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1. SYSTEMS BIOLOGY

1.1. Introduction

Molecular biology was one of the most successful scientific disciplines of the previous
century. It matured into an enormous undertaking involving many tens of thousands
of scientists all over the world and has spawned a huge industry involved in medicine
and (bio-) technology. The discoveries of molecular biology have been driven to a
large extent by the development of new technologies enabling the scientists to identify
and investigate new molecular phenomena in cells.

Molecular biology began to take shape in the 1940s. In those days the “aim” of
the field became transparent: molecular biology was to discover and characterize the
molecular constituents of cells (Stent 1968; Hess 1970). And that is certainly what it
has been doing very successfully over the last 60 years or so.

We are now at the point in time where our understanding of the properties of the
molecular constituents of cells is of sufficient detail to start studying the properties
of networks composed of interacting molecules. This requires an approach different
form that of molecular biology, involving the application of different techniques
and methods. This new field in biology has been emerging in the last few years and is
referred to as “Systems Biology” (Ideker et al. 2001a, b; Alberghina and Westerhoff
2005).

Systems biology studies how the functional behaviour of biological networks arises
from the interactions between the molecules of which they consist. Accordingly, the
introduction of systems biology involved a change in focus: from molecule to net-
work. This has become possible at a large scale only recently, thanks to the enormous
knowledge that molecular biology, biochemistry and cell biology have acquired about
the molecular organization of cells, and thanks to genome sequencing and a set of
techniques enabling functional genomics. There are two forms of systems biology:
bottom-up (investigates how the molecular interactions between a set of known com-
ponents gives rise to functional behaviour) and top-down (uses system level data to
identify and characterize underlying patterns of interactions). As we shall see the
type of research associated with the former form of systems biology is new (thanks
to a number of developments in mathematical biochemistry), as is the applications of
top-down systems biology. Systems biology may rightfully be called a new discipline
in science by virtue of the fact that it differs essentially from both physical chemistry
and biology.

The aim of systems biology is to come to understand general principles underly-
ing the emergence of the behaviour of cells from their molecular organization – it
addresses how molecules jointly bring about cellular behaviour. This level of under-
standing should enable more rational approaches to current challenges encountered
in medicine and biotechnology such as drug design and product formation. When
systems biology succeeds we should have complete understanding of the molecular
functioning of cells. Although systems biology may seem to represent a natural con-
tinuation of molecular biology, it requires a transition in biological thinking to enter
this new phase towards understanding cells and organisms.
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1.2. Two Approaches to Systems Biology

As was mentioned above, systems biology studies how cellular phenomena derive
from the interactions between the molecular constituents of cells. This means that
studies have to be done on the level of the entire cell, for example, apoptosis,
cell division, and adaptation, as well as on the molecular level, for example, stud-
ies of protein–protein interactions, cellular location, and molecular transport. Most
importantly, and this is perhaps the most challenging aspect of systems biology, the
corresponding two datasets have to be integrated to the extent that it allows under-
standing of how the joint molecular behaviours – the latter dataset – underly the
cellular behaviour – the former dataset.

Two strategies may be followed. Top-down systems biology starts with the system-
level data to identify and characterize underlying molecular mechanisms. Bottom-up
systems biology starts from the other end, at the level of the molecular mechanisms,
and investigates how the latter jointly bring about cellular phenomena. Top-down
systems biology is used more often for “discovery” studies, for example, to predict
the topology of protein–protein interaction networks, or (presumed) transcription
factor networks (target genes for transcription factors) from data concerning all
molecules of the corresponding subtype of the entire cell (or a large proportion
thereof) (Ideker et al. 2001a, b). This involves more than, for instance, the use
of microarrays or yeast two-hybrid screens. It also requires the use of new compu-
tational methods, often statistical, to obtain from those datasets network statistically
significant topologies that will function as predictions. Top-down systems biology
tends to be more associated with studies of poorly-characterized networks of cells.
Bottom-up systems biology starts with all the knowledge about one particular sub-
network in a cell and considers the properties of its molecules as well as the processes
that underlie their interactions. It then investigates: (i) how its behaviour derives
from its internal molecular organization, (ii) how it influences the remainder of
the cell and vice versa and (iii) what the function(s) are of this subnetwork inside
the cell.

Both approaches to systems biology rely on mathematical methods and modelling,
as well as on quantitative and precise experimentation. However, the types of mathe-
matical and experimental approaches used differ between the two. Bottom-up systems
biology uses either detailed kinetic models describing the processes taking place
between molecules in terms of experimentally determined kinetic properties (if avail-
able) when it wishes to identify actual mechanisms of emergence of functionality, or
“core” models when it examines what new properties might arise from certain inter-
actions (Bakker et al. 1997; Kholodenko et al. 1999; Rohwer et al. 2000; Teusink
et al. 2000; Hoefnagel et al. 2002; Hornberg et al. 2005). It relies on knowledge
about the topology of the molecular network and the properties of molecules. Top-
down systems biology is applied to actually determine topology and occasionally
kinetic information possibly in a data driven, hypothesis free fashion. Below we
will consider kinetic models, and how they are used in bottom-up systems biology,
more elaborately.
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1.3. Two Historical Origins of Systems Biology

Systems biology applies sophisticated mathematical and experimental methods to
analyse the functioning of molecular networks in cells (Brenner 1999; Kitano 2002;
Hood 2003; Bruggeman et al. 2005a; Kriete and Eils 2005). Accordingly, not only
developments in molecular biology contributed to the growth of systems biology but
also developments in the analysis of nonlinear systems in non-equilibrium physics
and mathematics. Whereas developments in the analysis of three-dimensional struc-
tures of macromolecules, using crystallography or NMR, were of minor importance
for the concepts of system biology, developments such as those of enzyme kinetics,
the chemiosmotic theory, allosteric enzyme regulation, covalent modification, reg-
ulation of the lac operon, were of prime importance. Bioenergetics, enzymology,
and biophysics have therefore been influential disciplines for (bottom-up) systems
biology. The experimental and theoretical analysis of the stationary and dynamic
states of nonlinear systems operating under non-equilibrium conditions is also an
important root of systems biology. This includes non-equilibrium thermodynamics,
network thermodynamics, the analysis of periodic and stochastic phenomena, con-
trol theory, modelling, bifurcation theory, and nonlinear time series analysis. Even
though the latter methods have been applied to biology prior to the emergence of
systems biology, with exceptions like mosaic non-equilibrium thermodynamics and
metabolic and hierarchical control analysis, they have rarely been applied in a way
that referred to the macromolecular components of the system, using both experimen-
tal data on molecular properties and on the system level. More about the historical
roots of systems biology can be found in Westerhoff and Palsson (2004).

2. OVERVIEW OF APPROACHES TO UNDERSTAND CELL
FUNCTION BASED ON MOLECULAR INTERACTIONS

2.1. Topological Analysis

Depending on the purpose – “which biological question is to be answered?” – different
kinds of modelling can be distinguished (Bruggeman 2005). Very often, the choice
of the modelling approach depends also on the quality and extent of molecular infor-
mation available about the interactions out of which the network is composed. The
description that is most qualitative, but nevertheless can answer important biological
questions, considers the network as a graph. In this approach, all the molecules in
the network represent nodes and their interactions represent edges. This is the only
information that is used in this modelling approach. Often such graphs are described
in terms of an adjacency matrix denoted by A. The rows and columns denote the
identity of the interacting molecules and an inhibiting interaction from molecule j
to k is denoted by −1 in the j-th row and k-th column of A, that is, ajk = −1.
A “1” would denote an activatory interaction. In some cases, the direction of the
interaction is not taken into account, making A symmetric, that is, for j and k we
have ajk = akj . Research questions concerning the strengths of the interactions or
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reaction rates (fluxes) cannot be answered with this modelling approach. In the past
few years, methods based on graph theory have been used to study the robustness
and the modular, scale-free and small-world organization of genetic, protein–protein
interaction, signalling and metabolic networks (Watts and Strogatz 1998; Fell and
Wagner 2000, 2001; Milo et al. 2002; Ravasz et al. 2002; Spirin and Mirny 2003;
Pereira-Leal et al. 2004). Many analytical and numerical tools have been developed
to study such networks (Albert and Barabasi 2002; Itzkovitz et al. 2003; Newman
2003).

In this approach only static topological properties of networks can be investigated;
such as the number and length of the paths between two molecules, the number and
length of cycles, the enumeration of occurrences of particular subnetwork structures,
and how those properties scale with the size of the network. This type of modelling
we shall refer to as topological network modelling.

2.2. Stoichiometric Analysis

The next type of modelling we shall discuss is stoichiometric modelling (Schilling
et al. 1999; Price et al. 2004). In this approach, it is emphasized that all molecular
interactions are in fact reactions having particular stoichiometric coefficients. The
latter are the numbers (often integers) preceding the reactants in a reaction, for exam-
ple, the numbers in: 2A + B + 3C ↔ 2AC + BC. This approach appears much more
relevant for the analysis of metabolic networks than for genetic and signalling net-
works where such stoichiometries are absent or ill-defined (for promising exceptions
see (Allen and Palsson 2003; Papin and Palsson 2004a, b; Papin et al. 2005)). Again
this analysis may be performed in terms of matrices. The stoichiometric matrix N has
as many rows as there are independent molecule concentrations (or rather variable
intermediates engaging in reactions) in the network and as many columns as there
are reactions in the network. Then the stoichiometric coefficient of the j-th interme-
diate in the network, say glutamate, for the k-th reaction is the system, say glutamate
synthase, is 2, whereas glutamine, the l-th intermediate, has a −1 in the kth-column
of N, that is, njk = 2 and nlk = −1.

One type of stoichiometric analysis concerns the discovery of moiety-conservation
relationships in the network (Reder 1988; Famili and Palsson 2003; Nikolaev
et al. 2005; Imielinski et al. 2006). These linear relationships represent sums of
concentrations of intermediates in the network that remain constant on the time
scale of interest, because there are only reactions that interconvert these particular
intermediates. For instance, the following moiety-conservation relationship may per-
tain: [Pi] + [AMP] + 2[ADP] + 3[ATP]+ [other phosphate containing molecules] =
[P]total constant.

A more popular form of stoichiometric analysis is the analysis of flux distributions
that are consistent with system steady state (Note that in the terminology of metabolic
modelling, the rate of a reaction at system steady state is referred to as a flux.) This
type of analysis can be done directly on the N matrix because of its central role in
the description of the mass balances of all the variable intermediates in a network.
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A mass balance is an equation for each variable intermediate in the network, say x,
that describes at a particular moment in time the rate of change in this variable, that
is, dx/dt, in terms of the difference between the rates of all the reactions producing x
and all the reactions consuming it. If we denote rates by v then we obtain for each of
the intermediates, entries in the state vector x = {x1, . . . , xj , . . . , xm}, the following
mass balance:

d

dt
xj =

∑

k

njk · vk (1)

In matrix format we obtain (denoting a vector in bold small font and a matrix in bold
capital font):

dx

dt
= Nv (2)

In steady state, we denote the rate vector v by the flux vector J (this will be the only
vector denoted by a capital letter) to obtain:

0 = NJ (3)

Many different flux vectors will satisfy this equation. All of those solutions are linear
combinations of the independent fluxes in the network. The coefficients to appear in
those linear combinations derive from the nullspace or kernel matrix of N denoted
by K (Schuster et al. 1999). Reordering J with the independent fluxes JI on top of
the dependent fluxes JD one obtains:

J = KJI (4)

Each column of K represents a flux mode, a set of fluxes through the reaction steps
in the network that are consistent with a system steady state. The choice of K is
not unique. To solve this and to make the definition of flux mode biologically more
interesting and applicable to bioengineering and pathway analysis, elementary modes
and extreme pathways have been developed, both corresponding to choices of K
(Schilling et al. 2000; Schuster et al. 2000; Papin et al. 2004) that are extreme in
terms of simplicity. These choices have been useful in analysing the capabilities
of the genome-scale metabolic network, to address characteristics such as possible
yields, robustness, the viability of mutants and the redundancy of pathways (Price
et al. 2004).

Another application of the analysis of the stoichiometric matrix is flux balance
analysis (Edwards et al. 2002). Often the number of fluxes in the system exceeds the
number variable metabolites making equation (3) an underdetermined set of linear
equations, that is, many different combinations of fluxes are consistent with system
steady state. One approach is to measure the fluxes that enter and exit the cell. Because
intracellularly there are many redundant pathways, this does not enable one to deter-
mine all fluxes. Isotope labelling may help then (Wiechert 2002). Another approach
to then find a smaller number of solutions is to postulate that the solution should
satisfy an additional objective. This objective is taken to be associated with optimal
functioning of the network, for instance maximization of some flux or combination
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of fluxes (e.g. growth rate or flux ratio). This type of approach is termed flux balance
analysis. When investigating genome-scale networks the number of solutions may
then still run into the hundreds but at least such numbers are manageable (Mahadevan
and Schilling 2003; Reed and Palsson 2004).

2.3. Kinetic Modelling

None of the methods so far were able to deal with dynamics of intracellular networks.
They were not able to describe the changes in the concentrations of the network
intermediates as function of time upon perturbations made to the network, such as the
addition of nutrients, growth factors, or drugs. This is what kinetic modelling does.
A kinetic model starts from equation (2) by substituting rate equations into the rate
vector. Rate equations describe the dependence of a rate of a reaction in the network
with respects to its substrates, products, and effectors by the identification of the
enzyme mechanism and the parameterisation of its kinetic constants. An example of
a rate equation is the following two substrate (s1 and s2) and two product (p1 and p2)
reaction with the non-competitive inhibitory effect of x:

v =
V +

MAX · s1·s2
Ks1 ·Ks2

− V −
MAX · p1·p2

Kp1 ·Kp2(
1 + x

Kx

) (
1 + s1

Ks1
+ s2

Ks2

) (
1 + p1

Kp1
+ p2

Kp2

) (5)

V +
MAX and V −

MAX denote the maximal rate of the reaction in the forward and the
backward directions respectively. The “K” constants reflect the effective affinity of
the enzyme for its substrates, products and its one effector. All those constants can
be determined experimentally. Most often those experiments are carried in cell free
extract or on isolated enzymes. More on enzyme kinetics, including more compli-
cated cases involving multimeric enzymes, can be found in Segel (1993) and Cleland
(Cleland 1963a, b, c). This is a discipline in itself, even though much smaller nowa-
days than in the 1960s and 1970s. Supplemented with initial conditions, the kinetic
model, with the parameterized rate equations incorporated, allows the calculation of
the temporal behaviour of network.

Not all kinetic models derive their kinetic parameters and the exact enzyme mech-
anism from experiment. In those cases, the network may still be precise but the
descriptions of the enzymes are then phenomenological. On the other end of the scale,
“Silicon Cell” models are defined as to contain the experimentally confirmed network
structure, enzyme mechanisms, and kinetic parameters (see www.siliconcell.net).
Models that serve illustrative purposes or more qualitative purposes are core models
and those have simplified network structures, simplified enzyme mechanisms, and
guessed or fitted kinetic parameters. It all depends on the purpose of the model whether
a model can be judged as good or bad. Silicon Cell models are especially promis-
ing because they contain the current status of understanding and should therefore be
more easily integrated with experiment. They may assist in pinpointing gaps in our
understanding, offering hypotheses, performing in silico “experiments,” predicting
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drug targets, and integrating various sources of biological data (fluxes, kinetic con-
stants and concentration of mRNAs, proteins, and metabolites). Silicon cell models
come as close as possible to offering a complete description of cells. The Silicon Cell
programme will be discussed in more detail in Section 3.

2.4. Metabolic Control Analysis

A powerful tool to understand the behaviour of cells, pathways or models thereof
is Metabolic Control Analysis. It was pioneered by Heinrich and Rapoport (1974)
and Kacser & Burns (1973) in the seventies for steady-state metabolic networks
with early experimental application by Flint et al. (1980, 1981) and Groen et al.
(1982). MCA relates changes in systemic properties as quantified by response or
control coefficients to properties of enzymes in terms of elasticity coefficients. MCA
has later been extended to address branched and cyclic pathways with and with-
out moiety conservation (Fell and Sauro 1985; Hofmeyr et al. 1986; Sauro et al.
1987; Reder 1988; Fell and Sauro 1990; Kacser et al. 1990; Sauro and Kacser 1990;
Kholodenko et al. 1994b, 1995b; Sauro 1994, 1995 Westerhoff and Kell 1996), con-
centration control (Westerhoff and Chen 1984), energy coupling (Westerhoff et al.
1987), control of generalized variables (Schuster 1996), control of transition times
(Easterby 1990; Melendezhevia et al. 1990), systems involving quasi-equilibrium
reactions and time-scale separation (Delgado and Liao 1995; Kholodenko et al.
1998); oscillatory systems (Kholodenko et al. 1996, 1997a; Ingalls 2004; Sauro
and Ingalls 2004), signaling networks (Kholodenko et al. 1997; Bruggeman et al.
2002), channeling (Kholodenko et al. 1994), intra-enzymatic processes (Kholodenko
and Westerhoff 1994), hierarchical networks with gene expression, signaling, and
metabolism (Westerhoff et al. 1989; Kahn and Westerhoff 1991; Jensen et al. 1999;
Hofmeyr and Westerhoff 2001; Bruggeman et al. 2002; Snoep et al. 2002), modular
biochemical networks (Schuster et al. 1993), reaction-diffusion systems (Brown and
Kholodenko 1999; Peletier et al. 2003), and transient trajectories (Acerenza et al.
1989; Heinrich and Render 1991; Ingalls and Sauro 2003). It has been applied fre-
quently to the experimental analysis of biochemical networks (Groen et al. 1982;
Ainscow and Brand 1999a, b). In this section we will outline the theory only briefly.
For more comprehensive reviews, see (Westerhoff and Van Dam 1987; Heinrich and
Schuster 1996; Fell 1997).

The effect of a change of the activity of an enzyme i on the steady-state flux J
is quantified by the corresponding flux control coefficient CJ

i . CJ
i is the percentage

change of the flux J upon a 1% change of the enzyme activity vi causing the change
of the flux. Or, in more precise mathematical terms:

CJ
i

(d ln J/dp)ss

(∂ ln vi/∂p)reactioni

in which p is a parameter that only acts on enzyme i, such as an inhibitor concentration
or an enzyme concentration. The subscript ss and differential “d” indicate that the
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change of the flux is analysed after relaxation of all system variables to a new steady-
state. The subscript reaction i and derivative “∂” indicate that only the change in the
local rate of enzyme i is considered, immediately after the change of p at constant
values of all system variables, such as the concentrations of substrates, products and
effectors of enzyme i.

In simple metabolic pathways, with only one independent flux, the value of CJ
i is

usually between zero and 1. Partial inhibition of an enzyme with zero flux control does
not affect the flux, while an enzyme with a flux control coefficient of 1 is completely
rate-limiting. Flux control coefficients between 0 and 1 have often been found (Groen
et al. 1982; Ruijter et al. 1991; Snoep et al. 1996). In ideal metabolic pathways,
for example, in the absence of metabolite channelling and coenzyme sequestration
(Kholodenko et al. 1995), the sum of the flux control coefficients of all enzymes in
the pathway must equal 1:

∑

i

CJ
i = 1

Control coefficients are properties of a metabolic pathway as a whole. The kinetic
properties of individual enzymes that are relevant for control are expressed in
terms of their elasticity coefficients. An elasticity coefficient εi

Xj
quantifies how

strongly a metabolite concentration Xj affects an enzyme rate vi directly, at constant
concentrations of all other metabolite concentrations:

εi
Xj

= ∂ ln νi

∂ ln Xj

Connectivity theorems allow to relate the control coefficients (systemic properties)
to the elasticity coefficients (properties of the network’s enzymes individually as
if in isolation) (Westerhoff and Van Dam 1987; Heinrich and Schuster 1996; Fell
1997). The connectivity theorems have given us a strong insight into the functioning
of metabolic pathways. For example, it follows directly from these theorems that
enzymes that are very sensitive to the concentrations of metabolites, such as sub-
strates, products and allosteric effectors, tend to have little control over the flux. This
is illustrated by overproduction of phosphofructokinase in bakers’ yeast, an enzyme
often referred to textbooks as “rate-limiting.” Yet, overproduction of phosphofruc-
tokinase does not lead to a significant flux increase, since the cell compensates by
lowering the level of its allosteric effector fructose 2,6-bisphosphate (Schaaff et al.
1989; Davies and Brindle 1992).

2.5. Control versus Regulation

In the biological and biochemical literature the terms control and regulation are often
used loosely as synonyms. In the precise analysis that is applied in systems biology,
however, there is a need for a stricter definition of these terms.

We use the term control only in the sense in which it is used in Metabolic Control
Analysis (Section 2.3). An enzyme is said to control a metabolic flux or a metabolite
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concentration if activation of this enzyme causes a pronounced effect on this flux
or concentration. In this sense questions about control are what-if questions. If the
cell were to increase the concentration of a controlling enzyme or if a scientist were
to add an inhibitor of this enzyme, the flux or concentration should change. Control
coefficients do not tell us whether the cell uses this potential when it responds to
environmental changes.

Regulation indicates which mechanisms the cell actually uses to effectuate changes
or robustness of cellular functions. Different aspects of regulation are the (i) tendency
of living organisms to respond to their environment, (ii) the internal communication
between different parts of cells or organisms and (iii) the maintenance of a relatively
constant internal state upon external perturbations (Kahn and Westerhoff 1993). The
regulatory strength (Hofmeyr et al. 1993; Kahn and Westerhoff 1993; Hofmeyr 1995)
is defined as:

iRJ
A = CJ

i · ε1
A

It quantifies the effect of a perturbation of an external effectorA(e.g. the concentration
of a nutrient) on the flux J via enzyme i. If A effects different enzymes, perturbations
of A can effect J via different routes and the regulatory strengths quantify the rela-
tive importance of each of these regulatory routes. A different, but related approach
was taken by Westerhoff and Ter Kuile (ter Kuile and Westerhoff 2001). They devel-
oped Regulation Analysis, a theory that quantifies the relative importance of flux
regulation via metabolism and via gene expression (Section 2.5).

In summary, control tells us about the buttons of which the cell disposes and
regulation tells us which of these buttons the cell actually presses (through the
elasticities of the components).

2.6. Regulation Analysis

Because enzymes are catalysts (and not substrates), enzyme rate equations are usually
of the shape:

ν = ν(e, X, K) = f (e) · g(X, K)

in which v is the rate, e is the enzyme concentration, X is a vector of concentrations
of substrates, products and other metabolic effectors, and K is a vector of constants
parameterizing the strength with which the enzymes interact with their substrates,
products and allosteric effectors. f (e) describes the dependency of the rate upon the
enzyme concentration and can be taken to equal Vmax, while g(X, K) describes the
interaction of the enzyme with the rest of metabolism through metabolite concen-
trations and the corresponding affinity constants. The important characteristic of the
above equation is that f usually does not depend upon X and K, and g does not depend
upon e.
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Considering the transition from one condition to another:

1 = � log f (e)

� log J

� log g(X, K)

� log J
= ρh + ρm

ρh is called the “hierarchical regulation coefficient” (ter Kuile and Westerhoff 2001),
since it quantifies the relative contribution of changes in enzyme capacity (Vmax) to the
regulation of the enzyme’s flux and depends on the complete gene-expression cascade
of transcription, translation, posttranslational modification, and mRNA and protein
degradation. ρm is the “metabolic regulation coefficient,” quantifying the relative
contribution of changes in the interaction of the enzyme with the rest of metabolism,
to the regulation of the enzyme’s flux. The two regulation coefficients sum up to one,
implying that determination of one will yield the other automatically. In practice the
hierarchical regulation coefficient is more readily determined, since f (e) usually can
be taken to equal Vmax, and the Vmax as well as the flux J through the enzyme can be
measured or estimated in many cases. Regulation analysis introduces the possibility
of making unambiguous and quantitative descriptions of the regulation of fluxes
through individual enzymes embedded in biochemical networks of any complexity,
in response to any number or kind of simultaneous perturbations.

Regulation Analysis has been applied to understand the strong decrease of the gly-
colytic flux in the yeast Saccharomyces cerevisiae upon nutrient starvation (Rossell
et al. 2005, 2006). It turned out that all possible combinations of metabolic and hierar-
chical regulation that one could possibly envisage, were indeed found in vivo. These
include pure hierarchical regulation (ρh = 1), pure metabolic regulation (ρm = 1),
cooperative regulation (both ρh and ρm positive and between 0 and 1) and antagonis-
tic regulation (one regulation coefficient negative and the other one higher than 1)
(Rossell et al. 2005, 2006).

A quantitative theory of regulation allows testing theories of regulation. Among the
proposed mechanisms for metabolic flux changes, the two clearest hypotheses are:
(i) modulation of single rate-limiting enzymes, and (ii) multi-site modulation, that is,
the simultaneous and proportional modulation of all enzymes in the pathway, thus
causing a change in flux while leaving metabolite concentrations unchanged (Fell and
Thomas 1995). Although examples of multisite modulation exist (e.g. lipogenesis in
mice, the urea cycle in rats, and photosynthesis in green plants (Fell and Thomas
1995)), they do not seem to represent a general mode of regulation. Upon a number
of different perturbations the glycolytic pathway of bakers’yeast exhibited a complex
regulation pattern in which each enzyme played a different role: leading the change,
following or pulling back (Daran-Lapujade et al. 2006; Rossell et al. 2006).

When we know how much regulation is in gene expression and how much is
in metabolism, it becomes interesting to investigate how this regulation is brought
about at the molecular level. This makes Regulation Analysis a tool for making sense
of metabolomics, proteomics, and transcriptomics data, or even for preceding such
analyses in experiment design. Without such analysis one might get lost in large
metabolomics patterns, but if one knows which enzymes are actually regulated at the
metabolic level, one need to focus only on the metabolites that affect those enzymes.
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Other metabolite levels may change, but these changes are apparently not regulating
changes, but cancelled by others or unable to regulate enzyme rates. Similarly, if an
enzyme is regulated (partly) by gene expression, we may investigate the quantitative
importance of the various processes in the gene-expression cascade. The theory to
do so has been developed recently and applied to yeast glycolysis (Daran-Lapujade
et al. 2006).

A quantitative analysis such as Regulation Analysis requires highly accurate
datasets. If we are to explain a 50% change of flux and the regulation is distributed
over various processes, we need numbers with accuracy of less than 10% to identify
processes that contribute 20% to the regulation. The analysis of changes between
conditions is of course central in the study of regulation, but at the same time this
makes it error-prone. Thanks to controlled cultivation and highly accurate assay tech-
niques (Piper et al. 2002), transcriptome analysis is adequate to identify the most
important regulatory phenomena, but there is a need for more accurate proteomics
techniques (Daran-Lapujade et al. 2006).

3. THE SILICON CELL PROGRAMME

Systems Biology combines quantitative experimentation, computer modelling and
theory (see Section 2) in order to come to an understanding of cell functioning.
The Silicon Cell programme (Snoep et al. 2005, 2006) focuses on the construction
of kinetic models of various aspects of cell functioning, such as metabolic, signal
transduction and gene-expression models. Central to the Silicon Cell concept is that
the models should be as realistic as possible. They are based on experimental data and
are validated by comparing the model outcome to the behaviour of real cells. Although
the ultimate ambition is to model the entire cell, at present models of subsystems are
much more tractable. The idea is therefore to first construct models of subsystems,
such as metabolic pathways (Schuster and Holzhutter 1995; Bakker et al. 1999;
Teusink et al. 2000; Hoefnagel et al. 2002; Albert et al. 2005), signal transduction
cascades (Schoeberl, Eichler-Jonsson et al. 2002; Bruggeman et al. 2005b) or gene-
expression (Koster et al. 1988), study their properties, and later connect them to
each other.

In view of the enormous effort that is made to make computer models, it is surprising
that only recently attention has been paid to their preservation. Biological models
were usually published as a set of differential equations. People who wanted to use
the models, needed to re-programme them, often to find out that crucial data were
missing or incorrect. This made it very difficult to revive a model without the help
of the authors. A few years ago, however, Snoep and colleagues started to collect
published models in an online database (JWS Online, www.jjj.bio.vu.nl (Snoep 2005))
that can be interrogated via the world-wide web. Today the database consists of some
50 models. Most of these models are realistic kinetic models of the Silicon Cell
type, but the database also contains core models and demonstration models that serve
to illustrate and investigate general principles and are very useful for teaching of
systems biology.
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A first attempt to link three models in the database, that is, a detailed glycolysis
model of yeast (Teusink et al. 2000), a model of the branch to glycerol (Cronwright
et al. 2002) and a model of glyoxylate production (Martins et al. 2001) was suc-
cessful (Snoep et al. 2006). The behaviour of the glycolysis model was not so much
altered by the addition of the two branches. In the combined model, the two branches,
however, worked under other conditions than when they were considered in isola-
tion. Their substrates and products were constant in the isolated models, while they
were variables in the linked model. Of course various problems may occur when
linking models systematically. For example, the models of subsystems may be valid
for different experimental conditions or different cell types. Also they may overlap,
in which case one has to choose which reactions to take from which model. Or there
may be gaps between the models, which requires additional data. This emphasizes
the need for standardization in systems biology. Several consortia are active in stan-
dardization. Computer scripts from different programmes can be interconverted via
the Systems Biology Markup Language that is now supported by over a hundred soft-
ware systems (Hucka et al. 2003) (http://sbml.org/). For example the Yeast Systems
Biology Network (http://www.gmm.gu.se/YSBN/) is active in standardization and
integration of Systems Biology activities of yeast, one of the major model organisms
in the field. STRENDA (Standards for Reporting Enzymology Data) is active in the
standarization of collecting and reporting enzyme data, which are vital for model
construction (http://www.strenda.org ).

4. ADVANTAGES OF A MODULAR APPROACH

4.1. Modules May Help Us Understand Cells Better

As we have seen above, a good strategy to make realistic kinetic models at a genome-
wide scale is to start from smaller modules and to connect these later. There are
other reasons to study the cell as if it consists of a number of modules. One is
intelligibility. There is an interesting tension in offering quantitative explanations of
cellular phenomena. As soon as the explanation becomes more quantitative it will
necessarily contain more detail, describing reality more closely. There is a risk that
we will miss the general principles by loosing ourselves in the study of details. To
keep things understandable, we may temporarily treat parts that are not relevant for
our research question at hand, as black boxes. Another reason to modularize models
of the cell is that we may be interested in a certain process in the cell as it works in
the cellular context, but we do not (yet) have the data to model the whole cell. Then
we could treat the rest of the cell as a black box, but make sure that the compounds
at the boundaries of the module of interest are described well. A final reason to
modularize the cell is to determine the control exerted by certain processes in the cell
(cf. Section 2.4), when it is not possible to influence these processes directly. In that
case one might deduce the control from the elasticity coefficients, using the theorems
of metabolic control analysis. Since these theorems only hold for the entire system,
this can be done by dissecting the cell in modules of which the elasticity coefficients
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can be determined experimentally. This is called modular (Schuster et al. 1993) or
top-down control analysis.

An intuitive definition of a module would be a subnetwork inside the cell that
performs a particular function relatively independently; a module is conceived as a
functional unit. Then one could refer to this subnetwork rather than to its internal
organization when explaining phenomena occurring at the (higher) cellular level.
Examples of such kinds of modules are the ribosome and the degradosome, both
macromolecular complexes with a well-defined function. More encompassing mod-
ules involving more proteins, involved in metabolism and signalling, and in wel
defined pathways. This appears problematic, as sub-networks may be shared between
functional modules. On the other hand, the definition of what constitutes a mod-
ule may also follow other criteria: A more approximate explanation may require a
more coarse-grained modularization of the system than a more detailed explanation.
All in all, the defining of modules is not unambiguous. An interesting option is to
define a module within a biochemical network such that it corresponds with a struc-
tural unit of organization, such as an organelle (mitochondrion, lysosome). Because
organelles tend to have a limited number of transporters and receptors through which
they interact with the rest of the cell, such a definition may indeed identify a func-
tional unit of the network (see below). In hierarchical control analysis (Westerhoff
et al. 1989; Kahn and Westerhoff 1991; Hofmeyr and Westerhoff 2001), module
definition corresponded with the levels in the gene-expression hierarchy.

Another indication of the problems associated with modularization of complex sys-
tems is the small number of formal mathematical methods that allow one to simplify
kinetic models. The existing methods are all based on time-scale separation in the sys-
tem which allows for the decomposition of the system into a module composed of fast
processes and one composed of slow processes. Then the fast processes can be consid-
ered in the absence of the slow processes. The slow processes are then considered with
the fast processes either in steady state or thermodynamic equilibrium (Klonowski
1983; Segel and Slemrod 1989; Schuster and Schuster 1991; Kholodenko et al. 1998;
Stiefenhofer 1998; Schneider and Wilhelm 2000). Two successful approaches to mod-
ularization of complex networks do not consider dynamics. One is purely structural
while the other is applicable only to systems in steady state and concerns the analysis
of control.

4.2. Examples of Successful Definitions of Modules

As the first example, we shall discuss two notions of modules often used in topological
models of networks (Milo et al. 2002; Ravasz et al. 2002; Itzkovitz et al. 2003; Clauset
et al. 2004; Newman 2006). The first notion is that of a “cluster” on the basis of the
nodes within the cluster having more interactions among themselves than with nodes
outside of the cluster. Clusters can be quantitatively defined on the basis of a cluster
coefficient. Escherichia coli has been shown to be clustered in a hierarchical fashion
(Ravasz et al. 2002). Another definition is that of a network motif (Milo et al. 2002;
Shen-Orr et al. 2002; Kashtan et al. 2004; Yeger-Lotem et al. 2004). These authors
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take a different strategy to define modules, or network motifs as they call them.
A network motif is defined as a topological structure that appears with a higher
frequency in a biological network than in a random network of the same size. Then
the authors reason that this network topology has been selected for and should carry
out some particular function contributing to fitness. They indeed found a number of
such networks leading to a series of papers about their functional characterization
(Mangan and Alon 2003; Mangan et al. 2003; Dekel et al. 2005; Kalir et al. 2005;
Mangan et al. 2006). This is a promising approach but the many networks that do
not appear significantly often, remain unaddressed. Do those networks then not carry
out some function contributing to fitness? For instance, the incoherent feedforward
loop network, for example, where X activates Y and inactivates Z and where Z is
in addition activated by Y, does occur in E. coli’s transcription network, albeit not
as frequent as the coherent feedforward loop network (where X activates Z directly
rather than inactivating it), but does this mean that it fulfils no function inside E. coli?
The answer is most certainly “no”: it does perform a function – maybe one which
is not required so abundantly or one which can also be fulfilled by another network
structure occurring more frequently.

The second example of the use of modules derives from metabolic control analysis
(Groen et al. 1982; Westerhoff and Van Dam 1987; Kahn and Westerhoff 1991;
Schuster et al. 1993; Krab 1995; Brand 1996; van der Gugten and Westerhoff 1997;
Ainscow and Brand 1999a, b; Krab et al. 2000; Krauss and Brand 2000; Hofmeyr and
Westerhoff 2001; Bruggeman et al. 2002). This branch of metabolic control analysis
is often referred to as hierarchical control analysis when the modules interact solely
by regulatory influences (e.g. signal transduction cascades) and to modular control
analysis if the modules are coupled by way of mass flow. Modular control analysis is
sometimes referred to as top-down control analysis (Ainscow and Brand 1995; Brand
1996). In hierarchical control analysis the modules are often referred to as levels. In
control analysis a level or a module is defined as a network that behaves the same
in isolation of the network upon a parameter perturbation as it would behave in the
network when the remainder of the network would be kept fixed upon perturbation of
the same parameter. Mathematical analysis then shows that the only conditions for a
module to behave sufficiently autonomously is that it should not share any conserved
moieties with other modules (Schuster et al. 1993; Heinrich and Schuster 1996).
The latter condition is important as it does limit the applicability of modularization
to metabolism. On the other hand, there is a reward if modularization is possible:
In modular control analysis, control coefficients can be defined for the module as
a whole and the module can be considered a supra-enzyme in the entire network
(Schuster et al. 1993; Ainscow and Brand 1995; Brand 1996; Ainscow and Brand
1999; Bruggeman et al. 2002). This leads to black-box modules and to an enormous
simplification of the analysis of the control properties of the system under study
(Schuster et al. 1993; Bruggeman et al. 2002). Importantly, the simplification may or
may not correspond to what has been done intuitively for years, that is, discuss cell
function in terms of interacting pathways, types of process (e.g. energy metabolism,
carbon metabolism, transcription) and organelles.
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4.3. Organelles as Natural Modules and Targets for Regulation

Indeed, compartmentation of the cell into various organelles that only communicate
via molecules that are outside the organelle membrane or are transported across this
membrane by well-defined carrier proteins, suggests a natural way to dissect the cell
into modules. The notion that the functioning of the isolated organelle is relevant to the
functioning of the whole cell is reflected for example by a long history of research on
oxidative phosphorylation in isolated mitochondria, eventually leading to complete
analysis of the control distribution (Groen et al. 1982; Ciapaite et al. 2005; Affourtit
and Brand 2006) and the construction of detailed models (Demin et al. 1998; Demin
et al. 2001).

Since organelles are often specialized to carry out a specific function, it makes
sense to regulate the number of organelles depending on the needs of the cell. This is
well known for the regulation of the number of mitochondria in yeast as a function
of glucose concentration (Cho et al. 2001; Taylor et al. 2005) and in mammals as a
function of thyroid hormone (Moraes 2001). Another clear example is the regulation
of the number of alcohol oxidase containing peroxisomes in the yeast Hansenula
polymorpha, depending on the presence of methanol in the medium (Leao-Helder
et al. 2003).

In Section 2.3 we discussed the regulation of flux on an enzyme-by-enzyme basis.
The overall regulation of flux was dissected in regulation of gene expression and
metabolic regulation. However, the organelle abundance represents an additional
level of regulation that can be incorporated formally in the theory of regulation anal-
ysis. If the organelle copy number per cell is included in the enzyme rate equation,
we obtain:

ν = V ∗
max · {number of organelles per cell} · g(X, K)

in which v is again the in vivo rate of the enzyme, V ∗
max is the maximum enzyme

capacity per organelle (hence the *) and g(X, K) is again the metabolic part of the
rate equation. Since at steady state the rate v equals the flux J, the comparison of the
flux under two experimental conditions yields:

� log ν

� log J
= 1 = � log Vmax

� log J
+ � log{number of organelles per cell}

� log J
+ � log g(X, K)

� log J

= ρh + ρorganelle + ρm

in which ρorganelle now quantifies the importance of organelle abundance in the
regulation of flux.

This is a new development for which we do not yet have experimental applications.
On the other hand, T. brucei with its glycosomes, the concentration of which changes
when the parasite shifts between its various stages in its life cycle, seems a most
interesting test case.



BERTRAND: “BERTRAND_CH11” — 2007/6/7 — 21:19 — PAGE 255 — #19

Systems biology and the reconstruction of the cell 255

5. CONCLUDING REMARKS

From the above it is clear that Systems Biology is on its way to reconstruct the liv-
ing cell and subsequently living organisms in terms of their molecular components.
There is much activity at the level of intracellular biochemical reaction, signalling
and gene-expression networks. In the context of this book, it is most important to note
that there is comparatively little activity in Systems Biology that analyzes the living
cell in terms of dynamically interacting structural components. The reason is that Life
is fundamentally a non-equilibrium condition that is maintained by a number of phys-
ical chemical processes. Much of the existing paradigm of Systems Biology takes the
spatial position of all these processes either as homogeneous within the cell, or as
well-defined by the position of the enzyme or transporter catalyzing the molecular
process. Systems Biology has not yet much been emphasizing that the spatial organi-
zation of the molecular components, depends strongly on the presence of intracellular
structures.

Making the link from structural organization is sometimes considered trivial. It is
not, however. The intracellular structures themselves are not constants but depend
on the effect of a multitude of cooperating non-equilibrium processes. This is clear
for the supercoiling state of prokaryotic DNA (Snoep et al. 2002), but also for the
complex structure of chromatin in higher eukaryotes.

Intriguingly, intracellular structures are the consequence of a number of processes
that happen more or less instantaneously (and may be considered Markovian techni-
cally), but also of a substantial number of other processes that may be inherited from
parental cells. Many of the ribosomes in a cell may in fact have been synthesized in the
maternal cell, hence in a completely different context. Most of the plasma membrane
of a cell originates in the maternal cell. Consequently, also much of the intracellular
dynamic networking of cells may be much more hysteretic than assumed by standard
systems biology. Another exciting aspect is the problem of coupling the generation
and maintenance of structures that are asymmetrical in space to biochemical reactions
that could just as well have been symmetrical. The answer to this issue is known to be
the spatial organization of the enzymes, leading to yet another example of the circular
or spiralling causality so characteristic of Systems Biology.

The Systems Biology of dynamic intracellular structures and compartmentation
has an exciting and bright future. We can only hope that this chapter can help start
the new activities.
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