.6, where
δ varies from 0.1 to 0.8 (δ is actually computed on the log of the actual score, to
avoid underflow).

These results show that choosing δ = 0.4 produces the highest F-measure. With
this value for δ, results for the held-out data are presented in Table 8.7. The results
clearly demonstrate the added benefit of the linguistic knowledge. In fact, our results
are slightly better than average human performance (repeated here for convenience).
Interestingly, even when testing the system on a set of roots which do not occur in
the training corpus (see Section 8.4), we obtain an F-score of 65.60%. This result
demonstrates the robustness of our method.

It must be noted that the scoring function alone is not a function for extracting
roots from Hebrew words. First, it only scores a given root candidate against a given
word, rather than yield a root given a word. While we could have used it exhaus-
tively on all possible roots in this case, in a general setting of a number of classifiers
the number of classes might be too high for this solution to be practical. Second,
the function only produces three different values; when given a number of candidate

Table 8.6. Performance of the system, producing candidates scoring no more than
δ below the top score

δ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Precision 81.81 80.97 79.93 78.86 77.31 75.48 73.71 71.80
Recall 81.06 82.74 84.03 85.52 86.49 87.61 88.72 89.70
F-measure 81.43 81.85 81.93 82.06 81.64 81.10 80.52 79.76

Learning to Identify Semitic Roots 153

Table 8.7. Results: performance of the
system on held-out data

Held-out data Humans

Precision: 80.90 83.52
Recall: 88.16 80.27
F-measure: 84.38 81.86

roots it may return more than one root with the highest score. In the extreme case,
when called with all 223 potential roots, it returns on the average more than 11 candi-
dates which score highest (and hence are ranked equally).

Similarly, the additional linguistic knowledge is not merely eliminating illegit-
imate roots from the ranking produced by SNoW. Using the linguistic constraints
encoded in the scoring function only to eliminate roots, while maintaining the
ranking proposed by SNoW, yields much lower accuracy. Clearly, our linguistically
motivated scoring does more than elimination, and actually re-ranks the roots. It
is only the combination of the classifiers with the linguistically motivated scoring
function which boosts the performance on this task.

8.5.4 Error Analysis

Looking at the questionnaires filled in by our subjects (Section 8.3), it is obvious that
humans have problems identifying the correct roots in two general cases: when the
root paradigm is weak (i.e., when the root is irregular) and when the word can be
read in more than one way and the subject chooses only one (presumably, the most
prominent one). Our system suffers from similar problems: first, its performance on
the regular paradigms is far superior to its overall performance; second, it sometimes
cannot distinguish between several roots which are in principle possible, but only
one of which happens to be the correct one.

To demonstrate the first point, we evaluated the performance of the system on a
different organization of the data. We tested separately words whose roots are all
regular, vs. words all of whose roots are irregular. We also tested words which have
at least one regular root (mixed). The results are presented in Table 8.8, and clearly
demonstrate the difficulty of the system on the weak paradigms, compared to almost
95% on the easier, regular roots.

Table 8.8. Error analysis: performance of the
system on different cases

Regular Irregular Mixed

Number of words 2598 2019 2781
Precision: 92.79 60.02 92.54
Recall: 96.92 73.45 94.28
F-measure: 94.81 66.06 93.40

154 Daya et al.

Table 8.9. Error analysis:
the weak paradigms

Paradigm F-measure

C1 = i 70.57
C1 = n 71.97
C2 = i/w 76.33
C3 = i 58.00
C2 = C3 47.42

A more refined analysis reveals differences between the various weak paradigms.
Table 8.9 lists F-measure for words of which the roots are irregular, classified by
paradigm. As can be seen, the system has great difficulty in the cases of C2 = C3 and
C3 = i.

Finally, we took a closer look at some of the errors, and in particular at cases
where the system produces several roots where fewer (usually only one) are correct.
Such cases include, for example, the word hkwtrt (“the title”), of which the root is
the regular k.t.r; but the system produces, in addition, also w.t.r, mistaking the k to
be a prefix. Errors of this kind are most difficult to fix.

However, in many cases the system’s errors are relatively easy to overcome.
Consider, for example, the word hmtndbim (“the volunteers”) whose root is the
irregular n.d.b. Our system produces as many as five possible roots for this word:
n.d.b, i.t.d, d.w.b, i.h.d, i.d.d. Clearly some of these could be eliminated. For example,
i.t.d should not be produced, because if this were the root, nothing could explain the
presence of the b in the word; i.h.d should be excluded because of the location of
the h. Similar phenomena abound in the errors the system makes; they indicate that
a more careful design of the scoring function can yield still better results, and this is
the direction we intend to pursue in the future.

8.6 Extension to Arabic

Although Arabic and Hebrew have a very similar morphological system, being both
semitic languages, the task of learning roots in Arabic is more difficult than in
Hebrew, for the following reasons:

• There are 28 letters in Arabic which are represented using approximately 40
characters in Buckwalter (2002)’s transliteration of Modern Standard Arabic
orthography.Thus, the learning problem is more complicated due to the increased
number of targets (potential root radicals) as well as the number of characters
available in a word.

• The number of roots in Arabic is significantly higher. We pre-compiled a list
of 3822 three-letter roots from Buckwalter’s list of roots, 2517 of which occur
in our corpus. According to our lists, Arabic has almost twice as many roots as
Hebrew.

Learning to Identify Semitic Roots 155

Table 8.10. Arabic root ambiguity in the corpus

Number of roots 1 2 3 4 5 6
Number of words 28741 2258 664 277 48 3

• Not only is the number of roots high, the number of patterns in Arabic is also
much higher than in Hebrew.

• While in Hebrew the only possible letters which can intervene between root
radicals in a word are i and w, in Arabic there are more possibilities. The possible
intervening letter sequences between C1 and C2 are y, w, A, t and wA, and between
C2 and C3 y, w, A and Aŷ.

We applied the same methods discussed above to the problem of learning (Modern
Standard) Arabic roots. For training and testing, we produced a corpus of 31991 word
types (we used Buckwalter (2002)’s morphological analyzer to analyze a corpus
of 152666 word tokens from which our annotated corpus was produced). Table 8.10
shows the distribution of word types according to root ambiguity.

We then trained naïve classifiers to identify each radical of the root in isolation,
using features of the same categories as for Hebrew. Despite the rather pessimistic
starting point, each classifier provides satisfying results, as shown in Table 8.11,
probably owing to the significantly larger training corpus. The first three columns
present the results of each of the three classifiers, and the fourth column is a straight-
forward combination of the the three classifiers.

The classifiers were combined using linguistic knowledge pertaining to word-
formation processes in Arabic, by implementing a function that estimates the
likelihood of a given candidate to be the root of a given word. The function actually
checks the following cases:

• If a root candidate is indeed the root of a given word, then we expect it to occur
in the word consecutively or with one of {y, w, A, t, wA} intervening between C1

and C2, or with one of { y, w, A, Aŷ } between C2 and C3 (or both).
• If a root candidate does not occur in our pre-compiled list of roots, it cannot be a

root of any word in the corpus.

Of course, this is an over-simplistic account of the linguistic facts, but it serves our
purpose of using very limited and very shallow linguistic constraints on the combi-
nation of specialized “expert” classifiers. Table 8.12 shows the final results.

Table 8.11. Accuracy of SNoW’s identifying
the correct radical in Arabic

C1 C2 C3 root

Precision: 86.02 70.71 82.95 54.08
Recall: 89.84 80.29 88.99 68.10
F-measure: 87.89 75.20 85.86 60.29

156 Daya et al.

Table 8.12. Results:
Arabic root identification

Precision: 78.21%
Recall: 82.80%
F-measure: 80.44%

The Arabic results are slightly worse than the Hebrew ones. One reason is that
in Hebrew the number of roots is smaller than in Arabic (2152 vs. 3822), which
leaves much room for incorrect root selection. Another reason can be the fact that in
Arabic word formation is a more complicated process, for example by allowing more
characters to occur in the word between the root letters as previously mentioned.
This may have caused the scoring function to wrongly tag some root candidates as
possible roots.

8.7 Conclusions

We have shown that combining machine learning with limited linguistic knowledge
can produce state-of-the-art results on a difficult morphological task, the identifi-
cation of roots of Semitic words. Our best result, over 80% precision for both Hebrew
and Arabic, was obtained using simple classifiers for each of the root’s consonants,
and then combining the outputs of the classifiers using a linguistically motivated,
yet extremely coarse and simplistic, scoring function. This result is comparable to
average human performance on this task.

This work can be improved in a variety of ways. We intend to spend more effort
on feature engineering. As is well-known from other learning tasks, fine-tuning of
the feature set can produce additional accuracy; we expect this to be the case in
this task, too. In particular, introducing features that capture contextual information
is likely to improve the results. Similarly, our scoring function is simplistic and
we believe that it can be improved. We also intend to improve the edit-distance
function such that the cost of replacing characters reflect phonological and ortho-
graphic constraints (Kruskal, 1999).

In another track, there are various other ways in which different inter-related
classifiers can be combined. Here we only used a simple multiplication of the three
classifiers’ confidence measures, which is then combined with the linguistically
motivated functions. We intend to investigate more sophisticated methods for this
combination, including higher-order machine learning techniques.

Finally, we plan to extend these results to more complex cases of learning tasks
with a large number of targets, in particular such tasks in which the targets are struc-
tured. We are currently working on morphological disambiguation in languages with
non-trivial morphology, which can be viewed as a POS tagging problem with a large
number of tags on which structure can be imposed using the various morphological
and morpho-syntactic features that morphological analyzers produce. We intend to
investigate this problem for Hebrew and Arabic in the near future.

Learning to Identify Semitic Roots 157

Acknowledgments

This work was supported by The Caesarea Edmond Benjamin de Rothschild
Foundation Institute for Interdisciplinary Applications of Computer Science. Dan
Roth is supported by NSF grants CAREER IIS-9984168, ITR IIS-0085836, and ITR-
IIS 00-85980. We thank Meira Hess and Liron Ashkenazi for annotating the corpus
and Alon Lavie and Ido Dagan for useful comments.

References

Beesley, Kenneth R. 1998a. Arabic morphological analysis on the internet. In Proceedings of
the 6th International Conference and Exhibition on Multi-lingual Computing, Cambridge,
April.

Beesley, Kenneth R. 1998b. Arabic morphology using only finite-state operations. In Michael
Rosner, editor, Proceedings of the Workshop on Computational Approaches to Semitic
languages, pages 50–57, Montreal, Quebec, August. COLING-ACL’98.

Buckwalter, Tim. 2002. Buckwalter Arabic morphological analyzer. Linguistic Data
Consortium (LDC) catalog number LDC2002L49 and ISBN 1-58563-257-0.

Choueka, Yaacov. 1990. MLIM - a system for full, exact, on-line grammatical analysis of
Modern Hebrew. In Yehuda Eizenberg, editor, Proceedings of the Annual Conference on
Computers in Education, p. 63, Tel Aviv, April. In Hebrew.

Darwish, Kareem. 2002. Building a shallow Arabic morphological analyzer in one day. In
Mike Rosner and Shuly Wintner, editors, Computational Approaches to Semitic Languages,
an ACL’02 Workshop, pp. 47–54, Philadelphia, PA, July.

Daya, Ezra, Dan Roth, and Shuly Wintner. 2004. Learning Hebrew roots: Machine learning
with linguistic constraints. In Proceedings of EMNLP’04, pp. 357–364, Barcelona, Spain,
July.

Even-Shoshan, Abraham. 1993. HaMillon HaXadash (The New Dictionary). Kiryat Sefer,
Jerusalem. In Hebrew.

Even-Zohar, Y. and Dan Roth. 2001. A sequential model for multi class classification.
In EMNLP-2001, the SIGDAT Conference on Empirical Methods in Natural Language
Processing, pp. 10–19.

Florian, Radu. 2002. Named entity recognition as a house of cards: Classifier stacking. In
Proceedings of CoNLL-2002, pp. 175–178. Taiwan.

Habash, Nizar and Owen Rambow. 2005. Arabic tokenization, part-of-speech tagging and
morphological disambiguation in one fell swoop. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pp. 573–580, Ann
Arbor, Michigan, June. Association for Computational Linguistics.

Kruskal, Joseph. 1999. An overview of sequence comparison. In David Sankoff and Joseph
Kruskal, editors, Time Warps, String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison. CSLI Publications, Stanford, CA, pp. 1–44. Reprint, with a
foreword by John Nerbonne.

Marsi, Erwin, Antal van den Bosch, and Abdelhadi Soudi. 2005. Memory-based morpho-
logical analysis generation and part-of-speech tagging of Arabic. In Proceedings of the
ACL Workshop on Computational Approaches to Semitic Languages, pp. 1–8, Ann Arbor,
Michigan, June. Association for Computational Linguistics.

McCarthy, John J. 1981. A prosodic theory of nonconcatenative morphology. Linguistic
Inquiry, 12(3):373–418.

158 Daya et al.

Ornan, Uzzi. 2003. The Final Word. Haifa, Israel: University of Haifa Press. In Hebrew.
Punyakanok, Vasin and Dan Roth. 2001. The use of classifiers in sequential inference. In

NIPS-13; The 2000 Conference on Advances in Neural Information Processing Systems 13,
pp. 995–1001. MIT Press.

Roth, Dan. 1998. Learning to resolve natural language ambiguities: A unified approach. In
Proceedings of AAAI-98 and IAAI-98, pp. 806–813, Madison, Wisconsin.

Schütze, H. and Y. Singer. 1994. Part-of-speech tagging using a variable memory Markov
model. In Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics, pp. 181–187.

Shimron, Joseph, editor. 2003. Language Processing and Acquisition in Languages of Semitic,
Root-Based, Morphology. Number 28 in Language Acquisition and Language Disorders.
John Benjamins.

Tjong Kim Sang, Erik F. and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Walter Daelemans and Miles
Osborne, editors, Proceedings of CoNLL-2003, pp. 142–147. Edmonton, Canada.

Zdaqa, Yizxaq. 1974. Luxot HaPoal (The Verb Tables). Jerusalem: Kiryath Sepher. In Hebrew.

9

Automatic Processing of Modern Standard

Mona Diab1, Kadri Hacioglu2 and Daniel Jurafsky3
1 Center for Computational Learning Systems, Columbia University, mdiab@cs.columbia.edu
2 Center for Spoken Language Research, University of Colorado, Boulder, hacioglu@colorado.edu
3 Linguistics Department, Stanford University, jurafsky@stanford.edu

Abstract: To date, there are no fully automated systems addressing the community’s need for
fundamental language processing tools for Arabic text. In this chapter, we present a
Support Vector Machine (SVM) based approach to automatically tokenize (segmenting
off clitics), part-of- speech (POS) tag and annotate Base Phrase Chunks (BPC) in Modern
Standard Arabic (MSA) text. We adapt highly accurate tools that have been developed
for English text and apply them to Arabic text. Using standard evaluation metrics, we
report that the (SVM-TOK) tokenizer achieves an Fß=1 score of 99.1, the (SVM-POS)
tagger achieves an accuracy of 96.6%, and the (SVM-BPC) chunker yields an Fß=1 score
of 91.6

9.1 Introduction

The Arabic language is receiving growing attention in the NLP community, due
both to its socio-political importance and to the NLP challenges presented by its
dialect differences, diglossia, complex morphology, and non-transparent orthogra-
phy. But like most languages, Arabic is lacking in annotated resources and tools.
Fully automated fundamental NLP tools such as tokenizers, part of speech taggers,
parsers, and semantic role labelers are still not available for Arabic.

In this chapter, we propose solutions for Modern Standard Arabic (MSA) on a
crucial subset of these NLP tasks: clitic tokenization and basic lemmatization, part
of speech tagging and base phrase chunking. Our algorithms draw heavily on the
Arabic Tree Bank (ATB) (Maamouri et al., 2004).

We use the word tokenization, or clitic tokenization to refer to the process of
segmenting clitics from stems. In Arabic, prepositions, conjunctions, and some

Arabic Text

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology
C© 2007 Springer.

pronouns are cliticized (orthographically and phonologically fused) onto stems.
Separating conjunctions from the following noun, for example, is a key first step

159

, 15 9 –179 .

in parsing. There are many ways to define the tokenization problem, depending on
exactly which morphemes are segmented off (Habash & Sadat, 2006). In this
chapter we define the input to tokenization as space-delimited surface forms of
words, and we define the output of the tokenizer as a sequence of clitics and deri-
vational lemma forms.

A lemma is a citation form that exists as a dictionary entry. True lemmas re-
quire full morphological parsing, because a lemma would need to have inflectional
morphology (such as plural markers) segmented off. Instead of producing lemmas,
we produce derivational lemmas, which may have inflections, but which look
more like lemmas than like surface wordform stems in other ways. When lemmas
appear in context, some of the letters at the morpheme boundaries change due to
morphophonological rules. Our derivational lemmas reverse these morphopho-
nological rules, resulting in forms that look more like dictionary entries, although
they have inflectional endings.

We use the term Part of Speech (POS) tagging to refer to the process of anno-
tating these segmented words with parts of speech drawn from the ATB Arabic
reduced part of speech tagset (Maamouri et al., 2004).

Finally, Base Phrase Chunking (BPC) is the process of annotating the input
sequence of tokens with non-recursive base phrases such as noun phrases, adjecti-
val phrases, verb phrases, preposition phrases, and so on.

For each of these tasks, we adopt a unified supervised machine learning per-
spective using Support Vector Machines (SVMs) trained on the ATB. We lever-
age off of already existing algorithms for English. The results are comparable to
state-of-the-art results on English text when trained on similar sized data.

The remainder of this chapter is organized as follows: Section 9.2 sketches
relevant aspects of the Arabic language and the ATB. Section 9.3 briefly discusses
previous approaches to our tasks; Section 9.4 describes our approach; Sections 9.5
through 9.8 describe our four classifiers (tokenizer, lemmatizer, part-of-speech
tagger, and base-phrase chunker) and their performance; we then conclude in Sec-
tion 9.9 with some observations about the tasks and future directions.

9.2 The Arabic Language

Arabic is a Semitic language with rich templatic morphology. Templatic morphol-
ogy refers to a type of morphology that is based on having roots and patterns
(templates) to identify derivational lemmas in the language. An Arabic word may
be composed of a stem (consisting of a consonantal root and a template/pattern
that encodes mainly the vocalic distribution of a word in addition to other system-
atic information), plus affixes and clitics. The affixes include inflectional markers
for tense, gender, and/or number. The clitics include some (but not all) preposi-
tions, conjunctions, determiners, possessive and object pronouns. Some clitics are
proclitics (attaching to the beginning of a stem) and some enclitics (attaching to

160 Diab et al.

the end of a stem). The following is an example of the different morphological
segments in the word , read in transliteration as wbHsnAthm,1 which
means and by their virtues. Arabic is read from right to left hence the directional
switch in the English gloss as follows in Table 9.1.

The set of possible proclitics comprises the prepositions (b, l, k), meaning
(by/with, to, as), respectively; the conjunctions (w, f), meaning (and, then), respec-
tively; and the definite article or determiner (Al), meaning (the). Arabic words
may have a conjunction and a preposition and a determiner cliticizing to the be-
ginning of a word. The set of possible enclitics comprises the object and posses-
sive pronouns. The set contains some overlaps as illustrated in Table 9.2.

The tokens of a word as defined in this chapter are the (optional) proclitics, the
stem (together with its inflectional affixes), the (optional) enclitic, and the (op-
tional) punctuation mark.

As suggested earlier, the tokenization process in this chapter does not corre-
spond to complete morphological segmentation, because inflectional affixes are
not segmented from the stem. Arabic has an intricate inflectional system. Verbs
are marked for mood, tense, aspect, number, gender and voice. Nouns and adjec-
tives are marked for number, gender, case and definiteness. Adjectives are marked

Table 9.1. Some morphemes in an MSA word

 Enclitic Affix Stem Proclitic Proclitic
MSA
Transliteration Hm At Hsn b W
Gloss their S virtue by And

Table 9.2. List of possible MSA pronoun enclitics

MSA Translit. Number Gender Object Possessive
 y sing. masc./fem. my/mine

 ny sing. masc./fem. me

 nA plur. masc./fem. ours our

 k sing. masc./fem. you yours

 kmA dual masc./fem. you yours

 kn plur. fem. you yours

 km plur. masc./fem. you yours

 h sing. masc. him/it his/its

 hA sing. fem. her/it hers/its

 hmA dual masc./fem their theirs

 hm plur. masc. their theirs

 hn plur. fem. their theirs

1 All transliteration in this chapter is rendered in the transliteration scheme described in

Chapter 2 of this book.

Automatic Processing of Modern Standard Arabic Text 161

for number and gender. Some of these features, like case (nominative, accusative,
genitive, etc.) are determined contextually from the syntactic configuration in
which a word appears. Since we are not addressing syntactic parsing in this chap-
ter, we will not address the full processing of inflectional morphology. However,
in the POS tagging task, nouns are marked with number information and verbs are
marked with some tense and voice information as encoded in the tag set.

9.3 Related Work

To our knowledge, there exist no unified systems that deal with raw Arabic text
processing from tokenization to base phrase chunking. However, various systems
perform subsets of these tasks.

The current standard approach to Arabic tokenization and POS tagging —
adopted in the ATB — relies on manually choosing the appropriate analysis from
among the multiple analyses rendered by the Buckwalter Arabic Morphological
Analyzer (BAMA).2 BAMA is a sophisticated finite state rule based morphologi-
cal analyzer. Morphological analysis may be characterized as the process of seg-
menting a surface word form into its component derivational and inflectional
morphemes. In a language such as Arabic, which exhibits both inflectional and
derivational morphology, the morphological tags tend to be fine grained amount-
ing to a large number of tags — BAMA has 139 distinct morphological labels —
in contrast to POS tags which are typically coarser grained. Using BAMA, the
choice of an appropriate morphological analysis entails clitic tokenization as well
assignment of a POS tag. It is worth noting that BAMA is not a disambiguator, it
only renders analyses for each word in the text.

For tokenization, the two most recent specialized systems are those of Lee et al.
(Lee et al., 2003) and Darwish (Darwish, 2002). Darwish proposes a rule-based
system for tokenizing Arabic text into a sequence of prefix stem/root suffix. His
system presupposes a single prefix. It reduces the stem to the root form based on a
manually created list of word root pairs. The approach exploits look-up tables for
a list of prefixes and suffixes. His approach yields an accuracy of 92.7%.

On the other hand, Lee et al. (Lee et al., 2003), propose a partially supervised
n-gram language model approach for Arabic segmentation. Their segmentation
aims at maximizing the correspondence between English and Arabic tokens for
the purpose of statistical machine translation. Their approach relies on look-up ta-
bles for stems, prefixes and suffixes. Their notion of a prefix includes both clitics
such as conjunctions and prepositions, and affixal inflectional morphemes such as
the first person A in Akrr (I repeat). Also for suffixes, they consider the plural
marker At on feminine nouns and adjectives, as well as wn and yn on masculine
nouns and adjectives as suffixes that are segmented out. In their approach, they
start off with a supervised segmenter trained on tables derived from the manually

2 http://www.ldc.upenn.edu/myl/morph/buckwalter.html

162 Diab et al.

created ATB1 (101k tokens). Then they use this basic supervised segmenter to
acquire more data in an unsupervised bootstrapping method from a large unanno-
tated corpus. Their approach yields a segmentation accuracy of 97%. The ap-
proaches of Lee and of Darwish are not consistent with the ATB style tokenization
since they segment off inflectional morphemes.

Most recently, for morphological disambiguation, Habash & Rambow (2005)
propose a system MADA that relies on the output of BAMA to render the appro-
priate full morphological features for all words in MSA text. MADA learns the
different 10 features, namely: basic POS tag (15 tags), presence of a conjunction,
presence of a particle, presence of a pronoun, presence of a determiner, gender,
number, person, voice and aspect. The features are learned independently using
SVM-based learning. Then, MADA disambiguates choosing the most fitting set of
feature values from the space of possible features using a decision tree algorithm.
MADA achieves a morphological disambiguation accuracy of 95.6%.

Khoja (2001) reports preliminary results on a hybrid, statistical and rule based,
POS tagger/morphological disambiguator, APT. APT yields 90% accuracy on a
tag set of 131 tags. The tag set is more akin to the morphological tags used in
BAMA. APT is a two-step hybrid system with rules and a Viterbi algorithm for
statistically determining the appropriate tag. The first step is a dictionary look-up
which assigns a word all possible tags listed in the dictionary. The second step is a
stochastic decision process where an appropriate tag is chosen from the possible
tags assigned.

Though they perform the same task, MADA and APT are not directly compara-
ble since they use different tag sets. However they are similar in that they both ren-
der detailed tag sets that account for both inflectional and derivational morphology.

9.4 Our SVM-based Approach

Various machine learning approaches have been applied to part-of-speech tagging
and base-phrase chunking, by casting them as classification tasks. Given a set of
features extracted from the linguistic context, a classifier predicts the part-of-
speech or base-phrase-chunk class of a token. Support Vector Machines (SVMs)
(Vapnik, 1995) are one such supervised machine learning algorithm, with the ad-
vantages of discriminative training, robustness and a capability to handle a large
number of (overlapping) features with good generalization performance. Conse-
quently, SVMs have been applied in many NLP tasks with great success: text
categorization (Joachims, 1998); syntactic chunking and shallow parsing (Kudo &
Matsumoto, 2000); semantic role labeling (Hacioglu & Ward, 2003). We take this
perspective a step further from previous studies in that we also cast the tokeniza-
tion problem as a classification task. We adopt a unified tagging perspective, using
the same SVM experimental setup which comprises a standard SVM as a multi-
class classifier (Allwein et al., 2000). The difference for the tasks lies in the input,

our approach are not explicitly language context and features. The features utilized in

Automatic Processing of Modern Standard Arabic Text 163

dependent except for the lemmatization features in the tokenization step. The
following subsections illustrate the different tasks and their corresponding features
and tag sets. We use a sequence model on the SVMs to take advantage of the con-
text of the items being compared in a vertical manner in addition to the encoded
features in the horizontal input of the vectors. Accordingly, in our different tasks,
we define the notion of context to be a window of fixed size around the segment in
focus for training and disambiguation.

9.4.1 Data

Our SVM classifiers are supervised, hence the need for annotated training data.
We use three corpora from the ATB: ATB1 version 3, ATB2 version 2, and ATB3
version 2. They comprise articles from different newswires: Agence France Presse
newswire; Al-Hayat newspaper distributed by Ummah; and An Nahar news
agency. The articles mainly consist of political, economic and sports news texts.
ATB1 comprises 734 news articles (140k words). ATB2 comprises 501 stories
from the Ummah Arabic newswire (140k words). ATB3 consists of 600 stories
(340k words). Therefore, the total number of words for ATB1, ATB2, ATB3 is
750k words after clitic segmentation, corresponding to 1900 news articles.

We performed various corpus cleanups including removing spurious characters
and consistency-checking of the syntactic trees using David Chiang’s cat-tree.
(personal communication)

We formatted the corpus such that each line corresponds to a single tree. We also
created a standard split for the corpus which could be useful for the community at
large for other NLP or linguistic tasks. Each of the three ATB corpora is split into
~10% development data, ~80% training data and ~10% test data, maintaining
document/article boundaries.3 The development and training data are randomized on
the document level. The respective splits for the different ATB corpora are concate-
nated; thus the development set for ATB1 is concatenated to the development set for
ATB2 and ATB3, etc. Table 9.3 shows the size of the resulting splits.

The ATB data is distributed in a Latin-based ASCII representation using the
Buckwalter transliteration scheme.4 We use the unvocalized version of the ATB
for all the experiments. All the data is derived from the syntactic trees in the ATB.

Table 9.3. Size of the data splits used in our experiments

Data Tokens Sentences
Development 70188 2304
Training 594683 18970
Test 69665 2337

3 Data may be obtained from first author upon request.
4 http://www.ldc.upenn.edu/myl/morph/buckwalter.html

164 Diab et al.

9.4.2 SVM Setup

We use a standard SVM with a polynomial kernel, of degree 2 and C=1.5 These
parameters were the best yielding setting as determined on the development data.

9.4.3 Evaluation Metric

Standard metrics of accuracy (Acc), precision (Prec), recall (Rec), and F-score
(Fß=1), are reported on the test data for all our evaluations. We use the CoNLL
standard shared task evaluation tools for all tasks.6

9.5 Clitic Tokenization

We approach clitic tokenization as a one-of-nine classification task, in which each
letter in a word is tagged with a label indicating its morphological identity. For the
purposes of this chapter, we do not tokenize the proclitic determiner Al (the) since
it is not tokenized separately in the ATB. Therefore, a word may have p (0 p 2)
proclitics and e (0 e 1) enclitics from the lists in Section 9.2. We model the task
as a chunking problem, where each word is divided into a maximum of 4 chunks:
a possible proclitic prefix1, followed by a possible proclitic prefix2, then the stem
followed by a possible enclitic suffix.7 We adopt an inside-outside-beginning
(IOB) of a chunk approach (Ramshaw & Marcus, 1995). We break the surface
words into, potentially, four regions. The first letter in each delimited chunk is la-
beled with a begin chunk marker B. The following letters in a designated chunk
are labeled with an I marker indicating that they are inside a chunk. The O marker
indicates spaces between surface form words. Table 9.4 illustrates an example of
the input word described in Table 9.1 in the IOB representation.

Input: A sequence of transliterated Arabic letters processed from left-to-right
with break markers for word boundaries - space delimiters.

Context: A fixed-size window of –5/+5 characters centered at the character
in focus.

Features: All characters and previous tag decisions within the context.

Tag Set: The tag set is {B-PRE1, I-PRE1, B-PRE2, I-PRE2, B-WORD, I-
WORD, B-SUFF, I-SUFF, O} where I denotes the inside of a segment and
B denotes the beginning of a segment. In principle, the tag set allows for

5 http://cl.aist-nara.ac.jp/~taku-ku/software/yamcha
6 http://cnts.uia.ac.be/conll2003/ner/bin/conlleval
7 We refer to the cliticized portion of the surface form as a stem rather than lemma since,

as we will see, the process of clitic tokenization does not necessarily result in lemmas.

Automatic Processing of Modern Standard Arabic Text 165

Table 9.4. IOB example

MSA Transliteration IOB Tag
 w B-PRE1

 b B-PRE2

 H B-WORD

 s I-WORD

 n I-WORD

 A I-WORD

 t I-WORD

 h B-SUFF

 m I-SUFF

internal structure for PRE1 and PRE2. In practice PRE1 and PRE2 are
mostly proclitic tags which, in unvocalized text, are usually only one char-
acter long.8 SUFF is an enclitic, and WORD is the derivational stem plus
any inflectional affixes, and/or the determiner Al. Both latter categories
could have internal structure.

Example: Figure 9.1 illustrates a training example with the IOB tags and the
feature sets. All the training and test data is represented using the Buckwalter
transliteration scheme.

Char IOB Tag

BRK O

w B-PRE1

b B-PRE2

H B-WORD

s I-WORD

n I-WORD

A ??

t

h

m

BRK

n

Previous tags

Current tag

Forward context

Fig. 9.1. Sequence SVM training for TOK. Current position is A; context features are the
previous 5 characters and their tags, and the following 5 characters

8 There are very few cases that occur with I-PRE1 or I-PRE2 such as lAbd (it is

necessary) where the ATB sometimes separates the lA from bd.

166 Diab et al.

In Figure 9.1, the character in focus is A, and the context features are the five
preceding character segments: w B-PRE1, b B-PRE2, H B-WORD, s I-WORD
and n I-WORD and the five following character segments: t, h, m, BRK, and n.
Note that n in this case happens to be the character segment beginning the follow-
ing word. The classifier is run left-to-right, and so the labels of the 5 following
segments are not used as features to the classifier. The class label of the focus
character is presented to the classifier during supervised training, but not during
testing. Once the models are learned over the training data, the test data is disam-
biguated where each word is split into the respective chunks of proclitic/prefix,
stem and enclitic/suffix.

While the SVM classifier is generally successful at tokenization, any purely seg-
mentation-based approach does not deal well with allomorphy and morphophonol-
ogy. Allomorphs are different realizations of the same morpheme that occur in dif-
ferent surface contexts. Morphophonology is the general term for changes in the
phonemes (and letters) in a morpheme that occur when morphemes are combined.
Undoing these morphophonological changes is part of lemmatization, the task of
recovering the lemma that underlies the surface word form. True lemmatization also
involves parsing off inflectional morphology, so our goal in this chapter is only a
subset of lemmatization: producing word forms that are as close as possible to lem-
mas barring the further processing of inflectional morphology.

Our SVM segmenter’s inability to model these morphophonological changes
led to three classes of errors, requiring further processing. Two of these are de-
scribed here; one is reserved for the next section.

 Allomorphs of the definite article in the context of the proclitic
preposition l ‘to’

The definite article Al the has a distinct allomorph after the preposition l to; it
appears simply as l. For instance, ll rAq (TO THE IRAQ, to Iraq), after the
preposition clitic l is segmented off by our tokenizer, produces the form l rAq.
The resulting form is now ambiguous between to Iraq and the Iraq because the
initial l word is the allomorph of the definite marker A. In this context (after l
‘to’) the phrase can only mean the Iraq. The full definite article lemma thus
needs to be restored in such contexts; l rAq becomes Al rAq.

 Allomorphs of Alif maqsura, ý, in closed-class words before enclitics
In closed class words such as the prepositions lý (on) or ldý (at), the
word final ý appears as a surface y in the context of enclitics. Therefore, as a
result of clitic tokenization, ldyhm would result in ldy +hm. It is worth noting that
ldy on its own (not in the context of an enclitic) corresponds to with me or at my
place, exactly chez moi, in French. Thus to produce the correct lemma for the
prepositions in the context of an enclitic, the final y needs to be restored to a ý.

The required lemmatization for these two allomorphy cases is completely predict-
able from the context, therefore both cases are handled deterministically in our
system with hand-written rules. In the case of the determiner, we only change an

Automatic Processing of Modern Standard Arabic Text 167

initial l to Al if it was preceded by an l before clitic tokenization. In case of the
word final ý, we change a closed class word final y to a ý in the context of an en-
clitic pronoun. Some examples of the closed class words are lý (on), Alý (to), ldý
(at), mdý (extent).

9.5.1 Tokenization Results

The ATB text comes in pre-lemmatized form. In order to increase the robustness
of our system, we chose to un-lemmatize the ATB text, to create more natural
input. We un-lemmatized the ATB via hand-written rules. For example, the
preposition Alý (to) followed by the enclitic hm (them) is written as the lemma Alý
in the ATB. However, in naturally occurring text it would be the stem Aly with the
enclitic suffix hm. Therefore, we wrote a rule to transform closed class words that
have a ý word finally in the context of an enclitic suffix into a y. We acquired the
token boundaries for training from the ATB.

Table 9.5 presents the results obtained using SVM-TOK, compared against two
rule-based baseline approaches, RULE and RULE+DICT.

RULE marks a prefix if a word starts with one of five proclitic letters described
in Section 9.4.1. A suffix is marked if a word ends with any of the object or
possessive pronouns, enclitics, mentioned above in Section 9.4.1. A small set of
17 function words that start with the proclitic letters is explicitly excluded.

RULE+DICT applies the tokenization rules in RULE if the token does not
occur in a dictionary. The dictionary used comprises the 47,261 unique
unvocalized word entries obtained from the first column of Buckwalter’s
dictStem, freely available with the BAMA distribution. In some cases, dictionary
entries retain inflectional morphology and clitics.

9.5.2 Tokenization Discussion

Performance of SVM-TOK is very high with an Fß=1=99.1. The task, however, is
quite easy, and SVM-TOK is only about 5 F-score points better (absolute) than the
better baseline, RULE+DICT. While RULE+DICT could certainly be improved
with larger dictionaries, the largest dictionary will still have coverage problems if
it is not aligned well with the corpus at hand. Hence, there will remain a role for a
data-driven approach such as SVM-TOK. Table 9.6 illustrates the performance of
SVM-TOK per chunk.

Table 9.5. Results (%) of SVM-TOK compared against

System Acc Prec Rec F
ß=1

SVM-TOK 99.8 99.1 99 99.1
RULE 96.8 86.3 91.1 88.6
RULE+DICT 98.3 93.7 93.7 93.7

RULE and RULE+DICT

168 Diab et al.

The empty cells in Table 9.7 indicate no confusion between these classes. The
first column contains the gold tag, i.e. the manually assigned tag in the treebank.
The table reads as the percentage of time a class from column 1 is confused with
one of the other classes. Therefore, B-PRE1 is incorrectly tagged as a B-WORD
1.8% of the time. The largest number we see in this matrix is the percentage of
time B-PRE2 is confused with the beginning of a word B-WORD. This is
expected since the B-PRE2 has two ambiguous boundaries. An example of the
errors is the word wbAlm. The correct segmentation is w#bAlm (and Palm), SVM-
TOK hypothesized an extra B-PRE2 chunk therefore the resulting segmentation is
as follows: w#b#Alm (and with pain). This is a result of the fact that bAlm (Palm)
is a proper name which was not seen in the training data while the word Alm
(pain) occurs frequently as a noun in the training data. Most of the problems
observed are problems with proper names. Proper names that begin with
characters that could be proclitics will always pose a problem for this task unless
we incorporate some form of Named Entity Tagging in the process.

The results obtained in this study are not significantly different from those
obtained using data from ATB1v2 alone (Diab et al., 2004). The results in our
previous study with one fifth of the data were the same, Fß=1=99.1. We attribute
this finding to a hypothesized ceiling effect on performance given the relatively
impoverished set of features being used. Unless we include richer morphological
features, we do not anticipate a significant improvement on performance.

Our results are not directly comparable to Darwish’s work (Darwish, 2002) nor
to the segmentation task of Lee (Lee et al., 2003) since they include inflectional
morpheme segmentation.

Table 9.6. Results (%) for SVM-TOK per chunk category

Chunk Prec Rec F
ß=1

PRE1 98.5 98.2 98.3
PRE2 97.4 85.2 92
WORD 99.3 99.3 99.3
SUFF 96.7 96.4 96.5

The results overall for all the chunks are in the high 90s except for PRE2. Table
9.7 further illustrates a confusion matrix for the different classes in SVM-TOK.

Table 9.7. SVM-TOK classes confusion matrix (%)

Class B-PRE2 B-WORD I-WORD B-SUFF I-SUFF
B-PRE1 1.8
B-PRE2 11.4 3.4
B-WORD 0.18 0.24
I-WORD 0.06 0.05 0.03
B-SUFF 0.17 3.4
I-SUFF 2.8

Automatic Processing of Modern Standard Arabic Text 169

9.6 Singular Noun Feminine Marker Restoration

We saw above that some allomorphy problems with our segmenter could be dealt
with by hand-written rules. We turn now to a more difficult allomorphy issue. The
ending for singular feminine noun and adjective lemmas is a word final t ’
marb Ta, . When a singular feminine noun is followed by an enclitic pronoun,
the word final t ’ marb Ta surfaces as a regular t.9 This noun-final t needs to be
converted back to the feminine marker as it serves as an important clue for the
POS tagging step in processing.

This nominal feminine marker is difficult to disambiguate since a t can be
followed by an enclitic in multiple cases; the singular feminine noun followed by
a possessive pronoun, and a verb followed by an object pronoun. Only in the
nominal case does the final t need to be lemmatized to a t ’ marb Ta, . At this
stage of our processing, however, we do not have access to POS information.
Indeed, we need to restore the t ’ marb Ta, , onto feminine nouns in order to aid
the POS tagging step.

In our running example, the stem Hsn if viewed as a lemma corresponds to the
adjective meaning good but in our example it is a noun meaning virtue as it is
pluralized and followed by a possessive enclitic pronoun. The lemma form of the
noun is Hsn . The translation of and by their virtue would be wbHsnthm. After
running our tokenization step, the word will be rendered Hsnt +hm. The word
Hsnt without vocalization is a verb meaning to be good or to improve or she has
improved and in the context of the enclitic, this construction could be translated as
she/it improved them where the enclitic would be the object pronoun. However,
the context of the proclitics preceding the word make the only possible POS
associated with Hsnt be a noun interpretation. But Hsnt does not exist as a noun
in MSA. Therefore, Hsnt should be converted to its lemma form Hsn .10

We deal with the lemmatization of the feminine marker as another classification
problem. Feminine marker restoration (or feminine lemmatization) is hence a one-
of-three classification task. Each tokenized segment resulting from SVM-TOK is
labeled with a class indicating whether it has a t word finally, and if so, should it be
restored to an . Therefore, the sequence model has the following form:

Input: A sequence of tokens processed from left-to-right.

Context: A window of -2/+2 tokens centered at the focus token.

Features: Where the features for our tokenization classifier were position sen-
sitive, the features for the feminine lemmatization classifier are instead bag-of-
n-grams features. Every character n-gram, for all n <= 4 that occurs in the focus

9 Adjectives do not cliticize for enclitics.

10 The plural form of feminine nouns do not undergo the t ’ marb Ta restoration as plural
lemmas typically end with At. We do not address inflectional morphology, the word
HsnAt, in our running example, is left as is, i.e. we do not reduce it further to Hsn and
the plural marker At.

170 Diab et al.

token, are used as features. Additional features include the 5 tokens themselves,
and feminine lemma tag decisions for the previous tokens within the context.

Tag Set: Three classes KTT (Keep the word final T), NTT (Not a word final t),
CTP (Convert word final T to a , which is a p in Buckwalter encoding).
Example: Table 9.8 illustrates an example of the data representation for
training.

Table 9.8 shows five words and their corresponding ngram based features. The
verb AfAdt (declared/reported/announced) has a word final t that should be kept
as is, hence, the class label KTT. HSylt (result), on the other hand, is a feminine
singular noun that should have a word final , since it is followed by an enclitic.
Therefore, it is labeled with a class CTP. In the ATB, the lemma form is rendered
in the parsed trees. However, we deterministically convert the noun finally to a
regular t in the context of an enclitic possessive pronoun for training purposes. As
illustrated in the example, the rest of the words hA, nhAy , rsmy (it/she, ending,
official, respectively) do not end in a t in the first place, therefore they are labeled
NTT. nhAy is a noun but it is not in the context of an enclitic therefore it is left
intact. We refer to this module as SVM-LEM.

9.6.1 Lemmatization Results

Again, for training we need to un-lemmatize the ATB: feminine nouns ending with
an in the ATB in the context of a suffix enclitic possessive pronoun are converted
to their stem forms. For example, the noun and its ensuing possessive pronoun,
Hsnth (his virtue) is listed in the ATB as Hsn plus the suffix enclitic 3rd person
masculine singular h. For training purposes, we automatically convert the lemma
form Hsn , as produced by the treebank annotators, to the stem form Hsnt.

Results shown here assume gold clitic tokenization. Table 9.9 shows the results
obtained with SVM-LEM against a simple random baseline, Rand-LEM. Rand-
LEM randomly converts word final t for nouns to . Rand-LEM has access to
basic category POS information such as noun, verb, adjective, but does not have
access to gender or number information. Hence in the case of Rand-LEM, the
system would convert a t final noun randomly to a . POS information is not one
of the features used by SVM-LEM.

Table 9.8. Training example for SVM-based feminine marker restoration module

Translit. Features Class
AfAdt A Af AfA AfAd t dt Adt fAdt KTT
HSylt H HS HSy HSyl t lt ylt Sylt CTP
hA h hA A hA NTT
nhAy n nh nhA nhAy y Ay hAy NTT
rsmy r rs rsm rsmy y my smy NTT

– – – –

Automatic Processing of Modern Standard Arabic Text 171

Table 9.9. SVM-LEM results (%) compared
against a random baseline Rand-LEM

System Acc
Rand-LEM 92.16
SVM-LEM 99.84

9.6.2 Lemmatization Discussion

SVM-LEM significantly outperforms Rand-LEM resulting in a close to perfect
performance. This performance is an indication of the ease of the task. All the re-
maining errors are due to confusion about proper nouns and verbal forms with a
feminine ending.

SVM-LEM correctly converts the word final t to 99.2% of the time. How-
ever, it over generalizes and converts some verb final t as well. SVM-LEM con-
fuses KTT with CTP 3.5% of the time. The confusion typically occurs in the con-
text of an enclitic object pronoun with a verb that has a word final t such as
AqAmt (held) and sqTt (slipped); as well as with proper names such as Ayfyrt.

9.7 Part of Speech Tagging

Part-of-Speech Tagging (POS) is the problem of assigning each token its correct part-
of-speech class such as verb, noun, adjective, etc. In this chapter, we used the ATB
Reduced Tag Set (RTS). The RTS is distributed with the ATB documentation from
the LDC and is illustrated in Table 9.10. This tag set reflects number for nouns and
some tense information for verbs. In the RTS, gender, definiteness, and case informa-
tion are lost for nouns and verbs, number information is lost for adjectives, and mood,
future tense and aspect information are lost for verbs. RTS comprises 24 POS tags,
reduced from the 139 morphosyntactic tags produced by the Buckwalter morphologi-
cal analyzer, BAMA. RTS was created for two reasons: to render parsing tractable;
and to enhance the compatability between the English and Arabic Treebanks.

We model this task as a 1-of-24 classification task, where the class labels are
drawn from RTS. This is a sequence model similar to the SVM-TOK and SVM-
LEM. The model can be described as follows:

Input: A sequence of tokens processed from left-to-right.

Context: A window of –2/+2 tokens centered at the focus token.

Features: Every character n-gram, n 4 that occurs in the focus token, the 5
tokens themselves, their ‘type’ from the set {alpha, numeric} indicating if a
number is included in the token of interest, and POS tag decisions for previous
tokens within context. The feature set is thus similar to the feature set adopted
for the SVM-LEM process, modulo the type feature.

Tag Set: The 24 tags are listed in Table 9.10.

172 Diab et al.

Table 9.10. The ATB Reduced Tag Set (RTS) and their meanings

Tag Meaning Tag Meaning

CC Conjunction PRP$ Possessive Pronoun

CD Number RB Adverb

RP Particle UH Interjection

DT Determiner VB Imperative Verb

FW Foreign word VBD Perfective Verb

IN Preposition VBN Passive Verb

JJ Adjective VBP Imperfective Verb

NN Singular Noun WP Interrogative particle

NNS Plural Noun WRB Interrogative adverb

NNP Singular Proper
Noun

NNPS Plural Proper Noun

PRP Pronoun NO_FUNC Unknown

Example

Table 9.11 illustrates an input training example for POS tagging task

9.7.1 Part-of-speech Tagging Results

Results reported here assume gold tokenization and lemmatization. Table 9.12
shows the results obtained with the SVM-POS compared against those obtained
with a simple baseline, Baseline-POS. Baseline-POS assigns a test token the most
frequent POS tag associated with it as observed in the training data. If the token does
not occur in the training data, the token is assigned the NN tag as a default tag.

Table 9.11. Training example illustrating the alpha vs. numeric type feature

Translit Features Class
AfAdt A Af AfA AfAd t dt Adt fAdt Alp VBD
HSylt H HS HSy HSyl t lt ylt Sylt Alp NN
hA H hA – – A hA – – Alp PRP$
nhAy n nh nhA nhAy y Ay hAy Alp NN
rsmy r rs rsm rsmy y my smy Alp JJ
l l – – – l – – – Alp IN
100 1 10 100 – 0 00 100 – Num NN

Automatic Processing of Modern Standard Arabic Text 173

9.7.2 Part-of-speech Tagging Discussion

The performance of SVM-POS is significantly better than the baseline. Table 9.13
further illustrates the accuracy per POS tag together with their respective most
confusable POS tag.

Closely observing Table 9.13, we note that the worst results rendered are those
for NO_FUNC followed by VB and VBN. We experimented with changing
NO_FUNC to NNP and the results went up to 97.6%. There are only 3 imperative
verbs, VB, in the test corpus, compared to 12 in the training corpus. However, the
VB category is highly confusable with NN due to similar contextual clues. VBN,
passive verb, is confused with the imperfective verb, VBP, 21% of the time. With
the lack of diacritics marking passivization, VBN is a very hard category to predict.

Table 9.12. POS tagging results comparing
Baseline-POS against SVM-POS

System Acc%

Baseline-POS 92.2

SVM-POS 96.6

Table 9.13. Results per POS category and their respective confusable POS tag

Tag Acc % Highest Confusion Tag Confusion %
CC 99.9 NN 0.01
CD 97.1 NN 1.6
DT 100
IN 99.6 RP 0.18
JJ 93.6 NN 4.3
NNPS 100
NNP 91.6 NN 6.5
NNS 97.3 NN 1.3
NN 97 JJ 1.3
NO_FUNC 9.5 NN 29.5
PRP$ 98.2 PRP 1.8
PRP 97 PRP$ 2.7
PUNC 100
RB 92.9 IN 4
RP 90.1 IN 5.9
UH 76 WP 8
VBD 92.5 NN 4.7
VBN 54.1 VBP 21
VBP 96 VBD 1.9
VB 37.5 NN 50
WP 98.3 IN 1.2
WRB 74.1 IN 17.7

174 Diab et al.

In passive forms, the initial character is marked with a Damma diacritic – the conso-
nant/long vowel is followed by a short vowel u – indicating passivization. Hence,
in newspapers for instance, even though all diacritics and short vowels are
missing, one of the exceptions would be the addition of the short u vowel onto
verbs to mark passives. The confusion arises from the fact that MSA may be pro-
drop which permits the absence of an overt subject hence the lack of a subject is
not necessarily a signal for a passive construction.

RB and WRB are consistently confused with IN. Upon closer inspection of the
data, we note that the closed word class in these two categories are the ones
consistently annotated as IN. The RB Htý (even) and the WRB ndmA (at the
time), b dmA (after the time), TAlmA (as long as) are all marked as IN.

Another two confusable categories are the NN and JJ POS tags. These two are a
canonical confusable POS in many languages. The problem is more pronounced in
MSA since any JJ maybe an NN depending on context. In classical Arabic, there
is no real notion of an adjective as a stand-alone category. This is evidenced by the
fact that any adjective (a word describing or modifying a noun) in Arabic could be
used as a noun and a proper noun. This is reflected in the manual annotations in
the Treebank where the annotators are not being consistent due to this
fundamental confusion between the two categories hence we see, for instance, the
word for United in United States of America or United Nations is randomly tagged
as a noun, or an adjective in the training data. This inconsistency in annotation
renders the two categories highly confusable.

Comparing the results to those obtained in our previous work, (Diab et al.,
2004), we note a 1% overall improvement (from 95.5% to 96.6% accuracy)
though we are using 4 times the data in these experiments. This indicates a ceiling
effect on the performance of such a language independent approach that does not
exploit any of the language specific rich morphological features available in the
data. Our results are not comparable to the work in (Khoja, 2001) or that in
(Habash & Rambow, 2005) since both studies use different evaluation metrics and
different tag sets.

9.8 Base Phrase Chunking

In this task, we use a setup similar to that of Kudo and Matsumoto (2000), where 9
types of chunked phrases are recognized using a phrase IOB tagging scheme; In-
side (I) a phrase, Outside (O) a phrase, and Beginning (B) of a phrase. The 11
chunk phrases are: ADJP (Adjectival Phrase), ADVP (Adverbial Phrase), CONJP
(Conjunctive Phrase), INTJ (Interjective Phrase) such as oh, LST (enumerated list)
such as first second etc., PP (Prepositional Phrase), PRT (Partitive Phrase), NP
(Noun Phrase), S (Sentential Unit), SBAR (Subjunctive Phrase), and VP (Verb
Phrase). Thus, in principle, the task is a one of 23 classification task (since there are
I and B tags for each chunk phrase type, and a single O tag). However, in practice
we only have 19 classes, since four of the I phrases are not instantiated. Three of the

Automatic Processing of Modern Standard Arabic Text 175

four cases constitute singleton words, INTJ, LST, and PRT. The fourth chunk is the
S category marking only the beginning of an S chunk. The 19 classes are as follows:
B-ADJP, I-ADJP, B-ADVP, I-ADVP, B-CONJP, I-CONJP, B-INTJ, B-LST, B-PP,
I-PP, B-PRT, B-NP, I-NP, B-S, B-SBAR, I-SBAR, B-VP, I-VP, O. The training
data is derived from the ATB using the ChunkLink software (Buchholz et al.,
1999).11 ChunkLink flattens the tree to a sequence of base (non-recursive) phrase
chunks. For example, a token occurring at the beginning of a noun phrase is labeled
as B-NP. Table 9.14 illustrates the tagging scheme.

Input: A sequence of (word, POS tag) pairs.

Context: A window of –2/+2 tokens centered at the focus token.

Features: Word and POS tags that fall in the context along with previous IOB
tags within the context.

Tag Set: The tag set comprises 19 tags: B-ADJP, I-ADJP, B-ADVP, I-ADVP,
B-CONJP, I-CONJP, B-INTJ, B-LST, B-PP, I-PP, B-PRT, B-NP, I-NP, B-S,
B-SBAR, I-SBAR, B-VP, I-VP, O

9.8.1 Base Phrase Chunking Results

Reported results assume gold POS tags and gold tokenization.

9.8.2 Base Phrase Discussion

Table 9.14. Base phrase chunking tagging scheme

Tags O B-VP B-NP I-NP
MSA
Transliteration w qAlt Rw šwArtz
Gloss And Said Ruth Schwartz

11 http://ilk.uvt.nl/~sabine/chunklink

The overall performance of SVM-BPC is Fß=1 = 91.6 and an accuracy of 93.4%.
These results are interesting in light of state-of-the-art for English BPC performance
which is at an Fß=1 score of 93.48 on five of the chunk types listed here, this is
compared against a baseline of 77.7 in CoNLL 2000 shared task (Tjong Kim Sang
& Buchholz, 2000). Per-class F-scores are displayed in Table 9.15. The best results
obtained are for VP and PP, yielding Fß=1 scores of 97.8 and 98.5, respectively. There
is room for improvement in the other categories however. We used the ChunkLink
software as is, without special modification for the ATB. We believe that adding
features such as definiteness, and gender should aid with the performance especially
with ADJP and NN categories. If we exclude the PRT, LST, INTJ and S categories
from the set of chunks to be discovered, the results go up to an Fß=1 =92.

176 Diab et al.

Table 9.15. Results (%) for SVM-BPC per chunk

BPC Prec Rec F
ß=1

ADJP 72.6 56.1 63.3
ADVP 77.3 69 73.9
CONJP 81.8 85.7 83.7
INTJ 37.5 33.3 35.3
LST 0 0 0
NP 89.1 90.1 89.6
PP 98.4 98.7 98.5
PRT 92.8 93.2 93
S 50 26.1 34.3
SBAR 89.3 90 89.7
VP 98.8 96.8 97.8
Total 91.8 91.5 91.6

To further analyze the performance of SVM-BPC, we created a confusion

matrix for the 19 different classes. There are only two cases of LST in the test data
and they are always confused with NP. There are 9 cases of INTJ in the test data
and 3 of them are confused with an O class while another 3 are confused with an
NP class. Finally, the S class is at a low Fß=1 of 34.3. An S tag is always confused
(17 out of 23 times) with an SBAR. This reflects some inconsistency in the ATB
annotations of S and SBAR categories. Moreover, the S tag is by default a
recursive tag which requires more context than the window of +/–2 utilized in our
current set-up.

9.9 Conclusions & Future Directions

We have presented a unified machine-learning approach using SVMs to solve the
problem of automatically annotating Arabic text with tags at different levels: Cli-
tic tokenization at the morphological level (including the restoration of the word
final feminine marker for singular nouns in the context of possessive enclitics);
POS tagging at the lexical level, and BP chunking at syntactic level. The adopted
framework is language independent and yields highly accurate results for each
task. The task of clitic tokenization is performed at an Fß=1 score of 99.1. Feminine
marker restoration is performed with 99.8% accuracy. Part-of-speech tagging
achieves 96.6% accuracy. The POS tagging results are not very much below the
best English POS tagging performance of 97.5% (Toutanova et al., 2003). Base-
phrase chunking achieves an Fß=1 score of 91.6. To the best of our knowledge,
these are the best results reported for these tasks in Arabic natural language proc-
essing. However, there is ample room for improvement using language specific
features for the different processing levels. Compared to our previous study with a
quarter the data size used in these current experiments, we do not observe any
large improvements in any of the modules. This is an indication of a ceiling effect
when no language specific information is included as features in our models. One

Automatic Processing of Modern Standard Arabic Text 177

of the goals for this study was to create a baseline/lower bound that is language
independent to investigate how well can these approaches perform with little
knowledge of the language.

We are currently exploring means of incorporating the rich morphological
features in Arabic to gain in performance. We are exploring means of incorporat-
ing more features for the clitic tokenization module and toying with the idea of
automatically discovering inflectional boundaries. We are varying the POS tag set
to include definiteness, gender and number information for the different tags. We
are investigating means of giving more depth to the BPC module, i.e. we are
interested in more recursive structure and what that entails for syntactic parsing in
a discriminative framework.

Acknowledgments

We would like to thank Antal van den Bosch and Nizar Habash for valuable
comments on earlier versions of this manuscript. This work was partially
supported by ARDA AQUAINT and by the National Science Foundation via a
KDD Supplement to NSF CISE/IRI/Interactive Systems Award IIS-9978025. And
also for the first and third authors by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-06-C-0023.

References

Allwein, E. L., Schapire, R. E. & Singer, Y. (2000). Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research, 1, 113–141.

Buchholz, S., Veenstra, J. & Daelemans, W. (1999). Cascaded grammatical relation
assignment. In Proceedings of EMNLP/VLC (pp. 239–246).

Darwish, K. (2002). Building a shallow Arabic morphological analyser in one day. In
Proceedings of the ACL-02 Workshop on Computational Approaches to Semitic
Languages (pp. 47–54), Philadelpia, PA.

Diab, M., Hacioglu, K. & Jurafsky, D. (2004). Automatic tagging of Arabic text: From raw text
to base phrase chunks. In Proceedings of North American Association for Computational
Linguistics (NAACL, pp. 149–152).

Habash, N. & Sadat, F. (2006). Arabic preprocessing schemes for statistical machine
translation. In Proceedings of the North American chapter of the Association for
Computational Linguistics (NAACL, pp. 49–52).

Habash, N. & Rambow, O. (2005). Arabic Tokenization, Part-of-Speech tagging and
morphological disambiguation in one fell swoop. In Proceedings of the Association for
Computational Linguistics (ACL, pp. 573–580).

Hacioglu, K. & Ward, W. (2003). Target word detection and semantic role chunking using
support vector machines. In Proceedings of Human Language Technology and North
American Association for Computational Linguistics (HLT-NAACL, pp. 25–27).

178 Diab et al.

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning (EMCL, pp. 137–142).

Khoja, S. (2001). APT: Arabic part-of-speech tagger. In Proceedings of the North
American Association for Computational Linguistics Student Workshop (pp. 20–25).

Lee, Y.-S., Papineni, K., Roukos, S., Emam, O. & Hassan, H. (2003). Language model based
Arabic word segmentation. In Proceedings of the 41st Meeting of the Association for
Computational Linguistics (pp. 399–406).

Maamouri, M., Bies, A. & Buckwalter, T. (2004). The Penn Arabic treebank: Building a
largescale annotated Arabic corpus. In NEMLAR Conference on Arabic Language
Resources and Tools, Cairo, Egypt.

Ramshaw, L. A. &. Marcus, M. P. (1995). Text chunking using transformation-based
learning. In Proceedings of the Association for Computational Linguistics Workshop
on Very Large Corpora (pp. 82–94).

Tjong Kim Sang, E. & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of the 4th Conference on Computational Natural Language
Learning (CoNLL, pp. 127–132).

Toutanova, K., Klein, D., Manning, C. & Singer, Y. (2003). Feature-Rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of Human Language
Technology and North American Association for Computational Linguistics (HLT-
NAACL, pp. 252–259).

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer Verlag.

Kudo, T. & Matsumato, Y. (2000). Use of support vector learning for chunk identification.
In Proceedings of the 4th Natural Language Learning
(CoNLL, pp. 142–144).

 Conference on Computational

Automatic Processing of Modern Standard Arabic Text 179

10

Supervised and Unsupervised Learning
of Arabic Morphology

Alexander Clark
Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX,
United Kingdom

Abstract: The broken plural in Arabic is a canonical example of nonconcatenative morphology.
We discuss the supervised and unsupervised learning of this type of transduction
using different techniques, based on the use of stochastic transducers, trained with the
Expectation-Maximisation algorithm. A basic method for supervised learning using the
transducers is discussed and then a more advanced technique using a memory-based
learning technique with a distance derived from the Fisher kernel of the model. We then
discuss how these algorithms can be employed for unsupervised learning, modelling the
alignment between the strings as a hidden variable

10.1 Introduction

In this chapter we discuss the problem of learning morphology, with particular
reference to the problem of non-concatenative morphology best exemplified by the
Arabic broken plural. We shall look at two formulations of the problem; one where
we have to learn the mapping or transduction from a base form to an inflected form
(learning from a set of pairs) and the second where we must learn from two sets of
words one of which consists of base forms and one of which is composed of inflected
forms.

Existing approaches to these problems have focussed on the acquisition of
concatenative morphology – that is to say languages where the vast majority of the
morphological processes are based on the operation of the concatenation of strings.
For example, in English the present participle of verbs is formed by concatenating the
stem with the suffix “-ing”; “walk” becomes “walking”. Under the assumption that
a language uses exclusively concatenative morphology, the problem of learning the
morphology of the language reduces to finding a suitable segmentation of the strings
of the language. This approach has successfully been pursued by several researchers,
most notably Goldsmith (2001). However, many languages use non-concatenative
processes to a greater or lesser extent: even English has a residual process of vowel
change or ablaut for some irregular past tenses – ring/rang for example. If one is inter-
ested in studying this phenomenon, or rather the learnability of this phenomenon,

181

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 181–200.
C© 2007 Springer.

alexc@cs.rhul.ac.uk

182 Clark

then the obvious example to seek out is the Arabic broken plural, which we shall
discuss below. This is in many respects the canonical example of non-concatenative
morphology. Its great complexity means that an algorithm that can learn this mapping
is likely to be able to learn similar mappings in other languages that have a less
exaggerated form of the same process.

The motivation for studying these problems is to examine the sorts of algorithms
that can learn in an unsupervised way from naturally occurring data in the hope
that this will cast light on first language acquisition. Thus our interest in Arabic
arises from the particular challenges that it presents for learning algorithms. We
have chosen to explore the potential of algorithms that do not exploit any putative
innate domain-specific knowledge of language. Thus we shall restrict ourselves to
general-purpose learning algorithms, that are given no further information about
the problem, and where the only learning biases are those that are implicitly
defined by the learning algorithms themselves. Methodologically it is appropriate to
exhaust the possibilities of such algorithms before proceeding to less parsimonious
hypotheses.

As has been known for some time, finite-state methods are in large part adequate
to model morphological processes (Kaplan & Kay, 1994). A standard methodology
is that of two-level morphology (Koskenniemi, 1983), which is capable of handling
the complexity of Finnish, though it needs substantial extensions to handle non-
concatenative languages such as Arabic (Kiraz, 1994). These models are primarily
concerned with the mapping from deep lexical strings, that is to say from strings that
include abstract morphemes, to surface strings. Here we discuss algorithms that learn
transductions between pairs of uninflected and inflected words, that is to say between
pairs of surface forms. This characterisation of a morphological process as a trans-
duction from the lemma form to the inflected form is overly simplistic for a number
of reasons. Firstly, in Arabic as in many other languages the inflected form is not
purely phonologically specified, but is at least in part lexically specified. Secondly,
the same phonological principles operate in many different areas and modelling each
transduction separately will inevitably fail to will inevitably fail to capture important
generalisations.

The base of our technique is a simple finite state model, but one that is stochastic.
We use a simple (generative) maximum likelihood technique to train the models,
starting from a randomly initialised model. This technique, while able to model the
individual transductions, turns out not to work very well on the task of selecting
which transduction should be applied, particularly with the mixture of regular and
irregular forms that is so characteristic of morphological processes in general. It
thus turns out to be necessary to use some more sophisticated learning technique
to achieve good results, at least with the comparatively small training sets that we
use here. Though there are a number of possible techniques that could be applied
in this case, we have chosen to apply one that has been used before in morphology.
Memory-based learning techniques, based on principles of non-parametric density
estimation, are a powerful form of machine learning well-suited to natural language
tasks. A particular strength is their ability to model both general rules and specific
exceptions in a single framework (Van den Bosch & Daelemans, 1999).

Supervised and Unsupervised Learning of Arabic Morphology 183

They have generally only been used in supervised learning techniques where a
class label or tag has been associated to each feature vector. Given these manual
or semi-automatic class labels, a set of features and a predefined distance function
new instances are classified according to the class label of the closest instance.
However these approaches are not a complete solution to the problem of learning
morphology, since they do not directly produce the transduction. The problem must
first be converted into an appropriate feature-based representation and classified in
some way. The techniques presented here operate directly on sequences of atomic
symbols, using a much less articulated representation, and much less input infor-
mation.

While the work presented here is far from a complete analysis of the problem of
learning Arabic morphology, it does establish that it is possible to learn even the most
complex transductions without needing to add any domain-specific biases, but rather
using biases implicit in general-purpose learning algorithms.

We shall start by presenting the basic device we use to model these transduc-
tions. Section 10.2 describes the sort of stochastic transducer we shall use, as
well as the learning or training algorithms we use, and the inferencing process.
We then discuss in Section 10.3 the use of Fisher kernels and information
geometry. In Section 10.4 we describe the data we use, and present some exper-
iments. We then move on to discussing the problem of semi-supervised learning
(Section 10.5).

10.2 Stochastic Transducers

The modelling device we use in this chapter is the stochastic finite state transducer.
We will describe the basic model and then discuss the particular models that we use
in more detail. Formally the transducers we use are a tuple (A,B, S, p, q, s0, s f) where
A and B are finite non-empty sets that are the input and output alphabets, S is a finite
set of states, s0 and s f are the initial and final states respectively. p and q are the
transition and output functions. p is a function from S×S to [0, 1] such that for every
state s

∑
s′∈S

p(s′|s) = 1 (1)

This represents the probability that the transducer will make transition from state s
to state s′. q is an output function from S× (A∪ {ε})× (B∪ {ε}) to [0,1] such that for
every state s

∑
a∈(A∪{εA})

∑
b∈(B∪{εB})

q(a, b|s) = 1 (2)

where εA and εB are empty strings from A∗ and B∗. This represents the probability
that given that the model is in state s it will output the symbol a on the input stream,

184 Clark

and the symbol b on the output stream. These normalisation requirements will ensure
that this defines a probability distribution over A∗ × B∗.1

There are a number of ways in which this differs from the finite state trans-
ducer as normally defined. First, these transducers are stochastic. They define a joint
distribution over the input and output distributions, not a conditional distribution.
Secondly, they are non-deterministic. We have in no way restricted these so that the
underlying sequence of states is determined by the input or the output or even both.
Thus in general there may be exponentially many possible sequences of state transi-
tions given fixed input and output strings, or indeed an infinite number, though we
later will disallow this possibility. Thirdly, there is a symmetry in the way we have
defined this. Though the transductions are clearly not symmetric since we might
have disjoint input and output alphabets, for every transducer T from A∗ to B∗ it is
trivial to define a transducer T from B∗ to A∗ that defines the same distributions, but
with input and output swapped. Thus instead of using the terms input and output
for the two streams of symbols generated by the model, we shall sometimes use the
terms left and right streams. Fourthly, since we have added the possibility of ε inputs
and outputs, it is possible for the input and output strings to have different lengths.
Finally, note that we have attached the output function to states, rather than to transi-
tions. This brings the formalism much closer to that of a Hidden Markov Model.
Indeed, these models are sometimes called Pair Hidden Markov Models (Durbin,
Eddy, Krogh, & Mitchison, 1998).

The first modification we will make is that we consider the input and output
alphabets to be identical. In other applications of these learning techniques, for
example text-to-speech, one might have an input alphabet of letters, and an
output alphabet of phonemes, but in this domain we are interested in phoneme-
to-phoneme transductions. As a consequence of this we will also reduce the
parameter space. We will only allow output functions of the following three
types:

• q11 functions which output the same character on both streams.
• q10 functions which output a character on the left stream, and no character on the

right stream.
• q01 functions which output a character on the right stream, and no character on

the left stream.

Thus we have removed two possibilities – producing an epsilon on both strings, and
producing different characters simultaneously on both streams. Of course, this latter
effect can be achieved by having a q10 output followed by a q01 output, but this will
require two distinct states, rather than one. The effect of these changes is to bias
the process towards the identity transduction. This means that randomly generated
transducers will tend to assign a high probability to pairs of strings that are similar,

1 An additional assumption is strictly speaking necessary, namely that every state reachable
from the initial state can reach the final state with nonzero probability.

Supervised and Unsupervised Learning of Arabic Morphology 185

in the sense that they have small Levenshtein edit distance(Levenshtein, 1966) from
each other.

The normalisation requirement for the output functions then becomes that for
every state s

∑
c∈A

q11(c|s) + q10(c|s) + q01(c|s) = 1

Before we discuss the algorithm for learning the models, it is worth illustrating how
a model of this class could be used to represent a particular transduction. We shall
consider an abstraction of one of the forms of the Arabic broken plural, namely the
mapping from words with a skeleton of C1aC2C3 to C1uC2uwC3, where Ci repre-
sents a consonant; for example, from bank to bunuwk. The long vowels are repre-
sented as single symbols internally; so “uw” is represented by “U”. This can be
represented by a transducer with 6 emitting states. The transducer proceeds through
the states in order – the transitions in this case do not depend on the data at all. The
first state is a q11 output which will output the same consonant on the left and right.
Next there is a q10 state which outputs an a on the left followed by a q01 state which
outputs a u on the right. The fourth state is again a q11 output that copies the second
consonant, followed by a q01 that produces the long U, and finally the sixth state
copies the final consonant.

If we label the states q1, . . . q6, together with an initial state q0 and a final state
q f , we can write p(i, j) for the probability that the model will make a transition from
state pi to state pj. Thus the transition probabilities of our simple model are p(0, 1) =
. . . p(i, i + 1) = p(6, f) = 1 and are zero otherwise, and if there are N consonants
we can define the output functions to be for a consonant c q11(c|1) = q11(c|4) =
q11(c|4) = 1/N and q10(a|2) = 1 and q01(u|3) = q01(U|5) = 1 and zero otherwise.
It is easy to see that this model defines a distribution over pairs of strings that is
nonzero only for the N3 pairs of the form (C1aC2C3,C1uC2uwC3) where Ci is a
consonant.

Though these models may be capable of representing these transductions, the
important issue is whether there are algorithms capable of producing adequate
models given data. The similarity of these models to Hidden Markov Models
naturally suggests learning algorithms. While the general problem of learning HMMs
is computationally hard (Abe & Warmuth, 1992), we can use a variant of the
expectation-maximisation algorithm (Baum & Petrie, 1966) to train them. This
requires an extension of the usual dynamic programming algorithms to work with
all possible alignments of input and output strings (Casacuberta, 1995; Clark, 2001;
Ristad & Yianilos, 1997).

We define the forward and backward probabilities as follows. Given two strings
u1, . . .ul and v1, . . .vm we define the forward probabilities αs(i, j) as the probability
that it will start from s0 and output u1, . . . , ui on the left stream, and v1, . . . , vj on the
right stream and be in state s, and the backward probabilities βs(i, j) as the probability
that starting from state s it will output ui+1, . . . , ul, on the right and vj+1, . . . , vm on
the left and then terminate, i.e. end in state s1.

186 Clark

We can calculate these using the following recurrence relations:

αs(i, j) =
∑

s′
αs′(i, j − 1)p(s|s′)q01(vj|s)

+
∑

s′
αs′ (i − 1, j)p(s|s′)q10(ui|s)

+
∑

s′
αs′ (i − 1, j − 1)p(s|s′)q11(ui, vj|s)

βs(i, j) =
∑

s′
βs′(i, j + 1)p(s′|s)q01(vj+1|s′)

+
∑

s′
βs′(i + 1, j)p(s′|s)q10(ui+1|s′)

+
∑

s′
βs′(i + 1, j + 1)p(s′|s)q11(ui+1, vj+1|s′)

where, in these models, q11(ui, vj) is zero unless ui is equal to vj. Instead of the
normal two-dimensional trellis discussed in standard works on HMMs, which has
one dimension corresponding to the current state and one corresponding to the
position, we have a three-dimensional trellis, with a dimension for the position
in each string. With these modifications, we can use all of the standard HMM
algorithms. In particular, we can use this as the basis of a parameter estimation
algorithm using the expectation-maximization theorem. We use the forward and
backward probabilities to calculate the expected number of times each transition is
taken; at each iteration we set the new values of the parameters to be the appropri-
ately normalized sums of these expectations.

This maximum likelihood training approach can be used to iteratively improve a
model. This can form the basis of a learning algorithm by starting with a randomly
initialised model which we then train. This approach to learning has a number of
serious flaws, most importantly the fact that the likelihood surface is not convex and
as a result there are numerous local maxima some of which may be very poor models.
Thus with some simple models, for example probabilistic context free grammars, it
has been known for some time that this combination is quite ineffective.

In our particular case we have further problems: since we are maximising the joint
probability, it is not necessarily even the case that the global maximum does in fact
model the transduction correctly. Still less is it necessarily the case that the local
maximum we in fact find, which may or may not coincide with the global maximum
will also model these transductions properly.

However we have found that in fact this approach works extremely well for simple
transductions. Experimenting on the transduction (C1aC2C3 → C1uC2UC3) with a
10 state model, we find that over 90% of the time the model converges to a model
that defines the correct transduction. In a few pathological cases the model converges

Supervised and Unsupervised Learning of Arabic Morphology 187

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 5 10 15 20 25

N
L

L

Iterations

Log Likelihood

"good.dat"
"bad.dat"

Fig. 10.1. Incorrect transduction (marked with crosses) ends up with significantly worse log
likelihood than the correct transductions (solid lines). The figure shows negative log likelihood
plotted against the number of iterations. (Many correct transductions have been removed to
improve legibility.)

to a local maximum with a substantially lower log likelihood. On a data set of sixty
examples, manually extracted from one of our data sets (PN) described below, the
log likelihood of the model converges as shown in Figure 10.1.

The other component of a solution is to be able to do inference with the models:
in this context this means that given a FST, and a string u, we need to find the string
v that maximizes p(u, v). This is equivalent to the task of finding the most likely
string generated by a HMM, which is NP-hard (Casacuberta & de la Higuera, 2000),
but it is possible to sample from the conditional distribution p(v|u), which allows
an efficient stochastic computation. If we consider only what is output on the left
stream, the FST is equivalent to a HMM with null transitions corresponding to the q01

transitions of the FST. We can remove these using standard techniques and then use
this to calculate the left backward probabilities for a particular string u: βL

s (i) defined
as the probability that starting from state s the FST generates ui+1, . . . , ul on the left
and terminates. Then if one samples from the FST, but weights each transition by
the appropriate left backward probability, it will be equivalent to sampling from the
conditional distribution of P(v|u). We can then find the string v that is most likely
given u, by generating randomly from p(v|u). After we have generated a number of
strings, we can sum p(v|u) for all the observed strings; if the difference between this
sum and 1 is less than the maximum value of p(v|u) we know we have found the

188 Clark

most likely v. In practice, the distributions we are interested in often have a v with
p(v|u) > 0.5; in this case we immediately know that we have found the maximum.

The ability to model transductions is not enough though. A complete model
must be able to decide which transduction to use. Having a very large model turns
out not to perform well. This is partly because the training maximizes the joint
likelihood, rather than the conditional likelihood. It is also extremly inefficient, since
the number of parameters is quadratic in the number of states. One way to improve
the efficiency is to use a mixture of models as discussed in (Clark, 2001), each corre-
sponding to a morphological paradigm, or particular transduction. The productivity
of each paradigm can be directly modelled, and the class of each lexical item can
be parametrized. While this works after a fashion, there are a number of criticisms
that could be made of this approach. First, many of the models produced merely
memorize a single pair of strings, which is extremely inefficient. Secondly, although
the model correctly models the productivity of some morphological classes, it models
this directly. A more satisfactory approach would be to have this arise naturally as
an emergent property of other aspects of the model. Thirdly, these models may not
be able to account for some psycho-linguistic evidence that appears to require some
form of proximity or similarity. Finally, getting adequate performance even on very
simple models, requires a moderately complex smoothing algorithm. This could be
alleviated by having a representation for the symbols that is based on phonological
features, but in line with our knowledge-light approach, we would like to avoid this,
particularly if the features are not purely acoustic.

In the next section we shall present a technique that addresses these problems.

10.3 Fisher Kernels and Information Geometry

The method used is a simple application of the information geometry approach intro-
duced by Jaakkola & Haussler (1999) in the field of bioinformatics. The central
idea is to use a generative model to define a finite-dimensional representation of
a symbol sequence; in particular a representation that is sensitive to the properties
of the data being modelled. Given a generative model for a string, one can use the
sufficient statistics of those generative models as features. The vector of sufficient
statistics can be thought of as a finite-dimensional representation of the sequence
in terms of the model. This transformation from an unbounded sequence of atomic
symbols to a finite-dimensional real vector is very powerful and allows the use of
Support Vector Machine techniques for classification. (Jaakkola & Haussler, 1999)
recommend that instead of using the sufficient statistics, that the Fisher scores are
used, together with an inner product derived from the Fisher information matrix of
the model. This has the satisfying consequence that the results are then invariant
when the parametrization is changed. The Fisher scores are defined for a data point
x and a particular model as

Ui
x =
∂ log p(x;θ)
∂θi

(3)

Supervised and Unsupervised Learning of Arabic Morphology 189

The partial derivative of the log likelihood is easy to calculate as a byproduct of the
E-step of the EM algorithm, and has the value for HMMs (Jaakkola, Diekhans, &
Haussler, 2000) of

Ui
x =

E[zi|x]
θi

− E[sj|x] (4)

where zi is the indicator variable for the parameter i, and sj is the indicator value for
the state j where zi leaves state j; the last term reflects the constraint that the sum of
the parameters must be one.

The kernel function is defined as

K(x, y) = UxI−1
θ Uy (5)

where Iθ is the Fisher information matrix.
This kernel function thus defines a distance between elements,

d(x, y) = (K(x, x) − 2K(x, y)+ K(y, y))1/2 (6)

This distance in the feature space then defines a pseudo-distance in the example
space.

The name information geometry which is sometimes used to describe this
approach derives from a geometrical interpretation of this kernel. For a parametric
model with k free parameters, the set of all these models will form a smooth k-
dimensional manifold in the space of all distributions. The curvature of this manifold
can be described by a Riemannian tensor – this tensor is just the expected Fisher
information for that model.

In spite of this compelling geometric explanation, there are difficulties with using
this approach directly. First, the Fisher information matrix cannot be calculated
directly, and secondly in natural language applications, unlike in bio-informatic
applications we have the perennial problem of data sparsity, which means that
unlikely events occur frequently. This causes the scaling in the Fisher scores to give
extremely high weights to these rare events, which can skew the results. Accordingly
this work uses the unscaled sufficient statistics.

The Fisher kernel can be compared to other string based kernels. An advantage of
the Fisher kernel is that it can be sensitive to global properties of the strings, whereas
the string kernels can only be sensitive to substrings.

10.3.1 Details

Given a transducer that models the transduction from uninflected to inflected words,
we can extract the sufficient statistics from the model in two ways. We can consider
the statistics of the joint model p(u, v|Θ) or the statistics of the conditional model
p(v|u,Θ). Here we have used the conditional model, since we are interested primarily
in the change of the stem, and not the parts of the stem that remain unchanged. It
is thus possible to use either the features of the joint model or of the conditional

190 Clark

model, and it is also possible to either scale the features or not, by dividing by the
parameter value as in Equation 4. The second term in Equation 4 corresponding to
the normalization can be neglected.

Based on the experiments reported previously (Clark, 2002) we have chosen the
unscaled conditional sufficient statistics for the rest of the experiments presented
here, which are calculated thus:

Ci((u, v)) = E[zi|(u, v)]− E[zi|u] (7)

Given an input string u we want to find the string v such that the pair u, v is very
close to some element of the training data. We can do this in a number of different
ways. Clearly if u is already in the training set then the distance will be minimized
by choosing v to be one of the outputs that is stored for input v; the distance in this
case will be zero. Otherwise we sample repeatedly (here we have taken 100 samples)
from the conditional distribution of each of the submodels. This in practice seems to
give good results, though there are more principled criteria that could be applied.

We are using a k-nearest-neighbor rule with k = 1, since there are irregular
words that have completely idionsyncratic inflected forms. It would be possible to
use a larger value of k, which might help with robustness, particularly if the token
frequency was also used, since irregular words tend to be more common.

In summary the algorithm proceeds as follows:

• We train a small FST on the pairs of strings using the EM algorithm.
• We derive from this model a distance function between two pairs of strings that

is sensitive to the properties of this transduction.
• We store all of the observed pairs of strings.
• Given a new word, we sample repeatedly from the conditional distribution to get

a set of possible outputs.
• We select the output such that the input/output pair is closest to one of the

observed pairs.

10.4 Experiments

The data sets used in the experiments are summarized in Table 10.1. We have
included a standard data set for a problem from English morphology to provide a
comparison. This data (Ling, 1994) is drawn from the English past tense, a problem

Table 10.1. Summary of the data sets. LING is drawn from Ling (1994), PN from Plunkett
& Nakisa (1997) and MP from McCarthy & Prince (1990)

Label Language Total Size Train Test

LING English Past tense 1394 1251 140
PN Arabic plural 859 773 86
MP Arabic broken plural 3261 2633 293

Supervised and Unsupervised Learning of Arabic Morphology 191

that has exerted a fascination out of all proportion to its interest. It consists of pairs
of strings of the base form and past form in UNIBET phonetic transcription. We use
two Arabic data sets. The first is a data set prepared for Plunkett & Nakisa (1997). It
consists of pairs of singular and plural nouns, in Modern Standard Arabic, randomly
selected from the standard Wehr dictionary in a fully vocalized ASCII transcription.
It has a mixture of broken and sound plurals, and has been simplified by removing
forms of the broken plural that occurred below a certain frequency threshold. The
second, prepared by McCarthy & Prince (1990) consists solely of broken plurals,
with all variant plurals added.

10.4.1 Evaluation

We used 10-fold cross validation on all of these data sets. We compared the perfor-
mance of the models evaluated using them directly to model the transduction using
the conditional likelihood (CL) and using the MBL approach with the unscaled
conditional features. Based on these results, we used the unscaled conditional
features; subsequent experiments confirmed that these performed best.

The results are summarized in Table 10.2. Run-times for these experiments were
from about 1 hour to 1 week on a standard workstation.2 There are a few results to
which these can be directly compared; on the LING data set, Mooney & Califf (1995)
report figures of approximately 90% using a logic program that learns decision lists
for suffixes. For the Arabic data sets, Plunkett & Nakisa (1997) do not present results
on modelling the transduction on words not in the training set; however they report
scores on the easier task of merely selecting the class of output of 63.8% (0.64%)
using a neural network classifier. The data is classified according to the type of the
plural, and is mapped onto a syllabic skeleton, with each phoneme represented as
a bundle of phonological features. We have observed in further experiments that
the MBL approach significantly outperforms the conditional likelihood method over
a wide range of experiments. The performance on the training data is a further

Table 10.2. Results. CV is the degree of cross-validation, Models determines how many
components there are in the mixture, CL gives the percentage correct using the conditional
likelihood evaluation and MBLSS, using the Memory-based learning with sufficient statistics,
with the standard deviation in brackets

Data Set CV Models States Iterations CL MBLSS

LING 10 1 10 10 61.3 (4.0) 85.8 (2.4)
10 2 10 10 72.1 (2.0) 79.3 (3.3)

PN 10 1 10 10 0.6 (0.8) 15.4 (3.8)
10 5 10 10 9.2 (2.9) 31.0 (6.1)
10 5 10 50 11.3 (3.3) 35.0 (5.3)

MP 10 5 10 10 1.6 (0.6) 16.7 (1.8)

2 1 GHz Pentium processor.

192 Clark

difference, the MBL approach scoring close to 100%, whereas the CL approach
scores only a little better than it does on the test data. It is certainly possible to make
the conditional likelihood method work rather better than it does in this chapter by
paying careful attention to convergence criteria of the models to avoid overfitting,
and by smoothing the models carefully. In addition some sort of model size selection
must be used. A major advantage of the MBL approach is that it works well without
requiring extensive tuning of the parameters.

In terms of the absolute quality of the results, this depends to a great extent on
how phonologically predictable the process is. When it is completely predictable,
the performance approaches 100%; similarly a large majority of the less frequent
words in English are completely regular, and accordingly the performance on EPT
is very good. However in other cases, where the morphology is very irregular the
performance will be poor. In particular with the Arabic data sets, the PN data set is
very small compared to the complexity of the process being learned, and the MP data
set is rather noisy, with a large number of erroneous transcriptions.

10.5 Semi-supervised Learning

We now move on from the task of learning from pairs of words, to a slightly less
idealised task that approaches the problem of completely unsupervised learning.
A number of different approaches to the unsupervised learning of morphology
have been presented in the past few years (Goldsmith, 2001; Schone & Jurafsky,
2000). Though they achieve impressive results, they share a common failing: an
a priori limitation on the form of the morphological transductions that can be
modelled, restricted to simple concatenation, and often only suffixation. This is
clearly undesirable, since many non-Indo-European languages, and some Indo-
European ones as well, notably German, use other inflectional processes. A related
limitation is that these approaches can only learn regular morphology. Though these
systems perform well within their limitations, a general language learning system
cannot make these sorts of assumptions. Supervised learning algorithms on the
other hand, are capable of learning irregularities and non-concatenative morphology
(Clark, 2001; Mooney & Califf, 1995; Rumelhart & McClelland, 1986). What is
desirable is to have a means for turning a supervised acquisition model into an
unsupervised acquisition model. In this section, we discuss a general algorithm for
doing this, and show how this can be applied using the stochastic transducers we
have been using. In this case we will not be using the Fisher kernel method.

This work is closely related to that of Yarowsky & Wicentowski (2000). They are
concerned with integrating diverse sources of information; here we are concerned
with the correct application of a single source of information, namely the surface
forms of each word. As they say (Yarowsky & Wicentowski, 2000, p. 207):

But for many languages, and to a quite practical degree, inflectional morpho-
logical analysis and generation can be viewed primarily as an alignment task
on a broad coverage word list

Supervised and Unsupervised Learning of Arabic Morphology 193

Accordingly our approach is to use the stochastic model of the joint probability of
the pair of strings, that we have used up to now, and to treat the alignment between
the strings as a further hidden variable which can be modelled again with the EM
algorithm. A clean and well-motivated treatment of this will allow integration of this
into more complex and broader language acquisition systems. We do not present a
solution to the general problem of unsupervised learning of morphology here: rather
we consider a slightly easier task, that we call partially supervised learning: this is
where the learner is presented with two sets of strings, and must work out what the
relationship is between them.

10.5.1 Perfect Situation

We will start with an artificially simple situation. Let us suppose we have two sets
of strings U and V of the same size. We wish to align them, i.e. find a bijection
between them, and simultaneously train a model on the aligned data. We can model
this as a stochastic process in two stages: first we generate n pairs of strings,
and then we generate a permutation of the second set that shuffles them. We can
model the permutation as a hidden variable X, that takes one of the n! permuta-
tions as its value. We can consider this as an n × n permutation matrix such that
Xij = 1 if the ith element of U is aligned with the jth element of V and is zero
otherwise.

p(U,V) =
∑

X

p(X)p(U,V|X) (8)

Since we have no reasons to prefer one permutation rather than another we set p(X) =
1
n! . The probability given the alignment is just the product of the probabilities of the
matching pairs,

p(U,V|X) =
∏

i

p(ui, vX(j)) (9)

If we consider the matrix P which has in i, j the element p(ui, vj), the sum of the n!
permutations is called in linear algebra the permanent of the matrix (Bhatia, 1996).

Per(P)
de f
=
∑
σ

∏
i

Pi,σ(i) (10)

where σ ranges over all the permutations of n elements.
It is similar to the more familiar determinant but without the alternating signs. One

problem is that it is not possible to calculate this efficiently (Barvinok, 1999). There
is a great deal of active research in this area though as it is possible to encode various
combinatorial problems into an appropriate matrix.3

3 For example, finding the number of maximum matchings in a bipartite graph.

194 Clark

To train the model with the EM algorithm we need to be able to calculate the
posterior expectation of Xij given the data and the model. Since Xij is one or zero,
the expectation equals the probability that i is aligned with j.

p(Xij|U,V) =

∑
X:Xij=1 p(U,V|X)∑

X p(U,V|X)
(11)

The denominator of this fraction is the permanent of the matrix P, i.e. the sum over
all n! permutations. The numerator is the sum of the (n − 1)! of those permutations
that have Xij = 1. This is the product of Pij with the permanent of the i j-minor 4

of P.
Thus we can write

E[Xij|U,V] =
PijPerm(Pij)

Perm(P)
(12)

We can consider these posterior probabilities as a matrix, that will be doubly
stochastic. This map from the matrix of probabilities to the matrix of posteriors is
sometimes called the Bregman map (Bregman, 1967). Though intractable to compute
exactly, we can approximate it under certain circumstances using the technique of
Sinkhorn balancing (Sinkhorn, 1964), as advocated by Beichl & Sullivan (1999).
This converges rapidly (Soules, 1991) giving a overall complexity of O(n3), which is
tractable for matrices with dimensions ≈ 1000, such as we use here. The method of
Sinkhorn balancing is intuitively quite straightforward; we want to scale a positive
matrix so it is doubly stochastic. If we normalise the row sums, we will have a
matrix that is row-stochastic, i.e. has its row sums equal to unity, but not necessarily
column-stochastic. If we then normalise the column sums, we will have a matrix
that is column-stochastic but probably not row-stochastic. If we continue in this
way, alternating the normalisation of the rows and of the columns, we converge to a
doubly stochastic matrix which under certain circumstances is an approximation to
the Bregman map. We now have the basis for an algorithm.

1. Choose a random model.
2. Calculate the matrix of p(ui, vj)
3. Estimate the matrix of the posteriors, using Sinkhorn balancing.
4. Train the model on every pair (ui, vj) weighting by the value of the posterior

probability.
5. Repeat from step 2, until the posterior probability matrix is (very close to) a

permutation matrix.

Theoretically we know this will converge by the EM algorithm and empirically we
observe that the matrix of posteriors rapidly converges to a permutation matrix.

4 The i j-minor of a matrix is the matrix formed by removing the row and column containing
the i j element, to form an n − 1 by n − 1 matrix.

Supervised and Unsupervised Learning of Arabic Morphology 195

10.5.2 Imperfection

This is obviously a highly artificial situation. More interesting cases are where we
have two sets that are not the same size, with two subsets that we want to align.
More formally we have two sets of strings U and V of size m and n respectively with
subsets U′ ⊂ U and V′ ⊂ V both of size k. We then have three models. A model for
U and a model for V and a model for a joint distribution over U′ ×V′. We then have
a hidden variable which corresponds to the selection of the sets and the bijection
between U′ and V′. Given a value of X we can write the total likelihood function as:

p(U,V|X) =
∏

u∈U−U′
pU(u)

∏
v∈V−V′

pV(v)

⎛⎜⎜⎜⎜⎜⎝
∏

u∈U′ ,v∈V′
pM(u, v)

⎞⎟⎟⎟⎟⎟⎠
α (13)

We now have a certain degree of flexibility in how we define p(X); we can make it
depend on the size of the sets that are selected. We can use this to make some of the
calculations more tractable.

This algorithm allows one to trade off the gain from aligning them against not
aligning them, by including models for the information in the individual sequences
(Allison, Powell, & Dix, 1999). We can tweak it if need be by raising the joint model
probability to a power α ∈ [1, 2]. This will have the effect of making it less likely
to align words; if α is 1, then it is likely to align words even when they have little
relation since pM(u, v) can in general be at least pU(u)pV(v) for related u and v.
Conversely, values of α close to 2, will mean that the model will only align the words
if there is a very strong link between them. Thus α is a tunable parameter that allows
us to adjust the recall/precision trade-off.

Suppose U has m elements, and V has n elements, then we have an m × n matrix
of the joint probabilities, which we can call PM We can also define a m×m diagonal
matrix, corresponding to the probabilities according to the model of U, which we
can call PU, and a n × n diagonal matrix for the probabilities of V, PV. If we also
create a matrix of size n ×m with every element 1, P1 then we can form an (m + n)
square matrix thus:

M =
(
PU P1
PM PV

)
(14)

Then every permutation of this matrix corresponds to a particular choice of the
alignment, and we can use exactly the same techniques for estimating the posterior
probabilities on this matrix, as we did before. There is one substantive difference
which is that because of the block of ones in the top right, alignments that align
k of U and V together will have a “bonus” factor of k!, corresponding to the k!
paths through the k × k submatrix of P1. This is generally good, since we want to
encourage the algorithm to align as much as possible. We can accommodate this
formally by making p(X) in our generative model be proportional to k!. We then

196 Clark

Table 10.3. Matrix of probabilities for U = {cat, dog, fox} and V = {cats, dogs}⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pU(cat) 0 0 1 1
0 pU(dog) 0 1 1
0 0 pU(fox) 1 1
pM(cat,cats) pM(dog,cats) pM(fox,cats) pV(cats) 0
pM(cat,dogs) pM(dog,dogs) pM(fox,dogs) 0 pV(dogs)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

train all three models, weighting the probabilities by the appropriate values from the
posterior matrix.

A simple example from English will clarify: suppose U = {cat, dog, fox} and V =
{cats, dogs}. Table 10.3 shows the resulting composite matrix.

Now each permutation of this matrix will correspond to a particular alignment, and
the probability given that alignment will be the product of the appropriate elements
of the matrix. The identity matrix will correspond to none being aligned, and will
have probability equal to the product of the elements along the diagonal of the matrix
in Table 10.3, i.e.

p(U,V|X) = pU(cat)pU(dog)pU(fox)

pV(cats)pV(dogs)
(15)

If cat and dog are aligned correctly then (k=2) there are 2!, matrices which are shown
here

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)

and also
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

each of which will have probability

p(U,V|X) = pM(cat,cats)pM(dog,dogs)pU(fox) (18)

10.5.3 Experiments with Arabic

We prepared two data sets from Plunkett & Nakisa (1997); first, we prepared a data
set (PN1) merely by collecting all of the singulars into one set and all of the plurals

Supervised and Unsupervised Learning of Arabic Morphology 197

into another. This is clearly unrealistically simple, and so we also prepared a data set
by randomly removing half of the singulars and half of the plurals, to see whether the
algorithm could correctly match up in the absence of the missing data. This produced
a data set (PN2) of size 443/430, with 215 possible pairs to be aligned. The results of
these three tests are summarised in Table 10.4. The experiments of the second data
set were run with various values of the exponent α to see the effect of the exponent
on precision and recall. As expected, the algorithm performed well on the initial data
set, aligning with high accuracy and precision. On the imperfect data set, PN2, the
effect of the exponent is quite marked. With the exponent at 1.0, the precision is
very poor, but as the exponent is increased the precision increases rapidly. Given a
larger data set, it would be possible to repeatedly apply the algorithm to the same
data, removing at each time the pairs already aligned, thus potentially combining a
number of high precision models into a high recall one.

The small number of states employed are for efficiency purposes, they are clearly
too small to allow correct modelling of these processes.

There is very little work that is directly comparable: there has been no prior
work on the unsupervised learning of Arabic. However we can compare the results
in English to (Yarowsky & Wicentowski, 2000). They use a number of different
sources of information, and have results ranging from 31.3% using only Levenshtein
distance after 1 iteration to 99.2 % for the final model combining all sources of
information including frequency and semantic information. De Roeck & Al-Fares
(2000) present an algorithm for identifying Arabic roots, that uses a language specific
distance function; we note also the work of Rogati, McCarley, & Yang (2003) who
use a small aligned bilingual corpus to learn a stemmer. Similarly Yarowsky &
Wicentowski (2000) use a weighted edit distance as one component of their model,
also performing a Viterbi approximation to the EM reestimation; for particular
languages it will always be able to perform well with a simpler algorithm using
prior knowledge about the language in question. This is clearly not an option in
cognitive modelling, since it must work with all languages without language-specific
information.

The algorithms presented here are comparatively slow in their naive form since
we have to compute all the elements of the matrix, so the complexity is O(|U||V|).
A simple optimisation could be used to avoid having to compute pairs that are
obviously not related. Of course, went is radically different from go, and yet went

Table 10.4. Semi-supervised learning results. The second set of results on the PN2 data set
show the effect the exponent has on the precision and recall

Data States α U V Pairs Correct Incorrect Precision Recall

PN1 10 1.0 859 859 859 820 27 96.8 95.5
PN2 10 1.0 443 430 215 157 405 38.8 73.8
PN2 10 1.5 443 430 215 140 25 84.8 65.1
PN2 10 1.75 443 430 215 78 2 97.5 36.2
PN2 10 2.0 443 430 215 2 0 100.0 0.9

198 Clark

is the correct past tense, so this approach will introduce errors. Handling this sort
of complete stem suppletion seems likely to require other sorts of information:
frequency and semantic information are the obvious candidates. Since suppletion
tends to occur infrequently and with very frequent words, these should suffice.
This may allow an understanding of the prevalence of phonological transparency in
natural languages.

10.6 Conclusion

Wehavediscussed the learning ofArabicmorphologyin aknowledge-light framework,
motivated primarily by the study of first language acquisition. The interesting non-
concatenative broken plural is an excellent test bed for theories that aim to account
for the acquisition of morphology. English is simply too trivial to be a suitable
test bed, since almost any algorithm can work. Arabic requires more sophisticated
techniques. We do not put this forward directly as a cognitive model, but only indirectly
as an exemplar of a class of algorithms that may be capable of learning complex
morphological transductions, and thus are at least potentially of explanatory value.

We have studied the learnability under two different assumptions. The first is
where the learner is presented with a set of pairs of base and inflected form. This is
implausibly easy, as the most that we can hope is for an early learner to be able to
identify word classes (Clark, 2003). Accordingly we study also what we call partially
or semi-supervised learning where the learner is presented with a pair of sets of
words and must also align them. We show how stochastic transducers can be used to
learn under both of these two situations, and how a memory based learning technique
together with an information geometry based approach can enhance performance.
The underlying unpredictability of the morphological processes that we study does
mean that the final accuracy of the system is inevitably rather low, since the extent
to which the choice of plural is phonologically specified is an upper bound on the
performance.

Acknowledgements

I am grateful to Alexander Barvinok for pointing out to me the work of Beichl and
Sullivan. I am also grateful to John McCarthy and Ramin Nakisa for allowing me
to use their data. Thanks also to Bill Keller, Eric Gaussier and others for helpful
comments. This work was originally done as part of the EU TMR network Learning
Computational Grammars.

References

Abe, N., & Warmuth, M. K. (1992). On the Computational Complexity of Approximating
Distributions by Probabilistic Automata Machine Learning, 9, 205–260.

Allison, L., Powell, D., & Dix, T. I. (1999). Compression and Approximate Matching The
Computer Journal, 42(1), 1–10.

Supervised and Unsupervised Learning of Arabic Morphology 199

Barvinok, A. I. (1999). Polynomial time algorithms to approximate permanents and mixed
discriminants within a simple exponential factor Random Structures and Algorithms, 14,
29–61.

Baum, L. E., & Petrie, T. (1966). Statistical Inference for probabilistic functions of finite state
Markov chains Annals of Mathematical Statistics, 37, 1559–1663.

Beichl, I., & Sullivan, F. (1999). Approximating the Permanent via Importance Sampling
with application to the dimer covering problem Journal of Computational Physics, 149(1),
128–147.

Bhatia, R. (1996). Matrix Analysis. Berlin: Springer Verlag.
Bregman, L. M. (1967). Proof of Convergence of Sheleikhovskii’s method for a problem with

transportation constraints Zh. vychsl. Mat. mat. Fiz., 147(7).
Casacuberta, F. (1995). Probabilistic Estimation of Stochastic Regular Syntax-directed Trans-

lation Schemes In Proceedings of the VIth Spanish Symposium on Pattern Recognition and
Image Analysis, pp. 201–207.

Casacuberta, F., & de la Higuera, C. (2000). Computational Complexity of Problems on
Probabilistic Grammars and Transducers In Oliveira, A. L.(Ed.), Grammatical Inference:
Algorithms and Applications, pp. 15–24. Berlin: Springer Verlag.

Clark, A. (2001). Learning Morphology with Pair Hidden Markov Models In Proc. of
the Student Workshop at the 39th Annual Meeting of the Association for Computational
Linguistics, pp. 55–60 Toulouse, France.

Clark, A. (2002). Memory-Based Learning of Morphology with Stochastic Transducers In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 513–520.

Clark, A. (2003). Combining Distributional and Morphological Information for Part of Speech
Induction In Proceedings of the tenth Annual Meeting of the European Association for
Computational Linguistics EACL 2003, pp. 59–66.

De Roeck, A. N., & Al-Fares, W. (2000). A Morphologically Sensitive Clustering Algorithm
for Identifying Arabic Roots In COLING-2000, pp. 199–206.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University
Press.

Goldsmith, J. A. (2001). Unsupervised Learning of the Morphology of a Natural Language
Computational Linguistics, 27(2), 153–198.

Jaakkola, T. S., Diekhans, M., & Haussler, D. (2000). A discriminative framework for
detecting remote protein homologies Journal of Computational Biology, 7(1,2), 95–114.

Jaakkola, T., & Haussler, D. (1999). Exploiting generative models in discriminative classi-
fiers In Kearns, M. S., Solla, S. A., & Cohn, D. A.(Eds.), Advances in Neural Information
Processing Systems 11, pp. 487–493. San Mateo, CA. Morgan Kauffmann Publishers.

Kaplan, R. M., & Kay, M. (1994). Regular Models of Phonological Rule Systems Computa-
tional Linguistics, 20(3), 331–378.

Kiraz, G. (1994). Multi-tape two-level morphology In COLING-94, pp. 180–186.
Koskenniemi, K. (1983). A Two-level Morphological Processor. Ph.D. thesis, University of

Helsinki.
Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions and reversals

Soviet Physics Doklady, 10(8), 707–710.
Ling, C. X. (1994). Learning the Past Tense of English Verbs: The Symbolic Pattern

Associator vs. Connectionist Models Journal of Artifical Intelligence Research, 1, 209–229.
McCarthy, J., & Prince, A. (1990). Foot and Word in prosodic morphology: The Arabic

Broken Plural Natural Language and Linguistic Theory, 8, 209–284.

200 Clark

Mooney, R. J., & Califf, M. E. (1995). Induction of First-Order Decision Lists: Results on
Learning the Past Tense of English Verbs Journal of Artificial Intelligence Research, 3,
1–24.

Plunkett, K., & Nakisa, R. C. (1997). A Connectionist Model of the Arabic Plural System
Language and Cognitive Processes, 12(5/6), 807–836.

Ristad, E. S., & Yianilos, P. N. (1997). Finite Growth Models Tech.rep.CS-TR-533-96,
Department of Computer Science, Princeton University. revised in 1997.

Rogati, M., McCarley, S., & Yang, Y. (2003). Unsupervised learning of Arabic stemming
using a parallel corpus In Proceedings of ACL, pp. 391–398.

Rumelhart, D. E., & McClelland, J. L. (1986). On Learning Past Tenses of English Verbs
In Rumelhart, D. E., & McClelland, J. L.(Eds.), Parallel Distributed Processing, Vol. 2,
pp. 216–271. MIT Press, Cambridge, MA.

Schone, P., & Jurafsky, D. (2000). Knowledge-free induction of Morphology using Latent
Semantic Analysis In Proceedings of CoNLL-2000 and LLL-2000, pp. 67–72. Lisbon,
Portugal.

Sinkhorn, R. (1964). A relation between arbitrary positive matrices and doubly stochastic
matrices Annals of Mathematical Statistics, 35(2), 876–879.

Soules, G. W. (1991). The rate of convergence of Sinkhorn Balancing Linear Algebra and Its
Applications, 150(3), 3–40.

van den Bosch, A., & Daelemans, W. (1999). Memory-Based Morphological Analysis In
Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics,
pp. 285–292.

Yarowsky, D., & Wicentowski, R. (2000). Minimally Supervised Morphological Analysis by
Multimodal Alignment In Proceedings of ACL 2000, pp. 207–216. Hong Kong.

11

Memory-based Morphological Analysis
and Part-of-speech Tagging of Arabic

Antal van den Bosch1, Erwin Marsi1, and Abdelhadi Soudi2
1 ILK / Dept. of Language and Information Science, Faculty of Arts, Tilburg University, P.O. Box 90153,

NL-5000 LE Tilburg, The Netherlands
{Antal.vdnBosch,E.C.Marsi}@uvt.nl

2 Ecole Nationale de l’Industrie Minérale, Rabat, Morocco
asoudi@gmail.com

Abstract: We explore the application of memory-based learning to morphological analysis and part-
of-speech tagging of written Arabic, based on data from the Arabic Treebank. Morpho-
logical analysis is performed as a letter-by-letter classification task. Classification is
performed by the k-nearest neighbor algorithm. Each classification produces a trigram of
position-bound operations, each encoding segmentation, part-of-speech information, and
letter transformations. The overlapping operation trigrams generated on the basis of an
input word are converted into a lattice, from which all morphological analyses of the
word are generated. Part-of-speech tagging is carried out separately from the morpho-
logical analyzer. A memory-based modular tagger is developed with a subtagger for known
words and one for unknown words. On words not seen in training, the morphological
analyzer attains a peak F-score of 0.47, while the tagger produces 66.4% correct tags.
On all words, including words seen in training, the combination assigns a correct part-
of-speech tag and generates all morphological analyses to about 91% of word tokens in
running text

11.1 Introduction

Memory-based learning has been successfully applied to morphological analysis
and part-of-speech tagging in Western and Eastern-European languages (Daelemans
et al., 1996; Van den Bosch and Daelemans, 1999; Zavrel and Daelemans, 1999).
With the release of the Arabic Treebank by the Linguistic Data Consortium, a
large corpus has become available for Arabic that can act as training material for
machine-learning algorithms. The data facilitates machine-learned part-of-speech
taggers, tokenizers, and shallow parsing units such as chunkers (Diab, Hacioglu, and
Jurafsky, 2004); cf. Chapter 9.

However, as argued and illustrated throughout this book, Arabic offers special
challenges for data-driven and knowledge-based approaches alike. An Arabic word
may be composed of a stem consisting of a consonantal root and a pattern, and may

201

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 201–217.
C© 2007 Springer.

202 Van den Bosch et al.

furthermore contain affixes and clitics. Arabic verbs, for instance, can be conjugated
according to one of the traditionally recognized patterns. There are 15 triliteral forms,
of which at least 9 are common. They represent very subtle differences. Within each
conjugation pattern, an entire paradigm is found: two tenses (perfect and imperfect),
two voices (active and passive) and five moods (indicative, subjunctive, jussive,
imperative, and energetic). Arabic nouns show a comparably rich and complex
morphological structure.

In this chapter we explore the use of memory-based learning for morphological
analysis and part-of-speech (POS) tagging of written Arabic. The next section
summarizes the principles of memory-based learning. Section 11.3 describes the data
used throughout the study for both tasks. The subsequent three sections describe our
work on memory-based morphological analysis (Section 11.4) and its integration
with part-of-speech tagging (Section 11.5). The final Section 11.6 contains a short
discussion of related work and offers an overall conclusion.

11.2 Memory-based Learning

Memory-based learning, also known as instance-based, example-based, or lazy
learning (Aha, Kibler, and Albert, 1991; Daelemans, Van den Bosch, and Zavrel,
1999), based on the k-nearest neighbor classifier (Cover and Hart, 1967), is a super-
vised inductive learning algorithm for learning classification tasks. Memory-based
learning treats a set of labeled (pre-classified) training instances as points in a
multi-dimensional feature space, and stores them as such in an instance base in
memory. Thus, in contrast to most other machine learning algorithms, it performs
no abstraction, which naturally allows it to deal with productive but low-frequency
exceptions (Daelemans, Van den Bosch, and Zavrel, 1999).

An instance consists of a fixed-length vector of n feature-value pairs, and an infor-
mation field containing the classification of that particular feature-value vector. After
the instance base is stored, new (test) instances are classified by matching them to
all instances in the instance base, and by calculating with each match the distance,
given by a distance function Δ(X,Y) between the new instance X and the memory
instance Y. The most primitive distance function is the “overlap” function Δ(X,Y) =∑n

i=1 wi δ(xi, yi), where n is the number of features, wi is a weight for feature i,
and δ = 0 i f xi = yi, else 1 is the distance per feature. In this chapter we use
the somewhat more complex Modified Value Difference Metric (MVDM) distance
function (Cost and Salzberg, 1993; Stanfill and Waltz, 1986), which determines the
similarity of pairs of values of a feature by looking at the conditional probabilities
(estimated on co-occurrence counts) of the two values conditioned on the classes:
δ(v1, v2) =

∑n
i=1 |P(Ci|v1) − P(Ci|v2)|.

In this chapter the weight (importance) of a feature i, wi, is estimated by computing
its gain ratio, GRi. To compute a feature’s GR, we first compute its information gain
IGi, which is the difference in uncertainty (entropy) within the set of cases between
the situations without and with knowledge of the value of that feature: IGi = H(C)−∑

v∈Vi
P(v) × H(C|v), where C is the set of class labels, Vi is the set of values for

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 203

feature i, and H(C) = −∑c∈C P(c) log2 P(c) is the entropy of the class labels. The
probabilities are estimated from frequency counts in the training set. To derive the
GR, the feature’s IG is divided by the entropy of the feature values, the split info
sii = −∑v∈Vi

P(v) log2 P(v): GRi =
IGi
sii

.
Classification in memory-based learning is performed by the k-NN algorithm

that searches for the k ‘nearest neighbors’ according to the Δ(X,Y) function. The
majority class of the k nearest neighbors then determines the class of the new case.
With symbolic feature values, distance ties can occur when two nearest neighbors
mismatch with the test instance on the same feature value, while all three instances
have different values. In the k-NN implementation1 we used, equidistant neighbors
are taken as belonging to the same k, so this implementation is effectively a k-nearest
distance classifier. This implies that when k = 1, more than one nearest neighbor
may be found, all at the same distance to the test instance.

11.3 Data

Our point of departure is the Arabic Treebank 1 (ATB1), version 2.0, distributed by
LDC2, more specifically the “after treebank” POS-tagged data, consisting of 166,068
tagged words. Tokens are vocalized and morphologically analyzed by means of Tim
Buckwalter’s Arabic Morphological Analyzer (Buckwalter, 2002). An example is
given in Figure 11.1. The input token (INPUT STRING) is transliterated (LOOK-UP
WORD) according to Buckwalter’s transliteration system. All possible vocalizations
and their morphological analyzes are listed (SOLUTION). The portion of the solution
relevant to our experiments is the segmentation, with plus markers (+) as segment
boundary markers, and slashes (/) as delimiters between the character strings and
the part-of-speech information related to that string. For example, the segmented
string kutub/NOUN+a/CASE_DEF_ACC represents the substring kutub being a
noun, and a carrying the morpho-syntactic function CASE_DEF_ACC (underscores
occur within multi-word tags, and have no relation with segmentation). The resulting
analyses have been manually annotated with a preceding star (*), marking the correct
solution in the given context.

Throughout the corpus the number of analyses listed per word is not constant,
probably as a result of additions and/or deletions by the annotators. As our goal
is to predict all possible analyses for a given word, we first created a lexicon that
maps every word to all analyses encountered and their respective frequencies; see
Figure 11.2 for an example. In the course of this process, we removed all vowels,
since we aim at analyzing unvoweled words, producing unvoweled analyses. Vowel
generation ultimately implies stem identification, a complication which we do not
address here; our goal is the segmentation of unvoweled strings and an appropriate

1 All experiments with memory-based learning were performed with TiMBL, version
5.1 (Daelemans et al., 2004), available from http://ilk.uvt.nl.

2 LDC: http://www.ldc.upenn.edu/.

204 Van den Bosch et al.

INPUT STRING:

LOOK-UPWORD: ktb
Comment:

INDEX:P2W20
SOLUTION 1: (kataba) [katab-u_1] katab/PV+a/PVSUFF_SUBJ:3MS

(GLOSS): write + he/it [verb]
* SOLUTION 2: (kutiba) [katab-u_1] kutib/PV_PASS+a/PVSUFF_SUBJ:3MS

(GLOSS): be written/be fated/be destined + he/it [verb]
SOLUTION 3: (kutub) [kitAb_1] kutub/NOUN

(GLOSS): books
SOLUTION 4: (kutubu) [kitAb_1] kutub/NOUN+u/CASE_DEF_NOM

(GLOSS): books + [def.nom.]
SOLUTION 5: (kutuba) [kitAb_1] kutub/NOUN+a/CASE_DEF_ACC

(GLOSS): books + [def.acc.]
SOLUTION 6: (kutubi) [kitAb_1] kutub/NOUN+i/CASE_DEF_GEN

(GLOSS): books + [def.gen.]
SOLUTION 7: (kutubN) [kitAb_1] kutub/NOUN+N/CASE_INDEF_NOM

(GLOSS): books + [indef.nom.]
SOLUTION 8: (kutubK) [kitAb_1] kutub/NOUN+K/CASE_INDEF_GEN

(GLOSS): books + [indef.gen.]
SOLUTION 9: (ktb) [DEFAULT] ktb/NOUN_PROP

(GLOSS): NOT_IN_LEXICON
SOLUTION 10: (katb) [DEFAULT] ka/PREP+tb/NOUN_PROP

(GLOSS): like/such as + NOT_IN_LEXICON

Fig. 11.1. Example token from ATB1 according to Buckwalter’s transliteration (cf. Table 11.1
in Chapter 2)

identification of the morpho-syntactic function of each of the parts, so that the output
can later be integrated with a part-of-speech tagger (see Section 11.5).

Also, we chose to re-attach clitic tokens (e.g. determiners and prepositions) to their
host, storing them together as a single word form. The lexicon derived from the full
corpus, excluding punctuation markers and words without a stored solution, contains
16,626 unique words and 113,105 analyses; an average of 6.8 analyses per word.

ktb
==> ktb/PV + /PVSUFF_SUBJ:3MS + 7
==> k/PREP + tb/NOUN_PROP + 7
==> ktb/PV_PASS + /PVSUFF_SUBJ:3MS + 7
==> ktb/NOUN + /CASE_DEF_ACC + 7
==> ktb/NOUN_PROP + 7
==> ktb/NOUN + /CASE_DEF_NOM + 8
==> ktb/NOUN + K/CASE_INDEF_GEN + 7
==> ktb/NOUN + 7
==> ktb/NOUN + N/CASE_INDEF_NOM + 7
==> ktb/NOUN + /CASE_DEF_GEN + 8

Fig. 11.2. Example of a preprocessed lexical entry for the word ktb �� �� � , carrying ten
morphological analyses, using Buckwalter’s transliteration (cf. Table 11.1 in Chapter 2)

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 205

To evaluate our system, we need data which can be regarded as realistic test
material, including a typical amount of unknown words, representing any new
document of text the system may be applied to. More realistically, we require any
news article of the type that the ATB1 corpus is composed of. To this purpose, we split
the complete part-of-speech tagged ATB1 corpus into eleven partitions of near-equal
size. The data is shuffled randomly at the article level. One of these eleven partitions
is set apart as a held-out set for later use, described further below. Subsequently, ten
pairs of training and test sets are generated using the ten remaining 1/11th partitions.
Each training set consists of a concatenation of nine of the ten partitions, while each
tenth partition is taken as the test set accompanying the training set. Repeating this
ten times, we thus create ten overlapping training sets that each consist of 9/11th
of the original ATB1 tagged corpus, and ten corresponding non-overlapping test sets
that each represent a 1/11 portion of the original ATB1 corpus. With this 10-fold
cross-validation setup, we use the same training-test set partitions for training both
the morphological analysis system as well as the part-of-speech tagger described in
the next section.

The eleventh held-out set, the remaining 1/11th portion of the shuffled ATB1
corpus, is used in both experimental sections to estimate the generalization perfor-
mance of both modules individually, and also to estimate the joint generalization
performance of the part-of-speech tagger and morphological analyzer together. We
use this single held-out split for methodological reasons; both the morphological
analyzer and the part-of-speech tagger are tested using a range of algorithmic
parameter values on the 10-fold partitionings (e.g., the value of k of the k-nearest
neighbor classifier). Since an estimated generalization performance of both modules
cannot be based on the optimized test performance in a range of experiments, a fully
unknown test set is needed - hence the eleventh set.

We conclude the section with some lexical statistics. Taken separately, each 1/11th
partition contains about 15,100 tokens and about 4,010 unique words. The ten 9/11th
training sets on average contain about 135,900 tokens, and about 15,100 unique
words. Importantly, the number of unknown word tokens in the ten test sets that do
not occur in their respective training sets is 977 on average, most of them occuring
once (76%): about 21% of all unique words (i.e., word types). Since most unknown
words have a low frequency, they only represent about 6.5% of all tokens in a test
set. On the difference between word tokens and word types, the following should
be noted. As will be argued in the subsequent sections, we define morphological
analysis as a task on word types, and part-of-speech tagging as a task on word tokens.
Henceforth, we will refer to “words” when we mean word tokens, and “word types”
when we mean word types.

11.4 Morphological Analysis

The goal of the memory-based morphological analysis system we describe here is
to generate no more and no less than all possible morphological analyses of an
unvoweled input word that has not occurred before in the analyzer’s training material.

206 Van den Bosch et al.

For all occurrences of a word we want to generate the same analyses; hence, this
is a task at the word type level. An analysis consists of a proper segmentation of
clitics, stems, and suffixes, brought to their canonical orthographic form, and with
the correct identification of the morpho-syntactic part-of-speech tag of each segment.

This means our system is literally a morphological analysis generator for word
types. To measure its ability to generate no more and no less than all possible
analyses, we employ the dual concepts of precision (the percentage of generated
analyses that is actually correct) and recall (the percentage of target analyses that the
analyzer was able to generate). Also, as said before, we focus solely on the capability
of the analyzer to generate analyses for word types it has not seen before, hence-
forth referred to as unknown words. We assume that a typical morphological analysis
system has a lexicon at hand, allowing the system to reproduce all morphological
analyses of known word types flawlessly. The problem is, of course, that typically
a non-trivial portion of all words in a text are unknown words. In our experiments
an unknown set of texts contains about 6.5% unknown words, or 24% of the word
types.

In this section we first describe how we created the data used in our experiments.
We then describe the experiments performed on these data, focusing our analyses on
the precision and recall scores on unknown words. We conclude the section with a
critical discussion of our results.

The experiments on training a morphological analysis system need an additional
processing step, namely the extraction of a lexicon from each training set. Each
lexicon contains for each word type in the training set all possible morphological
analyses. This is done as described above. The same procedure is followed for the
test set, except that here we ignore the words already in the training set; we focus
on unknown words only. Hence, each test set is converted to a small lexicon of all
unknown words that do not occur in the corresponding training set, listing for each
unknown word the one or more analyses which they actually get in the annotated
corpus. The goal of our morphological system is to generate precisely these
analyses.

11.4.1 Creating Instances for Morphological Analysis

The lexical entries generated by preprocessing both the training set and the test set
of each partition are converted to instances suitable to memory-based learning of
the mapping from words to their analyses (Van den Bosch and Daelemans, 1999).
Instances represent input (the orthographic word) and their corresponding output (the
morphological analysis). Since instances need to be of a fixed length and since they
need to be general enough to generalize from known to unknown words, instances
do not map entire words to entire analyses (which would render them case-specific),
but rather represent partial fixed-width snapshots of words mapping to subsequences
of the analysis. More specifically, the mapping is broken down into smaller letter-
by-letter classification tasks.

The input of each instance, consisting of a fixed number of features, is created
by sliding a window over the input word, resulting in one instance for each letter.

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 207

Using a 5–1–5 window yields 11 features, i.e. the input letter in focus, plus the five
preceding and five following letters. The equality mark (=) is used as a filler symbol
for positions beyond the beginning or end of the word. To illustrate this, consider the

seventh analysis of the word ktb �� �� � (the notion of writing) in Figure 11.2,
ktb/NOUN+K/CASE_INDEF_GEN+, representing a stem (ktb, noun = kutub
“books”), followed by a suffix (K) carrying the CASE_INDEF_GEN function. The K
suffix is not realized in the surface form. This three-letter word with this particular
analysis then results in the three instances displayed in Figure 11.3.

The class of the first instance, _-/NOUN-/NOUN, is a trigram (with the
character - as the delimiter), marking the fact that the letter k is the first letter of a
noun stem, and that the second letter t is also inside the same noun stem. The class
of the second instance, /NOUN-/NOUN-DK/NOUN/CASE_INDEF_GEN, signals
in the rightmost part of the trigram that the third letter, b, marks the end of the
noun stem and also carries the unrealized CASE_INDEF_GEN function; at the same
time, the DK code denotes that a K was deleted. Hence, to reconstruct the analysis,
a K needs to be reinserted. In general, the class codes making up the three parts
of the class trigram always encode the part-of-speech tag of the morpheme the
corresponding letter belongs to. Optionally this tag is preceded by a code repre-
senting the insertion, deletion, or replacement of one or more letters that are required
to generate the underlying forms of the morphemes in the analysis, coded by the
letters I, D, and R, respectively, followed by the letters themselves. Segmentation
is encoded implicitly; whenever a letter is associated to another part-of-speech
tag than its preceding neighbor, then a morpheme segmentation boundary exists
between them. Based on this complex information, a complete analysis can be
constructed.

In principle, unigram classes could already be used for this purpose. If predicted
correctly, an analysis would follow from the straightforward concatenation of
position-specific classes. However, we are faced with an average of 6.8 analyses per

word. The example word ktb �� �� � has ten analyses, as illustrated in Figure 11.2.
The first letter is associated within these ten analyses with five different unigram
classes: PV, PREP, PV_PASS, NOUN, and NOUN_PROP. The second letter is
linked to four tags: PV, NOUN, PV_PASS, and NOUN_PROP. Finally, the third
letter is associated with seven different tags. If predicted in isolation, the system
would have the task to pick the correct ten analyses from the maximal cartesian
product of 5 × 4 × 9 = 180 combined analyses. Due to their redundant overlap,
the trigrams offer the key to this search. Since the k-nearest distances classifier
is used, it will always produce all ambiguous analyses at the same distance.
Hence, all 5, 4, and 9 position-specific overlapping trigrams will be present in the

= = = = = k t b
= = = = k t b = = = = /NOUN-/NOUN-DK/NOUN/CASE_INDEF_GEN
= = = k t b = = = = = /NOUN–DK/NOUN/CASE_INDEF_GEN-_

= = = _-/NOUN-/NOUN

Fig. 11.3. Instances for the analyses of the word ktb �� ��� in Figure 11.2

208 Van den Bosch et al.

PV PV PV/PVSUFF_SUBJ:3MS

NOUN/CASE_DEF_NOM

NOUN/CASE_DEF_ACC

NOUN/CASE_DEF_GEN

DK/NOUN/CASE_INDEF_GEN

DN/NOUN/CASE_INDEF_NOM

PV_PASS/PVSUFF_SUBJ:3MSPV_PASS PV_PASS

NOUN

NOUN

endstart

NOUN

PREP

N_PROP N_PROP N_PROP

Fig. 11.4. The lattice formed by the overlapping trigrams generated by three consecutive
position-specific classifications, using all nearest neighbors at distance k = 1. The lattice

contains exactly the ten possible paths encoding the ten morphological analyses of ktb �� ���

ideal case that the classifier maps to the correct nearest neighbors. The trigrams
then span up a lattice, illustrated in Figure 11.4, in which exactly ten paths are
possible.

While this example is perfect, less complete lattices are possible when a trigram
does not match with one of the trigrams generated on the next letter. This will never
occur with known words, but as said, we focus on unknown words, and then it is quite
possible that a nearest-neighbor classification of the first letter of the word yields a
completely different trigram than the nearest-neighbor classification of the second
word. In these cases, paths in the lattice do not connect to the end node since they are
generated by a trigram classification that does not match on the right hand side, or do
not start in the start node since they are generated by a trigram that does not match on
the left hand side. We apply the hard constraint that a valid path, encoding a complete
analysis, must lead from the start node to the end node; hence, a mismatching trigram
generates at least one invalid path. This also means that completely mismatching
trigrams may lead to a lattice without valid paths, and no morphological analysis is
generated.

Figure 11.5 displays an actual lattice generated for the unknown word AHtfAl
�� 	
� ��� (celebration); eight of the 24 intermediate nodes are part of invalid paths.
Two of these paths do not connect to either the start or the end node; these are verbal

analyses generated while focusing on the fourth letter, f

� . Eventually, six paths

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 209

NOUN_PROP

start

NOUN_PROP NOUN_PROP NOUN_PROP NOUN_PROP NOUN_PROP

R{A/NOUN

R{A/ADJ

NOUN NOUN NOUN NOUN NOUN end

DN/NOUN

N/C_D_NOM

N/C_D_GEN

N/C_D_ACC

ADJ

PV

IV_PASS IV_PASS IV_PASS

PV PV

Fig. 11.5. The lattice formed by the overlapping trigrams generated by six consecutive
position-specific classifications, using the five k-nearest distances, generated for the unknown

word AHtfAl �� 	
���� (celebration). Grey nodes in the lattice represent nodes in invalid paths,
i.e. they are not used for the generation of analyses. “N/C_D” stands for NOUN/CASE_DEF

are valid, i.e., six analyses can be generated. Five of them are correct; the analysis
with DN/NOUN misses a CASE_INDEF_NOM tag, and there is also an analysis with
CASE_INDEF_GEN that cannot be generated from this lattice.

11.4.2 Evaluation

Performance is evaluated on the generated complete analyses (i.e. all valid paths in
a generated lattices), where an analysis is considered complete if all of its part-of-
speech and spelling change information is fully correct. Note again that the analyses
concerns word types; the morphological analyzer is trained on word types from
the training set, and is applied to unknown word types in the test set. Since we
are concerned with measuring the degree of undergeneration or overgeneration of
analysis generation, we quantitatively measure the performance of our system in
terms of precision, recall, and F-score (Van Rijsbergen, 1979). Precision (1), the
ratio of True Positives (TP) over the total number of true and False Positives (FP),
measures to what extent overgeneration of analyses occurs, whereas recall (2), the
ratio of true positives over the sum of true positives and False Negatives (FN),
measures the amount of undergeneration. The F-score (3), the harmonic average
between precison and recall, represents an overall fit between real and predicted
analyses.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

210 Van den Bosch et al.

F-score =
2 ∗ precision ∗ recall

precision + recall
(3)

11.4.3 Experiments

We performed 10-fold cross-validation experiments, measuring the precision and
recall on the generated analyses for the unknown words in the test sets. Figure 11.6
displays the precision-recall curve with different values of the k-parameter of the k-
nearest neighbor classifier. Starting at k = 1, when the nearest-neighbor classifier just
uses the nearest-distance instances in memory to generate the analysis, a precision
level of 0.70 is attained; this means that about seven out of ten generated analyses
are correct. The downside is that at k = 1, recall is only 0.29, meaning that the
system is only able to generate slightly under one in three of the analyses it should
generate. Recall can be increased to 0.42 with higher values of k, peaking at k = 10
(precision at that point is down to 0.40), but slightly decreasing with k > 10. The
peak F-score of 0.47 (the highest harmonic mean of precision and recall) is attained
at k = 3.

Clearly this performance is not impressive. We have to keep in mind, however,
that the task is not an easy one: the evaluation concerns unknown words that were
not in the learner’s training material.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Pr
ec

is
io

n

Recall

k = 1

k = 5

k = 30

F = 0.2 F = 0.4 F = 0.6

Fig. 11.6. Precision-recall curve on the generation of morphological analyses, with
increasing values of k, from 1 up to 30. The F-isolines represent the lines in the space with a
particular value of F in steps of 0.2

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 211

11.5 Integration with Part-of-speech Tagging

We employ MBT, a memory-based tagger-generator and tagger (Daelemans et al.,
1996) to produce a Part-of-Speech (POS) tagger based on the ATB1 corpus.3 We first
describe how we prepared the corpus data. We then describe how we generated the
tagger (a two-module tagger with a module for known words and one for unknown
words), and subsequently we report on the accuracies obtained on test material by
the generated tagger.

11.5.1 Data Preparation

While the morphological analyzer attempts to generate all possible analyses for a
given word, the goal of POS tagging is to select one of these analyses as the appro-
priate one given the context, as the annotators of the ATB1 corpus did manually
with the * marker. We developed a POS tagger that is trained to predict, for any
given word, a concatenation of the POS tags of its morphemes. This is essentially
the morphological analysis of a word in which segmentation information and letter
transformations are discarded. Figure 11.7 shows part of a sentence where for each
word the respective tag is given in the second column.

Concatenation is encoded by the delimiter +. Some words have no solution at all,
but annotator comments usually tag them as proper nouns – hence we gave all of
these words a NOUN_PROP tag.

Due to the concatenation of all morpho-syntactic information, the tag set is quite
substantial: 306 different tags occur in the ten folds extracted from the ATB1 corpus.
The five most frequent tags are PREP (13%), PUNC (10%), NOUN_PROP (7%),
CONJ (4%), and DET+NOUN+CASE_DEF_GEN (4%). About 10% of the tags occur

w CONJ
bdA VERB_PERFECT
styfn NOUN_PROP
knt NOUN_PROP
nHylA ADJ+NSUFF_MASC_SG_ACC_INDEF
jdA ADV
, PUNC
AlA ADV
>n FUNC_WORD
h PRON_3MS
Agtsl VERB_PERFECT
w CONJ
. . .

Fig. 11.7. Part of an ATB1 sentence with words (left) and their respective POS tags (right),
according to Buckwalter’s transliteration (cf. Table 11.1 in Chapter 2)

3 In our experiments we used the MBT software package, version 2 (Daelemans et al., 2003),
available from http://ilk.uvt.nl/.

212 Van den Bosch et al.

only once (and will therefore never be predicted correctly), and about 33% of all tags
occur less than 10 times.

We used the same partitionings of the ATB1 corpus as used to develop the
morphological analyzer; we also run a 10-fold cross validation experiment. Evalu-
ation differs, though: we measure the percentage of word tokens that are given the
correct tag, i.e. a straightforward accuracy score. We also split this score into one
on known words (already encountered in the training data) and unknown words (not
encountered in the training data, i.e., the same words as focused on when evalu-
ating the output of the morphological analysis system). Different from morphological
analysis, we cannot assume that we are able to perform perfectly on words that are
already known from a training set; in part-of-speech tagging, having seen a word in
training only means that the tagger knows some of the tags (hopefully, all of the tags)
that a word may have in different contexts. The tagger still needs to decide which tag
is appropriate for every word token.

11.5.2 Memory-based Tagger Generator

Memory-based tagging is based on the idea that words occurring in similar
contexts will have the same POS tag. A particular instantiation, MBT, was proposed
by Daelemans et al. (1996). MBT has three modules. First, it has a lexicon module
which stores for all words occurring in the provided training corpus their possible
POS tags (tags which occur below a certain threshold, default 5%, are ignored).
Second, it generates two distinct taggers; one for known words, and one for unknown
words. The known-word tagger can obviously benefit from the lexicon, just as a
morphological analyzer could. If a word has one unique tag in the training set, it will
likely have the same tag when reoccurring in test material. If a word has a handful of
possible tags, then the tagger’s task is reduced to selecting the appropriate one from
this limited list.

The input on which the known-word tagger bases its prediction for a given focus
word consists of the following set of features and parameter settings: (1) The word
itself, in a local context of the two preceding words and one subsequent word. Only
the 200 most frequent words are represented as themselves; other words are reduced
to a generic string – cf. (Daelemans et al., 2003) for details. (2) The possible tags of
the focus word, plus the possible tags of the next word, and the disambiguated tags
of two words to the left (which are available because the tagger operates from the
beginning to the end of the sentence). The known-words tagger is based on a k-NN
classifier with k = 15, the Modified Value Difference Metric (MVDM) distance
function, inverse-linear distance weighting, and GR feature weighting. These settings
were manually optimized on one of the test partitions.

The unknown-word tagger obviously does not know the possible tags the unknown
word can have. Instead, it attempts to derive as much information as possible from
the surface form of the word, by using its suffix and prefix letters as features. The
following set of features and parameters are used: (1) The three prefix letters and
the four suffix letters of the focus word (possibly encompassing the whole word);
(2) The possible tags of the next word, and the disambiguated tags of two words

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 213

to the left. The unknown-words tagger is based on a k-NN classifier with k = 19,
the Modified Value Difference Metric (MVDM) distance function, inverse-linear
distance weighting, and GR feature weighting – again, manually tuned on one test set.

11.5.3 Evaluating the Tagger

Table 11.1 lists the average accuracy (percentage of correctly tagged test words) of
MBT as measured in the 10-fold cross-validation experiment. The general accuracy,
91.5%, is reasonable; known words are tagged with an accuracy of 93.3%. The
unknown-words tagger has a lower accuracy than the known-words tagger, but it is
able to tag 66.4% of the 6.5% unknown test words correctly nevertheless.

11.5.4 Integrating Morphological Analysis and Part-of-speech Tagging

While morphological analysis and POS tagging are ends in their own right, the
usual function of the two modules in higher-level natural language processing or
text mining systems is that they jointly determine for each word in a text the appro-
priate single morpho-syntactic analysis. In our setup, this amounts to predicting the
solution that is preceded by “*” in the original ATB1 data. For this purpose, the
POS tag predicted by MBT, as described in the previous section, serves to select the
morphological analysis that is compatible with this tag.

As a concluding experiment, we trained MBT with optimized settings on the
complete concatenated ten folds of our original experiment, and tested the tagger
on the eleventh held-out partition. As can be expected with somewhat more training
data available, we observe a slightly higher overall tagging accuracy on the held-out
data of 92.0%, with 93.4% on known words, and 71.0% on the 672 unknown words
in this partition.

Subsequently we also trained a morphological analyzer on the full concatenated ten
folds, and tested it on the held-out set, with the k = 10 setting that yielded the highest
recall in the 10-fold cross-validation experiment. Recall is more important than F-
score or precision, since higher recall will generally improve the likelihood of a match
with the part-of-speech tags. Training the analyzer on the full ten folds and testing
on the held-out set yields a precision of 0.41, a recall of 0.43, and an F-score of 0.42.

Table 11.1. POS tagging accuracies on known
words, unknown words, and all test data (%
correctly tagged test words), with standard devia-
tions

Accuracy (% correct POS tags)

Known words Unknown words All words

93.3 66.4 91.5
±0.6 ±2.1 ±0.6

214 Van den Bosch et al.

Finally, we computed how well the generated morphological analyses for
unknown words could be integrated with the predicted tags for these words. We
first computed an upper bound score by comparing the generated analyses against
the gold standard annotated tags of all unknown words. It turned out that in 77.5%
of all unknown words one of the analyses generated actually matches with the
correct gold-standard part-of-speech tag. To illustrate this, consider the unknown
word yxfy, which is tagged as IV3MS+IV+IVSUFF_MOOD:I. The three analyses
generated for this word, reduced to only the concatenation of the part-of-speech
tags (leaving out letter transformations and the specific segmentation position
information) are

1. NOUN_PROP
2. IV3MS+IV_PASS
3. IV3MS+IV+IVSUFF_MOOD:I

Since one of the analyses matches the gold-standard tag, this word is counted
as one of the 69.1% of the unknown words of which the full analysis could be
generated, i.e., of which the solution marked with a * in the ATB1 corpus could be
identified.

The actual agreement with the predicted tag is 75.0%, which is also high; however,
the most relevant score is the intersection between the cases where both the tagger
is correct, and one of the morphological analyses matches with the tag. In 82.2% of
the cases in which the predicted tag is correct, a matching morphological analysis is
also generated. Measured at the level of all unknown words, including the words that
receive an incorrect tag, we find that of all unknown words in the held-out set 58.1%
are assigned both a correct tag and a completely correct and matching morphological
analysis, including segmentation and letter transformations.

11.6 Discussion and Conclusion

In this chapter we investigated the application of memory-based learning (k-nearest
neighbor classification) to morphological analysis and POS tagging of written
Arabic, using the ATB1 corpus as training and testing material. The morphological
analyzer, when optimized on recall, was shown to attain a precision of 0.41, a
recall of 0.43, and an F-score of 0.42 on unknown word types in held-out data
when predicting all aspects of the analysis: part-of-speech tags of the segments, the
positions of the segmentations, and all letter transformations between the surface
form and the analysis. The POS tagger, in turn, attained an accuracy of 66.4% on
unknown words, and 91.5% on all words (including known words) in held-out data.
A combination of the two which selects one full morpho-syntactic analysis out of
the generated analyses, matching the part-of-speech predicted by the tagger, yields a
joint accuracy of 58.1% fully correctly predicted tags and corresponding full analysis
for unknown words.

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 215

Extrapolating this number to a score on all words in a text, i.e. including the known
words, we assume (safely) that our training-set-based lexicon always produces a
matching analysis for all known words, for which we have observed the 93.3%
accuracy of the part-of-speech tagger. Since known words make up 93.5% of test
data, on average, we estimate that we can generate correct tags with complete
morphological analyses for (0.935× 0.933)+ (0.065× 0.581) = 91.0% of all words
in unseen text.

The application of machine learning methods to Arabic morphology and POS
tagging appears to be somewhat limited and recent, compared to the vast descriptive
and rule-based literature particularly on morphology (Beesley, 1990; Beesley, 1998;
Kay, 1987; Kiraz, 1994; Soudi, 2002). We are not aware of any machine-learning
approach to Arabic morphology. POS tagging, on the other hand, seems to have
attracted some focus. Freeman (2001) describes initial work in developing a POS
tagger based on transformational error-driven learning (i.e. the Brill tagger), but does
not provide performance analyses. Khoja (2001) reports a 90% accurate morpho-
syntactic statistical tagger that uses the Viterbi algorithm to select a maximally-likely
part-of-speech tag sequence over a sentence. In Chapter 9 of this book, Diab et al.
describe a part-of-speech tagger based on support vector machines that is trained on
tokenized data, reporting a tagging accuracy of 95.5%.

The use of trigrams in the output space has been proposed by Van den Bosch
and Daelemans (2006), and demonstrated on morphological analysis of Dutch and
English words by Van den Bosch, Schuurman, and Vandeghinste (2006). In this
chapter, trigram classes are used differently, however; here, the problem is not only
in optimizing the class label prediction, but also in limiting the overgeneration of
analyses.

We make two final remarks. First, memory-based morphological analysis of
Arabic words is feasible, but its main limitation is its inability to recognize the stem
of an unknown word, and consequently the appropriate vowel insertions. Also, its
guess on the possible POS tags of an unknown word turned out to be less useful
in our tagging approach than using the raw prefix and suffix letters of the words
themselves, as witnessed by the scores on unknown words of the POS subtagger
specialized in unknown words. Second, memory-based POS tagging of written
Arabic text appears to be successful, because performance is comparable to that
for other languages. The POS tagging task as we define it, is deliberately separated
from the problem of vowel insertion, which is in effect the problem of stem identi-
fication. We therefore consider the automatic identification of stems as a component
of full morpho-syntactic analysis of written Arabic an important issue for future
research.

Acknowledgements

The work of the first two authors is funded by the Netherlands Organisation for
Scientific Research (NWO). The authors wish to thank Walter Daelemans and Sander
Canisius for discussions and feedback.

216 Van den Bosch et al.

References

Aha, D. W., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. Machine
Learning, 6:37–66.

Beesley, K. 1990. Finite-state description of Arabic morphology. In Proceedings of the
Second Cambridge Conference: Bilingual Computing in Arabic and English, page no
pagination.

Beesley, K. 1998. Consonant spreading in Arabic stems. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, Montréal, Quebec, Canada, pp. 117–123.

Buckwalter, T. 2002. Buckwalter Arabic morphological analyzer version 1.0. Technical
Report LDC2002L49, Linguistic Data Consortium. available from: http://
www.ldc.upenn.edu/.

Cost, S. and S. Salzberg. 1993. A weighted nearest neighbour algorithm for learning with
symbolic features. Machine Learning, 10:57–78.

Cover, T. M. and P. E. Hart. 1967. Nearest neighbor pattern classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory, 13:21–27.

Daelemans, W., A. Van den Bosch, and J. Zavrel. 1999. Forgetting exceptions is harmful
in language learning. Machine Learning, Special issue on Natural Language Learning,
34:11–41.

Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996. MBT: A memory-based part of speech
tagger generator. In E. Ejerhed and I. Dagan, editors, Proceedings of the Fourth Workshop
on Very Large Corpora, pp. 14–27. ACL SIGDAT.

Daelemans, W., J. Zavrel, A. Van den Bosch, and K. Van der Sloot. 2003. MBT: Memory
based tagger, version 2.0, reference guide. Technical Report ILK 03-13, ILK Research
Group, Tilburg University.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 2004. TiMBL: Tilburg
Memory Based Learner, version 5.1.0, reference guide. Technical Report ILK 04-02, ILK
Research Group, Tilburg University.

Diab, M., K. Hacioglu, and D. Jurafsky. 2004. Automatic tagging of arabic text: From
raw text to base phrase chunks. In Proceedings of HLT-NAACL 2004, pp. 149–152,
Boston, MA.

Freeman, A. 2001. Brill’s POS tagger and a morphology parser for Arabic. In ACL/EACL-
2001 Workshop on Arabic Language Processing: Status and Prospects, Toulouse, France.
Available on: http://www.elsnet.org/acl2001-arabic.html.

Kay, M. 1987. Non-concatenative finite-state morphology. In Proceedings of the third
Conference of the European Chapter of the Association for Computational Linguistics,
pp. 2–10, Copenhagen, Denmark.

Khoja, S. 2001. APT: Arabic part-of-speech tagger. In Proceedings of the Student Workshop
at NAACL-2001, pp. 20–25.

Kiraz, G. 1994. Multi-tape two-level morphology: A case study in semitic non-linear
morphology. In Proceedings of COLING’94, volume 1, pp. 180–186.

Soudi, A. 2002. A Computational Lexeme-based Treatment of Arabic Morphology. Ph.D.
thesis, Mohamed V University (Morocco) and Carnegie Mellon University (USA).

Stanfill, C. and D. Waltz. 1986. Toward memory-based reasoning. Communications of the
ACM, 29(12):1213–1228, December.

Van den Bosch, A. and W. Daelemans. 1999. Memory-based morphological analysis. In
Proceedings of the 37th Annual Meeting of the ACL, pp. 285–292, San Francisco, CA.
Morgan Kaufmann.

Memory-based Morphological Analysis and Part-of-speech Tagging of Arabic 217

Van den Bosch, A. and W. Daelemans. 2006. Improving sequence segmentation learning
by predicting trigrams. In Proceedings of the Ninth Conference on Natural Language
Learning, CoNLL-2005, pp. 80–87, Ann Arbor, MI.

Van den Bosch, A., I. Schuurman, and V. Vandeghinste. 2006. Transferring PoS-tagging and
lemmatization tools from spoken to written Dutch corpus development. In Proceedings of
the Fifth International Conference on Language Resources and Evaluation, LREC-2006,
Trento, Italy.

Van Rijsbergen, C. J. 1979. Information Retrieval. Buttersworth, London.
Zavrel, J. and W. Daelemans. 1999. Recent advances in memory-based part-of-speech tagging.

In VI Simposio Internacional de Comunicacion Social, pp. 590–597.

PART IV

Integration of Arabic Morphology in Larger Applications

12

Light Stemming for Arabic Information Retrieval

Leah S. Larkey , Lisa Ballesteros and Margaret E. Connell
Chiliad Publishing, 44 Belchertown Rd, Amherst, MA 01002
LarkeyLeah@gmail.com
Computer Science Dept., Mt. Holyoke College, South Hadley, MA 01075
lballest@mtholyoke.edu
Univ. of Massachusetts, Dept. of Computer Science, Amherst, MA 01003
connell@cs.umass.edu

Abstract: Computational Morphology is an urgent problem for Arabic Natural Language Process-
ing, because Arabic is a highly inflected language. We have found, however, that a full
solution to this problem is not required for effective information retrieval. Light stem-
ming allows remarkably good information retrieval without providing correct morpho-
logical analyses. We developed several light stemmers for Arabic, and assessed their ef-
fectiveness for information retrieval using standard TREC data. We have also compared
light stemming with several stemmers based on morphological analysis. The light
stemmer, light10, outperformed the other approaches. It has been included in the Lemur
toolkit, and is becoming widely used Arabic information retrieval

12.1 Introduction

The central problem of Information Retrieval (IR) is to find documents that satisfy
a user’s information need, usually expressed in the form of a query. This active re-
search area has seen great progress in recent decades, which everyone has experi-
enced in searching the internet. Initially, most IR research was carried out in
English and fueled by the annual Text Retrieval Conferences (TREC) sponsored
by NIST (the National Institute of Standards and Technology). NIST has accumu-
lated large amounts of standard data (text collections, queries, and relevance
judgments) so that IR researchers can compare their techniques on common data
sets. More recently, IR research involving other languages has flourished. TREC
now includes multilingual data and in recent years, other organizations sponsor
similar annual evaluations for European languages (CLEF) and Asian languages
(NTCIR) (Chinese, Japanese, and Korean). Arabic began to be included in the
TREC cross-lingual track in 2001, and in the TDT (topic detection and tracking)

1 2 3

evaluations in 2001 [47]. The availability of standard Arabic data sets from the
NIST and the Linguistic Data Consortium (LDC) has in turn spurred a huge

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology,
C© 2007 Springer.

1

2

3

221

–221 243 .

acceleration in progress in information retrieval and other natural language proc-
essing applications involving Arabic.

Any discussion of multilingual retrieval requires a distinction between mono-
lingual retrieval in multiple languages, and cross-lingual or cross-language re-
trieval. In monolingual retrieval, queries are issued in the same language as the
documents in the collection being searched. In cross-lingual retrieval, queries are
issued in a different language than the documents in the collection. A central prob-
lem in both monolingual and cross-lingual streams of IR research is the vocabu-
lary mismatch problem. The same information need can be expressed using differ-
ent terminology (the disease bilharzia is also called schistosomiasis), or a key
term can have different spellings (e.g. theater versus theatre), or may be inflected
differently in the query than in the relevant documents. We discuss in Section 12.1.1
the kinds of variability that lead to a particularly acute vocabulary mismatch prob-
lem in Arabic information retrieval. Morphological variation in IR has generally
been handled by stemming, an unsophisticated but effective approach to morphol-
ogy which we discuss in Section 12.1.2.

12.1.1 Arabic Morphology and Orthography

The morphological and orthographic complexity of Arabic (see Chapter 3 of this
volume) makes it particularly difficult to develop natural language processing ap-
plications for Arabic information retrieval.

Distributional analyses of Arabic newspaper text show empirically that there is
more lexical variability in Arabic than in the European languages for which most
IR and NLP work has been performed. Arabic text has more words occurring only
once and more distinct words than English text samples of comparable size.1 The
token to type ratio (mean number of occurrences over all distinct words in the
sample) is smaller for Arabic texts than for comparably sized English texts [28].

For information retrieval, this abundance of forms, lexical variability, and or-
thographic variability, all result in a greater likelihood of mismatch between the
form of a word in a query and the forms found in documents relevant to the query.
In cross-language retrieval there is an additional serious mismatch problem be-
tween query terms and the forms found in the bilingual dictionaries that are used
in cross-language retrieval.

To deal with this variability, most morphological analyzers attempt to insert
missing short vowels and other diacritics. However for information retrieval, the
opposite approach is more typical. Text is normalized by removing many diacrit-
ics and short vowels.

1 We use the term word in simple sense of text segmented at white space or punctuation,

without any morphological analysis.

222 Larkey et al.

12.1.2 Stemming in Information Retrieval

Stemming is another one of many tools besides normalization that is used in in-
formation retrieval to combat this vocabulary mismatch problem. Stemmers
equate or conflate certain variant forms of the same word like (paper, papers) and
(fold, folds, folded, folding…). In this work, we use the term stemming to refer to
any process which conflates related forms or groups forms into equivalence
classes, including but not restricted to suffix stripping. In this section we review
general approaches to stemming over many languages. We focus on Arabic in the
next section. Most approaches fall into two classes: affix removal and statistical
stemming.

12.1.2.1 Affix Removal

In English and many other western European languages, stemming is primarily a
process of suffix removal [41][50]. Such stemmers do not conflate irregular forms
such as (goose, geese) and (swim, swam). These stemmers are generally tailored
for each specific language. Their design requires some linguistic expertise in the
language and an understanding of the needs of information retrieval. Stemmers
have been developed for a wide range of languages including Malay [54], Latin
[29], Indonesian [8], Swedish [12], Dutch [35], German [44], French [45], Slovene
[49], and Turkish [21]. The effectiveness of stemming across languages is varied
and influenced by many factors. A reasonable summary is that stemming doesn’t
hurt retrieval; it either makes little difference or it improves effectiveness by a
small amount [31]. Stemming is considered to aid recall more than precision [35].
That is, stemming allows a search engine to find more relevant documents, but
may not improve its ability to rank the best documents at the top of the list. Stem-
ming appears to have a larger positive effect when queries and/or documents are
short [36], and when the language is highly inflected [48][49], suggesting that
stemming should improve Arabic information retrieval.

12.1.2.2 Statistical Techniques

Statistical methods can provide a more language-independent approach to confla-
tion. Related words can be grouped based on various string-similarity measures.
Such approaches often involve n-grams. Equivalence classes can be formed from
words that share word-initial letter n-grams or a threshold proportion of n-grams
throughout the word, or by refining these classes with clustering techniques. This
kind of statistical stemming has been shown to be effective for many languages,
including English, Turkish, and Malay [21][23][24][46].

Statistical techniques have widely been applied to automatic morphological
analysis in computational linguistics [9][17][22][26][27][30][32][34]. For exam-
ple, Goldsmith finds the best set of frequently occurring stems and suffixes using
an information theoretic measure [26]. Oard et al. consider the most frequently oc-
curring word-final n-grams (1, 2, 3, and 4-grams) to be suffixes [46].

Light Stemming for Arabic Information Retrieval 223

Stem classes can also be built or refined using co-occurrence analysis, which
Xu and Croft proposed as a promising language-independent approach to stem-

stem classes in which unrelated forms are erroneously conflated. Most stemmers
fall between these two extremes and make both kinds of errors. Xu and Croft em-
ploy a corpus analysis approach which is particularly suited to splitting up stem
classes created by strong stemmers. The stem-classes are reclustered based on a
co-occurrence measure, which is language independent in that it can be applied to
any set of stem classes. Xu and Croft applied their technique to effectively stem
English and Spanish and obtained two important results. First, one can refine an
already good stemmer by co-occurrence analysis and improve retrieval effective-
ness. Second, one can start with a strong crude stemmer like an n-gram stemmer
and use co-occurrence analysis to yield stem classes that work as well as a sophis-
ticated stemmer. They demonstrated an improvement in retrieval effectiveness for
English and Spanish after clustering conventional and n-gram based stem classes.

12.1.3 Stemming and Morphological Analysis in Arabic
for Information Retrieval

The factors described in Section 12.1.1 make Arabic very difficult to stem. The issue

plication that has given rise to additional approaches to stemming for Arabic be-
sides affix removal and the statistical stemming approaches described above.
Other approaches include manual dictionary construction, morphological analysis,
and new statistical methods involving parallel corpora.

12.1.3.1 Manual Construction of Dictionaries

Early work on Arabic stemming used manually constructed dictionaries. Al-
Kharashi and Evens worked with small text collections, for which they manually
built dictionaries of roots and stems for each word to be indexed [4]. This approach
is obviously impractical for realistic sized corpora.

12.1.3.2 Affix Removal

The affix removal approach is generally called light stemming when applied to
Arabic, referring to a process of stripping off a small set of prefixes and/or suf-
fixes, without trying to deal with infixes, or recognize patterns and find roots.
Light stemming was used for Arabic by some authors without details in work prior
to ours [3][18]. No explicit lists of strippable prefixes and/or suffixes or algorithms

is research. Our light stemmer, light10, strips
off initial (w=and), some prepositions, definite articles (

). (More detail can be found

ming [55]. Stemmers make two kinds of errors. Weak stemmers fail to conflate
related forms that should be grouped together. Strong stemmers tend to form larger

of whether roots or stems are the desired level of analysis for IR has been one com-

had been published at the time we did th

) and suffixes (

224 Larkey et al.

in Section 12.2.2.) It was designed to strip off strings that were frequently found as
prefixes or suffixes, but infrequently found at the beginning or ending of stems. It
was not intended to be exhaustive. Darwish introduced the Al-Stem light stemmer
at TREC 2002 [16], and demonstrated that it was less effective than light10. Chen
and Gey [13] introduced a light stemmer similar to light10, but that removed more
prefixes and suffixes. It was shown to be more effective than Al-Stem, but was not
directly compared to light10.

Although light stemming can correctly conflate many variants of words into
large stem classes, it can fail to conflate other forms that should go together. For
example, broken (irregular) plurals for nouns and adjectives do not get conflated
with their singular forms, and past tense verbs do not get conflated with their pre-
sent tense forms, because they retain some affixes and internal differences. In spite
of the simplicity and shortcomings of light stemming, more sophisticated ap-
proaches have not proven to be more effective for information retrieval.

12.1.3.3 Statistical Stemming

Although n-gram systems have been used for many different languages, one
would not expect them to perform well on infixing languages like Arabic. How-
ever, Mayfield et al. have developed a system that combines word-based and 6-
gram based retrieval, which performs remarkably well for many languages [43]

De Roeck and Al-Fares [18] used clustering on Arabic words to find classes shar-
ing the same root. Their clustering was based on morphological similarity, using a
string similarity metric tailored to Arabic morphology, which was applied after
removing “a small number of obvious affixes.” They evaluated the technique by
comparing the derived clusters to “correct” classes. They did not assess the per-
formance in an information retrieval context.

We applied Xu and Croft’s co-ocurrence method to Arabic [55]. We assumed that
initial n-gram based stem classes were probably not the right starting point for
languages like Arabic. However, co-occurrence or other clustering techniques can
be applied to Arabic without using n-grams. Instead, we formed classes of words
that mapped onto the same string if vowels were removed, and used co-occurrence
measures to split these classes further. The co-occurrence method did not work as
well for Arabic as it did for English and Spanish. It did not produce a stemmer that
worked as well as light10. We found that while one could improve a mediocre
stemmer with this technique, its effectiveness was still far from the level attained
by a high-quality stemmer like light10. And the light10 stemmer could not be fur-
ther improved by co-occurrence analyses. Perhaps this is because of the big stem-
ming effect in Arabic compared to English or Spanish.

A promising new class of statistical stemmers makes use of parallel corpora.
Chen and Gey [13] used a parallel English-Arabic corpus and an English stemmer to
cluster Arabic words into stem classes based on their mappings to English stem
classes. Rogati, McCarley, and Yang [51] use a statistical machine translation approach

including Arabic [42].

Light Stemming for Arabic Information Retrieval 225

nsistent differences between roots and

that learns to split words into prefix, stem, and suffix by training on a small
hand annotated training set and using a parallel corpus These approaches work
well considering how automated they are, but they are not as effective in an IR
evaluation as a good light stemmer.

12.1.3.4 Morphological Analysis

It is often assumed that stemming is just a quick and dirty way to approximate
morphological analysis, and that the best way to stem would be to perform a cor-
rect morphological analysis and then use some valid morphological unit for index-
ing and retrieval. For Arabic, this unit has often been thought to be the root. Sev-

In our earlier research we evaluated a simple morphological analyzer from
Khoja and Garside [33], which first peels away layers of prefixes and suffixes,
then checks a list of patterns and roots to determine whether the remainder could
be a known root with a known pattern applied. If so, it returns the root. Otherwise,
it returns the original word, unmodified. This system also removes terms that are
found on a list of 168 Arabic stop words. It was almost as effective as light stem-
ming, but tended to fail on foreign words, which it left unchanged rather than re-
moving definite articles and obvious affixes. Taghva, Elkhoury, and Coombs [53]
have developed a system that finds Arabic roots somewhat like Khoja’s approach,
but without using a root dictionary or lexicon, and which performs as well as a
light stemmer.

Tim Buckwalter’s morphological analyzer [10] is different from the others in
that it returns stems rather than roots. It is based on a set of lexicons of Arabic
stems, prefixes, and suffixes, with truth tables indicating their legal combinations.
The BBN group used this table-based stemmer in TREC-2001 [56], but did not
compare it with light stemming. The Buckwalter stemmer is now available from
LDC [39], and is evaluated as a stemmer in the present study. Finally, Diab,

tion, part-of-speech assignment, and
phrase chunking, automatically using SVM (support vector machines), a machine
learning categorization tool. Their tools are trained on a sample of the Arabic Tree
Bank [40], which is a portion of the AFP database which has been analyzed by the
Buckwalter morphological analyzer, and hand-corrected. They claim above 99%
accuracy on tokenization, and 95.49% accuracy on POS tagging. We derive some
stemmers from these tools, as part of the present study.

Early published comparisons of stems versus roots for information retrieval
have claimed that roots are superior to stems, based on small, nonstandard test sets
[1][4]. Recent work at TREC has found no co

Hacioglu, and Jurafsky [20] developed a set of tools for Arabic morphological
analyses which learn tokenization, lemmatiza

eral morphological analyzers have been developed for Arabic [2][6][7][15]
[33][19] but few have received a standard IR evaluation Most such morphological
analyzers find the root, or any number of possible roots for each word. A morpho-
logical analyzer called Sebawai, developed by Kareem Darwish [14] was used by
some of the TREC participants in 2001 [15][33], but it was not directly compared
with light stemming.

226 Larkey et al.

stems [15]. We found a small increase in effectiveness when we combined roots and
stems [38]. However, we feel that roots versus stems is not the most interesting ques-
tion to investigate. As this book makes clear, morphological analysis of Arabic is
now an active research area, and many systems are being developed to return more
complete analyses of Arabic words. A more interesting question is how to use
morphological analysis to aid information retrieval, and in particular, to aid stem-
ming. The new work in this chapter attempts to use morphological analysis to get
to something better than a root for indexing.

The present study expands upon work we published at SIGIR in 2002 [37]. At that
time, we developed several light stemmers, compared their effectiveness on an IR
task with each other and with that of a morphological analyzer available at that
time. We also experimented with a co-occurrence approach to improving stem-
ming. The present research expands that study in several ways. First, the light
stemmer we eventually settled upon (and used in TREC 2002) was slightly differ-
ent from the best one reported at SIGIR. We compare it with the other stemmers
here. Second, we use 75 queries from TREC 2001 and TREC 2002 to evaluate
stemmers here, providing results that are more reliable than the 25 queries from
TREC 2001 used in the previous study. Third, we evaluate stemming approaches
based on two morphological analyzers that were not available when the earlier
study was carried out.

12.2 Review of 2002 Stemming Experiments

In this section we review the light stemming experiments from the SIGIR article,
but include in addition the modified stemmer, light10. This set of experiments was
carried out using the TREC 2001 corpus and queries.

12.2.1 Experimental Method

The TREC-2001 Arabic corpus, also called the AFP_ARB corpus, consists of
383,872 newspaper articles in Arabic from Agence France Presse. This fills up
almost a gigabyte in UTF-8 encoding as distributed by the Linguistic Data Con-
sortium. There were 25 topics with relevance judgments, available in Arabic,
French, and English, with Title, Description, and Narrative fields [25]. We used the
Arabic titles and descriptions as queries in monolingual experiments, and the Eng-
lish titles and descriptions in cross-language experiments.

Corpus and queries were converted to CP1256 encoding and indexed using an
in-house version of the INQUERY retrieval engine [11]. Arabic strings were treated
as a simple string of bytes, regardless of how they would be rendered on the
screen. Text was broken up into words at any white space or punctuation charac-
ters, including Arabic punctuation. Stop words were removed, using a stop word

Light Stemming for Arabic Information Retrieval 227

list from Khoja [33]. Words of one-byte length (in CP1256 encoding) were not in-
dexed. The experiments reported here used INQUERY for retrieval.

Except for the raw condition, in which no normalization or stemming was used,
the corpus and queries were normalized according to the following steps:

 Remove punctuation
 Remove diacritics (primarily weak vowels). Some entries contained weak

vowels, in particular, the dictionaries used in cross-language experiments.
Removal made everything consistent.

 Remove non letters
 Replace , , and with
 Replace final with
 Replace final with

For the normalized conditions and the stemming conditions, we normalized and
stemmed all tokens before indexing the corpus, and normalized and stemmed the
queries with the same stemmer for retrieval. Arabic queries were expanded using
the technique of local context analysis, adding 50 terms from the top-10 docu-
ments, as described in detail in [38]. Expansion was performed in order to show the
ultimate level of performance attainable using the stemmers in the context of our
whole system.

12.2.2 Light Stemmers

Our guiding principle in designing the light stemmers was heuristic. A light
stemmer is not dictionary driven, so it cannot apply a criterion that an affix can be
removed only if what remains is an existing Arabic word. In fact, we suspect that
part of the success of such stemmers is that they can blindly work on words even
if they are not found in a word list. The attempt was to try to remove strings that
would be found reliably as affixes far more often than they would be found as the
beginning or end of an Arabic stem without affixes. We also benefited from dis-
cussions with some colleagues at TREC-2001, particularly M. Aljlayl. We tried
several versions of light stemming, all of which followed the same steps:

1. Remove (“and”) for light2, light3, and light8, and light10 if the remainder of
the word is 3 or more characters long. Although it is important to remove , it
is also problematic, because many common Arabic words begin with this
character, hence the stricter length criterion here than for the definite articles.

2. Remove any of the definite articles if this leaves 2 or more characters.
3. Go through the list of suffixes once in the (right to left) order indicated in

Table 12.1, removing any that are found at the end of the word, if this leaves
2 or more characters.

228 Larkey et al.

Table 12.1. Strings removed by light stemming

 Remove prefixes Remove Suffixes
Light1 none
Light2 none
Light3 “
Light8 “
Light10 “

The strings to be removed are listed in Table 12.1. The “prefixes” are actually
prepositions, definite articles and a conjunction. The light stemmers do not re-
move any strings that would be considered Arabic prefixes.

12.2.3 Results of Monolingual Stemmer Comparisons

Figure 12.1 shows precision at 11 recall points for the primary stemmers tested.
Raw means no normalization or stemming. Norm refers to normalization with no
stemming. Light1, Light2, Light3, Light8, and Light10 refer to the light stemmers
described above.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10
Light8
Light3
Light2
Light1
Norm
Raw

Fig. 12.1. Monolingual 11 point precision for basic stemmers, unexpanded queries

Table 12.2 shows uninterpolated average precision for the basic stemmers. For
raw, normalized, and light stemming conditions performance is better with each
successive increment in degree of stemming. Each of these increments is statisti-
cally significant except light10 versus light8.2 As these results indicate, light
stemming is remarkably effective. Light10 has become widely used, and has been
included in the Lemur toolkit, a set of software tools for research in language
modeling and information retrieval [5].

2 All significance tests were conducted using the Wilcoxon test 0 with a criterion of

p<.05 for significance.

Light Stemming for Arabic Information Retrieval 229

12.2.4 Comparison with Morphological Analysis

The Khoja stemmer described in 12.1.3 was used to find roots for indexing and re-
trieval. Average precision for the Khoja stemmer is .341, significantly worse than
light10 (p<.01). A comparison of this approach with a raw, normalized, and light2
and light10 stemmers can be seen in Figure 12.2. A similar experiment with query
expansion showed similar results, seen in Figure 12.3. In Figure 12.3, Raw is the

raw condition with unexpanded queries, and RawExp refers to the raw condi-
tion with query expansion. As expected, average precision is higher with ex-
panded queries, but the same pattern of results holds. In particular, the light10
stemmer is significantly more effective than the khoja stemmer.

12.2.5 Cross-language Retrieval

The Khoja morphological analyzer was also compared with the stemmers in a cross-
language retrieval experiment, for generality. The cross-language experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10

Khoja

Light2

Norm

Raw

Fig. 12.2. Khoja morphological analyzer versus light stemming, unexpanded queries

original

Table 12.2. Monolingual average precision for basic
stemmers, unexpanded queries

Stemmer Average Precision Percent Change
raw .196
norm .241 +22.9
light1 .273 +39.3
light2 .291 +48.3
light3 .317 +61.8
light8 .390 +98.7
light10 .413 +100.1

230 Larkey et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10

Khoja

Norm

Raw Exp

Raw

Fig. 12.3. Khoja morphological analyzer versus light stemming, expanded queries

reported here were carried out using the 25 English TREC-2001 queries and the
same Arabic AFP_ARB corpus used for the monolingual experiments. Our ap-
proach was the common dictionary-based approach, in which each English query
word was looked up in a bilingual dictionary. All the Arabic translations for that
word were gathered inside an INQUERY #syn (synonym) operator. For an Arabic-
English dictionary, we used a lexicon collected from several online English-Arabic

Figure 12.4 shows precision on unexpanded queries for cross-language retrieval at
11 recall points for raw, norm (normalization and stop word removal), light10
(light10 stemming with stop word removal), and khoja stemmers. Figure 12.5 shows
the same information for retrieval with query expansion.

Table 12.3 shows uninterpolated average precision for unexpanded and ex-
panded queries.

The cross-language results are somewhat different from the monolingual results
in comparing the light stemmers with the Khoja morphological analyzer. Raw re-
trieval without any normalization or stemming is far worse for cross-language

is is probably because many of the Ara-
bic words occurred in vocalized form (with diacritics) in the online dictionary
we used for cross-language retrieval. Without normalization these dictionary en-
tries do not match their counterparts in the corpus. Other differences from the
monolingual case are that the light10 stemmer is far better than the root stem-
mer, khoja, which is no better than normalization for cross-language retrieval. For

and Arabic-English resources on the web, described more completely in [38].
Query expansion was carried out in conjunction with stemming. When English
queries were expanded, 5 terms were added from the top-10 documents. When
Arabic queries were expanded, 50 terms were added from the top-10 documents,
as described in [38].

retrieval than for monolingual retrieval. Th

Light Stemming for Arabic Information Retrieval 231

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10

Khoja

Norm

Raw

Fig. 12.4. Cross-Language 11 point precision for unexpanded queries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10

Khoja

Norm

Raw

Fig. 12.5. Cross-language 11 point precision for expanded queries

Table 12.3. Cross-language average precision different stemmers, unexpanded

Stemmer Norm
Average Precision .113 .262 .260 .384
Percent Change +133 +130 +240
With English Query Expansion
Average Precision .139 .306 .308 .425
Percent Change +120 +121 +206
With English and Arabic Query Expansion
Average Precision .163 .336 .321 .447
Percent Change +106 +97 +174

Raw Khoja Light10

and expanded queries

232 Larkey et al.

cross-lingual retrieval, roots are probably even less appropriate as look-up units
than they are for monolingual retrieval. In cross-lingual retrieval based on diction-
ary look-up, if we look up the root for each query word, we get far too many trans-
lations, and most of them are incorrect.

12.2.6 Discussion

Although stemming is difficult in a language with complex morphology like Ara-
bic, it is particularly important. For monolingual retrieval, we saw around 100%
increase in average precision from raw retrieval to the best stemmer. The best
stemmer in our experiments, light10, was very simple and did not try to find roots
or take into account most of Arabic morphology. It is probably not essential for
the stemmer to yield the correct forms, whether stems or roots. It is sufficient for it
to group together most of the forms that belong together.

12.3 New Studies of Stemming via Morphological Analysis

Since 2002, more morphological analysis tools have become available. It is also
clear that there are probably better ways to use morphological analysis in stem-
ming than simply to use the roots for indexing. In this part of the chapter, we

rphological analyzer, and the Diab to-
kenizer and part of speech tagger to aid the stemming process.

12.3.1 Buckwalter Morphological Analyzer

Tim Buckwalter’s morphological analyzer has been made available through the Lin-
guistic Data Consortium (LDC) [39]. It takes as input Arabic words with or without
short vowels and performs morphological analysis and POS tagging using three dic-
tionaries and three compatibility tables. The three dictionaries list possible prefixes,
Arabic stems, and possible suffixes. The three compatibility tables indicate (1) com-
patible prefix/stem category pairs, (2) compatible prefix/suffix category pairs, and
(3) compatible stem/suffix category pairs. The analyzer performs tokenization, word
segmentation, dictionary lookup, compatibility checks, and lists all the possible
analyses of each word. For example, for the word (AlšmAly), we get the
following output according to Buckwalter’s transliteration:

INPUT STRING:
LOOK-UP WORD: Al$mAlyp
 SOLUTION 1: (Al$amAliy~ap) [$amAliy~_1] [$amAliy~]Al/DET+$amAliy~/ADJ+ap/NSUFF_FEM_SG

 (GLOSS): the + north/northern + [fem.sg.]
 SOLUTION 2: (Al$imAliy~ap) [$imAliy~_1] [$imAliy~] Al/DET+$imAliy~/ADJ+ap/NSUFF_FEM_SG

 (GLOSS): the + leftist + [fem.sg.]

report research on using the Buckwalter mo

Light Stemming for Arabic Information Retrieval 233

Note that the second field in square brackets in each solution line is one we added
to the morphological analyzer program, AraMorph.pl, to give the stem in a form
that is more useful to us. The example illustrates some interesting properties of the
analyzer. Although much of our corpus does not include short vowels, the analy-
ses have short vowels. In fact, the stems yielded by the two different solutions
above differ only in the short vowels.

It is straightforward to use this morphological analysis for stemming, because it
analyzes tokens into up to three parts: prefix, stem, and suffix. To stem we simply
remove all prefixes and suffix and use the remaining stems, normalized to be
comparable to our light stemmers. A potential problem is in dealing with multiple
different analyses for the same word. However, once short vowels were removed
and other normalization was performed, many of the different analyses actually
yielded the same stem. In the example above, the two different stems, šamAliy~
and šimAliy~, both become the same stem, šmAly, after normalization. Ulti-
mately, the vast majority of words had unique stems. In one sample of 18,035
words, 14,878 (82%) were found to have exactly one solution, 2322 (16%) had
more than one solution, and 829 (less than 1%) had no solution.

In particular, the following steps were performed on each file of the AFP_ARB
corpus:

To address the problem of what to do if the morphological analyzer gave more
than one possible stem, Xu, Fraser, and Weischedel [57] implemented a system that
used both analyses when a word had more than one solution, but found the results
were not significantly different from one that left words with multiple analyses
unstemmed. We decided to implement a second version of a Buckwalter-based
stemmer (Buckwalter+) that applied light10 to words if the analyzer found zero
analyses or more than one analysis.

12.3.2 Diab Tokenizer, Lemmatizer and POS Tagger

The Diab morphological analysis tools are available for download on the internet.
Their distribution ArabicSVMTools [19] includes the models they trained, which we
used without training our own models. Their tokenization segments clitics (prepo-
sitions, conjunctions, and some pronouns) from stems, and the part of speech tag-
ger labels each segment with one of 24 parts of speech from a tag set collapsed
from the 135 tags created by Buckwalter’s AraMorph. We noted, first of all, that
the tokenization part of the process separates some of the same segments that a

1. Run the modified version of AraMorph.pl, to find all the analyses for each
word

2. Normalize each stem in each solution by removing short vowels, converting all
forms of alif to bare alif, and changing alif maqS ra () to y ’ ().

3. If there is exactly one normalized stem, replace the word with the stem. If there
were no solutions found, or more than one distinct normalized stem, use the
normalized form of the original word.

234 Larkey et al.

stemmer should remove – it separates (w) from the beginnings of words, and
determiners like (Al). It also separates some prepositions like (b) and (l),
which light10 does not do, unless they precede (Al). It also separates some suf-
fixes, like possessive pronoun enclitics. The POS tagger then tags these segments
with a POS label, which lets us identify closed-class segments and remove them to
accomplish stopword removal. It also allows us to remove additional suffixes con-
tingent on part of speech.

To use the tagger for stemming, we first modified our query and corpus files to
contain one sentence per line, because the analyzer operates on sentences. We then
ran the tokenizer, lemmatizer, and POS tagger on the sentences, We removed
segments with the following tags: CC, DT, RP, PRP, PRP$, CD, IN, WP, WRB,
PUNC, NUMERIC_COMMA (conjunction, determiner, particle, personal pro-
noun, possessive personal pronoun, cardinal number, subordinating conjunction or
preposition, relative pronoun, wh-adverb, punctuation). This amounts to a much
weaker stemmer than light10, because it removes almost no suffixes. Therefore we
tested three other stemmers derived from this morphological analyzer. Our goal was
to remove possible plural and dual endings only from words identified as plural
nouns and adjectives. Unfortunately, while singular and plural nouns (and singular
and plural proper nouns) received distinct tags, adjectives all received the same tag,
JJ, so we could not easily determine which were plural or dual. Therefore, we tried
two versions of plural suffix removal, described below as Diab2 and Diab3. In an
analogue to the Buckwalter+ condition, in which we blindly performed light10
stemming if a word did not yield a unique stem, we also have a Diab+ condition, in
which we remove light10 suffixes regardless of part of speech.

To summarize the 4 stemmers derived from the morphological analysis tools:

Diab: tokenization, morphological analysis, remove closed class segments
Diab+: Diab, then remove light10 suffixes
Diab2: Diab, then remove possible plural and dual endings (At, wn, yn, w, An, y)
from segments marked as plural nouns or plural proper nouns
Diab3: Diab, then remove (At, wn, yn, w, An, y, y ,) from any segments
marked as nouns or adjectives.

12.3.3 Comparison of New Morphological Stemmers with Light Stemmer

These experiments were carried out in much the same way as those in Section 12.2.3,
except for a larger query set. In addition to the 25 queries from TREC2001, there
were 50 queries from TREC2002 for a total of 75. The same Arabic corpus was
used for retrieval. Figure 12.6 and Figure 12.7 show monolingual retrieval for the

Table 12.4 shows average precision for all the stemming conditions tested, with
and without query expansion. The boldface type indicates that the average preci-
sion was significantly worse than the corresponding light10 condition.

75 queries.

Light Stemming for Arabic Information Retrieval 235

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10
Buckwalter
Buckwalter+
Diab+
Diab3
Diab2
Diab

Fig. 12.6. Monolingual 11 point precision for 75 unexpanded queries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RECALL

P
R

E
C

IS
IO

N

Light10
Buck walter
Buck walter+
Diab+
Diab3
Diab2
Diab

 Monolingual 11 point precision for 75 expanded queries

Table 12.4. Average Precision for 75 expanded queries, comparison
of morphological stemmers with light10

Stemmer Unexpanded Expanded
Light10 .353 .387
Buckwalter .330 .386
Buckwalter+ .334 .390
Diab .247 .322
Diab2 .257 .336
Diab3 .302 .354
Diab+ .302 .356

Fig. 12.7.

236 Larkey et al.

Without query expansion, all of the morphological analysis conditions are sig-
nificantly worse than light10. With query expansion, the Buckwalter stemmers
equal the performance of light10. For both expanded and unexpanded queries, all
the Diab stemmers are significantly worse than the Buckwalter stemmers. Diab+
and Diab3 were almost identical, that is, blindly removing the set of light10 suf-
fixes from all words gives the same performance as removing suffixes from nouns
and adjectives. Diab+ and Diab3 were significantly better than Diab2, which is
significantly better than Diab.

The poor performance of the basic Diab stemmer is not surprising - it is per-
forming stemming that is most comparable to light3 in Section . But we ex-

we expected. For example, the tokenizer sometimes did not separate the definite
article (Al).

The queries were made up of a non-sentence (title) line, followed by one to
three sentences of description, as in Table 12.5 and Table 12.6. Because the
tokenizer was trained on complete sentences, it did not work well on titles. It of-
ten failed to segment Al when the first word of a title was a noun, as in Table 12.5.
Table 12.6 shows an example of incorrect segmentation of b from the front of a
word in a title, but not in the complete sentence (the description).

Table 12.5. Example of Tokenization, TREC 2002 query AR30

 Title Description
English Iraqi satellite television What is the importance of

satellite television in Iraq?
Arabic
Transliterated Altlfzywn AlfDA y fy

Al rAq
mA Ahmy Altlfzywn
AlfDA y fy Al rAq?

Tokenized Altlfzywn Al fDA y fy
Al rAq

mA Ahmy Al tlfzywn Al
fDA y fy Al rAq?

Table 12.6. Example of Tokenization, TREC2002 query AR32

 Title Description
English Caspian Beluga Conservation What Beluga conservation

projects are present in the
Caspian region?

Arabic

Transliterated SyAn blw A fy bHrqzwyn mA hy Al mšAry l SyAn
Al blw A fy bHr qzwyn

Tokenized SyAn b lw A fy bHrqzwyn mA hy Al mšAry l SyAn Al
blw A fy bHr qzwyn

12.2.3
pected it to be more improved by POS-dependent suffix removal, and by its more
complete stop word removal. An examination of the query set and a sample AFP
article after tokenization and POS tagging showed more tokenization mistakes than

Light Stemming for Arabic Information Retrieval 237

Performance was hurt by these tokenization errors. Note in the two examples that
the tokenization errors were serious - they occurred in important content words in
the query, but the same words were correctly tokenized in the description part of the
query. Performance would have been hurt even more on title-only queries.

12.4. Conclusions

Stemming has a large effect on Arabic information retrieval, far larger than the ef-
fect found for most other languages. For monolingual retrieval we have demon-
strated improvements of around 100% in average precision due to stemming and
related processes, and an even larger effect for dictionary-based cross-language re-
trieval. This stemming effect is very large, compared to that found in many other
stemming studies, but is consistent with the hypothesis of Popovi and Willett [49]
and Pirkola [48] that stemming should be particularly effective for languages with
more complex morphology.

The best stemmer was a light stemmer that removed stop words, definite arti-
cles, and (“and”) from the beginning of words, and a small number of suffixes
from the end of words light10). With query expansion, light10 yielded results
comparable to that of the top performers at TREC, monolingual and cross-
language. We have now compared light stemming with several different stemming
approaches based on morphological analysis: indexing roots returned by morpho-
logical analysis, indexing stems returned by morphological analysis, and some-
what more intelligent stemming based on part-of-speech assignments. Although
we can equal the light stemmer with stemming based on Buckwalter’s morpho-
logical analysis, we have not been able to attain significantly better performance
using morphological analysis.

Given the morphological complexity of Arabic, why would a morphological
analyzer not perform better than such a simple stemmer? We hypothesize several
factors. First, morphological analyzers make mistakes, particularly on names. In
dictionary-driven Buckwalter approach, words are exempted from stemming if
they are not found in the lexicon. With the Diab approach, we observed many

ting the correct part of speech, and therefore did not undergo the correct POS-
dependent modifications. If one took a sample of Arabic text with complete

that Arabic text contains so many definite articles that one could obtain the
claimed >99% tokenization accuracy simply by removing Al from the beginnings
of words.

Second, models used in IR treat documents and queries as “bags of words,” or
at best, bags of unigrams, bigrams, and trigrams. Our current retrieval models may
not be able to use the information provided by morphological analysis.

Third, light stemming is robust. It does not require complete sentences. It does
not try to handle every single case. It is sufficient for information retrieval that

mistakes of tokenization in morphological analysis, which prevented words from get-

sentences, the tokenization and POS tagging would have fewer errors. Note, however,

(

238 Larkey et al.

many of the most frequently occurring forms of a word be conflated. If an occa-
sional form is missed, it is likely that other forms of the same word occur with it in
the same documents, so the documents are likely to be retrieved anyway.

Fourth, it is still not clear what the correct level of conflation should be for IR.
Clearly, we do not want to represent Arabic words by their roots, and equate all
words derived from the same root. But we still believe that light stemmers are too
weak. None of the light stemmers correctly groups broken plurals with their singu-
lar forms.

These studies are only a beginning. We have not ruled out the possibility that a
better morphological analyzer, and better use of morphological analysis to con-
flate words, could work better than a light stemmer. We have only tried a few

flected forms of a noun together, including broken plurals, and all the conjugations
of a verb, which we cannot do today. Clearly, there is room for future work that
makes intelligent use of morphological analysis in information retrieval.

Acknowledgments

We would like to thank Shereen Khoja for providing her stemmer, Nicholas J.
DuFresne for writing some of the stemming and dictionary code, Fang-fang Feng
for helping with dictionary collection over the web, Mohamed Taha Mohamed,
Mohamed Elgadi, and Nasreen Abdul-Jaleel for help with the Arabic language,
Victor Lavrenko for the use of his vector and language modeling code. This work
was supported in part by the Center for Intelligent Information Retrieval and in
part by SPAWARSYSCEN-SD grant numbers N66001-99-1-8912 and N66001-
02-1-8903. Any opinions, findings and conclusions or recommendations expressed
in this material are the authors’ and do not necessarily reflect those of the sponsor.

References

obvious alternatives. Ultimately, one would like to be able to conflate all the in-

[1]

[2]

[3]

[4]

Abu-Salem, H., Al-Omari, M., and Evens, M. Stemming methodologies over indi-
vidual query words for Arabic information retrieval. JASIS, 50 (6), pp. 524–529,
1999.
Al-Fedaghi, S. S. and Al-Anzi, F. S. A new algorithm to generate Arabic root-
pattern forms. In Proceedings of the 11th national computer conference. King Fahd
University of Petroleum & Minerals, Dhahran, Saudi Arabia, pp. 391–400, 1989.
Aljlayl, M., Beitzel, S., Jensen, E., Chowdhury, A., Holmes, D., Lee, M., Grossman,
D., and Frieder, O. IIT at TREC-10. In TREC 2001. Gaithersburg: NIST, pp.
265–275, 2001.
Al-Kharashi, I. and Evens, M. W. Comparing words, stems, and roots as index terms
in an Arabic information retrieval system. JASIS, 45 (8), pp. 548–560, 1994.

Light Stemming for Arabic Information Retrieval 239

[5] Allan, J. Callan, J. Collins-Thompson, K. Croft, B. Feng, F. Fisher, D. Lafferty, J.
Larkey, L. Truong, T. N. Ogilvie, P. Si, L. Strohman, T. Turtle, H. and Zhai, C.
The Lemur toolkit for language modeling and information retrieval. http://www.
lemurproject.org/˜lemur

[6] Al-Shalabi, R. Design and implementation of an Arabic morphological system to
support natural language processing. PhD thesis, Computer Science, Illinois Insti-
tute of Technology, Chicago, 1996.

[7] Beesley, K. R. Arabic finite-state morphological analysis and generation. In
COLING-96: Proceedings of the 16th international conference on computational
linguistics, vol. 1, pp. 89–94, 1996.

[8] Berlian, V., Vega, S. N., and Bressan, S. Indexing the Indonesian web: Language
identification and miscellaneous issues. Presented at Tenth International World
Wide Web Conference, Hong Kong, 2001.

[9] Brent, M. R. Speech segmentation and word discovery: A computational perspec-
tive. Trends in Cognitive Science, 3 (8), pp. 294–301, 1999.

[10] Buckwalter, T. Qamus: Arabic lexicography. http://www.qamus.org/
[11] Callan, J. P., Croft, W. B., and Broglio, J. TREC and TIPSTER experiments with

INQUERY. Information Processing and Management, 31 (3), pp. 327–343, 1995.
[12] Carlberger, J., Dalianis, H., Hassel, M., and Knutsson, O. Improving

precision in information retrieval for Swedish using stemming. In
Proceedings of NODALIDA ‘01–13th Nordic conference on computational
linguistics. Uppsala, Sweden, 2001. http://www.nada.kth.se/~xmartin/papers/-
Stemming_NODALIDA01.pdf

[13] Chen, A. and Gey, F. Building an Arabic stemmer for information retrieval. In
TREC 2002. Gaithersburg: NIST, pp 631–639, 2002.

[14] Darwish, K. Building a shallow morphological analyzer in one day. ACL 2002
Workshop on Computational Approaches to Semitic languages, pp. 47–54, July 11,
2002.

[15] Darwish, K., Doermann, D., Jones, R., Oard, D., and Rautiainen, M. TREC-10 ex-
periments at Maryland: CLIR and video. In TREC 2001. Gaithersburg: NIST,
pp 549–562, 2001.

[16] Darwish, K. and Oard, D.W. CLIR Experiments at Maryland for TREC-2002: Evi-
dence combination for Arabic-English retrieval. In TREC 2002. Gaithersburg: NIST,
pp 703–710, 2002.

[17] de Marcken, C. Unsupervised language acquisition. PhD thesis, MIT, Cambridge,
1995.

[18] De Roeck, A. N. and Al-Fares, W. A morphologically sensitive clustering algorithm
for identifying Arabic roots. In Proceedings ACL-2000. Hong Kong, pp 199–206,
2000.

[19] Diab, M. ArabicSVMTools. http://www.stanford.edu/~mdiab/software/ArabicSVMTools.
tar.gz. 2004.

[20] Diab, M., Hacioglu, K., and Jurafsky, D. Automatic tagging of Arabic text: From
raw test to base phrase chunks. In Proceedings of HLT-NAACL, pp 149–152, 2004.
http://www.stanford.edu/~mdiab/papers/ArabicChunks.pdf.

[21] Ekmekcioglu, F. C., Lynch, M. F., and Willett, P. Stemming and n-gram matching
for term conflation in Turkish texts. Information Research News, 7 (1), pp. 2–6,
1996.

240 Larkey et al.

[22] Flenner, G. Ein quantitatives Morphsegmentierungssytem fur Spanische
Wortformen. In Computatio linguae II, U. Klenk, Ed. Stuttgart: Steiner Verlag,
pp. 31–62, 1994.

[23] Frakes, W. B. Stemming algorithms. In Information retrieval: Data structures and
algorithms, W. B. Frakes and R. Baeza-Yates, Eds. Englewood Cliffs, NJ: Prentice
Hall, Chapter 8, 1992.

[24] Freund, E. and Willett, P. Online identification of word variants and arbitrary
truncation searching using a string similarity measure. Information Technology:
Research and Development, 1, pp. 177–187, 1982.

[25] Gey, F. C. and Oard, D. W. The TREC-2001 cross-language information retrieval
track: Searching Arabic using English, French, or Arabic queries. In TREC 2001.
Gaithersburg: NIST, pp 16–26, 2002.

[26] Goldsmith, J. Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27 (2), pp. 153–198, 2000.

[27] Goldsmith, J., Higgins, D., and Soglasnova, S. Automatic language-specific
stemming in information retrieval. In Cross-language information retrieval and
evaluation: Proceedings of the CLEF 2000 workshop, C. Peters, Ed.: Springer
Verlag, pp. 273–283, 2001.

[28] Goweder, A. and De Roeck, A. Assessment of a significant Arabic corpus.
Presented at the Arabic NLP Workshop at ACL/EACL 2001, Toulouse, France,
2001. http://www.elsnet.org/arabic2001/goweder.pdf

[29] Greengrass, M., Robertson, A. M., Robyn, S., and Willett, P. Processing
morphological variants in searches of Latin text. Information Research News, 6 (4),
pp. 2–5, 1996.

[30] Hafer, M. A. and Weiss, S. F. Word segmentation by letter successor varieties.
Information Storage and Retrieval, 10, pp. 371–385, 1974.

[31] Hull, D. A. Stemming algorithms - a case study for detailed evaluation. JASIS, 47
(1), pp. 70–84, 1996.

[32] Janssen, A. Segmentierung Franzosischer Wortformen in Morphe ohne Verwendung
eines Lexikons. In Computatio linguae, U. Klenk, Ed. Stuttgart: Steiner Verlag,
pp. 74–95, 1992.

[33] Khoja, S. and Garside, R. Stemming Arabic text. Computing Department, Lancaster
University, Lancaster, 1999. http://www.comp.lancs.ac.uk/computing/users/khoja/
stemmer.ps

[34] Klenk, U. Verfahren morphologischer Segmentierung und die Wortstruktur im
Spanischen. In Computatio Linguae, Aufsätze zur algorithmischen und quantitativen
Analyse der Sprache, U. Klenk, Ed. Stuttgart: Steiner Verlag, pp 110–124, 1992.

[35] Kraaij, W. and Pohlmann, R. Viewing stemming as recall enhancement. In
Proceedings of ACM SIGIR96. pp. 40–48, 1996.

[36] Krovetz, R. Viewing morphology as an inference process. In Proceedings of ACM
SIGIR93, pp. 191–203, 1993.

[37] Larkey, Leah S., Ballesteros, L., and Connell, M. (2002) Improving stemming for
Arabic information retrieval: Light stemming and co-occurrence analysis In
Proceedings of the 25th annual international conference on research and
development in information retrieval (SIGIR 2002), Tampere, Finland, August
11–15, 2002, pp. 275–282.

[38] Larkey, L. S. and Connell, M. E. Arabic information retrieval at UMass in TREC-
10. In TREC 2001. Gaithersburg: NIST, 2001.

Light Stemming for Arabic Information Retrieval 241

[39] LDC, Linguistic Data Consortium. Buckwalter Morphological Analyzer Version
1.0, LDC2002L49, 2002. http://www.ldc.upenn.edu/Catalog/.

[40] LDC, Linguistic Data Consortium. Arabic Penn TreeBank 1, v2.0. LDC2003T06,
2003. http://www.ldc.upenn.edu/Catalog/

[41] Lovins, J. B. Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11, pp. 22–31, 1968.

[42] Mayfield, J., McNamee, P., Costello, C., Piatko, C., and Banerjee, A. JHU/APL at
TREC 2001: Experiments in filtering and in Arabic, video, and web retrieval. In
TREC 2001. Gaithersburg: NIST, pp 332–341, 2001.

[43] McNamee, P., Mayfield, J., and Piatko, C. A language-independent approach to
European text retrieval. In Cross-language information retrieval and evaluation:
Proceedings of the CLEF 2000 workshop, C. Peters, Ed.: Springer Verlag, pp. 129–
139, 2000.

[44] Monz, C. and de Rijke, M. Shallow morphological analysis in monolingual
information retrieval for German and Italian. In Cross-language information
retrieval and evaluation: Proceedings of the CLEF 2001 workshop, C. Peters,
Ed.: Springer Verlag, 2001. http://staff.science.uva.nl/~christof/Papers/clef-
2001-post.pdf

[45] Moulinier, I., McCulloh, A., and Lund, E. West group at CLEF 2000: Non-English
monolingual retrieval. In Cross-language information retrieval and evaluation:
Proceedings of the CLEF 2000 workshop, C. Peters, Ed.: Springer Verlag, pp. 176–
187, 2001.

[46] Oard, D. W., Levow, G. -A., and Cabezas, C. I. CLEF experiments at Maryland:
Statistical stemming and backoff translation. In Cross-language information
retrieval and evaluation: Proceedings of the CLEF 2000 workshop, C. Peters, Ed.:
Springer Verlag, pp. 176–187, 2001.

[47] NIST. Topic Detection and Tracking Resources. http://www.nist.gov/speech/tests/tdt/
resources.htm. Created 2000, updated 2002.

[48] Pirkola, A. Morphological typology of languages for IR. Journal of Documentation,
57 (3), pp. 330–348, 2001.

[49] Popovic, M. and Willett, P. The effectiveness of stemming for natural-language
access to Slovene textual data. JASIS, 43 (5), pp. 384–390, 1992.

[50] Porter, M. F. An algorithm for suffix stripping. Program, 14 (3), pp. 130–137, 1980.
[51] Rogati, M., McCarley, S., and Yang, Y. Unsupervised learning of Arabic stemming

using a parallel corpus. In Proceedings ACL-2003, Sapporo, Japan, pp. 391–398,
July 2003. http://acl.ldc.upenn.edu/acl2003/main/pdf/Rogati.pdf

[52] Siegel, S. Nonparametric statistics for the behavioral sciences. New York:
McGraw-Hill, 1956.

[53] Taghva, K., Elkoury, R., and Coombs, J. Arabic Stemming without a root
dictionary. 2005. www.isri.unlv.edu/publications/isripub/Taghva2005b.pdf

[54] Tai, S. Y., Ong, C. S., and Abdullah, N. A. On designing an automated Malaysian
stemmer for the Malay language. (poster). In Proceedings of the fifth international
workshop on information retrieval with Asian languages, Hong Kong, pp. 207–208,
2000.

[55] Xu, J. and Croft, W. B. Corpus-based stemming using co-occurrence of
word variants. ACM Transactions on Information Systems, 16 (1), pp. 61–81,
1998.

242 Larkey et al.

[56] Xu, J., Fraser, A., and Weischedel, R. TREC 2001 cross-lingual retrieval at BBN. In
TREC 2001. Gaithersburg: NIST, pp. 68–78, 2001.

[57] Xu, J., Fraser, A., and Weischedel, R. Empirical studies in strategies for Arabic re-
trieval. In Sigir 2002. Tampere, Finland: ACM, pp. 269–274, 2002.

Light Stemming for Arabic Information Retrieval 243

13

Kareem Darwish and Douglas W. Oard
 IBM Technology Development Center, P.O. Box 166, El-Ahram, Giza, Egypt

 kareem@darwish.org
 College of Information Studies & UMIACS, University of Maryland, College Park, MD 20742
oard@glue.umd.edu

Abstract: This chapter presents an adaptation of existing techniques in Arabic morphology by lev-
eraging corpus statistics to make them suitable for Information Retrieval (IR). The ad-
aptation resulted in the development of Sebawai, an shallow Arabic morphological ana-
lyzer, and Al-Stem, an Arabic light stemmer. Both were used to produce Arabic index
terms for Arabic experimentation. Sebawai is concerned with generating possible
roots and stems of a given Arabic word along with probability estimates of deriving the
word from each of the possible roots. The probability estimates were used as a guide to de-
termine which prefixes and suffixes should be used to build the light stemmer Al-Stem.
The use of the Sebawai generated roots and stems as index terms along with the stems
from Al-Stem are evaluated in an information retrieval application and the results are
compared

13.1 Introduction

Due to the morphological complexity of the Arabic language, Arabic morphology
has become an integral part of many Arabic Information Retrieval (IR) and other
natural language processing applications. Arabic words are divided into three
types: noun, verb, and particle (Abdul-Al-Aal, 1987). Nouns and verbs are derived
from a closed set of around 10,000 roots (Ibn Manzour, 2006). The roots are
commonly three or four letters and are rarely five letters. Arabic nouns and verbs

* All the experiments for this work were performed while the first author was at the Uni-

versity of Maryland, College Park.

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology,
C© 2007 Springer.

Adapting Morphology for Arabic
Information Retrieval*

1 2

1

2

245

245 26 2 . –

are derived from roots by applying templates to the roots to generate stems and
then introducing prefixes and suffixes. Table 13.1 shows some templates for
3-letter roots. Tables 13.2 and 13.3 show some of the possible prefixes and suf-
fixes and their corresponding meaning. The number of unique Arabic words (or
surface forms) is estimated to be 6 x 1010 words (Ahmed, 2000). Table 13.4 shows
some of the words that may be generated from the root ktb – .

Further, a word may be derived from several different roots. For example the
word AymAn – can be derived from five different roots. Table 13.5 shows
possible roots for the word AymAn – and the meaning of the word based on
each. For the purposes of this chapter, a word is any Arabic surface form, a stem is
a word without any prefixes or suffixes, and a root is a linguistic unit of meaning,
which has no prefix, suffix, or infix. However, often irregular roots, which contain
double or weak letters, lead to stems and words that have letters from the root that
are deleted or replaced.

Table 13.1. Some templates to generate stems from roots
with examples from the root (ktb –)

Template Stem Meaning

CCC – ktb – books, wrote, etc.

mCCwC – mktwb – something written

CCAC – ktAb – book

CCACyC – ktAtyb – Qur'an school

CACC – kAtb – writer

CcwC – ktwb – skilled writer

Table 13.2. Some example prefixes and their meanings

Prefix w – K – f – l – Al – wAl –

Meaning and like Then to the and the

Table 13.3. Some example suffixes and their meanings

Prefix h – K – hm – km – hA – y –

Meaning his your (sg.) Their your (pl.) her, its my

246 Darwish and Oard

Table 13.4. Some words that can be derived from the root ktb –

Prefix ktb –

wktAbh –

yktb –

ktAbhm –

mktb –

AlkAtb –

Meaning book and his book he writes their book library the writer

Table 13.5. Possible roots for the word
AymAn – along with meaning

Root Meaning

Amn – peace or faith

Aym – two poor people

mAn – will he give support

ymn – Covenants

ymA – will they (fm.) point to

For Arabic IR, several early studies suggested that indexing Arabic text using

roots significantly increases retrieval effectiveness over the use of words or stems
(Abu-Salem et al., 1999; Al-Kharashi & Evens, 1994; Hmeidi et al., 1997). How-
ever, the studies used small test collections of only hundreds of documents and the
morphology in many of the studies was done manually. Performing morphological
analysis for Arabic IR using existing Arabic morphological analyzers, most of
which use finite state transducers (Antworth, 1990; Kiraz, 1998; Koskenniemi,
1983), is problematic for two reasons. First, they were designed to produce as
many analyses as possible without indicating which analysis is most likely. This
property of the analyzers complicates retrieval, because it introduces ambiguity in
the indexing phase as well as the search phase of retrieval. Second, the use of fi-
nite state transducers inherently limits coverage, which is the number of words
that the analyzer can analyze, to the cases programmed into the transducers. A

Section 13.2 will provide some background on Arabic Morphology and Arabic
IR. Section 13.3 will provide a system description of Sebawai along with an

Adapting Morphology for Arabic Information Retrieval 247

later study by Aljlayl et al. (2001) on a large Arabic collection of 383,872 documents
suggested that lightly stemmed words, where only common prefixes and suffixes
are stripped from words, were perhaps better index terms for Arabic. Aljlayl et al.
did not report the list of prefixes and suffixes used in the light stemmer. If indeed
lightly stemmed words work well, then determining the list of prefixes and suf-
fixes to be removed by the stemmer is desirable. This chapter will focus on two
aspects of Arabic morphology. The first is adapting existing Arabic morphological
analysis using corpus statistics to attempt to produce the most likely analysis of a
word and to improve coverage. The resulting analyzer is called Sebawai. The sec-
ond is to construct a set of common prefixes and suffixes suitable for light stem-
ming. The resulting light stemmer is called Al-Stem.

evaluation of its correctness and coverage. Section 13.4 describes the development
of Al-Stem. Section 13.5 compares Sebawai and Al-Stem in the context of an IR
application. Section 13.6 addresses some of the shortcomings of Sebawai and con-
cludes the chapter.

13.2 Background

13.2.1 Arabic Morphology

Significant work has been done in the area of Arabic morphological analysis.
Some of the approaches include:

1. The Symbolic Approach: In this approach, morphotactic (rules governing the
combination of morphemes, which are meaning bearing units in the language)
and orthographic (spelling rules) rules are programmed into a Finite State
Transducer (FST). Koskenniemi proposed a two-level system for language
morphology, which led to Antworth’s two-level morphology system
PC-KIMMO (Antworth, 1990; Koskenniemi, 1983). Later, Beesley and
Buckwalter developed an Arabic morphology system, ALPNET, which uses a
slightly enhanced implementation of PC-KIMMO (Beesley et al., 1989;
Kiraz, 1998). However, this approach was criticized by Ahmed (2000) for re-
quiring excessive manual processing to state rules in an FST and for the abil-
ity to only analyze words that appear in Arabic dictionaries. Kiraz (1998)
summarized many variations of the FST approach.

2. Unsupervised Machine Learning Approach: Goldsmith (2000) developed an
unsupervised learning automatic morphology tool called AutoMorphology.
This system is advantageous because it could automatically learn the most
common prefixes and suffixes from just a word-list. However, such a system
would not be able to detect infix and uncommon prefixes and suffixes.

3. Statistical Rule-Based Approach: This approach uses rules in conjunction
with statistics. This approach employs a list of prefixes, a list of suffixes, and
templates to extract a stem from a word and a root from a stem. Possible pre-
fix-suffix-template combinations are constructed for a word. Hand-crafted
rules are used to eliminate impossible combinations and the remaining com-
binations are then statistically ranked. RDI’s system called MORPHO3 util-
izes such a model (Ahmed, 2000). Such an approach achieves broad morpho-
logical coverage of the Arabic language.

4. Light Stemming Based Approach: In this approach, leading and trailing letters
in a word are removed if they match entries in lists of common prefixes and
suffixes respectively. The advantage of this approach is that it requires no
morphological processing and is hence very efficient. However, incorrect pre-
fixes and suffixes are routinely removed. This approach was used to develop

248 Darwish and Oard

13.2.2 Arabic Information Retrieval

Most early studies of character-coded Arabic text retrieval relied on relatively
small test collections (Abu-Salem et al., 1999; Al-Kharashi & Evens, 1994;
Darwish & Oard, 2002a; Darwish & Oard, 2002b). The early studies suggested
that roots, followed by stems, were the best index terms for Arabic text. Recent
studies are based on a single large collection (from TREC-2001/2002), (Darwish
& Oard, 2002b; Gey & Oard, 2001) and suggest that perhaps light stemming and
character n-grams are the best index terms. The studies examined indexing using
words, word clusters (Xu et al., 2001), terms obtained through morphological
analysis (e.g., stems and roots (Al-Kharashi & Evens, 1994; Aljlayl et al., 2001)),

rious lengths (Darwish & Oard, 2002a;
Mayfield et al., 2001). The effects of normalizing alternative characters, removal
of diacritics and stop-word removal have also been explored (Chen & Gey, 2001;
Mayfield et al., 2001; Xu et al., 2001).

13.3 System Description

This section describes the development of an Arabic morphological analyzer
called Sebawai, which adapts a commercial Arabic morphological analyzer called
ALPNET (Beesley, 1996; Beesley et al., 1989) to find the most likely analysis and
to improve coverage. ALPNET is based on a finite state transducer that uses a set
of 4,500 roots. Sebawai uses corpus based statistics to estimate the occurrence
probabilities of templates, prefixes, and suffixes. Sebawai trains on a list of word-
root pairs to:

1. Derive templates that produce stems from roots,
2. Construct a list of prefixes and suffixes, and
3. Estimate the occurrence probabilities of templates, stems, and roots.

The words in the word-root pairs were extracted from an Arabic corpus.

13.3.1 Acquiring Word-Root Pairs

The list of word-root pairs may be constructed either manually, using a dictionary,
or by using a preexisting morphological analyzer such as ALPNET (Ahmed, 2000;
Beesley, 1996; Beesley et al., 1989) as follows:

1. Manual construction of word-root pair list: Building the list of several thousand
pairs manually is time consuming, but feasible. Assuming that a person who

Arabic stemmers by Aljlayl et al. (2001), Darwish & Oard (2002a), and
Larkey, Ballesteros & Connell (2002).

light stemming, and character n-grams of va

Adapting Morphology for Arabic Information Retrieval 249

knows Arabic can generate a root for a word every 5 seconds, the manual proc-
ess would require about 14 hours of work to produce 10,000 word-root pairs.

2. Automatic construction of a list using dictionary parsing: Extracting word-
root pairs from an electronic dictionary is feasible. Since Arabic words are
looked up in a dictionary using their root form, an electronic dictionary can be
parsed to generate the desired list. Figure 13.1 shows an example of a dictionary

Fig. 13.1. An example of a dictionary entry where the root is inside a rectangle and words
derived from the root are circled

250 Darwish and Oard

entry for a root and words in the entry that are derived from the root. How-
ever, some care should be given to throw away dictionary examples and
words unrelated to the root. Further, the distribution of words extracted from
a dictionary might not be representative of the distribution of words in a text
corpus.

3. Automatic construction using a pre-existing morphological analyzer: This
process is simple, but requires the availability of an analyzer and a corpus. It
has the advantage of producing analyses for large numbers of words extracted
from a corpus.

For the purposes of this research, the third method was used to construct the list of
word-root pairs. Two lists of Arabic words were analyzed by ALPNET and then
the output was parsed to generate the word-root pairs. One list was extracted from
a small corpus of Arabic text, called Zad. The Zad corpus is comprised of topics
from a 14th century religious book called Zad Al-Me’ad. The list contained 9,606
words that ALPNET was able to analyze successfully. The original list was larger,
but the words that ALPNET was unable to analyze were excluded. This list will be
referred to as the ZAD list. The other list was extracted from the Linguistic Data
Consortium (LDC) Arabic corpus containing AFP newswire stories (Graff &
Walker, 2001). This list contained 562,684 words. Of these words, ALPNET was
able to analyze 270,468 words successfully and failed to analyze 292,216 words.
The subsets which ALPNET was able to analyze or failed to analyze will be re-
ferred to as the LDC-Pass and LDC-fail lists respectively. ALPNET failed to ana-
lyze words belonging to the following subsets:

a. Named entities and Arabized words, which are words that are adopted from
other languages: An example of these includes the words krdtš –
(Karadish) and dymwqrATy – (Democracy).

b. Misspelled words
c. Words with roots not in the root list: An example of that is the word jwA –

, (seldom used word meaning pompous).
d. Words with templates not programmed into the finite state transducer.

ALPNET uses a separate list of allowed templates for each root. These lists
are not comprehensive. An example of that is the word msylm –
(miniature of mslm – , a person who is safe or submitting).

e. Words with complex prefixes or suffixes: An example of that is the word
bAlxrAfAt – (with the superstitions). ALPNET was able to analyze
xrAfAt – (superstitions) and AlxrAfAt – (the superstitions).

Adapting Morphology for Arabic Information Retrieval 251

It is noteworthy that whenever ALPNET successfully analyzed a word, the gener-
ated analyses were always correct. In the cases when ALPNET provided more
than one analysis for a word (thus more than one possible root), all combinations
of the word and each of the possible roots were used for training. Although using
all the combinations might have distorted the statistics, there was no automatic
method for determining which word-root combinations to pick from the possible
ones for a word. Also, using all the pairs had the effect of expanding the number
of training examples on which the analyzer can be trained.

13.3.2 Training

Sebawai aligns characters in a word and the corresponding root, from the word-
root pairs, using regular expressions to determine the prefix, suffix, and stem tem-
plate. As in Table 13.6, given the pair (wktAbhm – , ktb –), the training
module would generate w – as the prefix, hm – as the suffix, and CCAC as the
stem template (C’s represent the letters in the root). The module increases the ob-
served number of occurrences of the prefix w – , the suffix hm – , and the
template “CCAC” by one. The module takes into account the cases where there
are no prefixes or suffixes and denotes either of them with the symbol “#”.

Table 13.6. The decomposition of the word wktAbhm – with root
ktb –

Parts Prefix stem – CCAC – suffix

Root k – t – b –

Word w – k – t – A – b – hm –

After that, the lists of prefixes, suffixes, and templates are read through to esti-

mate probabilities by dividing the occurrence of each by the total number of word-
root pairs. The probabilities being calculated are given for character strings S1 and
S2 and template T as:

P S1 begins a word , S1 is a prefix No. of words with prefix S1
Total No. of training words

P S2 begins a word , S2 is a suffix No. of words with suffix S2
Total No. of training words

P T is a template No. of words with template T
Total No. of training words

 A random set of a 100 words, for which ALPNET produced analyses, were manually
examined to verify their correctness. ALPNET produced correct analyses for every
word in the set.

252 Darwish and Oard

Notice that Sebawai’s stems are slightly different from standard stems, in that stan-
dard stems may have letters added in the beginning. Linguistics stems are often re-
ferred to in Arabic as tf ylAt – or standard stem templates. For example, the
template mCCwC has “m” placed before the root making “m” a part of the stem
template. However, the training module of Sebawai has no prior knowledge of
standard stem templates. Therefore, for the template “mCCwC,” the training module
treated “m” as a part of the prefix list and the extracted template is “CCwC.”

13.3.3 Root Detection

Sebawai detects roots by reading in an Arabic word and attempts to generate fea-
sible prefix-suffix-template combinations. The combinations are produced by gen-
erating all possible ways to break the word into three parts provided that the initial
part is on the list of prefixes, the final part is in the list of suffixes, and the middle
part is at least 2 letters long. The initial and final parts can also be null. Sebawai
then attempts to fit the middle part into one of the templates. If the middle part fits
into a template, the generated root is checked against a list of possible Arabic
roots. The list of Arabic roots, which was extracted from a large Arabic dictionary,
contained approximately 10,000 roots (Ibn Manzour, 2006). For example, the
Arabic word AymAn – has the possible prefixes “ #” , A – , and Ay – , and
the possible suffixes “ #” , n – , and An – . Table 13.7 shows the possible
analyses of the word.

The stems that Sebawai deemed as not feasible were AymA – and ym – .
Although, AymA – is not feasible, ym – is actually feasible (comes from the
root ymm –). This problem will be addressed in the following subsection. The
possible roots are ordered according to the product of the probability that a prefix
S1 would be observed, the probability that a suffix S2 would be observed, and the
probability that a template T would be used as follows:

P(root) = P(S1 begins a word, S1 is a prefix) * P(S2 ends a word,
S2 is a suffix) * P(T is a template)

Table 13.7. Possible analyses for the word AymAn –

Stem Prefix Template Suffix Root

AymAn – # CyCAC -- # Amn –

ymAn – A – CCAC – # ymn –

mAn – Ay – CCC – # mAn –

Aym – # CCC – An – Aym –

ymA – A – CCC – n – ymA –

Adapting Morphology for Arabic Information Retrieval 253

13.3.4 Extensions

 Handling Cases Where Sebawai Failed

As seen above, Sebawai deemed the stem ym – not feasible, while in actuality
the stem maps to the root ymm – . The stem ym – has only two letters because
the third letter was dropped. The third letter is often dropped when it is identical to
the second letter in the root. Sebawai initially failed to analyze all 2-letter stems.
Two letter stems can be derived from roots with long vowels and where the sec-
ond and third letters are the same.

The Arabic long vowels are A – , y – , and w – . The weak letters are
frequently substituted for each other in stem templates or dropped all together. For
example, the word qAl – , has the root qwl – , or qyl – , which would
make the word mean ‘he said’ or ‘he napped’ respectively. Also, the stem f –
has the root wfy – where the letters w – and y – are missing. To
compensate for these problems, two letter stems were corrected by introducing
new stems that are generated by doubling the last letter (to produce ymm –
from ym –) and by adding weak letters before or after the stem. As for stems
with a weak middle letter, new stems are introduced by substituting the middle
letter with the other weak letters. For example, for qAl – , the system would
introduce the stems qwl – and qyl – . This process over-generates potential
roots. From the three potential roots qAl – , qwl – , and qyl – , qAl – is
not a valid root and is thus removed (by comparing to the list of valid roots). To
account for the changes, the following probabilities were calculated: (a) the
probability that a weak letter would be transformed into another weak letter, (b)
the probability that a two letter word would have a root with the second letter
doubled (such as ymm –), and (c) the probability that a two letter word was
derived from a root by dropping an initial or trailing weak letter. The new
probability of the root becomes:

P(root) = P(S1 begins a word, S1 is a prefix) * P(S2 ends a word,
S2 is a suffix) * P(T is a template) *

P(letter substitution or letter addition)

 Simplifying Assumptions and Smoothing

The probabilities of stems, suffixes, and templates are assumed to be independent.
The independence assumption is made to simplify the ranking, but is not necessar-
ily a correct assumption because certain prefix-suffix combinations are not al-
lowed. As for smoothing the prefix and suffix probabilities, Witten-Bell discount-
ing was used (Jurafsky & Martin, 2000). The smoothing is necessary because
many prefixes and suffixes were erroneously produced. This is a result of word-
root pair letter alignment errors. Using this smoothing strategy, if a prefix or a suf-
fix is observed only once, then it is removed from the respective list.

254 Darwish and Oard

The list of templates was manually reviewed by an Arabic speaker (the first author)
to insure the correctness of the templates. If a template was deemed not correct, it
was removed from the list. Checking the list required approximately an hour.

 Particles

To account for particles, which are function words (equivalent to prepositions and
pronouns in English) that are typically removed in retrieval applications, a list of
Arabic particles was constructed with aid of An-Nahw Ash-Shamil, an Arabic
grammar book (Abdul-Al-Aal, 1987). If the system matched a potential stem to
one of the words on the particle list, the system indicated that the word is a parti-
cle. Note that particles are allowed to have suffixes and prefixes. A complete list
of the particles is included in the distribution of Sebawai (Darwish, 2002).

 Letter Normalizations

The system employs a letter normalization strategy in order to account for spelling
variations and to ease analysis. The first normalization deals with the letters (ya)
and (ý – alif maqS ra). Both are normalized to y – . The reason behind this
normalization is that there is not a single convention for using y – or ý – when
either appears at the end of a word (Note that Y – only appears at the end of
words). In the Othmani script of the Holy Qur’an for example, any y – is written
as ý – when it appears at the end of a word. The second normalization is
that (' – hamza), (A – alif), (– alif mamduuda), (Â – alif with hamza on
top), (– hamza on w), (– alif with hamza on the bottom), and (– hamza
on ya) are normalized to A – (A – alif). The reason for this normalization is that
all forms of hamza are represented in dictionaries as one in root form, and people
often misspell different forms of alif.

Lastly, words are stripped of all diacritics.

13.3.5 Evaluation

To evaluate Sebawai, it was compared to ALPNET. The two analyzers were com-
pared to test Sebawai’s highest ranked analysis and the coverage of Sebawai and
ALPNET. The experiments performed involved training Sebawai using the LDC-
pass word-root list and testing on the ZAD list. Of the 9,606 words in the ZAD
list, Sebawai analyzed 9,497 words and failed on 112. For the roots generated by
Sebawai, the top generated root was automatically compared to the roots gener-
ated by ALPNET. If the root is on the list, it is considered correct. Using this
method, 8,206 roots were considered correct. However, this automatic evaluation
had two flaws:

1. The number of Arabic roots in ALPNET’s inventory is only 4,500 roots while
the number of roots used by Sebawai is more than 10,000. This could lead to
false negatives in the evaluation.

 Manual Processing

Adapting Morphology for Arabic Information Retrieval 255

2. ALPNET often under-analyzes. For example the word fy – could be the
particle fy – or could be a stem with the root fyy – . ALPNET only
generates the particle fy – . This also could lead to false negatives.

Therefore manual examination of rejected analyses was necessary. However, due
to the large number of rejected analyses, 100 rejected analyses from the automatic
evaluation were randomly selected for examination to estimate the shortfall of the
automatic evaluation. Of the 100 rejected roots, 46 were correct and 54 were in-
correct. Figure 13.2 and Table 13.8 present a summary of the results.

For the LDC-Fail list, Sebawai analyzed 128,169 (43.9%) words out of 292,216
words. To verify the correctness of Sebawai’s analyses, 100 analyses were taken
at random from the list for manual examination. Of the 100 analyses, 47 were ac-
tually analyzed correctly. Extrapolating from the results of the manual examina-
tion, Sebawai successfully analyzed approximately 21% of the words in the LDC-
Fail list. Table 13.9 presents a summary of the results.

% correct
0

10

20

30

40

50

60

70

80

90

100

Automatic
Evaluation

Manual
Evaluation

Fig. 13.2. A summary of the results for the correctness of Sebawai's analysis

 Table 13.8. A summary of the results for the correctness of Sebawai's analysis

No. of Words No. of Failures No. Correct – Automatic
Evaluation

No. Correct – Manual
Evaluation

9, 606 112 (1.2%) 8,206 (86.4) 8,800 (92.7%)

Table 13.9. Summary of the results for the LDC-Fail list

No. of Words No. of Analyzed Words Estimate of Correctly Analyzed

292216 128,169 (43.9%) 58,000 (21%)

256 Darwish and Oard

The evaluation clearly shows the effectiveness of Sebawai in achieving its two
primary goals. Namely, Sebawai provides ranking to the possible analysis and ex-
pands the coverage beyond ALPNET. For words that ALPNET was able to ana-
lyze, Sebawai ranked the correct analysis first for nearly 93% of the words. Fur-
ther, the analyzer was able to correctly analyze 21% of the words that ALPNET
was unable to analyze. Also, due to the fact that prefixes, suffixes, and templates
were derived automatically, Sebawai was developed very rapidly.

13.3.6 Shortcomings of Sebawai

Since analysis is restricted to a choice from a fixed set of roots, Sebawai does not
stem Arabized words and named entities. For example, the English word Britain is
transliterated as bryTAnyA – . From bryTAnyA – , some of the
words that can be generated are bryTAny – (British), AlbryTAny –
(the British), and AlbryTAnyyn – (Englishmen). Sebawai is unable to
analyze 1-letter Arabic words, which have 3-letter roots. For example, the word q
– means “protect (in the form of command).” Since they are very rare, they may
not appear in the training set. Sebawai is unable to analyze individual Arabic
words that constitute complete sentences. For example, the word AnlzmkmwhA –

 means “will we forcefully bind you to it?” These also are rare and may
not appear in a training set.

13.4 Light Stemming

To build the light stemmer, Al-Stem, the lists of prefixes and suffixes generated in
the process of training Sebawai and their corresponding probabilities were exam-
ined. If a prefix or a suffix had a probability of being an affix above 0.5, it was
considered a candidate for building Al-Stem. The list of prefix and suffix can-
didates was manually examined in consultation with Leah Larkey from the Uni-
versity of Massachusetts at Amherst and some of the affixes were removed based
on intuition and knowledge of Arabic.

The final lists of prefixes and suffixes are as follows:

• Prefixes: wAl – , fAl – , bAl – , bt – , yt – , lt – , mt – , wt –
, st – , nt – , bm – , lm – , wm – , km – , fm – , Al – , ll – , wy

– , ly – , sy – , fy – , wA – , fA – , lA – , and bA – .

• Suffixes: At – , wA – , wn – , wh – , An – , ty – , th – , tm – ,
km – , hm – , hn – , hA – , y – , tk – , nA – , yn – , yh – , – , h
– , y – , A – .

Since the result of light stemming may or not be a real stem, no effort was made to
evaluate the correctness of the stemming.

Adapting Morphology for Arabic Information Retrieval 257

13.5 Evaluating Sebawai and Al-Stem in IR

IR experiments were done on the LDC LDC2001T55 collection, which was used
in the Text REtrieval Conference (TREC) 2002 cross-language track. For brevity,
the collection is referred to as the TREC collection. The collection contains
383,872 articles from the Agence France Press (AFP) Arabic newswire. Fifty top-
ics were developed cooperatively by the LDC and the National Institute of Stan-
dards and Technology (NIST), and relevance judgments were developed at the
LDC by manually judging a pool of documents obtained from combining the top
100 documents from all the runs submitted by the participating teams to TREC’s
cross-language track in 2002. The number of known relevant documents ranges
from 10 to 523, with an average of 118 relevant documents per topic (Oard &
Gey, 2002). This is presently the best available large Arabic information retrieval
test collection. The TREC topic descriptions include a title field that briefly names
the topic, a description field that usually consists of a single sentence description,
and a narrative field that is intended to contain any information that would be
needed by a human judge to accurately assess the relevance of a document (Gey &
Oard, 2001). Two types of queries were formed from the TREC topics:

a. The title and description fields (td). This is intended to model the sort of
statement that a searcher might initially make when asking an intermediary
such as a librarian for help.

b. The title field only (t). The title field in recent TREC collections is typically
designed as a model for Web queries, which typically contain only 2 or 3
words.

Experiments were performed for each query length with the following index
terms:

 w: words.
 ls: lightly stemmed words, obtained using Al-Stem.
 Two ways of obtaining stems:

o s: top stem found by the Sebawai morphological analyzer (Darwish,
2002).

o s-ma: top ranking stem found by Sebawai, produced also by ALPNET
(Beesley, 1996; Beesley et al., 1989), if ALPNET produced an analysis;
otherwise the top stem found by Sebawai. Recall that for words that it
can analyze, ALPNET produces an unranked set of analyses, but it fails
to produce an analysis more often than Sebawai.

 Two ways of obtaining roots:
o r: top root found by the Sebawai morphological analyzer (Darwish,

2002).
o r-ma: top ranking root found by Sebawai, produced also by ALPNET, if

ALPNET produced an analysis; otherwise the top root found by Sebawai.

258 Darwish and Oard

For the experiments, a vector space model information retrieval system called PSE
that uses the Okapi BM-25 term weights was used (Robertson & Sparck Jones,
1997). To observe the effect of alternate indexing terms mean uninterpolated aver-
age precision was used as the measure of retrieval effectiveness. To determine if
the difference between results was statistically significant, a Wilcoxon signed-rank
test, which is a nonparametric significance test for correlated samples, was used
with p values less than or equal to 0.05 to claim significance.

Figure 13.3 summarizes the results of these runs, and Tables 13.10 and 13.11
present the statistical significance test results for the t and td queries respectively.
These results indicate that light stems did not only statistically significantly yield
better results than words, but light stems yielded better results than stems and
roots. Also, filtering Sebawai’s candidates using ALPNET hurt retrieval consid-
erably. This could be due to ALPNET frequently producing analyses that did not
include Sebawai’s top ranked analysis and thus randomizing the choice of analysis
to the detriment of retrieval effectiveness. Recall that ALPNET produces analysis
in random order. As indicated earlier, some early work with small test collections
(Al-Kharashi & Evens, 1994; Hmeidi et al., 1997) suggested that roots were a bet-
ter choice than stems, but the experiments presented here found just the opposite.
One possible explanation for this is that earlier test collections contained at most a few
hundred documents, and scaling up the size of the collection by several orders of mag-
nitude might reward the choice of less ambiguous terms. An alternative explanation is
that Sebawai’s morphological analysis might not be sufficiently accurate.

w s s-ma r r-ma ls
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

td

Index Terms

M
ea

n
A

vg
. p

re
ci

si
on

Fig. 13.3. Comparing index terms on the TREC collection for title only (t) and title+
description queries

Adapting Morphology for Arabic Information Retrieval 259

Table 13.10. Comparing index terms using title only
queries on the TREC collection using the p values of
the Wilcoxon signed-ranked test – the cell is shaded if
difference is statistically significant

w S r ls

 0.24 0.39 0 w

 0.01 0 s

 0 r

 ls

Table 13.11. Comparing index terms using title+
description queries on the TREC collection using the p
values of the Wilcoxon signed-ranked test – the cell is
shaded if difference is statistically significant

w s r ls

 0.92 0.38 0 w

 0.02 0 s

 0 r

 ls

13.6 Conclusion

This chapter presented an adaptation of existing Arabic morphological analysis
techniques to make them suitable for the requirements of IR applications by lever-
aging corpus statistics. As a result of the adaptation, Sebawai, a new freely distri-
butable Arabic morphological analyzer, and Al-Stem, an Arabic light stemmer
were constructed. Al-Stem was used extensively by many research groups for
comparative Arabic IR evaluations (Chen & Gey, 2002; Darwish & Oard 2002a;
Fraser et al., 2002; Larkey

 et al., 2002; Oard & Gey, 2002).
The morphological analysis techniques described here could benefit from better

word models that incorporate statistics on legal prefix-suffix combination (cur-
rently Sebawai assumes independence between prefixes and suffixes) and sen-
tence level models that incorporate context to improve ranking. All these tech-
niques can potentially be used in developing morphological analyzers for other
morphologically similar languages such as Hebrew.

260 Darwish and Oard

References

Abdul-Al-Aal, A. (1987). An-Nahw Ashamil. Cairo, Egypt: Maktabat Annahda Al-Masriya.
Abu-Salem, H., Al-Omari, M. & Evens, M. (1999). Stemming Methodologies Over Indi-

vidual Query Words for Arabic Information Retrieval. Journal of the American Society
for Information Science and Technology, 50(6), 524–529.

Ahmed, M. (2000). A Large-Scale Computational Processor of Arabic Morphology and
Applications. Faculty of Engineering, Cairo University, Cairo, Egypt.

Aljlayl, M., Beitzel, S., Jensen, E., Chowdhury, A., Holmes, D., Lee, M., Grossman, D. &
Frieder, O (2001). IIT at TREC-10. In Proceedings of the Tenth Text REtrieval Con-
ference (pp.265–274), Gaithersburg, MD. http://trec.nist.gov/pubs/trec10/papers/IIT-
TREC10.pdf

Al-Kharashi, I. & Evens, M. (1994). Comparing Words, Stems, and Roots as Index Terms
in an Arabic Information Retrieval System. Journal of the American Society for Infor-
mation Science and Technology, 45(8), 548–560.

Antworth, E. (1990). PC-KIMMO: a two-level processor for morphological analysis. In
Occasional Publications in Academic Computing. Dallas, TX: Summer Institute of
Linguistics.

Beesley, K. (1996). Arabic Finite-State Morphological Analysis and Generation. In Pro-
ceedings of the International Conference on Computational Linguistics (COLING-96,
vol. 1, pp. 89–94).

Beesley, K., Buckwalter, T. & Newton, S. (1989). Two-Level Finite-State Analysis of
Arabic Morphology. In Proceedings of the Seminar on Bilingual Computing in Arabic
and English, Cambridge, England.

Chen, A. & Gey, F. (2001). Translation Term Weighting and Combining Translation Re-
sources in Cross-Language Retrieval. In Proceedings of the Tenth Text REtrieval Con-
ference (pp. 529–533), Gaithersburg, MD. http://trec.nist.gov/pubs/trec10/papers/
berkeley_trec10.pdf

Chen, A. & Gey, F. (2002). Building an Arabic Stemmer for Information Retrieval. In Pro-
ceedings of the Eleventh Text REtrieval Conference, Gaithersburg, MD.
http://trec.nist.gov/pubs/trec11/papers/ucalberkeley.chen.pdf

Darwish, K. (2002). Building a Shallow Arabic Morphological Analyzer in One Day. In
Proceedings of the ACL Workshop on Computational Approaches to Semitic Lan-
guages (pp. 1–8). Philadelphia, PA.

Darwish, K. & Oard, D. (2002a). CLIR Experiments at Maryland for TREC 2002: Evi-
dence Combination for Arabic-English Retrieval. In Proceedings of the Eleventh Text
REtrieval Conference, Gaithersburg, MD. http://trec.nist.gov/pubs/trec11/papers/
umd.darwish.pdf

Darwish, K. & Oard, D. (2002b). Term Selection for Searching Printed Arabic. In Proceed-
ings of the Special Interest Group on Information Retrieval Conference (SIGIR, pp.
261–268), Tampere, Finland.

Fraser, A., Xu, J. & Weischedel, R. (2002). TREC 2002 Cross-lingual Retrieval at BBN. In
Proceedings of the Eleventh Text REtrieval Conference, Gaithersburg, MD.
http://trec.nist.gov/pubs/trec11/papers/bbn.xu.cross.pdf

Gey, F. & Oard, D. (2001). The TREC-2001 Cross-Language Information Retrieval Track:
Searching Arabic Using English, French or Arabic Queries. In Proceedings of the
Tenth Text REtrieval Conference, Gaithersburg, MD. http://trec.nist.gov/pubs/trec10/
papers/clirtrack.pdf

Goldsmith, J. (2000). Unsupervised Learning of the Morphology of a Natural Language.
Retrieved from http://humanities.uchicago.edu/faculty/goldsmith/

Adapting Morphology for Arabic Information Retrieval 261

Graff, D. & Walker, K. (2001). Arabic Newswire Part 1. Linguistic Data Consortium,
Philadelphia. LDC catalog number LDC2001T55 and ISBN 1-58563-190-6.

Hmeidi, I., Kanaan, G. & Evens, M. (1997). Design and Implementation of Automatic In-
dexing for Information Retrieval with Arabic Documents. Journal of the American So-
ciety for Information Science and Technology, 48(10), 867–881.

Ibn Manzour (2006). Lisan Al-Arab. Retrieved from http://www.muhaddith.org/
Jurafsky, D. & Martin, J. (2000). Speech and Language Processing. Saddle River, NJ:

Prentice Hall.
Kiraz, G. (1998). Arabic Computational Morphology in the West. In Proceedings of The

6th International Conference and Exhibition on Multi-lingual Computing, Cambridge.
Koskenniemi, K. (1983). Two Level Morphology: A General Computational Model for

Word-form Recognition and Production. Department of General Linguistics, Univer-
sity of Helsinki.

Larkey, L., Allen, J., Connell, M. E., Bolivar, A. & Wade, C. (2002). UMass at TREC-
2002: Cross Language and Novelty Tracks. In Proceedings of the Eleventh Text RE-
trieval Conference, Gaithersburg, MD. http://trec.nist.gov/pubs/trec11/papers/
umass.wade.pdf

Larkey, L., Ballesteros, L. & Connell, M. (2002). Improving Stemming for Arabic Informa-
tion Retrieval: Light Stemming and Co-occurrence Analysis. In Proceedings of the
Special Interest Group on Information Retrieval (SIGIR, pp. 275–282), Tampere,
Finland.

Mayfield, J., McNamee, P., Costello, C., Piatko, C. & Banerjee, A. (2001). JHU/APL at
TREC 2001: Experiments in Filtering and in Arabic, Video, and Web Retrieval. In
Proceedings of the Tenth Text REtrieval Conference, Gaithersburg, MD.
http://trec.nist.gov/pubs/trec10/papers/jhuapl01.pdf

Oard, D. & Gey, F. (2002). The TREC 2002 Arabic/English CLIR Track. In Proceedings of
the Eleventh Text REtrieval Conference, Gaithersburg, MD. http://trec.nist.gov/
pubs/trec11/papers/OVERVIEW.gey.ps.gz

Robertson, S. & Sparck Jones, K. (1997). Simple Proven Approaches to Text Retrieval.
Cambridge University Computer Laboratory.

Xu, J., Fraser, A. & Weischedel, R. (2001). Cross-Lingual Retrieval at BBN. In Proceed-
ings of the Tenth Text REtrieval Conference (pp. 68–75), Gaithersburg, MD.
http://trec.nist.gov/pubs/trec10/papers/BBNTREC2001.pdf

262 Darwish and Oard

14

Arabic Morphological Representations
for Machine Translation

Nizar Habash
Center for Computational Learning Systems, Columbia University
habash@cs.columbia.edu

Abstract: Arabic has a very rich morphology characterized by a combination of templatic and
affixational morphemes, complex morphological rules, and a rich feature system. This
complexity makes working with Arabic as a source of target language in machine trans-
lation (MT) a challenge for two reasons. First, it is not clear what the right representation is
for two reasons. First, it is not clear what the right representation is for Arabic words given
a specific MT approach or system. And secondly, there are many MT-relevant resources for
Arabic morphology, lexicography and syntax (e.g., morphological analyzers, dictionaries
and treebanks) that adopt various representations that are not necessarily compatible with
each other. The result is that for MT researchers, there is a need to experiment with and
to relate multiple representations used by different resources or components to each other
within a single system. In this chapter, we describe different Arabic morphological repre-
sentations used by MT-relevant natural language processing resources and tools and we
discuss their usability in different MT approaches. We also present a common framework
for relating different levels of representations to each other

14.1 Introduction

Arabic has a very rich morphology characterized by a combination of templatic and
affixational morphemes, complex morphological rules, and a rich feature system.
This complexity makes working with Arabic as a source or target language in
Machine Translation (MT) a challenge for two reasons. First, it is not clear what the
right representation is for Arabic words given a specific MT approach or system. It is
not even clear whether the same representation is optimal for every component in an
MT system, e.g., word alignment versus decoding in statistical MT or parsing versus
structural transfer in symbolic MT. Secondly, there are many MT-relevant resources
for Arabic morphology, lexicography and syntax (e.g., morphological analyzers,
dictionaries and treebanks) that adopt various representations that are not necessarily
compatible with each other. For example, dictionaries use the notion of a lexeme
that is different from the root/pattern/vocalism and stem/affix representations used
by many morphological analyzers. And statistical parsers can be content with a

263

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology, 263–285.
C© 2007 Springer.

264 Habash

minimally tokenized inflected undiacritized word as the proper level of represen-
tation for Arabic, which is different from input text and also potentially different
from later processing steps. The result is that for MT researchers, there is a need to
experiment with and to relate multiple representations used by different resources or
components to each other within a single system. This challenge has different impli-
cations for research in statistical MT, symbolic MT or hybrid approaches to MT.

In this chapter, we describe different Arabic morphological representations used by
MT-relevant Natural Language Processing (NLP) resources and tools and we discuss
their usability in different MT approaches. We also present a common framework
for relating different levels of representations to each other. We motivate the lexeme-
and-feature level of representation as a common representation to analyze to. From
that representation, we can regenerate to other desirable shallower representation.
This framework allows for easy navigation between representations used by different
resources. It also allows for exploring the effect of using different representations in
MT. The interaction between analysis and generation makes this framework direction-
independent, i.e., useful for working with Arabic as a source or target MT language.
Finally, we describe and evaluate ALMORGEANA, a large-scale system for analysis
and generation from/to the lexeme-and-featurerepresentation. We also discuss how to
use it to relate different morphological representations for Arabic.

Section 14.2 introduces different representations in Arabic morphology.1

Section 14.3 discusses the role of morphological representations in different
approaches to MT. Section 14.4 and Section 14.5 describe ALMORGEANA and
how it can be used for navigating among different morphological representations,
respectively.

14.2 Representations of Arabic Morphology

In discussing representations of Arabic morphology, it is important to separate two
different aspects of morphemes: type versus function. Morpheme type refers to the
different formal kinds of morphemes and their interactions with each other. A distin-
guishing feature of Arabic (in fact, Semitic) morphology is the presence of templatic
morphemes in addition to affixational morphemes. Morpheme function refers to the
distinction between derivational morphology and inflectional morphology. These
two aspects, type and function, are independent, i.e., a morpheme type does not
determine its function and vice versa. This independence complicates the task of
deciding on the proper representation of morphology in different NLP resources
and tools. This section introduces these two aspects and their interactions in more
detail.

1 Additional discussions of Arabic morphological phenomena are presented in Chapter 3
and in the four chapters in Part 2 of this book. See Chapter 15 for a discussion of Arabic
generation in the context of MT.

Arabic Morphological Representations for Machine Translation 265

14.2.1 Morpheme Type: Templatic vs. Affixational

Arabic has three categories of morphemes: templatic morphemes, affixational
morphemes, and Non-Templatic Word Stems (NTWS). Templatic morphemes come
in three types that are equally needed to create a templatic word stem: roots, patterns
and vocalisms. The root morpheme is a sequence of three, four or five consonants
(termed radicals) that signifies some abstract meaning shared by all its derivations.
For example, the words ��

���
�
� katab ‘to write’, �� ��� 	

�

 kaAtib ‘writer’, and �� ���

�
���

maktuwb ‘written’ all share the root morpheme (�� ���) ktb ‘writing-related’. The

pattern morpheme is an abstract template in which roots and vocalisms are inserted.2

For example, the verbal pattern tV1V22V3 indicates that a non-root consonant (t) is
added and that the second root radical is doubled. The vocalism morpheme specifies
which vowels to use with a pattern. A word stem is constructed by interleaving a
root, a pattern and a vocalism. For example, the word stem ��

���
�
� katab ‘to write’ is

constructed from the root �� ��� ktb, the pattern 1V2V3 and the vocalism aa.

Arabic affixes can be prefixes such as +� �� sa+ ‘will/[future]’, suffixes such as
�����+ +uwna ‘[masculine plural]’ or circumfixes such as ����++���� ta++na ‘[subject
imperfective 2nd person feminine plural]’. Some of the affixes are clitics, such as
the conjunction + �� wa+ ‘and’, the preposition (+��� li+ ‘to/for’, and the pronominal

object/possessive clitics (e.g. 	 ��+ +haA ‘her/it/its’). Others are bound morphemes.
Finally, NTWS are word stems that are not derivable from templatic morphemes.

They tend to be foreign names (e.g., �� ��� ��� � �� waAšinTun ‘Washington’).
An Arabic word is constructed by first creating a word stem from templatic

morphemes or using a NTWS, to which affixational morphemes are then added. For
example, the word 	��������

��
�
���� �� �� wasayaktubuwnahaA has two prefixes, one circumfix

and one suffix in addition to a root, a pattern and a vocalism:

(1) wa+
and+

sa+
will+

y+
3rd+

[ktb+V12V3+au]
write

+uwna
+plural

+haA
+it

‘And they will write it’

The process of combining morphemes can involve a number of phonological,
morphological and orthographic rules that modify the form of the created word;
it is not always a simple interleaving and concatenation of its morphemic compo-
nents. One example is the feminine morpheme,

� + +� (ta marbuta), which is

turned into ��+ +t when followed by a possessive clitic: ! �+
� �"#���

�$
� Âamiyra�u+hum

‘princess+their’ is realized as !��� �"#���
�$
� Âamiyratuhum ‘their princess’. Another

example is the deletion of the Alif (�) of the definite article +�� � Al+ when preceded

2 In this chapter, numbers, (1, 2, 3, 4, or 5), are used in a pattern to indicate radical position
as opposed to the common practice in the literature of using the symbol C. The symbol V
is used to indicate a vocalism position.

266 Habash

by the preposition +��� l+ ‘for’. For example, ��%����+�� �+��� li+Al+bayt ‘for+the+house’

is realized as ��%���� &�� lilbayt ‘for the house’. These rules clearly complicate the process
of analyzing and generating Arabic words.

14.2.2 Morpheme Function: Derivational vs. Inflectional

The distinction between derivational and inflectional morphology in Arabic is similar
to that in other languages. Derivational morphology is concerned with creating new
words from other words, a process in which the core meaning of the word is modified.
For example, the Arabic �� ��� 	

�

 kaAtib ‘writer’ can be seen as derived from the root

�� ��� ktb the same way the English writer can be seen as a derivation from write.
Although compositional aspects of derivations do exist, the derived meaning is often
idiosyncratic. For example, the masculine noun ��

���
�
��� maktab ‘office/bureau/agency’

and the feminine noun
�'���

���
�
��� maktaba� ‘library/bookstore’ are derived from the

root �� ��� ktb ‘writing-related’ with the pattern+vocalism ma12a3, which indicates
location. The exact type of the location is thus idiosyncratic, and it is not clear how
the nominal gender difference can account for the semantic difference.

On the other hand, in inflectional morphology, the core meaning of the word
remains intact and the extensions are always predictable. For example, the semantic

relationship between �� ��� 	
�

 kaAtib ‘writer’ and �� 	

�(��

� kut∼aAb ‘writers’ maintains the

sense of the kind of person described, but only varies the number. The change in
number in this example is accomplished using templatic morphemes (pattern and
vocalism change). This form of plural construction in Arabic is often called “broken
plural” to distinguish it from the strictly affixational “sound plural” (e.g. ���+�� ��� 	

�

kaAtib+aAt ‘writers [fem]’).
Broken plurals are one example highlighting the independence of morpheme type

from morpheme function: templatic morphemes can be derivational or inflectional,
with the exception of the roots, which are always derivational. Similarly, the majority
of affixational morphemes are inflectional but there are some affixational derivational
morphemes: the adjective ()�*��

��

� kutubiy∼ ‘book-related’ is derived from the noun ��

��

�

kutub ‘books’ using the affix (+� ��+ +iy∼.

14.2.3 Arabic Morphological Representations

Given the variability in the relationship between morpheme type and function
in addition to the presence of phonological, morphological, and orthographic
adjustment phenomena, there are many ways to represent Arabic words in terms of
their morphological units. Table 14.1 illustrates some of these possible representa-
tions using the example , !��

�-�
���
���
�
��� �� walikatabatihim? ‘and for their writers?’.

There are many variations among these different representations: (a.) whether
they address inflectional/derivational phenomena, templatic/affixational phenomena

Arabic Morphological Representations for Machine Translation 267

Table 14.1. Morphological representations of Arabic words

Representation Example Found where?

Natural Token wlktbthm? naturally occurring text
Simple Token wlktbthm ? common preprocessing

for NLP [29]
Segmentation wl+ ktb +thm ? [11, 12]

w+ l+ ktbt +hm ? [51, 21]
w+ l+ ktb +t +hm ? [40, 39]

Normalized Segmentation w+ l+ ktb� +hm ? Penn Arab Treebank
[41, 29]

w+ l+ ktb +� +hm ? [59, 29]
Templatic Segmentation w+ l+ ktb+1V2V3a�+aa

+hm ?
[33]

Morphemes and Features w+/CONJ l+/PREP
kataba� +hm/P:3MP ?

[6, 11, 12, 29]

ktb&CaCaCa� w+ l+
+P:3MP ?
ktb +PL w+ l+ +GEN
+P:3MP ?

Lexeme and Features [kAtib w+ l+ PL P:3MP]
[?]

ALMORGEANA, [27],
dictionaries (lexeme
only)

or both, (b.) whether they preserve or resolve ambiguity,3 and (c.) which degree
of abstraction from allomorphs (actual form of morpheme after applying various
adjustment rules) they use. And since any subset (or all) of the morphemes can be
separated from the word and/or be normalized, there is a very large space of possible
specific representations to select from.

The natural token refers to the way Arabic words appear in actual text where they
are undiacritized and segmented only using white space. Punctuations, for example,
could be attached to the word string in this representation. All naturally occurring
Arabic text is in this representation. Simple tokenization separates punctuation but
maintains the morphological complexity of the Arabic word tokens. There is no
change in ambiguity compared to the natural token.

Segmentation is the simplest way to dissect an Arabic word. It is strictly defined
here to exclude any form of orthographic, morphological or phonological normal-
ization. Segmentation splits up the letters into segments that correspond to clusters
of a stem plus one or more affixational morphemes. There are many ways to segment
an Arabic word as Table 14.1 shows. Segmentation can select a subset of analyses of
a word. For example, segmenting

�' ��.� &� lljn� into l+l+jn� (li+l+jan∼a� ‘to Paradise’

3 This discussion does not address the issue of morphological disambiguation, which is
outside the scope of this chapter [26, 54, 30].

268 Habash

or li+l+jin∼a� ‘to insanity/mania’) is selecting a subset of analyses excluding l+ljn�
(li+lajna� ‘to a committee’ or li+l∼ajna� ‘to the committee’).

Normalized segmentation abstracts away from some of the adjustment phenomena
discussed earlier. In the example in Table 14.1, the form of the segmented word
stem is ktb� not ktbt. Normalization disambiguates the unnormalized segmented
form ktbt (‘he/she/you[sg.] wrote’ or ‘writers’). The Penn Arabic Treebank [41] uses
a normalized segmentation that breaks up a word into four regions: conjunction,
particle, normalized word stem and pronominal clitic.

Templatic segmentation is a deeper level of segmentation that involves normal-
ization by definition. Here, the root, pattern and vocalism are separated. Up to
this level of representation, the tokens are driven by a templatic/affixational view
of morphology rather than a derivational/inflectional view. The introduction of
features at the next level of representation, morphemes and features, abstracts away
from different morphemes that at an underlying level signify the same feature.
For example, The affixational morphemes

�����++��� y++uwna, ���++��� y++uwA and

���+ +uwA all realize the third person masculine plural subject for different verb
aspect/mood combinations. There are many different degrees to the transition from
morphemes to features. A combination of both is often used.

The final representation is lexeme and features. The lexeme can be defined as an
abstraction over a set of word forms differing only in inflectional morphology. The
lexeme itself captures a specific meaning that does not change with inflectional varia-
tions. The traditional citation form of a lexeme used in dictionaries is the perfective
third person masculine singular for verbs and the singular masculine form for nouns
and adjectives. If there is no masculine form, the feminine singular is used. As such,
the Lexeme [�� ��� 	

�

] [kaAtib] ‘writer’ normalizes over all the different inflectional

forms of �� ��� 	
�

 kaAtib such as ��	��� ��� 	

�

 kaAtibaAn ‘two writers’,

�'���
���
�
� kataba� ‘writers’,

and
�'��� ��� 	

�

 kaAtiba� ‘female writer’. Lexemes as opposed to stems provide a desirable

level of abstraction that is to a certain degree language independent for applications
such as MT. Lexemes are also less abstract than roots and patterns which tend to be
too vague semantically and derivationally unpredictable, making them less useful in
practice for MT.

The next section discusses how these different levels of representation interact
with different MT approaches.

14.3 Morphological Representations for Machine Translation

In statistical approaches to MT, a translation model is trained on word-aligned [46]
parallel text of source and target languages [9, 10, 35, 37, 36]. The translation
model is then used to generate multiple target language hypotheses from the source
language input. The target hypotheses are typically ranked using a log-linear combi-
nation of a variety of features [45]. Statistical MT has been quite successful in

Arabic Morphological Representations for Machine Translation 269

producing good quality4 MT on the genre it is trained on in much faster time than
symbolic approaches. For statistical MT, in principle, it doesn’t matter what level
of morphological representation is used as long as the input is on the same level as
the data used in training. Practically however there are certain concerns with issues
such as sparsity, ambiguity, language-pair differences in morphological complexity,
and training-data size. Shallower representations such as simple tokenization tend
to maintain distinctions among morphological forms that might not be relevant for
translation, thus increasing the sparsity of the data. This point interacts with the
MT language pair: for example, normalizing subject inflections of Arabic verbs
when translating to a morphologically poor language like English might be desirable
since it reduces sparsity without potentially affecting translation quality. If the target
language is morphologically rich, such as French, that would not be the case. This,
of course, may not be a problem when large amounts of training data are available.
Additionally, transforming the training text to deeper representations comes at a
cost since selecting a deeper representation involves some degree of morphological
disambiguation, a task that is typically neither cheap nor foolproof [26].

The anecdotal intuition in the field of statistical MT is that reduction of morpho-
logical sparsity often improves translation quality. This reduction can be achieved
by increasing training data or via morphologically-driven preprocessing [22]. Recent
investigations of the effect of morphology on MT quality focused on morphologi-
cally rich languages such as Catalan [49], Czech [22], German [43], Serbian [49] and
Spanish [34, 49]. These studies examined the effects of various kinds of tokenization,
lemmatization and part-of-speech (POS) tagging and showed a positive effect on MT
quality.

Specifically forArabic,Lee [39] investigated theuseofautomaticalignmentofPOS-
tagged English and affix-stem segmented Arabic to determine appropriate tokeniza-
tions of Arabic. Her results show that morphological preprocessing helps but only for
the smaller corpora sizes she investigated. As size increases, the benefits diminish.
Habash and Sadat [29, 52] reached similar conclusions on a much larger set of experi-
ments including multiple preprocessing schemes reflecting different levels of morpho-
logical representation and multiple techniques for disambiguation/tokenization.
Two of their techniques used the ALMORGEANA system described later in this
chapter. They showed that specific preprocessing decisions can have a positive
effect when decoding text with a different genre than that of the training data (in
essence another form of data sparsity). They also demonstrated gains in MT quality
through combination of different preprocessing schemes. Additional similar results
were reported using specific preprocessing schemes and techniques [59, 51, 21, 44].

Research in the use of different morphological representations of Arabic in
Example-based MT, a corpus-based approach related to statistical MT [55, 14], is
promising, at least in terms of improved coverage of training examples [48].

4 The question of how to judge the quality of MT, i.e., MT Evaluation, is outside the scope of
this chapter. Currently, the most accepted yet still controversial approaches are automatic,
e.g., BLEU [47, 13] and METEOR [5].

270 Habash

Finally, the newest addition to research on morphology within phrase-based statis-
tical MT is Moses, a decoder for factored [8] phrase-based translation models. Moses
allows using a mix of different levels of morphological representation.5 At the time of
writing this chapter, no work on Arabic factored translation models have been done.

In symbolic approaches to MT, such as transfer-based or interlingual MT, linguis-
tically motivated rules (morphological, syntactic and/or semantic) are manually
or semi-automatically constructed to create a system that translates the source
language into the target language [20]. Symbolic MT approaches tend to capture
more abstract generalities about the languages they translate between compared
to statistical MT. This comes at a cost of being more complex than statistical
MT, involving more human effort, and depending on already existing resources for
morphological analysis and parsing. This dependence on already existing resources
highlights the problem of variation in morphological representations for Arabic. In
a typical situation, the input/output text of an MT system is in natural or simplified
tokenization. But, a statistical parser (such as [16] or [7]) trained out-of-the-box on
the Penn Arabic Treebank assumes the same kind of tokenization (4-way normalized
segments) used by the treebank. This means that a separate tokenizer is needed
to convert input text to this representation [19, 26]. Moreover, the output of such
a parser, being in normalized segmentation, will not contain morphological infor-
mation such as features or lexemes that are important for translation: Arabic-English
dictionaries use lexemes and proper translation of features, such as number and
tense, requires access to these features in both source and target languages. As a
result, additional conversion is needed to relate the normalized segmentation to the
lexeme and feature levels. Of course, in principle, the treebank and parser could be
modified to be at the desired level of representation (i.e., lexeme and features). But
this can be a rather involved task for researchers interested in MT. We are aware of
the following published research on Arabic symbolic MT: [4, 53] (within the transfer
approach) and [58, 56, 1] (within the interlingua approach). Given the inhibiting
costs of building large scale symbolic MT system, they tend to be developed by
commercial institutions, which are less inclined to publicize their trade secrets.6

Finally, the current hybridization direction in the field of MT is interested in
exploring statistical and symbolic combinations of resources and tools within and
beyond the level of morphology. Some hybrids rooted in statistical MT include
syntactic information as part of the preprocessing phase [17], the decoding phase [50]
or the n-best rescoring phase [45]. Such approaches will share challenges relevant to
both statistical and symbolic MT when extended to Arabic. A detailed discussion of
such challenges are presented in the context of extending a Generation Heavy MT
system, a hybrid approach rooted in symbolic MT [23], to Arabic [25].

5 Moses was developed during the 2006 summer workshop at Johns Hopkins University as
an enhancement to Pharaoh [36]. See http://www.clsp.jhu.edu/ws2006/groups/ossmt/ and
http://www.statmt.org/moses/ for more details.

6 Two of the top Arabic MT companies using rule-based MT systems are Apptek
(http://www.apptek.com/) and Sakhr (http://www.sakhr.com/).

Arabic Morphological Representations for Machine Translation 271

In the next section, we describe ALMORGEANA (Arabic Lexeme-base MORpho-
logical GEnerator/ANAlyzer). ALMORGEANA is a morphological analysis and
generation system built on top of the Buckwalter analyzer databases, which are
at a different level of representation (3-way segmentation). Being an analysis and
generation system, it can be used with MT systems analyzing or generating Arabic.
ALMORGEANA relates the deepest level of representation (lexeme and features)
to the shallowest (simple tokenization).7 This wide range together with bidirec-
tionality (analysis/generation) allows using ALMORGEANA to navigate between
different levels of representations as will be discussed in Section 14.5. Morphological
disambiguation, or the selection of an analysis from a list of possible analyses, is a
different task that is out of the scope of this chapter although it is quite relevant to
MT [26, 54, 30].

14.4 ALMORGEANA

ALMORGEANA is a large-scale lexeme-based Arabic morphological analysis and
generation system.8 ALMORGEANA uses the databases of the Buckwalter Arabic
morphological analysis system with a different engine focused on generation
from and analysis to the lexeme-and-feature level of representation. The building
of ALMORGEANA didn’t just involve the reversal of the Buckwalter analyzer
engine, which only focuses on analysis, but also extending it and its databases
to be used in a lexeme-and-feature level of representation for both analysis and
generation.

The next section reviews other efforts on morphological analysis and generation
in Arabic. Section 14.4.2 introduces the Buckwalter analyzer’s database and engine.
Section 14.4.3 describes the different components of ALMORGEANA. An evaluation
of ALMORGEANA is discussed in Section 14.4.4.

14.4.1 Morphological Analysis and Generation

Arabic morphological analysis has been the focus of researchers in natural language
processing for a long time. This is due to features of Arabic Semitic morphology
such as optional diacritization and templatic morphology. Numerous forms of
morphological analyzers have been built for a wide range of application areas from
Information Retrieval (IR) to MT in a variety of linguistic theoretical contexts
[3, 2, 6, 11, 12, 18, 33, 27].

Arabic morphological generation, by comparison, has received little attention
although the types of problems in generation can be as complex as in analysis.

7 Going to natural tokenization is a trivial step where, for example, punctuation marks are
attached to preceding words.

8 A previous publication about ALMORGEANA focused on the generation component of the
system which was named Aragen [24].

272 Habash

Finite-State Transducer (FST) approaches to morphology [38] and their exten-
sions for Arabic such as the Xerox Arabic analyzer [6] are attractive for being
generative models. However, a major hurdle to their usability is that lexical and
surface levels are very close [32]. Thus, generation from the lexical level is not
useful to many applications such as symbolic MT where the input to a generation
component is typically a lexeme with a feature list. A solution to this problem
was proposed by [32], which involved composition of multiple FSTs that convert
input from a deep level of representation to the lexical level. However, there
are still many restrictions on the order of elements presented as input and their
compatibility.9 The MAGEAD (Morphological Analysis and Generation for Arabic
and its Dialects) system attempts to design an end-to-end lexeme-and-features to
surface FST-based system for Arabic [28]. As of the time of the writing of this
chapter, MAGEAD’s coverage is limited to verbs in Modern Standard Arabic
and Levantine Arabic. The only work on Arabic morphological generation that
focuses on generation issues within a lexeme-based approach is done by [15, 57].
Their work uses transformational rules to address the issue of stem change in
various prefix/suffix contexts. Their system is a prototype that lacks in large-scale
coverage.

There are certain desiderata that are expected from a morphological
analysis/generation system for any language. These include (1) coverage of the
language of interest in terms of both lexical coverage (large scale) and coverage of
morphological and orthographic phenomena (robustness); (2) the surface forms are
mapped to/from a deep level of representation that abstracts over language-specific
morphological and orthographic features; (3) full reversibility of the system so it
can be used as an analyzer or a generator; (4) usability in a wide range of natural
language processing applications such as MT or IR; and finally, (5) availability for
the research community. These issues are essential in the design of ALMORGEANA

for Arabic morphological analysis and generation. ALMORGEANA10 is a lexeme-
based system built on top of a publicly available large-scale database, Buckwalter’s
lexicon for morphological analysis.

14.4.2 Buckwalter Morphological Analyzer

The Buckwalter morphological analyzer uses a concatenative lexicon-driven
approach where morphotactics and orthographic rules are built directly into the
lexicon itself instead of being specified in terms of general rules that interact to
realize the output [11, 12]. The system has three components: the lexicon, the
compatibility tables and the analysis engine. An Arabic word is viewed as a concate-
nation of three regions, a prefix region, a stem region and a suffix region. The prefix

9 Other work on using FSTs designed for analysis in generation is discussed in [42].
10 The ALMORGEANA engine can be freely downloaded under an OpenSource license for

research purposes from http://www.ccls.columbia.edu/cadim/resources.html. The lexical
databases need to be acquired independently from the Linguistic Data Consortium (LDC)
as part of the Buckwalter Arabic Morphological Analyzer [11, 12].

Arabic Morphological Representations for Machine Translation 273

/wa Pref-Wa and

/bi NPref-Bi by/with

/wabi NPref-Bi and + by/with

/Al NPref-Al the

/biAl NPref-BiAl with/by + the

/wabiAl NPref-BiAl and + with/bythe

/ap NSuff-ap [fem.sg.]

/atAni NSuff-atAn two

/atayoni NSuff-tayn two

/atAhu NSuff-atAh his/its two

/At NSuff-At [fem.pl.]

;;1_ /katab-u_1

/katab PV write

/kotub IV write

/kutib PV_Pass be written

/kotab IV_Pass_yu be written

;;1_ /kitAb_1

/kitAb Ndu book

/kutub N books

;;1_ /kitAbap_1

/kitAb Nap writing

Fig. 14.1. Some Buckwalter lexical entries

and suffix regions can be null. Prefix and suffix lexicon entries cover all possible
concatenations of Arabic prefixes and suffixes, respectively. For every lexicon entry,
a morphological compatibility category, an English gloss and occasional Part-Of-
Speech (POS) data are specified. Stem lexicon entries are clustered around their
specific lexeme, which is not used in the analysis process. Figure 14.111 shows
sample entries: the first six in the left column are prefixes; the rest in that column
are suffixes; the right column contains seven stems belonging to three lexemes. The
stem entries also include English glosses which allows the lexicon to function as a
dictionary. However, the presence of inflected forms, such as passives and plurals
among these glosses makes them less usable as lexemic translations.

Compatibility tables specify which morphological categories are allowed to co-
occur. For example, the morphological category for the prefix conjunction ��/wa
wa+ ‘and’, Pref-Wa, is compatible with all noun stem categories and perfect verb
stem categories. However, Pref-Wa is not compatible with imperfective verb stems
because they must contain a subject prefix. Similarly, the stem �� 	����� /kitAb kitaAb

of the the lexeme 1_�� 	����� /kitAb_1 kitaAb ‘book’ has the category (Ndu), which

is not compatible with the category of the feminine marker
� /ap a�: NSuff-ap.

The same stem, �� 	����� /kitAb kitaAb, appears as one of the stems of the lexeme

1_
�'��� 	

����� /kitAbap_1 kitaAba� ‘writing’ with a category that requires a suffix with
the feminine marker. Cases such as these are quite common and pose a challenge to
the use of stems as tokens since they add unnecessary ambiguity.

The analysis algorithm is rather simple since all of the hard decisions are coded in
the lexicon and the compatibility tables: Arabic words are segmented into all possible
sets of prefix, stem and suffix strings. In a valid segmentation, the three strings exist
in the lexicon and are three-way compatible (prefix-stem, stem-suffix and prefix-
suffix).

11 The Buckwalter transliteration is preserved in examples of Buckwalter lexicon entries (see
Chapter 2).

274 Habash

14.4.3 ALMORGEANA Components

14.4.3.1 Input/Output

In generation mode, the input to ALMORGEANA is a feature-set, a set of lexeme
and features from a closed class of inflectional phenomena. The output of gener-
ation is one or more word strings in simple tokenization. In analysis mode, the
input is the string and the output a set of possible feature-sets. The features in a
feature-set include number, gender and case inflections, which do appear in other
languages, but also prefix conjunctions and prepositions that are written as part of the
word in Arabic orthography. Table 14.2 lists the different features and their possible
values.

The first column includes the names of the features. The second and third column
list the possible values they can have and their definitions, respectively. The last
column lists the default value assigned during generation in case a feature is unspec-
ified based on its type. There are two types of features: obligatory and optional.
Obligatory features, such as verb subject or noun number, require a value to be
specified. Therefore, in case of under-specification, all possible values are generated.
Optional features, such as conjunction, preposition or pronominal object/possessive
clitics, on the other hand can be absent. The pronominal features, subject, object
and possessive, are defined in terms of sub-features specifying person, gender and
number. In case any of these sub-features is under-specified, they are expanded to
all their possible values. For example, the subject feature S:2, as in the case of
the English pronoun ‘you’ (which is under-specified for gender and number), is
expanded to (S:2MS S:2FS S:2D S:2MP S:2FP). If no POS is specified, it
is automatically determined by the lexeme and/or features. For example, the presence
of a definite article implies the lexeme is a noun or an adjective; whereas a verbal
particle or a subject/object implies the lexeme is a verb.12

The following is an example of an Arabic word and its lexeme-and-feature repre-
sentation in ALMORGEANA.

(2) [kitAb_1 POS:N PL Al+ l+]

���
��

�&�� lilkutubi

‘for the books’

The feature-set in this example consists of the nominal lexeme kitAb_1 ‘book’
with the feature PL ‘plural’, the definite article Al+ ‘the’ and the prefix preposition
l+ ‘to/for’.

14.4.3.2 Preprocessing Buckwalter Lexicons

ALMORGEANA uses the Buckwalter lexicon described in Section 14.4.2 as is. The
lexicon is processed in ALMORGEANA to index entries based on inferred sets of

12 Other POS not included in Table 14.2 are D Determiner, C Conjunction, NEG Negative
particle, NUM Number, AB Abbreviation, IJ Interjection, and PX Punctuation.

Arabic Morphological Representations for Machine Translation 275

Table 14.2. ALMORGEANA features

Feature Value Definition Default

Part-of-Speech POS:N Noun automatically
POS:PN Proper Noun determined
POS:V Verb
POS:AJ Adjective
POS:AV Adverb
POS:PRO Pronoun
POS:P and others Preposition

Conjunction w+ ‘and’ none
f+ ‘and, so’

Preposition b+ ‘by, with’ none
k+ ‘like’
l+ ‘for, to’

Verbal Particle s+ ‘will’ none
l+ so as to

Definite Article Al+ the none
Verb Aspect PV Perfective all

IV Imperfective
CV Imperative

Voice PASS Passive all
Gender FEM Feminine all

MASC Masculine
Subject S:PerGenNum Person = {1,2,3} all
Object O:PerGenNum Gender = {M,F} none
Possessive P:PerGenNum Number = {S,D,P} none
Mood MOOD:I Indicative all

MOOD:S Subjunctive
MOOD:J Jussive

Number SG Singular all
DU Dual
PL Plural

Case NOM Nominative all
ACC Accusative
GEN Genetive

Definiteness INDEF Indefinite all
Possession POSS Possessed all

features values (or feature-keys) that are used to map features in the input feature-
sets to proper lexicon entries. This task is trivial for cases where the lexicon entry
provides all necessary information. For example, verb voice and aspect are always
part of the stem: the feature-key for kutib, the stem of the passive perfective form of
the verb ��

���
�
�/katab is katab+PV+PASS.

Many lexicon entries, however, lack feature specifications. One example is broken
plurals, which appear under their lexeme cluster, but are not marked in any way for

276 Habash

plurality (see the entry for ��
��

�/kutub in Figure 14.1). Detecting when a stem is

plural is necessary to include the feature plural in the feature-key for that stem. Using
the English gloss to detect the presence of a broken plural is a possible solution.
However, it fails for adjectival entries since English adjectives do not inflect for
plurality, e.g. "#����

�
�/kabiyr (SG) and /	����� /kibAr (PL) are both glossed as ‘big’.

Additionally, some sound plural stems in the lexicon are glossed as plurals. The
Buckwalter categories are not helpful on their own for this task. For example, the
presence of a stem with morphological category N is ambiguous as to being a broken
plural or a singular nominalization of a form I verb [11]. The solution for this
problem stems from the observation that a singular verbal nominalization is its own
lexeme, whereas a broken plural is always listed under a lexeme that is in a singular
base form. A broken plural is by definition a major change in the form of the lexeme.
Therefore, if a stem under a lexeme has the morphological category N, Ndip, or
Nap (all of which can mark a broken plural) AND it is not a subset string of the
lexeme, it is considered a broken plural. This technique works for entries considered
part of the same lexeme in the Buckwalter lexicon. Entries that treat a broken plural
as a separate lexeme will not be processed correctly, e.g. the lexeme

� ���_ �$� Ǎixwa�
‘brothers’.

14.4.3.3 Analysis and Generation

Analysis in ALMORGEANA is similar to Buckwalter’s analyzer (Section 14.4.2). The
difference lies in an extra step that uses feature-keys associated with stem, prefix
and suffix to construct a feature-set for the lexeme-and-feature output. In the case
of failed analysis, a back-off step is explored where prefix and suffix substrings are
sought. If a compatible pair is found, the stem is used as a degenerate lexeme and
the features are constructed from the feature-keys associated with the prefix and
suffix.

The process of generating from feature-sets is also similar to Buckwalter analysis
except that feature-keys are used instead of string sequences. First, the feature-
set is expanded to include all forms of underspecified obligatory features, such
as case, gender, number, etc. Next, all feature-keys in the ALMORGEANA lexicon
that fully match any subset of the expanded feature-set are selected. All combina-
tions of feature-keys that completely cover the features in the expanded feature-set
are matched up in prefix-stem-suffix triples. Then, each feature-key is converted
to its corresponding prefix, stem or suffix. The same compatibility tables used in
Buckwalter analysis are used to accept or reject prefix-stem-suffix triples. Finally,
all unique accepted triples are concatenated and output. In the case that no surface
form is found, a back-off solution that attempts to regenerate after discarding one of
the input features is explored. If the back-off fails, typically due to a missing lexical
entry, a baseline Arabic morphological generator is used.

The baseline generator uses a simple concatenative word structure rule and a
small lexicon. The lexicon contains 70 entries that map all features to most common
surface realizations. For example, FEM maps to (

�'�� /ap a�, �� /at, and φ) and PL

Arabic Morphological Representations for Machine Translation 277

maps to (��� /At,
���#��� /iyna, +� �� /iy,

����� /uwna and �� /uw). Subtleties of feature

interaction are generally ignored except for the case of subject and verb aspect since
the circumfix realization of subjects in the imperfective/imperative form is rather
complex to model concatenatively. The only word structure rule used in the baseline
generator is the following:
<WORD> ::= (w|f) (s|l|b|k) Al <SubjectAspect>
<Lexeme>
<AspectSubject> <Gender> <Number> <Object> <Possessive>

14.4.4 Evaluation

ALMORGEANA uses the databases of the Buckwalter analyzer; therefore, its
coverage is equivalent to the coverage of these lexicons. In this section, we evaluate
ALMORGEANA engine for analysis and generation only.13

A sample text of over one million Arabic words from the UN Arabic-English
corpus [31] was used in this evaluation. For each unique word in the text,
ALMORGEANA is used in analysis mode to produce feature-sets. The resulting
feature-sets are then input to two systems: the complete ALMORGEANA as described
earlier and the baseline generator used as back-off to ALMORGEANA generation. For
each feature-set, there are two sets of words: (a) words that analyze into the feature-
set (A words) and (b) words that are generated from the feature-set (G words) (see
Figure 14.2). The bigger the intersection between the two sets (C words), the better
the performance of a system. Generated words that are not part of the intersection (C
words) are Overgenerated words (O words). Words that analyze into the feature-set
but are not generated are Undergenerated words (U words). In principle, U words are
definite signs of problems in the generation system; whereas, O words can be correct
but unseen in the analyzed text.

A system’s Undergeneration Error (UnderErr) is defined as the ratio of U words
to A words. Overgeneration Error (OverErr) is defined as the ratio of O words to G
words. These two measure are equivalent to (1 - Recall) and (1 - Precision) respec-
tively, if the set of A words paired with a feature-set is considered a gold standard to

GA

CU

Analysis Generation

O

[feature−set]

Fig. 14.2. ALMORGEANA evaluation

13 The evaluation described here was run over the Buckwalter lexicons (version 1) [11].

278 Habash

be replicated in reverse by a generation system. The Combined Undergeneration and
Overgeneration Error (CombErr) is calculated as (1 - the corresponding F-score):14

UnderErr =
U
A
=

A − C
A
,OverErr =

O
G
=

G − C
G
,

CombErr = 1 − (
2 × (1 −UnderErr) × (1 −OverErr)

(1 −UnderErr) + (1 −OverErr)
)

The evaluation text contained 63,066 undiacritized unique words, which were
analyzed into 118,835 unique feature-sets corresponding to 14,883 unique lexemes.
The number of unique diacritized words corresponding to the text words is 104,117.
The evaluation was run in two modes controlling for the type of matching between A
words and G words: diacritized (or diacritization-sensitive) and undiacritized. Evalu-
ation results comparing ALMORGEANA to the baseline are presented in Table 14.3.
The baseline system is almost six times faster than ALMORGEANA15, but it had high
undergeneration and overgeneration error rates. Both error rates were reduced in the
undiacritized mode, where some erroneous output became ambiguous with correct
output. ALMORGEANA, by comparison, reduced the combined error rate from the
baseline by over 84%.

Many of the overgeneration errors are false alarms. They include cases of
overgeneration of broken plurals, some of which are archaic or genre-specific
but correct. For example, the word for ‘sheik’, 0��

��� šayx, has three uncommon

broken plurals in addition to the common 1���
�� šuyuwx: 1	��� ��

�$
� ÂšyaAx, 234�� 	

��5��
mašaAyix, and 23$4� 	

��5�� mašaAŷix. Another very common overgeneration error resulted
from the underspecification of some mood-specific vocalic verbal suffixes in the
Buckwalter lexicon. Arabic hollow verbs, for example, undergo a stem change in
the jussive mood (from 6��7��� yaquwl to 8�7��� yaqul), which is indistinguishable in the
analysis.

Table 14.3. Evaluation results

System UnderErr OverErr CombErr Time (secs)

ALMORGEANA diacritized 0.39% 12.22% 6.68% 1,769
ALMORGEANA undiacritized 0.38% 12.42% 6.79% 1,745
Baseline diacritized 43.90% 60.99% 53.98% 281
Baseline undiacritized 32.84% 47.93% 41.34% 293

14 I would like to thank Christian Monson for suggesting this formula to computing CombErr.
A previously published formula was biased toward underestimating the combined error
[24].

15 The experiments were run on a Dell Inspiron machine with Pentium 4 CPU, 512 MB RAM
and 2.66 GHz.

Arabic Morphological Representations for Machine Translation 279

Undergeneration errors stem exclusively from lexicon errors. These are not many
and they can be expected in a manually created database. One example is caused by
a missing lexeme comment in the Buckwalter lexicon which resulted in pairing all

the forms of the verb 9
�$
� �/ raÂaý ‘to see’ to the lexeme that appears just before it,

:�� ��� �/ raAwand ‘rhubarb’. Such cases suggest a valuable use of ALMORGEANA as a

debugging tool for the Buckwalter lexicon.16

14.5 Interoperability of Morphological Representations

This section describes how ALMORGEANA can be used to navigate between different
levels of morphological representation. An Arabic word in simple tokenization can
be analyzed using ALMORGEANA to multiple possible lexeme-and-feature analyses.
This automatically gives us access to the lexeme-and-feature level and also the three-
way segmentation used by Buckwalter’s lexicons. To generate an intermediate repre-
sentation such as the normalized segmentation used by the Penn Arabic Treebank
[41], the features for conjunction, preposition and pronominal object/possessive
can be stripped from the lexeme-and-feature analyses. The remaining features
and lexeme are then used to generate the word stem using ALMORGEANA to
guarantee a normalized form. The stripped features are also trivially generated
and positioned relative to the word stem: [conjunction] [preposition] [word-stem]
[pronoun]. Table 14.4 shows the different analyses for each word in the sentence.��#��� �%� � :;< �'��.�� �= '��%� ��	

�

 :�=� wqd kAtbth ftHy� lmd� sntyn. ‘and Fathia continued to

correspond with him for two years’. The correct Penn Arabic Treebank tokenization
for this example is

�'��.�� �= ��%� ��	
�

 :�= � � ��#��� �%� � :� 6 w qd kAtbt h ftHy� l md�

sntyn.
The ambiguity inherent in both the analysis and generation processes results in

multiple possibilities (column 3 in Table 14.4). To select a specific segmentation, any
of a set of possible techniques can be used such as rule-based heuristics or language
models trained on text in the correct tokenization. For example, in the case of the
Penn Arabic Treebank, the already tokenized text of the treebank can be used to build
a language model for ranking/selecting among options produced by this technique
(similar to [40]). Alternatively, machine learning over the features of the annotated
words in the Penn Arabic Treebank can be used to select among the different analyses
(similar to [26, 54, 30]).17

We developed a general tokenizer, TOKAN, as an implementation of this analyze-
then-regenerate approach to tokenization. TOKAN is built on top of ALMORGEANA.
TOKAN takes as input (a.) disambiguated ALMORGEANA analyses and (b.) a token

16 All of the errors described here are for version 1 of the Buckwalter analyzer only [11]. We
did not conduct a similar study on version 2 of the Buckwalter analyzer [12].

17 The Morphological Analysis and Disambiguation for Arabic (MADA) tool [26] is a disam-
biguation system fully integrated with ALMORGEANA. More information on MADA is
available at http://www.ccls.columbia.edu/cadim/resources.html.

280 Habash

Table 14.4. Normalized segmentation example

Word Analysis Segments

wqd [qad∼_1 POS:N w+ +SG +MASC gloss:size/physique] wqd
[qad_2 POS:F w+ gloss:may/might]
[qad_1 POS:F w+ gloss:has/have]
[qid∼_1 POS:N w+ +SG +MASC gloss:thong/strap]

[waq∼ad_1 POS:V +PV +S:3MS gloss:kindle/ignite] wqd
[waqod_1 POS:N +SG +MASC gloss:fuel/burning]
[waqadi_1 POS:V +PV +S:3MS gloss:ignite/burn]

kAtbth [kAtib_1 POS:N +FEM +SG +P:3MS gloss:author/writer/clerk] kAtb� h
[kAtib_2 POS:AJ +FEM +SG +P:3MS gloss:writing]

[kAtab_1 POS:V +PV +S:3FS +O:3MS gloss:correspond_with] kAtbt h
[kAtab_1 POS:V +PV +S:1S +O:3MS gloss:correspond_with]
[kAtab_1 POS:V +PV +S:2FS +O:3MS gloss:correspond_with]
[kAtab_1 POS:V +PV +S:2MS +O:3MS gloss:correspond_with]

ftHy� [taHiy∼ap_1 POS:N +FEM +SG f+ gloss:greeting/salute] f tHy�

[fatHiy∼ap_1 POS:PN gloss:Fathia] ftHy�

lmd� [mud∼ap_1 POS:N +FEM +SG l+ gloss:interval/period] l md�

sntyn [sinot_1 POS:N +MASC +DU +ACCGEN gloss:cent] sntyn
[sanap_1 POS:N +FEM +DU +ACCGEN gloss:year]

. [. POS:PX gloss:.] .

definition sequence that specifies which features are to be extracted from the word
and where they should be placed. For example, the token definition for splitting off
the conjunction w+ only is "w+ REST". This token definition specifies that the
conjunction w+ is split from the word and whatever is left (REST) is regenerated
after the conjunction w+. Similarly, the token definition for the Penn Arab Treebank
tokenization is "w+ f+ l+ k+ b+ REST +O: +P:".18 ALMORGEANA and
TOKAN have been used in both statistical and symbolic MT systems [29, 25].

14.6 Conclusions

In this chapter, we described obstacles facing MT researchers when working with
Arabic resources in differing morphological representations. The lexeme-and-feature
level of representation has been motivated and, ALMORGEANA, a large-scale system
for analysis and generation from/to that level has been described and evaluated.
We presented a framework using ALMORGEANA for navigating between Arabic

18 More information on TOKAN is available at http://www.ccls.columbia.edu/cadim/
resources.html.

Arabic Morphological Representations for Machine Translation 281

morphological representations. This framework is useful for research exploring the
effects of using different Arabic representations in MT.

Acknowledgments

This work has been supported, in part, by Army Research Lab Cooper-
ative Agreement DAAD190320020, NSF CISE Research Infrastructure Award
EIA0130422, Office of Naval Research MURI Contract FCPO.810548265, NSF
Award #0329163 and Defense Advanced Research Projects Agency Contract No.
HR0011-06-C-0023. I would like to thank Owen Rambow, Mona Diab, Bonnie Dorr,
Tim Buckwalter, Michael Subotin and Christian Monson for helpful discussions.

References

[1] Azza Abdel-Monem, Khaled Shaalan, Ahmed Rafea, and Hoda Baraka. A Proposed
Approach for Generating Arabic from Interlingua in a Multilingual Machine Translation
System. In Proceedings of the 4th Conference on Language Engineering, pp. 197–206,
2003. Cairo, Egypt.

[2] Imad Al-Sughaiyer and Ibrahim Al-Kharashi. Arabic Morphological Analysis Tech-
niques: A Comprehensive Survey. Journal of the American Society for Information
Science and Technology, 55(3):189–213, 2004.

[3] Muhammed Aljlayl and Ophir Frieder. On Arabic Search: Improving the Retrieval
Effectiveness via a Light Stemming Approach. In Proceedings of ACM Eleventh
Conference on Information and Knowledge Management, Mclean, VA, pp. 340–347,
2002.

[4] Haytham Alsharaf, Sylviane Cardey, Peter Greenfield, and Yihui Shen. Problems and
Solutions in Machine Translation Involving Arabic, Chinese and French. In Proceedings
of the International Conference on Information Technology, pp. 293–297, Las Vegas,
Nevada, 2004.

[5] Satanjeev Banerjee and Alon Lavie. METEOR: An Automatic Metric for MT Evalu-
ation with Improved Correlation with Human Judgments. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization, pp. 65–72, Ann Arbor, Michigan, 2005. Association for Compu-
tational Linguistics.

[6] Kenneth Beesley. Arabic Finite-State Morphological Analysis and Generation. In
Proceedings of the 16th International Conference on Computational Linguistics
(COLING-96), pp. 89–94, Copenhagen, Denmark, 1996.

[7] Daniel Bikel. Design of a Multi-lingual, Parallel-processing Statistical Parsing Engine.
In Proceedings of International Conference on Human Language Technology Research
(HLT), pp. 24–27, 2002.

[8] Jeff A. Bilmes and Katrin Kirchhoff. Factored Language Models and Generalized
Parallel Backoff. In Proceedings of the Human Language Technology Conference/North
American Chapter of Association for Computational Linguistics (HLT/NAACL-03),
pp. 4–6, Edmonton, Canada, 2003.

[9] Peter Brown, John Cocke, Stephen Della-Pietra, Vincent Della-Pietra, Fredrick Jelinek,
John Lafferty, Robert Mercer, and Paul Roossin. A Statistical Approach to Machine
Translation. Computational Linguistics, 16:79–85, June 1990.

282 Habash

[10] Peter Brown, Stephen Della-Pietra, Vincent Della-Pietra, and Robert Mercer.
The Mathematics of Machine Translation: Parameter Estimation. Computational
Linguistics, 19(2):263–311, 1993.

[11] Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 1.0, 2002.
Linguistic Data Consortium, University of Pennsylvania, 2002. LDC Catalog No.:
LDC2002L49.

[12] Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 2.0, 2004.
Linguistic Data Consortium, University of Pennsylvania, 2002. LDC Cat alog No.:
LDC2004L02, ISBN 1-58563-324-0.

[13] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the Role of
BLEU in Machine Translation Research. In Proceedings of the 11th conference of
the European Chapter of the Association for Computational Linguistics (EACL’06),
pp. 249–256, Trento, Italy, 2006.

[14] Michael Carl and Andy Way. Recent Advances in Example-Based Machine Translation.
Kluwer Academic Publishers, Dordrecht, Holland, 1988.

[15] Violetta Cavalli-Sforza, Abdelhadi Soudi, and Teruko Mitamura. Arabic Morphology
Generation Using a Concatenative Strategy. In Proceedings of the 6th Applied Natural
Language Processing Conference (ANLP 2000), pp. 86–93, Seattle, Washington, USA,
2000.

[16] Michael Collins. Three Generative, Lexicalised Models for Statistical Parsing. In
Proceedings of the 35th Annual Meeting of the ACL (jointly with the 8th Conference of
the EACL), pp. 16–23, Madrid, Spain, 1997.

[17] Michael Collins, Philipp Koehn, and Ivona Kucerova. Clause Restructuring for Statis-
tical Machine Translation. In Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’05), pp. 531–540, Ann Arbor, Michigan,
2005.

[18] Kareem Darwish. Building a Shallow Morphological Analyzer in One Day. In
Proceedings of the workshop on Computational Approaches to Semitic Languages in
the 40th Annual Meeting of the Association for Computational Linguistics (ACL-02),
pp. 47–54, Philadelphia, PA, USA, 2002.

[19] Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. Automatic Tagging of Arabic Text:
From Raw Text to Base Phrase Chunks. In Proceedings of the 5th Meeting of the North
American Chapter of the Association for Computational Linguistics/Human Language
Technologies Conference (HLT-NAACL04), pp. 149–152, Boston, MA, 2004.

[20] Bonnie J. Dorr, Pamela W. Jordan, and John W. Benoit. A Survey of Current Research
in Machine Translation. In M. Zelkowitz, editor, Advances in Computers, Vol. 49,
pp. 1–68. Academic Press, London, 1999.

[21] Anas El Isbihani, Shahram Khadivi, Oliver Bender, and Hermann Ney. Morpho-
syntactic arabic preprocessing for arabic to english statistical machine translation. In
Proceedings on the Workshop on Statistical Machine Translation, pp. 15–22, New York
City, June 2006. Association for Computational Linguistics.

[22] Sharon Goldwater and David McClosky. Improving Statistical MT Through Morpho-
logical Analysis. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 676–683, Vancouver, Canada, 2005.

[23] Nizar Habash. Generation Heavy Hybrid Machine Translation. PhD thesis, University
of Maryland College Park, 2003.

[24] Nizar Habash. Large Scale Lexeme Based Arabic Morphological Generation.
In Proceedings of Traitement Automatique des Langues Naturelles (TALN-04),
pp. 271–276, 2004. Fez, Morocco.

Arabic Morphological Representations for Machine Translation 283

[25] Nizar Habash, Bonnie Dorr, and Christof Monz. Challenges in Building an Arabic-
English GHMT System with SMT Components. In Proceedings of the 7th Conference
of the Association for Machine Translation in the Americas (AMTA06), pp. 56–65,
Cambridge,MA, 2006.

[26] Nizar Habash and Owen Rambow. Arabic Tokenization, Part-of-Speech Tagging and
Morphological Disambiguation in One Fell Swoop. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pp. 573–580, Ann
Arbor, Michigan, June 2005. Association for Computational Linguistics.

[27] Nizar Habash and Owen Rambow. MAGEAD: A Morphological Analyzer and
Generator for the Arabic Dialects. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 681–688, Sydney, Australia, July 2006. Association for Compu-
tational Linguistics.

[28] Nizar Habash, Owen Rambow, and George Kiraz. Morphological Analysis and
Generation for Arabic Dialects. In Proceedings of the Workshop on Computational
Approaches to Semitic Languages at 43rd Meeting of the Association for Computational
Linguistics (ACL’05), pp. 17–24, Ann Arbor, Michigan, 2005.

[29] Nizar Habash and Fatiha Sadat. Arabic Preprocessing Schemes for Statistical Machine
Translation. In Proceedings of the 7th Meeting of the North American Chapter of the
Association for Computational Linguistics/Human Language Technologies Conference
(HLT-NAACL06), pp. 49–52, New York, NY, 2006.

[30] Jan Hajič, Otakar Smrž, Tim Buckwalter, and Hubert Jin. Feature-based Tagger
of Approximations of Functional Arabic Morphology. In Ma. Antonia Martí
Montserrat Civit, Sandra Kübler, editor, Proceedings of Treebanks and Linguistic
Theories (TLT), pp. 53–64, Barcelona, Spain, 2005.

[31] Xu Jinxi. UN Parallel Text (Arabic-English), LDC Catalog No.: LDC2002E15, 2002.
Linguistic Data Consortium, University of Pennsylvania.

[32] Lauri Karttunen, Ronald Kaplan, and Annie Zaenen. Two-level Morphology with
Composition. In Proceedings of Fourteenth International Conference on Computational
Linguistics (COLING-92), pp. 141–148, Nantes, France, July 20–28 1992.

[33] George Kiraz. Multi-tape Two-level Morphology: A Case study in Semitic Non-Linear
Morphology. In Proceedings of Fifteenth International Conference on Computational
Linguistics (COLING-94), pp. 180–186, Kyoto, Japan, 1994.

[34] Katrin Kirchhoff, Mei Yang, and Kevin Duh. Statistical Machine Translation of Parlia-
mentary Proceedings Using Morpho-Syntactic Knowledge. In TC-STAR Workshop on
Speech-to-Speech Translation, pp. 57–62, Barcelona, Spain, 2006.

[35] Kevin Knight. A Statistical MT Tutorial Workbook, April 30 1999. http://www.clsp.
jhu.edu/ws99/projects/mt/mt-workbook.htm.

[36] Philipp Koehn. Pharaoh: a Beam Search Decoder for Phrase-based Statistical Machine
Translation Models. In Proceedings of the Association for Machine Translation in the
Americas, pp. 115–124, 2004.

[37] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-based Translation.
In Proceedings of the Human Language Technology and North American Association
for Computational Linguistics Conference (HLT/NAACL), pp. 127–133, Edmonton,
Canada, 2003.

[38] Kimmo Koskenniemi. Two-Level Model for Morphological Analysis. In Proceedings
of the 8th International Joint Conference on Artificial Intelligence, pp. 683–685, 1983.

[39] Young-Suk Lee. Morphological Analysis for Statistical Machine Translation.
In Proceedings of the 5th Meeting of the North American Chapter of the

284 Habash

Association for Computational Linguistics/Human Language Technologies Conference
(HLT-NAACL04), pp. 57–60, Boston, MA, 2004.

[40] Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan.
Language Model Based Arabic Word Segmentation. In Proceedings of the 41st Meeting
of the Association for Computational Linguistics (ACL’03), pp. 399–406, Sapporo,
Japan, 2003.

[41] Mohamed Maamouri, Ann Bies, and Tim Buckwalter. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic
Language Resources and Tools, Cairo, Egypt, 2004.

[42] Guido Minnen, John Carroll, and Darren Pearce. Robust, Applied Morphological Gener-
ation. In Proceedings of the 1st International Conference on Natural Language Gener-
ation (INLG 2000), pp. 201–208, Mitzpe Ramon, Israel, 2000.

[43] Sonja Nieıen and Hermann Ney. Statistical Machine Translation with Scarce Resources
Using Morpho-syntactic Information. Computational Linguistics, 30(2), 2004.

[44] Franz Josef Och. Google System Description for the 2005 NIST MT Evaluation. In MT
Eval Workshop (unpublished talk), 2005.

[45] Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada,
Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Katherine Eng, Viren Jain, Zhen
Jin, and Dragomir Radev. A Smorgasbord of Features for Statistical Machine Trans-
lation. In Proceedings of the Human Language Technology / North American Associ-
ation of Computational Linguistics Conference, pp. 161–168, Boston, Massachusetts,
2004.

[46] Franz Josef Och and Hermann Ney. A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, 29(1):19–52, 2003.

[47] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pp. 311–318, Philadelphia,
PA, 2002.

[48] Aaron Phillips and Violetta Cavalli-Sforza. Arabic-to-English Example Based Machine
Translation Using Context-Insensitive Morphological Analysis. In Journées dŠEtudes
sur le Traitement Automatique de la Langue Arabe (JETALA), Rabat, Morocco, 2006.

[49] Maja Popović and Hermann Ney. Towards the Use of Word Stems and Suffixes for
Statistical Machine Translation. In Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC), pp. 1585–1588, Lisbon, Portugal, May
2004.

[50] Chris Quirk, Arul Menezes, and Colin Cherry. Dependency Treelet Translation: Syntac-
tically Informed Phrasal SMT. In Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 271–279, Ann Arbor, Michigan, 2005.

[51] Jason Riesa and David Yarowsky. Minimally Supervised Morphological Segmentation
with Applications to Machine Translation. In Proceedings of the 7th Conference of
the Association for Machine Translation in the Americas (AMTA06), pp. 185–192,
Cambridge, MA, 2006.

[52] Fatiha Sadat and Nizar Habash. Combination of Arabic Preprocessing Schemes for
Statistical Machine Translation. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 1–8, Sydney, Australia, July 2006. Association for Computational
Linguistics.

[53] Mohammed Sharaf. Implications of the Agreement Features in (English to Arabic)
Machine Translation. Master’s thesis, Al-Azhar University, 2002.

Arabic Morphological Representations for Machine Translation 285

[54] Noah Smith, David Smith, and Roy Tromble. Context-Based Morphological Disam-
biguation with Random Fields. In Proceedings of the 2005 Conference on Empirical
Methods in Natural Language Processing (EMNLP05), pp. 475–482, Vancouver,
Canada, 2005.

[55] Harold Somers. Review Article: Example-based Machine Translation. Machine Trans-
lation, 14(2):113–157, 1999.

[56] Abdelhadi Soudi. Challenges in the Generation of Arabic from Interlingua.
In Proceedings of Traitement Automatique des Langues Naturelles (TALN-04),
pp. 343–350, 2004. Fez, Morocco.

[57] Abdelhadi Soudi, Violetta Cavalli-Sforza, and Abderrahim Jamari. A Computational
Lexeme-Based Treatment of Arabic Morphology. In Proceedings of the Arabic Natural
Language Processing Workshop, Conference of the Association for Computational
Linguistics (ACL 2001), pp. 50–57, Toulouse, France, 2001.

[58] Abdelhadi Soudi, Violetta Cavalli-Sforza, and Abderrahim Jamari. A Prototype English-
to-Arabic Interlingua-based MT system. In Proceedings of the Third International
Conference on Language Resources and Evaluation: Workshop on Arabic language
resources and evaluation, Las Palmas, Spain, 2002.

[59] Andreas Zollmann, Ashish Venugopal, and Stephan Vogel. Bridging the inflection
morphology gap for arabic statistical machine translation. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers,
pp. 201–204, New York City, USA, 2006. Association for Computational Linguistics.

15

Arabic Morphological Generation and its Impact
on the Quality of Machine Translation to Arabic

Ahmed Guessoum and Rached Zantout
Department of Computer Science, The University of Sharjah, P.O. Box 27272, Sharjah, UAE

 guessoum@sharjah.ac.ae
Faculty of Engineering, Department of Computer & Communications Eng., Faculty of Engineering,
Hariri Canadian University, Mechref, P.O.Box:10 – Damour, Chouf 2010, Lebanon,

 rached@cyberia.net.lb

Abstract: The aim of this chapter is to highlight the complexity and importance of Arabic morpho-
logical information in an Arabic Machine Translation (AMT) system, i.e. a system that
translates to or from Arabic. We summarize Arabic morphology and introduce the main
morphological information that we have found relevant to machine translation to Arabic
and categorize it into various types of features. In order to show the impact of these
morphological features on machine translation quality, we have adopted an approach
whereby we relate each of them to the quality of the translation. This leads us, through a
statistical analysis of the test data, to a characterization of which features are more im-
portant in terms of their impact on the quality of the translation of a given AMT system
(AMTS). The approach has been implemented and applied to evaluating an English-to-
Arabic web-based MT system. The results of the evaluation of this system are pre-
sented, conclusions are drawn, and recommendations for improving their outputs made

15.1 Introduction

Translating between different languages is a very important discipline. The esti-
mated value of the world market for translation was U.S. $20 billion according to
the Gartner Group (Stamford, CT, USA) with an annual growth rate of 14.6%
(Van der Meer, 2003). In 2004, the human translation market was estimated to be
$1 billion (Oren, 2004), while the machine translation market was forecast to be in

1 2

1

2

A. Soudi, A. van den Bosch and G. Neumann (eds.), Arabic Computational Morphology,
C© 2007 Springer.

287

the $100 million range. MT software was reported to be responsible for the com-
pletion of between 30 and 50 percent of a Machine translation task automatically
(ECL, 1996) and (Hedberg, 1995). MT software was also estimated to cut the cost
of translation by two thirds.

–28 7 .3 0 2

Evaluation of Natural Language Processing (NLP) systems is currently a field
of research on its own. Various researchers have stressed the importance of com-
ponent-based evaluation and detailed error analyses (Arnold et al., 1993; Hedberg,
1995; Nyberg et al., 1994). Since MT systems combine lexical analyzers, morpho-
logical analyzers, parsers, semantic disambiguation modules, generators, and
pragmatic analysis modules, it is important to be able to evaluate these various
components individually as well as to evaluate the overall system. The main diffi-
culty here is that, in most of the cases, evaluators do not have access to the indi-
vidual components of the system under evaluation and are therefore forced into
black-box evaluation. This means that an error in the output of the system cannot
be attributed to one of the components since it can be due to one or many errors in
one or more of the components of an NLP system.

In (Van Slype, 1979) evaluation is subdivided into two main categories: macro-
evaluation and micro-evaluation. Among the macro-evaluation assessment com-
ponents that are affected by morphological errors are the cognitive level compo-
nents such as intelligibility, fidelity, coherence, usability, and acceptability of a
translation. Among the micro-evaluation methods affected by morphological er-
rors are the grammatical symptomatic components such as the analysis of gram-
matical errors found in the target output. (Chaumier et al., 1977) suggest an even
finer scrutiny of the grammatical (sub-) constructs in the source and target texts,
e.g., noun phrases, adjectival and verb phrases, object complements, adverbial
complements, etc.

In general, there seems to be an agreement as to the following aspects that
should be evaluated in any MT system: adequacy, which is the extent to which the
meaning of the source text is rendered in the translated text; fluency, which is the
extent to which the target text appeals to a native speaker in terms of well-
formedness of the target text, grammatical correctness, absence of misspellings,
adherence to common language usage of terms, and meaningfulness within the
context (White et al., 1994); informativeness, which assesses the extent to which
the translated text conveys enough information from the source text as to enable
evaluators to answer various questions about the latter based on the translated text;
and intelligibility (Arnold et al., 1993), which is strongly related to informativeness,
though directly affected by grammatical errors and mistranslated or missing
words. In (Nyberg et al., 1994) the authors from the KANT (Nyberg et al., 1992)
team introduce a methodology based on evaluation metrics for knowledge-based
MT. The evaluation criteria they consider are: completeness, which measures the
ability of a system to produce an output for every input; correctness, which meas-
ures the ability of a system to produce a correct output for every input; and stylis-
tics, which measures the appropriateness of the lexical, grammatical, and other
choices made during the translation process. Based on the completeness, correctness,
and stylistics criteria, the authors then defined four evaluation criteria, which test,
as percentages, the Analysis Coverage, Analysis Correctness, Generation Cover-
age, and Generation Correctness. These four percentages then get multiplied,

288 Guessoum and Zantout

yielding the Translation Correctness, which measures the overall quality of the
system. (Guessoum & Zantout, 2001) and (Guessoum & Zantout, 2005) introduce
a semi-automatic methodology for component evaluation of Arabic MT systems
(AMTSs) using a black-box approach. The methodology tests the correctness of
each component of an MT system by analyzing carefully selected sentences trans-
lated by an MT system. Weighted averages are then computed and scores are de-
rived for each component of a system under evaluation. An overall score for the
system is also calculated. The weighted averages were shown to be indicators of
what components of the system are the faultiest and therefore would need imme-
diate attention by the developers. The difficulty in this approach is the ability to
come up with a large number of test sentences that would test each component of
the MT system.

The aim of this chapter is to highlight the complexity and importance of Arabic
morphological information in an Arabic Machine Translation (AMT) system. In
Section 15.2 we summarize Arabic morphology and in Section 15.3 we introduce
the main morphological information that we have found relevant to machine trans-
lation to Arabic. We show how various aspects of Arabic morphology reflect im-
portant lexical, syntactic, semantic, and pragmatic aspects of a sentence in transla-
tion. We also categorize this information into various types of features. In Section
15.4 we show how, through a statistical analysis of a bilingual corpus consisting
of English source text and machine-produced Arabic target text, we could suggest
a characterization of which morphological features are more important in terms of
their impact on the quality of the translation of a given AMT system (AMTS). In
Section 15.5 conclusions are drawn, and recommendations for improving the out-
puts of AMT systems made.

15.2 Basics of Arabic Morphology

The information in this section was derived through readings in (Dahdah, 1995),
(Hamalawy, 1996), and (Rajhi, 1979). Arabic words are grouped into three main
categories: Nouns (), Verbs () and Prepositions (). The Noun and
Verb categories consist of subcategories that affect how the word is used in the
sentence and how it changes within the context of the sentence and the other
words in the same sentence. Each subcategory obeys certain rules of morphology
that detail whether a word can be used in a certain context and how its form
changes in that context. The difference between words in subcategories can be as
subtle as the presence (or absence) of a vowel or as clear as the addition (or re-
moval) of letters to the word when it moves from one subcategory to another. Al-
though the Preposition category contains subcategories, prepositions in Arabic do
not, in general, change forms.

Morphology for Arabic is a tool that enables the language to grow and develop.
Morphology, in general, is defined as producing a word from another by changing

Arabic Morphological Generation and its Impact 289

it so that it fits a certain new meaning. In Arabic, morphology is divided into four
categories of derivations, the small (), the large (), the
larger () and the largest (). The small morphology
produces one word from another but keeps similarities between the two words in
their pronunciation and meaning (e.g. 1 (ilm, science) (Alim,
scientist)). The large morphology produces a word from another by exchanging
the letters in the roots of the words ((ilm, science) (amal, work)). The
larger morphology produces a word from another by changing one (or more
letters) and keeping the same meaning ((nwAn, address) (ulwAn,
address)). The largest morphology produces a word from a group of words such as
the contraction (basmal) from (bismi All~Ah
Alr~aHmAn Ar~aHym), “In the name of Allah, The Compassionate, The
Merciful”). By far, the mostly used type of morphology in Arabic is the small
morphology.

Small morphology can act on a Noun or a Verb. Any Noun or Verb in Arabic
consists of a root and added letters. The roots for Arabic words have traditionally
been considered to consist of three letters (the mostly used type of roots in Arabic)
or four letters. Like English and French, in Arabic, letters can be added to the be-
ginning and/or to the end of the root. However, unlike English and French, in
Arabic, letters can be added inside (between the letters of) a root. This is one of
the complexities that make Arabic a harder language to analyze or generate mor-
phologically.

Fortunately, for computational linguists interested in developing Arabic lan-
guage tools on computers, Arabic is a structured language. Basically, verbs and
nouns cannot accept additions of all letters in the Arabic language at all places in-
side, at the beginning or the end of a root. In this chapter we will explain some of
the rules pertaining to verbs in the Arabic language. The reader should bear in
mind that Nouns obey similar rules. The reader should also bear in mind that the
rules described below will not be exhaustive even for Arabic verbs as the purpose
behind the explanation is to give the reader an appreciation of the complexity of
Arabic morphology rather than to enumerate all the rules governing Arabic mor-
phology.

In Arabic, there are certain letters that can come at the beginning of the root
(prefixes); these letters are grouped in the Arabic word (s, A, l, t, n, y). The
letters that can be added to the end of the root (suffixes) are grouped in the Arabic
word (A, w, h, m, t, n, y). There is an upper limit on the number of prefixes
(four letters) that can be added to a root. In some cases, a letter can be repeated as
a prefix or a suffix. Letters that can be added to the inside of a root (infixes) have
a more complicated set of rules. First, a group of letters (A), (w), and (y)

1 In the rest of the paper, any Arabic sentence will be followed by its transliteration using

the scheme followed throughout the book .

290 Guessoum and Zantout

(called), while being part of the root, can disappear from an Arabic verb if
the verb is in the imperative form. Second, only one or two letters can be added in-
side the root. Third, infixes are grouped in the Arabic word (A, t, w, n, y).
Fourth, certain verb forms can be produced by repeating the same letter of the root.

Arabic morphology is a very structured process. For example, a verb can un-
dergo morphology based on moulds that take any root and transform it into the
corresponding verb by adding prefixes, suffixes or infixes in order to convey the
meaning of the verb. For example, in order to specify that more than two people
are writing to each other, the root (kataba, (he) wrote) is used. The suffix
(wn) is added to it to indicate that the verb is being done by more than two peo-
ple2; the prefix (y) is added to indicate that the verb is in the present tense; and
the infix (A) is added to indicate that they are writing to each other. Thus the
verb obtained is (yukAtibwn). If the same meaning is to be conveyed but,
now, instead of the group of people writing to each other we want to say that they
play with each other, it is only necessary to replace the letters of the verb root
write (kataba) with those of the verb root play (la iba) to obtain the verb

 (yulA ibwn). In a similar manner, if the group consisted of two instead of
more than two members then the only change needed is to use the suffix (An)
instead of the suffix (wn). The different forms that can be used with a root to
produce an Arabic verb have been classified differently in the literature. One such
classification (Fowzan et al., 2000) enumerates 129 Morphological Patterns which
can be used to generate verbs from roots.

In Arabic, the Noun or Verb will have different forms if the subject or object is
masculine or feminine. Also differences in the forms can exist if the sentence re-
fers to one person or a group of two or a group of more than two.

15.3 Arabic Morphological Generation as a Repository
of Morphological, Syntactic, Semantic, and Pragmatic
Information (in an AMTS)

It is well-known that Machine Translation is a complex process. It is ideally the
result of analyzing the source text morphologically, lexically, syntactically, se-
mantically — and even pragmatically and stylistically if needed, and producing its
equivalent target text using all of these linguistic dimensions. The target language
and the complexity of its morphology and grammar can make this machine trans-
lation process even more complex. This is indeed the case for Arabic, where, due
to the complexity of the morphology, the generation of correct Arabic words must

2 Recall that Arabic has two forms for the plural: the dual and the non-dual plural (more

than two people).

Arabic Morphological Generation and its Impact 291

take into account and reproduce all the linguistic information acquired from the
analysis of the source text, be the source language English or any other.3

Consider for instance a simple sentence like “The girls wrote the beautiful es-
says”. To translate it to Arabic, the morphological generator needs to

The generated Arabic sentence would therefore be

 .
katabat AlbnAtu AlmqAlAt Aljmyl
Wrote (fem.) the-girls (fem. plural) the-articles (fem. plural) the-beautiful (fem.).

In the above example, the verb and the subject have to match in gender; the noun
and the adjective match in gender but also with respect to the definite case. It is
clear that the morphological generator needs to take into account lexical and syn-
tactic information in addition to the fact that a word re-ordering needs to be intro-
duced by the “transfer” module.4 As such, by reading the Arabic sentence, we can
immediately tell (i.e. from the output of the morphological generator) whether the
words are lexically and syntactically correct. In fact, even the meaning can be af-
fected, as will be explained in the coming sections, if the morphological generator
does not receive this information from other modules (such as the parser) in the
machine translation system or does not correctly reproduce it.

In more complex examples, pragmatic knowledge could be used, such as refer-
ence resolution, so that the proper form of a word is generated. Consider, for ex-
ample, the following sentence, its translation, and gloss:

This is your room - it’s rather small –
haðihi hiya Hujratuka – hiya Sa yra ilý Had~ mA
This it (is5) your-room - it (feminine) (is) small (feminine) to limit some

3 Despite the fact that the discussion in this chapter is about Arabic morphological gen-

eration, independently of the source language in any machine translation process, all
the examples and the implementation will be about machine translation from English to
Arabic.

4 We call it “transfer” module no matter what actual approach is adopted in the machine
translation system.

5 The auxiliary “is” is implicit in Arabic.

1. add the prefix (Al, the) to the word (banAt, girls) which itself is the
result of adding the infix (A) to obtain the plural of (bint, girl);

2. add the suffix (t) to the basic verb form (kataba, he wrote) to produce
 (katabat, she wrote) for past tense, feminine form;

3. add the prefix (Al, the) and suffix (At, feminine plural) to the word
(maqAl, an article/essay) because, in Arabic, the masculine word for arti-
cle/essay has a feminine plural form;

4. add the prefix (Al, the) and suffix “ ” (, for feminine) to the adjective
(jamyl, beautiful (masculine singular)) to obtain the feminine form of the
adjective, for gender concordance with the plural word for articles/essays.

292 Guessoum and Zantout

In this case, the demonstrative pronoun “this” should be translated as
(haðihi, (feminine) this) and not (haðA, (masculine) this) since (Hujra ,
room) is feminine. The gender needs also to be conveyed in the second (hiya,
(feminine) it) and (Sa yra , (feminine) small). Again, an error in the resolu-
tion of the references would be confusing or misleading. For instance, if the previ-
ous source sentence gets incorrectly translated as

 – (*)

haðihi hiya Hujratuka – huwa Sa yr ilý Had~ mA

This it (is) your-room - it (masc.) (is) small (masc.) to limit some

This translation would convey a completely different meaning. Indeed, the reader
would believe that the speaker mentions the room of the listener but goes on/back
to talking about some other person describing him as small to some extent. If a
male person happens to be mentioned in the context of the sentence, the confusion
would become complete!

In the context of a black-box evaluation, it is not possible to find out the faulty
component(s) of a machine translation system that produces an output like the one
in the last example. We cannot be sure whether the morphological generator re-
ceived all the needed information to produce the correct words, and hence it would
be the faulty component, or if it did not receive enough information from the other
components in the MT system (parser, transfer, etc.) as to generate the correct
words. In all cases, what we argue is that the presence or absence of morphologi-
cal information can affect quite seriously the quality of an MT system.

From an analysis of a large number of sentences, as will be explained in the
next section, we have singled out and categorized various types of morphological
features that are important in Machine Translation and which can affect its quality.
In fact, this is exactly the criterion for singling them out: we selected a feature if
its improper handling affects the sentence quality.

These features are now presented, with clarifying examples, and will be further
analyzed in the coming sections on an actual Arabic MT system.

1. Definite / Indefinite Nouns (A)
As explained earlier, an indefinite Arabic noun can be made definite by adding the
article to it. From our analysis of the outputs of various AMT systems, this is
quite frequently not done correctly. The result can be objectionable or even un-
clear.

Monkeys are very agile climbers. .
… afflicts women more than men. (*). ...

In the first example the prefix definite article (Al) is correctly added to the noun
 (quruwd, monkeys). In the second example, both words for men and women

Arabic Morphological Generation and its Impact 293

should be definite in Arabic. The translation correctly places the definite article
for “(the) women” (, Aln~isA') but not for “men” (, rijAl).

2. Case Ending (B)
One of the complexities of Arabic grammar is that words get inflected depending
on the case (nominative, accusative, or genitive), the number (singular, dual, or
plural), and the gender (masculine or feminine). The generation of the correct
form of the word depending on these features must obviously be done very care-
fully and is in fact a common mistake among native speakers nowadays! The im-
proper handling of the case ending results in unpleasant sentences and sometimes
it modifies the sentence meaning entirely, especially when the word order is
changed.6

… the massive aerial bombardment of
military targets continued unabated.

.

He abided in the wilderness for forty
days.

 . (*)

In the first sentence, the Arabic adjective (qawiy~Aã , massive/strong) cor-

rectly appears in the accusative form. However, the numeral (Ârba wn,
forty) should be in the genitive form while it appears in the nominative.

3. Imperative Mood (C)
A common error found in Arabic MT systems is the incorrect translation of verbs
in the imperative mood into verbs in the present tense of the indicative mode, of-
ten with the wrong pronoun (he) being used. This is the case with the system we
have evaluated for the purposes of this work.

Please contact… (*)

Here the verb contact is incorrectly translated as (yat~aSil, he contacts). It

should rather be the imperative form of the verb (i.e., t~aSil, contact).

4. Verb Tenses (D)
This is another error commonly found in AMT systems. It is often coupled with the
incorrect use of the pronoun (he). Obviously, enough morphological information
needs to be made available to the morphological generator not to fall into this trap.
Sometimes, this mistake shows up when the present and past tenses have the same
form for a given verb in the source language (English in our case). However, the er-
ror would probably reflect an improper syntactic parsing of the source sentence.

6 Word order modification is a fairly common thing to do in Arabic; it is usually used to

give a different emphasis in the sentence.

294 Guessoum and Zantout

Why don’t we put the bed … ...
The anti-war agitation has begun (*)

In the first example, “we put” is correctly translated as (naDa u, we put) in

the present tense whereas, in the second example, “has begun” somehow gets
translated to (tabdaÂu, (it) begins).

5. Expressions (E)
Handling common expressions often requires the application of prepositions, the
definite article, pronouns, etc., to various categories of words. If this is not care-
fully done, the result will be incorrect words (in the context) or even morphologi-
cally ill-constructed words as explained in item 8 below. Of course, most of the
time a word-to-word translation of these expressions gives appalling results mor-
phologically, syntactically, and semantically.

For a man of 80… 80
… in the 25 to 40 age group. ... 40 25 (*)

The first sentence is correctly translated with the proper Arabic preposition

(fy, in). The second sentence is badly translated, which results in the meaning “in
25 to 40 generations”!

6. Pronouns (F)
Another problem is the proper handling of pronouns. Pronouns can appear either
suffixed to a word or separated from it, based on various morphological and syn-
tactic rules. The pronouns may take one of several forms depending on the fea-
tures mentioned earlier, namely the case, gender, and number.

6.1. Pronoun-Related Concordance (Case Ending)
The morphology of a word can get affected by a pronoun in a sentence. For in-
stance, in the first example below, “as an afterthought” is translated as
(mustadrika ã, as an afterthought of hers) the last letter of this word reflecting the
fact that the subject is feminine. If the subject was a plural one like “They”, the
word would become (mustadrikAt, for the feminine plural) or

 (mustadrikyn, for the non-feminine plural). Similar changes would occur
if the subject was dual (two people), etc. In the second example, (TAfiyAã,
afloat) appears incorrectly in the masculine singular form; it should be
(TAfiya ã, afloat (feminine singular)).

All such morphological information needs to be available and generated for the
sentence to be correct.

She only asked me … as an afterthought.
She spent seven days afloat on a raft. . (*)

Arabic Morphological Generation and its Impact 295

6.2. Gender Concordance (and Pronoun Resolution)
Also a common source of error is gender concordance, where a pronoun needs to
reflect the gender, or other more general aspects of pronoun resolution such as
number. In the example below, (Hujratuk, your room) is feminine but is
incorrectly translated using the pronoun (huwa, it (masculine)) and
(Sa yr, small (masculine)).

This is your room - it’s rather small... ... - (*)

6.3. Unnecessary Generation of Pronouns
From our experience with AMT systems, this error is quite a common one. A pro-
noun is very frequently generated when it is not needed. Indeed, in Arabic a verb
implicitly indicates the person (singular, dual or plural; 1st, 2nd, or 3rd; etc.). As
such the addition of a pronoun before the verb is often a redundancy (unless there
is an emphasis to be conveyed) and sounds heavy. In the example below,
(sayujma wun, (they) will be reunited) has the suffix which indicates that the
subject is they (non-feminine plural taken by default here). Adding the pronoun to
such a verb would convey a meaning like “It is they who will be reunited in the af-
terlife”, which in the case of this particular sentence and its religious connotation,
is probably quite unacceptable.

They’ll be reunited in the afterlife. . ()

6.4. Incorrect Pronoun
Sometimes, the pronoun is not obvious to guess from the sentence; it is understood
from the context or by commonsense. In the example below, “It’s advisable to
book seats…” would probably mean “It’s advisable for you to book seats…” or
“It’s advisable for one to book his/her seats…”. A common mistake in AMT sys-
tems is to simply translate the verb “to book” as (yaHjizu, he books)
conveying the following meaning for the sentence “It’s advisable for him to book
his seats…”. This level of morphological information detail is indeed needed to
render the semantics of the sentence. A human translator would most probably
translate the sentence into:

It’s advisable to book seats at least a
week in advance.

 (*)
 .

7. Number Concordance (G)
This feature should be clear from the above explanations. Nouns, verbs, adjec-
tives, and pronouns match with respect to number. In the examples below,

 (liHaDAratayni, of two civilizations, genitive form) is in the dual form
which is different from (liHaDAr , of one civilization). As such, the adjec-
tive must be in the dual genitive form (ymatayni, (two) great). In the

296 Guessoum and Zantout

second example, (mutalah~if, agog) incorrectly appears in the (default)
masculine singular form, which would reflect that the subject is “he” (instead of we).

… of two great civilizations.
We waited agog for news. . (*)

8. Constructed Words (H)
In a number of cases that we have come across, ill-constructed words were gener-
ated. This clearly reflects errors that are intrinsic to the morphological generator.
For instance, the output in the first example below, an invalid word
(kaba ydAã, as far afield) is generated. This word has probably been constructed
by adding the prefix (k, as) to the word (ba ydAã, far) giving a form which
is not correct in Arabic. A similar process was followed in the second example
where the suffix (ny, me) instead of (y, me/my) was incorrectly combined
with the word (DAb, aggravating).

… as far afield as Japan
Stop aggravating me… ...

9. Inadequate Prepositions (I)
A preposition can prefix a word (e.g. prepositions , , and) or can be
separated from it (e.g. prepositions , , and). If one is not careful,
prepositions may be incorrectly translated. For example, with the AMT system we
have evaluated, “at” in the first example below, was translated as (fy, in)
instead of (bi, with/at). Likewise, the incorrect preposition (li, for) was
selected instead of (n, of) to prefix the word (Huquwq, rights).

... at affordable prices. (*)
She is renowned for her advocacy of
human rights.

 . (*)

10. Use of the Improper Grammatical Category (J)
This type of error, as we will see below, does occur fairly commonly with AMT
systems. It confirms what we have concluded in previous work (Guessoum &
Zantout, 2001) and (Guessoum & Zantout, 2005) that the AMT systems we have
evaluated follow an improved form of direct MT, although some of them claim
that they use transfer-based MT. In the first example below, the AMT system we
have evaluated, translates “forty-three” textually as (alA a wa
Ârba wn) instead of producing the correct form (fy Al Ali a i
wa AlÂrba yn, in the forty third (year)).

Arabic Morphological Generation and its Impact 297

… and at forty-three, somehow ageless. ... (*)
 .

She asked the question expecting an af-
firmative.

 . (*)

The above features are what we have singled out as features to be looked at when

evaluating the Arabic morphological generation module of an AMT system. The
approach adopted in our work is now presented.

15.4 Analysis of Arabic Morphological Generation Features
in an Arabic MT System

In order to study the impact of Arabic morphological generation features on the
quality of MT to Arabic in an AMTS, we have collected in Phase 1 English sen-
tences by looking up 1056 English words online using the Cambridge Dictionaries
site at http://dictionary.cambridge.org. Out of the 1056 words, 781 were found to
have sample sentences in the online dictionary. Out of these, 756 could be trans-
lated to Arabic using the web-based AMTS Ajeeb (http://www.ajeeb.com). These
Arabic sentences have then gone through Phase 2. In Phase 2, we analyzed all the
pairs of English and Arabic sentences looking for the various types of morpho-
logical features that we could single out as important in AMT. These are the vari-
ous types of features that were presented in Section 15.3. Having a classification
of the morphological information that is relevant to AMT, we needed to see how
frequent the types are and how much they affected the quality of the output of a
given AMTS.

One aspect we have mentioned earlier is that the errors found in the translation
may be due to the morphological generator, syntactic parser, or any other module
of the AMT system. However, what is relevant to our work is that whatever the
source of the error, it is reflected at the morphological generation level as ex-
plained in the previous section. As we wanted to find a correlation between the
type of the error and the quality of the translation, we had to be very careful in our
evaluation approach. In fact, we have followed a number of steps.

First, we kept only the sentences or sentence chunks which contained at least
one error related to the morphological features mentioned in Section 15.3. Errors
like wrong word order have not been considered as they are purely syntactic (and
therefore most probably not related to the morphological generator).

In the second step, we discarded all the sentences that contained more than two
errors of the morphological types of interest. This is to avoid confusion as to
which type affects affect the quality of the translation most, and for how much.
We ended up with 177 sentences that contained one or two errors related to the cate-
gorized morphological features. We then tagged each sentence with A, B, or …, J,
where A stands for the feature type “Definite/Indefinite”, B for “Case Ending”, etc.,

298 Guessoum and Zantout

up to J for “Use of Improper Grammatical Category”, as defined in Section 15.3.
As some of the sentences may have two errors, not just one, we decided to assign
only one tag/letter considering that error which most affects the sentence and, for
simplicity, (mentally) correcting the other one.7 As a result, each sentence recei-
ved exactly one tag.

At this point we were ready for evaluating the selected pairs of sentences for
adequacy and correctness of the machine translation. This has been done by hu-
man experts who were asked to assign a value between 0 and 5, where 0 means
completely unacceptable and 5 perfectly clear at first reading while being faithful
to the source sentence and sounding correct.

Once a translation quality value was assigned to each tagged sentence, we
computed statistics giving the number of sentences afflicted with each type of er-
ror (having been assigned a specific tag) as well as the average quality measure
(value between 0 and 5, inclusive) for each one of these types. This measure tells
us how much an error for that morphological feature affects the quality of the
translation. The closer the value to 0 for a particular type of morphological infor-
mation, the more serious an impact the type has on the quality of the translation.
Obviously, the closer the value to 5, the less impact the type has on the quality of
the translation.

15.5 Results and Data Analysis

Table 15.1 shows the results of the analysis of the 177 pairs of (tagged) sentences
translated using the AMT system mentioned in Section 15.4.

The frequencies of the sentences of types A, B, …to J, are given in the second
row. We clearly see that the largest number of errors is about the handling of pro-
nouns (20.34% of the cases), followed by using improper grammatical category
(16.95% of the cases), and then by using inadequate prepositions (15.82% of the

Table 15.1.

Type of
Error

A B C D E F G H I J

Number
of Cases 20 22 7 9 8 36 8 9 28 30

% of cases 11.3 12.43 3.9 5 4.5 20.34 4.5 5 15.82 16.95
Average
(Out of 5) 4.25 4.41 1 2.56 2.5 2.9 3.12 2.22 2.61 1.43

7 Note that we could refine our evaluation by considering combinations of errors as fur-
ther affecting the meaning/intelligibility of the target sentence.

Quantitative breakdown of morphological errors affecting AMT system quality

Arabic Morphological Generation and its Impact 299

cases). On the other hand, the least frequent error type is the handling of the im-
perative mood (3.9% of the cases).

The frequencies just presented are not meaningful enough on their own if we do
not know how serious each of the error types is and how much it affects the qual-
ity of the translation. This is what the last row of Table 15.1 tells us. In particular,
it shows that the type of morphological error which most affects the quality of the
translation (in the case of the AMTS under evaluation) is the handling of the im-
perative mood. The results tell us that despite the fact that this error occurs in only
3.9% of the cases, whenever it occurs, it drastically affects the meaning of the sen-
tence with an average score of 1 out of 5. The rest of the table can be read in the
same way. In particular, only two types of errors are “mild” enough as to produce
sentences that are still reasonably adequately translated, with a quality score of
more than 4 out of 5. These types of errors are the incorrect handling of Defi-
nite/Indefinite nouns and the incorrect case endings. Both of these errors are fairly
frequent (>11% of the cases for each one) but do not seriously affect the meaning
and correctness of the target sentence.

Table 15.1 is concise enough and, in our opinion, quite useful for a better
evaluation of an AMT system and, hopefully, for its improvement. Indeed, the av-
erages we have computed also tell us how much an improvement of the quality of
the sentence we would get if we correct that particular type of morphological in-
formation error. For instance, correcting the error for the case of the handling of
the imperative mood should make the sentence noticeably more comprehensible.

15.6 Conclusion and Recommendations

In this chapter, the importance of Morphological Generation to the clarity of the
output of an MT system was emphasized. The complexity of morphology in Ara-
bic was presented through the description of some of the rules that govern Arabic
morphology. An analysis of the common types of errors related to Arabic morpho-
logical generation was then made and several important types of errors were de-
tailed. An existing commercial AMTS was then evaluated to determine which
type(s) of error affected the translation to Arabic using that AMTS. The approach
used in this chapter for evaluation identified several types of errors as affecting the
output of the AMTS most drastically.

It is expected that the developers of the AMTS under evaluation would benefit
from this evaluation by concentrating their research on treating the most common
errors and those which affect the output of the AMTS most drastically. The cate-
gories of errors that were identified in this chapter can also help developers of
AMT systems look for such errors in their output and treat them inside the AMTS.
This will lead to a better AMT system that will produce outputs of better quality.

The evaluation of one AMT system in this contribution has revealed important
information about output errors and their types. It is recommended that other
AMT systems be evaluated in the same manner. This will lead to determining

300 Guessoum and Zantout

whether the types of errors that were identified in this chapter are indeed general
for many AMT systems and therefore being general features of Arabic to be paid
attention to in machine translation to Arabic.

As we happen to have collected a much larger corpus of pairs of translated sen-
tences, we intend to do the evaluation for a much larger part of this corpus so as to
reach statistically more conclusive results. Research could also be done on how to
automate the evaluation above by using language tools that would be able to ana-
lyze the Arabic sentences and identify the types of errors automatically. For ex-
ample, using an Arabic morphological analyzer, the output words could be auto-
matically analyzed into a set of roots and associated morphological information.
Then, a module could be developed that would check the types of errors by ana-
lyzing the information for all words in a sentence. Automating parts of the evalua-
tion would allow the treatment of large corpora in shorter times.

Acknowledgements

We would like to thank M. A. Hussein (BSc student at the University of Sharjah)
for having collected the sample English sentences from the web site
http://dictionary.cambridge.org as well as their translations to Arabic using the
web-based Machine Translation system Ajeeb (http://www.ajeeb.com).

References

Arnold, D.J., Sadler, L.G. & Humphreys, R.L. (1993). Evaluation: An Assessment. In Ma-
chine Translation. Special Issue on Evaluation, 8(1–2), 1–24.

Chaumier, J., Mallen, M.C. & Van Slype, G. (1977). Evaluation du Système de Traduction
Automatique SYSTRAN; Evaluation de la Qualité de la Traduction. CEC Report Nr.
4. Luxembourg.

Dahdah, A. (1995). [Dictionary of the Conjugation of Arabic
Verbs]. Beirut, Lebanon: Librairie du Liban.

ECL (Equipe Consortium Limited) (1996). Survey of Machine Translation: Products and
Services. Summary of a report to the European Commission. Retrieved from
http://www2.echo.lu/langeng/reps/mtsurvey/mtsurvey.html

Fowzan, M., Al-Harbi, S., Kazdar, S. & Al-Qahtani, H. (2000). [Morphologi-
King Saoud University, College of Computer

and Information Sciences, Computer Sciences Department, Riyadh, Saudi Arabia.
Guessoum, A. & Zantout, R. (2001). A Methodology for a Semi-Automatic Evaluation of

the Language Coverage of Machine Translation System Lexicons. Machine Transla-
tion, 16(2), 127–149.

Guessoum, A. & Zantout, R. (2005). A Methodology for Evaluating Arabic Machine
Translation Systems. Machine Translation, 18(4), 299–335.

Hamalawy, A. (1996). [The Art of Morphology]. Beirut, Lebanon:
 .

Hedberg, S. (1995). Machine Translation Comes of Age. Computer Select, September.

cal Analysis of Verbs]. B.Sc. project report,

Arabic Morphological Generation and its Impact 301

Van der Meer, J. (2003). At Last Translation Automation Becomes a Reality: An An-
thology of the Translation Market. In Proceedings of International Workshop of the
European Association for Machine Translation/Controlled Language Applications
Workshop (pp. 180–184), Dublin, Ireland.

302 Guessoum and Zantout

Nyberg, E. H. III., Mitamura, T. & Carbonell, J.G. (1994). Evaluation Metrics for Knowl-
edge-Based Machine Translation. In Proceedings of COLING -94.

Oren, T. (December 2004). Machine Translation and the Global Blogosphere. Retrieved
from http://windsofchange.net.

Rajhi, A. (1979). [Applied Morphology]. Lebanon:
 .

Van Slype, G. (1979). Critical Study of Methods for Evaluating the Quality of Machine
Translation (Final Report). Prepared for the Commission of the European Communi-
ties, Directorate for General Scientific and Technical Information Management (DG
XIII), BR 19142, Brussels.

White, J., O’Connell, T. & O’Mara, F. (1994). Machine Translation Program: 3Q94
Evaluation.. In Proceedings of the November 1994 Meeting of the Advanced Research
Projects Agency. Retrieved from http://ursula.georgetown.edu/mt_web/3Q94FR.htm

Nyberg, E. H. III and Mitamura, T. (1994). The KANT System: Fast, Accurate, High-
Quality Translation in Practical Domains. In Proceedings of the 14th International
Conference on Computational Linguistics, COLING-92, pp. 1069-1073.

Index

Ablaut, 48, 53
Al-Stem, 225, 247–48, 257, 258
Alif maqsura (Âlif maqSuwrah), 21, 30,

31, 167
Alignment, 193, 195, 254
Allomorphy, 102, 103, 167, 170
ALMORGEANA, 269, 271–2, 274,

276–80
Alpnet, 36, 248–252, 255–59
Apophony, 92, 94
APT, 163
Arabic

character set, 24–28
dialects, 37–38
Egyptian, 30, 31, 37
Levantine, 37, 272
Modern Standard, 15–16, 19, 24,

34–35, 161–77
pronunciation, 16, 18–20
script, 15ff
transliteration, 15ff

Arabic Treebank (ATB), 10, 35, 39,
172, 203, 268, 270, 279

ASCII, 16, 164, 191
ASMO 449 code page, 25
AutoMorphology, 248

Base phrase chunking, 160, 175–177
Bayes rule, 149
Binyan, 5, 54–60
Black box evaluation, 288, 293
BLARK, 12–13
Broken plural, 102–103, 105, 107–108,

110, 185, 266, 276

Chunking, 175–176
ChunkLink, 176
Clitic tokenization, 177, 165–66, 171
Coda, 46ff
Common expressions, 295
Component-based evaluation, 288
Concordance, 295, 296
Consonant, 5ff, 18ff, 49ff, 68, 76, 93
Constructed words, 297
Co-occurrence analysis, 224
Cross-language retrieval, 222, 230–32
Cross-lingual, 11, 222, 233

DATR, 47, 48, 75
Diacritics, 33, 228
Dialects, 37
DIINAR, 8, 116
Diphthongs, 21, 46

Electronic dictionary, 250
Enclitics, 112, 165, 167

Finite state transducer, 3ff, 183, 247,
248, 272

Fisher kernel, 188–89
F-measure, see F-score
F-score, 148, 210
Feminine marker, 170

Gloss, 18

Hamza, 16, 24, 29
Hebrew, 145, 146, 150–52
Hidden Markov Model, 184, 185

303

304 Index

Idafa (ǍiDAfah), 21
Imperative, 70, 74, 134, 294
Imperfective, 54, 70–1, 101, 134
Information geometry, 188–89
Information retrieval, 11, 12, 221ff,

249ff
Inheritance, 53ff
Interdigitation, 5, 36
IOB coding, 165, 175
IR, 3, 4, 11, 221, 222, 224–27, 238–39

Kashida (kašiydah), 18

Lattice, 10, 208
Lemmatization, 120, 164, 167, 170, 173
Lemur toolkit, 229
Letter normalization strategy, 255
Lexeme, 7, 12, 50, 90, 94, 111, 120,

144, 268, 276
Lexeme-based morphology, 120
Lexicon

Alpnet, 36, 248ff
Xerox, 36

Light10 stemmer, 225, 230, 231
Light stemming, 224–229
Linguistic Data Consortium (LDC), 10,

16, 221, 233, 251
Local context analysis, 228

Machine learning, 9, 10, 121, 144, 146,
160, 163, 202, 215, 226, 279

Machine translation, 263ff
quality, 269, 287, 398
statistical, 263, 268ff
symbolic, 263, 270ff

MADA, 163
MAGEAD, 272
Measure, verbal, 68, 70, 77
Memory-based learning, 202, 203, 206
Moon letters, 21
MORPHE, 120
Morpheme

affixational, 264–68
function, 264

inflectional, 264, 266, 268
templatic, 160, 264–66, 271
type, 172, 206

Morphological analysis, 10, 24
generation, 272
representations, 264, 266, 268–71

Morphological interoperability,
279–280

Morphology
autosegmental, 5
lexeme-based, 90, 94, 120, 271
memory-based, 205, 215
root-and-pattern, 116, 144
syllable-based, 4, 46
two-level, 7, 29, 36, 123, 182

N-grams, 223, 225, 249
Non-determinism, 184
Normalization, 23, 255, 268
Nunation, 20

Onset, 46
Orthography, 29, 31, 34, 36, 144, 222

variation, 29–32
Overgeneration error, 277–78

Part-of-speech
tag set, 165
tagging, 160, 172–174, 211, 213

Pattern, 3ff, 67ff
PC-KIMMO, 248
Peak, 46
Perfective, 68, 70, 94, 101
Precision, 146, 209
Prefixes and suffixes, list of, 162,

233, 247
Prefix-suffix-template combination,

248, 253
Proclitics, 124, 161, 170
Pronoun

enclitics, 168, 235
resolution, 292, 296

Proper nouns, 172, 211

Radicals, 145, 148, 151, 155

Index 305

Recall, 77, 117, 210, 259
Referral, 7, 48, 56, 94, 99, 107
Rhyme, 46, 52
Root, 5, 51, 60, 70, 96, 119
Root-and-pattern morphology, 5, 67ff
Run-on words, 33

Sebawai, 226, 247, 249, 252, 254–259
Segmental analysis, 5
Segmentation, 10, 11, 127, 162, 163,

167, 169, 203, 207, 267
Semi-supervised learning, 192–93
Semitic languages, 144, 145
Shadda (šad∼ah), 18
SNoW, 147, 151
Stem, 48ff
Stemming

light, 229
statistical, 223–24
strong, 224

Stochastic transducer, 10, 183, 184, 192
Sun letters, 21
Support Vector Machines, 10, 160, 163,

215, 226
Syncretism, 75–77
SYSTRAN, 8, 118, 124, 124

ta marbuta (tA’ marbuwTah), 21, 30,
170, 265

Tatweel (taTwiyl), 18
Templates, 246, 248, 255, 257
Tier, 5, 77
TiMBL, 203

TOKAN, 279, 280
Tokenization, 4, 32–35, 160, 162, 163,

165, 168
Transcription, 16, 20, 37, 191, 192
Transliteration, 15–21

scheme, 17–18
TREC conferences, 226–228
Two-level morphology, 7, 36, 39, 123,

182, 248

Undergeneration error, 277, 279
Unicode, 24, 28, 30
Unknown words, 205–07, 210, 212,

213, 214, 215
Unsupervised learning, 121, 181–198

Vocabulary mismatch problem, 222–223
Vocalization, 5, 26, 39, 172, 205
Vowel, 5, 6, 18, 26, 48ff

Windowing, 27, 28, 30, 164–165,
206–207

Word formatives grammar, 117, 126,
130–32

Xerox
two-level morphology system, 36,

39, 248

ZAD
corpus, 251
list, 251, 255

Text, Speech and Language Technology

24. G. Fant: Speech Acoustics and Phonetics. Selected Writings. 2004
ISBN 1-4020-2373-1; Pb 1-4020-2789-3

25. W.J. Barry and W.A. Van Dommelen (eds.): The Integration of Phonetic Knowledge
in Speech Technology. 2005 ISBN 1-4020-2635-8; Pb 1-4020-2636-6

26. D. Dahl (ed.): Practical Spoken Dialog Systems. 2004
ISBN 1-4020-2674-9; Pb 1-4020-2675-7

27. O. Stock and M. Zancanaro (eds.): Multimodal Intelligent Information Presentation.
2005 ISBN 1-4020-3049-5; Pb 1-4020-3050-9

28. W. Minker, D. Bühler and L. Dybkjaer (eds.): Spoken Multimodal Human-Computer
Dialogue in Mobile Environments. 2004 ISBN 1-4020-3073-8; Pb 1-4020-3074-6

29. P. Saint-Dizier (ed.): Syntax and Semantics of Prepositions. 2005
ISBN 1-4020-3849-6

30. J. C. J. van Kuppevelt, L. Dybkjaer, N. O. Bernsen (eds.): Advances in natural
Multimodal Dialogue Systems. 2005 ISBN 1-4020-3932-8

31. P. Grzybek (ed.): Contributions to the Science of Text and Language. Word Length
Studies and Related Issues. 2006 ISBN 1-4020-4067-9

32.

33.
Applications. 2006 ISBN 1-4020-4808-4

ISBN 1-4020-4744-4

springer.com

E. Agirre and P. Edmonds (eds.): Word Sense Disambiguation. Algorithms and

34.
ISBN 1-4020-4888-2

ISBN 1-4020-5284-7

ISBN 1-4020-5832-2

ISBN 1-4020-5815-2

35.

36.

37.

K. Ahmed, C. Brewster and M. Stevenson (eds.): Words and Intelligence I. Selected
Papers by Yorick Wilks. 2007

Systems. 2007

T. Strzalkowski and S. Harabagiu (eds.): Advances in Open Domain Question
Answering. 2006

in Honor of Yorick Wilks. 2007

J. Nivre (eds.): Inductive Dependency Parsing. 2006

L. Dybkjær, H. Hemsen and W. Minker (eds.): Evaluation of Text and Speech

K. Ahmed, C. Brewster and M. Stevenson (eds.): Words and Intelligence II. Essays

ISBN 978-1-4020-6045-8

38. A. Soudi, A. van den Bosch and G. Neumann (eds.): Arabic Computational
Morphology. Knowledge-based and Empirical Methods. 2007

	prelims.pdf
	part1.pdf
	ch01.pdf
	ch02.pdf
	ch03.pdf
	part2.pdf
	ch04.pdf
	ch05.pdf
	ch06.pdf
	ch07.pdf
	part3.pdf
	ch08.pdf
	ch09.pdf
	ch10.pdf
	ch11.pdf
	part4.pdf
	ch12.pdf
	ch13.pdf
	ch14.pdf
	ch15.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

