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1 Introduction 

There is nothing more practical than a good theory. 
Leonid Ilich Brezhnev, quoted in Nature, 1977, 270, pp 470–1 

The earliest example of using earbones or otoliths to provide estimates of fish ages dates 
back to at least 1899 (Reibisch, cited in Jones 1992). Back-calculation to reconstruct 
growth patterns from hard parts of fish (otoliths, bones and scales) followed soon after 
(Lea 1910). The approach involves using measurements made on these bony structures 
to infer, or back-calculate, body length at ages prior to capture. Back-calculation has 
been used to generate individual growth histories of fishes for almost a century (Francis 
1990) and has proved to be an invaluable tool for fisheries scientists and fish ecologists.  

Otoliths can show annual, and for younger fish, daily patterns of growth 
(Pannella 1971, 1974). The analysis of daily increments within otoliths has been very 
popular over the last 30 years due to the ability of the technique to provide growth data 
during the larval and juvenile phases of the life history, when growth rates are critical to 
year-class success and, ultimately, population size (Stevenson & Campana 1992). 
Typically, growth data can be generated from otoliths in 2 ways. When sample sizes are 
large and the fish collected by a study encompass a wide range of age and length, then 
ageing fish may suffice to estimate growth curves for a population. In many cases, 
however, the use of growth back-calculation techniques to estimate fish growth is not a 
choice, it is a necessity. Sample sizes are often small, due to rarity in multi-species 
assemblages (a particular issue in species-rich tropical habitats such as coral reefs) or 
because of the diversity of catches in some fisheries. The difficulty of collecting 
particular life history stages of interest to researchers, such as pelagic larvae or 
juveniles, may also result in small sample sizes. Back-calculation may be required 
where cohorts or populations must be sampled sequentially, as in studies of size 
selective mortality (Hovenkamp 1992, Meekan & Fortier 1996). Only back-calculation 
of histories held within otoliths will allow the reconstruction of growth trajectories in 
such situations, both increasing sample sizes and filling gaps in life history information 
at earlier ages. 

Back-calculation of daily or annual growth from otoliths requires firstly that the 
rate of deposition of increments in otoliths does not vary. This usually can be verified 
experimentally (Geffen 1992). Secondly, it assumes that these increments can be read 
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with accuracy and precision (Campana 1992). Thirdly, all back-calculation models 
assume that there is a relationship between the growth of the otolith (increment width) 
and the somatic growth, usually length, of the fish. Evidence for this phenomenon 
usually is derived from strong correlations between the size of the otolith and body size 
of fish. There have been relatively few studies that have shown a complete lack of 
correlation between fish and otolith size and most of those that have done so have been 
confounded by problems in regression analysis and sample selection (Meekan 1997, 
Meekan et al. 1998, but see Bang & Gronkjaer 2005). Somatic and otolith growth can 
be uncoupled at least in the short term, however, (Mosegaard et al. 1988, Secor & Dean 
1989, Wright et al. 1990, Fey 2006) and this is thought to result from two causes: (i) a 
“growth effect” whereby otoliths from slow-growing fish at a given size are larger than 
those of fast-growing fish of the same size (Templeman & Squires 1956); and (ii) an 
“age effect” where some constant or proportional amount of calcification occurs onto 
the otolith despite daily fluctuations in somatic growth rate (Secor & Dean 1992). 
Otolith growth is a conservative daily process (Mugiya 1987, 1990) and it is easiest to 
describe an age effect in the extreme case where somatic growth ceases but otolith 
growth continues. Age effects, however, can be important during negative, static, and 
positive somatic growth phases (Secor & Dean 1992). Because growth varies over time, 
particularly between ontogenetic stages, growth effects may also vary through time, 
introducing curvature into individual fish – otolith size trajectories (Campana 1990). 
Furthermore, the increase in otolith size in non-growing fish is consistent with 
disproportionately larger otoliths in slower-growing individuals and so the results of 
growth and age effects may be similar and both can therefore induce a bias into the 
otolith – fish length relationship upon which back-calculation procedures are based.  

Some authors have recently opted to analyse otolith radius at age in order to 
generate data sets of growth rate, rather than back-calculated fish length at age, to avoid 
the potential errors associated with back-calculation or in cases where age and growth 
effects might be a problem (Hare & Cowen 1995). The principal argument for this 
approach is that there is no reason to bother with back-calculation because otolith radius 
is a proxy of fish length. Furthermore, it is thought to avoid bias due to the use of 
complex back-calculation models (Campana 1990, Francis 1990) and the effect of 
selective mortality on fish-otolith size relationships (Ricker 1969, Gleason & Bengston 
1996, Grimes & Isley 1996). In reality, these points are arguable. Figure 1 compares the 
growth trajectories and fish length (L) – otolith radius (R) relationships of three 
individuals. In this example, the three fish have the same growth characteristics, but fish 
2 has a slightly different L – R relationship (i.e. morphology) than the others. When 

indeed be a good proxy of length and the same conclusion will hold whether individuals 
are compared on the basis of otolith radius or body length: individual 1 is smaller than 2 
and 3, primarily because it is much younger. When comparing fish of about the same 
age, however, fish with larger otoliths at age might not necessarily be larger in size (e.g. 
2 vs 3). In our example, fish 3 always has a larger otolith radius at age than fish 2, 
despite both having exactly the same body length at age (growth trajectory). This 
demonstrates that otolith radius is a poor proxy of fish length when comparing size-at-
age. The confounding effect of morphology may be relevant not only when comparing 
otolith radii among individuals but also when comparing among populations or samples 
with different L – R relationships.  

comparing individuals of very different ages (e.g. 1 vs 2 or 3), then otolith radius will 
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Figure 1. The growth trajectories and fish length (L) – otolith radius (R) relationships 

of three fish from a simulated data set. The plot of age vs size (left) shows that 
the three individuals have the same growth curve. The plot of otolith vs fish 
size on the right, however, shows fish 2 has a slightly different L – R 
relationship (i.e. morphology) than the others. The lines overlaid on the plots 
show that otolith radius will be a good proxy of length when fish are of 
different ages but fish with larger otoliths at age might not necessarily be 
larger in size than other fish of the same age. 

It is also important to recognise that the use of otolith radii to generate growth 
data does not in fact avoid back-calculation. Rather, the approach inherently assumes 
that the simplest and most primitive back-calculation model applies (Li = aRi, where “a” 
is a constant and Li and Ri are fish length and otolith radius at age i, respectively). 
Because “a” is the same for all fish, the approach is equivalent to back-calculating fish 
size by the “simple regression method” (see below), which is not recommended since it 
ignores individual differences in L – R relationships (Francis 1990). Effectively, a 
century of research and refinement in back-calculation techniques is discarded. Perhaps 
the only situation where such an approach could be preferred is in the analysis of fossil 
otoliths where there may be no extant populations of the study species and so 
relationships between otolith and fish size cannot be constructed empirically.  

So, if back-calculation is inevitable even when we try to avoid it, what then is the 
best approach? The purpose of this chapter is not to describe all of the various back-

expertly reviewed by Francis (1990, 1995). Rather, we will update the lists provided by 
Francis (1990, 1995) and examine the theoretical and experimental evidence for and 
against the use of the various models published in the last decade. This is the first aim 
of our chapter. We also propose to take the issue of back-calculation one step further 
and ask the question: once you have a back-calculated data set of size at age, how do 
you go about analysing it? Chambers and Miller’s review in 1995 recognised the unique 
nature of these data sets, which are longitudinal, auto-correlated and invariably 
unbalanced. These features provide some challenges for statistical analysis that recent 
developments in software have addressed, principally through the use of mixed-effects 
models (Pinheiro & Bates 2000). A description of the use of these models for analysis 
of back-calculated data is the second aim of our chapter.  

calculation models that have been developed over the last century, these have been 
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2 Selection of a back-calculation model 

2.1 BACK-CALCULATION METHODS 

The back-calculation of fish length (Li) from otolith radius (Ri) at age i requires the 
development of a back-calculation model, which is a two-step procedure. Firstly, the 
shape (linear or curvilinear) of the relationship between fish length (L) and otolith 
radius (R) must be determined. This can be described by two functions, “f” and “g” 
where R = f(L) and L = g(R) (Francis 1990). It is important to realise that f and g define 
families of lines (that may be straight or curved) and that any given line is defined by a 
unique set of function parameters. Because back-calculation for a particular fish will 
involve just one line from the family for a given function, the second step of model 
development will involve determining which particular line (i.e., the set of function 
parameters) should be used for a given individual. This can be done using three 
different methods. Paradoxically, the first method considers that all fish follow the same 
L – R line calculated by regression of fish length on otolith radius for the function g. 
Size-at-age estimated by this “simple regression” method (sensu Secor & Dean 1992) is 
given by the following back-calculation model (Francis 1990): 

Li = g(Ri) (1) 

This “simple regression” method is insensitive to changes in individual growth 
histories due to its averaging effect (Secor et al. 1989) and will often produce biased 
size-at-age estimates. It is hard to see any reason for its use (Francis 1990). The second 
and third methods both consider that each individual has a unique L – R line that passes 
through otolith and fish size at capture (Rcpt, Lcpt), but differ in how the parameters of 
individual lines are estimated. The second method back-calculates size by assuming 
proportionality between measurements at individual and population levels. Two 
hypotheses of proportionality exist. Whitney and Carlander (1956) stated these as: “if 
the otolith of one individual was 10% larger at capture than the mean size of otoliths 
from a group of fish of the same length, then its otolith had also been 10% larger than 
the average throughout life”; and “if one individual was 10% larger in length at capture 
than the average length for fish with the same otolith radius, then this individual had 
also been 10% larger than the average throughout life”. These are known as the “Scale 
Proportional Hypothesis” (SPH) and “Body Proportional Hypothesis” (BPH) (sensu 
Francis 1990) respectively. Size-at-age estimated by “proportionality” methods are 
given by the following back-calculation models:  

SPH i
i cpt

cpt

R
f(L ) f(L )

R
=  (2) 

BPH cpt
i i

cpt

L
L g(R )

g(R )
=  (3) 

“Proportionality” methods can be applied to any function f or g of any 
mathematical form, providing that the parameters of f are estimated by R-on-L 
regression and those of g by L-on-R regression.  

Back-Calculation of Fish Growth
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The third back-calculation method constrains individual L – R lines to go 
through one or more known points such as otolith size and body length at capture (Rcpt, 
Lcpt) or the origin of the growth curve (R0, L0, usually at hatching), which can be 
estimated by regression or fixed at a known biological intercept (BI, Campana 1990). 
This “Constraint” method thus requires as many known points as there are function 
parameters, and so can be difficult to apply for complex functions.  

2.2 EXISTING BACK-CALCULATION MODELS 

The use of “constraint” or “proportionality” methods coupled with back-calculation 
functions f and g lead to the development of different back-calculation models (BCMs). 
In his review of the subject, Francis (1990) compiled 6 back-calculation functions, to 
which two others have subsequently been added by Tremblay and Giguère (1992) and 
by Morita and Matsuishi (2001). Because most back-calculation functions can be 
inverted (i.e., L = g(R) ↔ R = f(L)), a total of 8 f and 8 g functions exist that are 
appropriate for use in back-calculation. A total of 22 back-calculation models have been 
derived from these functions (Appendix 1).  

Differences between “constraint” and “proportionality” models are often subtle 
(some may say artificial, because models are derived from the same f and g functions), 
or even non-existent when functions f or g have a single parameter. For example, the 
Dahl-Lea back-calculation model (BCM 1 “DALE”, Appendix 1) can be obtained by 
constraining the function L = bR to pass through the point at capture (Rcpt, Lcpt) or by 
applying a BPH to the function L = bR or a SPH to the function R = L/b. When an 
intercept is added to the linear function (i.e., L  a  bR= + ), then the BCMs will differ 
in the intercept value calculated for each individual. For example, the Fraser-Lee model 
(BCM 2 “FRALE”, Appendix 1) is obtained when individual L – R lines are all 
constrained to pass through the intercept (R=0, L=a) with “a” estimated by L-on-R 
regression. Similarly, the linear biological intercept model (BCM 3 “BI”, Appendix 1) 
results in individual L – R lines passing through biologically-determined intercepts 

(R=0, cpt 0p
cpt cpt

cpt 0p

(L  – L )
L  L   – R

(R  – R ) 
= ), although all lines cross at ( 0pR  R= , 

0pL  L= ), whereas the linear BPH (BCM 4 “LBPH”, Appendix 1) results in individual 

L – R lines passing through intercepts (R=0, cpt

cpt

aL
L  

(a  bR )
=

+
) where “a” and “b” are 

estimated by L-on-R regression. These differences are subtle but important as they can 
render back-calculation models more or less sensitive to bias induced by growth or age 
effects. 

Campana (1990) showed that growth effects will always result in linear 
regressions between L and R that overestimate slopes and underestimate intercepts, so 
that regression-based Fraser-Lee (BCM 2) and linear BPH or SPH (BCM 4 & 6) will 
inevitably produce biased size-at-age estimates. The linear biological intercept model 
(BCM 3) developed by Campana (1990) constrained a linear function of back-
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calculation to pass through biologically-determined intercepts of otolith and fish size to 
reduce the influence of variable growth rates in the population (i.e., the growth effect). 
The model was still sensitive to non-linear effects, however, and in particular those 
induced by growth rate variations through time (i.e., a time-varying growth effect). This 
can introduce curvature into individual fish – otolith size trajectories (Campana 1990). 
The Time-Varying Growth model (BCM 5 “TVG”, Sirois et al. 1998, Appendix 1) was 
developed to address non-linear fish – otolith relationships formed because of time-
varying growth rates by incorporating a growth effect into the structure of the linear 
biological intercept model. This was done by weighting the contribution of individual 
increments in the length back-calculation. The TVG model still assumes the underlying 
relationship between fish and otolith size to be linear, however, and so may not be 
appropriate when the relationship is non-linear for reasons other than growth effects. 

Vigliola et al. (2000) took a different approach to non-linearity. They constrained 
an allometric L – R function to go through a biological intercept so their modified Fry 
model (BCM 14 “MF”, Appendix 1) assumed non-linearity and was robust to growth 
effects. Only the Age Effect (BCM 7 “AE”, Appendix 1) model of Morita and 
Matsuishi (2001), however, was designed to remove bias due to age effects. That model 
was developed on the assumption that otolith radius was a linear combination of both 
fish length and age. A SPH was then applied to the 3 dimensional back-calculation 
function that linked otolith radius, fish length and age to obtain the AE model. 

2.3 SELECTION OF A ROUTINE BACK-CALCULATION MODEL 

The plethora of models now available for back-calculation creates a dilemma for any 
researcher intending to back-calculate fish size from otoliths: which of these is the most 
appropriate to use? The first step for model selection consists of determining which 
function(s) should be used to describe the relationship between fish length and otolith 
radius. Back-calculation functions f and g technically could be of any mathematical 
form (Francis 1990, 1995) but back-calculation usually assumes that there is a 
proportional relationship between the growth of the otolith and the somatic growth of 
the fish (Campana 1990, Hare & Cowen 1995, Sirois et al. 1998, Vigliola et al. 2000, 
Morita & Matsuishi 2001). Thus, we define a function f or g as appropriate for use in 
back-calculation if it complies with the assumption of proportionality between otolith 
and somatic growth. Of the 16 functions listed in Appendix 1, this criterion allowed the 
immediate elimination of functions (f3), (g3), (f6), (g6), (f7), (g7), (f8) and (g8). The 
remaining functions were all derived from the assumption of proportionality between 
the relative growth rates of the fish and the otolith and could be written as:  

d(L - a) dR
  c

(L - a)dt Rdt
=  (4) 

where “a” is the body length of an individual at otolith formation (Fraser 1916, Lee 
1920) and “c” is the proportionality coefficient. 

Solution of this differential equation resulted in cL  a  bR= + (g5), a 
generalisation of the well-known function for an allometric relationship between two 
body parts of an organism (Ricker 1975, 1979). When isometry existed (i.e., c = 1), 
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function (g5) became identical to L = bR (g1) if a = 0 and to L = a + bR (g2) if a ≠ 0. 
Furthermore, function L = bRc (g4) was a specific case of (g5) if a = 0. It seems likely 
that “a” will be greater than 0 in most cases (Francis 1990) since the otoliths of many 
species form in the period just prior to hatching (Geffen 1992). Thus, only functions 
(g2) and (g5) (and their inverse f2 and f5) remained appropriate to model the 
relationship between the length of a fish and the radius of its otolith. 

After some back-calculation functions have been selected on the criterion of a 
proportionality relationship between otolith and somatic growth (Equation 4), it must be 
determined which of the “constraint” or BPH or SPH “proportionality” methods 

Application of our first (proportionality of otolith – fish growth) and second (to 
generate realistic size-at-age data) selection criteria to the list of 22 existing back-
calculation models thus eliminated all but the linear Biological Intercept model (“BI”, 
BCM 3), the Time-Varying Growth model (“TVG”, BCM 5) and the Modified Fry 
model (“MF”, BCM 14). The applicability of these models can be determined by 
examining the evidence from the few recent studies that have attempted to assess their 
accuracy and precision as descriptors of fish growth in the field and laboratory.  

2.4 RECENT FIELD AND EXPERIMENTAL EVIDENCE OF THE ACCURACY 
OF BACK-CALCULATION MODELS  

Vigliola et al. (2000) compared the outputs of BI, TVG, ABPH (the L – R relationship 
was allometric in the 3 study species) and MF models to field estimates of size of newly 
settled individuals of 3 species of sparid (Diplodus sargus, D. vulgaris and D. puntazzo) 
from the Mediterranean Sea. Field estimates of size were obtained by underwater visual 
survey. The error associated with estimating size by this method was determined by 
comparing visual estimates with the actual sizes of fish after capture and was always 
<±3.5 mm (Macpherson 1998). Growth curves derived from visual survey were 
extrapolated using published values for length-at-age of planktonic larvae to include the 
pre-settlement stage of the life history of the three species. Overall, Vigliola et al. 
(2000) found that the MF model produced growth curves that were the most similar to 
those derived from direct observations of juvenile Diplodus (Figure 2). As predicted, 
the ABPH model gave unrealistic estimates of size-at-age of very young fish, as it was 
not constrained to go through a biological intercept and was sensitive to growth effects. 
Both the BI and TVG curves consistently overestimated size-at-age in comparison with 
curves estimated directly by visual survey. These models produced very similar 
estimates despite the presence of an allometric L – R relationship. This result was 
consistent with the findings of Sirois et al. (1998) study of rainbow smelt (Osmerus 

(Equations 2 & 3) are most appropriate for model development. Models derived by 
BPH or SPH are sensitive to growth effects because they cannot be constrained to go 
through a biological intercept. Practically, this means that BPH and SPH proportionality 
methods can generate unrealistic estimates of fish size, in particular when back-
calculating fish size outside the age range of the sample from which the parameters of 
the back-calculation formulae were estimated by regression (see below, Vigliola et al. 
2000). Consequently, a criterion of accuracy in back-calculated size-at-age (i.e., the 
BCM output) eliminated all models based on proportionality hypotheses SPH and BPH 
as well as other models that did not contain a biological intercept.  
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mordax) larvae, where the TVG model was originally proposed. Vigliola et al. (2000) 
concluded that further comparisons were required in situations where the growth rates 
were highly variable to distinguish between the MF and TVG models.  

Wilson et al. (2008) recently completed such comparisons. They collected 2 
species of newly settled tropical gobies (Elacatinus evelynae and E. prochilos) from 
reefs in the Florida Keys and maintained them in aquaria for 2 months. Fish were 
marked externally by the subcutaneous injection of coloured paint (Wilson & Osenberg 
2002) to identify individuals and measured (standard length, SL) every 2 weeks. 
Otoliths were tagged at the start of the study and then by regular immersion (every 4 
weeks) in Alizarin Red to validate daily increment formation and monitor otolith 
growth. Growth rates of fishes were manipulated by altering ration so that individuals 
received high, medium, low or variable (2 weeks high, 2 weeks low) levels of food. 
Growth curves generated by back-calculation were compared with directly measured 
longitudinal size-at-tag data by linear mixed effect modelling (LME, Pinheiro & Bates 
2000) that included food regime as a fixed factor in the models. Smaller negative log-
likelihood in the LME models indicated greater precision in predicted size, whereas 
slopes of 1 in LME models indicated unbiased predictions (greater accuracy).  

Both species examined by Wilson et al. (2008) had linear L – R relationships. 
Furthermore, analyses showed that age effects, growth effects and time-varying growth 
effects were present in the dataset. Surprisingly, however, growth curves generated by 
the MF model gave a better fit to directly measured growth than the LBPH, BI, TVG 
and AE models. This result was consistent for both species and there was no significant 
effect of food regime (Table 1). With the exception of the AE model, all back-
calculation models yielded lower negative log-likelihoods (i.e., better fits to directly 
measured data) than the use of otolith radius in the analysis (Table 1), confirming that 
back-calculation generates a better proxy of fish size than does otolith radius. Most 
models gave reasonably precise predictions of fish size, although all overestimated size 
at age, though the AE model was an exception which yielded negative log-likelihoods 
twice as large as those obtained with other methods (i.e., a poor fit to directly measured 
data). The biases in these predictions were very small, again with the exception of the 
AE model. The smallest overestimation (i.e., slope closest to 1) was made by the MF 
model, with a slope of 0.95 for both species, giving a relatively trivial 5% average 
overestimation in size (Figure 3). Predictions from the MF model averaged within 0.9 
mm of measured size and yielded a maximum error of 4.5 mm for fish ranging in size 
from 8.5 to 26.6 mm standard length between the start and end of the experiment. Other 
models gave similar, although slightly larger errors in prediction of up to 5.7 mm 
greater than measured values. Very large errors in predicted size were often produced 
by the AE model (36 mm average error and 657 mm maximum error), presumably 
because of collinearity problems among the variables of fish length, otolith radius and 
fish age in the multiple linear regression model.  

Back-Calculation of Fish Growth
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Figure 2. Growth curves back-calculated from otoliths and estimated directly in the 

field for Diplodus sargus (A), D. vulgaris (B) and D. puntazzo (C). Field size-
at-age data are shown as points with error bars of fixed size (±3.5 mm), the 
maximum error when fish sizes were estimated underwater by divers 
(Macpherson 1998). Sizes of 30–40 specimens of each species were estimated 
visually and the specimens then captured and measured using a ruler. All 
differences between mean estimated and measured sizes were <3.5 mm. 
Conversion of survey date to age was as follows. First, the average size of all 
individuals recorded during the last survey was calculated. An age was then 
assigned to this size by averaging all increment counts of otoliths from fish of 
this size. Dates of sampling for all surveys were known, so ages could be 
assigned to average sizes from those surveys. Size-at-age was extrapolated to 
the planktonic larval stage using growth curves provided by other studies. 
These points are shown without error bars. Four models of back-calculation 
were used to generate growth curves from otoliths: the modified Fry (MF), 
biological intercept (BI), time-varying growth (TVG) and allometric body 
proportional hypothesis (ABPH) models. After Vigliola et al. (2000). 
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Table 1. Linear mixed effect (LME) model between longitudinal observations of fish 
length at tag and otolith radius at tag (R) or between longitudinal observations 
of fish length at tag and predicted fish length at tag using different back-
calculation models for two species of gobies Elacatinus evelynae and E. 
prochilos experiencing different food treatments. Food regime is entered as a 
fixed factor in the LME models. LBPH: linear body proportional hypothesis, 
BI: biological intercept, MF: modified Fry, AE: age effect, TVG: time varying 
growth, p: probability, SE: standard error. Lowest Akaike information criterion 
(AIC), Bayesian information criterion (BIC) or negative log likelihood (Neg-
Log-Lik) indicate models generating the most precise size estimate (in bold). 
Slope of models is tested against 1 (no bias in size predictions) and slopes 
smaller than 1 indicate size overestimation (observed size at tag smaller than 
size-at-tag predicted by back-calculation). Bold font indicates model with 
smallest bias. NR: non-relevant test. From Wilson et al. (2008). 

Species Statistics R LBPH BI MF AE TVG 
AIC 463 405 426 390 752 433 
BIC 479 422 442 406 768 450 
Neg-Log-Lik 225 197 207 189 370 211 
p Food effect 0.55 0.83 0.88 0.90 0.59 0.85 
Slope 0.050 0.948 0.937 0.949 0.610 0.915 
SE slope 0.001 0.007 0.008 0.007 0.022 0.008 

E. prochylos 

p slope=1 NR <0.001 <0.001 <0.001 <0.001 <0.001 
AIC 251 208 207 200 497 210 
BIC 264 221 220 212 509 223 
Neg-Log-Lik 120 98 98 94 242 99 
p Food effect 0.39 0.60 0.60 0.50 0.74 0.62 
Slope 0.051 0.944 0.942 0.948 -0.019 0.917 
SE slope 0.003 0.011 0.011 0.011 0.008 0.011 

E. evelynae 

p slope=1 NR <0.001 <0.001 <0.001 <0.001 <0.001 
 
Morita and Matsuishi (2001) compared the outputs of LSPH, LBPH, MONA-

SPH, MONA-BPH, BI, Fraser-Lee, MF and AE models to directly measured size and 
growth rates of individually tagged white-spotted char (Salvelinus leucomaenis). The 
TVG model was not included in the comparison because the growth effect factor was 
negligible and not statistically significant. Only the AE model generated unbiased 
estimates of fish length and growth, but it was also the least precise model, giving lower 
r2 values between predicted and observed lengths than any of the other models. It seems 
possible that the increased dispersion of size estimates produced by the AE model 
occurred in a relatively random manner, which may have disguised any inherent bias. 
For example, the AE model predicted a size of ~90–140 mm for a 110 mm fish, while in 
comparison the MF model narrowed the predicted size to 90–110 mm (see Figure 2 in 
Morita & Matsuishi 2001). The results of Wilson et al. (2008) confirm that very large 
errors in predicted size are often produced by the AE model. This result was expected 
since the AE model is vulnerable to growth effects (as is the case for all proportionality 
models) and very sensitive to the accuracy and precision of the regression calculated 
between fish length, otolith radius and fish age. Further illustration of the latter point is 
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provided by Finstad’s (2003) study of Arctic charr (Salvelinus alpinus). This author 
included a length by age interaction term in the fish length, otolith radius and age 
multiple regression. Although this was not a conceptual change to the original AE 
model, predictions of fish length with and without the interaction term could differ by 
up to 40% on average (and occasionally much more given a S.D. of ~ 20% around this 
mean; see Figure 1 of Finstad 2003).  

Other studies that have attempted to assess the accuracy and precision of back-
calculation models over the last decade (summarised in Table 2) found that biological 
intercept methods generally performed better or similar to other models (Escot & 
Granado-Lorencio 1999, Klumb et al. 2001). These studies also highlighted the 
importance of the shape of the relationship between fish length and otolith radius 
(particularly where there was curvilinearity) to the relative accuracy and precision of the 
different models (Smedstad & Holm 1996, Schirripa 2002). 

Modified-Fry back-calculated fish length at tag (mm SL)
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Figure 3. Relationships between observed (multiple internal and external tagging) and 

predicted (Modified Fry back-calculation model) length-at-age fitted by linear 
mixed-effects model for two species of tropical gobies. Each plot represents 
one individual with Elacatinus evelynae in open symbols (○) and E. prochilos 
in closed symbols (●). Food regime was entered as a fixed factor in the LME 
models and treatments are represented as: square = medium food, circle = 
high food, triangle up = low food, triangle down = varying food. The solid 
lines represent the linear relationships at individual level (i.e., fixed and 
random effects combined) while the dashed lines represent the 1:1 line. Solid 
lines “below” dashed lines indicate that observed lengths were smaller than 
predicted lengths, that is, the back-calculation model overestimated fish 
length. After Wilson et al. (2008). 
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2.5 WHICH MODEL? 

The studies summarised above confirm that the lack of constraint to biological 
intercepts by BPH and SPH models results in unrealistic estimates of size, particularly 
at young ages. Similarly, application of the AE model (an SPH model) produced 
estimates of size-at-age that varied markedly from reality, although the addition of age 
in back-calculation models to correct for age effects is a promising avenue for the future 
improvement of predictions of fish length from otoliths. Thus, the remaining models 
that can be considered for use based on the evidence above are the MF, TVG and BI. 
Both Vigliola et al. (2000) and Wilson et al. (2008) found that the MF model tended to 
produce slightly more precise estimates of size-at-age than the TVG and BI models, and 
that the outputs of the latter two were essentially equivalent, even where growth rates 
varied. Given this result, most researchers would be inclined to use the BI rather than 
the TVG model, since the latter is more complex to compute.  

Selection between the modified Fry (MF) and the linear biological intercept (BI) 
models is rather more difficult, for two reasons. Firstly, the BI model has been used 
widely for back-calculation since its development by Campana in the early 1990s and 
most researchers will be comfortable with the calculations involved. The MF model, 
however, is more recent and there are few published examples of its use. Secondly, 
calculation of the MF model is more complex than the BI model, and the ideal model 
should be as simple as possible. There are good reasons, however, to use the MF instead 
of the BI model in many situations. Vigliola et al. (2000) showed that where there is an 
allometric L – R relationship, the MF model will produce more precise results than the 
BI model. The outputs of the MF and BI models will be identical where this relationship 
is linear, since the BI is a special case of the MF model.  

The appropriateness of the 2 models will thus depend on the degree to which the 
L – R relationship for a species is allometric. Vigliola et al. (2000) concluded that in 
case of isometry (a linear L – R), the BI model should be used for simplicity, while in 
case of allometry (a curvilinear L – R) they suggested choosing the MF model due to 
precision. The results of Wilson et al. (2008) show that this recommendation should be 
revised. They were able to record the shape of the L – R relationship at an individual 
level for their study species by repeatedly tagging fish internally (immersion in Alizarin 
solution) and externally (subcutaneous injection). No allometry was detected using a 
population level approach (regression analysis of single measurements of Lcapt and Rcapt 
from each fish), and the relationship between these variables appeared isometric for 
both goby species (Figure 4A). The longitudinal data sets available for each fish, 
however, showed that on an individual basis there was an allometric L – R relationship 
(Figure 4B). This result demonstrates that allometric L – R relationships may be 
undetectable in population analyses (in this case due to low sample sizes), and explains 
why the MF model performed better despite an apparently linear L – R relationship at 
population level. It is unlikely that individual longitudinal L – R data will be available 
in most situations, however, since fish are usually killed when collected. Hence, the 
most conservative approach will be to use the MF model for routine back-calculations 
rather than the BI, despite its more complex form.  

Back-Calculation of Fish Growth



 

A
. P

op
ul

at
io

n 
le

ve
l

B
. I

nd
iv

id
ua

l l
ev

el

O
to

lit
h 

Ra
di

us
 (

µm
)

15
0

20
0

45
0

25
0

30
0

35
0

40
0

10152025

10201020 10201020 1020 1020 1020 1020 1020

20
0

30
0

40
0

20
0

30
0

40
0

20
0

30
0

40
0

20
0

30
0

40
0

20
0

30
0

40
0

10152025 Fish Length (mm SL)

 
Fi

gu
re

 4
. P

op
ul

at
io

n 
(le

ft)
 a

nd
 in

di
vi

du
al

 (r
ig

ht
) r

el
at

io
ns

hi
ps

 b
et

w
ee

n 
fis

h 
le

ng
th

 a
nd

 o
to

lit
h 

ra
di

us
. L

ef
t p

an
el

 (p
op

ul
at

io
n 

le
ve

l):
 L

in
ea

r 
fis

h 
le

ng
th

 –
 o

to
lit

h 
ra

di
us

 re
la

tio
ns

hi
p 

at
 c

ap
tu

re
 fo

r t
w

o 
sp

ec
ie

s o
f t

ro
pi

ca
l g

ob
ie

s, 
El

ac
at

in
us

 e
ve

ly
na

e 
(○

) a
nd

 E
. p

ro
ch

ilo
s 

(●
). 

Ri
gh

t p
an

el
 (i

nd
iv

id
ua

l l
ev

el
): 

A
llo

m
et

ric
 fi

sh
 le

ng
th

 –
 o

to
lit

h 
ra

di
us

 re
la

tio
ns

hi
ps

 fi
tte

d 
by

 n
on

-li
ne

ar
 m

ix
ed

-e
ff

ec
ts

 
(N

LM
E)

 m
od

el
 fo

r t
he

 tw
o 

sp
ec

ie
s o

f g
ob

ie
s (

Ea
ch

 p
lo

t r
ep

re
se

nt
s o

ne
 in

di
vi

du
al

). 
Fo

od
 re

gi
m

e 
w

as
 a

 fi
xe

d 
fa

ct
or

 in
 th

e 
N

LM
E 

m
od

el
s. 

Tr
ea

tm
en

ts
 a

re
 re

pr
es

en
te

d 
as

: ■
□ 

= 
m

ed
iu

m
 fo

od
, ●
○=

 h
ig

h 
fo

od
, ▲

 =
 lo

w
 fo

od
, ▼

 =
 v

ar
yi

ng
 fo

od
. S

ol
id

 
lin

es
 re

pr
es

en
t a

llo
m

et
ric

 re
la

tio
ns

hi
ps

 a
t i

nd
iv

id
ua

l l
ev

el
 (f

ix
ed

 &
 ra

nd
om

 e
ff

ec
ts

 c
om

bi
ne

d)
; d

as
he

d 
lin

es
 re

pr
es

en
t a

llo
m

et
ric

 
re

la
tio

ns
hi

ps
 a

t p
op

ul
at

io
n 

le
ve

l (
fix

ed
 e

ff
ec

t).
 A

fte
r W

ils
on

 e
t a

l. 
(2

00
8)

. 

188 Vigliola & Meekan 



 189 

One of the most desirable features of the BI model is that it does not rely on 
parameter estimation from a sample of the population. Indeed, back-calculations can be 
made from an individual fish in the absence of any other fish from the population 
(Campana 1990). Unfortunately, this is not the case for the MF model where estimates 
of fish size “a” at otolith formation are required. This parameter will always be very 
close to fish size at hatching (the biological intercept L0p), however, since otoliths 
usually form just prior to hatching. For example, average values of body length at 
otolith formation were a=2.39, 2.42 and 2.45 mm for the three species studied by 
Vigliola et al. (2000) with a common average length at hatching of L0p = 2.5 mm, which 
gives ratios a/L0p of 0.96, 0.97 and 0.98, respectively. Vigliola et al. (unpublished data) 
calculated this ratio for 53 species, mostly coral reef fishes from Florida Keys. They 
found that 22 (40%) of the species had a significant allometric L – R relationship at the 
population level and that the average ratio was 0.75, with 95% confidence interval of 
0.69–0.80 (range 0.22–0.99). Campana (1990) indicated that back-calculation accuracy 
of the BI model was relatively insensitive to normal variation around the intercept 
value, largely because of the small values involved in L0p. This is likely also the case for 
“a”, which is smaller than L0p, so it would be possible to replace “a” in the original MF 
model by its average value of 0.75L0p, allowing MF back-calculations from an 
individual fish in the absence of any other fish from the population. This “experimental 
MF” model should only be used when there is no data to estimate “a” and can be written 
as follows:  

0p 0p

cpt 0p 0p 0p i 0pi 0p

cpt 0p

ln(L  - 0.75L ) 

[ln(L  - 0.75L ) - ln(L  - 0.75L )][ln(R ) - ln(R )]L   0.75L   exp

[ln(R ) - ln(R )]

+

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

       (5) 

Whenever there are linear or allometric L – R relationships, as is the case for 
most fishes, we recommend using the original MF model or its experimental form (5). 
This will likely increase precision and reduce bias in back-calculated size-at-age. 
Furthermore, the MF model is derived from the assumption of proportionality between 
otolith and somatic growth, a basic assumption that considers back-calculation within 
the more general context of allometry (Hare & Cowen 1995) for which a large body of 
literature exists (for reviews see Cock 1966, Gould 1966). When the L – R relationship 
is not a straight line or an allometric curve (see the study of Tremblay & Giguère 1992 
for an example), however, then there is little choice other than using SPH or BPH. In 
these cases, we recommend including a biological intercept in the f or g function prior 
to the regression, for example by replacing the intercept a0 by L0p and R by (R–R0p) in 
the polynomial g7 function of BCM 19 (Appendix 1). These complex SPH or BPH 
models should be used with extreme caution, however, and validated using longitudinal 
data at individual level. A detailed example of the recommended back-calculation 
procedure is provided in Box 1. 
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Box 1: Recommended back-calculation procedure  

Most species display either a linear or an allometric relationship between otolith radius, R, and 
fish length, L. Where there is insufficient data to examine the shape of the L – R relationship, 
theoretical considerations, field, and experimental data all indicate that best size estimates are 
likely from the Modified Fry back-calculation model (MF) (Vigliola et al. 2000). Where L – R 
relationships are best described by complex functions (e.g., polynomial), we recommend 
including a biological intercept into the function prior to fitting to data at capture and applying a 
proportionality hypothesis (SPH or BPH). The MF back-calculation procedure is as follows. 
1. Obtain an estimate of fish size at first increment formation (usually hatching) for the study 

species. This parameter is the biological intercept L0p of the model. 
2. Using all samples, calculate the mean radius of first increment in the otolith. This 

parameter is the otolith radius R0p at the biological intercept. 
3. If there is not enough data to examine the shape of the L – R relationship (i.e., a single fish 

or many fish of similar age and size), then for each individual, back-calculate fish size at 
age i (Li) from the longitudinal records of otolith radius at age i (Ri), records of fish length 
and otolith radius at capture (Lcpt, Rcpt), knowledge of biological intercept (R0p, L0p, steps 1 
& 2) using the experimental MF back-calculation model (otherwise go to step 4): 

0p 0p

cpt 0p 0p 0p i 0pi 0p

cpt 0p

ln(L  - 0.75L ) 

[ln(L  - 0.75L ) - ln(L  - 0.75L )][ln(R ) - ln(R )]L   0.75L   exp

[ln(R ) - ln(R )]

+

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

4. Using all samples, estimate b, c, d by fitting the following by NL regression: 

c cL  - b  +  bL R Rcpt 0p cpt0p
=   and  L  - d  +  dL R Rcpt 0p cpt0p

=  

where Lcpt is fish length at capture and Rcpt is otolith radius at capture. 
5. Test c against 1 using estimates of c and standard error SEc given by non-linear regression 

(step 4) and calculate  /SE1-c c which follows a t-distribution with n-2 df. If c is 

significantly different from 1 (allometry) then using estimates of b and c (step 4), calculate 
ca = - bL R0p op . If c is not significantly different from 1 (isometry) then using estimate of 

d (step 4), calculate a = - dL R0p op  

In the original MF model (BCM 14 of Table 1), “a” was calculated from “a1” and “a2” 
obtained from L-on-R and R-on-L regression, respectively. However, Vigliola et al. (2000) 
showed that differences between a1 and a2 were so small (0.08%) that they may be ignored. 

6. For each individual, back-calculate fish size at age i (Li) from the longitudinal records of 
otolith radius at age i (Ri), records of fish length and otolith radius at capture (Lcpt, Rcpt), 
knowledge of biological intercept (R0p, L0p, steps 1 & 2) and estimate of a (steps 4 & 5) 
using the MF model: 

( ) ( ) ( ) ( ) ( )
( ) ( )

ln -a -ln -a ln -lnL L R Rcpt 0p i 0p
=a+exp ln -a +L Li 0p

ln -lnR Rcpt 0p

⎡ ⎤ ⎡ ⎤⎛ ⎞⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟⎡ ⎤⎝ ⎣ ⎦ ⎠
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3 Analysis of back-calculated data 

Datasets generated from growth back-calculations are longitudinal and autocorrelated, 
characteristics that make them unsuitable for many statistical analyses (Chambers & 
Miller 1995). In particular, data that originate from multiple observations per otolith 
cannot be assumed to be independent. Thus, the longitudinal nature of back-calculated 
size-at-age data, with repeated measures on each individual, violates the basic 
assumption of independence that underlies traditional analyses such as univariate 
regression or ANOVA (Chambers and Miller 1995). Moreover, because statistical 
hypotheses are accepted or rejected based on the magnitude of the test statistic and the 
degrees of freedom (df), calculating the df from the total number of non-independent 
size-at-age data is inappropriate. Chambers and Miller (1995) gave a numerical example 
for this latter problem with 20 fish collected from each of two populations and 10 
increment radii measured on each fish. A traditional regression approach would treat 
these 200 measurements per population as 200 independent size-at-age observations. 
Consequently, the hypothesis of a population effect on growth rate would be tested from 
an F-statistic based on 1,397 df whereas only 40 fish were included in the comparison. 
This would significantly increase the likelihood of committing a Type 1 error of falsely 
rejecting the null hypothesis of no difference in size-at-age among populations. 

The lack of independence of longitudinal data implies that analysis should occur 
at the level of individuals, rather than the population. This poses two problems. First, 
there is often not enough information to fit a growth model by regression to each 
individual, in addition to the longitudinal and autocorrelated nature of within-individual 
size-at-age data. Second, it may be unclear how to obtain growth estimates of the 
population (typically the variable of central interest) from individual analyses, 
particularly when the growth model is non-linear. We illustrate the issues in Figure 5 
where we generated size-at-age data for 10 fish sampled from a simulated population 
that followed a von Bertalanffy growth model (Box 2, Figure 5A). Individual 
regressions of a von Bertalanffy growth model could not be calculated for 6 fish as they 
were too young, with only 2–3 points available for analysis (Figure 5B). Additionally, 
outcomes of the individual regressions were suspect for at least two other fish. Fish 7 
had a growth trajectory unexpectedly higher while fish 4 had a trajectory far lower than 
the parent population (Figure 5B, L∞ original population = 30 cm; L∞ fish 7 = 56 cm; L∞ 
fish 4 = 20 cm). A common but flawed approach to obtain an estimate of the growth of 
the population would be to average growth parameters from individual analyses. Figure 
5 shows that this will be unreliable, as the average growth of the 4 fish for which 
individual regressions could be calculated departed strongly from the trajectory of the 
original population (Figure 5C). Another common approach would consist of pooling 
back-calculated size-at-age data of all individuals to collectively derive a mean growth 
curve by regression. Again, this would be inappropriate as indicated by strong departure 
of the pooled regression curve from the true population growth curve (Figure 5C). A 
further risk in the pooling of back-calculated data is that the growth patterns of the 
oldest individuals will contribute disproportionately, as these older fish will add more 
points to the data set than young fish. Finally, using only the 10 records of size-at-
capture in the regression would not give an appropriate estimate of the true population 
growth curve (Figure 5C), presumably due to low sample size and the presence of only 
one old fish in the sample, which is “pooling the trend” for L∞. 
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Pinheiro and Bates (2000) recently proposed the use of mixed effects models to 
analyse longitudinal, autocorrelated, unbalanced data such as those generated by back-
calculation. This method fits any linear (linear mixed-effects, LME) or non-linear 
(NLME) model to longitudinal data with great flexibility in modelling the within-group 
correlation often present in such data. The term “mixed effects” refers to the fact that 
both fixed and random effects are modelled. Fixed effects correspond to a population 
(or factor) level estimate of parameters, while random effects correspond to variability 
of parameters among individuals relative to the population. Thus, mixed-effects models 
generate estimates of model parameters at both the individual and population level. Our 
example of Figure 5 is used to illustrate this point. We fitted a von Bertalanffy growth 
model using a non-linear mixed-effects model (NLME) for the sample of 10 fish. 
NLME provided accurate estimates of growth parameters at both the population (Figure 
5C) and individual (Figure 5D) levels (see Box 3 for computation of NLME). 
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Figure 5. Comparison of regression and mixed effects models. A. Ten fish (points) 

sampled from a simulated population of known von Bertanlanffy growth 
trajectory (solid line). Size-at-age was generated for each individual (Box 2) 
and longitudinal data analysed by non-linear regression (B) and non-linear 
mixed-effects models (NLME, D, Box 3). X indicates individuals for which 
regressions were not possible due to lack of data. Heteroscedasticity was 
modelled in NLME by a variance function that was a power of the absolute 
value of the variance covariate. Plot C compares population level estimates of 
the growth trajectory by NLME, regression based on pooling size-at-age data 
of the 10 fish, average individual regression, and regression of size at age of 
capture of the 10 fish with known growth. Individual ID numbers appear at 
top of each plot in the lower graphs. 
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Box 2: Algorithm used to simulate size-at-age data  
1. Define a growth function (von Bertalanffy, exponential etc), e.g., L = L0 * exp(K * Age),  

where L = fish length-at-age, L0 = fish length at hatching, K is the exponential growth rate. 
2. Set true population growth parameters µp, e.g., L0 = 2 mm and K = 0.06 %.d-1. 
3. Randomly generate growth parameters for each individual j by: (i) assuming normal 

distribution of growth parameters with mean µp and standard deviation 0.1*µp (hence a 
coefficient of variation of 10%); and (ii) adding a random uniform noise within 2% of the 
expected value (±0.02*µp, which is 5 times smaller than standard deviation). For example: 

L0j ~ N(µ=2, σ=2*0.1)+U(min=-2*0.02, max=2*0.02) across j fish; 
Kj ~ N(µ=0.06, σ=0.06*0.1)+U(min=-0.06*0.02, max=0.06*0.02) across j fish. 
4. Generate size-at-age data for each individual j at each age i. To do this, we first estimated 

size-at-age from individual growth parameters (points 1–3 above), then introduced a 
random normal error (mean=0, sd=0.1*size) and a uniform random noise (min=-0.02*size, 
max=0.02*size). In this example, size of individual j at age i is given by: 

Lji= L0j*exp(Kj*i) + εji 
With:  
εji ~ N(µ=0, σ=0.1*L0j*exp(Kj*i)) + U(min=-0.02*L0j*exp(Kj*i), max=0.02*L0j*exp(Kj*i)) 

5. Further constraints such as Lij > 0 were added in the simulation code. Simulated size-at-age 
data were analysed by NLME (Box 3).

Box 3: Analysing size-at-age data by NLME: An example in R  
1.  Set the workspace 
Install R software from the internet (http://www.r-project.org/) including required libraries. 
Create a data file (e.g., in MS Excel™), and save it in .txt format. In the examples below, the 
data file is named “mydata.txt” & has at least 3 columns: fish identification (id), length-at-age 
(L) and incremental age (Age). Add further columns for factors such as population (Pop) or time 
of sampling (Time). Caution, R is case sensitive. Comments are preceded by # and ignored.  

# load required libraries 
library(grid) 
library(lattice) 
library(stats) 
library(nlme) 

2.  Import data and declare growth functions 
#Import the data into R under the object name “datgr” 
datgr=groupedData(L~Age|id, data=read.table("mydata.txt",header=TRUE, sep="\t"), 
labels=list(x="Age",y="Size"), units=list(x="(Years or Days)",y="(cm or mm)")) 
#visualise the data 
plot(datgr) 
#Declare growth functions 
LVB=function(x,t0,Lmax,K) { 
y=Lmax*(1-exp(-K*(x-t0))) 
y 
} 
EXP=function(x,L0,K) { 
y=L0*exp(K*x) 
y 
} 
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Box 3 (Continued) 
3.  Fit growth function by NLME 

# fit a LVB or an exponential growth model by NLME. If the model does not converge, try 
changing starting values (bold).  
LVB.nlme=nlme(L~LVB(Age,t0,Lmax,K),data=datgr, 
fixed=list(t0~1,Lmax~1,K~1), 
random= t0+Lmax+K~1, 
start=list(fixed=c(t0=-0.02,Lmax=30,K=0.4))) 
EXP.nlme=nlme(L~EXP(age,L0,K),data=datgr, 
fixed=list(L0~1,K~1), 
random=L0+K~1, 
start=list(fixed=c(L0=2,K=0.06))) 
#to see results and plots: 
summary(LVB.nlme) 
intervals(LVB.nlme) 
anova(LVB.nlme) 
plot(LVB.nlme) 
plot(augPred(LVB.nlme,level=0:1)) 
coef(LVB.nlme) 

4.  Comparing populations (or levels of other factors) 
# Compare LVB growth models of two (or more) populations. There must be as many 
starting values as levels of factors (in this case 2 levels: population 1 and 2). The two 
models below are inherently identical (type anova(LVB1.nlme,LVBbis.nlme) to verify this). 
The first model includes an intercept, which is convenient to test the effect of factor 
population, whereas there is no intercept in the second model, which is convenient to 
estimate growth parameters for each level of the factor population.  
LVB1.nlme=nlme(L~LVB(Age,t0,Lmax,K),data=datgr, 
fixed=list(t0~Pop,Lmax~Pop,K~Pop), 
random= t0+Lmax+K~1, 
start=list(fixed=c(-0.02,0,25,0,0.4,0))) 
anova(LVB1.nlme) 
LVB1bis.nlme=nlme(L~LVB(Age,t0,Lmax,K),data=datgr, 
fixed=list(t0~Pop-1,Lmax~Pop-1,K~Pop-1), 
random= t0+Lmax+K~1, 
start=list(fixed=c(-0.02,-0.02,30,20,0.4,0.4))) 
summary(LVB1bis.nlme) 

5.  Comparing sequential samples (size-selective mortality) 
#Highlight size-selective mortality effect on exponential growth parameter K with 3 
sequential samples (there must be as many starting values as there are samples or levels for 
factor Time).  
#selection on both L0 and K 
EXP1.nlme=nlme(L~EXP(age,L0,K),data=datgrl, 
fixed=list(L0~Time,K~Time), 
random=L0+K~1, 
start=list(fixed=c(2,0,0,0.06,0,0))) 
#selection on K only 
EXP2.nlme=nlme(L~EXP(age,L0,K),data=datgrl, 
fixed=list(L0~1,K~Time), 
random=L0+K~1, 
start=list(fixed=c(2,0.06,0,0)))
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The aim in most studies is not only to estimate growth, but also to compare the 
growth of 2 or more populations. Mixed-effects models can perform this task easily by 
incorporating a qualitative co-variable (or factor). Importantly, LME and NLME allow 
different variances for each level of a factor and hence can be used to flexibly model 
heteroscedasticity of the within-error group. Figure 6 shows how NLME can estimate 
the von Bertalanffy growth parameters of two simulated populations that differ only in 
L∞ (Pop 1 L∞ = 30; Pop 2 L∞ = 20 cm). A von Bertalanffy growth model was fitted by 
NLME to simulated size-at-age of 10 fish sampled from each of two populations (Boxes 
2 and 3). The technique provided not only accurate estimates of growth parameters at 
both individual and population levels, but also correctly identified that the two 
populations differed significantly in L∞.  

In the same way that the qualitative factor “population” was inserted into the 
mixed-effects model in the example above, any other factor (e.g. diet, site, year, time, 
etc.) or combination of factors (e.g. “diet × population”) could also be added to the 
model. Of all factors whose influence on growth trajectories is likely to be of interest to 
a researcher, “age” (or “time”) is one of the most difficult to analyse. For example, size-
selective mortality is a phenomenon that typically removes the smaller, slower growing 
fish as a cohort ages, so that sequential samples from the same cohort display different 

Box 3 (Continued) 
#no selection 
EXP3.nlme=nlme(L~EXP(age,L0,K),data=datgrl, 
fixed=list(L0~1,K~1), 
random=L0+K~1, 
start=list(fixed=c(2,0.06))) 
#most parsimonious model 
anova(EXP1.nlme,EXP2.nlme,EXP3.nlme) 
#results 
EXP2bis.nlme=nlme(L~EXP(age,L0,K),data=datgrl, 
fixed=list(L0~1,K~Time-1), 
random=L0+K~1, 
start=list(fixed=c(2,0.06,0.065,0.075))) 
summary(EXP2bis.nlme) 
plot(augPred(EXP2bis.nlme,level=0:1)) 

6.  Modelling heteroscedastic and/or correlated within-group variance 
#The NLME library provides a set of classes of variance functions, the varFunc classes, and 
a set of classes of correlation structures, the corStruct classes. The former are used to 
specify within-group variance and thus model heteroscedasticity whereas the latter are used 
to specify within-group correlation and thus model dependence among observations (see 
Pinheiro & Bates 2000 for details). For example, heteroscedasticity was modelled by a 
variance function that is a power of the absolute value of the variance covariate in all 
simulated examples given in this chapter (Figures 5, 6 & 7). For the size-selection example 
shown in Figure 7, this gives: 
EXP2bis.final.nlme=nlme(L~EXP(age,L0,K),data=datgrl, 
fixed=list(L0~1,K~Time-1), 
random=L0+K~1, 
start=list(fixed=c(2,0.06,0.065,0.075)), 
weights=varPower()) 
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growth trajectories (Meekan & Fortier 1996, Sogard 1997, Vigliola & Meekan 2002). 
Generally, size-at-age data back-calculated from sequential samples are analysed by 
repeated-measures MANOVA (Chambers & Miller 1995). Although this analysis can 
successfully demonstrate size-selection, it does not provide any estimate of growth 
rates, as no growth model is fitted to the data. Furthermore, it restricts the analysis to the 
youngest fish of each sequential sample. For example, Vigliola and Meekan (2002) 
were forced to limit the comparison of growth trajectories of settlement stage, 1, 2 and 3 
months post-settlement fish to 12 d (a repeated factor at levels 0, 3, 6, 9, 12 d) since the 
youngest fish collected in the samples was 12 d of age. In contrast, Vigliola et al. (2007) 
analysed the entire dataset in a NLME model and used individual growth estimates to 
demonstrate a proximal link between phenotypic and genetic selection. 
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Factor dfNumerator dfDenominator F p 

t0 1 98 0.01 0.91 
L∞ 1 98 74.00 < 0.0001 
K 1 98 0.66 0.41 

Figure 6. Data from two populations of known von Bertanlanffy growth trajectories. 
The two populations differed only in the value of parameter L∞. Ten fish were 
sampled from each population and simulated size-at-age (Box 2) analysed by 
non-linear mixed-effects models with “population” entered as a fixed factor 
(Box 3). Heteroscedasticity was modelled by a variance function as a power 
of the absolute value of the variance covariate. NLME not only provided 
accurate estimates of the von Bertallanfy model at both population (upper 
panels) and individual levels (lower panels), but also provided statistics 
(table) indicating that the two populations only differed in parameter L∞. 
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NLME can be a very powerful alternative to repeated-measures MANOVA to 
study size-selective mortality, while estimating growth parameters and enabling a 
researcher to determine the growth parameters on which selection acts (Figure 7). A 
simulated cohort with an exponential growth trajectory (L = L0 exp(K age) with L0 = 2 
mm and K = 0.06 %.d–1) was sampled so that 10 fish were randomly removed at 10, 20 
and 30 days after hatching. No size-selection occurred in the cohort from 0–10d after 
hatching, but only fish with a growth rate (K) bigger than the 50% quantile survived to 
20 d, and only fish with a K bigger than the 90% quantile survived to 30 d. Quantiles 
were calculated from the random generation of 10,000 individuals using the general 
algorithm described in Box 2. No selection acted on the size at hatching parameter L0. 
Size-at-age data were simulated for the 30 sequentially sampled fish (Box 2) and an 
exponential growth model fitted by NLME to the entire dataset with “time of sampling” 
added as a factor (Box 3). NLME analysis successfully estimated growth parameters of 
each individual and of each sequential sample, while indicating that strong size-
selective mortality occurred in this population where fish with higher K survived 
(Figure 7). This latter result was obtained by identifying the most parsimonious among 
three possible NLME models. The first included an effect of the factor Time on both L0 
and K; the second only included an effect of Time on K, while the third did not include 
Time as a covariate (Box 3). The analysis indicated that the second model was the most 
parsimonious, thus demonstrating that size-selective mortality had indeed occurred and 
had only acted on growth rate K. 

In summary, mixed-effects model are a powerful tool to analyse data from 
growth back-calculation as they: 

• can accommodate longitudinal, unbalanced, auto-correlated data; 
• account for individual effects while also estimating group (or factor) effects; 
• allow the within-error group to be heteroscedastic and/or correlated;  
• are efficient even with small sample sizes; 
• can easily integrate factors and covariates; and 
• allow researchers to analyse, explore and interpret complex designs. 

LME and NLME are programmed in the language S (also used in the software 
package R). Examples of basic NLME modelling of fish growth are provided in Box 3. 
Details of LME and NLME can be found in Pinheiro and Bates (2000) and a guideline 
to programming in S can be found in Venables and Ripley (2002). Implementations of S 
are available in S-PLUS, a commercial system (http://www.insightful.com), and R, an 
open source software package (http://www.r-project.org). 

Back-Calculation of Fish Growth



198 

Age (days)

Fi
sh

 L
en

gt
h 

(m
m

)

10 days fish

5 10 15 2520 5 10 15 2520

10
5

10
5

10
5

10
5

10
5

20 days fish

5 10 15 2520 5 10 15 2520

10
5

10
5

10
5

10
5

10
5 Individuallevel

30 days fish

5 10 15 2520 5 10 15 2520

10
5

10
5

10
5

10
5

10
5

5

10

15

0

0 5 10 15 25 3020

20 days fish 

10 days fish 

30 days 
fish

True population mean
True population variation

0 5 10 15 25 3020

Population
level5

10

15

0

True population mean
NLME – 10 days fish
NLME – 20 days fish
NLME – 30 days fish

 
Effect Model df AIC BIC L-L Test L-L Ratio p 

Selection on K & L0 1 11 774 822 -376    
Selection on K 2 9 774 814 -378 1 vs 2 3.9 0.1426 
No Selection 3 7 794 824 -389 2 vs 3 23.2 < 0.0001 

Figure 7. A simulated cohort with an exponential growth trajectory 
( 0L L  exp(K age)= , L0 = 2 mm, K= 0.06 %.d–1) was sampled so that 10 fish 
were randomly removed at 10, 20 and 30 days after hatching. No size-
selection occurred from 0–10 d after hatching, but only fish with a growth rate 
(K) bigger than the 50% quantile survived to 20 d, and only fish with a K 
bigger than the 90% quantile survived to 30 d. No selection acted on the size 
at hatching parameter L0. Quantiles were calculated from the random 
generation of 10,000 individuals using the general algorithm described in Box 
2. Size-at-age data were generated from the 30 sequentially sampled fish (see 
Box 2) and an exponential growth model fitted by NLME to the entire dataset 
with “Time of sampling” added as a fixed factor (see Box 3). 
Heteroscedasticity was modelled in the NLME by a variance function, which 
is a power of the absolute value of the variance covariate. NLME analysis 
successfully estimated growth parameters of each individual and of each 
sequential sample. Log likelihood ratio tests (Table embedded in figure) 
indicated that a model with an effect of the factor Time on both L0 and K was 
not better than a model only including an effect of Time on K (p=0.1426), 
while the latter was significantly better (p<0.0001) than a third model that did 
not include Time as a covariable, hence demonstrating that size-selective 
mortality had indeed occurred and had only acted on growth rate. 
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4 Conclusions and future directions 

The discovery of daily increments within otoliths by Panella in the 1970s has led to a 
major proliferation in use of back-calculation techniques over the last 30 years. Jones 
(1992) noted that the number of published studies using daily increments (many of 
which involved back-calculation) was increasing exponentially. The trend has not 
abated, so that today even a cursory search of online databases yields hundreds of 
otolith back-calculation studies published in the last decade. It is now well recognised 
that the assumptions underlying the technique (periodicity of increment deposition, 
reliability of ageing and proportionality between otolith and somatic growth) require 
validation and more than 200 studies have addressed the issue of age validation in the 
last 10 years. These contrast with the studies that have sought to validate and identify 
the most appropriate model for back-calculation over the same period: a total of 9 in 
peer-reviewed journals of which we are aware (Table 2). Of these, 6 attempted a proper 
validation of the models by comparing direct observations of fish length with estimates 
provided by back-calculation, while only 3 validated at the individual level. Only one 
study was based on longitudinal data collected at the individual level under conditions 
of variable growth.  

Is it necessary to validate the output of a back-calculation model every time it is 
used? Although relative accuracy can only be determined by a comparison of model 
outputs against independent data sets of growth, this will be logistically difficult to 
achieve in most situations and virtually impossible for some life history stages such as 
pelagic larvae. Validation of back-calculation, therefore, will involve considerable effort 
and will probably only occur in studies designed with this as a central aim. We have 
shown here, however, that simple criteria can be used to reduce the number of potential 
back-calculation models to a more manageable short-list. Two recent studies that 
attempted comprehensive comparisons of these remaining models (Vigliola et al. 2000, 
Wilson et al. 2008) found that the MF model performed better than others, while one 
other (Morita & Matsuishi 2001) suggested that the AE model produced the most 
accurate estimates of size from back-calculation. Experimental studies (Wilson et al. 
2008) show that the AE model can generate unrealistic estimates of fish size (as is the 
case for all proportionality hypothesis and other regression-based models), so we do not 
recommend use of this model without thorough validation.  

Wilson et al. (2008) found that allometric L – R relationships may be 
undetectable in population level analyses, implying that it may be very difficult to 
choose between BI and MF models, even when evidence from regression analyses 
suggests that L – R relationships are isometric (linear). We thus recommend the use of 
the MF model as a conservative approach in routine back-calculations of fish size at age 
from otoliths (Box 1). 

The development of back-calculation models that can accommodate both 
isometric and allometric L – R relationships is major advance in the analysis of fish 
growth from otoliths and other hard parts. These models now need to be validated under 
a range of environmental conditions and with a variety of life history stages of fish. In 
particular, validation studies need to focus on the transitions between ontogenetic stages 
and environments, for two reasons: Firstly, this is where L – R relationships often break 
down or change; Secondly, transitions such as those between pelagic and reef 

Back-Calculation of Fish Growth



200 

environments, or between juvenile and adult habitats, are “critical periods” where fish 
undergo intense periods of mortality (e.g., Doherty et al. 2004, Webster & Almany 
2006), and thus are of great interest to ecologists and fisheries biologists due to their 
influence on population regulation.  

Recent advances in statistical methods and the greater availability of NLME 
models in software packages gives researchers powerful new tools to analyse back-
calculated data sets of growth. Like other methods such as repeated-measures 
MANOVA, these offer a means to include a range of covariates or factors into the 
model analysis while providing results than can be interpreted in a simple manner. 
Notably, these models are able to detect processes such as size-selective mortality and 
to incorporate analysis of the abiotic and biotic correlates of growth within and among 
different populations. Unlike other methods, however, NLME models account for 
individual effects while also estimating group (or factor) effects, and can explicitly 
model heteroscedastic and correlated within-group error. It is important to remember, 
however, that quality of the output of these new techniques will be determined by the 
quality of the back-calculated data that is analysed and the growth function that is fitted 
to data sets. Examples of basic NLME modelling of fish growth are provided in Box 3.  

Our call for more validation studies is not new and echoes that of Francis (1990, 
1995) and Brothers (1995). In the last decade many more back-calculation models have 
been proposed, but relatively few studies have attempted to comprehensively assess the 
ability of these to reproduce real patterns of fish growth. Back-calculation models are 
theoretical constructs that provide us with a practical means of generating a wealth of 

reality. For the most part, this validation remains to be completed.  

Appendix 1. Summary of back-calculation models. R: otolith radius; L: fish length; Ri, 
Li: radius and length at age i; Rcpt, Lcpt: radius and length at time when fish 
were sacrificed; R0, L0: radius and length at origin (usually hatching, 
age=0); R0p, L0p: biologically-determined radius and length at origin 
(“biological intercept” BI, usually at hatching); f: function such as R=f(L); 
g: function such as L=g(R); a, b, …: function parameters; BCF: back-
calculation function (f or g). 

Model & Calculation Details  Abbreviations  

Model: i
i cpt

cpt

R
L   L

R
=  BCM 1 

Name: Dahl-Lea (Lea 1910),  DALE 
Function: Linear w/o intercept; L = bR (or R = L/b) (g1 or f1) 
Hypothesis: “the scale grows in exact proportion to the length of the individual”; 

i iL /R constant b= =  
Geometry: A straight line passing through (R=0, L=0) & (R

cpt
; L

cpt
). 

Computation: Only the directly measured (L
i
; R

i
; R

cpt
; L

cpt
) are required to compute 

BCM 1. Note that BPH applied on function g1 or SPH applied on function f1 
will also result in BCM 1. BCM 3 is identical to BCM 1 if (R

0p
=0; L

0p
=0), 

which may be reasonable when back-calculating size-at-age of adult fish from 
annual increments. 
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Model & Calculation Details  Abbreviations  

Model:  i
i cpt

cpt

R
L   a  (L  - a)

R
= +  BCM 2 

Name:  Fraser-Lee (Fraser 1916, Lee 1920),  FRALE 
Function: Linear w/ intercept; L  a  bR= +  (g2) 
Hypothesis: “the growth increment of the scale is, on average…, a constant 

proportion of the growth increment of the fish”; i i-1

i i-1

(L - L )
constant b

(R - R )
= =  

Geometry: A straight line passing through (R=0; L=a) & (R
cpt

; L
cpt

). 
Computation: Fraser (1916) and Lee (1920) originally described “a” as the length of 

the fish at the time of scale formation (and assumed this length was the same 
for all scales from all fish in a population). Current practice is to set “a” as the 
intercept of g2 function fitted by “L-on-R” regression (Francis 1990): 
1. Fit L  a  bR = + by L-on-R linear regression to estimate a. 
2. Apply BCM 2. 

Model: cpt 0p
i cpt i cpt

cpt 0p

(L  - L )
L   L   (R  - R )

(R  - R ) 
= +  BCM 3 

Name: Biological Intercept (Campana 1990), or Linear Biological Intercept, BI, LBI 
Function: Linear w/ intercept; L  a  bR= +  (g2) 
Hypothesis: Modification of BCM 2 with replacement of statistically estimated 

intercept (R=0; L=a) by biologically determined intercept (R
0p

; L
0p

). 
Geometry: A straight line passing through (R

0p
; L

0p
) & (R

cpt
; L

cpt
). 

Computation: “Generally, I would define the biological intercept of a fish-otolith 
trajectory as the fish and otolith length corresponding to the initiation of 
proportionality between fish and otolith growth. …In many cases, the 
biological intercept could be determined by simple measurements of otolith 
and fish size in newly-hatched larvae in the laboratory” (Campana 1990).  
1. Obtain an estimate of mean fish size at first increment formation (usually 

size at hatching) for the species. This parameter is the biological intercept 
L

0p
 of the model 

2. Obtain estimate of R
0p

, mean radius of first otolith increment for the species. 
R

0p
 may be calculated from the study sample. 

3. Apply BCM 3. 

Model: cpt
i i

cpt

L
L   (a  bR )

(a  bR )
= +

+
 BCM 4 

Name: Linear Body Proportional Hypothesis, LBPH 
Function: Linear w/ intercept; L  a  bR= +  (g2) 
Hypothesis: The BCF is linear and there is “constant proportional deviation from the 

mean body size” (BPH, Francis 1990). 
Geometry: A straight line passing through (R

cpt
; L

cpt
) & preserving a constant 

proportional distance to regression line g2. 
Computation:  

1. Fit L  a  bR= +  by L-on-R linear regression to estimate a & b. 
2. Apply BCM 4.  
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Model & Calculation Details  Abbreviations  

Model: 
i

cpt 0p
i 0p j e j

j 1 cpt 0p

(L  - L )
L   L   (W G (W -W))

(R  - R )=
= + +∑  BCM 5 

Name: Time-Varying Growth (Sirois et al. 1998),  TVG 
Function: Linear w/ intercept; L  a  bR= +  (g2) 
Hypothesis: Modification of the linear biological intercept model (BCM 3) with 

inclusion of a growth effect factor in the structure of the model. 
Geometry: Complex curve not necessarily passing through (R

0p
; L

0p
) or (R

cpt
; L

cpt
). 

Computation: Wi is the otolith increment width at age i and W is a stage-specific 
mean increment width. Values of W are calculated for each fish at each 
developmental stage, e.g., Sirois et al. (1998) calculated W at yolk-sac, 
preflexion and post-flexion stages for each fish.  
1. Obtain a biological intercept (R

0p
; L

0p
) as for BCM 3. 

2. Define developmental stages and calculate average otolith increment for 
each fish at each stage (one value per fish per stage). 

3. Compute the estimated slope of the fish size – otolith size relationship for 

each fish,: cpt 0p

cpt 0p

(L  - L )
S

(R  - R )
= . 

4. Compute linear growth rate in length for each fish: cpt 0p

cpt

(L  - L )
G

Age
= . 

5. Calculate growth effect factor Ge by S-on-G linear regression, S = d + GeG 
using each fish as an independent observation. 

6. Apply BCM 5. Note there is one value of W per fish per stage. W should be 
replaced by Wk for k developmental stage in BCM 5. 

Model: 

i
cpt

cpt
i

R
( (A BL )- A)

R
L  

B

+

=  BCM 6 

Name: Linear Scale Proportional Hypothesis, LSPH 

Function: Linear w/ intercept; (L - a)
R  A BL

b
= = +  (f2) 

Hypothesis: The BCF is linear and there is “constant proportional deviation from the 
mean scale size” (SPH, Francis 1990). 

Geometry: A straight line passing through (R
cpt

; L
cpt

) & preserving a constant 
proportional distance to regression line f2. 

Computation: 
1. Fit R A BL = +  by R-on-L linear regression to estimate A & B. 
2. Apply BCM 6. 
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Model & Calculation Details  Abbreviations  

Model: i
i cpt  cpt i

cpt

Ra a c c
L   -   (L     age )  - age

b b b R b
= + + +  BCM 7 

Name: Age Effect (Morita & Matsuishi 2001), or Age Effect Scale Proportional 
Hypothesis, AE, AESPH 

Function: Plane w/ intercept; R a  bL  c age= + + ×  (f3) 
Hypothesis: “otolith increases with both fish body length and age following f3” 

and “the deviation of the otolith length of a fish from the average for that 
fish length and age is relatively the same throughout the life of a fish 
(SPH)”. 

Geometry: A complex trajectory passing through (R
cpt

; L
cpt

) and included in a 
plane passing through (R

cpt
; L

cpt
; Age

cpt
) and preserving a constant 

proportional distance to regression plane f3. 
Computation:  

1. Fit R a  bL  c age= + + ×  by R-on-L-and-age multiple linear regression 
to estimate a, b, c. 

2. Apply BCM 7 

Model: cpt
i i i

cpt cpt

L
L   (A BR C age )

(A BR C age )
= + + ×

+ + ×
 BCM 8 

Name: Age Effect Body Proportional Hypothesis,  AEBPH 

Function: Plane w/ intercept; 
R-a-c age

L A BR C age
b

×
= = + + ×  (g3) 

Hypothesis: Same as BCM 7 but a BPH rather than a SPH is applied. 
Geometry: A complex trajectory passing through (R

cpt
; L

cpt
) and included in a plane 

passing through (R
cpt

; L
cpt

; Age
cpt

) and preserving a constant proportional 
distance to regression plane g3. 

Computation:  
1. Fit L A BR C age = + + ×  by L-on-R-and-age multiple linear regression to 

estimate A, B, C. 
2. Apply BCM 8. 

Model: 
c

i
i cpt

cpt

R
L   L

R
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 9 

Name: Monastyrsky (Bagenal & Tesch 1978), MONA 
Function: Allometric w/o intercept; cL  bR=  (g4) 
Hypothesis: The model assumes the BCF is described by an allometric function 

passing through the origin and the point at capture.  
Geometry: An allometric curve passing through (R=0; L=0) & (R

cpt
; L

cpt
). 

Computation: This model requires an estimate for c. Originally, it seems that c may 
have been estimated from fit of function g4 by eye (Francis 1990). However, 
common practice may be to estimate c from L-on-R linear regression of 
ln(L) B c ln(R) = + ×  with intercept B=ln(b) .  

1. Fit cL  bR=  by eye (or regression) to estimate c 
2. Apply BCM 9 
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Model & Calculation Details  Abbreviations  

Model: 

cc
i i

i cpt cptc
cpt cpt

bR R
L   L   L

bR R
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 10 

Name: Monastyrsky Body Proportional Hypothesis, MONA-BPH 

Function: Allometric w/o intercept; cL  bR=   (g4) 
Hypothesis: Modification of the Monastyrsky’s model (BCM 9) with application of 

BPH. Morita and Matsuishi (2001) described BCM 10 as a “nonlinear BPH”. 
Geometry: Allometric curve through (R=0; L=0) & (R

cpt
; L

cpt
). 

Computation: Note an estimate of “b” is not required to compute BCM 10.  
1. Fit cL  bR=  by L-on-R non-linear regression to estimate c. 
2. Apply BCM 10. 

Model: 

1

ci 1
cpt c

cpt i
i cpt

cpt

R
(  BL )

R R
L    L

B R

c

= =

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 BCM 11 

Name: Monastyrsky Scale Proportional Hypothesis, MONA-SPH 

Function: Allometric w/o intercept; 
1 1

1
c c CcL 1

R    L  BL
b b

= = =⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (f4) 

Hypothesis: Modification of BCM 9 with application of SPH. Morita and Matsuishi 
(2001) described BCM 11 as a “nonlinear SPH”. 

Geometry: Allometric curve passing through (R=0; L=0) & (R
cpt

; L
cpt

). 
Computation: Note that an estimate of B is not required to compute BCM 11.  

1. Fit CR  BL  = by R-on-L non-linear regression to estimate C. 
2. Apply BCM 11 

Model: cpt 0p i 0
i 0p

cpt 0

[ln(L ) - ln(L )][ln(R ) - ln(R )]
L   exp ln(L )  

[ln(R ) - ln(R )]
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 12 

Name: Watanabe and Kuroki (1997), WAKU 

Function: Allometric w/o intercept; cL  bR=  (g4) 
Hypothesis: Watanabe and Kuroki (1997) stated that “we assumed that the 

relationship of i-th otolith ring radius and L on the day of i-th ring formation 
(L

i
) can be expressed by an allometric formula for individual larvae” and “the 

allometric parameters ‘b’ and ‘c’ were calculated for each larvae by solving 
the two equations; c

0p 0L   bR=  and c
cpt cptL   bR= , where …R

0
 is the 

measured radius of the first daily ring”.  
Geometry: Allometric curve passing through (R=0; L=0) & (R

cpt
; L

cpt
). 

Computation:  
1. Obtain a biological intercept L

0p
 as for BCM 3. 

2. Apply BCM 12 with different measured R
0
 (1st increment) per fish. 
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Model & Calculation Details  Abbreviations  

Model: cpt 0 i 0
i 0

cpt 0

[ln(L  - a) - ln(L  - a)][ln(R ) - ln(R )]
L   a  exp ln(L  - a)  

[ln(R ) - ln(R )]
= + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 13 

Name: Fry (1943), FRY 
Function: Allometric w/ intercept; cL  a  bR= +  (g5) 
Hypothesis: Assumes the BCF is an allometric function through (R=0; L=a), (R

0
; L

0
) 

and (R
cpt

; L
cpt

) (but see Francis 1990). Vigliola et al. (2000) showed both 
allometric and linear BCF were consistent with proportionality between 
relative growth rates of fish and otoliths”. 

Geometry: An allometric curve through (R=0; L=a), (R
0
; L

0
) & (R

cpt
; L

cpt
). 

Computation: Requires estimates for a, R
0
 & L

0
. Originally, a was chosen to 

linearize the plot of ln(L-a) against ln(R), and (R
0
; L

0
) was a point arbitrarily 

chosen on the curve g5 (Francis 1990).  
1. Find a, b, c so that the line  ln(R)cln(b)  a)-ln(L ×+=  is as close as 

possible to data, e.g., by numerical optimisation. The function “optim” of R 
(http://www.r-project.org/) can be used to find the best set of a, b, c that 
minimise the function 2[ln(L-a) -ln(b) c ln(R)]− × . 

2. Select (arbitrarily) point (R
0
; L

0
) on the cL  a  bR= + curve. 

3. Apply BCM 13. 

Model: cpt 0p i 0p
i 0p

cpt 0p

[ln(L  - a) - ln(L  - a)][ln(R ) - ln(R )]
L   a  exp ln(L  - a)  

[ln(R ) - ln(R )]
= + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 14 

Name: Modified Fry (Vigliola et al. 2000), or Allometric Biological Intercept),  MF, ABI 

Function: Allometric w/ intercept; cL  a  bR= +  or 

1
cL-a

R 
b

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (g5 or f5) 

Hypothesis: Proportionality between relative growth rates of the fish and the otolith 
(Vigliola et al. 2000). Modification of BCM 13 with biologically-constrained 
but statistically-estimated “a” and biologically determined intercept (R

0p
; L

0p
) 

instead of (R
0
; L

0
). 

Geometry: Allometric curve through (R=0; L=a), (R
0p

; L
0p

) & (R
cpt

; L
cpt

). 
Computation: Requires an estimate for “a”, “R

0p
” and “L

0p
”.  

1. Obtain a biological intercept (R
0p

; L
0p

) as for BCM 3. 

2. Fit 
1

1 1c c
0p 0p 1L  L -b R   b R  = + by L-on-R non-linear regression to estimate 

“b1” and “c1”. Then, calculate 1c
1 0p 1 0pa   L -b R= . 

3. Fit 
2 2

1
c

0p 2 0p

2

L - L   b R
R  

b

c+
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 by R-on-L non-linear regression to estimate 

b2 and c2. Then, calculate 2c
2 0p 2 0pa   L -b R= . 

4. Calculate 1 2a   a
a

2

+
= . 

5. Apply BCM 14. 
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Model & Calculation Details  Abbreviations  

Model: 
cptc

i i c
cpt

L
L   (a  bR )

(a  bR )
= +

+
 BCM 15 

Name: Fry Body Proportional Hypothesis, or Allometric Body Proportional 
Hypothesis, FRY-BPH, ABPH 

Function: cL  a  bR= +  (g5) 
Hypothesis: Modification of the Fry’s model (BCM 13) with application of BPH 
Geometry: An allometric curve passing through (R

cpt
; L

cpt
) and preserving a 

constant proportional distance to regression curve g5. 
Computation:  

1. Fit cL  a  bR= + by L-on-R non-linear regression to estimate a, b, c. 
2. Apply BCM 15. 

Model: 

c

i
i cpt

cpt

R
L   a  (L  - a)

R
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 BCM 16 

Name: Fry Scale Proportional Hypothesis, or Allometric Scale 
Proportional Hypothesis,  FRY-SPH, ASPH 

Function: 
1
cL-a

R 
b

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (f5) 

Hypothesis: Modification of the Fry’s model (BCM 13) with application of SPH.  
Geometry: An allometric curve passing through (R

cpt
; L

cpt
) and preserving a constant 

proportional distance to regression curve f5. 
Computation: Note that estimate of b is not required in BCM 16.  

1. Fit 

1
cL-a

R 
b

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 by R-on-L non-linear regression to estimate a, c. 

2. Apply BCM 16. 

Model: cpt2
i i i 2

cpt cpt

L
L   (a  bR   cR )

(a  bR   cR )
= + +

+ +
 BCM 17 

Name: Quadratic Body Proportional Hypothesis (Francis 1990), QBPH 

Function: 2L  a  bR  cR= + +  (g6) 
Hypothesis: Sherriff (1922) first used a quadratic equation but gave no BCM. Francis 

(1990) gave the BPH formulation of the quadratic function. BCM 17 assumes 
a quadratic L-on-R BCF and a BPH. 

Geometry: A 2nd degree polynomial curve passing through (R
cpt

; L
cpt

) and preserving a 
constant proportional distance to regression curve g6. 

Computation: 
1. Fit 2L  a  bR  cR= + +  by L-on-R non-linear regression to estimate a, b, c. 
2. Apply BCM 17. 
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Model & Calculation Details  Abbreviations  

Model: 2 2i
i i cpt cpt

cpt

R
a  bL   cL  (a  bL   cL )

R
+ + = + +  BCM 18 

Name: Quadratic Scale Proportional Hypothesis, QSPH 

Function: 2R  a  bL  cL= + +  (f6) 
Hypothesis: Francis (1990) claimed “Thomas (1983) gave a good statement of SPH 

and applied it with a quadratic body-scale curve” but the BCM was not 
explicitly developed in Thomas (1983) or in Francis (1990). BCM 18 assumes 
a quadratic R-on-L BCF and a SPH. 

Geometry: A curve passing through (R
cpt

; L
cpt

) and preserving a constant 
proportional distance to regression curve f6. 

Computation:  
1. Fit 2R  a  bL  cL= + +  by R-on-L non-linear regression to estimate a, b, c 
2. Solve the quadratic equation of BCM 18 by numeric optimisation or using 

the quadratic solution (for 2ax   bx  c  0+ + = , 
2-b b -4ac

x
2a

±
= ). 

Model: 
2 n

0 1 i 2 i n i
i cpt2 n

0 1 cpt 2 cpt n cpt

a   a R   a R    a R
L   L

a   a R   a R    a R

+ + + +
=

+ + + +
 BCM 19 

Name: Polynomial Body Proportional Hypothesis, PBPH 

Function: 2 n
0 1 2 nL  a   a R  a R    a R= + + + +  (g7) 

Hypothesis: Gutreuter (1987) generalized quadratic BCM to a polynomial of 
arbitrary degree. BCM 19 assumes a polynomial L-on-R BCF and a BPH. 

Geometry: A polynomial curve passing through (R
cpt

; L
cpt

) and preserving a constant 
proportional distance to regression curve g7. 

Computation:  
1. Fit 2 n

0 1 2 nL  a  a R  a R   a R= + + + +  by L-on-R non-linear 
regression to estimate a

0
, a

1
 … a

n. 
2. Apply BCM 19. 

Model: 2 n 2 ni
0 1 i 2 i n i 0 1 cpt 2 cpt n cpt

cpt

R
a   a L  a L   a L  (a  a L  a L   a L )

R
+ + + + = + + + + BCM 20 

Name: Polynomial Scale Proportional Hypothesis, PSPH 
Function: 2 n

0 1 2 nR  a  a L  a L  .....  a L= + + + +  (f7) 
Hypothesis: BCM 20 assumes a polynomial R-on-L BCF and a SPH. 
Geometry: A curve passing through (R

cpt
; L

cpt
) and preserving a constant 

proportional distance to regression curve f7. 
Computation:  

1. Fit 2 n
0 1 2 nR  a  a L  a L  .....  a L= + + + +  by R-on-L non-linear 

regression to estimate a
0
, a

1
 … a

n. 
2. Solve BCM 20 (by numeric optimisation or other means). 
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Model: 
i i

cpt

cpt

L
L  exp(a  bR )

exp(a  bR )
= +

+
 BCM 21 

Name: Exponential Body Proportional Hypothesis, EBPH 
Function: L  exp(a  bR) = +  (g8) 
Hypothesis: Tremblay and Giguère (1992) used an exponential L-on-R BCF and then 

used a proportionality method for back-calculation. BCM 21 assumes 
exponential L-on-R BCF and a BPH. 

Geometry: An exponential curve passing through (R
cpt

; L
cpt

) & preserving a constant 
proportional distance to regression curve g8. 

Computation: Tremblay and Giguère (1992) originally fitted g8 after log 
transformation ( ln(L) a bR= + ), which is not BPH per se.  

1. Fit L  exp(a  bR) = + by L-on-R non-linear regression to estimate a & b. 
2. Apply BCM 21. 

Model: i
i cpt

cpt

R
L  exp[a  (ln(L ) - a) ]

R
= +  BCM 22 

Name: Exponential Scale Proportional Hypothesis, ESPH 

Function: 
ln(L) - a

R  
b

=  (f8) 

Hypothesis: BCM 22 assumes logarithmic R-on-L BCF and a SPH. 
Geometry: An exponential curve passing through (R

cpt
; L

cpt
) & preserving a 

constant proportional distance to regression curve f8. 
Computation:  

1. Fit ln(L) - a
R  

b
=  by R-on-L non-linear regression to estimate a, b. 

2. Apply BCM 22. 
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