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1. Introduction

In this chapter we give an account of Woodin’s technique for deriving large
cardinal strength from determinacy hypotheses. These results appear here
for the first time and for this reason we have gone into somewhat more detail
than is customary in a handbook. All unattributed results that follow are
either folklore or due to Woodin.

1.1. Determinacy and Large Cardinals

In the era of set theory following the discovery of independence a major
concern has been the discovery of new axioms that settle the statements left
undecided by the standard axioms (ZFC). One interesting feature that has
emerged is that there are often deep connections between axioms that spring
from entirely different sources. In this chapter we will be concerned with
one instance of this phenomenon, namely, the connection between axioms of
definable determinacy and large cardinal axioms.

In this introduction we will give a brief overview of axioms of definable
determinacy and large cardinal axioms (in Sects. A and B), discuss their
interconnections (in Sects. C and D), and give an overview of the chapter (in
Sect. E). At some points we will draw on notation and basic notions that are
explained in fuller detail in Sects. 1.2 and 2.1.

A. Determinacy

For a set of reals A C w* consider the game where two players take turns
playing natural numbers:

At the end of a round of this game the two players will have produced a
real x, obtained through “interleaving” their plays. We say that Player I
wins the round if x € A; otherwise Player II wins the round. The set A is
said to be determined if one of the players has a “winning strategy” in the
associated game, that is, a strategy which ensures that the player wins a
round regardless of how the other player plays. The Axiom of Determinacy
(AD) is the statement that every set of reals is determined.
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It is straightforward to see that very simple sets are determined. For
example, if A is the set of all reals then clearly I has a winning strategy; if
A is empty then clearly II has a winning strategy; and if A is countable then
IT has a winning strategy (by “diagonalizing”). A more substantive result
is that if A is closed then one player must have a winning strategy. This
might lead one to expect that all sets of reals are determined. However,
it is straightforward to use the Axiom of Choice (AC) to construct a non-
determined set (by listing all winning strategies and “diagonalizing” across
them). For this reason AD was never really considered as a serious candidate
for a new axiom. However, there is an interesting class of related axioms that
are consistent with AC, namely, the axioms of definable determinacy. These
axioms extend the above pattern by asserting that all sets of reals at a given
level of complexity are determined, notable examples being, A{-determinacy
(all Borel sets of reals are determined), PD (all projective sets of reals are
determined) and ADY® (all sets of reals in L(R) are determined).

One issue is whether these are really new axioms or whether they follow
from ZFC. In the early development of the subject the result on the deter-
minacy of closed sets was extended to higher levels of definability. These
developments culminated in Martin’s proof of Aj-determinacy in ZFC. It
turns out that this result is close to optimal—as one climbs the hierarchy
of definability, shortly after Al one arrives at axioms that fall outside the
provenance of ZFC. For example, this is true of PD and ADE®), Thus,
we have here a hierarchy of axioms (including PD and ADY®)) which are
genuine candidates for new axioms.

There are actually two hierarchies of axioms of definable determinacy,
one involving lightface notions of definability (by which we mean notions
(such as Al) that do not involve real numbers as parameters) and the other
involving boldface notions of definability (by which we mean notions (such
as A}) that do involve real numbers as parameters). (See Jackson’s chapter
in this Handbook for details concerning the various grades of definability
and the relevant notation.) Each hierarchy is, of course, ordered in terms
of increasing complexity. Moreover, each hierarchy has a natural limit: the
natural limit of the lightface hierarchy is OD-determinacy (all OD sets of reals
are determined) and the natural limit of the boldface hierarchy is OD(R)-
determinacy (all OD(R) sets of reals are determined). The reason these are
natural limits is that the notions of lightface and boldface ordinal definability
are candidates for the richest lightface and boldface notions of definability.
To see this (for the lightface case) notice first that any notion of definability
which does not render all of the ordinals definable can be transcended (as
can be seen by considering the least ordinal which is not definable according
to the notion) and second that the notion of ordinal definability cannot be so
transcended (since by reflection OD is ordinal definable). It is for this reason
that Godel proposed the notion of ordinal definability as a candidate for an
“absolute” notion of definability. Our limiting cases may thus be regarded
as two forms of absolute definable determinacy.
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So we have two hierarchies of increasingly strong candidates for new ax-
ioms and each has a natural limit. There are two fundamental questions
concerning such new axioms. First, are they consistent? Second, are they
true? In the most straightforward sense these questions are asked in an ab-
solute sense and not relative to a particular theory such as ZFC. But since
we are dealing with new axioms, the traditional means of answering such
questions—namely, by establishing their consistency or provability relative
to the standard axioms (ZFC)—is not available. Nevertheless, one can hope
to establish results—such as relative consistency and logical connections with
respect to other plausible axioms—that collectively shed light on the origi-
nal, absolute question. Indeed, there are a number of results that one can
bring to bear in favour of PD and AD* ®) For example, these axioms lift the
structure theory that can be established in ZFC to their respective domains,
namely, second-order arithmetic and L(R). Moreover, they do so in a fash-
ion which settles a remarkable number of statements that are independent
of ZFC. In fact, there is no “natural” statement concerning their respective
domains that is known to be independent of these axioms. (For more on the
structure theory provided by determinacy and the traditional considerations
in their favour see [9] and for more recent work see Jackson’s chapter in this
Handbook.) The results of this chapter figure in the case for PD and AD* (R)
However, our concern will be with the question of relative consistency; more
precisely, we wish to calibrate the consistency strength of axioms of definable
determinacy—in particular, the ultimate axioms of lightface and boldface
determinacy—in terms of the large cardinal hierarchy.

There are some reductions that we can state at the outset. In terms of con-
sistency strength the two hierarchies collapse at a certain stage: Kechris and
Solovay showed that ZF + DC implies that in the context of L[z] for z € w*,
OD-determinacy and Al-determinacy are equivalent (see Theorem 6.6). And
it is a folklore result that ZFC + OD(R)-determinacy and ZFC + ADY® are
equiconsistent. Thus, in terms of consistency strength, the lightface hierarchy
collapses at Al-determinacy and the boldface hierarchy collapses at ADI®),
So if one wishes to gauge the consistency strength of lightface and boldface
determinacy it suffices to concentrate on Al-determinacy and ADL®),

Now, it is straightforward to see that if Al-determinacy holds then it
holds in L[z] for some real z and likewise if ADY®) (or AD) holds then it
holds in L(R). Thus, the natural place to study the consistency strength of
lightface definable determinacy is L[x] for some real x and the natural place
to study the consistency strength of boldface definable determinacy (or full
determinacy) is L(R). For this reason these two models will be central in
what follows.

To summarize: We shall be investigating the consistency strength of light-
face and boldface determinacy. This reduces to Al-determinacy and AD*®.
The settings L[x] and L(R) will play a central role. Consistency strength will
be measured in terms of the large cardinal hierarchy. Before turning to a
discussion of the large cardinal hierarchy let us first briefly discuss stronger
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forms of determinacy.

Our concern in this chapter is with axioms of determinacy of the above
form, where the games have length w and the moves are natural numbers.
However, it is worthwhile to note that there are two directions in which one
can generalize these axioms.

First, one can consider games of length greater than w (where the moves
are still natural numbers). A simple argument shows that one cannot have
the determinacy of all games of length w; but there is a great deal of room
below this upper bound and much work has been done in this area. For more
on this subject see [10].

Second, one can consider games where the moves are more complex than
natural numbers (and where the length of the game is still w). One alternative
is to consider games where the moves are real numbers. The axiom ADg
states that all such games are determined. Omne might try to continue in
this direction and consider the axiom AD gg) asserting the determinacy of
all games where the moves are sets of real numbers. It is straightforward
to see that this axiom is inconsistent. In fact, even the definable version
asserting that all OD subsets of Z(R)“ is inconsistent. Another alternative
is to consider games where the moves are ordinal numbers. Again, a simple
argument shows that one cannot have the determinacy of all subsets of w“.
However, a result of Harrington and Kechris shows that in this case if one
adds a definability constraint then one can have determinacy at this level.
In fact, OD-determinacy implies that every OD set A C wq¥ is determined.
It is natural then to extend this to large ordinals. The ultimate axiom in
this direction would simply assert that every OD set A C On® is determined.
Perhaps surprisingly, at this stage a certain tension arises since recent work in
inner model theory provides evidence that this axiom is in fact inconsistent.
See [12] for more on this subject.

B. Large Cardinals

Our aim is to calibrate the consistency strength of lightface and boldface
determinacy in terms of the large cardinal hierarchy. The importance of
the large cardinal hierarchy in this connection is that it provides a canonical
means of climbing the hierarchy of consistency strength. To show, for a given
hypothesis ¢ and a given large cardinal axiom L, that the theories ZFC + ¢
and ZFC + L are equiconsistent one typically uses the dual methods of inner
model theory and outer model theory (also known as forcing). Very roughly,
given a model of ZFC + L one forces to obtain a model of ZFC + ¢ and
given a model of ZFC + ¢ one uses the method of inner model theory to
construct a model of ZFC + L. The large cardinal hierarchy is (for the most
part) naturally well-ordered and it is a remarkable phenomenon that given
any two “natural” theories extending ZFC one can compare them in terms of
consistency strength (equivalently, interpretability) by lining them up with
the large cardinal hierarchy.
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In a very rough sense large cardinal axioms assert that there are “large”
levels of the universe. A template for formulating a broad class of large
cardinal axioms is in terms of elementary embeddings. The basic format of
the template is as follows: There is a transitive class M and a non-trivial
elementary

j:V—=M.

To say that the embedding is non-trivial is simply to say that it is not the
identity, in which case one can show that there is a least ordinal moved. This
ordinal is denoted crit(j) and called the critical point of j. A cardinal is said
to be a measurable cardinal if and only if it is the critical point of such an
embedding.

It is easy to see that for any such elementary embedding there is necessarily
a certain degree of agreement between V and M. In particular, it follows
that V41 € M, where x = crit(j). This degree of agreement in conjunction
with the elementarity of j can be used to show that x has strong reflection
properties, in particular, k is strongly inaccessible, Mahlo, weakly compact,
etc.

One way to strengthen a large cardinal axiom of the above form is to
demand greater agreement between M and V. For example, if one demands
that V4o C M then the fact that s is measurable is recognized within M and
hence it follows that M satisfies that there is a measurable cardinal below
j(k), namely, k. Thus, by the elementarity of the embedding, V satisfies that
there is a measurable cardinal below x. The same argument shows that there
are arbitrarily large measurable cardinals below &.

This leads to a natural progression of increasingly strong large cardinal
axioms. It will be useful to discuss some of the major axioms in this hierarchy:
If K is a cardinal and n > x is an ordinal then s is 7-strong if there is a
transitive class M and a non-trivial elementary embedding j : V' — M such
that crit(j) = &, j(k) > n and V;; € M. A cardinal k is strong iff it is
n-strong for all 7. As we saw above if k is (k4 2)-strong then « is measurable
and there are arbitrarily large measurable cardinals below k. Next, one can
demand that the embedding preserve certain classes: If A is a class, & is
a cardinal, and n > x is an ordinal then x is n-A-strong if there exists a
j V. — M which witnesses that x is n-strong and which has the additional
feature that j(ANV,)NV, = ANV,. The following large cardinal notion will
play a central role in this chapter.

1.1 Definition. A cardinal k is a Woodin cardinal if k is strongly inaccessible
and for all A C V, there is a cardinal k4 < k such that

K4 is m-A-strong,
for each n such that k4 < n < k.

It should be noted that in contrast to measurable and strong cardinals,
Woodin cardinals are not characterized as the critical point of an embedding
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or collection of embeddings. In fact, a Woodin cardinal need not be measur-
able. However, if x is a Woodin cardinal, then V, is a model of ZFC and
from the point of view of V,; there is a proper class of strong cardinals.

Going further, a cardinal x is superstrong if there is a transitive class M
and a non-trivial elementary embedding j : V' — M such that crit(j) = &
and Vj) € M. If k is superstrong then r is a Woodin cardinal and there
are arbitrarily large Woodin cardinals below k.

One can continue in this vein, demanding greater agreement between M
and V. The ultimate axiom in this direction would, of course, demand that
M = V. This axiom was proposed by Reinhardt. But shortly after its in-
troduction Kunen showed that it is inconsistent with ZFC. In fact, Kunen
showed that assuming ZFC, there can be no non-trivial elementary embed-
ding j : Viso — Viyo. (An interesting open question is whether these axioms
are inconsistent with ZF or whether there is a hierarchy of “choiceless” large
cardinal axioms that climb the hierarchy of consistency strength far beyond
what can be reached with ZFC.)

There is a lot of room below the above upper bound. For example, a very
strong axiom is the statement that there is a non-trivial elementary embed-
ding j : Vag1 — Viay1. The strongest large cardinal axiom in the current
literature is the axiom asserting that there is a non-trivial elementary em-
bedding j : L(Vay1) — L(Vay1) such that crit(j) < A. Surprisingly, this
axiom yields a structure theory of L(V)41) which is closely analogous to the
structure theory of L(R) under the axiom ADE®) " This parallel between
axioms of determinacy and large cardinal axioms suggests seeking stronger
large cardinal axioms by following the guide of the strong axioms of determi-
nacy discussed at the close of the previous section. In fact, there is evidence
that the parallel extends. For example, there is a new large cardinal axiom
that is the analogue of ADg. See [12] for more on these recent developments.

C. Determinacy from Large Cardinals

Let us return to the questions of the truth and the consistency of axioms
of definable determinacy, granting that of large cardinal axioms. In the late
1960s Solovay conjectured that AD” ®) is provable from large cardinal axioms
(and hence that ZF+ AD is consistent relative to large cardinal axioms). This
conjecture was realized in stages.

In 1970 Martin showed that if there is a measurable cardinal then all
gi sets of reals are determined. Later, in 1978, he showed that under the
much stronger assumption of a non-trivial iterable elementary embedding
7 :Va— Vyall Z;é sets of reals are determined. It appeared that there
would be a long march up the hierarchy of axioms of definable determinacy.
However, in 1984 Woodin showed that if there is a non-trivial elementary
embedding j : L(Vag1) — L(Vag1) with crit(j) < A, then ADE® holds.

The next major advances concerned reducing the large cardinal hypothesis
used to obtain AD*®) . The first step in this direction was made shortly after,
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in 1985, when Martin and Steel proved the following remarkable result, using
a completely different technique:

1.2 Theorem (Martin and Steel). Assume ZFC. Suppose that there are n
Woodin cardinals with a measurable cardinal above them all. Then Z]}LH—
determinacy holds.

It follows that if there is a Woodin cardinal with a measurable cardinal
above, then Al-determinacy holds and if there are infinitely many Woodin
cardinals then PD holds. Finally, the combination of Martin and Steel’s
work and Woodin’s work on the stationary tower (see [8]) led to a significant
reduction in the hypothesis required to obtain AD” ®)

1.3 Theorem. Assume ZFC. Suppose there are infinitely many Woodin
cardinals with a measurable cardinal above them all. Then AD*®.

A more recent development is that, in addition to being implied by large
cardinal axioms, AD* ®) ig implied by a broad array of other strong axioms,
which have nothing to do with one another—in fact, there is reason to believe
that ADF®) s implied by all sufficiently strong “natural” theories. For
further discussion of this subject and other more recent results that contribute
to the case for certain axioms of definable determinacy see [7, 11, 13].

Each of the above results concerns the truth of axioms of definable deter-
minacy, granting large cardinal axioms. A closely related question concerns
the consistency of axioms of definable determinacy, granting that of large
cardinal axioms. For this one can get by with slightly weaker large cardinal
assumptions.

1.4 Theorem. Assume ZFC. Suppose § is a Woodin cardinal. Suppose
G C Col(w, d) is V-generic. Then V|[G] = Al-determinacy.

1.5 Theorem. Assume ZFC. Suppose that X is a limit of Woodin cardinals.
Suppose G C Col(w, <\) is V-generic and let R* = [J{RVIEI | o < A}
Then L(R*) = AD.

For more on the topic of this section see Neeman’s chapter in this Hand-
book.

D. Large Cardinals from Determinacy

The above results lead to the question of whether the large cardinal as-
sumptions are “necessary”. Of course, large cardinal assumptions (in the
traditional sense of the term) cannot be necessary in the strict sense since
axioms of definable determinacy (which concern sets of reals) do not outright
imply the existence of large cardinals (which are much larger objects). The
issue is whether they are necessary in the sense that one cannot prove the
axioms of definable determinacy with weaker large cardinal assumptions. To
establish this one must show that the consistency of the axioms of definable



1. Introduction 1959

determinacy implies that of the large cardinal axioms and one way to do this
is to show that axioms of definable determinacy imply that there are inner
models of the large cardinal axioms.

There are two approaches to inner model theory, each originating in the
work of Godel. These approaches have complementary advantages and dis-
advantages. The first approach is based on L, the universe of constructible
sets. The advantage of this approach is that L is very well understood; in
fact, it is fair to say that within ZFC one can carry out a “full analysis” of
this model. As a consequence of this one can show, for example, that under
ZF + AD, w is inaccessible in L. The disadvantage is that L is of limited
applicability since it cannot accommodate strong large cardinal axioms such
as the statement that there is a measurable cardinal. So if the large cardinal
assumptions in Theorems 1.4 and 1.5 are close to optimal then L is of no use
in establishing this.

The second approach is based on HOD, the universe of hereditarily ordinal
definable sets. This inner model can accommodate virtually all large cardinal
axioms that have been investigated. But it has a complementary defect in
that one cannot carry out a full analysis of this structure within ZFC.

A major program in set theory—the inner model program—aims to com-
bine the advantages of the two approaches by building inner models that
resemble L in having a highly ordered inner structure but which resemble
HOD in that they can accommodate strong large cardinal axioms.

“L-like” inner models at the level of Woodin cardinals were developed in
stages beginning with work of Martin and Steel, and continuing with work
of Mitchell and Steel. The Mitchell-Steel inner models are true analogs of L.
Martin and Steel used their models to show that the large cardinal hypotheses
in their proofs of determinacy were essentially optimal. For example, they
showed that if there is a Woodin cardinal then there is a canonical inner
model M that contains a Woodin cardinal and has a A} well-ordering of the
reals. It follows that one cannot prove gé—determinacy from the assumption
of a Woodin cardinal alone.

However, this still left open a number of questions. First, does the consis-
tency of ZFC + “There is a Woodin cardinal” follow from that of ZFC + Al-
determinacy? Second, can one build an inner model of a Woodin cardi-
nal directly from ZFC + Al-determinacy? Third, what is the strength of
ZFC + AD*®? To approach these questions it would seem that one would
need fine-structural inner model theory. However, at the time when the cen-
tral results of this chapter were proved, fine-structural inner model theory
had not yet reached the level of Woodin cardinals. One option was to proceed
with HOD.

In contrast to L the structure of HOD is closely tied to the universe in
which it is constructed. In the general setting, where one works in ZF and
constructs HOD in V', the structure theory of HOD is almost as intractable
as that of V. Surprisingly if one strengthens the background theory then the
structure theory of HOD becomes tractable. For example, Solovay showed
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that under ZF 4+ AD, HOD satisfies that w{ is a measurable cardinal. It
turns out that both lightface and boldface definable determinacy are able
to illuminate the structure of HOD (when constructed in the natural inner
models of these axioms—L|[z] and L(R)) to the point where one can recover
the large cardinals that are necessary to establish their consistency.

In the case of lightface definable determinacy the result is the following:

1.6 Theorem. Assume ZF +DC+ Al-determinacy. Then for a Turing cone
of x,
HODE! = zFC + wf[z] is a Woodin cardinal.

Thus, the consistency strength of ZFC 4 OD-determinacy is precisely that
of ZFC + “There is a Woodin cardinal”. For the case of boldface determinacy
let us first state a preliminary result of which the above result is a localization.
First we need a definition. Let

© = sup{« | there is a surjection 7 : w* — a}.
1.7 Theorem. Assume ZF + AD. Then
HODE® = 0™ is 4 Woodin cardinal.

In fact, both of these results are special instances of a general theorem on
the generation of Woodin cardinals—the Generation Theorem. In addition
to giving the above results, the Generation Theorem will also be used to
establish the optimal large cardinal lower bound for boldface determinacy:

1.8 Theorem. Assume ZF+AD. Suppose Y is a set. There is a generalized
Prikry forcing Py through the Y -degrees such that if G C Py is V-generic
and ([x;]y | ¢ < w) is the associated sequence, then

HOD;[(C[:J%]YIKL«J),V = ZFC + There are w-many Woodin cardinals,

where [z]y = {z € w¥ | HODy,, = HODy ,} is the Y -degree of x.

Thus, the consistency strength of ZEC + OD(R)-determinacy and of ZF +
AD is precisely that of ZFC 4+ “There are w-many Woodin cardinals”.

The main results of this chapter have applications beyond equiconsistency;
in particular, the theorems play an important role in the structure theory of
AD™ (a potential strengthening of AD that we will define and discuss in
Sect. 8). For example, Steel showed that under AD, in L(R) every uncount-
able regular cardinal below © is a measurable cardinal. (See Steel’s chapter
in this Handbook for a proof.) This theorem generalizes to a theorem of AD™
and the theorems of this chapter are an important part of the proof. We will
discuss some other applications in the final section of this chapter.
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E. Overview

The results on the strength of lightface and boldface determinacy were es-
tablished in the late 1980s. However, the current presentation and many of
the results that follow are quite recent. One of the key new ingredients is the
following abstract theorem on the generation of Woodin cardinals, which lies
at the heart of this chapter:

1.9 Theorem (GENERATION THEOREM). Assume ZF. Suppose
M = Le,, R)[T, A, B]
is such that
(1) M = To,
(2) O is a reqular cardinal,
(3) T C Oy,

(4) A= (Ay | @ < Opnr) is such that Ay, is a prewellordering of the reals of
length greater than or equal to «,

(5) B C w* is nonempty, and
(6) M = Strategic determinacy with respect to B.

Then
HODQA{AB E ZFC + There is a T-strong cardinal.

Here T is the theory ZF + AC, (R) — Power Set + “Z?(w)exists” and the
notion of “strategic determinacy” is a technical notion that we will state
precisely later.

The Generation Theorem provides a template for generating models con-
taining Woodin cardinals. One simply has to show that in a particular setting
the various conditions can be met, though this is often a non-trivial task. The
theorem is also quite flexible in that it is a result of ZF that does not pre-
suppose DC and has applications in both lightface and boldface settings. It
will play a central role in the calibration of the strength of both lightface and
boldface determinacy.

We shall approach the proof of the Generation Theorem by proving a series
of increasingly complex approximations.

In Sect. 2 we take the initial step by proving Solovay’s theorem that under
ZF + AD, wY is a measurable cardinal in HOD and we show that the associ-
ated measure is normal. The proof that we give is slightly more complicated
than the standard proof but has the virtue of illustrating in a simple setting
some of the key components that appear in the more complex variations. We
illustrate this at the end of the section by showing that the proof of Solovay’s
theorem generalizes to show that under ZF + AD, the ordinal (§7)“®) is a
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measurable cardinal in HOD*™ | Our main aim in this section is to illustrate
the manner in which “boundedness” and “coding” combine to yield normal
ultrafilters. In subsequent sections stronger forms of boundedness (more pre-
cisely, “reflection”) and stronger forms of coding will be used to establish
stronger forms of normality.

In Sect. 3 we prove the strong forms of coding that will be central through-
out.

In Sect. 4, as a precursor to the proof of the Generation Theorem, we
prove the following theorem:

1.10 Theorem. Assume ZF + DC + AD. Then
HODE® = ZFC + 0*®) is a Woodin cardinal.

The assumption of DC is merely provisional—it will ultimately be elim-
inated when we prove the Generation Theorem. Toward the proof of the
above theorem, we begin in Sect. 4.1 by establishing the reflection phenom-
enon that will play the role played by boundedness in Sect. 2. We will then
use this reflection phenomenon in L(R) to define for cofinally many A < ©,
an ultrafilter uy on §2 that is intended to witness that §7 is A-strong. In
Sect. 4.2 we shall introduce and motivate the notion of strong normality by
showing that the strong normality of i) ensures that §7 is A-strong. We
will then show how reflection and uniform coding combine to secure strong
normality. In Sect. 4.3 we will prove the above theorem by relativizing the
construction of Sect. 4.2 to subsets of @L®),

In Sect. 5 we extract the essential components of the above construction
and prove two abstract theorems on Woodin cardinals in a general setting,
one that involves DC and one that does not. The first theorem is proved
in Sect. 5.1. The importance of this theorem is that it can be used to show
that in certain strong determinacy settings HOD can contain many Woodin
cardinals. The second theorem is the Generation Theorem, the proof of
which will occupy the remainder of the section. The aim of the Generation
Theorem is to show that the construction of Sect. 4 can be driven by light-
face determinacy alone. The difficulty is that the construction of Sect. 4
involves games that are defined in terms of real parameters. To handle this
we introduce the notion of “strategic determinacy”, a notion that resem-
bles boldface determinacy in that it involves real parameters but which can
nonetheless hold in settings where one has AC. To motivate the notion of
“strategic determinacy” we shall begin in Sect. 5.2 by examining one such
setting, namely, L[S, z] where S is a class of ordinals and x is a real. Once
we show that “strategic determinacy” can hold in this setting we shall return
in Sect. 5.3 to the general setting and prove the Generation Theorem. In the
final subsection, we prove a number of special cases, many of which are new.
Although some of these applications involve lightface settings, they all either
involve assuming full AD or explicitly involve “strategic determinacy”.

In Sect. 6 we use two of the special cases of the Generation Theorem to
calibrate the consistency strength of lightface and boldface definable determi-



1. Introduction 1963

nacy in terms of the large cardinal hierarchy. In the case of the first result the
main task is to show that Al-determinacy suffices to establish that “strate-
gic determinacy” can hold. In the case of the second result the main task is
to show that the Generation Theorem can be iteratively applied to generate
w-many Woodin cardinals.

In Sect. 7 we show that the Generation Theorem can itself be localized in
two respects. In the first localization we show that Al-determinacy implies
that for a Turing cone of z, wf[x] is a Woodin cardinal in an inner model of
L[z]. In the second localization we show that the proof can in fact be carried
out in second-order arithmetic.

In Sect. 8 we survey some further results. First, we discuss results con-
cerning the actual equivalence of axioms of definable determinacy and axioms
asserting the existence of inner models with Woodin cardinals. Second, we
revisit the analysis of HOD*® and HOD*[I9 | for certain generic exten-
sions L[x][g], in light of the advances that have been made in fine-structural
inner model theory. Remarkably, it turns out that not only are these mod-
els well-behaved in the context of definable determinacy—they are actually
fine-structural inner models, but of a kind that falls outside of the traditional
hierarchy.

We have tried to keep the account self-contained, presupposing only ac-
quaintance with the constructible universe, the basics of forcing, and the
basics of large cardinal theory. In particular, we have tried to minimize ap-
peal to fine structure and descriptive set theory. Fine structure enters only in
Sect. 8 where we survey more recent developments, but even there one should
be able to get a sense of the lay of the land without following the details. For
the relevant background and historical development of the subject see [1, 2, 9].
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1.2. Notation

For the most part our notational conventions are standard. Nevertheless,
some comments are in order.

(1) We use pa () to indicate the least ordinal « such that ¢(«).

(2) In writing ODx and HODx we always mean that X itself (as opposed
to its elements) is allowed as a parameter. The notation ODyxy is
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sometimes used for this, for example, in contexts where one would like
to speak of both OD(x} and ODx. However, in this chapter we will
have no occasion to speak of the latter and so we have dropped the curly
brackets on the ground that they would only serve to clutter the text.
We also use OD x as both a name (for the class of sets which are ordinal
definable from X) and as an adjective (for example when we say that
a particular class is ODy.) We use <pp, for a fixed canonical OD x-
well-ordering of ODx sets. The notation OD(R) is used in analogy
with L(R).

A strategy for Player I is a function o : |J, _,, w? — w. Letting o * y be
the real produced when Player I follows o and Player II plays y, we say
that o is a winning strategy for Player I in the game with payoff A C w*
if for all y € w¥, o xy € A. The corresponding notions for Player 11
are defined similarly. We typically reserve o for strategies for Player I
and 7 for strategies for Player II. The play that results from having II
play y against o is denoted o * y and likewise the play that results from
having I play = against 7 is denoted x * 7. We write x * y for the real
that results from having Player I play  and Player II play y and in
this case we let (z *y); = x and (z x y);; = y. For example, (o * y)s is
the real that Player I plays when following the strategy o against II’s
play of y. If o is a strategy for Player I and 7 is a strategy for Player
IT we write o * 7 for the real produced by playing the strategies against
one another. Occasionally, when z = x * y we write zZeyen to indicate x
and z,qq to indicate y.

If X is a subset of the plane w* x w* we use proj, (X) for the “projection
to the first coordinate” and proj,(X) for the “projection to the second
coordinate”.

For ng,...,ng_1 € w, we use (ng, . ..,ng_1) to denote the natural num-
ber encoding (ng,...,nk—1) via a recursive bijection between wk and w
(which we fix throughout) and we let (n); be the associated projection
functions. For z € w* and i € w we also use (z); for the projection
function associated to a recursive bijection between (w*)* and w*. See
[9, Chap. 3] for further details on such recursive coding and decoding
functions.

There is a slight conflict in notation in that angle brackets are also
traditionally used for sequences and n-tuples. We have lapsed into this
usage at points but the context resolves the ambiguity; for example,
when we write (z, | @ < A) it is clear that we are referring to a
sequence.

In this chapter by the “reals” we mean w®, which, under the standard
topology, is homeomorphic to the irrationals as normally construed.
However, we continue to use the symbol ‘R’ in contexts where it is
traditional, for example, in L(R).



2. Basic Results 1965

(7) We use tc(x) for the transitive closure of x.
(8) A base theory that will play a central role throughout is

Ty = ZF + AC,(R) — Power Set + “Z?(w) exists”.

2. Basic Results

The central result of this section is Solovay’s theorem to the effect that un-
der ZF + AD, w; is a measurable cardinal. The proof that we will give is
slightly more involved than the standard proof but it has the advantage of
illustrating some of the key components in the more general theorems to be
proved in later sections. One thing we would like to illustrate is the man-
ner in which “boundedness” and “coding” combine to yield normal ultrafil-
ters. In subsequent sections stronger forms of boundedness (more precisely,
“reflection”) and stronger forms of coding will be used to establish stronger
forms of normality. This will culminate in the production of Woodin cardi-
nals.

In Sect. 2.1 we review some basic consequences of ZF +AD. In Sect. 2.2 we
prove g}—boundedness and use it to prove the Basic Coding Lemma, a simple
case of the more general coding lemmas to be proved in Sect. 3. In Sect. 2.3
we use g%—boundedness to show that the club filter on wy witnesses that w;
is a measurable cardinal and we use g%-boundedness and the Basic Coding
Lemma to show that this ultrafilter is normal. In Sect. 2.4 we introduce 2
and establish its basic properties. Finally, in Sect. 2.5 we draw on the Coding
Lemma of Sect. 3 to show that the proof of Solovay’s theorem generalizes to
show that assuming ZF + DC + AD then in the restricted setting of L(R) the
ordinal (§7)“™) is a measurable cardinal. Later, in Sect. 4, we will dispense
with DC and reprove this theorem in ZF + AD.

2.1. Preliminaries

In order to keep this account self-contained, in this subsection we shall col-
lect together some of the basic features of the theory of determinacy. These
concern (1) the connection between determinacy and choice, (2) the impli-
cations of determinacy for regularity properties, and (3) the implications of
determinacy for the Turing degrees. See [2, 9], and Jackson’s chapter in this
Handbook for further details and references.

Let us begin with the axiom of choice. A straightforward diagonalization
argument shows that AD contradicts the full axiom of choice, AC. However,
certain fragments of AC are consistent with AD and, in fact, certain fragments
of AC follow from AD.

2.1 Definition. The Countable Axziom of Choice, AC,, is the statement
that every countable set consisting of non-empty sets has a choice function.
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The Countable Aziom of Choice for Sets of Reals, AC,(R), is the statement
that every countable set consisting of non-empty sets of reals has a choice
function.

2.2 Theorem. Assume ZF + AD. Then AC,(R).

Proof. Let {X,, | n < w} be a countable collection of non-empty sets of reals.
Consider the game

where I wins if and only if y & X (o). (Notice that we are leaving the definition
of the payoff set of reals A implicit. In this case the payoff set is {z € w* |
Todd & Xz(0)}- In the sequel we shall leave such routine transformations to
the reader.) Thus, Player I is to be thought of as playing an element X,, of
the countable collection and Player IT must play a real which is not in this
element. Of course, Player I cannot win. So there must be a winning strategy
7 for Player II. The function

frw—ow”

n— ((n,0,0,...) 7))
is a choice function for {X,, | n < w}. —|
2.3 Corollary. Assume ZF + AD. Then wy is regular.

2.4 Definition. The Principle of Dependent Choices, DC, is the statement
that for every non-empty set X and for every relation R C X x X such that
for all x € X there is a y € X such that (z,y) € R, there is a function
f+w — X such that for all n < w, (f(n), f(n+ 1)) € R. The Principle of
Dependent Choices for Sets of Reals, DCg, is simply the restricted version of
DC where X is R.

It is straightforward to show that DC implies AC,, and Jensen showed that
this implication cannot be reversed. Solovay showed that Con(ZF + ADg)
implies Con(AD + —=DC) and this was improved by Woodin.

2.5 Theorem. Assume ZF + AD +V = L(R). Then in a forcing extension
there is an inner model of AD + —AC,,.

2.6 Theorem (Kechris). Assume ZF + AD. Then L(R) = DC.
1 Open Question. Does AD imply DCg?

Thus, of the above fragments of AC, AC,(R) is known to be within the
reach of AD, DCpg could be within the reach of AD, and the stronger principles
AC,, and DC are known to be consistent with but independent of AD (assum-
ing consistency of course). For this reason, to minimize our assumptions, in
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what follows we shall work with AC,,(R) as far as this is possible. There are
two places where we invoke DC, namely, in Kunen’s theorem (Theorem 3.11)
and in Lemma 4.8 concerning the well-foundedness of certain ultrapowers.
However, in our applications, DC will reduce to DCg and so if the above
open question has a positive answer then these appeals to DC can also be
avoided.

We now turn to regularity properties. The axiom of determinacy has
profound consequences for the structure theory of sets of real numbers. See
[9] and Jackson’s chapter in this Handbook for more on this. Here we mention
only one central consequence that we shall need below.

2.7 Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis). Assume
ZF + AD. Then all sets are Lebesgue measurable, have the property of Baire,
and have the perfect set property.

Proof. See [2, Sect. 27]. 4
Another important consequence we shall need is the following;:
2.8 Theorem. Assume ZF + AD. Then every ultrafilter is wy-complete.

Proof. Suppose Z C Z(X) is an ultrafilter. If % is not wi-complete then
there exists {X; | i < w} such that

(1) for all i <w, X; € % and

2) Nicw Xi %

Without loss of generality we can suppose that (1, , X; = @. So this gives a
partition {Y; | i < w} of X into disjoint non-empty sets each of which is not
in % . Define Z* C P (w) as follows:

cew* it YYi|liceotew.

This is an ultrafilter on w which is not principal since by assumption Y; & %
for each i < w. However, as Sierpiniski showed, a non-principal ultrafilter
over w (construed as a set of reals) is not Lebesgue measurable. !

Finally, we turn to the implications of determinacy for the Turing degrees.
For z,y € w¥, we say that x is Turing reducible to y, x < y, if x is recursive
in y and we say that x is Turing equivalent to y, x =1 y, if x <7 y and
y <t x. The Turing degrees are the corresponding equivalence classes [z]r =
{y € w* | y =r x}. Letting

D = {[x]T |z € w“’}

the relation < lifts to a partial ordering on Pp. A cone of Turing degrees
is a set of the form

{lWlr |y >7 20}
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for some xg € w”. A Turing cone of reals is a set of the form

{yew” |y >rz0}

for some zg € w®. In each case x is said to be the base of the cone. In later
sections we will discuss different degree notions. However, when we speak of
a “cone of x”7 without qualification we always mean a “Turing cone of x”.
The cone filter on P is the filter consisting of sets of Turing degrees that
contain a cone of Turing degrees.

2.9 Theorem (CONE THEOREM; Martin). Assume ZF + AD. The cone
filter on D1 is an ultrafilter.

Proof. For A C 97 consider the game

where I wins iff [z * y]7 € A. If T has a winning strategy o then o witnesses
that A is in the cone filter since for y >7 o9, [yl = [00 * y]r € A. If 1T has a
winning strategy 7o then 7y witnesses that %7 ~ A is in the cone filter since
for © 21 10, [2]r =[x *x To]lT € Dr N A. .

It follows that under ZF + AD each statement o(z) either holds for a
Turing cone or reals z or fails for a Turing cone of reals x.

The proof of the Cone Theorem easily relativizes to fragments of definable
determinacy. For example, assuming Y3-determinacy every 1 set which is
invariant under Turing equivalence either contains or is disjoint from a Turing
cone of reals.

It is of interest to note that when Martin proved the Cone Theorem he
thought that he would be able to refute AD by finding a property that
“toggles”. He started with Borel sets and, when no counterexample arose,
moved on to more complicated sets. We now know (assuming there are
infinitely many Woodin cardinals with a measurable above) that no coun-
terexamples are to be found in L(R). Moreover, the statement that there
are no counterexamples in L(R) (i.e. the statement that Turing determinacy
holds in L(R)) actually implies AD*®) (over ZF + DC). Thus, the basic
intuition that the Cone Theorem is strong is correct—it is just not as strong
as 0=1.

2.2. Boundedness and Basic Coding

We begin with some definitions. For x € w®, let E, be the binary relation
on w such that mE,n iff x({m,n)) = 0, where recall that {-,) : w X w — w
is a recursive bijection. The real x is said to code the relation F,. Let
WO = {z € w¥ | E, is a well-ordering}. For z € WO, let o, be the ordertype
of E, and, for a < 8 < w; let WO, = {2 € WO | a = a}, WO, = {z €
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WO | ap < a}, WO = {r € WO | a < a, < f} and likewise for
other intervals of countable ordinals. For z € WO, let WO, = WO,,. It is
straightforward to see that these sets are Borel and that WO is a complete
II} set. (See [1, Chap. 25] for details.)

In addition to the topological and recursion-theoretic characterizations of
g% there is a model-theoretic characterization which is helpful in simplifying
complexity calculations. A model (M, E) satisfying Ty (or some sufficiently
strong fragment of ZF) is an w-model if (WM, ETwM) = (w, €]w), where recall
that Ty is the theory ZF 4+ AC, (R) — Power Set+ “#(w) exists”. Notice that
w-models are correct about arithmetical statements and hence IT} statements
are downward absolute to w-models. Moreover, the statement “There exists
a real coding an w-model of Ty” is X1, in contrast to the statement “There
exists a real coding a well-founded model of Ty”, which is ¥3. Thus we have
the following characterization of the pointclass X}: A C w® is B iff there is
a formula ¢ and there exists a z € w* such that

A = {y € w* | there is a real coding an w-model M with z € M
such that y € M and M = Ty + ¢y, 2]}

The lightface version Y1 is defined similarly by omitting the parameter z,
as are the ¥} subsets of (w*)™ and the ¥} statements, etc. Theories much
weaker than T yield an equivalent definition. For example, one can use the
finite theory ZF n of the first N axioms of ZF for some sufficiently large V.

As an illustration of the utility of this model-theoretic characterization of
%1 we shall use it to show that for each 2 € WO, WO, is A}l: Notice that
w-models of T correctly compute “x,y € WO and o, < a,” in the following
sense: If z,y € WO and oy < o, and M is an w-model of Ty which contains =
and y, then M = “z,y € WO and oy < o;,”. (By downward absoluteness M
satisfies that =,y € WO and hence that a,, and «, are defined. Furthermore,
since M is an w-model it correctly computes the ordering of o, and «y,.) If
x € WO and M is an w-model of T which satisfies “z,y € WO and o, < a,”
then y € WO and a, < . (The point is that M satisfies that there is an
order-preserving map f : F, — F, and, since w-models are correct about
such maps and since E, is truly well-founded, it follows that y € WO and
ay < o). So, for x € WO,

WO, = {y € w¥ | there is a real coding an w-model M such that
z,y € M and M =Ty + “z,y € WO and oy < 0"}

= {y € w* | for all reals coding w-models M if z,y € M
and M = T then M = “z,y € WO and oy < a;”}.

Thus, for z € WO, WO, is Al and hence Borel.

2.10 Lemma (X}-BOUNDEDNESS; Luzin-Sierpifiski). Assume ZF +AC,,(R).
Suppose X C WO and X is 1. Then there exists an o < wy such that
X CWO,,.
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Proof. Assume toward a contradiction that X is unbounded. Then
y€ WO iff thereis ax € X such that o, < a,

since for x € X C WO, w-models of Ty correctly compute oy < az. By the
above remark, we can rewrite this as

y € WO iff thereis an x € X and there is an w-model M such that
z,y € M and M =Ty + “z,y € WO and oy < a,”.

Thus, WO is ¥}, which contradicts the fact that WO is a complete I} set.
(Without appealing to the fact that WO is a complete II] set we can arrive at
a contradiction (making free use of AC) as follows: Let z € w* be such that
both X and WO are ¥1(z). Let a be such that V,, = Ty and choose Y < V,
such that Y is countable and z € Y. Let N be the transitive collapse of Y.
By correctness, X N N = X%. Choose a uniform ultrafilter U C 2 (w;)V
such that if
j: N —=Ult(N,U)

is the associated embedding then crit(j) = wi¥ and j(w) is not well-founded.
(To obtain such an ultrafilter build a generic for (£(w;)/countable)?. See
Lemma 22.20 of [1].) Since Ult(N,U) is an w-model of Ty it correctly com-
putes WO. Tt follows that (WO)U*(V:U) € WO, which in turn contradicts
the fact that w}m(N’U) is not well-founded.) !
2.11 Lemma (Basic CODING; Solovay). Assume ZF + AD. Suppose Z C
WO x w®. Then there exists a Xy set Z* such that

(1) Z* C Z and
(2) for all a« < wy, Z* N (WO, X w®) # & iff ZN (WO, x w¥) # 2.

Moreover, there is such a Z* which is of the form X N (WO x w*) where
X Cw¥ xw¥ zsg%

Proof. Here is the picture:

WO

The space WO x w® is sliced into sections WO, x w* for a@ < wi. Z is
represented by the unshaded ellipse and Z* is represented by the shaded
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region. Basic Coding says that whenever Z meets one of the sections so
does Z*. In such a situation we say that Z* is a selector for Z.
To see that Z* exists, consider the game

I z(0) x(1) x(2)
11 y(0) y(1)
where I wins iff whenever x € WO then y codes a countable set Y such that
(1) YC Z and
(2) for all & < ay, Y N(WO, x w¥) # @ iff ZN (WO, x w¥) # @.

The idea is that Player I challenges by playing a countable ordinal o, and
Player IT meets this challenge provided he can play (a code for a) a selector
Y for ZN (WOgq, X w¥).

Claim. There can be no winning strategy for Player I in this game.

Proof. Suppose o is a winning strategy for I. As the play unfolds, Player I
can attempt to increase «, as Player II’s play is revealed. However, Player
IT can anticipate all such attempts as follows: The set

X={(oxy)r|yew}

is ¥1 (o) and, since ¢ is winning for I, X € WO. So, by $1-boundedness, there
is a B < wq such that X € WO.g. Since we have AC,,(R) (by Theorem 2.2),
we can choose a countable set Y C Z such that for all « < 8, Y N (WO, x
w¥) £ @ iff ZN (WO, x w*) # @. Let y code Y and play y against o. The
resulting play o * y is a win for II, which is a contradiction. -

Thus II has a winning strategy 7. For x € WO, let Y* be the countable
subset of Z coded by (x * 7). Then

ZF =U{Y" |z € WO}
is X3(7) and such that
W) z°cz,
(2) for all @ < w1, Z* N (WO, x w¥) £ @ iff ZN (WO, X w¥) # .
Hence Z* is as desired.

To see that we can choose Z* to be of the form X N (WO x w*) where
X Cw¥ x w¥is 2%, let

X ={(a,b) | there is an w-model M
such that a,b,7 € M and M |= Ty + (a,b) € Z**}
where
Z = | H{Y* N (WO,, x w¥) |z € WO}.

This set is X1(7). The trouble is that although for a € WO such models M
are correct about (a,b) € Z**, M might think a« € WO when a ¢ WO. To
overcome this difficulty we pare down, letting Z* = X N (WO x w*). =
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2.3. Measurability

2.12 Theorem (Solovay). Assume ZF + AD. Then the club filter is an
w1 -complete ultrafilter on wy.

Proof. The ultrafilter on w; will be extracted from a game. As motivation,
for the moment work in ZFC. For S C w;, consider the game

I Qg a1 o)

I Bo S

where we demand that ag < By < a1 < -+ < wy and where the first player
that fails to meet this demand loses and if both players meet the demand
then I wins provided sup,_,, o; € S.

We claim that I wins this game for S if and only if S contains a club
in wi1. Suppose first that S contains a club C. Let o be a strategy for I which
chooses an element of C' larger than the last ordinal played by II. This is a
winning strategy for I. For if II meets the first condition then the ordinals
played form an increasing sequence. The even elements of this sequence are
in C' and hence the supremum of the sequence is in C' (since C' is club) and
hence in S. Thus o is a winning strategy for I. Suppose next that I have
a winning strategy o. Let C be the set of limit ordinals v < w; with the
feature that for every i < w and for every increasing sequence &g, . .., &s; of
ordinals less than +, the response o({&,...,&2;)) is also less than ~. Let C’
be the limit points of C. Since w; is regular it follows that C and C” are club
in w;. Now suppose 7 € C’. Let (y; | i < w) be an increasing sequence of
ordinals in C' which is cofinal in v and such that =y is greater than I's first
move via . The key point is that this sequence is a legal play for II. Player
IT has “taken control” of the game. Now, since ¢ is a winning strategy for I
it follows that the supremum, =, is in S. Thus, S contains the club C’. So,
if we had determinacy (which of course is impossible in ZFC) we would have
an ultrafilter on wj.

Now return to ZF + AD. We want to mimic the above game via a game
where each player plays natural numbers. This can be done since in an integer
game each player ultimately plays a real x that can be regarded as coding w-
many reals (z); each of which (potentially) codes a countable ordinal. More
precisely, for S C wy, let G(S) be the game

I x(0) x(1) x(2)
I y(0) y(1)

with the following rules: Rule 1: For all i < w, (z);, (y); € WO. If Rule 1 is
violated then, letting ¢ be least such that either (x); € WO or (y); € WO, I
wins if (x); € WO; otherwise IT wins. Now suppose Rule 1 is satisfied. Rule 2:
U)o < Ay < Aa); < Qqy), < -++. The first failure defines who wins as
above. If both rules are satisfied then I wins if and only if sup,,, o), € S.
Now let
=4S Cw;|Iwins G(5)}.



2. Basic Results 1973

We claim that if T has a winning strategy in G(S) then S contains a club:
Let 0 be a winning strategy for I. For o < wy, let

X, = {((a*y);)n | n<w, y€w’, and
Vi <n((y); € WO and ay), < a)}.

Notice that each X, € WO (since X, is &1 (in ¢ and the code for a) and
o is a winning strategy) and so by g%—boundedness, there exists an o’ such
that X, € WOy . Let f:w; — w; be the function which given a chooses
the least o/ such that X, € WO, . As before let C' be the set of limit
ordinals v < wy with the feature that for every & < ~, f(§) < ~. Let C’ be
the limit points of C. Since w; is regular (by Corollary 2.3) it follows that C
and C are club in wy. Now suppose v € C'. Let (7; | i < w) be an increasing
sequences of ordinals in C' which is cofinal in . Let y € w“ be such that for
all i <w, agy, = v. We claim that playing y against o witnesses that v € S.
It suffices to show that y is legal with respect to the two rules. For then the
supremum, 7, must be in S since ¢ is a winning strategy for I. Now the first
rule is trivially satisfied since we chose y such that for all ¢ < w, (y); € WO.
To see that the second rule is satisfied we need to see that for each i < w,
Q((oxy)); < Vi- This follows from the fact that X,, € WO,,. Again, Player
IT has “taken control” of the game.

A similar argument shows that if II has a winning strategy in G(S) then
w1 N\ S contains a club. Thus the club filter on w; is an ultrafilter and so
u is that ultrafilter. Finally, the fact that p is wi-complete follows from
Theorem 2.8. —

We now wish to show that under AD the club filter is normal. This was
proved by Solovay, using DC. We shall give a proof that avoids appeal to DC
and generalizes to larger ordinals.

2.13 Theorem. Assume ZF + AD. Then the club filter is an wi-complete
normal ultrafilter on wy.

Proof. For S C wy let G(S) be the game from the previous proof and let
1 be as defined there. We know that p is the club filter. To motivate the
proof of normality we give a proof of wi-completeness that will generalize
to produce normal ultrafilters on ordinals larger than w;. This is merely for
illustration—the proof uses DC but this will be eliminated in Claim 2.

Claim 1. p s wy-complete.

Proof. Suppose S; € p for j < w. We have to show that S = ﬂj<w S; € p.
Let o, be a winning strategy for I in G(S;). Assume toward a contradiction
that S ¢ p—that is, that I does not win G(S)—and let ¢ be a winning
strategy for I in G(w; N S). Our strategy is to build a play y that is legal
for II against each o; and against o. This will give us our contradiction by
implying that sup,_, «(y,), is in each S; but not in S.

i
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We build z, = (y), by recursion on n using the foresight provided by
Ei—boundedness. For the initial step we use g%—boundedness to get Bp < wi
such that for all j < w and for all y € w*

A(ojem)n0 < Po and  A(ouy) ;) < Po-

Choose zyg € WOg,. For the (n + 1)st step we use g%—boundedness to get
On+1 < wi such that 8, < Bhy1 and for all j < w and for all y € w®, if
(y)i = 2; for all i < n, then

Y((o5xy)Dnsr < Pr+1 and A(oxy) g1 < Br+1-

Choose 2,41 € WOg, . Finally, let y be such that for all n < w, (y)n = 2n.
The play y is legal for II against each o; and o, which is a contradiction. -

Claim 2. p is normal.

Proof. Assume toward a contradiction that f : w; — w; is regressive and
that there is no o < wy such that {£ < wy | f(§) = a} € p or, equivalently
(by AD), that for all @ < wy,

Sa ={§ <wi | f(§) #a} € p.
Our strategy is to recursively define

(1.1) an increasing sequence (7; | i < w) of countable ordinals with supre-
mum 1,

(1.2) a sequence of collections of strategies (X; | ¢ < w) where X; contains
winning strategies for I in games G(S,) for a € [n;—1,7n;), where
n—1 =0, and

(1.3) asequence (y; | i < w) of plays such that y; is legal for II against any
o € X; and sup;,, a(y,); =1

Since each o € X; is a winning strategy for I, y; will witness that n € S, for
each a € [n;—1,m;), i.e. y; will witness that f(n) # « for each a € [m;—1,m;).
Thus collectively the y; will guarantee that f(n) # « for any a < n, which
contradicts our assumption that f(n) <n.

We begin by letting

Z ={(z,0) | x € WO and o is a winning strategy for I in G(S,,)}.
By the Basic Coding Lemma, there is a Z* C Z such that
(2.1) for all & < wy, Z* N (WO, x w¥) # @ iff ZN (WO, x w*) # &,

(2.2) Z* = X N (WO x w*) where X is X1.
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The key point is that for each o < wy,
X N (WOgq X w®)

is g% since WO, is Borel. Thus, we can apply g%—boundedness to these
sets.

The difficulty is that to construct the sequence (y; | ¢ < w) we shall need
DC. For this reason we drop down to a context where we have DC and run
the argument there.

Let t be a real such that X is X} (). By absoluteness, for each v < wf[t’f],
there exists an (z,0) € Z* N L[t, f] such that & = «a, and o is a winning

strategy for Player I in G(Sé[t’f]) where

AN = {n <™ 1) # e}
For the remainder of the proof we work in L[t, f] and interpret S, and X via
their definitions, simply writing S, and X.
For the first step let
nNo = some ordinal 7 such that n < w;
Xo = projy (X N (WOjg ) X w*))
Yy = {((O’*y)[)o | GGXO/\yew“’}
2o = some real z such that Yo C WO, .
So X is a collection of strategies for games G(S,,) where o < 1g. Since these
strategies are winning for I the set Y{ is contained in WO. Furthermore, Y
is ¥7 and hence has a bound a,. For the next step let
1 =some ordinal 7 such that ng, o, <7 < w;
X1 =projy (X N (WO, 1) X w¥))
Y, = {((o xy)r)1 | 0 € Xo, y € w® such that (y)o = zo}
U{((e*y)r)o| o€ X1, yew?}
z1 =some real z such that Y1 C WO, _.
For the (n + 1)st step let

Nn+1 =some ordinal n such that n,,a,, <n <w;

Xog1 =projy (X N (WO, i) X @)

Ypi1 = {((0 *Y))n+1 | 0 € Xo, y € w” such that Vi < n (y); = zz}
U {((U *Y)r)n | 0 € X1, y € w* such that Vi <n—1 (y); = Zi+1}

U {((U *Y)r)o| o € Xny1, Yy € ww}
Zn+1 =some real z such that Y,,11 C WO, .
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Finally, for each k < w, let y; be such that (yx); = z;4 for all i < w. Since
each of these reals contains a tail of the z;’s, if n = sup,, ., 7, then

sup(ay,),) =1
<w

for all £ < w. Furthermore, y; is a legal play for II against any o € Xy, as
witnessed by the (k + 1)st components of Y;, for n > k. Since each o € X}, is
a winning strategy for I, yx witnesses that n € S, for a € [ng_1,m), i.e. that
f(n) # a for any a € [ng—_1,mx). Thus, collectively the y; guarantee that
f(n) # « for any a < n, which contradicts the fact that f(n) < n. -

This completes the proof of the theorem. —

It should be noted that using DC normality can be proved without using
Basic Coding since in place of the sequence (X; | i € w) one can use DC
to construct a sequence (o, | @ < ) of strategies. This, however, relies on
the fact that n is countable. Our reason for giving the proof in terms of
Basic Coding is that it illustrates in miniature how we will obtain normal
ultrafilters on ordinals much larger than w;.

2.14 Corollary (Solovay). Assume ZF + AD. Then
HOD = wY is a measurable cardinal.
Proof. We have that
HOD = N HOD is a normal ultrafilter on wy’,
since 4 NHOD € HOD (as p is OD and OD is OD). .

Thus, if ZF + AD is consistent, then ZFC 4 “There is a measurable
cardinal” is consistent.
There is also an effective version of Solovay’s theorem, which we shall need.

2.15 Theorem. Assume ZFC + OD-determinacy. Then
HOD = wy is a measurable cardinal.

Proof. If S is OD then the game G(S) is OD and hence determined. It follows
(by the above proof) that if I has a winning strategy in G(S) then S contains
a club and if IT has a winning strategy in G(S) then w; \ .S contains a club.
Thus,

V = 1 NHOD is an ultrafilter on HOD

and so
HOD [ ¢ N HOD is an ultrafilter.

Similarly the proof of Claim 1 in Theorem 2.13 shows that
V | pNHOD is wy-complete

and so
HOD |= NHOD is w;-complete,

which completes the proof. n
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2.4. The Least Stable

We now take the next step in generalizing the above result. For this purpose
it is useful to think of w; in slightly different terms: Recall the following
definition:

81 = sup{a | there is a A}-surjection 7 : w* — a}.

It is a classical result that w; = §1. Now consider the following higher-order
analogue of Ji:

8% = sup{a | there is a Af-surjection 7 : w* — a}.

In this section we will work without determinacy and establish the basic
features of this ordinal in the context of L(R). In the next section we will
solve for U in the equation

o _ 4

WO U
in such a way that U is accompanied by the appropriate boundedness and
coding theorems required to generalize Solovay’s proof to show that ZF +
DC + ADY® implies that (§2)“®) is a measurable cardinal in HOD*®),

The following model-theoretic characterization of the pointclass $7 will be
useful in complexity calculations: A C w® is ¥ iff for some formula ¢ and
some real z € w¥,

A = {y € w*” |there is a transitive set M such that
(a) w* C M,
(b) there is a surjection 7 : w* — M, and
(¢) M |=To + ¢y, 21}

As before, theories much weaker than Ty yield an equivalent definition and
our choice of Ty is simply one of convenience. The lightface version X2 is
defined similarly by omitting the parameter z.

We wish to study §7 in the context of L(R). In the interest of keeping our
account self-contained and free of fine structure we will give a brief introduc-
tion to the basic features of L(R) under the stratification L, (R) for oz € On.
For credits and references see [2].

Definability issues will be central. Officially our language is the language
of set theory with an additional constant R which is always to be interpreted
as R. For a set M such that X U{R} C M, let ,,(M, X) be the collection
of sets definable over M via a ¥,, formula with parameters in X U {R}. For
example, z is X1 (L(R), X) iff x is ¥;-definable over L(R) with parameters
from X U{R}. It is important to note that the parameter R is always allowed
in our definability calculations. To emphasize this we will usually make it
explicit.
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The basic features of L carry over to L(R), one minor difference being that
R is allowed as a parameter in all definability calculations. For example, for
each limit ordinal A, the sequence (Ly(R) | oo < A) is E1(La(R), {R}).

For XU{R} C M C N, let M <X N mean that for all parameter sequences
d € (X U{R})<¥ and for all ¥, formulas ¢, M | ¢[d] iff N | ¢[d]. Let
M <, N be short for M <M N.
2.16 Definition. The least stable in L(R), dg, is the least ordinal ¢ such

that
Ls(R) <FH L(R).
A related ordinal of particular importance is dr, the least ordinal d such that
Lg(R) <1 L(R)

We aim to show that (§7)“®) = ¢z = d5. For notational convenience we
write 07 for (92)*®) and © for @),

The definability notions involved in the previous definition also have use-
ful model-theoretic characterizations, which we will routinely employ. For

example, A C w* is ¥;-definable over L(R) with parameters from R U {R}
iff there is a formula ¢ and a z € w¥,

A = {y € w* | Ja € On such that
(a) Lo(R) = To and
(b) La(R) = ¢y, 2z, R]}.
Again, theories weaker than T (such as ZF y for sufficiently large N) suffice.

The existence of arbitrarily large levels L, (R) satisfying Ty will be proved
below in Lemma 2.22.

2.17 Lemma. Assume ZF + AC,(R) + V = L(R). Suppose
X ={z € L\(R) | z is definable over Ly(R)
from parameters in R U {R}},
where X is a limit ordinal. Then X < Ly(R).

Proof. Tt suffices (by the Tarski-Vaught criterion) to show that if A is a non-
empty set which is definable over Ly(R) from parameters in R U {R}, then
AN X # . Let A be such a non-empty set and choose xg € A. Since every
set in L) (R) is definable over Ly(R) from a real and an ordinal parameter,

{zo} = {z € Ly(R) | LA(R) = wolz, co, a0, R]}

for some formula g, and parameters ¢y € w* and ag € On. Let «; be least
such that there is exactly one element x such that Ly(R) | oz, co, a1, R]
and x € A. Notice that «; is definable in Ly(R) from ¢y and the real
parameter used in the definition of A. Thus, letting z; be the unique element
such that Ly(R) E ¢o[x1,co, @1, R] we have a set which is in A (by the
definition of 1) and in X (since it is definable in Ly(R) from ¢y and the real
parameter used in the definition of A.) -
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2.18 Lemma. Assume ZF + AC,(R) +V = L(R). For each oo < O, there
is an OD surjection m: w* — a.

Proof. Fix a < ©. Since every set in L(R) is OD, for some z € w* there
is an OD, surjection 7 : w¥ — a. For each x € w¥, let m, be the <op,-
least such surjection if one exists and let it be undefined otherwise. We can
now “average over the reals” to eliminate the dependence on real parameters,
letting

T — «

@) ((2)1)  if 7(y), is defined
otherwise.

T —

This is an OD surjection. .

2.19 Lemma (Solovay). Assume ZF + AC,(R) +V = L(R). Then O is
regular in L(R).

Proof. By the proof of the previous lemma, there is an OD sequence
(7o | @ < ©)

such that each 7, : w¥ — «a is an OD surjection. Assume for contradiction
that © is singular. Let
f:ra—06

be a cofinal map witnessing the singularity of ©. Let g : w* — « be a
surjection. It follows that the map

TiwY — 0
T T og((x)0) ((2)1)
is a surjection, which contradicts the definition of ©. -
2.20 Lemma. Assume ZF + AC,(R) +V = L(R). Then
Lo(R) = {x € L(R) | there is a surjection 7 : w* — tc(x)}.
Thus, Z(R) C Lo(R).

Proof. For the first direction suppose € Lg(R). Let A < © be a limit
ordinal such that € Lx(R). Thus tc(z) C Ly(R). Moreover, there is a
surjection 7 : w* — Ly(R), since every element of Ly(R) is definable from
an ordinal and real parameters.

For the second direction suppose z € L(R) and that there is a surjection
7w — tc(z). We wish to show that z € Lo(R). Let A be a limit ordinal
such that € Ly(R). Thus tc(z) C La(R). Let

X = {y € LA(R) | y is definable over Ly(R)
from parameters in tc(z) UR U {R}},
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By the proof of Lemma 2.17, X < Lx(R) and tc(z) C X. By Condensation,
the transitive collapse of X is Ly(R) for some . Since there is a surjection
7 w* — te(z) and since all members of Ly (R) are definable from parameters
in tc(x) URU {R}, there is a surjection p : w* — L5(R). So A < © and since
x € L5(R) this completes the proof. =

2.21 Lemma. Assume ZF + AC,(R) +V = L(R). Then
Le(R) [= To.

Proof. Tt is straightforward to see that Lo (R) satisfies T¢ — Separation —
Replacement.

To see that Le(R) | Separation note that if S C x € Lg(R) then
S € Lo(R), by Lemma 2.20. To see that Lo(R) = Replacement we ver-
ify Collection, which is equivalent to Replacement, over the other axioms.
Suppose

Lo(R) =V € adyo(z,y),
where a € Lg(R). Let
fia—©
x — pa(Jy € Lo (R) such that Lo(R) E ¢(x,y)).
The ordertype of ran(f) is less that © since otherwise there would be a

surjection 7 : w* — O (since there is a surjection 7 : w* — a). Moreover,
since © is regular, it follows that ran(f) is bounded by some A < ©. Thus,

Lo(R) =Vz € a3y € LA(R) ¢(z,y),
which completes the proof. a

2.22 Lemma. Assume ZF 4+ AC,(R) + V = L(R). There are arbitrarily
large a such that L,(R) = Ty.

Proof. The proof is similar to the previous proof. Let us say that « is an
R-cardinal if for every v < a there does not exist a surjection 7 : R x v — a.
For each limit ordinal v € On, letting

O(v) = sup{«a | there is a surjection 7 : R x v — a}

we have that ©(v) is an R-cardinal. For each 7 which is closed under the
Godel pairing function, the argument of Lemma 2.19 shows that O(y) is
regular. The proof of the previous lemma generalizes to show that for every
regular ©(7), Lg(,)(R) = To. -

2.23 Lemma (Solovay). Assume ZF + AC,(R) + V = L(R). Lo(R) <,
L(R).
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Proof. Suppose

L(R) = ¢la],
where a € Lg(R) and ¢ is ¥;. By Reflection, let A be a limit ordinal such
that

Li(R) |= ¢lal.
Let
X = {y € LA(R) | y is definable over Ly(R)
from parameters in tc(a) UR U {R}},

By Condensation and Lemma 2.20, the transitive collapse of X is Lx(R) for
some A < ©. Thus, by upward absoluteness,

Leo(R) = ¢la].
4|

2.24 Lemma. Assume ZF + AC,(R) + V = L(R). There are arbitrarily
large o < 0p such that Lo (R) = Ty

Proof. Suppose £ < dp. Since Lo(R) = Ty,
L(R) = 3a > £ (La(R) = To).

The formula is readily seen to be ¥; with parameters in {R, £} by our model-
theoretic characterization. Thus, by the definition of §p,

Lsp (R) |= 3o > € (La(R) = To),
which completes the proof. -

2.25 Lemma. Assume ZF + AC,(R) +V = L(R). Suppose ¢ is a formula
and a € w*. Suppose A is least such that Lx(R) = Ty + ¢la]. Let

X ={z € L\(R) | y is definable over Lx(R)
Jrom parameters in R U {R}}.

Then X = Ly(R). Moreover, there is a surjection 7 : w* — Ly(R) such that
7 is definable over Ly;1(R) from R and a.

Proof. By Lemma 2.17 we have that X < L)(R). By condensation the
transitive collapse of X is some Lx(R). So Lx(R) = Tg + ¢[a] and thus by
the minimality of A we have A = \. Since every z € X is definable from
a real parameter and since Ly(R) = X, we have that every x € L)(R) is
definable from a real parameter, in other words, X = L,(R). The desired
map 7 : w* — Ly (R) is the map which takes a real coding the Gédel number
of ¢ and a real parameter a to the set {z € Lx(R) | Ly(R) [ ¢[z,a]}. This
map is definable over Ly1(R). =
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2.26 Lemma. Assume ZF + AC,(R) +V = L(R). Suppose 0 < a < Jg.
Then there is a surjection 7 : w* — Lq(R) such that {(z,y) | 7(z) € 7(y)}
is A3, Thus, g < §3.

Proof. Fix a such that 0 < a < dg. By the minimality of Jg,
La(R) £, 7% L(R).

So there is an a € w* and a ¥; formula ¢ such that if 5 is the least ordinal
such that Lg(R) |= ¢la] then 8 > a. Let v be least such that v > 8 > «
and Ly(R) = Ty (which exists by Lemma 2.22). So v is least such that
+(R) = To + ¢la] and, by Lemma 2.25, there is a surjection 7 : w* —
~(R) which is definable over L,i1(R) with the parameters R and a. Let
= {(x,y) | m(x) € w(y)}. Let ¢ and ¢ be the formulas defining A and
w®)? A over L,;1(R), respectively. By absoluteness,

oo N

(x,y) € A iff there is a transitive set M such that
wY C M,
there is a surjection 7 : w* — M, and
M | To + 37 (L, (R) E To + pla] and
Ly11(R) =z, ).

This shows, by our model-theoretic characterization of ¥7 that A is X3.
A similar argument shows that (w*)?~\ A is 3. Finally, the desired map can
be extracted from . =

We now use a universal g% set to knit together all of these “é% projection
maps”.

2.27 Lemma. Assume ZF + AC,(R) +V = L(R). Then there is a partial
surjection p : w* — Ls, (R) such that dom(p) and p are both 31-definable over
Ls, (R) with the parameter R. Thus, Ls, (R) <1 L(R) and hence ép < dg.

Proof. Let U be a ¥2 subset of w* x w* x w* that is universal for ;]% subsets
of w*¥ x w*, that is, such that for each ;}? subset A C w* x w* there is an
z € w¥ such that A = U, where by definition

Uf = {(y,z) € ww X ww | (Cﬂ,y,Z) € U}
We define p using U. For the domain of p we take

dom(p) = {z € w¥ | Ja € On (L,(R) = Ty and
Loa(R) = Uy, = (0 x w¥) N Ugy, ) }-

Notice that dom(p) is X1 (L(R), {R}) and hence X (Ls, (R), {R}). Notice also
that in general if L, (R) | T then

(Uwyo) = ® € Uy,
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and thus, if in addition,
(Uayy) ™ = (@ x ) N (U, ) =@,
then,
(U(I)O)LQ(R) = U(z)o.

We can now define p as follows: Suppose x € dom(p). Let a(z) be the
least «v as in the definition of dom(p). If there is an ordinal 7 and a surjection
T wY — L,y(R) such that

{(t17t2) | 7T(t1) S 7T(t2)} = (U(I)D)La(l)(R)

then let p(z) = w((x)2); otherwise let p(x) = @. Notice that the map p is
%1 (L(R),{R}) and hence ¥;(Ls, (R), {R}). By Lemma 2.26, p : dom(p) —
Ls, (R) is a surjection.

For the last part of the proof recall that by definition Ls,(R) <DEU{R}
L(R). The partial surjection p : w* — Ls. (R) allows us to reduce arbitrary
parameters in Ls, (R) to parameters in w®. =
2.28 Theorem. Assume ZF + AC,(R) +V = L(R). §? = 0r = 0.

Proof. We have 6 < ¢7 (by Lemma 2.26), dg < dr (by definition), and
dr < g (by Lemma 2.27). It remains to show §7 < 0.

Suppose v < §2. We wish to show that v < dg. Let 7 : W — « be a
surjection such that A = {(x,y) | 7(z) < n(y)} is A?. Using the notation
from the previous proof let z be such that

U(LE)O - A a:nd U(w)l — (WW X wu)) N A.
There is an ordinal « such that L, (R) = Ty and
(U(:r)o)La(R) = (Ww X ww) N (U(x)1>LQ(R).

Since
Ls, (R) <71 L(R),

the least such ordinal, a(z), is less than dg. Thus,
(U(@)O)LQ(I)(R) = A

Finally, since Ly(;)(R)  To, this model can compute the ordertype, -y, of
A. Thus, v < a(z) < dg. =

2.29 Remark. Although we will not need these facts it is worthwhile to
note that the above proofs show

(1) (Z)H0) = 24 (L (R)) N 2 (w),
(2) (A} = Ly (R) N 2(w), and

(3) (Solovay’s Basis Theorem) if L(R) = 3X ¢(X) where ¢ is 57 then
L(R) | 3X € A3 ¢(X).
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2.5. Measurability of the Least Stable
We are now in a position to show that under ZF 4+ DC + AD,

HODE® = (52)X(®) is a measurable cardinal.

This serves as a warm-up to Sect. 4, where we will show that under ZF +
DC + AD,
HODE®) = (52)L(®) is \-strong,

for each A < ©L®) and, in fact, that
HODI® 1= 9L®) i5 a Woodin cardinal.

The proof that we give in Sect. 4 will show that DC can be eliminated from
the result of the present section.

First we need an analogue U of WO that enables us to encode (unbound-
edly many) ordinals below §7 and is accompanied by the boundedness and
coding theorems required to push the above proof through for §2. The follow-
ing works: Let U be a $7 subset of w* x w*“ that is universal for g% subsets
of w¥. For y € w* welet Uy = {z € w¥ | (y,2) € U}. For (y,2) € U, let
O(y,-) be least such that

L@(y,z>(R) ': Ty and (y7z) c ULe(y,z)(R).

Let 6¢y,2) = (é%)L"’(w)(R). These ordinals are the analogues of a, from the
proof that wy is measurable. For notational convenience we will routinely use
our recursive bijection from w* X w* to w® to identify pairs of reals (y, z)
with single reals 2 = (y, z). Thus we will write ©, and J, instead of O, .,

and (S(y’z)

2.30 Lemma. Assume ZF + AC,(R) + V =L[R). {6, | z € U} is un-
bounded in §3.

Proof. Let v < §%. Let A be (the set of reals coding) a A} prewellordering of
length greater than a. Let y,z € w* be such that Uy = A and U, = w* \ A.
So L(R) E “U, = w* \ U,”. Since §7 is the least stable, there is a 3 < §?
such that Lg(R) = “U, = w*\U,” and since (U,)Ls®) C A and (U,)Ls® C
w® . A we have that A = (U,)**®). Now, letting 2 € U~ U#®) and v < §?
be such that L,(R) = Ty + “x € U”, we have that a < d, since A € L, (R)
and L, (R) can compute the ordertype of A. -

In analogy with WO, for x € U let Us, = {y € U | §, = 9.}, Ucs, ={y €
U|dy < 9.} and so on.

2.31 Lemma (A3-BOUNDEDNESS, Moschovakis). Assume ZF + AC,(R) +
V = L(R). Suppose X C U and X is A}. Then there exists an x € U such
that such that X C U.s, .



2. Basic Results 1985

Proof. Let y,z € w* be such that U, = X and U, = w* \ X. (Notice that
we are identifying X with the set of reals that recursively encodes it.) As
above, there is a 3y < 2 such that X = (U,)%®). Choose v such that
Bo < 7 < &% and L, (R) satisfies To. Then for all z € X, §, < 7. Now choose
x € U such that d, > ~. =

2.32 Lemma (CoODING; Moschovakis). Assume ZF + AD. Suppose Z C
U x w¥. Then there exists a Z* C Z such that for all x € U

(i) Z° O (Us, x ) £ 8 iff 200 (Us, x w*) £ 2,
(ii) Z* N (Ugs, x w*) is A%

This lemma will follow from the more general coding lemmas of the next
section. See Remark 3.6.

2.33 Theorem (Moschovakis). Assume ZF +DC + AD. Then
L(R) |= There is a normal ultrafilter on §3.

Proof. Work in L(R). The proof is virtually a carbon copy of the proof for w;.

One just replaces §1, WO, a,, and %i with §7, U, §,, and A3, respectively.

For completeness we include some of the details, noting the main changes.
For S C §2, let G(S) be the game

with the following rules: Rule 1: For all i < w, (z);,(y); € U. If Rule 1 is
violated then, letting ¢ be least such that either (z); € U or (y); € U, I wins
if (x); € U; otherwise II wins. Now suppose Rule 1 is satisfied. Rule 2:
d@)o < O(y)o < 0wy, < O(y), < ---. The first failure defines who wins as
above. If both rules are satisfied then I wins iff sup,¢,, d(2), € S.
Now let
j= {8 C 8% | 1 wins G(S)}.

Notice that as before (using A%-boundedness) if I has a winning strategy
in G(S) then S contains a set C' which is unbounded and closed under w-
sequences. The proof that U is an ultrafilter is exactly as before. To see that
it is §2-complete and normal one uses the new versions of Boundedness and
Coding. We note the minor changes in the proof of normality.

Assume for contradiction that f : §2 — 2 and that there is no a < §2
such that {¢ | f(¢) = a} € p or, equivalently (by AD) that for all o < %,

Sa={€| F(©) #a} e n.

Let (6, | @ < §2) enumerate (5, | # € U). Here we are appealing to the
fact that §2 is regular, which can be shown using the Coding Lemma (see [9,
p. 433]). In analogy with WO, for a < 3 < §3, let Uy = {x € U | 6, = 64},
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Ua,5) = {x € U | 00 < 0, < 5} and likewise for other intervals. Let <y be
the associated prewellordering.
As before, our strategy is to inductively define

(1.1) an increasing sequence (n; | @ < w) of ordinals with supremum 7,

(1.2) a sequence of collections of strategies (X; | i < w) where X; contains
winning strategies for I in games G(S,) for a € [n;_1,7;), Where
n—1 =0, and

(1.3) asequence (y; | i < w) of plays such that y; is legal for II against any
o€ X; and SUp;<q, (5(%% =.

Thus the y; will collectively witness that f(n) # « for any a < 7, which
contradicts our assumption that f(7) < n. The key difference is that in our
present case we need the Coding Lemma since there are too many games.
Let

Z ={(z,0) | x € U and o is a winning strategy for I
in G(S,) where « is such that 6, = 0, }

and, by our new Coding Lemma, let Z* C Z be such that for all a < §2,
(21) Z*N Uy xw®) £ ST ZN(Uy x 0¥) £ 2
(2.2) Z* N (Ugq x w¥) is A%

This puts us in a position to apply A%-boundedness.
For the first step let

no = some ordinal 1 such that n < §7
Xo = proj, (Z* N (U[O,no) X w“’))
YO = {((O’*y)])o ‘ o GXo/\y wa}
2o = some real z such that Yy C U.s, .
So Xy is a collection of strategies for games G(S,,) where @ < 1. Since these
strategies are winning for I the set Yj is contained in U. Furthermore, Yj is
A? and hence has a bound §,,. For the induction step let
Nni1 =some ordinal 7 such that 7,6, <n < §?
Xn+1 :pr0j2 (Z* n (U[nnﬂ?n+1) X w“’))
Yni1 = {((a *Y))n+1 | 0 € Xo, y € w” such that Vi < n (y); = zz}
U{((c*y)r)n | 0 € X1, y € w* such that Vi <n—1 (y); = zi11}

U{((c*y)r)o| o € Xnt1, y € w®}
Zn+1 =some real z such that Y, 11 C Ucs._.
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Finally, for k¥ < w, let yi be such that (yg); = 21 for all i < w. Since each
of these reals contains a tail of the z;’s, if n = sup,, ., 7, then

sup (3y,),) =1

<w
for all k¥ < w. Furthermore, y, is a legal play for II against any o € X, as
witnessed by the (k + 1)st components of Y;, with n > k. Since each o € X},
is a winning strategy for I, y; witnesses that n € S, for @ € [ng_1,mk), i.e.
that f(n) # a for any a € [gr—1,7Mx). So collectively the y; guarantee that
f(n) # « for any a < 7, which contradicts the fact that f(n) <. !

2.34 Corollary. Assume ZF + DC + AD. Then
HOD® = (62)L®) s o measurable cardinal.

The above proof uses DC. However, as we shall see in Sect. 4.1 the theorem
can be proved in ZF + AD. See Lemma 4.7.

The Coding Lemma was used to enable II to “collect together” the relevant
strategies and then the A3-boundedness lemma was used to enable II to “take
control of the ordinal played” in all such games by devising a play that is legal
against all of the relevant strategies and (in each case) has the same fixed
ordinal as output. This technique is central in what follows. It is important
to note, however, that the above ultrafilter (and, more generally, ultrafilters
obtained by such a “sup” game) concentrates on points of cofinality w. Later
we will use a slightly different game, where the role of the Q%—boundedness
lemma will be played by a certain reflection phenomenon. Before turning to
this we prove the coding lemmas we shall need.

3. Coding

In the Basic Coding Lemma we constructed selectors relative to WO; we now
do so relative to more general prewellorderings.

3.1. Coding Lemma

We begin by fixing some notation. For P C w*, the notion of a gi(P) set is
defined exactly like that of a g} set only now we allow reference to P and to
w® . P. In model-theoretic terms, X C w* is X1 (P) iff there is a formula ¢
and a real z such that

X = {y € w* | there is an w-model M such that
y,z,PﬂMEMandM)=T0+g0[y,z,PﬂM]}.

The notion of a $1(P, P’) set is defined in the same way, only now reference
to both P and P’ and their complements is allowed. The lightface versions
of these notions and the versions involving P C (w*)™ are all defined in the
obvious way.
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Let U™ (P) be a X}(P) subset of (w”)"*! that is universal for X (P)
subsets of (w“)", that is, such that for each X} (P) set A C (w*)" there is an
e € w¥ such that A = Ue(")(P) ={y € (w)" | (e,y) € U™ (P)}. We do this
in such a way that the same formula is used, so that the definition is uniform
in P. Likewise, for U™ (P, P') etc. (The existence of such a universal set
U™ (P) is guaranteed by the fact that the pointclass in question, namely,
Y1 (P), is w-parameterized and closed under recursive substitution. See [9],
3E.4 on p. 160 and especially 3H.1 on p. 183. We further assume that the
universal sets are “good” in the sense of [9], p. 185 and we are justified in
doing so by [9], 3H.1. A particular component of this assumption is that our
universal sets satisfy the s-m-n-theorem (uniformly in P (or P and P’)). See
Jackson’s chapter in this Handbook for further details.)

3.1 Theorem (RECURSION THEOREM; Kleene). Suppose f : w® — w* is
Y1(P). Then there is an e € w* such that

UP(P) =UR) (P).
Proof. For a € w*, let

T, = {(6,) | (a,0,b,¢) € UD(P)}.

Let d : w* — w* be ¥i such that T, = U;?()L)(P). (The function d comes
from the s-m-n-theorem. In fact, d(a) = s(a,a) (in the notation of Jackson’s
chapter) and d is continuous.) Let

Y ={(ab,0) | (bc) € Uty (P)}

and let ag be such that ¥ = U,gg’)(P). Notice that Y is Xj(P) using the
parameter for Y (as can readily be checked using the model-theoretic char-
acterization of %1 (P)). We have

(P) iff (ag,a0,b,c) € U (P)
iff (ag,b,c) eUP(P)=Y

: (2)
iff (b,c) € Uf(d(ao))(P)

(2)
(b,c) € Ud(ao)

and so d(ag) is as desired. o

3.2 Theorem (CODING LEMMA; Moschovakis). Assume ZF + AD. Suppose
X Cw¥ and m: X — On. Suppose Z C X x w*. Then there is an e € w*
such that

(1) UP(Q) € Z and
(2) for alla € X, UP(Q)N (Qu x w*) # @ iff ZN (Qq X w®) # @,
where Q = {{a,b) | m(a) < 7(b)}.
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Proof. Assume toward a contradiction that there is no such e. Consider the
set G of reals e for which (1) in the statement of the theorem is satisfied:

G={ecuw| U(Q) c Z}.

So, for each e € G, (2) in the statement of the theorem fails for some a € X.
Let . be the least « such that (2) fails at the ath-section:

o =min{a | Ja € X (n(a) = a AT Q)N (Qu x w¥) =&
ANZN(Qa x w¥) # @)}

Now play the game

I z(0) z(1) x(2)
11 y(0) y(1)

where I wins if + € G and either y € G or o, > . Notice that by our
assumption that there is no index e as in the statement of the theorem,
neither I nor IT can win a round of this game by playing a selector. The
best they can do is play “partial” selectors. For a play e € G, let us call
Ue(z)(Q) N(Q<a, X w®) the partial selector played. Using this terminology we
can restate the winning conditions by saying that II wins either by ensuring
that I does not play a subset of Z or, failing this, by playing a partial selector
which is longer than that played by I.

We will arrive at a contradiction by showing that neither player can win
this game.

Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that o is a winning strategy for 1. As

in the proof of the Basic Coding Lemma our strategy will be to “bound” all

of I’s plays and then use this bound to construct a play e* which defeats o.
Since ¢ is a winning strategy,

u? Q) cCz

(oxy)1

for all y € w*. Let e, be such that
UP(Q) = Uyeuu U, (Q)-

By assumption, Uéz)(Q) is not a selector. So a._ exists. Since for all y € w*,
Qe, 2 Qoxy);, We can take ae, as our bound. Choose a € X such that
m(a) = a., . Pick (x1,22) € ZN(Q, x w*). Let e* be such that

U2(Q) = UD u{(z1,22)}.

So e* € G. But a., < . In summary, we have that for all y € w®,
Qoxy); S Qe, < . Thus, by playing e*, II defeats o. b
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Claim 2. Player II does not have a winning strategy.

Proof. Assume toward a contradiction that 7 is a winning strategy for I1. We
shall show that 7 yields a selector for Z; in other words, it yields an e* such
that

(1) Ue(f)(Q) C Z and
(2) foralla € X, U2(Q) N (Qu x w*) # @ iff ZN(Qq x w*) # 2.
Choose hg : w¥ x X — w* such that hg is X1(Q) and for all e,a € w*,
U2, (@) = UP(Q) N (Qea x ).

Thus, the set coded by hg(e,a) is the result of taking the initial segment
given by a of the set coded by e.

o UEL@ o U

w

Q<a Qa X

Choose hy : w* — w* such that h; is $1(Q) and for all e € w*,

U}(j)(e) (Q) - Uan (U((EZ(E,a)*T)H (Q) N (Qa X ww))

Thus, the set coded by hq(e) is the union of all “a-sections” of sets played by
IT in response to “<a-initial segments” of the set coded by e.
By the recursion theorem there is a fixed point for Ai; that is, there is an
e* such that , ,
U2(Q) = U2, (Q)
This set has the following closure property: if I plays an initial segment of it
then II responds with a subset of it. We shall see that e* € G. Moreover, if

U 6(3 ) (Q) is not a selector then having I play the largest initial segment which is
a partial selector, II responds with a larger selector, which is a contradiction.
Thus, e* codes a selector. Here are the details.

Subclaim 1. e¢* € G.

Proof. Suppose for contradiction that Ue(g)(Q) N Z # @. Choose (z1,22) €
Ue(z)(Q) ~\ Z with 7(z1) minimal. So

(21,22) € UD(Q) = U, (Q)
= UGEX (U((Z())(e*,a)*f)" (Q) n (Qa X Ww))-
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Fix a € X such that
2
(xlaxQ) S U((hg(e*,a)*T)H(Q) N (Qa X ww).

The key point is that ho(e*,a) € G since we chose (z1,x2) with 7(x1) = 7(a)
minimal. Thus, since 7 is a winning strategy, (ho(e*,a)*7)r € G, and so
(z1,22) € Z, which is a contradiction. =

Subclaim 2. «a.- does not exist.

Proof. Suppose for contradiction that ae- exists. Let a € X be such that
m(a) = . Thus ho(e*,a) € G and apy(e,q) = Q. Since 7 is a winning
strategy for II,

hg(e*,a)*T)r > Apgy(e*,a) = Qex,

which is impossible since

U ey (@ CUL(Q).

Thus o+ does not exist. o
Hence e* is the code for a selector. —
This completes the proof of the Coding Lemma. -

3.2. Uniform Coding Lemma

We shall need a uniform version of the above theorem. The version we prove
is different than that which appears in the literature [6]. We shall need the
following uniform version of the recursion theorem.

3.3 Theorem (UNIFORM RECURSION THEOREM; Kleene). Suppose
frwY —w?is 2% Then there is an e € w* such that for all P, P" C w*,

v e, p)y=U?

7B P

Proof. The proof is the same as before. The key point is that the definition
of the fixed point d(ag) depends only on f and, of course, d, which is uniform
in P, P'. !

3.4 Theorem (UNIFORM CODING LEMMA). Assume ZF + AD. Suppose
X CwYandm: X — On. Suppose Z C X x w*. Then there exists an
e € w¥ such that for alla € X,

(1) U (QcasQa) € ZN (Qu x w*) and

(2) U (Q<aQu) # @ iff 201 (Qu x ) # 2,
where Qg ={b€ X |7(b) <m(a)} and Q, ={be X | n(b) =7(a)}.
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Proof. Here is the picture:

Ue(2) (Q<aa Qa)

Q<a Qa X

Think of e as providing a “rolling selector”. The unshaded ellipse, Z, is sliced
into sections Z N (Q, x w*). The Uniform Coding Lemma tells us that there
is a simple selector U(SQ)(QQH Q.) for each of these sections which is uniform
in the parameters Q .., Q4; that is, there is a fixed e such that U (Q<a, Q)
selects from Z N (Q, x w*), for all parameters Q <4, Qq-

Assume toward a contradiction that there is no such e. Consider the set
G of reals e for which (1) in the statement of the theorem is satisfied:

G= {e EwY|Vae X (UE(Q)(QQuQa) CZN(Qq x Ww))}-

So, for each e € G, (2) in the statement of the theorem fails for some a € X.
Let a. be least such that (2) fails at the a,th-section:

Qe = min{a | Ja € X (m(a) =aA Ue(2)(Q<aaQa) =9
NZN(Qq x w¥) # D)}

Now play the game

where I wins if z € G and either y € G or o > ay.
Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that o is a winning strategy for I. As
before our strategy is to “bound” all of I's plays and then use this bound to
construct a play e* for IT which defeats o.

The proof is as before except that we have to take care to choose a para-
meter e, that works uniformly for all parameters Q-,, Q,: Choose e, such
that for all P, P’ C w¥,

2 _ (2)
UP (P, P') = UyewoUpgay), (P P').



3. Coding 1993

In particular, e, is such that for all a € X,

(2)(Q<a> Qa) = Uyeww o‘*y (Q<a7 Qa)

Since o is a winning strategy for I, (o *y); € G for all y € w*. Thus,

UP(Qeay Qa) € Z N (Qq X ),

that is, e, € G. Notice that for all y € W, Q(gsy), < @c,. We have thus
“bounded” all of I’s plays. It remains to construct a defeating play e* for II.
Choose a € X such that m(a) = a.,. So

U(z) (Q<a, Qa) =0

and
ZN(Qq x w*) #£ @.

Pick (21,22) € ZN (Qq X w*). Choose e* such that for all P, P’ C w*,
2 .
v (PP = US (P, P) if 7, & P’
o U (P, P')U{(21,72)} if 21 € P,

In particular, e* is such that for all @’ € X,

UP(Qeur, Qur) if 21 & Qur
U2 (Qear, Qu) U{(21,22)} if 21 € Qur.

So e* € G. But a., < .. In summary, we have that for all y € w®,
Aory); S Qe, < Q. Thus, by playing e*, II defeats o. -

Ue(g) (Q<a’, Qa’) = {

Claim 2. Player II does not have a winning strategy.

Proof. Assume toward a contradiction that 7 is a winning strategy for II. We
seek e* such that

U2 (Qca,Qa) CZN(Qq x w®) and
U2(Qca,Qu) 2 iff ZN(Qu xw®) £ 2.

Choose hg : w* X w* — w* such that hg is £} and for all e,z € w* and
for all P, P’ C w*,

(2) "N /
U}(L2) (P, P) = U™ (P, P') szgZPUP
o(e;2) ] if ze PUP'.

In particular, for all a € X,

Ue(Q)(Q<a7Qa) if 2 ¢ Q<a U Qa

ho(e z)(Q<a7Qa) = {@ if z€QcaUQ,.
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Notice that for e € w* and z € X, the set U,(j( )(~, -) is such that it agrees

with Ue(2)(o7 -) for parameters Q<,, @, where 7(a) < 7(z) and is empty for
parameters Q<q, Q. where 7(a) > w(z).

Choose hy : w¥ — w* such that h; is X1(7) and for all e € w* and for all
P P Cuwv,

(2)
Uh1 (e)

In particular, for all @ € X,

(P,P) =U.cp U (P,P").

ho(e,z)*T)

(2) _ (2)
Uhl(e) (Q<av Qa) - UZGQQ U(ho(e,z)**r)u (C2<a7 Qa).

The idea is roughly this: Fix e € w* and z € Q,. u® (+,+) is such that it

ho(e,z)
agrees with Ue(2)(~, -) for parameters Q <5, Qs where w(a) < w(a) and is empty
for parameters Q <z, @z where 7(a) > w(a). Think of this as a play for I. In
the case of interest, this play will be in G. And since 7 is a winning strategy,
II’s response will be in G and when provided with parameters Q«,,Q, it
will select from the a-component. Uy, (¢)(Q<a;Qa) is the union of these over

Z € Qq.
Let e* be a fixed point for h;, by Theorem 3.3.

Subclaim 1. e¢* € G.

Proof. Suppose for contradiction that for some a € X,

U2 (QcarQa) ~ (ZN(Qu x ) # 2.

Let a* be an a where 7(a) is least such that
U (Qcar Qa) (2N (Qu x w*)) # 2.
Choose (x1,x2) € Ue(g)(Q<a*,Qa*) N (ZN(Qax x w¥)).

(»’81,552)

oz

So
(xh 1'2) € Uég) (Q<a* ’ Qa*) = Uf(j)(E*)(Q<a* ) Qa*)
— (2)
B UzEQa* U(ho(e*,z)*r)” (Q<a* ) Qa* )
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Fix z* € Q4+ such that

2
(1'1; 332) € U((h())(e*,z*)*-r)n (Q<a* , Qa*)-

The key point is that hg(e*, 2*) € G: By the definition of hg, for all a € X
and for all z € w*,

Ue(’%)(Q<aa Qa) if z ¢ Q<a U Qa

U@ _
ho(e z)(Q<a, Qa) {@ ifze Q<a U Qa-

We have fixed z* € Qu+. For this fixed value, allowing a to vary, we have (i)
2" € QeaUQg iff m(a) < w(a*) and (ii) 2* € Q<q U Q, iff w(a) = 7(a*). So
U;(j(e 2 )(Q<aaQa) = Ue(g) (Q<aaQa)7

for all a such that 7(a) < w(a*) and
2)
U}(Lg(e 2 )(Q<a7Qa) =d,
for all a such that 7(a) > 7(a*). Thus,
Uf(f,)(e* 2* )(Q<(17Qa) g ZN (Qa X ww)’

for all a € X, i.e. ho(e*,2*) € G.
Now since 7 is a winning strategy for II, (ho(e*,2*) x7);; € G, which
means that (x1,z2) € Z, a contradiction. —|

Subclaim 2. a.- does not exist.

Proof. Suppose not. Let a* € X be such that m(a*) = .+, and choose
2* € Qq+. Thus, ho(e*,z*) € G, since e* € G by Subclaim 1, and hg(e*, z*)
is defined such that for all a € X,

U2 (Q<a,Qu) if 7(a) < m(a*)
%) if m(a) = w(a®).

2
e vy (Qear Qa) = {
50, Qpg(e,z+) = Qex. Since 7 is a winning strategy for II,

a(ho(e*,z*)*r)n > O‘ho(e*,z*) = Qex,
which is impossible since
2 2
U((h())(e*,z*)*T)U (Q<a7 Qa) g Ue(*)(Q<a7 Qa)

for all a € X. -
Thus, e* is the code for a uniform selector. -

This completes the proof of the Uniform Coding Lemma. -
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3.5 Remark. The game in the above proof is definable from X, 7w, and Z
and no choice is required to show that it works. Thus, if these parameters
are OD, then ZF + OD-determinacy suffices for the proof.

3.6 Remark. The version of the Coding Lemma stated in Lemma 2.32
follows from the Uniform Coding Lemma: Take X = U and 7 : U — On
given by 7(x) = d,. Then

7" = U,evUP (Q<s,, Qs,).
This gives (i). For (ii) note that
70 (Ugs, x w*) = Uyep., U (Q<s,: Qs,),
which is A%.

2 Open Question (STRONG CODING LEMMA). Suppose X C w* and
m: X — On. Let <x be the prewellordering associated with m. Suppose
Z C X<¥ is a tree. Then there exists a subtree Z* C Z such that

(1) Z* is ¥1(<x) and

(2) for all §€ (Z*)<“ and for all a € X, if there exists a t € @, such that
§~t € Z then there exists a t € @, such that st € Z*,

where Q, = {b € X | n(b) = 7(a)}.

3.3. Applications

In this section we will bring together some basic results and key applications
of the above coding lemmas that will be of use later. It will be useful to do
things in a slightly more general fashion than is customary.

For a set X, let

Ox = sup{a | there is an ODyx surjection 7 : w“ — «a}.

3.7 Lemma. Assume ZF and suppose X is a set. Then there is an ODx
sequence A = (A, | @ < Ox) such that A, is a prewellordering of the reals
of length a.

Proof. Let A, be the <op,-least prewellordering of the reals of length «,
where <op, is the canonical ODx well-ordering of the ODx sets. -

3.8 Lemma. Assume ZF and suppose X is a set. Suppose that every set is
ODx , for some real y. Then © = Ox.

Proof. Fix a < ©. We have to show that there is an OD x surjection 7 : w* —
a. There is certainly an ODx , surjection for some y. For each y € w*, let
7y be the <opy ,-least such surjection if one exists and let it be undefined
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otherwise. We can now “average over the reals” to eliminate the dependence
on real parameters, letting

T — «

y Ty (Y)1) if 7y, is defined
0 otherwise.

This is an ODx surjection. -

The following theorem is essentially due to Moschovakis. We are just
replacing AD with OD x-determinacy and the changes are straightforward.

3.9 Theorem. Assume ZF + OD x-determinacy, where X is a set. Then
HODx [ Ox is strongly inaccessible.

Proof. First we show that ©x is regular in HODx. By Lemma 3.7 there is
an ODx sequence
<7Ta | a < ex>

where each 7, : W — « is a surjection. Assume for contradiction that © x
is singular in HOD x and let

fin—0©x

be an ODx cofinal map. Let g be an ODx surjection from w*“ onto 7. Then
the map

TiwY — Ox
T T fog((2)0) (%)1)

is an ODx surjection, which contradicts the definition of ©x.

We now show that Ox is a strong limit in HODx. For each n < ©x, we
have to show that |22 (n)|HOPx < ©x. For this it suffices to show that there
is an ODx surjection

T w? — P(n)HOPx

since if |22(n)|HOPx > Ox then there would be an ODx surjection p :
P(n) — Ox and so po7 : w* — Ox would be an ODx surjection, which
contradicts the definition of O x.

Let m, : w* — 1 be an ODx surjection and, for o < 7, let Q<o and Qg
be the usual objects defined relative to m,. For e € w*, let

Se={B8<n|UP(Q<s,Qp) # 7}

The key point is that since m, is ODx the game for the Uniform Coding
Lemma for Z = J{Qu X w* | a € S} is determined for each S € & (n)HOPx.
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(See Remark 3.5.) Thus, every S € £ (n)H°Px has the form S, for some
e € w* and hence

TwY — :@(U)HODX

er— S,

is a surjection. Moreover, 7 is ODx (since 7, is ODx), which completes the
proof. 5

The above theorem has the following corollary. The first part also fol-
lows from early work of Friedman and Solovay. The second part is a simple
application of the Coding Lemma and Solovay’s Lemma 2.23.

3.10 Theorem. Assume ZF + AD +V = L(R). Then
(1) HODY® = © is strongly inaccessible and
(2) HODY® N vy = HOD e ®),

Proof. (1) This follows immediately from Theorem 3.9 and Lemma 3.8.
(2) Since HODY® is %, -definable over L(R) (with the parameter R) and
since Lg(R) <1 L(R) (by Lemma 2.23),

HODLe® — HODL® N Lo (R).
Thus, it suffices to show
HOD*® N vy = HOD*® N Lg(R).

The right-to-left inclusion is immediate. For the left-to-right inclusion sup-
pose z € HOD'™® N Vg, We have to show that 2 € Leo(R). Since O is
strongly inaccessible in HODL(R), x is coded by a set of ordinals A C «
where a < ©. However, by the proof of Theorem 3.9, #(a) € Lo(R), for
each oo < ©. Thus, x € Lg(R), which completes the proof. B

3 Open Question. Assume ZF +DC+V = L(R).

(1) Suppose that for every @ < © there is a surjection 7 : w* — Z(«).
Must AD hold in L(R)?

(2) Suppose © is inaccessible. Must AD hold in L(R)?

3.11 Theorem (Kunen). Assume ZF +DC+ AD. Suppose A < © and p is
an ultrafilter on A\. Then u is OD.

Proof. Let < be a prewellordering of w* of length . Let 7 : w¥ — Z(A) be
the surjection derived from < as in the above proof. For z € w*, let

Ae =({r(y) | 7(y) € p Ay <7 2}
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Since there are only countably many such y and AD implies that all ultrafil-
ters are countably complete (Theorem 2.8), A, is non-empty. Let

f(@) = NAa.

Notice that A, and f(x) depend only on the Turing degree of z. In particular,
we can regard f as a function from the Turing degrees Zr into the ordinals.
Notice also that

Aep iff foraconeofx, f(x) e A

since if B € u then, for any x 21 o we have f(x) € B, where xg is such that
m(xg) = B. We can now “erase” reference to the prewellordering by taking
the ultrapower. Let up be the cone ultrafilter on the Turing degrees (see
Theorem 2.9) and consider the ultrapower V?7 /up. By DC the ultrapower
is well-founded. So we can let M be the transitive collapse of V7 /ur and
let

j:V-M

be the canonical map. Letting v be the ordinal represented by f, we have
Beyp iff yej(B)

and so p is OD. B

4. A Woodin Cardinal in HOD*®)

Our main aim in this section is to prove the following theorem:

4.1 Theorem. Assume ZF +DC + AD. Then
HODE® = ZFC + 0® is o Woodin cardinal.

This will serve as a warm-up for the proof of the Generation Theorem in
the next section. The proof that we give appeals to DC at only one point
(Lemma 4.8) and as we shall see in the next section one can avoid this appeal
and prove the result in ZF + AD. See Theorem 5.36.

In Sect. 4.1 we will establish the reflection phenomenon that will play the
role played by boundedness in Sect. 2 and we will define for cofinally many
A < ©, an ultrafilter p on §2 that is intended to witness that §7 is A-strong.
In Sect. 4.2 we shall introduce and motivate the notion of strong normality
by showing that the strong normality of ) ensures that §? is A-strong. We
will then show how reflection and uniform coding combine to secure strong
normality. In Sect. 4.3 we will prove the main theorem by relativizing the
construction to subsets of ©. Throughout this section we work in L(R) and
so when we write §2 and © we will always be referring to these notions as
interpreted in L(R).
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4.1. Reflection

We have seen that ZF + AD implies that © is strongly inaccessible in
HOD*® | Our next task is to show that

HODL® £ 42 is A-strong,

for all A < ©. The proof will then relativize to subsets of © that are in
HOD*® and thereby establish the main theorem.

The ultrafilters that witness strength cannot come from the “sup” game
of Sect. 2 since the ultrafilters produced by this game concentrate on w-club
sets, whereas to witness strength we will need ultrafilters according to which
there are measure-one many measurable cardinals below §%. For this reason
we will have to use a variant of the “sup” game. In this variant the role of
boundedness will be played by a certain reflection phenomenon.

The reflection phenomenon we have in mind does not presuppose any
determinacy assumptions. For the time being work in ZF + AC,(R). The
main claim is that there is a function F : §7 — L2 (R) which is Aj-definable
over Lgz(R) and for which the following reflection phenomenon holds:

For all X € L(R)N OD*® for all &, formulas ¢, and for all z € w*, if
L(R) [ ¢[2, X, 01, R]
then there exists a § < §7 such that

L(R) = ¢lz, F(6),6,R].

One should think of F' as a sequence that contains “proxies” or “generic
witnesses” for each OD*®) set X: Given any ¥, fact (with a real parameter)
about any OD*® get X there is a “proxy” F (6) in our fixed sequence that
witnesses the same fact.

The function F' is defined (much like ¢) in terms of the least counterex-
ample. To describe this in more detail let us first recall some basic facts from
Sect. 2.4 concerning L(R) and the theory Ty: There are arbitrarily large «
such that L, (R) | Ty. In particular,

Lo(R) E To.

Moreover, since
Lo(R) <; L(R),

there are arbitrarily large o < © such that L,(R) |= Tp. Similarly, there are
arbitrarily large o < §2 such that L, (R) = Ty. However, notice that it is
not the case Lgz(R) = Ty (by Lemma 2.27).

Because of the greater maneuvering room provided by levels L, (R) that
satisfy Ty we will concentrate (for example, in reflection arguments) on such
levels. For example, we can use these levels to give a first-order definition of
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OD*®) and the natural well-ordering <opr® on the OD*®) sets. For the
latter, given X € ODL(R), let

ax = the least o such that
(1) La(R) = To,
(2) X € Lo(R), and
(3) X is definable in L, (R) from ordinal parameters;

let px be the least formula that defines X from ordinal parameters in L, (R);
and let £x be the lexicographically least sequence of ordinal parameters used
to define X in Lo(R) via ¢x. Given X and Y in OD*® working in L(R)
set

X <opY iff ax < ay or

ax = ay and px < @y or

ax =ay and x = ¢y and €x <jex &y -

Since the Lo(R) hierarchy is ¥;-definable in L(R), it follows that OD*®)
and (<op)*™® are ¥;-definable in L(R). (This is in contrast to the usual
definitions of these notions, which are X5 since they involve existential quan-
tification over the V, hierarchy, which is IT;.) Notice that if Lo(R) = Ty,
then

(<op)"® < (<op)*®.

Furthermore, if L, (R) <1 L(R), then
ODL® — ODF® N L (R) and (<op)“*® = (<op)*® | Lo (R).

For example,
HOD e® — HODL® N Le (R).

(For this it is crucial that we use the ¥ definition given above since the
¥ definition involves quantification over the V,, hierarchy and yet in Lgz(R)
even the level V,, ;2 does not exist.) Our goal can thus be rephrased as that
of showing

HODLe®) = 62 is a strong cardinal.

We are now in a position to define the reflection function F'. If the reflec-
tion phenomenon fails in L(R) with respect to F'[§% then (by Replacement)
there is some level L, (R) which satisfies Ty over which the reflection phe-
nomenon fails with respect to F'[§2. This motivates the following definition:

4.2 Definition. Assume Ty. Suppose that F'[0 is defined. Let 9(d) be least
such that

Ly5y(R) = T and there is an X € Lys)(R) N oD ®) guch that
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(%) there is a ¥; formula ¢ and a real z such that

L19(5) (R) l: 90[23 Xa 63 R]

and for all § < §,
L19(5) (R) b& QO[Z’ F(5)7 57 R]

(if such an ordinal exists) and then set F'(§) = X where X is (<op)¥?®-least
such that (x) holds.

We have to establish two things: First, F(d) is defined for all § < §3.
Second, F(§2) is not defined. This implies that the reflection phenomenon
holds with respect to F'.

4.3 Lemma. Assume ZF + AC,,(R). Then
(1) if Lo(R) = Ty, then (F)*=®) = Fl~ for some 7,
(2) F*8® — F162, and
(3) F(3) is defined for all § < §3.

Proof. For (1) suppose that (F[§)“=®) = F|§ with the aim of showing that
(F(8))®) = (F(5))*®). The point is that

L, (R) E 9(9) exists
if and only if
(0(6))" < a,

in which case
(9(0)) "= = @(6)*™®  and  (F(8))"® = (F(6))"®,

by the locality of the definition of F' and the assumption that (F[§)F«® =
F16.

For (2) first notice that we can make sense of F' as defined over levels (such
as Ly2(R)) that do not satisfy To by letting, for an arbitrary ordinal &,

FLe®) — | J{FL®) | o < ¢ and Ly (R) = To}.

Thus, F Lg® _ g [y for some v, by (1). Assume for contradiction that
(2) fails, that is, for some v < §%, F(v) is defined and yet Fra® () is not
defined. Since in L(R), ¥(v) and F(v) are defined, the following is a true ¥,
statement about ~:

Ja > v (La(R) | To + 9(y) exists.)
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Since Lgz2(R) <1 L(R), this statement holds in Lg(R) and so FL®)(7) is

defined and hence F-5t® (7) is defined, which is a contradiction.
For (3) assume for contradiction that v < §%, where v = dom(F). By (2)

(and the definition of "% ™) there is an a < §2 such that La(R) = Ty and
FLa®) = Fly = F. We claim that this implies that

La(R) <" L(R),
which is a contradiction (by Theorem 2.28). Suppose
L(R) = ¢[2,R]

where 9 is a X1 formula and z € w*”. We have to show that L, (R) = [z, R].
By Replacement there is an ordinal 8 such that

Ls(R) = ¢[2,R].

Consider the 3, statement o[z, X,R] expressing “There exists £ such that
X = L¢(R) and X [ ¢[2,R]”. Letting ¥ > § be such that Ly(R) = Ty we
have: there exists an X € Ly(R) N ODL?® (namely, X = Lg(R)) such that

Ly(R) |= To + [z, X, R].

Moreover, since 9J(7y) does not exist, it follows (by the definition of ¥(v)) that
there exists a § < v such that

Thus (unpacking ¢[z, X,R]) there exists a ¢ such that F(§) = L¢(R) and
L¢(R) = 9]z, R]. Since F C Ly(R), £ < a and so, by upward absoluteness,

Lo(R) = ¢[z,R],
which completes the proof. -

It follows that F'[§? : §% — Lsz(R) is total and Aj-definable over Lgz (R).
It remains to see that F(§%) is not defined.

4.4 Theorem. Assume ZF + AC,(R). For all X € OD*® for all &,
formulas ¢, and for all z € w* if

L(R) F ylz, X, 01, R]
then there exists a 6 < §3 such that

L(R) = ¢lz, F(9),6,R].
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Proof. The idea of the proof is straightforward but the details are somewhat
involved.
Assume for contradiction that there is an X € ODL(R), a X formula ¢,
and z € w* such that
L(R) ‘: (p[Z, X, é% R]

and for all § < §2,
L(R) i ¢z, F(5),6, R].

Step 1. By Replacement, let 9y > §7 be least such that
(1.1) Ly, (R) £ Ty and there is an X € Ly, (R) 1 ODX%®) and

(%) there is a ¥y formula ¢ and a real z such that
Ly, (R) [ ¢l X, 01, R]

and for all § < §2
Ly, (R) = [z, F(6), 6, R].

Let X be least (in the order of definability) such that (1.1) and for this choice
pick g and zq such that (x). (Thus we have let 99 = 9(§?), Xo = F(§2), and
we have picked witnesses ¢g and zy to the failure of reflection with respect
to F/(d7).)

Notice that Ly, (R) = % exists + F(§) is defined for all § < §%. Since

Fro® 162 = F1o3,

by Lemma 4.3, (1.1) is equivalent to the internal statement Ly, (R) = T +
“reflection fails with respect to F'[§3”. It is this internal statement that we
will reflect to get a contradiction. We have that for all § < 3,

(1.2) Ly, (R) b= wolz0, F(6), 6, R].

Our strategy is to reflect to get ¥ < §2 such that

L;(R) [ wolz0, F((61)"®), (7)™, R].

By upward absoluteness, this will contradict (1.2). To implement this strat-
egy we need the appropriate X1 fact (in a real) to reflect.

Step 2. The following is a true 3, statement about g and zy (as witnessed
by taking « to be ¥y from Step 1): There is an « such that

(2.1) Lo(R) |= 62 exists + F(§) is defined for all § < §2,

(2.2) Lo(R) = Ty and there is an X € L, (R) N ODL®) and
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(%) there is a ¥; formula ¢ and a real z such that
Lo(R) F ¢z, X, (37) "™, R]
and for all § < (§7)L=(®)
La(R) [ o[z, F7= 0 (8),6,R],
J) 1 < « then 1t i1s not the case that o and there is an
23) it g hen it i h hat Lg(R Ty and there i
X € Lg(R) N ODE#®) and
(%) there is a ¥y formula ¢ and a real z such that
Ls(R) k= o[z, X, ()R]
and for all § < (§3)%=®)
Ly(R) [ ¢z, FF®)(5),6,R],

and

(2.4) if X is least (in the order of definability) such that (2.2) then
LQ(R) ': 500[203 Xa (é%)LQ(R)a R]
and for all § < (§3)L=®)

La(R) & @olz0, FL=®)(5),5,R].

(Notice that in (2.3) the ordinal §? and the function F are computed in
L(R) while the formulas are evaluated in Lg(R).) Thus (2.1) ensures (by
Lemma 4.3) that FLe®|(§2)Le® = F[(§2)L=®) (2.2) says that Lo (R)
satisfies “reflection is failing with respect to FZe®)|(§3)L=(®)” and, because
of (2.1), this ensures that J((97)%~®)) exists, (2.3) ensures in addition that
a=9((67)F=®), and (2.4) says that g and zq (as chosen in Step 1) witness
the existence of 9((97)%=®)),

Since Lgz2(R) <} L(R) and ¢y and z can be coded by a single real, the
least ordinal o witnessing the existential of the above statement must be less
than §2. Let ) be this ordinal.

Step 3. We claim that
L3(R) = polz0, F((87)7™), (67)" ™, R],

which finishes the proof since by upward absoluteness this contradicts (1.2).

The ordinal 9 has the ¥;-properties listed in (2.1)-(2.4) for a. So we
have: (4.1) Lg(R) |= “4% exists” + “F(0) is defined for all § < §3” and so (by
Lemma 4.3) FEa®) [ (§3)La®) = F1(§2)L9(®) | (4.2) L5(R) satisfies “reflection
is failing with respect to FLo®) | (§2)L9(®)” and, because of (4.1), this ensures
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that 9((63)L9®)) exists, (4.3) 9 = 9((62)X9®)), and (4.4) o and z (as
chosen in Step 1) witness the existence of ¥((97)?(®)). Therefore, by the
definition of F', (4.4) implies that

L;(R) £ wolzo, F((37)"®), (81)" ™, R],
which contradicts (1.2). 4

We will need a slight strengthening of the above theorem. This involves
the notion of the reflection filter, which in turn involves various universal
sets.

Let Ux be a good universal X1 (L(R), {X, §%,R}) set of reals. So Uy is a
Y1 (L(R), {X, 2, R}) subset of w* x w* such that each X1 (L(R),{X,§? R U
{R}}) subset of w* is of the form (Ux); for some ¢ € w*. For each § < §2,
let Us be the universal 3 (L(R), {F(d),d,R}) set obtained using the same
definition used for Uy except with X and §? replaced by the reflected proxies
F(§) and 6. As before, we shall identify each of Ux and Us with a set of reals
using our recursive bijection between w* X w* and w*.

For each ¥; formula ¢ and for each real y, there exists a z,, € w* such
that

Zpy € Ux iff L(R) = oly, X, 67, R].
In such a situation we say that z,, certifies the ¥, fact ¢ about y. The key
property is, of course, that if z,, € Us then L(R) = ¢[y, F(),d,R]. Notice
that the real z, , is recursive in y (uniformly).

In what follows we will drop reference to ¢ and y and simply write z € Ux,
it being understood that the formula and parameter are encoded in z. In these
terms Theorem 4.4 can be recast as stating that if z € Ux then there is an
ordinal § < §% such that z € Uy, in other words, Uy C U5<5§ Us. But notice
that equality fails since different X can have radically different “reflection
points”.

For z € Uy, let

S, ={0<8%|2€Us}

and set
ﬁX:{SQQ%HzeUX(SzQS)}

Equivalently, for a ¥; formula ¢ and a real y such that
L(R) = ¢y, X, 01, R]

let
y = {0 <81 | L(R) = ¢ly, F(9), 6, R]}

and set

Fx = {8 C §7 | there is a ¥y formula ¢ and a y € w* such that
L(R) = o[y, X, 03,R] and S, ,, C S}.
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Notice that we can reflect to points § where the proxies F(§),d resemble X, §2
as much as we like. For example, suppose

L(R) = ¢¥ly, X, 87, K]

and consider the following 3; statement:
There is an « such that

La(R) = To,
§=(H®  F15=(F)®  and F(§) € OD*®  and
La(R) = ¢ly, F(9),6,R].

If we replace § by §7 and F(§) by X then this statement is true. It follows
that the statement holds for .% x-almost all §. The second clause ensures that
each such & is a “local §2” and that the “local computation of F up to §”
coincides with F'. By altering ¢ and y we can increase the degree to which

the proxies F(J),d resemble X, §%.

4.5 Lemma. Assume ZF + AC,(R). Then L(R) = Fx is a countably
complete filter.

Proof. Upward closure and the non-triviality condition are immediate. It
remains to prove countable completeness. Suppose {S, | n < w} C Fx.
For n < w, let z, € Ux be such that S, C S,. Let z € w* be such that
(2)n = zp for all n < w. The following is a true X; statement about z, X,
92, and R:

There is an « such that

(1)

(2) La(R ) |= To,

(3) X € ODF®) and

(4) for all n < w, (2), € (Ux)F=®,

37 <
L

Let z* € Ux certify this statement. It follows that for each § < §% such that
z* € Us the following holds:
There is an o such that

(1) 6 < a,

(2) La(R) |= To,

(3) F(6) € ODL=® and

(4) for all n < w, (2), € (Us)k=®,

But then, by upward absoluteness, § € ({5, | n <w} and so S, C[{S., |
n<w}C (S |n<w} =
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We shall call Fx the reflection filter since, by definition, there are % x-
many reflecting points in the Reflection Theorem.

We wish now to extend the Reflection Theorem by allowing various para-
meters S C §7 and their “reflections” SN J. For this we bring in AD.

4.6 Theorem (REFLECTION THEOREM). Assume ZF + AD. Suppose f :
62 — 62 and S C §2 are in L(R). For all X € OD*®) for all ©1 formulas
p, and for all z € W, if

L(R) = ¢[2, X, f, 5,01, R]
then for Fx-many § < 2,
L(R) = plz, F(5), f14,SN 6,8, R],
where here f and S occur as predicates.

Proof. First we show that the theorem holds for S C §2. For each § < §2, let

Qs = Us ~ U{Uy [ v < 4}

The sequence
(Qs |6 <1)

gives rise to a prewellordering of length §2. By the Uniform Coding Lemma,
there is an e(S) € w* such that

Uk (Qes,Qs) £ 2 iff 5€8.
The key point is that for Zx-almost all §
Floo®) = g,
To see this let z € Ux be such that if z € Uy then
Ly (R) =6 =67 and F[d is defined.
Thus, if § € S,, then
6= ()@ ®  and  F§ = Floe®)

which implies
(Qy [ 7<) =(Qy |7 <o ®.

It follows that for § € S,, e(S) codes SN 6.
This enables us to associate with each ¥; sentence ¢ involving the predi-
cate S, a ¥p sentence ¢* involving instead the real e(S) in such a way that

L(R) }Z SO[Z’ X7 é%’ S’ R]
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if and only if
L(R) = ¢*[2, X, 81, (5), R]

and, for 0 € S, € Fy,
L(R) E [z, F(5),6,5 N6, R]

if and only if
L(R) = ¢*[z, F(0),6,e(S),R].

In this fashion, the predicate S can be eliminated in favour of the real e(5),
thereby reducing the present version of the reflection theorem to the original
version (Theorem 4.4).

To see that we can also include parameters of the form f : §2 — §7 simply
note that %x-almost all § are closed under the Gédel pairing function and
so we can include functions f : §2 — §7 by coding them as subsets of §7.

We are now in a position to define, for cofinally many A < ©, an ultrafilter
px on §2. For the remainder of this section fix an ordinal A < © and (by
the results of Sect. 3.3) an OD-prewellordering <) of w* of length A. Our
interest is in applying the Reflection Theorem to

X = (<0, ).

For each S C §%, let GX(S9) be the game

with the following winning conditions: Main Rule: For all ¢ < w, (z);, (y); €
Ux. If the rule is violated then, letting i be the least such that either (x); &
Ux or (y); € Ux, I wins if (x); € Ux; otherwise IT wins. If the rule is satisfied
then, letting § be least such that for all i < w, (z),, (y); € Us, (which exists
by reflection since (as in Lemma 4.5) we can regard this as a ¥, statement
about a single real) I wins iff § € S. Thus, I is picking § by steering into the
oth-approximation Us. (Note that the winning condition is not 3;.)
Now set
px = {S C §? | T wins GX(S)}.

We let uy = px but shall typically write px to emphasize the dependence
on the prewellorder. For z € Ux, Player I can win G*(S.) by playing = such
that (z); € Ux for all i < w and, for some ¢ < w, (z); = z. Thus,

Fx C px.

It is easy to see that px is upward closed and contains either S or §7 \. S
for each S C §2.

4.7 Lemma. Assume ZF+AD. Then L(R) |= ux is a §2-complete ultrafilter.
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Proof. The proof is similar to the proof of Theorem 2.33 (which traces back
to the proof of Theorem 2.13). Consider {S, | & < v} where S, € px and
v <82 Let S = Na<~ Sa and assume for contradiction that S ¢ pux. Let o’

be a winning strategy for I in GX(§2 \ S). Let
Z ={(x,0) | for some o < v, = € Q, and

o is a winning strategy for I in G~ (S4)}

where Qo = {z € w¥ | ||, = a} and <y is the prewellordering of length
82 from Theorem 2.33. (One can also use the prewellordering from Theo-
rem 4.6.)

By the Uniform Coding Lemma, let eg € w* be such that for all a < 7,

Ue((?)(Q<ouQa) czZn (Qa X ww) and Ue(c?)(Q<a’Qa) 7& a.
Let
¥ = proj, (UQ<WU6(§)(Q<OU Qo))

Notice that X is A% since <y v is A?. The key point is that (as in Lem-
ma 2.27) we can choose a real that ensures that in a reflection argument we
reflect to a level that correctly computes <y[v and hence ¥. We assume
that all reals below have this feature.

Now we can “take control” of the output ordinal g with respect to o’ and
all 7 € X

Base Case. We have
(1.1) Yy € w¥ ((0' *y)1)o € Ux and
(1.2) Yy e w*Vo € X ((c xy)r)o € Ux

since 0’ and o (as in (1.2)) are winning strategies for I. Since X is A% this is a
Y1 (L(R), {X,§2, R} UR) fact about o’ and hence certified by a real zg € Ux
such that zg <7 ¢’; more precisely, zg <7 ¢’ is such that for all ¢ if zg € Us
then

(1.3) Yy € w¥ ((¢/ *y)1)o € Us and
(14) Yy e wVo € X ((o*y)r)o € Us.

(n+ 1)st Step. Assume we have defined zg,. .., 2, in such a way that z, <r
- <71 79 and

(2.1) Yy € w¥ (Vi <ny)i=2z — (6" *Y))nt1 € UX) and
(2.2) Yy ewVo € B (Vi < n(y)i =2 — (0 *Y))nt1 € Ux).
Let z,4+1 € Ux be such that 2,11 <7 2, and for all ¢, if 2,41 € Us then

(2.3) Yy € w (Vi < n(y)i = 2 — (6" *Y)1)nt1 € Us) and



4. A Woodin Cardinal in HOD*® 2011

(24) Yy ewVo e S (Vi< n(y)i =2 — (0 %Y)1)ns1 € Us).

Finally, let z € w® be such that (2); = 2; for all i < w and let §y be least
such that (z); € Us, for all i € w. Notice that by our choice of z, DC is not
required to define z. Then, for all i < w,

(3.1) ((¢/*2)1); € Us, by (1.3) and (2.3) and
(3.2) ((o*2)r1); € Us, for all 0 € ¥ by (1.4) and (2.4).
So
(4.1) & is the ordinal produced by o’ * 2, i.e. Jp € §7 \ S and

(4.2) 4y is the ordinal produced by o, * z where o, € ¥ is a winning
strategy for I in GX(S,), i.e. 59 € S, for all a < 7.

This is a contradiction. =

4.2. Strong Normality

Assuming ZF 4+ AD, in L(R) we have defined, for cofinally many A\ < ©, an
OD™® ultrafilter on 92 and shown that these ultrafilters are §3-complete. We
now wish to take the ultrapower of HOD” ®) with these ultrafilters and show
that collectively they witness that for each A < ©, §7 is A-strong in HOD®),
This will be achieved by showing that reflection and uniform coding combine
to show that py is strongly normal.

We begin with the following basic lemma on the ultrapower construction,
which we shall prove in greater generality than we need at the moment.

4.8 Lemma. Assume ZF+DC. Suppose p is a countably complete ultrafilter
on & and that p is OD. Suppose T is a set. Let (HOD7)® be the class of
all functions f : § — HODy. Then the transitive collapse M of (HOD7)%/u
ezists, the associated embedding

j:HODp — M

18 ODr, and
M C HOD7.

Proof. For f,g:6 — HODrp, let f ~, giff {a <6 | f(a) = g(e)} € p and
let [f], be the set consisting of the members of the equivalence class of f
which have minimal rank. The structure (HOD7)?/u is the class consisting
of all such equivalence classes. Let E be the associated membership relation.
So [f]u E [g], if and only if {& < ¢ | f(a) € g(a)} € p. Notice that both
(HOD7)?/pu and E are ODr.

The map

ju : HODg — (HOD7)® /pu

ar [Ca]ua
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where ¢, € (HOD7)? is the constant function with value a, is an elementary
embedding, since Lo$’s theorem holds, as HOD7 can be well-ordered. Notice
that j, is OD7.

Claim 1. ((HOD7)?/u, E) is well-founded.

Proof. Suppose for contradiction that ((HOD7)?/u, E) is not well-founded.
Then, by DC, there is a sequence

(falu|n <w)
such that [fr41]u E [fn], for all n < w. For each n < w, let
Ap ={a <O | fara(a) € fula)}
For all n < w, A,, € p and since p is countable complete,
N{An | n < w} € p.

This is a contradiction since for each « in this intersection, f,11(a) € fr(a)
for all n < w. .

Claim 2. ((HOD7)?/u, E) is isomorphic to a transitive class (M, €).

Proof. We have established well-foundedness and extensionality is immediate.
It remains to show that for each a € (HODr)%/p,

{b€ (HOD7)’/n| b E a}

is a set. Fix a € (HOD7)?/u and choose f € (HOD7)? such that a = [f],,.
Let a be such that f € V. Then for each b € (HOD7)?/u such that bFa,
letting g € (HOD7)? be such that b = [g],,,

{8<d19(B) €Va}en.

Thus,
{b€ (HOD7)’/pu | b E a} = {[g]. | [9]u E [f],c and g € Vo,
which completes the proof. .
Let

7 (HOD7)® /uu, E) — (M, €)

be the transitive collapse map and let
j :HODy — M

be the composition map 7o j,. Since w and j,, are ODp, j and M are ODy.
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It remains to see that M C HODs. For this it suffices to show that for
all a, M NVj,) € HOD7. We have

MnN ij(a) = j(HODT n Va).
Let A € HODy N Z() be such that
HODr NV, C L[A]
for some . We have
M N Vi) =j(HODr NVy) C L[j(A)].

But j and A are ODy. Thus, j(A) € HODy and hence L[j(A)] € HODp,
which completes the proof. -

4.9 Remark. The use of DC in this lemma is essential in that assuming
mild large cardinal axioms (such as the existence of a strong cardinal) there
are models of ZF + AC,, in which the lemma is false. In these models the
club filter on wy is an ultrafilter and the ultrapower of On by the club filter
is not well-founded.

The ultrafilter pux defined in Sect. 4.1 is OD*®), Thus, by Lemma 4.8
(with T = &), letting

T (HODL(R))ﬁ/,uX — Mx
be the transitive collapse map and letting
jx : HOD*® — My

be the induced elementary embedding we have that Mx C HOD*® and

the fragments of jx are in HOD®) (in other words, jx is amenable to

HODX®). Moreover, since px is §2-complete, the critical point of jx is §2.
Our next aim is to show that

HOD® = 62 is A-strong
and for this it remains to show that
jx(63) > A and HOD*® NV, C My.

From now on we will also assume that A is such that Ly(R) < Le(R) and
d2 < A. There are arbitrarily large A\ < © with this feature (by the proof of
Lemma 2.20). Since

HOD™® N Vg = HOD o ®)
(by Theorem 3.10), it follows that

HOD*® A v, = HODM®),
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Thus, letting A C A be an OD*®) set coding HODL*(R), we have
HODL® Ny, = L,[A].
Thus, it remains to show that A € Mx. In fact, we will show that
2(\) NHOD*®) C My,
Let
So = {6 < 87 | F(6) = (<5, As) where <; isa
prewellordering of length As and Ly, (R) &= To}.

Note that Sy € Fx. For a < A, let Qéj be the ath-component of <) and,
for § € Sy and a < g, let Qg be the ath-component of <s. Each t € w®
determines a canonical function f; as follows: For § € Sp, let a? be the unique
ordinal o such that t € Q% and then set

fr: 80— 07

§—al.

For t € w¥, let ay = |t|<, be the rank of ¢ according to <, that is,
62
ap = tl<, = pa(t € Q).
4.10 Lemma. Assume ZF + AD. jx(d%) > A.

Proof. Suppose t1,t2 € w* and |t1]<, = [t2|<,. This is a true X; statement
in L(R) about t1, ta, X and R. Thus, by reflection (Theorem 4.6), it follows
that for Fx-almost all § < &%, |ti1]<; = |t2|<; and so the ordinal [f;],
represented by f; only depends on |t|<,. Likewise, if |ti|<, < |t2]<, then
[firlux < [fta)ux- Therefore, the map

P:)\_’H)\é/lix

MSA = [ft]ux

is well-defined and order-preserving and it follows that A < [[As/pux <
Jx (99). B
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We now turn to showing () N HOD*®) C My. Fix A C X such that
A € HOD*® | By the Uniform Coding Lemma there is an index e(A4) € w*
such that for all a < A,
9% 92 .
UL (Q%, Q) £ 2 iff acA
For all § € Sp, let
2
A ={a <X | UL, (QL,, Q) # 2}
be the “reflection of A”. Since the statement
52 52
{a <A UD,(QY,, Q) # &} € HOD®
is a true ¥, statement about X, R and e(A), there is a set S € .Fx such that
for all § € S, A° € HOD*®)
We wish to show that
ha:S — HODL®
5 A°
represents A in the ultrapower. Notice that
ey €A I {6 < 07| fu(0) € A’} € px
it [filux € [halux-

The last equivalence holds by definition. For the first equivalence note that
if |t|<, € A then since this is a true £, statement about e(A4), ¢ and X, for
px-almost all 8, [t|<, € A%, that is, {§ < 07 | fi(0) € A%} € ux. Likewise,
if |t|<, & A then since this is a true ¥; statement about e(A), ¢ and X, for
px-almost all 4, [t|<, & A°.

So it suffices to show that the map

p: =] re/nx

ltl<x = [felux

is an isomorphism since then m([hal.,) = A € Mx, where recall that

T (HODL(R))Q% /ux = Mx is the transitive collapse map. We already know
that p is well-defined and order-preserving (by Lemma 4.10). It remains to
show that p is onto, that is, that every function f € [[As/ux is equivalent
(modulo px) to a canonical function f;. To say that this is true is to say
that px is strongly normal:

4.11 Definition (STRONG NORMALITY). ux is strongly normal iff whenever
f:So — 92 is such that

{0€ 80| f(6) <As} € px

then there exists a ¢t € w* such that

{0 €S0l f(6) = fi(0)} € px.
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Notice that normality is a special case of strong normality since if
{6<a1] f(0) <0} € px

then (since for Fx-almost all §, A\; > §), by strong normality there is a
t € w* such that

{6 <a1| f:(6) = f(0)} € px.
So if 3 is such that t € ng then 8 < §%, since otherwise by reflection this
would contradict the assumption that
{6 <8t | f(0) <6} € px.
Thus,
{6 <37 £(6) =P} € px.
4.12 Theorem. Assume ZF + AD. L(R) | pux is strongly normal.

Proof. Assume toward a contradiction that f is a counterexample to strong
normality. So, for each ¢t € w”,

{0 €S| f(d) # fi(0)} € ux.
Let

n=min {8 < \|vteQl {5 S| f(6) < fi(5)} € ux}

if such 8 exist; otherwise, let n = A. Fix y, € Q%? (unless 7 = A, in which
case we ignore this parameter) and, for § € Sp, let ns = f,, (4) and for 6 = 43,
let 5 = n. Note that f,, (0) > f(6) for px-almost all §. In the proof we will
be working on this set and so we modify Sy by intersecting it with this set if
necessary. For convenience let

S(t) = {6 € So | f1(8) < £(0)}-

Notice that by the definition of 7 and our assumption that f is a counterex-
ample to strong normality, we have that

S(t) € px

62
for all t € Q2.
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Our aim is to compute f from a real parameter by coding relative to
the various prewellorderings. Our computation will give us “f(d%)”. Then,

2
picking a real yr € Q%lf 52)” we shall have by reflection that for px-almost
1

every 0, f(0) = fy,(0), which is a contradiction.

The proof involves a number of parameters which we list here. We will
also give a brief description which will not make complete sense at this point
but will serve as a useful reference to consult as the proof proceeds.

ep is the index of the universal set that selects the Zg’s (represented in the
diagrams as ellipses) from Z’ (represented in the diagrams as chimneys).

e1 is the index of the universal set that selects subsets of the Z2’s (repre-
sented in the diagrams as black dots inside the ellipses).

2
Yn is the real in Qg,l that determines ns for § € Sy.

2
1

yy is the real in Q%f(§2),, that determines f(4) for § € Ss.
JAZL

We will successively shrink Sy to S7, So, and finally S3. All four of these sets
will be members of ux. We now proceed with the proof.
Let

Z'={(t,0)|te Qéjn and o is a winning strategy for I in G*(S(t))}.

Thus, by our assumption that f is a counterexample to strong normality and
by our choice of n we have, for all § < 7,

20 (QY xw?) # 2,

since for all t € Qéjn, I wins G*(S(t)). By the Uniform Coding Lemma, let
ep € w¥ be such that for all 8 < n,

(1.1) Ueﬁ?(@%ﬁa@%ﬁ) cZ'n (Q?ﬁ X w*) and
52 53
(1.2) UD(Q%5, Q%) # 2.
By reflection, we have that for .Z#x-almost all §, for all § < 5,
(2.1) Ué?(@i@@%) C Qg X w* and

(2.2) UD(Q%4.Q%) # 2.

Notice that in the reflected statement we have had to drop reference to
Z' since we cannot reflect Z' as the games involved in its definition are
not ;. Let S} be the set of such § and let S; = S| N Sy. Notice that S; is

E1(L(R), {€O7yn7 X, é%,R})
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For § € S; U {42} and 8 < ns let
7= V(@0

and for § € Sy U {33} let
5 5
Z == UB<WZB

Claim A (DISJOINTNESS PROPERTY). There is an So C Sy, S2 € ux such
that f07" 51,52 € Sy U {é%} with 01 < §a < é%,

ZPNZy =02

fOT’ all a € [f(61)5n51) a’ndﬂ € [Oan(SQ)'

Proof. Here is the picture:

<A
<o, T
<o Ns2 [
Mo 7] :
| (==Y
=] Z% =
76 1S =i
| 78
=
O | |
Sa
We begin by establishing a special case.
Subclaim. For ux-almost all ¢,
2
Nz} =o
for all a € [f(d),ms5) and B € [0,7n).
Proof. The picture is similar:
<
n—
<5 S :
G =
L =
<= <=
| 79 =
o S =
=| 8
|
<]

Sa
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Let

T={6eS| z° OZE% = o for all a € [f(6),75) and B € [0,n)}

and assume, toward a contradiction, that T ¢ pux. So (33~ T)N St € px.
Let o/ be a winning strategy for I in GX((§2 \T) N S).

Let us first motivate the main idea: Suppose z is a legal play for IT against
o’ (by which we mean a play for IT that satisfies the Main Rule) and suppose
that the ordinal associated with this play is dp. So §g € (82 ~ T) NSy and
(by the definition of T') there exists an oy € [f(do),ns) and Fy € [0,7) such

2

2
that 23 N Z5 # @. Pick (to,00) € Z% N Z3.. In virtue of the fact that
(to,00) € Z0 we have

(3.1) fi,(00) = a0 = (o)
and in virtue of the fact that (to,00) € Zgg we have
(3.2) 0p is a winning strategy for I in GX(S(ty)), where

S(to) = {6 € So [ f1,(8) < f(d)}-

So we get a contradiction if dy happens to be in S(tg) (since then fi, (do) <
f(d0), contradicting (3.1)). Notice that this will occur if we can arrange
the play z to be such that in addition to being a legal play against ¢’ with
associated ordinal &y it is also a legal play against g (in the game GX (S(t)))
with associated ordinal d;. We can construct such a play z recursively as in
the proof of completeness.

Base Case. We have
(4.1) Yy € w¥ ((0' *y)1)o € Ux and
(4.2) Vy € w*Y(t,0) € Z% (o % y)1)o € Ux

since ¢’ and o (as in (4.2)) are winning strategies for I. Now all of this is
a $1(L(R), {X,§2,R}) fact about o’ and eq (the index for Z%1) and so it is
certified by a real zp € Ux such that zo <r (0/,eq); so 2z is such that if
zo € Us then

(4.3) Yy € w¥ ((¢' *y)1)o € Us and
(4.4) Yy € w@V(t,0) € Z° (o *y)1)o € Us.

(n+ 1)st Step. Assume we have defined zo, ..., 2, in such a way that z, <r
. <T 20 and

(5.1) Yy € w? (Vi <n(y)i =2 — ((¢/ *y)1)n+1 € Ux) and

(5.2) Yy € w*V(t,0) € 2% (Vi <n(y)i = 2z — (0% Y))nt1 € Ux).
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Again, all of this is a X1 (L(R), {X, §2, R}) fact about o”, eg, 20, - . - , 2, and so
it is certified by a real z,,+1 € Ux such that z,11 <7 2p; S0 2,41 is such that
if 2,41 € Us then

(5.3) Yy e w* (Vi <n(y)i = zi — ((¢/ *y)1)ns1 € Us) and
(5.4) Yy € w?V(t,0) € Z° (Vi <n(y)i =z — (0 xy)1)n+1 € Us).

Finally, let 2z € w* be such that (z); = z; for all i < w and let dg be least such
that (z); € Us, for all i € w. Notice that since we chose z,41 to be recursive
in z, DC is not required to form z. Since (z); € Ux for all i € w, z is a legal
play for II in any of the games G*(S) relevant to the argument. Moreover,
for all i € w,

(6.1) ((0' *2)1); € Us, by (4.3) and (5.3) and
(6.2) ((0 % 2)1); € Us, for all o € proj,(Z%) by (4.4) and (5.4)
and so
(7.1) & is the ordinal produced by o’ * 2, i.e. dp € (§2 . T) N S; and
(7.2) 8o is the ordinal produced by o * z for any o € proj,(Z%).

Since &g € (93 \T)N S, by the definition of T" there exists an ag € [ (o), 75, )
2 2

and (o € [0,7) such that Z% N Z3! # @. Pick (to, 00) € 2% N Z3!. In virtue

of the fact that (to,00) € Z39 we have

(8.1) fiy(do) = o = f(do)
and in virtue of the fact that (¢, 00) € Zgz we have
(8.2) og is a winning strategy for I in GX(S(tg)), where

S(to) = {6 € So | f1,(9) < f(9)}

Combined with (7.2) this implies dp € S(to), in other words, f, (o) < f(do),
which contradicts (8.1). .

Thus, T' € px and we have
(9.1) V5 € TVB € [0,m52) Y € [£(8),ms) (28 N 251 = ).

This is a true X; statement in L(R) about eg, vy, f, X, R, §%7, and T Since
T is $1(L(R), {eo, yy, f, X, %, R}), the above statement is X1 (L(R), {eo, y»,
f,X,92,R}). Thus by the Reflection Theorem (Theorem 4.6) there exists an
Sy C Sl, Sy € nx such that for all 5 € SQ,

(9.2) Vo1 € TN 6, VB € [0,75,) Ve € [f(61),78,) (2 N ZF = 2).
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Notice that Sy is X1 (L(R),{X,d%,R}) in eo, y, and the parameters for
coding. This completes the proof of Claim A. —

Claim B (TAIL COMPUTATION). There exists an index e; € w* such that
for all § € S,

(1) US (P, Z3) C Z§ for all § < ns,
(2) U (PP, 28 5) = &, and
(3) Ue(lz)(P‘s,Zg) # @ for B such that f(0) < B < ns,

where PO = J{Z |6 € SoN 6 and o € [f(8),m5)} and Sy is from the end of
the proof of Claim A.

Proof. Here is the picture of the “tail parameter” P?:

3 ns |

=50

S2

Here is the picture of the statement of Claim B:

<6
s ]
po = Ui (P, z3)
g _
//ﬁ f(0)
So

Assume toward a contradiction that there is no such e;. We follow the
proof of the Uniform Coding Lemma. To begin with, notice that it suffices
to find an e; € w* satisfying (2) and

(3) Ue(f)(P‘;, Zg) N Zg # @ for [ such that f(§) < B < ns
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since given the parameter Z9 we can easily ensure (1).
Consider the set of reals such that (2) of the (revised) claim holds, that is,

So, for each e € G, (3') in the claim fails for some § € Sy and 8 € (f(4),ns)-
For each e € G, let
a, = lexicographically least pair (0, ) such that
(1) 6 € So,
(2) f(6) < B <ms, and
B UP (P, Z)nzZ)=o.

Now play the game

I x(0) x(1) x(2)
II y(0) y(1)

where II wins iff (z € G — (y € G A oy >1ex Qg))
Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that o is a winning strategy for I. As
in the proof of the Uniform Coding Lemma, we aim to “bound” all of I's
plays and then use this bound to construct a play e* for II which defeats o.
We will make key use of the Disjointness Property.

Choose e, € w* such that for all P, P’ C w*,

(2) A (2) /
U (P, P)= Uyew“’U(o*y)I(P7 P).
In particular, for all § € Sy and 8 < ns,
2)(pé 78\ _ (2) 5 78
UL (P, 25) = Uyewo Uiy, (P°, Z5).

Note two things: First, since o is a winning strategy for I, (o xy); € G for
all y € w¥; s0 e, € G. Second, for all y € WY, A(rsy); Slex e, - SO €5 is “at
least as good” as any (o *y);. We have to do “better”.
Pick 29 € Z%° where (89, 30) = ae.. Choose e* such that for all P, P’ C w®,
Bo o

U (P, P if 2o & P!

u?(p,p) =
- (B F) B, PYyU{ze} ifxge P

In particular, for all § € S5 and 8 < ns,

U (P, Z3) if zo & Z3

(P, Z}) =
YT URP Z8) o} it € 2

Since we chose xq € Zg,g, by the Disjointness Property (and the fact that for
fixed §, Z3 ﬂZg = @ for a < 3 < 15) we have
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(10.1) @o & Z for & € S2N[0,80) and B € [£(3),m5),

(10.2) zo ¢ Zg" for 5 € [0,ms5,) ~ {Bo}, and
(10.3) mg & Z} for § € S5 N (60, 7) and 3 € [0,75).
Thus, by the definition of e*, we have, by (10.1-3),

2
Ue(*)(P67Z?(5)) = UP(P°, Z}s)

for all § € S5. Since e, € G, this means e* € G. So .« exists. Similarly, by
the definition of e*, we have, by (10.1) and (10.2),

2
U (P, Z5) = UP(P, Z})
for all 6 € So N [0,00) and B € [f(d),ns) and for § = dg and S € [f(do), Bo)-
So e* is “at least as good” as e,. But since o € Z5g, we have that zg €
Ue(g)(P‘;O,Zgg), by the definition of e*; that is, e* is “better” than e,. In

other words, aex >lex (e, Zlex Q(oxy); for all y € w* and so, by playing e*,
II defeats o. -

Claim 2. Player II does not have a winning strategy.

Proof. Suppose toward a contradiction that 7 is a winning strategy for II.
We shall find an e* such that e* € G (Subclaim 1) and .- does not exist
(Subclaim 2), which is a contradiction.

Choose hg : w* x (W* x w*) — w* such that hg is X1 and for all (e,x) €
w* X (w¥ x w¥) and for all P, P" C w¥,

(2) ’ . /

e (PP f PUP
UR), (PP = U (PP e g Y
oler o] ifxre PUP'.

In particular, for § € Sy and 8 < ns,

2 .
pé Zg):{ é)(Pé,Zg) 1f$€P5UZg
%)

if v € PPUZj.
Choose hy : w* — w* such that h; is £} and for all P, P’ C w®,

(2) n 2 /
Uhl(e)(P’ P = UxGP’U(ho(e,a:)*‘r)“(P7 P').

In particular, for § € Sy and 8 < s,
(2) S 8\ _ 2) P
Uhl(e)(P ’Zﬂ) - Umezg (ho(eJ)*T)H(P 725)-

By the Recursion Theorem, there is an e* € w* such that for all § € Sy and

B < s,

2 2
v P,z =u

5 76
hl(e*)(P . 23)-



2024 Koellner and Woodin / Large Cardinals from Determinacy

Subclaim 1. e* € G.

Proof. Suppose for contradiction that e* ¢ G. Let g € Sy be least such that

2
U (P, 23%5.)) # 2.

Now
(2) (pdo 776 _ 717 So 78
Ues” (P, Z5(5)) = Upi(eny (P Zisy))
_ (2) So 170
- UmGZ??{SO) U(ho(e*,w)*r)u (P ¢ ’ Zf?50))'

So choose zg € Z}sf(’ 50) such that

U@

(ho(e*,xo)*T) 1

I S
(P, Zft5,) # .

If we can show hg(e*,xz09) € G then we are done since this implies that
(ho(e*,x0) * 7)1 € G (as T is a winning strategy for II), which contradicts
the previous statement.

Subsubclaim. hy(e*, z¢) € G, that is, for all 6 € Sa,

e

ho(e*,zo0)

(Pé,Z?((g)) = J.

Proof. By the definition of hg, for all § € Sy,

2)(ps 7§ : 5 5
U (po gy = JU P T e g PTU Zyg,
hoer.ao)\ 7 Z55) = 4 it a0 € PO 28,y

Since zg € Z‘fs‘()éo), by the Disjointness Property, this definition yields the
following: For § € S, N [0,dy) we have zg & P’ U Z‘fs((s) and so,

e

ho(e*,z0)

2
(P°, Z} () = Ue(*)(P(S’Z?(a)) =4,
where the latter holds since we chose dg to be least such that
2
UD (P, 2, ) #
for 6 = 69 we have zg € Z};(é) and so

e

§ 78 —
ho(e*,mo)(P Zy(s)) = 9;
and for & € Sy N (o, 9?) we have xg € P? and so

()
Uho (6* ,IQ)

(PéaZ?((S)) = .
Thus, ho(e*, zp) € G. -

This completes the proof of Subclaim 1. -
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Subclaim 2. a.- does not exist.
Proof. Suppose for contradiction that a.- exists. Recall that
e+ = lexicographically least pair (6§, 3) such that
(1) § € 5o,
(2) f(8) < B <ms, and
B) U (P, 2N 7} =o.

Let (5, f0) = ae-. We shall show U (P%, Z5) N Z} # @, which is a
contradiction. By the definition of hq,

(2) [ pé Soy _ 77(2)
U2 (P O,Zﬁg) *Uhl(e*)

_ (2) So 78
- UzeraS U(ho(e*vf)*T)u (P % Zﬂg)'

(P, Zg)

Fix xg € Zgg. Since e* € G, ho(e*,xzg) € G, by the Disjointness Property.
(This is because for § € Sy N [0,dy) we have xg & P° U ch((;) and so
U®

ho(e*,zo)

5 6 2) 8 6
(P,Zf(a))ZUe(*)(P,Zf(a))ZQ

where the latter holds since e* € G; for § = §y we have o & P° U Z?(ﬁ) and
since e* € G this implies

@

ho(e*,z0)

§ 76
(P°, Z§(5) = 2
and for 6 € Sy N (8p,0?) we have 29 € P? and so

e

)
ho(e*,mo)(P ,Zf(é)) =g,

SO Qg (e ,z) EXists.
Subsubclaim. (e z0) = Qer -
Proof. By the definition of hy,

2)ps 7oy 5 )
(P, 23) - {g (P9, Z3) ifxg & PPUZ)

U® !
if 2o € PP U Z)

ho(e*,zo)

for § € Sy and B < ns. So
U@

ho(e*,zo)

o 5
(P®,Z2)NZY =2,

since zy € P% U Zgg. And, when either § = §y and 3 € (f(dp), o) or
d € S3N0,00) and B € [f(d),ns), we have, by the Disjointness Property,
xo & P° U Zg, hence

7@

ho(e*,zo)

(P°,23) = U2 (P, Z)).

Thus, apg(ex,ze) = Qex- 4
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Since 7 is winning for II,

(h0(€*7$0) * ’7')[[ eG

and

O hg(e*,mo)*7) 1 ~lex Xhg(e*,zp) = Cle*-

So

U((EZ(E*@O)*T)U (Péo’ Zgg) n Zgg # 9.

Since
U2 (P, Z50) = Uy 50 Ul e eyery s (P Z55)
we have
U (P, Z50) 2% # o,

which is a contradiction. .
This completes the proof of Claim 2. —
We have a contradiction and therefore there is an e; is as desired. =

Notice that Uéf)(P‘;, Z?2), for variable «, allows us to pick out f(9).
Now we can consider the ordinal “f(§%)” picked out in this fashion.
Claim C. There ezists a By < n such that
(1) Ue(f)(Péf,Zgi) = and
(2) UD (P, 25) # & for all B € (o), where
PE = {2} |5 € S5 and a € [£(3),m5)}-

Proof. Suppose for contradiction that the claim is false. The statement that
the claim fails is a true X; statement about eg, e1, y,, X, R, f and Sy. But
then by the Reflection Theorem (Theorem 4.6) this fact reflects to Z x-almost
all §, which contradicts Claim B. —

Pick yr € Q%i. Now the statement that y; € Q%i where (g is such that
(1) and (2) of Claim C hold is a true 3; statement about ey, e1, ¥y, Yy,
f, X, R, and §2. Thus, by Theorem 4.6, for .#x-almost every § < §7 this
statement reflects. Let S5 C S5 be in pux and such that the above statement
reflects to each point in S3. Now by Claim B, for § € S3, the least Gy such
that yr € ng is f(6). Thus,

{0€ 50| fy,(0) = f(0)} € px
and hence px is strongly normal. -

This completes the proof of the following;:
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4.13 Theorem. Assume ZF +DC + AD. Then, for each A < OF®),
HOD ®) = ZFC + (62)X®) s A-strong.

4.14 Remark. For simplicity we proved Lemma 4.7 and Claim A of Theo-
rem 4.12 using a proof by contradiction. This involves an appeal to determi-
nacy. However, one can prove each result more directly, without appealing
to determinacy.

Call a real y suitable if (y); € Ux for all i < w. Call a strategy o a
proto-winning strategy if o is a winning strategy for I in GX(§%). Thus if y
is suitable and o is a proto-winning strategy then

{(le*y)r)i, (y)i | i <w} CUx
and so we can let
d(¢,y) = the least 0 such that {((o*y)1); | i <w}U{(y): |i <w} C Us.

Let x be least such that X € L,(R) and L,(R) <y L(R). This is the “least
stable over X”. It is easy to see that

'@(R) N LH(R) = Al(L(R)vRU {Xv Q?R})

and so if ¥ € Z(R) N L,(R) then for .Fx-almost all ¢ there is a reflected
version X5 of X. We can now state the relevant result:

Suppose ¥ € Z(R)NL,(R) is a set of proto-winning strategies for I. Then
there is a proto-winning strategy o such that for all suitable reals y, for all
TE 25<M) N 3, there is a suitable real y, such that

(o) = O(r,yr)-

The proof of this is a variant of the above proofs and it provides a more direct
proof of completeness and strong normality.

4.3. A Woodin Cardinal

We now wish to show that ©L® is a Woodin cardinal in HOD*® . In
general, in inner model theory there is a long march up from strong cardinals
to Woodin cardinals. However, in our present context, where we have the
power of AD and are working with the special inner model HOD®) | this
next step comes almost for free.

4.15 Theorem. Assume ZF + DC + AD. Then

HOD'® = 0L ®) s ¢ Woodin cardinal.
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Proof. For notational convenience let © = ©L®) To show that
HOD:® |= ZFC + O is a Woodin cardinal

it suffices to show that for each T € 22(0) N OD*®)_ there is an ordinal d7
such that
HOD;@ (R®)IT] E ZFC + 6r is A-T-strong,

for each A < ©. Since O is strongly inaccessible in HOD*®  HOD!®
satisfies that VHOP"™ is a model of second-order ZFC. Thus, since T €
2(©) NHOD*® and yHOD*™ — gopre®),

HODLe ™I = 7pc,

It remains to establish strength. Since this is almost exactly as before we
will just note the basic changes.
The model Lg(R)[T] comes with a natural ¥, stratification, namely,

(La(R)[TNal|a < ©).
Since © is regular in L(R) and Lg(R) = To, the set
{a <O | L,(R)[TNa] < Le(R)[T]}
contains a club in ©. To see this is note that for each n < w,
Cn={a<0O|L,(R)TNa] <, Le(R)[T]}

is club (by Replacement) and, since © is regular, ({C,, | n < w} is club.
Thus, there are arbitrarily large o < © such that

La(R)[TNa] = To.

For this reason ODr, <op,. and HODy are ¥;-definable in Lo (R)[T] exactly
as before. (Here, as usual, we are working in the language of set theory
supplemented with a predicate for T', which is assumed to be allowed in all
of our definability calculations.)

Let

dr = the least A such that Ly(R)[T N A] <1 Lo(R)[T].

As will be evident, the relevant facts concerning §? carry over to the present
context. For example, d7 is the least ordinal A such that

Ly®)[T N A <1 Lo (R)[T.

The function Fr : dp — L, (R)[T N dr] is defined as before as follows:
Work in Ty. Suppose that Frp[d is defined. Let 9¥(J) be least such that
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Lﬁ((g)(R)[T n 19(5)} ': Ty and there is an X € ng((;) (R)[T N 19(5)] N
OD;g(s)(R)[Tﬂﬁ(d)] and

(%) there is a X1 formula ¢ and a real z such that
Ly (R)[T'NI0)] = ¢lz, X, 07, T N9(5),R]
and for all § < 6,
Loy (R)[T N 9(0)] = ¢z, F(5), 6, T N9(3), R]

(if such an ordinal exists) and then let Fr(8) be the (<op, ) ?@® [Trde)]
least X such that (x).

The proof of the Reflection Theorem carries over exactly as before to
establish the following: For all X € OD;@(R)[T], for all 3; formulas ¢, and
for all z € w® if

LG(R)[T] ': @[27 X7 6T7 T7 R]
then there exists a § < dr such that

L@(R)[T] ': QD[Z’FT((;)a 5aT né, R}

Let UL be a universal ¥ (Lg(R)[T], {X, dr,T,R}) set of reals and, for
§ < o7, let UY be the universal 1 (Le (R)[T], { Fr (), 6, TN, R}) set obtained
by using the same definition. For z € U%, let ST = {§ < 67 | z € UL} and

set
Fx ={S Cor|3zeUg (ST C 9}

As before, Z¥ is a countably complete filter and in the Reflection Theorem
we can reflect to FL-many points § < é7 and allow parameters A C dr and
f : 5T — (5T.

Fix an ordinal A < ©. By the results of Sect. 3.3, there is an OD;Q(R) 7]
prewellordering <) of w* of length A\. Our interest is in applying the Reflec-
tion Theorem to

X =(<\A).

Working in Le(R)[T], for each S C dr, let G2*(S) be the game

with the following winning conditions: Main Rule: For all i < w, (2);, (y); €
UZL. If the rule is violated then, letting i be the least such that either (z); ¢
UL or (y); ¢ UL 1 wins if (z); € UL; otherwise IT wins. If the rule is satisfied
then, letting & be least such that for all i < w, (x);,(y); € UL, I wins iff
desS.
Now set
pk ={S Cor | I wins GF(S)}.
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Notice that u% € OD;G(R)[T]. As before ZL C % and p% is a d7-complete
ultrafilter.
Let

So ={0 <7 | Fr(0) = (<s5,\s) where <5 is a
prewellordering of length A\; and Ly, (R)[T'N As] = To}.

By reflection, Sy € F1.
As before we say that % is strongly normal iff whenever f : Sy — &7 is
such that

{0 €S0 | f(0) < As} €k
then there exists a t € w* such that
{0 €S| f(8) = f1(0)} € nk-

The proof that p% is strongly normal is exactly as before. As in the proof

of Lemma 4.8 we can use pu% to take the ultrapower of HOD e ®ITT 1y
Lo(R)[T] form
Lo (R)[T]\6

As before we get an elementary embedding
jx HOD;e(R)[T] ~ M,

where M is the transitive collapse of the ultrapower. By completeness, this
embedding has critical point é7 and as in Lemma 4.10 the canonical functions
witness that jx(d7) > A. Assuming further that X is such that

LA(R)[T N N < Lo(R)[T]

we have that

As before, strong normality implies that
pi A — [Ihs/uk
ltl<, — [ft];/§
is an isomorphism. It remains to establish T-strength, that is,
<, €TNN iff {6 <6r | fi(6) € TNAs} € pk.

The point is that both
‘t|<)\ eTNA

and
‘t|<,\ Q/ TNA
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are X1(Lo(R)[T],{X, ér,T,R}) and so the result follows by the Reflection
Theorem (Theorem 4.6) and the fact that F& C p%.
Thus,

HOD:LF(')(R) 7] E ZFC + 61 is A-T-strong,
which completes the proof. -

In the above proof DC was only used in one place—to show that the ultra-
powers were well-founded (Lemma 4.8). This was necessary since although
the ultrapowers were ultrapowers of HOD and HOD satisfies AC, the ultra-
powers were “external” (in that the associated ultrafilters were not in HOD)
and so we had to assume DC in V to establish well-foundedness. However,
this use of DC can be eliminated by using the extender formulation of being
a Woodin cardinal. In this way one obtains strength through a network of
“internal” ultrapowers (that is, via ultrafilters that live in HOD) and this
enables one to bypass the need to assume DC in V. We will take this route
in the next section.

5. Woodin Cardinals in General Settings

Our aim in this section is to abstract the essential ingredients from the pre-
vious construction and prove two abstract theorems on Woodin cardinals in
general settings, one that requires DC and one that does not.

The first abstract theorem will be the subject of Sect. 5.1:

5.1 Theorem. Assume ZF 4+ DC + AD. Suppose X and Y are sets. Let
Ox,y = sup{a | there is an ODx y surjection m: w“ — a}.

Then
HODx E ZFC + Ox y is a Woodin cardinal.

There is a variant of this theorem (which we will prove in Sect. 5.4) where
one can drop DC and assume less determinacy, the result being that O x is
a Woodin cardinal in HOD x. The importance of the version involving © x y
is that it enables one to show that in certain settings HODx can have many
Woodin cardinals. To describe one such key application we introduce the
following notion due to Solovay. Assume ZF + DCg + AD + V = L(Z(R))
and work in V = L(Z(R)). The sequence (0, | o < Q) is defined to be the
shortest sequence such that Qg is the supremum of all ordinals « for which
there is an OD surjection of w* onto v, O441 is the supremum of all ordinals
« for which there is an OD surjection of &?(0,) onto 7, O = sup, . O, for
nonzero limit ordinals A < Q, and O = O.

5.2 Theorem. Assume ZF + DCg + AD + V = L(Z(R)). Then for each
a <,
HOD | ZFC + ©441 is a Woodin cardinal.
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The second abstract theorem provides a template that one can use in
various contexts to generate inner models containing Woodin cardinals.

5.3 Theorem (GENERATION THEOREM). Assume ZF. Suppose
M = Le,,(R)[T, A, B]
is such that
(1) M [= Ty,
(2) ©r is a regular cardinal,
(3) T C Owm,

(4) A= (Aq | & < Opr) is such that A, is a prewellordering of the reals of
length greater than or equal to «,

(5) B C w* is nonempty, and
(6) M [= Strategic determinacy with respect to B.

Then
HOD:,]\«/{AB = ZFC + There is a T-strong cardinal.

The motivation for the statement of the theorem—in particular, the notion
of “strategic determinacy”—comes from the attempt to run the construction
of Sect. 4.2 using lightface determinacy alone. In doing this one must sim-
ulate enough boldface determinacy to handle the real parameters that arise
in that construction. To fix ideas we begin in Sect. 5.2 by examining a par-
ticular lightface setting, namely, L[S, z] where S is a class of ordinals. Since
(ODg,) %% = L[S,2] and L[S, ] satisfies AC one cannot have boldface
determinacy in L[S, z]. However, by assuming full determinacy in the back-
ground universe, strong forms of lightface determinacy hold in L[S, x|, for an
S-cone of . (The notion of an S-cone will be defined in Sect. 5.2). We will
extract stronger and stronger forms of lightface determinacy until ultimately
we reach the notion of “strategic determinacy”, which is sufficiently rich to
simulate boldface determinacy and drive the construction. With this motiva-
tion in place we will return to the general setting in Sect. 5.3 and prove the
Generation Theorem. Finally, in Sect. 5.4 we will use the Generation Theo-
rem as a template reprove the theorem of the previous section in ZF + AD
and to deduce a number of special cases, two of which are worth mentioning
here:

5.4 Theorem. Assume ZF + AD. Then for an S-cone of x,

HOD{;[S’I] = ZFC + w25 is o Woodin cardinal.
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5.5 Theorem. Assume ZF + AD. Suppose Y is a set and a € H(wy). Then
for a Y-cone of x,

HODy,, (2}, = ZFC + w?ODY’“’I is a Woodin cardinal,
where [z]y = {z € w¥ | HODy,, = HODy , }.

(The notion of a Y-cone will be defined in Sect. 5.4.) In Sect. 6 these two
results will be used as the basis of a calibration of the consistency strength
of lightface and boldface definable determinacy in terms of the large cardinal
hierarchy. The second result will also be used to reprove and generalize
Kechris’ classical result that ZF + AD implies that DC holds in L(R). For
this reason it is important to note that the theorem does not presuppose DC.

5.1. First Abstraction
5.6 Theorem. Assume ZF + DC + AD. Suppose X and Y are sets. Then
HODx E ZFC + Ox y is a Woodin cardinal.
Proof. By Theorem 3.9,
HODx y = Ox,y is strongly inaccessible

and so
HODx k= Ox,y is strongly inaccessible.

A direct approach to showing that in addition
HODx = Ox,y is a Woodin cardinal

would be to follow Sect. 4.3 by showing that for each T' € #(Ox,y) N ODx
there is an ordinal é7 such that

HODx NVey, | dr is A-T-strong

for each A < ©xy. However, such an approach requires that for each
A < Ox,y, there is a prewellordering of w* of length A which is OD in
Lo, (R)[T] and in our present, more general setting we have no guarantee
that this is true. So our strategy is to work with a larger model (where such
prewellorderings exist), get the ultrafilters we need, and then pull them back
down to Ley , (R)[T] by Kunen’s theorem (Theorem 3.11).

We will actually first show that

HODx y = Ox,y is a Woodin cardinal.
Let T be an element of #(Ox y) N ODx y and let (by Lemma 3.7)

A:<Aa|a<@X,y>
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be an ODxy sequence such that each A, is a prewellordering of w* of
length . We will work with the structure

L@X,Y (R) [Tv A}

and the natural hierarchy of structures that it provides.
To begin with we note some basic facts. First, notice that

Oxy = (@T’A)L(R)[T’A] QL®)[T][A]
(For the first equivalence we have
(O7,4)F®IA > @y y
because of A and we have
(Or.4) @ <oxy

because L(R)[T, A] is ODx y. The second equivalence holds since every ele-
ment in L(R)[T, 4] is OD;(E??[!T] 4 for some y € w”. So the “averaging over
reals” argument of Lemma 3.8 applies.) It follows that our earlier arguments
generalize. For example, by the proof of Theorem 3.10,

Ox,y is strongly inaccessible in HODX®IT:A]

and
O©x y is regular in L(R)[T, A].

(Note that ©x y need not be regular in V. For example, assuming ZF +
DC + ADg, O has cofinality w in V.) Moreover, the proof of Lemma 2.21
shows that

L@X,Y (R)[Ta A] ': To
and the proof of Lemma 2.23 shows that

Loy, (R)[T,A] <1 L(R)[T, A].

This implies (in conjunction with the fact that © x y is regular in L(R)[T, A])
that
{a<Oxy | La(R)[TTa, Ala] < Loy , (R)[T, Al}

is club in © x y and hence that each such level satisfies T}.

So we are in exactly the situation of Sect. 4.3 except that now the prewellor-
derings are explicitly part of the structure. The proof of Theorem 4.15 thus
shows that: For each T' € #(Ox,y) N ODx y there is an ordinal 67 4 such
that

A
HOD;QAX v R4 = 1,4 is A-T-strong

for each A\ < Oy, as witnessed by an ultrafilter 4 on d7 4. These ultrafil-

A
ters are ODLOX v (BT }.
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The key point is that all of these ultrafilters i are actually OD by Kunen’s
theorem (Theorem 3.11). This is where DC is used.
Now we return to the smaller model Le, ,, (R)[T]. Since ©x y is strongly

inaccessible in HOD x there is a set H € {@(@ny)L@X,y(R)[T} such that
HODx N V®x,y = L@X,Y[H].

We may assume without loss of generality that H is folded into 7. Thus

HoD; O _gopy nve,

and this structure contains all of the ultrafilters y1. These ultrafilters can
now be used (as in the proof of Lemma 4.8) to take the ultrapower and so

we have
Lo, (R)[T
HODTOX’Y( di = 1.4 is A-T-strong,

which completes the proof. -

5.2. Strategic Determinacy

Let us now turn to the Generation Theorem. We shall begin by motivating
the notion of “strategic determinacy” by examining the special case of L[S, z]
where S is a class of ordinals.

For x € w¥, the S-degree of x is [z]s = {y € w* | L[S,y] = L[S, z]}. The
S-degrees are the sets of the form [z]s for some z € w¥. Let Zs = {[z]s |
x € w¥}. Define z <g y to hold iff x € L[S, y] and define the notions z =g y,
x <5y, T 25, |x]s <s [y]s in the obvious way. A cone of S-degrees is a set
of the form {[y]s | y =5 xo} for some zy € w”. An S-cone of reals is a set
of form {y € w* | y 25 o} for some xg € w*. The cone filter on Pgs is the
filter consisting of sets of S-degrees that contain a cone of S-degrees. Given
a formula ¢(x) we say that ¢ holds for an S-cone of x if there is a real zg
such that for all y >g xo, L[S,y] = ©(y). The proof of the Cone Theorem
(Theorem 2.9) generalizes.

5.7 Theorem (Martin). Assume ZF + AD. The cone filter on Ds is an
ultrafilter.

Proof. For A C 9Dg consider the game

where I wins iff [z x y]s € A. If I has a winning strategy og then oy witnesses
that A is in the S-cone filter since for y >g 09, [y]s = [o0 * y|ls € A. If I has
a winning strategy 7y then 7y witnesses that Zs ~\ A is in the S-cone filter
since for © >g 79, [2]s = [z * Tols € Ds \ A. -
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It follows that each statement ¢ either holds on an S-cone or fails on an S-
cone. In fact, the entire theory stabilizes. However, in order to fully articulate
this fact one needs to invoke second-order assumptions (like the existence of
a satisfaction relation). Without invoking second-order assumptions one has
the following;:

5.8 Corollary. Assume ZF 4+ AD. For each n < w, there is an z,, such that
forallx >g x,,

L[S,z] = ¢ iff L[S, xn] ¢,

for all L sentences .

Proof. Let (p; | i < w) enumerate the X1 sentences of the language of set
theory and, for each i, let y; be the base of an S-cone settling ;. Now using
AC,(R) (which is provable in ZF + AD) let x,, encode (y; | i < w). =

A natural question then is: “What is the stable theory?”
5.9 Theorem. Assume ZF 4+ AD. Then for an S-cone of x,

L[S, 2] = CH.

Proof. Suppose for contradiction (by Theorem 5.7) that ~CH holds for an
S-cone of z. Let xg be the base of this cone.

We will arrive at a contradiction by producing an = >g xg such that
L[S, z] = CH. This will be done by forcing over L[S, z¢] in two stages, first
to get CH and then to get a real coding this generic (while preserving CH).
It will be crucial that the generics actually exist.

Claim. wy is strongly inaccessible in any inner model M of AC.

Proof. We first claim that there is no w{ -sequence of distinct reals: Let
p be the club filter on w}. By Solovay’s theorem (Theorem 2.12, which
doesn’t require DC) p is a countably complete ultrafilter on w}. Suppose
{ae | @ < wY) is a sequence of characteristic functions for distinct reals. By
countable completeness there is a p-measure one set X, of elements of this
sequence that agree on their nth-coordinate. Thus, (), ., X, has y-measure
one, which is impossible since it only has one member.

It follows that for each v < w}, (27)M < w} since otherwise (7 being

countable) there would be an w} sequence of distinct reals. Since w is
clearly regular in M the result follows. a

Step 1. Let G be L[S, xo]-generic for Col(wf[s’mo] , REIS:@ol) " (By the Claim
this generic exists in V). So

L[S, x0][G] = CH and RES@llG] — RLIS:@o],

The trouble is that L[S, 2o][G] is not of the form L[S, z] for € R. (We could
code G via a real by brute force but doing so might destroy CH. A more
delicate approach is needed.)
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Step 2. Code G using almost disjoint forcing: First, view G as a subset of

wHS) by Jetting A C wE%7) be such that

L[S, z0][G] = L[S, xo, 4].

Now let

(00 | a0 < W5™Ny € L[S, 2]

be a sequence of infinite almost disjoint subsets of w (that is, such that if

a # [ then o, Nog is finite). By almost disjoint forcing, in L[S, ¢, A] there

is a c.c.c. forcing Py of size wf[S’IO’A} such that if H C Py is L[S, zo, Al

generic then there is a ¢(4) C w such that
acA iff ¢(A)No, is infinite.
(See [1, pp. 267-268] for details concerning this forcing notion.) Also

L[S, zo, A|[H] = L[S, xo, A][c(A)] = L[S, zo, c(A)].

Finally,
L[S, 0, ¢(A)] |= CH
as Py is c.c.c., |Py| = wlL[S’m(”A], and L[S, 29, A] E CH, and so there are, up
. L[S,x0,A]
to equivalence, only w; -many names for reals. B

5.10 Corollary. Assume ZF + AD. For an S-cone of x,
L[S, z] = GCH below w) .
Proof. Let xy be such that for all x >g x,
L[S, z] = CH.

Fix  >g5 xo. We claim that L[S,z] = GCH below w}": Suppose for con-
tradiction that there is a A < w} such that L[S,z] | 2* > At. Let
G C Col(w, A) be L[S, z]-generic. Thus L[S, z][G] E —-CH. But L[S, z][G] =
L[S, y] for some real y and so L[S, z][G] = CH. 4

A similar proof shows that ¢ holds for an S-cone of x, the point being
that adding a Cohen subset of wy forces ¢ and this forcing is c.c.c. and of
size wy. See [1], Exercises 15.23 and 15.24.

5.11 Conjecture. Assume ZF + AD. For an S-cone of z,
L[S, z]N VWY

is an “L-like” model in that it satisfies Condensation, [J, Morasses, etc.
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Corollary 5.10 tells us that for an S-cone of z,

QLS. _ (c+)L[S,x] _ WQL[SJ]

Thus, to prove that for an S-cone of =z,
L[S, z] E wy is a Woodin cardinal in HODg,

we can apply our previous construction concerning © provided we have
enough determinacy in L[S, x].

5.12 Theorem (Kechris and Solovay). Assume ZF + AD. For an S-cone of
:1:,
L[S, z] = ODg-determinacy.

Proof. Play the following game

I a,b

11 c,d
where, letting p = (a,b,¢,d), I wins if L[S,p] &£ ODg-determinacy and
L[S,p] & “axd € AP”, where AP is the least (in the canonical ordering)
undetermined ODg[S’p ) set in L[S,p]. In such a game the reals are played
so as to be “interleaved” in the pattern (a(0), ¢(0),5(0),d(0),...). Here the
two players are to be thought of as cooperating to determine the playing
field L[S, p] in which they will simultaneously play (via a and d) an auxil-
iary round of the game on the least undetermined ODg set AP (assuming, of
course, that such a set exists, as I is trying to ensure).

Case 1: I has a winning strategy og.

We claim that for all z >g 0, L[S, ] = ODg-determinacy, which contra-
dicts the assumption that og is a winning strategy for I. For consider such
a real z and suppose for contradiction that L[S, z] &£ ODg-determinacy. As
above let A* € ODé[S’x] be least such that A® is not determined. We will
arrive at a contradiction by deriving a winning strategy o for I in A* from
the strategy o¢. Run the game according to og while having Player II feed
in z for ¢ and playing some auxiliary play d € L[S, z|. This ensures that the
resulting model L[S, p] that the two players jointly determine is just L[S, ]
and so AP = A*. We can now derive a winning strategy ¢ for I in A* from
oo as follows: For d € L[S, z], let o be the strategy such that (o * d); is the
a such that (og * (x,d)); = {(a,b).

(It is crucial that we have II play ¢ = x and d € L[S, x] since otherwise we
would get a x d € AP for varying p. By having II play ¢ = x and d € L[S, ],
IT has “steered into the right model”, namely L[S, x|, and we have “fixed”
the set A*. This issue will become central later on when we refine this proof.)

Case 2: II has a winning strategy 9.
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We claim that for x >g 79, L[S, 2] E ODg-determinacy. This is as above
except that now we run the game according to 7y, having I steer into L[S, z]
by playing x for b and some a € L[S, z]. Then, as above, we derive a winning
strategy for I in w* ~. A” and hence a winning strategy 7 for II in A”. -

To drive the construction of a model containing a Woodin cardinal we need
more than OD g-determinacy since some of the games in the construction are
definable in a real parameter. Unfortunately, we cannot hope to get

L[S, z] = ODg,y-determinacy

for each y since (ODg ) %% = L[S, 2] and L[S, z] is a model of AC. Nev-
ertheless, it is possible to have ODg,-determinacy in L[S, z] for certain
specially chosen reals y. There is therefore hope of approximating a suffi-
cient amount of boldface definable determinacy to drive the construction.
To make precise the approximation we need, we introduce the notion of a
“prestrategy”.

Let A and B be sets of reals. A prestrategy for 1 (respectively 1I) in A
is a continuous function f such that for all x € w®, f(x) is a strategy for I
(respectively II) in A. A prestrategy f in A (for either I or II) is winning
with respect to the basis B if, in addition, for all z € B, f(x) is a winning
strategy in A. The strategic game with respect to the predicates Py,..., Py
and the basis B is the game SG}B;O,...,Pk

I Ay - A, -
II fo - fa

where we require
(1) Ap € ﬂ(w“) n ODPOW-,PM An+1 S ﬁ(w“) N ODP07~~-7Pk7f07~--»fn and
(2) fn is a prestrategy for A, that is winning with respect to B,

and II wins iff II can play all w rounds. We say that strategic definable
determinacy holds with respect to the predicates Py, ..., P, and the basis B
(ST p,..... p.-determinacy) if IT wins SGEO}MP,C and we say that strategic defin-
able determinacy for n moves holds with respect to the predicates Py, ..., Py
and the basis B (STp, ... p,-determinacy for n moves) if II can play n rounds
of SGIB;O,..., p,- When these parameters are clear from context we shall often
simply refer to SG and ST-determinacy.

In the context of L[S, z| the predicate will be S and the basis B will be
the S-degree of x. Thus to say that L[S,x] satisfies STs-determinacy (or
ST-determinacy for short) is to say that IT can play all rounds of the game

I Ay - A, -
I Jo - fa

where we require
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(1) Ao € 2(w*)NODE*, 4,11 € P(w*)NODEEY |, and

(2) fn € L[S, z] is a prestrategy for A,, that is winning with respect to [z]s.

The ability to survive a single round of this game implies that L[S, z] sat-
isfies ODg-determinacy. So this notion is indeed a generalization of ODg-
determinacy.

Before turning to the main theorems, some remarks are in order. First,
notice that the games STp,, . p, are closed for Player II, hence determined.
The only issue is whether II wins.

Second, notice also that if I wins then I has a canonical strategy. This
can be seen as follows: Player I can rank partial plays, assigning rank 0 to
partial plays in which he wins; Player I can then play by reducing rank. The
result is a quasi-strategy that is definable in terms of the tree of partial plays
which in turn is ordinal definable. Since I is essentially playing ordinals this
quasi-strategy can be converted into a strategy in a definable fashion. We
take this to be I's canonical strategy.

Third, notice that each prestrategy can be coded by a real number in a
canonical manner. We assume that such a coding has been fixed and, for
notational convenience, we will identify a prestrategy with its code.

Fourth, it is important to note that if II is to have a hope of winning then
we must allow II to play prestrategies and not strategies. To see this, work in
L[S, z] and consider the variant of SG5 where we have II play strategies 7,
71, ... instead of prestrategies. The set Ag = {y € w* | L[S, Yeven] = L[S, x|}
is ODé[S’I] and hence a legitimate first move for I. But then II's response must
be a winning strategy for I in Ay since I can win a play of Ag by playing x.
However, ODé’[fo’x] = L[S, z] and so in the next round I is allowed to play
any A; € L[S, z]. But then II cannot hope to always respond with a winning
strategy since L[S, z] = AD. The upshot is that if IT is to have a hope of
winning a game of this form then we must allow II to be less committal.

Fifth, although one can use a base B which is slightly larger than [z]g,
the previous example motivates the choice of B = [z]s. Let Ay be as in the
previous paragraph and let fy be II’s response. By the above argument, it
follows that for all z € B, (fo,2) € [z]s and so in a sense we are “one step
away” from showing that one must have B C [x]g.

Finally, as we shall show in the next section, for every OD basis B C w*
there is an OD set A C w* such that there is no OD prestrategy which is
winning for A with respect to B (Theorem 6.11). Thus, for each basis B,
sT8 -determinacy does not trivially reduce to OD-determinacy.

5.13 Theorem. Assume ZF + AD. Then for an S-cone of x, for each n,
L[S, z]  STg-determinacy for n moves,

where B = [z]g.
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5.14 Theorem. Assume ZF 4+ DCg + AD. Then for an S-cone of x,
L[S, z] = STg-determinacy,
where B = [x]s.

Proofs of Theorems 5.13 and 5.14. Assume toward a contradiction that the
statement of Theorem 5.14 is false. By Theorem 5.7, there is a real xy such
that if x > xg,

L[S, z] ET wins SG,

(where here and below we drop reference to S and B since these are fixed
throughout). For x >p zo, let 0® be I's canonical winning strategy in
SGHS - Note that the strategy depends only on the model, that is, if
Yy =g x then ¥ = o”.

Our aim is to construct a sequence of games Gg, G1,...,Gy, ... such that
the winning strategies (for whichever player wins) enable us to define, for

an S-cone of z, prestrategies f§, fi',..., f¥,... which constitute a non-losing
play against o in SGL197],
Step 0. Consider (in V') the game G
a,b
II c,d

where, letting p = (a, b, ¢,d, z9) and A} = o7 (@), [ wins iff a * d € Afj. Notice
that by including xo in p we have ensured that o? is defined and hence that
the winning condition makes sense. In this game I and II are cooperating to
steer into the model L[S, p] and they are simultaneously playing (via a and d)
an auxiliary round of the game A}, where Al is I's first move according to
the canonical strategy in the strategic game SGF (521 T wins a round iff I
wins the auxiliary round of this auxiliary game.

Claim 1. There is a real x1 such that for all x >g x1 there is a prestrategy
f§ that is a non-losing first move for Il against o® in sG]

Proof. Case 1: 1 has a winning strategy o in Gy.

For x 27 og, let f§ be the prestrategy derived from oy by extracting
the response in the auxiliary game where we have II feed in y for ¢, that
is, for y € (w*)H52] let f2(y) be such that f¥(y)*d = a*d where a is
such that (og * (y,d))r = (a,b). Note that f§ € L[S,z] as it is definable
from 0. Let 1 = (09, o) and for x >g x;1 let AY = 0"(&). We claim that
for x >g x1, f§ is a prestrategy for I in A§ that is winning with respect to
{y € w¥ | L[S, y] = L[S, z]}, that is, f¥ is a non-losing first move for II against
o® in SGH57 To see this fix 2 >g 21 and y such that L[S, y] = L[S, z] and
consider d € L[S,z]. The value f§(y) of the prestrategy was defined by
running Gg, having II feed in y for ¢:

I a,b
IT y,d
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By our choice of y and d, we have solved the “steering problem”, that is, we
have L[S, p] = L[S, z] and A} = A where p = (a,b,y,d, zo). Now, f§ is such
that f§(y) * d = a * d where a is such that (o¢ * (y,d))r = (a,b). Since og is
winning for I, we have f§(y) *xd =axd e Af = A§.

Case 2: 11 has a winning strategy 7y in Gp.

Let f§ be the prestrategy derived from 7y by extracting the response in
the auxiliary game where we have I feed in y for b, that is, for y € (w“’)L[S"”]
let fF(y) be such that a % fJ(y) = a * d where d is such that ({(a,y) * 70) 11 =
(c,dy. Let x1 = {19,x0) and for x =g 1 let A = 0(). As before, we have
that for z >g x1, f§ is a prestrategy for II in AF that is winning with respect
to {y € w¥ | L[S,y] = L[S, ]}, that is, f is a non-losing first move for II
against 0@ in SGL57,

Let x1 be as described in whichever case holds. -

Step n 4+ 1. Assume that we have defined games Gy, ..., Gy, reals zg, ...,

ZTn+1 such that g <g 21 <g -+ <g Tnt1, and prestrategies f§, ..., f¥ which
depend only on the degree of x and such that for all x >g z,11,
fox’ M) f"f

is a non-losing partial play for II against ¢* in SGES:l
Consider (in V') the game Gp41

I a,b
I c,d

where, letting p = (a,b,¢,d, x,11) and AfL_H be I’s response via oP to the
partial play f&,..., f2, I winsiff axd € A? . Notice that we have included
Tp41 in p to ensure that o?, ff, ..., fP are defined and hence that the winning
condition makes sense. In this game I and II are cooperating to steer into the
model L[S, p] and they are simultaneously playing an auxiliary round (via a
and d) on A} |, where A? | is I's response via ¢® to II’s non-losing partial
play f,..., fP in the strategic game SGHSP! T wins a round iff he wins the
auxiliary round of this auxiliary game.

Claim 2. There is a real £, 12 such that for all x >g x40 there is a prestrat-
eqy [y such that f§,..., fx, fx. | is a non-losing partial play for II against
o® in SGHS,

Proof. Case 1: 1 has a winning strategy 0,41 in Gp41.

Let f7,, be the prestrategy derived from 0,11 by extracting the response
in the auxiliary game, that is, for y € (w*)*52] let f¥, 1 (y) be such that
[ 1(y) *d = a x d where a is such that (o,41 * (y,d))r = (a,b). Let 2,40 =
(On+1,Tng1) and for & >g Tpyo let AT = o™ ((f§,..., f¥)), l.e. AT, is the
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(n + 2)nd move of I in SGE57 following o against II's play of fZ,..., fZ.
Asin Claim 1, f;7, ; is a prestrategy for I in A7, that is winning with respect
to {y € w | L[S,y] = L[S, x]}, that is, f¥,, is a non-losing (n 4 2)nd move
for II against o® in SGFIS.

Case 2: 11 has a winning strategy 7,11 in Gp41.

Let f7, , be the prestrategy derived from 7, by extracting the response
in the auxiliary game, that is, for y € (w*) 52 let 2. (y) be such that
ax f¥ 1 (y) = axdwhere d is such that ((a,y) * Tn41)1r = (¢, d). Let x40 =
(Tng1,Tny1) and for © >g x40 let AT = o™ ((f§,..., [7)), as above. As
before, we have that for x >g 2,42, f/, is a prestrategy for Il in A7, that
is winning with respect to {y € w* | L[S,y] = L[S, ]}, that is, f7,, is a
non-losing (n + 2)nd move for II against o® in SGF152,

Let z,,4+2 be as described in whichever case holds. —

Finally, using DCg, we get a sequence of reals xg,...,Zy,,... and pre-
strategies f§,...,f¥,... as in each of the steps. Letting z*° >g x,, for all
n, we have that for all x >g x*, f§,..., f¥,... is a non-losing play for II
against o in SG* (52 which is a contradiction. This completes the proof of
Theorem 5.14.

For Theorem 5.13 simply note that DCpg is not needed to define the finite
SeqUeNCes Xq, . .., Tn, Tnt1 and fF, ..., fT for x >g xp41 (as these prestrate-
gies are definable from g, ..., Z,, Tpy1). B

5.3. Generation Theorem

In the previous section we showed (assuming ZF + AD) that for an S-cone
of z,
L[S, z] E ODg-determinacy,

and (even more) that for each n,
L[S, z] = STg-determinacy for n moves,

where B = [z]s. It turns out that for a sufficiently large choice of n this
degree of determinacy is sufficient to implement the previous arguments and
show that

L[S, z] = w is a Woodin cardinal in HODg.

At this stage we could proceed directly to this result but instead, with this
motivation behind us, we return to the more general setting. The main
theorem to be proved is the Generation Theorem:

5.15 Theorem (GENERATION THEOREM). Assume ZF. Suppose
M = Le,, R)[T, A, B]

is such that
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(1) M [= T,
(2) O is a regular cardinal,
(3) T C Oy,

(4) A= (As | @ < Oypp) is such that A, is a prewellordering of the reals of
length greater than or equal to a,

(5) B C w* is nonempty, and
(6) M = STp 4 p-determinacy for four moves.

Then
HODé‘f{A,B = ZFC + There is a T-strong cardinal.

The importance of the restriction to strategic determinacy for four moves
is that in a number of applications of this theorem strategic determinacy for
n moves (for each n) can be established without any appeal to DC (as for
example in Theorem 5.13) in contrast to full strategic determinacy which
(just as in Theorem 5.14) uses DCg.

The external assumption that ©p; is a regular cardinal is merely for
convenience—it ensures that there are cofinally many stages in the strati-
fication of M where Ty holds. The dedicated reader can verify that this as-
sumption can be dropped by working instead with the theory ZF y + AC,, (R)
for some sufficiently large N.

The remainder of this section is devoted to a proof of the Generation
Theorem.

Proof. Let us start by showing that HOD% a,p satisfies ZFC. When working
with structures of the form Lg,, (R)[T, 4, B] it is to be understood that we
are working in the language of ZFC augmented with constant symbols for T,
A, B, and R. The first step is to show that HODTA{AB is first-order over M.
For v < Oy, let
Mv = LW(R)[TF%AF%BL

it being understood that the displayed predicates are part of the structure.
Since O,y is regular and M |= Ty there are cofinally many v < ©j such that
M, =Ty Soasetx e M is OD%‘F/{A,B if and only if there is a v < ©;7 such
that M, = Ty and z is definable in M, from ordinal parameters (and the
constant symbols for the parameters). It follows that OD% a,p and HODé\f{ AB
are Yq-definable over M (in the expanded language).

With this first-order characterization of HODQA«{ a.p all of the standard
results carry over to our present setting. For example, since M = ZF —
Power Set we have that HOD%,\{A,B E ZFC — Power Set. (The proofs that
AC holds in HOD}! ; ; and that for all a < © 7, VoNHODY' , 5 € HOD! , 5
require that OD% a5 be ordinal definable.)

5.16 Lemma. HOD}' , 5 = ZFC.
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Proof. We have seen that HODYA{AyB = ZFC—Power Set. Since HODé‘f{A,B =
AC it remains to show that for all A < Oy,

P(\HOPT a5 ¢ HODY , 5.

The point is that since M = ODy 4 p-determinacy, for each S € OD%AB N
Z(\) the game for coding S relative to the prewellordering A is determined:
Without loss of generality, we may assume Ay has length A. For a < A, let

" and Q5 be the usual objects defined relative to Ay. For e € w®, let

Se ={a <\ UP(Q%,.Q%) # o).

Since A is trivially OD%{A’B the game for the Uniform Coding Lemma for
Z = Q% x w” | a € S} is determined for each S € c@(/\)HODIKAwB. Thus,
every S € :@(A)HODIT\{AB has the form S, for some e € w* and hence

miw? — L@()\)HOD%A,B

er— S,

is an OD:,Af{&B surjection. Thus, ,@()\)HODgAvB € M and so, by our first-

order characterization, i@(A)HOD%AvB € HOD%‘F/{A,B. 4

The ordinal « that we will show to be T-strong in HODé\f{A,B is “the least
stable in M™:

5.17 Definition. Let s be least such that
M, <1 M.

As before the {-like function F' : k — M, is defined inductively in terms
of the least counterexample: Given F'[d let 9(d) be least such that

Mys) = To and there is an X € My(s) N ODst()é),A[ﬁ(a),B and
(%) there is a X7 formula ¢ and a ¢t € w* such that
M) = olt, X, 6, R]
and for all § < §
My s) B @lt, F(3),0,R]
(if such an ordinal exists) and then let F(§) be the <g1]§<5) -least

T[z?(ri),A [19(5),3

X such that (%) holds.
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5.18 Theorem. For all X € OD]TV{A,B, for all X1 formulas ¢, and for all
tew”, if
M | o[t, X, &, R]
then there exists a § < Kk such that
M = ot F(5), 6,R).

Proof. Same as the proof of Theorem 4.6. .

Our interest is in applying Theorem 5.18 to

X = (<A7 )\)

where <) = A, is the prewellordering of length A, for A < ©,;. Clearly X is
OD} 4 5.

Let Ux be a universal 31 (M, {X,x,R}) set of reals and, for § < &, let
Us be the reflected version (using the same definition used for U except with
F(§) and 4 in place of X and k). For z € Ux, let S, = {§ < k| z € Us} and
set

QX:{S§K|E|ZEU)((SZ§S)}.

As before, Z#x is a countably complete filter and in Theorem 5.18 we can
reflect to % x-many points d < k. Let

So ={d <k | F(5) = (Ax,, As) for some As > d}.

Notice that Sy € .Zx. For notational conformity let <s be Ay,. For a < A,
let Qf be the ath-component of <, and, for § € Sy and a < A5, let Qg be
the ath-component of <s (where without loss of generality we may assume
that each A, has length exactly ).

In our previous settings we went on to do two things. First, using the
Uniform Coding Lemma we showed that one can allow parameters of the
form A C k and f : kK — k in the Reflection Theorem. Second, for S C k,
we defined the games G (S) that gave rise to the ultrafilter extending the
reflection filter, an ultrafilter that was either explicitly OD in the background
universe (as in Sect. 4.3) or shown to be OD by appeal to Kunen’s theorem
(as in Sect. 5.1). In our present setting (where we have a limited amount
of determinacy at our disposal) we will have to manage our resources more
carefully. The following notion will play a central role.

5.19 Definition. A set x € M is n-good if and only if II can play n rounds
of (SG?AB’I)M. For y € M, a set x € M is n-y-good if and only if (z,y) is
n-good.

Notice that if M satisfies ST 4, p,,-determinacy for n 4+ 1 moves then
IT’s first move fy is n-y-good. Notice also that if = is 1-y-good then every
OD%I.A,B,z,y set of reals is determined. For example, if S C k is 1-good then
the game for coding S relative to A, using the Uniform Coding Lemma is
determined. Thus we have the following version of the Reflection Theorem.
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5.20 Theorem. Suppose f :x — k, G C k, S C Kk and (f,G,S) is 1-good.
For all X € M N OD%A,Bf for all 31 formulas ¢, and for all t € w*, if

M olt, X,k R, f,G, 5]
then for Fx-many 6 < kK,
M = ¢[t,F(6),6,R, f15,G N6, SN
For each S C &, let GX(S) be the game

I x(0) z(1) x(2)
11 y(0) y(1)

with the following winning conditions: Main Rule: For all i < w, (z);, (y); €
Ux. If the rule is violated, then, letting ¢ be the least such that either
(x); € Ux or (y); & Ux, I wins if (x); € Ux; otherwise II wins. If the rule
is satisfied, then, letting ¢ be least such that for all i < w, (z);, (y); € Us,
I wins iff § € S.

As before, if S € Zx then I wins GX(S) by playing any x such that for all
i <w, (z); € Ux and for some i < w, (x); = z, where z is such that S, C S.
But we cannot set

px = {S C k| T wins GX(S)}

since we have no guarantee that GX (9) is determined for an arbitrary S C k.
However, if S is 1-good then GX () is determined. In particular, GX(S9)
is determined for each S € Z(k) N HODTA«/{A’B. Thus, setting

pw=A{S e Z(k) ﬂHOD%A,B | T wins GX(S)}

we have directly shown that « is measurable in HOD% AB-

It is useful at this point to stand back and contrast the present approach
with the two earlier approaches. In both of the earlier approaches (namely,
that of Sect. 4.3 and that of Sect. 5.1) the ultrafilters were ultrafilters in V'
and seen to be complete and normal in V and the ultrafilters were ODV, the
only difference being that in the first case the ultrafilters were directly seen
to be ODY, while in the second case they were indirectly seen to be ODY
by appeal to Kunen’s theorem (Theorem 3.11). Now, in our present setting,
there is no hope of getting such ultrafilters in V' since we do not have enough
determinacy. Instead we will get ultrafilters in HOD:,Af{ a,p- However, the
construction will still be “external” in some sense since we will be defining
the ultrafilters in V.

We also have to take care to ensure that the ultrafilters “fit together” in
such a way that they witness that x is T-strong. In short, we will define a
(K, \)-pre-extender Ex € HOD:,Af{A,B, a notion we now introduce.

For n € w and z € [On]”, we write z = {z1,...,2,}, where z; < -+ < z,.
Suppose b € [On]™ and a C bis such that a = {b;,,...b;, }, where i; < - - - < i.
For z € [On]", set

Zap = {Ziys - Zip }-
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Thus the elements of z, 4 sit in z in the same manner in which the elements
of a sit in b. For o € On and X C [a]*, let

X ={z€[a|"| zap € X}.
For « € On and f: [a]® — V, let f%": [a]® — V be such that
f0(z) = f(Zap)-

Thus we use ‘a,b’ as a subscript to indicate that z,; is the “drop of z from
b to a” and we use ‘a, b’ as a superscript to indicate that X®? is the “lift of
X from a to b”.

5.21 Definition. Let x be an uncountable cardinal and let A > k be an

ordinal. The sequence
E=(E,|a€[N™)

is a (k, A)-extender provided:
(1) For each a € [\]<¥,
E, is a k-complete ultrafilter on []!*!
that is principal if and only if a C k.
(2) (COHERENCE) If a C b€ [A\]<¥ and X € E,, then X%* € Ej,.

(3) (CouNTABLE COMPLETENESS) If X; € E,, where a; € [A\]<¥ for each
i < w, then there is an order-preserving map

h:lUjc,ai — K
such that h“a; € X; for all 1 < w.
(4) (NORMALITY) If a € [A\]< and f : [x]!%l — & is such that
{ze[W] f(z) <z} € B,
for some ¢ < |a|, then there is a 5 < a; such that
{z € 6] f(zaa0i8)) = 21} € Eauisy
where k is such that g is the kth element of a U {G}.

If conditions (1) and (2) alone are satisfied then we say that F is a (k, A)-
pre-extender.

We need to ensure that the ultrafilter F, on [x]!%l depends on a in such a
way that guarantees coherence and the other properties. The most natural
way to define an ultrafilter E, on [x]/? that depends on a is as follows:
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(1) For Fx-almost all § define a “reflected version” a® € [\s]<“ of the
“generator” a.

(2) For Y € 2([s]'"l) N HODY , p, let
S(a,Y)={6<k|a® €Y}
and set

E,={Y € 2([x]"") nHOD}' , 5 | I wins G¥(S(a,Y))}.

In other words, we regard Y as “FE,-large” if and only if it contains the
“reflected generators” on a set which is large from the point of view of the
game.

The trouble is that we have not guaranteed that S(a,Y’) is determined.
This set will be determined if it is 1-good but we have not ensured this. So
we need to “reflect” a in such a way that S(a,Y’) is 1-good. Now the most
natural way to reflect a € [A]* is as follows: Choose

(Y1, uk) € @, X -+ x Qf

and, for § € Sp, let a® = {a{,a3,...,al} be such that
(y1,---,yk) € Qif X oo X Qii.

There is both a minor difficulty and a major difficulty with this approach.
The minor difficulty is that we have to ensure that there is no essential
dependence on our particular choice of (y1,...,yr). The major difficulty is
that unless (y1,...,yx) is 1-good we still have no guarantee that S(a,Y’) is
1-good. The trouble is that there is in general no way of choosing such 1-
good reals. However, assuming that M satisfies STt 4, g-determinacy for two
moves, there is a way of generating 1-good prestrategies which (for all x € B)
hand us the reals we want. We will prove something slightly more general.

5.22 Lemma. Assume z is (n + 1)-good. Then for each a € [A\|<¥ there is
a function f, : w* — (w*)* such that

(1) fo is n-z-good and

(2) for all x € B,
fa() € Qg x - x Qg

where k = |al.
Proof. The set

Ao = {r € w" | (Teven)i € Qy,,, for all i <k}
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is OD%{A,B and clearly I wins Ag. Let Ag be I’s first move in (SG¥7A7B7Z)M
and let fo be II’s response. Notice that fy is n-z-good. We have

Vo € BYy € w* (fo(z) xy € Ay)
and hence
Vo € BVy € w* (((fo(z) * Y)even)i € Qg,,, foralli < k).
Thus the function
farw® — ()"

T — {(((fO(x) * 0)even)07 ey ((fo(JC) * O)even)k—l) lf xTr € B
0

otherwise

is m-z-good (since it is definable from the n-z-good object fp) and has the
desired property. n

5.23 Definition. Assume M satisfies ST 4 p-determinacy for two moves.
For a € [AJ<¢, we call a 1-good function f, : w* — (w®)l¢l given by
Lemma 5.22, a 1-good code for a.

The importance of a 1-good code f, is twofold. First, any game defined
in terms of f, is determined. Second, for .#x-almost all 6 a 1-good code f,
selects a reflected version a® of @ in a manner that is independent of z € B;
moreover, we can demand that o’ inherits any X1 (M, {X, k, R})-property
that a has. To see this, consider a statement such as the following: For all
z,2 € B, if ai,...,qp are such that

fa(@) € Qg x -+ x Qg

then
fa(2") € Q4, x - x Qf,

and
ap < e < Q.

This is a true X1 (M, {X,R, k}) statement. Thus, for Zx-almost all §, the
statement reflects.

5.24 Definition. Suppose a € [\]<“ and f, is a 1-good code for a. Let

So(fa) = {0 <Kk |Vz,2’ € BVou,...,ay (fa(z) EQ‘;I X e X Qik
—>fa($/) EQil Xoeee XQik/\Oél <"'<Oék)}.

Notice that So(f.) € Fx and So(fs) is OD%A’B’fa.
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5.25 Definition. Suppose a € [A\|<* and f, is a 1-good code for a. For
0 € So(fa) and some (any) x € B, let

af‘a = {|(fa($))1‘<5’ R |(fa($))|a||<5}

be the reflected generator of a.

5.26 Definition. For a € [A\]<¥, f, a 1-good code for a, and Y € @([K]M) N
HODj! 4 5, let
S(a, fuY) = {5 € Solf) | af, € V).
Since f, is 1-good and S(a, fo,Y) is OD%A’BJE it follows that S(a, f4,Y)

is 1-good and hence GX(S(a, f,,Y)) is determined.
For a € [A\|<“ and f, a 1-good code for a, let

Eu(fa) ={Y € 2([x]'""y nHOD}' , 5 | T wins G*(S(a, fa,Y))}
and let
Ex(fa): W<w - HODZJ\“{A,B
a— Eq(fa)-
The only trouble with this definition is that there is no guarantee that Ex (f)

is in HODQJ\«{A’B because there is no guarantee that E,(f,) is in HOD%/{A’B.

We have to “erase” the dependence on the choice of f, in the definition of E,,.
5.27 Lemma. Suppose a € [A\|<* and f, and fa are 1-good codes for a.

Suppose Y € P ([k]l*l) "NHODy! 4 . Then
H)IwmsGXGJG&ﬂﬁ)ﬂ&ﬂﬂ)M@a:¢;b-
(2) I wins GX(S(a, fa,Y)) iff I wins GX(S(a, fa,Y)), and
(3) Ea(fa) = Ba(fa)-
Proof. (1) The statement
Vz € BYi < a| ((fa(2))i =x (fa(2)):)

is a true $1(M, {X, s, R}) statement about f, and f,. So, by reflection, the
set {d € So(fa) NSo(fa) | a‘}a = af;a} is in .#x and hence in px.

(2) Assume I wins GX(S(a, fa,Y)). We have that I wins the game in (1).
Let GX(So(fa, fa)) abbreviate this game. So I wins GX(S(a, f,,Y) N
So(fas fa))- But

S(a,fa,Y) mSO(faafa) - S(a,fa,Y).

So I wins GX(S(a, f,Y)). Likewise if I wins GX(S(a, fa,Y)) then I wins
GX(S(a, fu,Y)).
(3) This follows immediately from (2). -
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Thus, we may wash out reference to f, by setting

Eq =({E.(fa) | fa is a 1-good code of a}
= FE,(f.) for some (any) 1-good code f, of a.

Let

Ex : [\]*¥ — HOD}, 5

a— E,

Note that E, € OD}!, 5 and E, C HOD}!, 5. Thus, E, € HOD}', 5 and
Ex € HOD}, p.

Our definition of the extender Ex presupposes that for each a € [}]
there is a 1-good code f, of a and the existence of such codes is guaranteed
by the assumption that M satisfies ST 4 p-determinacy for two moves. Thus
we have proved the following:

<w

5.28 Lemma. Assume that M satisfies STt a,p-determinacy for two moves.
Then Ex is well-defined and Ex € HOD%A,B-

It is important to stress that although the extender Ex is in HOD% B 1t
is defined in M. For example, the certification that a certain set Y is in E,
depends on the existence of a winning strategy for a game in M. In general
both the strategy and the game will not be in HOD%A’B. So in establishing

properties of Ex that hold in HODJQY{ 4,5 We nevertheless have to consult the
parent universe M.

5.29 Lemma. Assume that M satisfies STt 4, p-determinacy for two moves.
Then
HOD%A,B E Ex is a pre-extender,

that 1s, HOD%/{AB satisfies
(1) for each a € [A]<¥,

(a) E, is a k-complete ultrafilter on [k)1*l and

(b) E, is principal iff a C K, and
(2)ifaCbe[N< and Y € E, then Y*° € E,.

Proof. (1)(a) It is easy to see that F, is an ultrafilter in HOD%‘F/{AB. It

remains to see that E, is k-complete in HOD%‘F/{AB. The proof is similar to
that of Lemma 4.7. Let f, be a 1-good code of a such that E, = E,(f,) and
recall that

Eo(fa) ={Y € 2([x]"?) nHODY' , 5 | I wins G¥(S(a, fa, Y))}.
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Consider {Y, | a < v} € HOD%AB such that v < k and for each a < 7,
Y, € Eo(fa).- We have to show that

Y =N{Ya | @ <7} € Eulfa)

The key point is that

S(a’fmy) = ﬂ{S(aamea) ‘ a < 7}

and so we are in almost exactly the situation as Lemma 4.7, only now we
have to carry along the parameter f,.

Since Y € HODY, 5, S(a, fa,Y) € OD}/y pf.. Since f, is 1-good it
follows that GX(S(a, f,,Y)) is determined. Assume for contradiction that I
does not win GX(S(a, f,,Y)) and let o’ be a winning strategy for I in GX (k.
S(a, fa,Y)). We will derive a contradiction by finding a play that is legal
against ¢’ and against winning strategies for I in each game G (S(a, fa, Ya)),
for a < .

As in the case of Lemma 4.7, for the purposes of coding the winning strate-
gies (in the games GX(S(a, fa,Ys)) for a < ) we need a prewellordering of
length ~ which is such that in a reflection argument we can ensure that it
reflects to itself. For this purpose, for § < k, let

Q5=U5\U{U§‘§<(5}.

The sequence

(Qe | € < K)

gives rise to an ODql\f{ 4,5 brewellordering with the feature that for 7 x-almost
all ¢,

(Qe 1€ <0) =(Qe | € <o)

and, by choosing a real, we can ensure that we always reflect to some such
point § > ~.
Now set

Z ={(z,0) | for some a <, x € Q4 and
o is a winning strategy for T in G¥(S(a, fa,Ya))}.

This set is OD% A.B, 1., hence determined (as f, is 1-good). So the game in
the Uniform Coding Lemma is determined. The rest of the proof is exactly
as before.
(b) By r-completeness, F, is principal if and only if there exists b € [x]!*!
such that
E,={Y € 2([x]"ynHOD} , 5 |be Y}

Suppose that a € [/i]"". We claim that b = a witnesses that E, is principal.
Let f, be a 1-good code of a. For .Zx-almost all §, a‘sfa = a. So, for Y €
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2([x]1*) "HODZ! 5 p,

Y € B, < 1 wins GX(S(a, f.,Y))
— I wins G* ({0 € So(f.) | afca =a€Y})
—a€Y.

Suppose that a ¢ [k]l*l. We claim that no 8 € [«]!%! witnesses that E, is
principal. Consider b € []/*! and let f, be a 1-good code for b and let f, be
a 1-good code for a. For .%x-almost all §, a‘}a #* b‘sfb =b. Let S be the set of
such ¢ and let Y = {a‘}a |5 €S} ThenY € E, and b ¢ Y. Hence E, is not
principal.

(2) Suppose a € b € [A\]<“ and Y € E,. So I wins GX(S(a, fa,Y)) for
some (any) 1-good code f, of a. We must show that I wins GX (S(b, f;, Y*?))
for some (any) 1-good code f;, of b. Let f, be a 1-good code of b and consider
the statement describing the manner in which a sits inside b. This is a
Y (M, {X,R,«}) statement about f, and f,. So, by reflection, there exists
an So(fa, fo) € Fx such that for all 6 € So(fa, fb),

(a5, ,b5,,€) = (a,b,€).

We claim that S(a, fo,Y) N So(fa, f5) C S(b, fo, Y*P). Let § be an ordinal in
S(a, fa,Y) N So(fas fo). We have afca €Y and <a§”a7b§%’ €) = (a,b, €). Since,
by definition,

Yot ={z € k] | z0p € YD,

this means that b‘}b € Y%t (as (b?b)a,b = a‘}a), that is, 6 € S(b, fp, Y*P).
Finally, since I wins G* (S(a, fa,Y) N So(fa, f5)), I wins GX(S(b, fp, Y?)).
_|

5.30 Lemma. Assume that M satisfies STt 4 p-determinacy for two moves.
Then

HOD%A,B = Ex is countably complete.

Proof. Let {a; | i < w} € HOD%AB and suppose that for each i < w,
X; € E,,, that is, I wins GX(S(a;, fa;,X:)) for some (any) 1-good code
fa, of a;. Let S = N, S(ai, fa,, Xi). We need to ensure that G¥(S) is
determined. The point is that since {a; | i < w} € HOD%AB7 a slight
modification of the proof of Lemma 5.22 shows that there are f,, such that
(fa, | i < w) is 1-good. So G*X(S) is determined. As in the proof of the
completeness of E, we have that I wins GX(9).

As in the proof of coherence there is a set So(fays- -+ fa,s---) € Fx such
that for all § € So(fayy---s fans---),s
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Fix 6 € S0 So(fayrs- - s fars-..). Set
hita; — K
(ai); = (@)}, );-
Since 6 € So(fays---» fans---), the function
h = Ui<whi : Ui<wa’i —k

is well-defined. Since § € S(a;, fo,, Xi), h“a; = (ai)fcab € X;. However, h

may not belong to HOD%AB. To see that there is such an A in HODQJ\«/{AB
consider the tree .7 of attempts to build such a function. (The nth level of
T consists of approximations h* : | J;_,, @ — & and the order is by inclusion.)
Thus 7 € HOD%A,B and the existence of h in V shows that 7 is ill-
founded in V. But well-foundedness is absolute, so some such A must belong
to HOD}' , 5. s

It remains to establish that
HOD%A)B E Ex is normal.
This will follow from an analogue of the earlier strong normality theorems.

5.31 Definition. Assume M satisfies STt 4 p-determinacy for two moves.
For a < A, let fo : w¥ — w® be a 1-good code of {a} (as in Lemma 5.22)
and (as in Definition 5.25), for § € So(fa), let afca be the “reflected version”
of a. We call the function

gfa : So(fa) — K
(SHO[?Q

the canonical function associated to f,.

Notice that the manner in which the ordinal o/}a is determined is different
than in Sect. 4. In Sect. 4 we just chose t € Q, and let o be unique such
that ¢t € Qié. Notice also that gy, is 1-good since it is OD%AB,JIQ.

The statement and proof of strong normality are similar to before, only
now we have to ensure that the objects are sufficiently good to guarantee
the determinacy of the games defined in terms of them. The real parameters
that arise in the proof of strong normality will now have to be generated
using the technique of Lemma 5.22 and every time we use this technique
we will sacrifice one degree of goodness. There will be finitely many such
sacrifices and so it suffices to assume that M satisfies STt 4, p-determinacy
for n moves for some sufficiently large n. Furthermore, there is no loss in
generality in making this assumption since in all of the applications of the
Generation Theorem, one will be able to show without DC that M satisfies
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STr a,p-determinacy for n < w. As we shall see there will in fact only be
two sacrifices of goodness. Thus, since we want our final object to be 1-good
(to ensure that the games defined in terms of it are determined) it suffices to
start with an object which is 3-good.

5.32 Theorem (STRONG NORMALITY). Suppose g : k — K is such that
(1) g is 3-good and
(2) T wins GX({§ € So | g(6) < As}).

Then there exists an o < X\ such that

I wins G* ({3 € So(fa) | 9(6) = g5.(9)}),

where fq is any 1-g-good code of a.

Proof. We begin with a few comments. First, note that since g is 3-good, by
Lemma 5.22 we have that for each av < A there is a 1-g-good code f, of a (in
fact, there is a 2-g-good code) and hence each game GX ({8 € So(fa) | 9(0) =
g7, (0)}) is determined. The only issue is whether I wins some such game.

Second, notice that a is uniquely specified. For suppose f4 is a 1-g-good
code of & such that I wins the corresponding game. If a < &, then

{6 € So(fa) N So(fa) | 97, (0) < g7,(6)} € Fx

and I wins GX(S) where S is this set. But then I cannot win both

G ({6 € So(fa) | 9(0) = g7.(8)})

and
GX ({6 € So(fa) | 9(6) = g5, (8)})-

Third, it will be useful at this point to both list the parameters that
will arise in the proof and motivate the need for assuming that g is 3-good.
In outline the proof will follow that of Theorem 4.12. The final game in
the present proof (the one involving e;) will be defined in terms of three
parameters: g, f, and eg, corresponding respectively to f, y,, and eg from
Theorem 4.12. To ensure the determinacy of the final game we will need to
take steps to ensure that (g, fy,€o) is 1-good. Now, the parameter ey will be
obtained by applying the technique of Lemma 5.22 to the parameter (g, f;)
and so we will need to take steps to ensure that this parameter is 2-good.
And the parameter f,, will in turn be obtained by applying the technique of
Lemma 5.22 to the parameter g and so we have had to assume from the start
that g is 3-good.

We now turn to the proof proper. Suppose g : kK — & is such that

(1.1) g is 3-good and
(1.2) T wins GX ({6 € So | g(8) < As}).
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Assume for contradiction that for each oo < A and for each 1-g-good code f,
of a,

(2.1) T does not win G* ({6 € So(fa) | 9(6) = gr.(0)}),

and hence (since each such game is determined, as f, is 1-g-good)

(2:2) Twins GX({0 € So(fa) | 9(6) # 5. (6)})-
Step 1. Let

n=min ({8 <X |Iwins GX({5 € So(fs) | 9(6) < g,(5)})
for each 1-g-good code f3 of B})

if such [ exist; otherwise let n = A. (So if there are such  then 7 is a limit
ordinal.) Notice that

(3.1) whenever a < i and f,, is a 1-g-good code of «,

Lwins GX ({0 € So(fa) | 9(8) > 97.(8)}),

which is the desired situation. By Lemma 5.22, let
fn be a 2-g-good code of 7.

For notational convenience, for 6 € Sy(fy), let 15 be nfcn. By the definition
of n, Twins GX ({6 € So(fy) | 9(8) < gy, (8)}). Now update Sy to be SoN{4 €
So(fn) 1 9(6) < g5,(6)}. We will work on this “large” set. Notice that Sp is
ODé\“/{A,B,g,fT,' If n = A then ns = 6 and we may omit mention of f, in what
follows.

For convenience let us write “S € pux” as shorthand for “I wins GX(S9)”.
To summarize:

(4.1) g is 3-good,
(4.2) (g, fy) is 2-good (First Drop in Goodness),
(43) SO is ODYJ\{A,B,g,f,ﬂ

(4.4) So € px and for all § € Sp, g(d) < gy, (9), and

(4.5) for all & < n and for all 1-g-good codes f, of a,

{0°€ So(fa) | 9(0) > 97.(9)} € px.

Step 2. We now establish the “disjointness property”.
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Let
7' ={(z,(y,0)) | € Q} for some a < 1,
y codes a 1-g-good code f, of o
such that = € ran(f,| B), and
o is a winning strategy for I in
GX ({8 € So(fa) | 9(8) > g1.(8)})}-
We have

(5.1) Z'is OD3!y o s, and Z' C Q% x w*, and
(5.2) for all a < 7,
70 (Q5 x w*) £ 2,
by (3.1).
Since (g, fy) is 2-good the game in the proof of the Uniform Coding Lemma

(Theorem 3.4) is determined. So there is an index e € w* such that for all
a <,

(6.1) U(Q2,, Q) € Z' N(Qf x w*) and

(6.2) UP(Q%,, Q%) # 2.

The trouble is that we have no guarantee that such an index e has any degree
of (g, fy)-goodness; yet this is essential for the present proof since we shall go
on to define games in terms of this index and we need some guarantee that
these games are determined. As usual, we retreat from the reals we want to
the good functions that capture them and this will lead to the second (and
final) drop in goodness. Let

Ay = {x € W* | Teven is such that for all a < 7
(1) U2, (Q%,, Q%) € Z' N (Qf x w*) and

Zeven

(2) UP) (Q%,. Q) # o).

So Ag € OD7 4 o .. Now have I play Ao in (SGF 4, ;)™ and let fo
be II's response. Since (g, f,) is 2-good, II’s response fy is 1-(g, f,)-good.
Furthermore,

(7.1) Yz € BVy € w¥ (fo(x) xy € Ag), which is to say,
(7.2) Yz € BVy € w* (fo(x) * Y)oven 18 an index as in (6.1) and (6.2), hence

2 K ARy .
(7.3) Ya <, U,en U((fz(x)*O)even( %o, @) isasin (6.1) and (6.2).

The union in (7.3) is itself 31 (B, Q% ,, Q%) and so there is an ey € w* which
is definable from fy (and hence inherits the 1-(g, f,)-goodness of fy) such
that
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(8.1) (g, fy,eo) is 1-good (Second Drop in Goodness) and
(8.2) for all a < 7,
(1) U (B,Q%,. Q%) € 2/ N (Q4 x w*) and
(2) U (B. Q% Q1) # 2.
Omitting Z’, (8.2) is ¥1(M,{X, &, R, f,e0}). So, for Fx-almost all ¢,
(8.3) for all a < ns,
(1) US(B,Q%,, Q%) € (Q x w) and
(2) U (B, QLo @2) # 2.

The set S7 of such § is X1(M,{X,k,R, f;,e0}). Let Sy = 57 N Sp. Since
S1 € ux and Sy € ux, it follows that S; € pux. Notice also that Sy is
(M, {X,k,R,g, fy,e0}). For § € S1U{k} and o < 15, let

2y =UQ(B,Q%,,Q)) and

Z§ — U Z5

a<lns Tar

Claim A (DISJOINTNESS PROPERTY). There is an So C Sy such that Sy € px
and for 61,02 € Sa U{Kk} with §; < d3 < k&,

Zhnzi =0
for all a € [g(61),ms,) and B € [0,75,).
Proof. We begin by establishing a special case.
Subclaim. For px-almost all §,
ZNZi=0
for all a € [g(0),ns) and B € [0,7n).
Proof. Let
G={6€81|2Z,nZ;=2 forall a € [g(d),ns) and 3 € [0,7)}

be the set of “good points”. Our aim is to show that G € ux. Note that G
is OD%A’B,g’fmeo. Since (g, f,, €o0) is 1-good, GX(G) is determined. Assume
for contradiction that G ¢ pux. Then, by determinacy, kK N~ G € ux. Since
Sy € px, we have (kN G)N Sy € pux. Let ¢/ be a winning strategy for I in
GX((k~G)NSy).

We get a contradiction much as before: We can “take control” of the games
to produce a play z and an ordinal Jy such that

(9.1) z is a legal play for II against o’ and dj is the associated ordinal and
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(9.2) z is a legal play for II against each o € (proj,(Z%)); and in each
case g is the associated ordinal.

This will finish the proof: By (9.1) and the definition of G, there is an
ag € [9(d0),7m5,) and a By € [0,7) such that Z3NZ5 # 2. Fix (0, (Yo, 00)) €
Z% N Zf;, . Since (2o, (Yo, 00)) € Z5 € Z'N(Qf, x w*) we have, by the defi-

0

nition of Z’, xg € Qf,, yo codes a 1-g-good code fg, of By, z¢ € ran(fg,[ B),
and oy is a winning strategy for I in S({d € So(f3,) | 9(6) > gy,,(d)}). Since
(0, (Y0, 00)) € Z3, 00 € (projy(Z%))1. Now, by (9.2), z is a legal play for
IT against oy with associated ordinal g, and since o is a winning strategy
for Iin S({d € So(fs,) | 9(0) > g¢,,(0)}), this implies

(10.1) do € {6 € So(f5,) | 9(5) > g5, ()},
that is, g(do) > gy,, (do). We now argue
(102) gfﬁo (50) = o,

which is a contradiction since g > g(do). Recall that by definition gy, (do) =
| f30(2)|<s, » where z is any element of B. Since we arranged zo € ran(fg, [ B)
and since (2o, (yo,00)) € Z22, this implies that 91s, (00) = |f5,(7)|<;s, = a0,
where x is any element of B. Thus, a play z as in (9.1) and (9.2) will finish
the proof.

The play z is constructed as before:

Base Case. We have
(11.1) Yy € w¥ ((¢" * y)1)o € Ux and
(11.2) Yy € w¥ Vo € (projy(Z%))1 ((o *y)r)o € Ux.

This is a true 3¢ (M, {X,k,R,0’, e, fy}) statement. So there is a 29 € Ux
such that zy <7 (¢’, e, fy) and for all ¢ if zo € Us then

(11.3) Yy € w¥ ((¢/ *y)1)o € Us and
(11.4) Vy € w* Vo € (projy(Z2))1 (o *y)1)o € Us.

(n+ 1)st STEP. Assume we have defined z, ..., z, in such a way that
(12.1) Vy € w* (Vi < n(y)i = 2z — (0" *y)1)nt1 € Ux) and

(12.2) Yy € w0 € (pron(Z"))l,(W <ni =2z — (0*Y)1)nt1 €
Ux).

This is a true X1 (M, {X,k,R, 0, €0, fy, 20, . . ., 2n}) statement. So there is a
zn+1 € Ux such that z,1 <7 2, and for all if z,,;1 € Us then

(12.3) Yy € w¥ (Vz’ <n)i=2z— (0" *Y))nt1 € U5) and

(12.4) Vy € w® Vo € (proj,(Z%)): (Vi <ny)i=2 — (0*Y))nt1 € Ug).
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Finally, let z € w* be such that (z); = z; for all i € w and let &g be least such
that (z); € Us, for all i € w. Notice that by our choice of z,, for n < w, no
DC is required to construct z. We have that for all i € w,

(13.1) ((o/ *2)1); € Us, by (11.3) and (12.3) and
(13.2) ((o* 2)1); € Us, for all o € (proj,(Z°)); by (11.4) and (12.4).
So we have (9.1) and (9.2), which is a contradiction. -
By the subclaim,
(14.1) V6 € GVa € [g(d),m5) VB € [0,1) (Z2 N 7z = 2).

This is a true ¥ (M, {X, &, R, (f,, e0), 9, G}) statement ¢. Notice that since
G is ODZIM,A,B,g,fmeO and (g, fy,e0) is 1-good, it follows that (G, g, fy,e€o) is
1-good. In particular, (G, g) is 1-good, and so Theorem 5.20 applies (taking
(fy:€o) for the real ¢ in the statement of that theorem) and we have that

(14.3) for .Zx-almost all d,

(1) M = o[(fy,e0), F(d2), 02, g 02, G N J2], that is,
(2) Vo1 € GNdaVa € [g(61),m5,) VB € [0,75,) (2 N Z = 2).

Let S% be the set of such d2 in (14.3) and let S; = S, NG. Since S) € Fx C
ux and G € ux, we have that Sy € puyx. Hence S is as desired in Claim A.
Also, S is OD! 4 5 s

797.fn>50 :

Notice that two additional parameters have emerged, namely, G and S,
but these do not lead to a drop in goodness since

M _ M _ M
(15.1) ODT 4,B,g.1,.c0.G.5: = ODT,A,B,g.1,c0.6 = ODT, 4,891, .c0» a0 50

(15.2) (g, fn,e0,G, S2) is 1-good.

Step 3. We are now in a position to “compute g”.
For § € S, let

PP =U{Z} |5 eSninacg@) )
By (15.1), P® € OD7.4 g 1, co-

Claim B (TAiL COMPUTATION). There exists an index ey € w* such that
for all § € S,

(1) U (P, 23) C 72 for all o € [0,75),

(2) UD(P?, 28 5)) = @, and

(3) UD(P5,Z8) # & for a € (9(8),ms)-
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Proof. As before it suffices to show (2) and (3’) Ue(f)(P‘S, 7Nz # o for

a € (9(6),ns)-
Let

G={ecw’ |Vie S (UP(P, Z)s) =2)}

Toward a contradiction assume that for each e € G, (3') in the claim fails for
some ¢ and «. For each e € G, let

a. = lexicographically least pair (4, ) such that
(1) § € 5o,
(2) g(8) < a <75, and
B) UP(P°,Z5)NZ) = 2.

Now play the game

where IT wins iff (x € G — (y € G A ay >1ex ).

The key point is that this payoff condition is ODQA{A}B’g’fWEO, by (15.1),
and hence, the game is determined, since (g, fy, eo) is 1-good.
The rest of the proof is exactly as before. —|

From this point on there are no uses of determinacy that require further
“joint goodness”.

Claim C. There exists an oy < n such that
(1) UD(Pr, Z5) = @ and
(2) Uéf)(P”,Zg) #+ & for all a € (ag,n), where
Pr=U{Z} | 6 € Sy Aa e g(d),ms)}-
Proof. The statement that there is not a largest ordinal oy which is “empty”
is 3 (M, {X,x,R,(fy,e0,€1),9,G,S2}). Since (g, fy,e0) is 1-good and G
and Sy are OD%AB,MCMO, it follows that (g,G, S2) is 1-good. Thus, the

Reflection Theorem (Theorem 5.20) applies and we have that for #x-many J,
the statement reflects, which contradicts Claim B. B

Let o be the unique ordinal as above and let f,, be a 1-g-good code of
ag (which exists by Lemma 5.22). The statement

(16.2) Vz € B fo,(z) € QF where « is such that
(1) U2 (P*, z%) = @ and
(2) USSP, 25) # @ for B € (a,ms).
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is X1 (M, {X, &, R, (fy, fao,€0.€1),9,G,S2}). Since (g,G, S2) is 1-good, the
Reflection Theorem (Theorem 5.20) applies and hence for .Zx-almost all &
the statement reflects. Let S5 € Fx be this set. Let S3 = S5N Sz, So
Ss € pux. By Claim B and Claim C, for 6 € S5 the ordinal « in question is
9(6). So I wins G*({6 € So(fay) N S3 | g(6) = gr.,(6)}) and hence I wins
GX ({0 € So(fay) | 9(0) = 9fay (6)}). This game is determined since f,,, is
1-g-good.
To summarize:

(17.1) fo, is 1-g-good and
(17.2) T wins G* ({0 € So(fa,) | 9(8) = g1.,,(0)}),

which completes the proof of strong normality. -

Since every g : kK — K in HOD:,A{A)B is 3-good and since in the context of
the main theorem we assume that M satisfies STr 4, p-determinacy for four
moves, we have shown:

5.33 Corollary. Suppose g : K — K is in HOD%/{A,B and such that I wins
GX({6 € Sy | g(6) < As}). Then there exists an o < \ and a 1-g-good code
fa of a such that

I wins GX({0 € So(fa) | 9(8) = gs.(6)}).

5.34 Lemma (NORMALITY). In HODQJ\«{A’B cIf a € [N<¢ and f: [k]lY — &
is such that
{ze W f(z) <z} € Eq

for some i < |a|, then there is a § < a; such that
{z € [k]" P | fz0008)) = 26} € Bavgy
where k is such that [ is the kth element of a U {G}.

Proof. The proof just involves chasing through the definitions: Suppose
f okl — K is a function in HOD%‘F/{A,B such that for some i < |al,

{z e[| f(2) < z)} € E,.

Since M satisfies STt 4 p-determinacy for four moves, f is 4-good. So, by
Lemma 5.22, there is a 3-good code f, of a. Hence

(1.1) T wins GX ({8 € So(fa) | f(a?a) < (a‘}a)i}).
Let

ffir—k

5 {f(afca) if § € So(fu)

0 otherwise.

So f* € HOD%A’BJH and hence f* is 3-good. By Theorem 5.32,
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(1.2) there is an fg such that

(1) fgisa l-f*-good code of S,
(2) Twins GX({0 € So(fs) | [*(0) = g7,(6)}), and
(3) Twins GX({6 € So(f3) N So(fa) | f(a},) = g5, (5)})-

Note that 8 < a; since if 8 > a; then for Fx-almost all 0, g, () > (a‘}a)i
and we get that I wins GX ({6 € So(fz) N So(fa) | f(a‘sfa) > (a‘}a)i}), which
contradicts (1.1).

Let k be such that 8 = (aU{3})r. Let fougsy be a 1-good code of aU{3}.
Note that

(2.1) for .Zx-almost all 9,

((aU {5})§‘au{m)k = 955(9)

and

(2.2) for .Zx-almost all d,

) )
((a U {ﬁ})fau{ﬁ})a,au{ﬁ} = ay,

and, moreover, I wins on these sets (since the parameters in the definitions
are 1-good). So (1.2)(3) yields

(3.1) I wins GX({5 S So(fau{ﬁ}) | f(((a U {6})5fau(ﬁ})a7aU{ﬂ})
= ((aU {ﬁ})f"au{g})k})’ that is,

(3.2) {Z € [R]‘au{ﬁ}l | f(Za,au{ﬁ}) = Zk} S Eau{g},
as desired. -

We are now in a position to take the “ultrapower” of HODTM’A’B by Ex.
It will be useful to recall this construction and record some basic facts con-
cerning it. For further details see Steel’s chapter in this Handbook.

Let

D = {(a, f) e HOD}!, 5 |a € [N|<* and f : 1]l — HOD}, 5}.
We get an equivalence relation on D by letting
<a,f> ~E <b, 9> €D« {Z € [fﬂlawl | f(Za,aub) = Q(Zb,aub)} € Equp-

Let [a, f] be the elements of minimal rank of the equivalence class of (a, f).
Let Ult be the structure with domain

{la, 11 {a, f) € D}
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and membership relation defined by
[a, f] CEx [b7 g] e {Z € [K]Ian‘ | f(za,aub) € g(zb,aub)} € Equp.

Since HOD:,A{ 4, satisfies AC, Log’s theorem holds in the following form: For
all formulas ¢(x1,...,x,) and all elements [a1, f1],..., [an, fn] € Ult,

Ult |= @Hala fils-oslan, fn]]
= {z e [ |HODY 4 5 = ¢lfi(2a1.0)s - s Fu(2a,,0)]} € Eb,

where b = |, ¢;¢,, a;- It follows that
ji : HODY 4 g — Ul
x— [D, crl,

where ¢, is the constant function with value z, is an elementary embedding.
The countable completeness of Ex ensures that Ult is well-founded and it is
straightforward to see that it is extensional and set-like. So we can take the
transitive collapse. Let

m:Ult - Mx

be the transitive collapse map and let
je : HOD} 4 p — Mx

be the elementary embedding obtained by letting jg = 7 o j. The -
completeness of each E,, for a € [A]<¥, implies that jg is the identity on
HOD% 4.5 N Vi and that & is the critical point of jg. Normality implies that
for each a € [A]<¥, 7([a, z — z]) = a4, for each i such that 1 < i < |a|. In
particular, if & < A then a = w([{a}, z — Uz]). It follows that A < jg(k).

5.35 Lemma (T-STRENGTH).
HOD%AB = ZFEC + There is a T-strong cardinal.
Proof. We already have that
HOD}, p k= ZFC,

by Lemma 5.16. It follows that there are arbitrarily large A < ©j; such that

M
HODY!, 5 NV, P42 = Ly[4),

where A C X and A € HOD%A’B. Let A be such an ordinal and let , jg,
etc. be as above. We have that jg(x) > A and it remains to show that

HODY 4 5
V)\ A8 C My
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and
je(TNr)NA=TnNA.

The proof of each is the same. Let us start with the latter. We have to show
that for all o < A,
a€jp(TNk)—acT.

We have
a€jp(Tnk) < w({a}t,z—Uz]) € n([D,ernx)

{a},z = Uz] €py [, crns]
— {z€lx]' |Uz €T Nk} E Efq.

!

So we have to show that
aeT — {{z}|z€ TNk} € By

Let fray be a 1-good code of {a}.
Assume o« € T. We have to show that

I wins G¥ (S({a}, fray, {{z} | z € TN K})).

The key point is that the statement “for all z € B, | frqa}(2)|<, € T is a true
Y1 (M, {X, kR, fray}) statement. So the set S of 0 to which this statement

reflects is in #x. Since S € OD%A,B,f{a} and froy is 1-good, G¥(9) is
determined and I wins. But

S({a}; fray {zH [ 2 € TN RY) = So(fra3) NS

and so I wins this game as well.
Assume o € T. We have to show that

I does not win G* (S({a}, f(a}, {{z} | 2 € TN K})).

Again, the point is that the statement “for all x € B, |f{a)(z)|<, & T7 is
a true X1 (M, {X, K, R, f{o}}) statement. So this statement reflects to .Fx-
almost all §, which implies that I cannot win the above game.

Exactly the same argument with ‘A’ in place of ‘T’ shows that

Jp(ANK)NA=ANN,

and hence that

M
vy OUTAP — LL[A] € My,

which completes the proof. B

This completes the proof of the Generation Theorem. -
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5.4. Special Cases

We now consider a number of special instances of the Generation Theorem.
In each case all we have to do is find appropriate values for the parameters
On, T, A, and B. We begin by recovering the main result of Sect. 4.

5.36 Theorem. Assume ZF + AD. Then
HODI® = oL®) s o Woodin cardinal.

Proof. For notational convenience let © = ©L®) Our strategy is to meet
the conditions of the Generation Theorem while at the same time arranging
that M = Lo(R)[T, A, B] is such that

HOD}, 5 = HOD*™ N Vg,

We will do this by taking care to ensure that the ingredients T', A, and B are
in HOD*® while at the same time packaging HOD*® N Vg as part of T.
It will then follow from the Generation Theorem that

HOD*® N vg = ZFC + There is a T-strong cardinal,

and by varying T the result follows.

To begin with let ©;; = ©L®) and, for notational convenience, we con-
tinue to abbreviate this as ©. By Theorem 3.9, O is strongly inaccessible in
HOD*®)_ Also,

HODY® Vg = HOD e ®),

by Theorem 3.10. So we can let H € 2(0) NHODY® code
HOD*® N V.

Fix T € 2(0) N HODY® and let T € 2(6) N HODL® code T and H.
By Lemmas 3.7 and 3.8, there is an OD® sequence A = (4, | a < ©) such
that each A, is a prewellordering of reals of length «. Let B = R.
Let
M = L(—)(R)[Tv A, B]

where ©, T, A, and B are as above. Conditions (1)—(5) of the Generation
Theorem are clearly met and condition (6) follows since L(R) satisfies AD
and M contains all reals. Moreover, since we have arranged that all of the
ingredients T, A, and B are in OD*® and also that T codes HOD*®) n Vo,
we have

HODY, 5 = HOD*® NV

and, since T” was arbitrary, the result follows as noted above. -

We can also recover the following approximation to Theorem 5.6.
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5.37 Theorem. Assume ZF + AC,(R). Suppose ST x-determinacy holds,
where X is a set and B is non-empty and ODx. Then

HODx E ©x is a Woodin cardinal.

Proof. Let Opy = Ox. Let A = (A, | @ < Ox) be such that A, codes
the OD x-least prewellordering of reals of length a. By Theorem 3.9, O is
strongly inaccessible in HOD x and so there exists an H € &Z(0x) NHODx
coding HODx NV, . Let T € #(0x) NHODx code H and some arbitrary
T € #(O©x)NHODx.
Let
M = L@M (R)[Ta A, B]

where ©7, T', A, and B are as above. Work in HODxur. Conditions (3)-
(5) of the Generation Theorem are clearly met. For condition (2) note that
by Lemma 3.7, ©x = OHOP(x}ur and that by the arguments of Lemma 3.8
and Lemma 3.9, ©HOP(xjur i regular in HOD/xjur. Thus, ©y is regular
in HODyxyugr. Condition (6) follows from the fact that M is ODy and M
contains all of the reals. It remains to see that condition (1) can be met.
For this we just have to see that Replacement holds in M. If Replacement
failed in M then there would be a cofinal map « : w* — ©x that is definable
from parameters in M, which in conjunction with A would lead to an ODx
surjection from w*“ onto O x, which is a contradiction. —

5.38 Remark. Work in ZF+DC. For p a 6-complete ultrafilter on d let £, be
the (6, \)-extender derived from p where A = j(8) (or A = §°/p) and j is the
ultrapower map. We have the following corollary: Assume ZF + AD + DC.
Then ©x is Woodin in HODx and this is witnessed by the collection of
E,NHODx where i is a normal ultrafilter on some § < ©x.

5.39 Remark. Theorem 5.6 cannot be directly recovered from the Gener-
ation Theorem and this is why we have singled it out for special treatment.
However, it follows from the proof of the Generation Theorem, as can be
seen by noting that in the case where one has full boldface determinacy the
ultrafilters are actually in HODx by Kunen’s theorem (Theorem 3.11).

4 Open Question. There are some interesting questions related to Theo-
rem 5.37.

(1) Suppose ©x = ©¢. Suppose ST x-determinacy, where B is non-empty
and ODyx. Is ©g a Woodin cardinal in HOD?

(2) Suppose ST x-determinacy, where X is a set and B is non-empty and
ODx. Is ©x a Woodin cardinal in HOD?

(3) In the AD" setting, every Ox is of the form ©, and there are con-
straints on this sequence. For example, each ©x must be of the form
Oqu11. Does this constraint apply in the lightface setting?
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5.40 Theorem. Assume ZF + AD. Let S be a class of ordinals. Then for
an S-cone of x,

HODg[S’x} = wQL[S’x] is a Woodin cardinal.
Proof. For an S-cone of z,
L[S, z] = ZFC 4+ GCH below w},
by Corollary 5.10, and, for all n < w,
L[S, z] = ST g-determinacy for n moves,

where B = [z]g, by Theorem 5.13. Let x be in this S-cone.
Let Oy = wQL[S’x]. Since L[S, x| satisfies GCH below w} and L[S, z] =
ODg’[f’m], by Lemma 3.8 we have that

L[S,z]

wQL [Se] - sup{a | there is an ODyg prewellordering of length a},

in other words, WQL[S””] = (05)H97 Let A= (A, | a < wQL[S’Z]> be such that
A, is the ODé[S’I]—least prewellordering of length «. Since L[S, z| E ODg-
determinacy, it follows (by Theorem 3.9) that wQL 1S ig strongly inaccessible
in HODE[S’x]. So there is a set H C wQL[S’x} coding HODg[S’x] N Vwé[s,m]. Let
T’ be in 2(wr'®) N ODES) and let T € 2(wt¥) 0 ODES™ code T
and H. Let B = [z]s.

Let
M= L@M (RL[S’m])[Tv A, B],

where Oy, T, A, and B are as above. Conditions (1)—(5) of the Generation
Theorem are clearly met and condition (6) follows since L[S, x| satisfies ST g-

determinacy for four moves, M is ODg in L[S, z] and M contains the reals
of L[S, z]. Thus,

HOD%A,B E ZFC + There is a T-strong cardinal.

Since we have arranged that all of the ingredients T', A, and B are in OD* [S:2]
and also that 7 codes HOD % A v/ Lis.2], We have
Wy

HODY , , = HODM" I NV 5.
143y UJ2

Since T’ was arbitrary, the result follows. -

5.41 Theorem. Assume ZF + AD. Then for an S-cone of z,

HODs.. . . .
HODgs nobs, F ws 5 4s a Woodin cardinal.
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Proof. This will follow from the next theorem which is more general. -

The next two theorems require some notation. Suppose Y is a set and
a € H(wy). For x € w¥, the (Y, a)-degree of x is the set

[z]y,e = {# € w“ | HODy, . = HODy 4, }.

The (Y, a)-degrees are the sets of the form [z]y, for some x € w®”. Define
2 <y, y to hold iff z € HODyq,. A cone of (Y, a)-degrees is a set of the
form {[yly,a | ¥ 2v.a ®o} for some zp € w* and a (Y, a)-cone of reals is a set
of the form {y € w¥ | y >y, zo} for some xzy € w”. The proof of the Cone
Theorem (Theorem 2.9) generalizes to the present context. In the case where
a = & we speak of Y -degrees, etc.

5.42 Theorem. Assume ZF+AD. SupposeY is a set and a € H(wy). Then
for a (Y,a)-cone of x,

HODy o 2]y, F w?ODY’“‘“ is a Woodin cardinal,

where [z]y,, = {# € w¥ | HODy, , = HODy 4 4 }.

Proof. By determinacy it suffices to show that the above statement holds
for a Turing cone of x, which is what we shall do. The key issues in this
case are getting a sufficient amount of GCH and strategic determinacy. To
establish the first we need two preliminary claims. Recall that a set A C w®
is comeager if and only if w® \ A is meager.

Claim 1. Assume ZF + AD. Suppose that (A, | @ < ) is a sequence of
sets which are comeager in the space w*, where either v € On or v = On,
in which case the sequence is a definable proper class. Then () A, is
comeager.

a<ly

Proof. Assume for contradiction that the claim fails and let v be least such
that there is a sequence (A, | @ < 7y) the intersection of which is not comea-
ger. By AD, ), < A, has the property of Baire and so we may assume
without loss of generality that (), , Aa 1s meager. So, every proper initial
segment has comeager intersection while the whole sequence has meager in-
tersection. We can now violate the Kuratowski-Ulam Theorem. (This is the
analogue for category of Fubini’s theorem. See [9, 5A.9].) Define f on the

complement of (), Aa as follows:

f(@) =min({a <7y |z & Aa}).

So if y € ee, Ae then f(y) > a. Since )
comeager. Consider the subset of the plane

a<y Aa is meager, dom(f) is

Z = {(x,y) € dom(f) x dom(f) | f(z) < f(y)}.
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For each € dom(f) the vertical section

Zy ={y € dom(f) | f(y) > f(x)}

is comeager since it includes (), () Ao and for each y € dom(f) the hori-
zontal section

ZY ={x e dom(f) | f(z) < f(y)}

is meager since its complement contains the comeager set [ ) A,. Since

a<f(y
Z has the property of Baire, this contradicts the Kuratowski-Ulam Theorem,

the proof of which requires only AC,(R), which follows from AD (Theo-
rem 2.2). —|

Claim 2. Assume ZF 4+ AD. Suppose Y is a set, a € H(w1) and P €
HODy (N H (w1) is a partial order. Then for comeager many HODy ,-generic
G CP,
HODy,q,¢ = HODy ,4[G].

Proof. For each G we clearly have HODy ,[G] € HODy . We seek a set
A that is comeager in the Stone space of P and such that for all G € A,
HODy ¢ = HODy ,[G]. We will do this by showing that for each G € A
the latter model can compute the “ordinal theory” of the former model.

For every Y- statement ¢ and finite sequence of ordinals E consider the

statement <p[€,Ka,G] about a generic G. Let B#€Y: be the associated
collection of filters on P and let

P“”g: {peP| B‘”’E’Y’“ is comeager in Op,} and
NeE — {peP| B9EYa is comeager in O,},

where O, is the open set of generics containing p. These are the sets of con-
ditions which “positively” and “negatively” decide ¢[¢,Y, a, G], respectively.
So P#¢ U N¥¢ is predense. Now let

Aw,gz{GQ]P’hp[g,Y,a,G] HGmpw,f#g}
U{G CP| -l Y,a,G] & GNN¥E £ ).

Each such set is comeager. We thus have a class size well-order of comeager
sets and so, by the previous lemma,

A= ﬂ{A(/J 5| ¢ is a ¥y formula and € € On<“}
is comeager. But now we have that for all G € A
HODy 4 ¢ = HODy 4[G]

since the latter can compute all answers to questions involving the former—
that is, questions of the form (p[g, Y, a, G] where ¢ is ¥o—by checking whether
G hits P¥¢ or N¥¢. (Notice that the restriction to ¥y formulas suffices
(by reflection) since any statement about an initial segment of HODy, ¢
is 22) —
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Claim 3. Assume ZF + AD. Suppose Y is a set and a € H(w1). Then for
a Turing cone of x,

HODy, . = GCH below wy .

Proof. Tt suffices to show that CH holds on a cone since given this the proof
that GCH below w{ holds on a cone goes through exactly as before.

Suppose for contradiction (by the Cone Theorem (Theorem 2.9)) that
there is a real xy such that for all x > g,

HODy., , = —CH.

We will arrive at a contradiction by producing an x >7 xo with the feature
that HODy 4, = CH. As before z is obtained by forcing (in two steps) over
HODy g 5, First, we get a HODy 4 ;,-generic

G C Col(w, DY 0 RHOPY.ews )
and then we use almost disjoint forcing to code G with a real. Viewing the
generic g as a real, by the previous claim we have that for comeager many g,

HODY’O«,IO,Q = HODY,G,IO [g] ): CH,
and hence
HODY’GK"EO’Q) ': CH,
which is a contradiction. .
Claim 4. Suppose Y is a set and a € H(w1). Then for a Turing cone of x,
for each n < w, II can play n moves of SGg,a,[x]y@f where B = [z]y,q, and

we demand in addition that II's moves belong to HODy, o, in other words,
II can play n moves of the game

I A Ay
I fo frn-1

where we require, for i+ 1 < n,

(1) Ay € 2(w*)N 0Dy, Aiy1 € 2(w”) N 0Dy, | ., and

J[z]y,a? zly,a:fos--

(2) fix1 is prestrategy for Air1 that belongs to HODy, » and is winning
with respect to [x]y,q.

Proof. The proof of Theorem 5.13 actually establishes this stronger result.

We are now in a position to meet the conditions of the Generation Theo-
rem. For a Turing cone of x,

HODy, ., = ZFC + GCH below wy
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by Claim 3, and for all n < w,

STy, -determinacy for n moves

[x]Y,a
holds in V' where B = [z]y,q4, by Claim 4. Let x be in this cone.
Let Oy = w?ODY"”. Since HODy 4, = ZFC + GCH below wy’,

Oy = 0.
Since every set is ODy 4 », and hence ODy g 4]

0= @Y,a7[a:]y 5

Y ;L)

by Lemma 3.8. Thus,
HODyv,ao _ AHODy a4
wy T = @Y,a,[;iy,a .

Letting A = (Ay | @ < w?ODY’”"‘”> be such that A, is the ODy g (4], ,-least

prewellordering of length a we have that A is ODy,, [4],.,. We also have

that w?ODY’” is strongly inaccessible in HODy 4 4}y, , by Theorem 3.9. So

there is a set H C w?ODY’“ coding HODy 4 [4},., NV mopy, . Let T’ be in
' ws
9((»501)”’”””) NODy 4[4y, and let T' € z@(wSODY’“’I) NODyq (5], code T”
and H. Let B = [z]y,q.
Let

Y,a

M= L@M (RHODY’Q‘E)[Ta Av B],

where Oy, T, A, and B are as above. Conditions (1)—(5) of the Generation
Theorem are clearly met. Condition (6) follows from the fact that M is
ODy 4 [z]y., and we have arranged (in Claim 4) that all of II's moves in
SGg,a,[x]y,a
Thus,

are in M.

HODJM,A’B = ZFC + There is a T-strong cardinal,
and since we have arranged that

HOD%I\”{A,B =HODy 4 [2]y., NV #ODy 405
: ws ;
and T was arbitrary, the result follows. -

In the above theorem the degree notion [z]y,, depends on the initial choice
of a. However, later (in Sect. 6.2) we will want to construct models with many
Woodin cardinals. A natural approach to doing this is to iteratively apply

the previous theorem, starting off with a = @, increasing the degree of z
HODy

to get that w, is a Woodin cardinal in HODy,[;},., and then taking
. . . HODy (2]y ,x .
a = [z]y, increasing the degree of x yet again to get that w, is a

Woodin cardinal in HODYMY’[JC]Y,[I]Y, etc. This leads to serious difficulties
since the degree notion is changing. We would like to keep the degree notion
fixed as we supplement a and for this reason we need the following variant of
the previous theorem.
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5.43 Theorem. Assume ZF + AD. Suppose Y is a set and a € H(w1).
Then for a Y -cone of x,

HODy.a. . . .
HODy o 4], Fwy " is a Woodin cardinal,

where [z]y = {z € w¥ | HODy,, = HODy , }.

Proof. The proof is essentially the same as that of the previous theorem.
Claims 1 to 3 are exactly as before. The only difference is that now in
Claim 4 we have [z]y in place of [z]y,,. The proof of this version of the claim
is the same, as is that of the rest of the theorem. -

6. Definable Determinacy

We now use the Generation Theorem to derive the optimal amount of large
cardinal strength from both lightface and boldface definable determinacy.

The main result concerning lightface definable determinacy is the follow-
ing:

6.1 Theorem. Assume ZF+DC+ Al-determinacy. Then for a Turing cone
of x,
HODE! = 7zFC + wém is a Woodin cardinal.

When combined with the results mentioned in the introduction this has
the consequence that the theories ZFC+ OD-determinacy and ZFC + “There
is a Woodin cardinal” are equiconsistent. In order to prove this theorem we
will have to get into the situation of the Generation Theorem. The issue
here is that Al-determinacy does not imply that for a cone of x strategic
determinacy holds in L[z] with respect to the constructibility degree of x.
Instead we will use a different basis set B, one for which we can establish
STE-determinacy for four moves, using Al-determinacy alone.

The main result concerning boldface definable determinacy is the follow-
ing:

6.2 Theorem. Assume ZF+AD. Suppose Y is a set. There is a generalized
Prikry forcing Py through the Y -degrees such that if G C Py is V-generic
and ([z;]y | i < w) is the associated sequence, then

HOD;[@i]ﬂkw),V = ZFC + There are w-many Woodin cardinals.

When combined with the results mentioned in the introduction this has
the consequence that the theories ZFC + OD(R)-determinacy and ZFC +
“There are w-many Woodin cardinals” are equiconsistent. As an application
we show that when conjoined with the Derived Model Theorem (Theorem 1.5
or, more generally, Theorem 8.12) this result enables one to reprove and
generalize Kechris’ theorem (Theorem 2.6).
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6.1. Lightface Definable Determinacy

In this subsection we will work in the theory ZF + DC + Al-determinacy and
examine the features of the model L[z] for a Turing cone of reals z. Our aim
is to show that for a Turing cone of z,

HOD ! = w2L[w] is a Woodin cardinal.

This will be done by showing that the conditions of the Generation Theorem
can be met. We already know that this is true assuming full boldface deter-
minacy in the background universe. But now we are working with a weak
form of lightface definable determinacy and this presents new obstacles. The
main difficulty is in showing that for a Turing cone of z,

L[z] = STP-determinacy

for an appropriate basis B. In the boldface setting we took our basis B to
be the constructibility degree of x. But as we shall see (in Theorem 6.12) in
our present setting one cannot secure this version of strategic determinacy.
Nevertheless, it turns out that strategic determinacy holds for a different,
smaller basis. This leads to the notion of restricted strategic determinacy.

We shall successively extract stronger and stronger forms of determinacy
until we ultimately reach the version we need. The subsection closes with
a series of limitative results, including results that motivate the need for
strategic and restricted strategic determinacy.

6.3 Theorem (Martin). Assume ZF + DC + Al-determinacy. Then %i-
determinacy.

Proof. Consider A = {z € w* | ¢(z)} where ¢ is 3. We have to show that
A is determined. Our strategy is to show that if IT (the II} player) does not
have a winning strategy for A then I (the ¥ player) has a winning strategy
for A.

Assume that II does not have a winning strategy for A. First, we have
to shift to a “local” setting where we can apply Al-determinacy. For each
T € wY,

L[z] = 1T does not have a winning strategy in {y € w* | ()}

(since otherwise, by X1 upward absoluteness, IT would have a winning strat-
egy in V, contradicting our initial assumption) and so, by the Lowenheim-
Skolem theorem, there is a countable ordinal A such that

Ly[z] E T +1I does not have a winning strategy in {y € w* | v(y)},

where T is some fixed sufficiently strong fragment of ZFC (such as ZFCy
where N is large or ZFC — Replacement + 3s-Replacement). For z € w*, let

Ax) = pA (LaJz] = T + 1T does not have a winning
strategy in {y € w” | p(y)}).
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For convenience let A% = {y € w* | p(y) @l
Consider the game G
I a,x
I b

where I wins iff a x b € Ly, [2] and Ly [z] = ¢(a*b). Here Player I is to
be thought of as choosing the playing field Ly,)[z] in which the two players
are to play an auxiliary round (via a and b) of the localized game A*. The
key point is that since A(z) is always defined this game is Al and hence
determined.

We claim that I has a winning strategy in G (and so I wins each round of
the localized games A*) and, furthermore, that (by ranging over these rounds
and applying upward Y3-absoluteness) this winning strategy yields a winning
strategy for I in A.

Assume for contradiction (by Al-determinacy) that IT has a winning strat-
egy 7o in G. For each & >7 79, in Ly()[z] we can derive a winning strategy
7% for 1T in A” as follows: For a € (w*)“> @[] et (a % 7%);; = b where b is
such that ({a,z) * 79);;r = b. Since 7y is a winning strategy for II in G and
we have arranged that a b € Ly [x], II must win in virtue of the second
clause, which means that a*b ¢ A®. Thus, Ly 2] F “7* is a winning
strategy for IT in A*” which is a contradiction.

Thus I has a winning strategy oo in G. Consider the derived strategy o
such that for b € w*, (0 * b); = a where a is such that (o¢ * b); = (a,z). Since
0o is a winning strategy for Iin G, o xb € Ly(y)[z] and Ly)[z] = ¢(0 *b)
and so, by upward Yi-absoluteness, V |= (o xb). Thus, o is a winning
strategy for I in A. -

6.4 Remark.

(1) The above proof relativizes to a real parameter to show that A}(z)-
determinacy implies X3 (x)-determinacy.

(2) A similar but more elaborate argument shows that if Al-determinacy
holds and for every real x, z# exists, then Th(L[z]) is constant for a
Turing cone of z. See [4].

6.5 Theorem (Martin). Assume ZF + DC + Al-determinacy. If I has a
winning strategy in a X3 game then I has a A} strategy.

Proof. Consider A = {x € w* | p(x)} where @ is ¥1. Our strategy is to show
that if 1T (the I1} player) does not win A then I (the X3 player) wins A via a
Al strategy.

Assume that II does not have a winning strategy in A. For x € w*, let
Az), A*, G, and o(p be as in the previous proof. Since o( is a winning
strategy for I in G, for x >7 0y, in Ly (,)[x] we can derive a winning strategy
o® for T in A® as follows: For z >7 0¢ and b € (w¥) 2@ let (0% b); = a
where a is such that (og % b);r = (a, z).
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Next we show that there is an zg =7 o9 such that for all x >1 xo,
Ly(z)[z] = Aj-determinacy. Let (¢n, 1) enumerate the pairs of X3 formulas
and let A, = {x € w* | p(x)}. Using DC let z, be such that z, codes a
winning strategy for A, if A, =w* \ Ay, (i.e. A, is Ab); otherwise let
zn, = (0,0,...). Finally, let zy code (z, | n < w). Thus, for z >¢ xo,

L([z] =1 has a ¥ strategy in A"

by the Third Periodicity Theorem of Moschovakis.

(For a proof of Third Periodicity see Jackson’s chapter in this Hand-
book. The statement of Third Periodicity typically involves boldface de-
terminacy. However, the proof shows that lightface Al determinacy suffices
to get X} winning strategies for X3 games that I wins. To see this note that
Scale(Zl) holds in ZF + DC. Furthermore, we also have the determinacy of
the X games (denoted G7, in Jackson’s chapter) that are used to define the
prewellorderings and ultimately the definable strategies. It follows that these
prewellorderings and strategies are 933 C Xi. (Notice that if we had Al-
determinacy then we could flip the quantifiers and conclude that 933 = I1}
and hence get A} strategies. However, in our present lightface setting some
more work is required.))

For x > x0, let 6 be the X}-strategy for I in A®. For a Turing cone of
x the formula ¢(y, z) defining this strategy is constant. We can now “freeze
out” the value of 6% on a Turing cone of x. The key point is that the function
& — Ly (2] is Aj. So, for each s € w?™ and m € w the statement

L)\(a:) [SL‘] ): (,0(8, m)

is A}. Thus, for each s € w?", the m such that Ly,)[z] = ¢(s,m) is fixed for
a Turing cone of x. Since there are only countably many s € w?" this means
that the value of 67 is fixed on a Turing cone of x. Finally, letting

o(s) =m < xgVe 21 xo (Law)[z] F o(s,m))
= Vo 27 xo (La@) (2] | @(s,m))

(where we have used Al-determinacy to flip the quantifiers) we have that o
is a Al winning strategy for I in A. B

Kechris and Solovay showed (in [3]) that under ZF + DC+ Al-determinacy
there is a real zy that “enforces” OD-determinacy in the following sense: For
all 27 xo, L[z] = OD-determinacy. We will need the following strength-
ening of this result, which involves a stronger notion of “enforcement”. We
need the following definition: An ordinal X is additively closed (a.c.) iff for
alla, B < A\, a+ 8 <A

6.6 Theorem. Assume ZF +DC + Al-determinacy. Then there is a real x
such that for all additively closed N\ > w, and for all reals x, if xg € Ly[z],
then Ly[z] = OD-determinacy.
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Proof. Some preliminary remarks are in order. First, for A additively closed,
L) [z] might satisfy only a very weak fragment of ZFC; so the statement
“Lx[z] = OD-determinacy” is to be taken in the following external sense:
For each & < X and for each formula ¢, Ly[x] =“Either I or II has a winning
strategy for {z € w* | p(z,&)}”. The point is that this statement makes sense
even when {z € w* | p(z,£)} is a proper class from the point of view of
Ly [x]. Second, the key feature of additively closed A\ > w, is that if y € L[z]
then Ly[y] € Ly[z]. This is true since additively closed ordinals A > w are
such that v + A = A for all & < A and so if y is constructed at stage a, then
Ly [z] still has A-many remaining stages in which to “catch up” and construct
everything in Ly[y]. Third, the proof of the theorem is a “localization” of
the proof of Theorem 5.12.

Assume for contradiction that for every real xg there is an additively closed
A > w and a real = such that xy € Ly[z] and Ly[z] = OD-determinacy. So,
for every real z( there is an additively closed A\ > w and a real 2’ >1 xg
such that Ly[z'] £ OD-determinacy (since we can take 2’ = (z,z) where x
and xg are as in the first statement) and hence, by the Lowenheim-Skolem
theorem,

Voo € w3z 27 oA\ is ac. Aw < A < wy)
A Ly[z] £ OD-determinacy,
where ‘a.c.’” abbreviates ‘additively closed’. Since the condition on z in this
statement is ¥} and since we have ¥.}-determinacy (by Theorem 6.3)
Jzg € WV 27 rpIN( N is ac. Aw < A < wy)
A Ly[z] = OD-determinacy

by the Cone Theorem (Theorem 2.9). Let

Az) = pA (W < A <wy AXis a.c. A Ly[z] £ OD-det) if such a A exists
| undefined otherwise.

Notice that for a Turing cone of x
A(z) is defined

and that there are zy of arbitrarily large Turing degree such that for all
T 2T To
Alz) = Mxo).-

To see this last point it suffices to observe that otherwise (by ¥3-determinacy
and the Cone Theorem (Theorem 2.9)) there would be an infinite descending
sequence of ordinals. This point will be instrumental below in ensuring that
Player II can “steer into the right model”.

For each x such that A(z) is defined let (p,, &) be lexicographically least
such that

Ly lz] F {2z € w” | 92(2,&:)} is not determined
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and let A = {z € w¥ | v.(2,&)}. (However, note that since A” might be
a proper class from the point of view of Ly,[x], when we write ‘L, [2] =
a € A*" we really mean ‘L [z] F ¢0e(a,&:)".)
Consider the game
I a,b
1I c,d

where, letting p = (a, b, ¢, d), I wins iff A(p) is defined and Ly, [p] = “a xd €
AP” . This game is X3, hence determined.

(Notice that in contrast to the proof of Theorem 5.12 we cannot include
Zo in p since we need our game to be lightface definable. However, in the
plays of interest we will have one player fold in xy. This will ensure that the
first clause of the winning condition is satisfied and so the players are to be
thought of as cooperating to determine the model Ly, [p] and simultaneously
playing an auxiliary game (via a and d) on the least non-determined OD set
of this model, namely, A*.)

We will arrive at a contradiction by showing that neither player can win.

Case 1: T has a winning strategy oyg.

Let &g 27 o¢ be such that for all x 21 xg, A(z) is defined and A(z) >
A(zo). We claim that Ly(g,)[zo] = “I has a winning strategy o in A®”,
which is a contradiction. The strategy o is the strategy derived by playing
the main game according to oy while having II feed in zg for ¢ and playing
some auxiliary play d € Ly (z,)[7o]; that is, (0 * d); = a where a is such that
(00 * (o, ) = {a,b):

I a,b
11 Zo, d.

Let p = (a,b, zo,d). Since we have ensured that p =7 z9 we know that A(p)
is defined and, since o¢ is winning for I, I must win in virtue of the first clause
and so Lyy)[p] F “axd € AP”. It remains to see that II has managed to
“steer into the right model”, that is, that

L) [p] = Laao) [zo]

and hence
AP = A%o,

Since xg 21 09 and d € Ly(y,)[wo] we have that p € Ly (,,)[zo] and
Li(ao)[P] = L(ay)[0]

(where for the left to right inclusion we have used that A(zg) is additively
closed). Furthermore, by arrangement, A\(p) > A(zo) since p =7 xo. But
A(p) is the least additively closed A such that w < A < wy and Ly [p] = OD-
determinacy. Thus, A(p) = A(zg) and

A [P] = L) [To]-
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S0 Li(zy)[To] F “o*d € A®”. Since this is true for any d € Ly (4,)[w0o], this
means that Ly,)[ro] F “o is a winning strategy for I in A*°”, which is a
contradiction.

Case 2: 1I has a winning strategy 7p.

Let xg =7 79 be such that for all © 27 zo, A\(x) is defined and A(z) >
Azo). For a € Ly(gy)[zo] let (a* 7)1 where d is such that ((a,zo) * 70)1r =
(e,dy. Since p =7 xo, II must win in virtue of the second clause. The rest
of the argument is exactly as above. So we have that Ly, [2o] F “7 is a
winning strategy for II in A*°”, which is a contradiction.

6.7 Remark. The proof relativizes to a real parameter to show ZF + DC +
Y1 (x)-determinacy implies that there is a real enforcing (in the strong sense
of Theorem 6.6) OD,-determinacy.

6.8 Corollary (Kechris and Solovay). Assume ZF. Suppose Liz] E Al-
determinacy, where x € w*. Then L[z] = OD-determinacy.

Proof. This follows by reflection. -

We will now extract an even stronger form of determinacy from Al-
determinacy. We begin by recalling some definitions. The strategic game
with respect to the basis B is the game SGP

I Ay - A, -
II foo o S

where we require

(1) AO € @(w‘*’) n OD, An+1 S 9(@«)‘*’) n ODfm___J and

n

(2) fn is a prestrategy for A, that is winning with respect to B,

and II wins iff he can play all w rounds. We say that strategic determinacy
holds with respect to the basis B (STZ-determinacy) if 11 wins SGP.

In the context of L[S, z] we dropped reference to the basis B since it was
always understood to be {y € w* | L[S, y] = L[S, z]}. In our present lightface
setting we will have to pay more careful attention to B since (as we will see
in Theorem 6.12) Al-determinacy is insufficient to ensure that for a Turing
cone of z, L[z] = STP-determinacy, where B = {y € w* | L[y] = L[z]}. We
will now be interpreting strategic determinacy in the local setting of models
Ly[z] where z € w* and A is a countable ordinal and the relevant basis will
be of the form C' N {y € w* | Lyly] = La[z]} where C is a 13 set of Ly[x].
It is in the attempt to “localize” the proof of Theorem 5.14 that the need
for the II} set becomes manifest. The issue is one of “steering into the right
model” and can be seen to first arise in the proof of Claim 3 below.

Let RST-determinacy abbreviate the statement “There is a II} set C
such that C contains a Turing cone and ST? -determinacy holds where B =
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Cn{y € w | Lly] = V}’. Here ‘R’ stands for ‘restrictive’. We will be
interpreting this notion over models Ly [z] that do not satisfy full Replace-
ment. In such a case it is to be understood that the statement involves the
Y1 definition of ordinal definability.

6.9 Theorem. Assume ZF +DC+ Al-determinacy. Then for a Turing cone

of z,
L[z] = RST-determinacy.

Proof. We will actually prove something stronger: Assume ZF +V = L[z] +
Al-determinacy for some x € w*. Let T be the theory ZFC — Replacement +
Yo-Replacement. Then there is a real zy such that if Ly[z] is such that
zo € Lylz] and Ly[z] | T then Ly[z] &= RST-determinacy. The theorem
follows by reflection.

Assume for contradiction that for every real zg there is a real z >7 z9 and
an ordinal A such that L[z] E T+ —-RST-determinacy. The preliminary step
is to reduce to a local setting where we can apply Al-determinacy. By the
Lowenheim-Skolem theorem

Vzo € w* 3z 27 20 IX < wy (Ly[2] E T + “RST-determinacy).

Since the condition on z in this statement is ¥3 and since we have OD-
determinacy (by Corollary 6.8) it follows (by the Cone Theorem (Theo-
rem 2.9)) that

Jzp € w¥Vz 271 29 X < wy (Lalz] = T + ~RST-determinacy).

For z € w¥, let

pA (Lya[z] E T + -RST-determinacy) if such a A exists
A(z) = .
undefined otherwise.

Thus, if A(z) is defined, then for every (TI3)X* =2l set C' that contains a
Turing cone, I wins the game

I Ay - A, -
IT foo o fa
where we require

(1) 4p € ODP@E 4., € ODPH and

(2) fn is a prestrategy for A4, that is winning with respect to CN{y € w* |
Lk(z) [y} = L/\(z) [Z]}

We now need to specify a particular (I13)%> ] set since (i) we want to get our
hands on a canonical winning strategy o* for I and (ii) we need to solve the
“steering problem”. The naive approach would be to forget about the I1} sets
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and just work with {y € w* | Lx(.)[y] = Lx(z)[2]}. The trouble is that for an
element y of this set we might have A(y) < )\( ) and yet (when we implement
the proof of Theorem 5.13) we will need to ensure that Ly,)[y] = L[]
and thus AY = A% and for this we require that A(y) = A(z). So we will need
to intersect with a set C' that “holds up the value of A(y)”. A good candidate
is the following: For each z such that A(z) is defined let

C. = {y € w* | A(y) is undefined } "> [,

This is a (IT3)“> = [Fl-set. It contains z (since in Ly [2] the ordinal A(z)
is certainly undefined). We would like to ensure that it contains the cone
above z.

Claim 1. For a Turing cone of z,
(1) X(z) is defined,
(2) for all reals y € Lyy[2], if y 21 2 then My) = A(2).

Proof. We have already proved (1). Assume for contradiction that (2) does
not hold on a Turing cone. Then (by OD-determinacy) for every real z there
is a real 2’ >7 z such that A(2’) is defined and in Ly(.,[2] there is a real
2" such that z” 27 2’ and A(2”) < A(z). But then, for each n < w, we
can successively choose z,41 =1 2, such that A(z,4+1) < A(2), which is a
contradiction. -

For each z as in Claim 1 we now have that C, contains the Turing cone
above z (since, by (2) of Claim 1, A(y) = A(z) and so Ly, [y] = La(z)[z] and
again in Ly,)[z] the ordinal A(y) = A(2) is undefined). Letting

B, ={y € C. | Lx:)[y] = La)[2]}

we have that
I wins (SGB=)l 2,

Moreover, since we have arranged that Ly(;)[z] = T, Player I has a canon-
ical strategy o € HOD/®Fl (This is because, since L (2] E T, the
ODE [ sets of reals are sets (and not proper classes) in L ()[2]. So the

tree on which (SGB=)Erx@ [ s played is an element of HODX/ ) No-
tice also that o® depends only on the model L) [2], in the sense that if
LA(y)[y] = LA(Z)[Z] then o¥% = o*.

Our aim is to obtain a contradiction by defeating ¢* for some z in the
Turing cone of Claim 1. We will do this by constructing a sequence of
games Go,G1,...,Gy,... such that I must win via 0g,01,...,0n,... and,
for a Turing cone of z, the winning strategies give rise to prestrategies
15, fi,---, fZ,... that constitute a non-losing play against ¢® in the game
(SGP=)Erm ],
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Step 0. Consider (in L[z]) the game G

1 € a,b
1I c,d

where € is either 1 or 2 and, letting p = (a,b, ¢, d), I wins iff
(1) p satisfies the condition on z in Claim 1 (so o” makes sense) and
(2) e=1iff Ly, [p] = “axd e Ay”, where Af = o(2).

In the plays of interest we will ensure that p is in the cone of Claim 1. So
clause (1) of the winning condition will be automatically satisfied and the
decisive factor will be whether in Ly, [p] Player e wins the auxiliary round

(via a and d) of A. This game is X} (for Player I), hence determined.
Claim 2. I has a winning strategy oo in Gg.

Proof. Assume for contradiction that I does not have a winning strategy
in Go. Then, by Yi-determinacy, II has a winning strategy 7o in Go. Let
zo =1 To be such that for all z > zq,

(1) z satisfies the conditions of Claim 1 and

(2) if A and z are such that zp € Ly[z] and Ly[z] = T then Ly[z] E
OD-determinacy (by Theorem 6.6).

Consider Ag® = 0*°(@). Since Ly(.,)[z0] F OD-determinacy, Ly.,)[z0] =
“Af° is determined”. We will use 79 to show that neither player can win this
game. Suppose for contradiction that Ly(.,)[z0] = “o is a winning strategy
for I'in AZ®”. Run Gy according to 79, having Player I (falsely) predict that
Player I wins the auxiliary game, while steering into L.,)[20] by playing
b = 2y and using o to respond to 7y on the auxiliary play:

1 (O’*d)],Zo
11 c,d

We have to see that Player I has indeed managed to steer into L)\(ZO)[Z()],
that is, we have to see that Ly [p] = La(z,)[20], where p = ((0 * d)1, 20, ¢, d).
Since 0, 20, 7o € Lx(z)[20] and A(2o) is additively closed, we have Ly(.,)[p] =
Ly(z)[20]. But A(p) = A(z20) since zq satisfies Claim 1. Thus, Ly, [p] =
L (z)[20] and hence Af = Ag°. Finally, since 79 is a winning strategy for II
in Gy and € = 1, we have that Ly, [p] = “o*d & Aj”, and hence Ly, [20] =
“oxd ¢ AF®”, which contradicts the assumption that o is a winning strategy
for I. Similarly, we can use 7 to defeat any strategy 7 for IT in Ag°. !

Since the game is X} for Player I, Player I has a Al-strategy o, by The-
orem 6.5.
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Claim 3. For every real z 27 og in the Turing cone of Claim 1, there is
a prestrategy f§ such that fg§ is definable in Ly [z] from oo and fg is a
non-losing first move for II against o* in (SGB=)Er» A,

Proof. Fix z 27 o0p as in Claim 1. Consider AZ = 0%(@). Let f§ be the
prestrategy derived from og in Ly, [2] by extracting the response in the
auxiliary game, that is, for y € (w*)" @ let fZ(y) be such that for d €
(W)= B f2(y) % d = a* d where a is such that (og * (y,d)); = (€, a,b).
f¢ is clearly definable in Ly (.)[z] from 0. We claim that f§ is a non-losing
first move for IT against 0% in (SGP*)Ere [,

To motivate the need for the I} set, let us first see why f§ need not be
a prestrategy for II in AZ that is winning with respect to {y € (ww)LMZ>[z] |
Ly»yly] = Ly lz]}. Consider such a real y and an auxiliary play d €
(w)r= Bl By definition fZ(y) is such that fZ(y)*d = a*d where a is
such that (og * (y,d))r = (¢, a,b). Assume first that ¢ = 1. Since oy is a win-
ning strategy for I in Gy, f§(y) *d = a*d € Af where p = (a,b,y,d). What
we need, however, is that f§(y) *d = axd € A§. The trouble is that we
may have Ly, [p] = Lay)[y] S Lacs)[z] because although Ly.)[y] = L[]
we might have A(y) < A(z). And if this is indeed the case then we cannot
conclude that A = Ag. If € = 0 then f§(y) *d = axd ¢ A} but again what
we need is that f§(y) *d =ax*d ¢ A§ and the same problem arises.

The above problem is solved by demanding in addition that y € C, since
then A(y) = A(z) and so e = 1iff L,y [2] = “f§(y) xd = axd € Af = AF” as
desired. Thus f§ is a non-losing first move for II against o, in (SGBZ)LMz)[Z].

_|

Step n+ 1. Assume that we have defined (in L[z]) games Gy, ..., G, with

winning strategies oo, ...,0, € HOD such that for all z >¢ (og,...,04) in
the Turing cone of Claim 1 there are prestrategies fg,..., f? such that f7?
is definable in Ly(;)[z] from oq,...,0; (for all i < n) and f§,...,f7 is a

non-losing partial play for II in (SGBZ)LMZ>[
Consider (in L[z]) the game G, 41

I € a,b
11 c,d
where € is 1 or 2 and, letting p = {(a,b,¢,d, 00, ...,0n), I wins iff

(1) p satisfies the condition on z in Claim 1 (so o? makes sense) and

(2) e=1iff Ly,)[p| = “axde A} ", where A} | is I's response via o
to II's partial play f§,..., fP.

If p satisfies condition (1) then, since p =7 (oy,...,0,), we have, by the
induction hypothesis, prestrategies f§,..., f? such that f/ is definable in
Ly [p] from o, ...,0; (for all i < n) and f§,..., f£ is a non-losing partial
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play for IT in (SGB7)Ex@ [Pl Thus, condition (2) in the definition of the game
makes sense.

This game is X3(og,...,0,) (for Player I) and hence determined (since
00y --.,0n, € HOD and we have OD-determinacy, by Theorem 6.6).

Claim 4. I has a winning strateqy opy1 i Gpi1.

Proof. Assume for contradiction that I does not have a winning strategy.
Then, by OD-determinacy, II has a winning strategy 7,+1. Let z,41 =7
(Tn+1,00, - - -, 0n) be such that for all z 27 2,41,

(1) z satisfies the conditions of Claim 1 and

(2) if A and z are such that z,41 € Ly[z] and Ly[z] E T then Ly[z]
ODg,.....0,,-determinacy (by the relativized version of Theorem 6.6).

It follows that

L(znin)[2n41] = AL is determined,
where A7 = o ((fg, L, fam ). This is because A" is an ele-
ment of HODL”Z"H)[%“](UO, ..., 0,) (as all of the ingredients o#n+1, fg"™",
ooy Tt used to define A" are in this model) and we arranged that
L(z, 1) [2n+1] satisfies ODg, .. 5, -determinacy.

[The enforcement of the parameterized version of OD-determinacy in (2)
appears to be necessary. The point is that even though, in Step 1 for example,
oo is Aj and 0 € Ly(;)[z] we have no guarantee that in Ly(,,)[21], oo satisfies
this definition. If we did then we would have that A% is in HOD® 01l and
hence just enforce OD-determinacy.]

We will use 7,41 to show that neither player can win this game. The argu-
ment is exactly as in Step 0 except with the subscripts ‘0’ replaced by ‘n+1":
Suppose for contradiction that Ly(.,,,)[2n+1] F “o is a winning strategy for
Lin A;"1'”. Run G, according to 7,41, having Player I (falsely) predict
that Player I wins the auxiliary game, while steering into Ly, ,,)[2n+1] by
playing b = z,41 and using o to respond to 7,41 on the auxiliary play:

I 1 (o*d)1, 2041
II c,d

We have to see that Player I has indeed managed to steer into Ly, , ,)[2nt1],
that is, we have to see that Ly,)[p] = La(z,.,)[2n+1], where p is the set
((0%d)1, 2041, ¢,d). Since 0, 2,41, Tnt1 € L)\(zn+1)[zn+1] and A(zp41) is ad-
ditively closed, we have Lxp)[p] = Lz, ,1)[2n41]- Since p 21 2,41 and
Zpy1 satisfies the condition of Claim 1, A(p) = A(z), and so Lyg[p] =
Lz ,1)[2n+1] and hence Aﬁ-}-l = Af;ff. Finally, since 7,41 is a winning
strategy for II in G,,41 and € = 1, we have that Ly, [p] = “o*xd ¢ AP |7,
and hence Ly(.,, )[zn41] | “oxd & A", which contradicts the assump-
tion that o is a winning strategy for I. Similarly, we can use 7,11 to defeat

any strategy 7 for II in A/ =
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Since the game is ¥3(0y, . . ., 0,) for Player I, Player I has a Al(oq,...,0,)
strategy on+t1, by the relativized version of Theorem 6.5.

Claim 5. For every real z 21 (00,...,0n) as in Claim 1, there is a pre-
strategy f7,, that is definable in Ly(.)[z] from oo,...,0n41 and such that
1,5 fiy1 is a non-losing first move for Il against o* in (SGBZ)LW)[Z].

Proof. The proof is just like the proof of Claim 3. Fix z >r (0y,...,0,) asin
Claim 1 and consider A7 |, = o*((f§,..., f7)). Let f7,, be the prestrategy
derived from 0,41 in Ly(;)[2] by extracting the response in the auxiliary
game, that is, for y € ()2 @ let 7, (y) be such that for d € (w*)Ere ]
fi1(y) *d = axd where a is such that (0,41 * (y,d)); = (€, a,b). Clearly,
7.1 is definable in Ly;)[z] from o0g,...,0,41. We claim that f7, | is a
non-losing first move for I against ¢* in (SGBZ)LM2>[Z]. Again the point
is that for y € B,, Lyy)ly] = La(x)lz], hence A% | = A7 ,,. Thus, e = 1
iff Lyylz] E “fia(y)xd = axd € A, = A7 |” as desired. Hence
(f&,..., fZ41) is a non-losing play for IT against 0% in (SGP=)Er@ ] =

Finally, letting 2°° be such that 2> > z, for all n and 2*° is as in Claim 1,
we have that f&~, ..., f27, ... defeats 0*" in (SGP==)lr>) 2] which is
a contradiction. a

6.10 Theorem. Assume ZF + DC + Al-determinacy. Then for a Turing
cone of x,
HOD™ = ZFC + w2L ) is a Woodin cardinal.

Proof. For a Turing cone of z, L[z] E RST-determinacy, by Theorem 6.9.
Let x be in this cone. We have to meet the conditions of the Generation
Theorem. Let Oy = wQLm. Since L[z] satisfies GCH and L[z] = ODE],

wQL[x] = sup{« | there is an OD* ! prewellordering of length at,

in other words, wQL[x] = (0) . Let A= (A, | a < sz[I]> be such that A, is
the OD ] Jeast prewellordering of length «. Since L[z] | OD-determinacy,
it follows (by Theorem 3.9) that w2L o] i strongly inaccessible in HOD* [l S0
there is a set H C w2 coding HOD ) 0 Ve Let T’ be in 2(wi™)n
OD™ ! and let T € e@(szm) N ODX code T' and H. Let B be as in the
statement of RST-determinacy.
Let
M= (LGM (R)[T7 A, B])L[x]a

where Oy, T, A, B are as above. Conditions (1)—(5) of the Generation
Theorem are clearly met and condition (6) follows since L[x] satisfies RST-
determinacy, M is OD in L[x] and M contains the reals of L[x]. Thus,

HODQA{A’B E ZFC + There is a T-strong cardinal.
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Since, by arrangement, HODY , , = HOD* IV L, it follows that
144y UJZ

HOD"l = ZFC + There is a T-strong cardinal.

Since T" was arbitrary, the theorem follows. -

We close with four limitative results. The first result motivates the need
for the notion of strategic determinacy by showing that strategic determinacy
does not follow trivially from OD-determinacy in the sense that for some OD
basis there are OD prestrategies.

6.11 Theorem. Assume ZF. Then for each non-empty OD set B C w®,
there is an OD set A C w® such that there is no OD prestrategy in A which
is winning with respect to the basis B.

Proof. Assume for contradiction that there is a set B C w“ which is OD
and such that for all OD sets A C w* there is an OD prestrategy f4 in A
which is winning with respect to B. We may assume OD-determinacy since if
OD-determinacy fails then the theorem trivially holds (as clearly one cannot
have a prestrategy which is winning with respect to a non-empty basis for a
non-determined game).

We shall need to establish three claims.

Claim 1. Assume ZF. Then

N{ACw”| A€ OD, A is Turing invariant,

and A contains a Turing cone} =g.
Proof. For each a < wq, let

Ay ={7z € w¥ | Jz,y € W such that

x =7 y <r z and z codes a}.

Notice that A, is OD, Turing invariant, and contains a Turing cone. But
clearly

ﬂa<w1 Ao‘ =g

since otherwise there would be a real z which recursively encodes all countable
ordinals. -

Claim 2. Assume ZF + OD-determinacy. Then
HOD |= There is a countably complete ultrafilter on wy .

Proof. Since we are not assuming AC,,(R), the proof of Theorem 2.12 does
not directly apply. To see this note that w{ may not be regular in V—in
fact, we do not even know whether w}” is regular in HOD. Nevertheless, we

will be able to implement some of the previous arguments by dropping into
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an appropriate model of AC,(R). In the case of countable completeness an
additional change will be required since without AC,(R) we cannot choose
countably many strategies as we did in the earlier proof. Let

p={S Cw/|SecHOD and I has a winning strategy in G(5)},
where G(5) is the game from Theorem 2.12.
Subclaim 1. HOD | pNHOD is an ultrafilter.

Proof. Tt is clear that w) € pu and @ ¢ p. It is also clear that if S € p and
S’ € HODN Z(w}) and S C S’ then S’ € p.

Suppose that S € HOD N #(w}) and that II has a winning o strategy
in G(S). We claim that I has a winning strategy in G(w} ~ S). Suppose
for contradiction that I does not have a winning strategy. Then, by OD-
determinacy, II has a winning strategy o’. Now work in L[o,0’]. Using
Ei—boundedness, by the usual arguments, one can construct a play x for I
which is legal against both o and ¢’ and in each case has the same associated
ordinal o < wlL[U’UI]. This is a contradiction.

We now show that if Sy,55 € p then S; NSy € pu. Let o1 be a winning
strategy for I in G(S7) and let o2 be a winning strategy for I in G(S2).
Suppose for contradiction that S; NSy ¢ u. Since S1NSy is OD, G(S1N.Ss) is
determined and so II has a winning strategy in G(S1N52), which implies that
I has a winning strategy o in G(w} ~ (81 N S2)). Work in L[oy, 09, 0]. The
strategy oy witnesses (by the usual argument using g}—boundedness) that

SN wf[al’gz’a] contains a club. Likewise, o5 witnesses that S5 N wlL[Ul’Uz’U]
contains a club and o witnesses that (w} ~ (S1 N S2)) N wlL[Ul’Uz’U] contains

a club. This contradiction completes the proof of Subclaim 1. -
Subclaim 2. HOD | ¢ NHOD is countably complete.

Proof. Suppose for contradiction that the subclaim fails. Let (S; | i < w) €
HOD be such that for each i < w, S; € p and [ S; = @. Consider the
game

1<w

I y(0) y(1)
II x(0) x(1)

where IT wins if and only if  * y is a winning play for I in G(S;). The idea is
that Player I begins by specifying a set S; in our fixed sequence and then the
two players play an auxiliary round of G(S;), with Player I playing as Player
IT and Player II playing as Player I.

Notice that this game is OD, hence determined. We claim that II has a
winning strategy. Suppose for contradiction that I has a winning strategy o.
In the first move the strategy o produces a fixed k. Since ¢ is winning for I,
for each x € w¥, z* o is a win for IT in G(Sj). But this is impossible since
Sk € p and so I has a winning strategy 75 in G(Sk); thus, by following 75 in
the auxiliary game, II (playing as I) can defeat o.
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Let 7 be a winning strategy for II. Work in L[r]. We claim that in L[r],
T witnesses that for all i < w, S; N wlL ] contains a club. For our purposes
we just need a single a € [, Si. The point is that Player I can play any
i as the first move and then use Zw]}—boundedness to produce a real y such

that for all 7 < w, i~y is a legal play and in each case the ordinal produced
Lir]

in the auxiliary game is some fixed o« < w;"'. This contradiction completes
the proof of Subclaim 2. -
Thus,

HOD = N HOD is a countably complete ultrafilter on w}’,
which completes the proof. B
It follows that ZF 4+ OD-determinacy proves that
HOD |= 3k < w} (k is a measurable cardinal)

(as witnessed by letting x be the completeness of the ultrafilter), and hence
that R M HOD is countable. Let o < w; be the length of the canonical well-
ordering of R M HOD. Let ¢ code a. Then in HOD, there is a real y* such
that for all z € RNHOD, z <7 y*. Let y* be such a real.

Claim 3. Suppose z € B. Suppose A is OD, A is Turing invariant, and A
contains a Turing cone. Then A contains the Turing cone above (y*, z).

Proof. By our original supposition for contradiction recall that we let f4 be
an OD prestrategy which is winning with respect to B. Since A contains a
Turing cone f4 must be winning for Player I. This means that for all z € B,
for all y € w¥, fa(z)xy € A. Now let y =1 (y*,2z). We wish to show that
y € A. The point is that

y=r falz)xyecA
and since A is Turing invariant, this implies that y € A. o
Claim 3 contradicts Claim 1, which completes the proof. -

The second result motivates the need for restricted strategic determi-
nacy by showing that V = L[z] + Al-determinacy does not imply ST5-
determinacy, where B is the constructibility degree of z. Thus, in The-
orem 6.9 it was necessary to drop down to a restricted form of strategic
determinacy. It also follows from the theorem that something close to Al-
determinacy is required to establish that STZ-determinacy holds with respect
to the constructibility degree of z since the statement “Al-determinacy” is
equivalent to the statement “for every y € w“ there is an inner model M
such that y € M and M |= ZFC + There is a Woodin cardinal”.
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6.12 Theorem. Assume ZF + V = Lz] for some = € w*”. Suppose STZ-
determinacy, where B = {y € w* | Lly] = L[z]}. Suppose there exists an
o> wlL[x] such that L[] = ZFC. Then for everyy € w® there is a transitive
model M such that y € M and M |= ZFC + “There is a Woodin cardinal”.

Proof. Let

Ao ={y € w* | ~IM (M is transitive Ay € M
A M = ZFC + There is a Woodin cardinal)}.

Suppose for contradiction that Ay # &. Let t € Ap. It follows that Ag
contains a Turing cone of reals. Let Player I play Ao in SGZ and let fy be
IT’s response. Since Player I can win a round of Ay by playing ¢, fy is winning
for T with respect to B, that is, for all y € B, fo(y) € Ag. We will arrive at
a contradiction by constructing a real y € B such that fo(y) ¢ Ao.

We claim that

HOD?O"‘ ] = ZFC + There is a Woodin cardinal.

First note that
Liz] = ST ,-determinacy.

Since L [x] is ordinal definable in L[z] (as a > wlL[w] and so Ly [x] = L[]
for any real «’ such that V' = L[z']) it follows that

L,[z] = ST ,-determinacy.
Thus, by the relativized version of Theorem 6.10,
HOD}*") |= ZFC + There is a Woodin cardinal.

Therefore fo & Ag.
By Y1 (fo)-absoluteness, L[fo] satisfies that there is a countable transitive
model M such that fy € M and

M = ZFC + There is a Woodin cardinal.

Since Lyfz] = ¢ ff exists” (by the effective version of Solovay’s Theorem
(Theorem 2.15) there is a countable ordinal A such that Ly[fy] satisfies ZFC+
“M is countable”. In Ly[fo] let P be a perfect set of reals that are Cohen
generic over M. Since P is perfect in Ly[fo] there is a path ¢ € [P] which
codes x in the sense that ¢ >r x.

Our desired real y is (fo,c). To see that (fo,c) € B note that Lx({fo,c))
can compute x and hence Ly, [{fo,¢)] = L., [z]. To see that fo({fo,c)) & Ao
note that since ¢ is Cohen generic over M, the model M|c| is a transitive
model containing fo({fo,c)) satisfying ZFC + “There is a Woodin cardinal”.
This is a contradiction. -
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The third result shows that Martin’s “lightface form” of Third Periodicity
(Theorem 6.3) does not generalize to higher levels. In fact, the result shows
that even ZFC + OD-determinacy (assuming consistency of course) does not
imply that for every ¥} game which Player I wins, Player I has a A} strategy
(or even an OD strategy). The reason that the “lightface form” of Third
Periodicity holds at the level of ¥3 but not beyond is that in Third Periodicity
boldface determinacy is used to get scales but in ZF + DC we get Scale(Z3)
for free.

6.13 Theorem. Assume ZF+V = L[z]+OD-determinacy for some x € w*.
There is a 113 set of reals which contains a Turing cone but which does not
contain a member in HOD.

Proof. Consider the set

A ={y € w” | for all additively closed A < wy,
for all z 27y, ifx € OD™ [ then x <r y}.

This is a II} set. Notice that each y € A witnesses that R N HOD*El is
countable for each z > y.

Claim 1. A contains a Turing cone.

Proof. For y € w* and « such that w < a < wy, let R,y be the set of reals
which are ordinal definable in L,[y] and let <, , the canonical well-ordering
of Ry, where we arrange that <., is an initial segment of <./, when
a <. Foryew’ let Ry = J{Ra,y | w < o < wi} and let <, be the
induced order on R, (where we order first by « and then by <,,). Let z¥
be the ath real in <, and let J,, be the ordertype of <,. Notice that R, 4,
Ry, <a,y, <y, 7% and ¥, depend only on the Turing degree of y.

Our strategy is to “freeze out” the values of R, and <, on a Turing cone
of y. For a < wy, the set

Ay ={y €ew” |9y > a}

is OD and hence, by OD-determinacy, either it or its complement contains
a Turing cone. Moreover, if A, contains a Turing cone and & < « then Ag
contains a Turing cone. Thus,

A" ={a < wy | A, contains a Turing cone}

is an initial segment of w;. For each o € A’, and for each y € w¥, the
statement “9, > « and z¥(n) = m” is an OD-statement about y. So, by
OD-determinacy, the value of z¥ is fixed for a Turing cone of y. We write
zq for this stable value. It follows that (z, | a € A’) is a definable well-
ordering of reals and hence, by OD-determinacy, A’ must be countable (by
the effective version of Solovay’s theorem (Theorem 2.15) and the argument
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in the Claim in Theorem 5.9). Let ¥ = sup{a+ 1 | a € A’}. Finally, let
Ry = {24 | @ < 9} and <oo= {(2a,28) | @ < 8 < 9}. We claim that for a
Turing cone of y, R, = R. To see this let y € L[z] be such that <7 y (so,
in particular L{z] = L[y]) and y belongs to all of the (countably many) cones
fixing z, for a € A’. Then ¥, = ¥ and R, = Ro.. (In fact, R, = RHOD))
Let zp be such that for all z 27 zp, R, = R,, = Rs. Since R is
countable, we can choose yg =7 2o such that R, <r y9. Then for all
z 21 Yo, R, = Roo <1 Yo, that is, yo € A. Likewise, if y >7 g, then
y € A. —

Claim 2. ANHOD¥ = &.

Proof. Suppose for contradiction that y € AN HOD™ !, Since y €Ay
witnesses that R, is countable for all z > y. Let z be such that

R, =R,.
Then since y € HOD*
HOD! £ R is countable,
which is impossible. a
This completes the proof. n

The final result is a refinement of a theorem of Martin [5, Theorem 13.1].
It shows that ZF +DC + Al-determinacy implies that for a Turing cone of x,
HOD™! has a A} well-ordering of reals and hence that for a Turing cone of
x, Al-determinacy fails in HODZ®),

6.14 Theorem. Assume ZF+V = L[z]+ Al-determinacy, for some x € w*.
Then in HOD there is a A}-well-ordering of the reals.

Proof. For y € w* and « such that w < a < wy, let Ray, <a,y, 24, Ry,

<y, and ¥, be as in the proof of Theorem 6.13. Let A" and R be as in

the proof of Theorem 6.13. The argument of Claim 1 of Theorem 6.13 shows

that Ro = RYOP: To see this let 2/ € L[x] be such that * <7 2’ (so, in

particular L[x] = L[z']) and 2’ belongs to all of the (countably many) cones

fixing 2z, for a € A’. Then ¥,y =19 and Ry = Rpy = RN HOD=' — RHOD,
Notice that

FyoVy 21 yoVw < o < wi (Rayy € Roo A <ayy 9 <oo)s

where < denotes ordering by initial segment; x’ as above is such a yg. Since
R and <, are countable they can be coded by a real. Let yy be the base
of the above cone and let a be a real coding (yo, Roo, <oo). The statement
“a codes (Yo, R, <o) and for all y =1 yo, for all @ < wi, Ry € Re and
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<ay 9 <& is a I} truth about a. Writing ¢(a) for this statement we have
the following I1} definitions (in L[z]) of w* NHOD and <.:

2z € R <> VYa[a codes (z,R, <) AN(a) — z € R]

and
20 <oo 21 <> Va[a codes (z, R, <) ANp(a) — 2o < z1].
We now look at things from the point of view of HOD. Fix £ < ¢. We
claim that £ is countable in HOD. Consider the game

I a,b
11 c

where I wins iff there is an a < w; such that z¢ € R, 3, and a codes
the ordertype of <, (5. l2e. This game is X3(z¢) (for Player I) and since
z¢ € HOD the game is determined. Moreover, I must win (since I can play
b = yo and an a coding £). By (the relativized version of) Theorem 6.5,
Player I has a winning strategy ¢ € HOD. It follows that £ is less than the
least admissible relative to ¢, which in turn is countable in HOD.
Thus, we can let z be a real in HOD coding <. [z¢. Consider the game

G(z, z¢)

I a

IT b

where I wins iff there exists an « such that z¢ € Ry (q,0) and <q (ap) [ 2¢ = 2.
This game is $3((z, z¢)), hence determined. Moreover, I must win. So I has
a winning strategy o € HOD.

Finally, notice the following: If y =7 o¢ then y =7 o¢ * y and

Va(w<a<wi Aze € Ray — <aylze = <ool 2¢).
So the following is a ¥} calculation of <., in HOD:

T <oo Y < Ja € w¥ coding (yo, <, z) such that
< is a linear ordering of its domain, dom(<),
x,y, z € dom(<),
r <yandy<z and
Yy 27 yoVa (w < a < oy
Nz € Ry y — <aylz=<]2).

This completes the proof, since clearly a ¥} total ordering is also IT3. 4

Putting everything together we have that ZF + DC + Al-determinacy
implies that for a Turing cone of 2, HOD =] is an inner model with a Woodin
cardinal and a A} well-ordering of reals. It follows that Al-determinacy fails
in HOD*! for a Turing cone of x.

Some interesting questions remain. For example: Does HOD” [2] satisfy
GCH, for a Turing cone of z? Is HOD! 4 fine-structural model, for a
Turing cone of 7 We will return to this topic in Sect. 8.
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6.2. Boldface Definable Determinacy

In this section we will work in ZF + AD. Our aim is to extract the optimal
amount of large cardinal strength from boldface determinacy by constructing
a model of ZFC that contains w-many Woodin cardinals.

We shall prove a very general theorem along these lines. Our strategy is to
iteratively apply Theorem 5.43. Recall that this theorem states that under
ZF + AD, for a Y-cone of z,

HODy 4 2}, w?ODY’“’“’ is a Woodin cardinal,

where
2]y = {z € w* | HODy,. = HODy, }.

We start by taking a to be the empty set. By Theorem 5.43, there exists an
xo such that for all z >y xg,

HODy, (), = w?ODY’I is a Woodin cardinal.

To generate a model with two Woodin cardinals we would like to apply The-
orem 5.43 again, this time taking a to be [zg]y. This gives us an 27 >y o
such that for all z >y xq,

HODy, 3]y 1]y F w;{ODY’[‘TO]"’T is a Woodin cardinal

and we would like to argue that

HODy HODy (2], & . .
HODy 1]y ]y Ewy 7 < w, Vlrolv are Woodin cardinals.

But there are two difficulties in doing this. First, in the very least, we need
to ensure that

W;%IODYJ0 < w;{ODY’[m‘”Y"”
and this is not immediate. Second, in moving to the larger model we need
to ensure that we have not collapsed the first Woodin cardinal; a sufficient
condition for this is that

P (wy 7Y *0) A HODy, o)y faly = P(wy ™) A HODy, 1,y »

but again this is not immediate. It turns out that both difficulties can be
overcome by taking x to be of sufficiently high “Y-degree”. This will be
the content of an elementary observation and a “preservation” lemma. Once
these two hurdles are overcome we will be able to generate models with n
Woodin cardinals for each n < w. We shall then have to take extra steps to
ensure that we can preserve w-many Woodin cardinals. This will be achieved
by shooting a Prikry sequence through the Y-degrees and proving an associ-
ated “generic preservation” lemma.
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6.15 Remark. It is important to note that in contrast to Theorem 5.42
here the degree notion in Theorem 5.43 does not depend on a and this is
instrumental in iteratively applying the theorem to generate several Woodin
cardinals. In contexts such as L(R) where HOD “relativizes” in the sense
that HOD, = HODJa], one could also appeal to Theorem 5.42, since in such
a case HODy 4 [4],., = HODy 4 (4], - Our reason for not taking this approach
is twofold. First, it would take us too far afield to give the argument that
HOD, = HOD|q] in, for example, L(R). Second, it is of independent interest
to work in a more general setting.

We shall be working with the “Y-degrees”
Py ={z]y | x € w’}.

Let py be the cone filter over Zy. As noted earlier, the argument of Theo-
rem 2.9 shows that py is an ultrafilter. Also, by Theorem 2.8 we know that
wy is countably complete.

6.16 Lemma (PRESERVATION LEMMA). Assume ZF + AD. Suppose Y is a
set, a € H(w1), and a < wy. Then for a Y-cone of z,

gZ(O&) N HODy7a7[I]Y = L@(Oé) N HODY,a.

Proof. The right-to-left direction is immediate. Suppose for contradiction
that the left-to-right direction fails. For sufficiently large [z]y, let

f([z]y) = least Z € Z(a) NHODy,q [z, ~ HODy 4,

where the ordering is the canonical ordering of ODy,, [, This function is
defined for a Y-cone of x and it is ODy,. Let Zy € &?(a) be such that

£eZy it ¢e f([z]y) for a Y-cone of z.

Since a is countable and since py is countably complete Zy = f([z]y) for
sufficiently large . Thus, Zy € HODy,, which is a contradiction. -

We are now in a position to iteratively apply Theorem 5.43 to generate a
model with n Woodin cardinals.

Step 0. By Theorem 5.43, let xg be such that for all z >y =z,

HODy, [}, & w;{ODY”” is a Woodin cardinal.

Step 1. Recall that w}  is strongly inaccessible in any inner model of ZFC,

by the Claim of Theorem 5.9. It follows that w;{ODy'zo < wy and so when

HODy o
we choose 11 >y o we may assume that z1 codes wy °. Thus, there

exists an x1 >y xg such that for all x >y x1,

HODy . HODy [ x
Wy Y,zq < W [zoly >

)
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and, by the Preservation Lemma (taking a to be [zg]y),

QZ(WEODY’JO) N HODY,[xo]y,[:c]y = :@(W?ODY’W) N HODY,[xo]yv

and, by Theorem 5.9 (taking a to be [xgly),

HODy 20}y 2]y F w;{ODY’[zO]Y’m is a Woodin cardinal.

It follows that

HODy ., HODy (o 1e o i i
HODy [z0]y ,[o1]y F Wo T < Wy Ylrolyor1 gre Woodin cardinals.

Step n + 1. It is useful at this stage to introduce a piece of notation: For

To <y -+ Ky Tp41, let
So(x0) = wy 0T
and HOD
6n+1(x0, o ’xn+1) = w, Y ([zoly - [EZnly ) ®n41 )

Suppose that we have chosen zg <y z1 <y -+ <y x, such that

HODy ([zo]y,....[zn]y) F S0(20) < -+ < n(z0,. ., Zn)

are Woodin cardinals.
Again, since w  is strongly inaccessible in any inner model of ZFC, it follows
that each of these ordinals is countable in V' and so when we choose x,,+1 >y
T, we may assume that z, 1 collapses these ordinals. Thus, there exists an
Tp41 2y Ty such that for all z >y 2,41,

O0n(T0, - s @n) < Ony1(To,s ..., Tn,y )
and, by the Preservation Lemma (taking a to be ([xoly, ..., [za]y)),

P (6n(20s - 2n)) N HODy ([ao]y ... [zn]y) 2]y
= 32(571(.%'07 - 7mn)) n HODY,([zo]y,---,[zn]ﬂ

and, by Theorem 5.43 (taking a to be {[zo]y, ..., [Tn]y)),
HODy ([zo]y ,....[zn]y )i[zly F Ont1(To, ..., Tn,x) is a Woodin cardinal.
It follows that

HODy ((zo)y ,...[zaly ) [zly = 0(T0) < < bnt1(20s- -, Tn, T)
are Woodin cardinals.

We now need to ensure that when we do the above stacking for w-many
stages, the Woodin cardinals 6, (zo, ..., z,) are preserved in the final model.
This is not immediate since, for example, if we are not careful then the
reals xg,x1,... might code up a real that collapses sup,, .., 0n(Z0,...,Zn).
To circumvent this difficulty we implement the construction relative to a
“Prikry sequence” of degrees [zoly, [z1]y, - .-
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6.17 Definition (The forcing Py). Assume ZF + AD. Suppose Y is a
set. Let P2y and py be as above. The conditions of Py are of the form
(lzoly, ..., [xnly, F) where F : 25 — py. The ordering on Py is:

([Zolyy - s [Tnly, [Tnt1]ys - [Tmly, F*) <py {([zo]v, .-, [Tn]y, F)
if and only if
(1) [xir1)y € F({{zoly,-- -, [x:i]y)) for all i > n and
(2) F*(p) C F(p) for all p € 5.
The point of the following lemma is to avoid appeal to DC.

6.18 Lemma. Assume ZF + AD. Suppose ¢ is a formula in the forcing
language and (p, F) € Py. Then there is an F* such that (p, F*) <p, (p, F)
and (p, F'*) decides p. Moreover, F* is uniformly definable from (p, F') and .

Proof. Fix ¢ a formula and (p, F) € Py. Let us use ‘p’ and ‘¢’ for “lower
parts” of conditions—that is, finite sequences of Zy—F’ and ‘G’ for the
corresponding “upper parts”, and ‘a’ for elements of Zy. Write ¢ > p to
indicate that p is an initial segment of ¢. Set

Zo={q|q® pand 3G (¢,G) <p, (p, F) and {(q,G) - ¢ },

Zov1={q|{alqra€Z,} €py}, and

Zx =UqerZa for A a limit.

Let Dy ={a|q~a € Zy}. So Zot1 = {q| Dy € py}. We claim that for
each a,

(1) if ¢ € Z,, then DY € py, and hence
(2) Za g Za+1-

The proof is by induction on «a: For o = 0 suppose ¢ € Zy and let G witness
this. So G(q) € puy. Notice that for each a € G(q),

<qﬂa7 G> <Py <q7 G>

and so ¢~a € Zoy, i.e. G(q) € {a | g-a € Zo} = DY) and so D) € py and
Zy C Zy. Assume (1) holds for a4 1. It follows that Z,41 C Zy42. Suppose
q € Zayz. Then, by the definition of Z, 42, DIT' € py. However, since
Zat1 C Zaya, it follows that Dyt C D*2. So D2 € py. For A a limit
ordinal suppose ¢ € Z. Then ¢q € Z, for some a < A. So, by the induction
hypothesis, Dy € py. Since Z, C Zy, Dy C D[]\ and so D(’J\ € Uy.

Now define a ranking function p : 25 — On U {oo} by

least « such that ¢ € Z, if there is such an «
p(q) = .
%) otherwise.
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We begin by noting the following three persistence properties which will aid
us in shrinking F' so as to decide . First, if p(q) = oo then set

Ag ={a|plg~a) = oo}

and notice that A, € uy since otherwise we would have {a | p(¢—a) € On} €
py (as py is an ultrafilter) and letting 6 = sup{p(¢—a) | p(¢—a) € On} we
would have ¢ € Zg11, a contradiction. Second, if p(g) € On ~\ {0} then set

By =A{a|plg~a) < p(q)}
and notice that B, € py since p(q) is clearly a successor, say « + 1, and
q € Zo and so (by our claim) Dg € py; but DY € B,. Third, if p(q) = 0
then set
Cq=A{alplgma) =0}
and notice that Cy € py since clearly ¢ € Zy and so, by the claim, Dg € uy;
but Dg C C,.
Now either p(p) = oo or p(p) € On.
Claim 1. If p(p) = co then there is an F* such that (p, F*) <p, (p, F) and
(p, F*) IF —ep.
Proof. Define F* as follows:

sy JF@NAg if p(g) =00
O {F(q) otherwise.

Suppose that it is not the case that (p, F*) IF ~¢. Then (¢, G) <p, (p, F*)
such that (g, G) IF ¢. But then ¢ is such that p(q) = 0. However, F* witnesses
that in fact p(q) = oco: Suppose ¢ = p~ap™ -+ ~ag. Since p(p) = oo and
ap € F*(p), we have that ag € A, and so p(p—ap) = co. Continuing in this
manner, we get that p(q) = co. This is a contradiction. 4

Claim 2. If p(p) € On then there is an F* such that (p, F*) <p, (p, F) and
(. ) - .
Proof. Define F* as follows:

F(g)n B,y if p(g) € On\ {0}
Fq) =4 F@)nCy ifp(g) =0
F(q) otherwise.

We claim that (p, F'*) IF ¢. Assume not. Then 3(q, G) <p, (p, F’*) such that
(g, G) IF =p. Since (¢, G) <p, (p, F*) and p(p) € On we have that p(¢) € On
(by an easy induction using the definition of F*). We may assume that (g, G)
is chosen so that p(q) is as small as possible. But then p(q) = 0 as otherwise
there is an a such (¢—a,G) <p, {q,G), {(¢"a,G) IF = and p(¢—a) < p(q),
contradicting the minimality of p(q). Now since p(q) = 0, ¢ € Zy and so
AG'{q,G") IF . But this is a contradiction since (g, G’) is compatible with
(q,G) and (¢, G) IF —. =



6. Definable Determinacy 2099

This completes the proof of the lemma. -

We can now obtain the following “generic preservation” lemma.

6.19 Lemma (GENERIC PRESERVATION LEMMA). There exists an F such
that if G C Py is V-generic and (@, F) € G and {[z;]y | i < w) is the generic
sequence associated to G, then, for all i < w,

G G]
:@(51'(5507 ce, T ))V[ ] N HOD Y ([z;]y|i<w),V

= P(6,(wo, ..., 2:)) NHODY, (1

Proof. We need the following extension of Lemma 6.18: Suppose (p¢ | £ < a)
is a countable sequence of formulas in the forcing language (evaluated in a
rank initial segment) and (p, F) € Py is a condition. Then there is an F*
such that (p, F*) <p, (p, F) and (p, F*) decides g, for each { < a, and F*
is uniformly definable from (p¢ | £ < o) and (p, F'). For each £ < «, let F¢ be
as in Lemma 6.18 (where it is denoted F™*). Letting F™* be the “intersection”
of the Fy—i.e., such that F*(q) = (1,5 Falq) for each g € D5¥—we have
that (p, F*) decides ¢¢ for each & < a and that F** is uniformly definable
from (pe | £ < a) and (p, F).
Suppose a € H(w;) and @ < wy. We claim that we can definably associate
with a and « a function F, o : 25 — py such that (@, F, ) forces
2(a)V1¢ nHODYC)

Y,a,([z:]y li<w),V

..... [:Ei]y>'

= P(a) NHODy,,

Let ¢ be the formula in the forcing language that expresses the displayed
statement. By Lemma 6.18 there is an ODy,, condition (&, G) deciding ¢.
Suppose for contradiction that this condition forces —p. Since right-to-left
inclusion holds trivially (as we are including V as a parameter) it must be
that the left-to-right inclusion fails. Let A C « be <OD¥[§<[$1]Y|I<W> v-least
such that

ate)
A€ HODy "1y ji<w,

Now, for each £ < « let ¢ be the statement expressing “6¢ € A”. In an ODyq
fashion we can successively shrink (&, G) to decide each .. But then A is
ODy,, and hence in HODY. ,, which is a contradiction.

We now define a “master function” F : 95 — py such that for all

<[$0]Y, Cey [.’En]y> S @§w7
F(([zoly -5 [n]y)) = Filzoly )0 @o) N N Fllaoly vvoo[wn]y ):6n (@0sestn) -

Suppose (&, F) € G. Suppose (p,H) € G and pli+ 1 = ([zo]y, ..., [zi]y)-
It follows that (p, H A F) € G, where, by definition, H A F' is such that
(H A F)(q) = H(q) N F(q) for each g. But

(p,HAF) <p, (pli+1,HAF)
<p, < [i+1, H/\Fr
<

v N HODY .

i+1,6; ($0;<~'7w1‘)>

Py <® F, rz-i-l di(xo,.- ,wl)>
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(using the definition of F for the second line) and so (&, F ol
G. Finally, by the definition of F ol

i+1,8; (mo,.‘.7wi)> €

1,85 (20, 1) this condltlon forces

ViG
P Bilwo,- ., wi)VID N HODYE | v liconv
= Z(0i(xg,...,x i))mHODK([%]

Y,n-,[xi]Y)’
which completes the proof. a

6.20 Theorem. Assume ZF + AD. Then there is a condition (&, F) € Py
such that if G C Py is V-generic and (&, F) € G, then

HOD li<w),V = ZFC + There are w-many Woodin cardinals,

[wb]
where ([z;]y | i < w) is the sequence associated with G.

Proof. Let (@, F,) be the condition from the Generic Preservation Lemma
(Lemma 6.19). We claim that
VG
HODY v E Go(w0) <o+ < On (w0, ) < -+
are Woodin cardinals.

By the Generic Preservation Lemma it suffices to show that for each n < w

HODy ((aq]y ,....[wn]y) F G0(T0) <+ < bn(w0,. .. 2n)
are Woodin cardinals,

which follows by genericity and the argument for the finite case. -

As an interesting application of this theorem in conjunction with the De-
rived Model Theorem (Theorem 8.12), we obtain Kechris’ theorem that under
ZF + AD, DC holds in L(R). This alternate proof is of interest since it is
entirely free of fine structure and it easily generalizes.

6.21 Theorem (Kechris). Assume ZF + AD. Then L(R) = DC.

Proof Sketch. Work in ZF + AD +V =L(R). Let Y = & and let N =
HOD ]

ily li<w),
icity, the Woodin cardinals d; of N have w{ as their supremum. By Vopénka’s
theorem (see the proof of Theorem 7.8 below for the statement and a sketch
of the proof), each z € RV is N-generic for some P € N N V,y. Thus,
N(RY) is a symmetric extension of N. The derived model of N(R") (see
Theorem 8.12 below) satisfies DCg and therefore DC since N = AC. Fur-
thermore N(RVY) contains L(R) and cannot contain more since then L(R)
would have forced its own sharp. (This follows from AD™ theory: Assume
ZF +DCgr+AD+V = L(Z(R)). Suppose A C R. Then either V = L(A,R)
or A¥ exists. See Definition 8.10 below.) Thus, L(R) = AD + DC. =

v where G and [z;]y are as in the above theorem. By gener-
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7. Second-Order Arithmetic

The statement that all Al sets are determined is really a statement of second-
order arithmetic. So a natural question is whether the construction culmi-
nating in Sect. 6.1 can be implemented in this more limited setting. In this
section we show that a variant of the construction can be carried out in this
context. We break the construction into two steps. First, we show that a
variant of the above construction can be carried out with respect to an object
smaller than w2L [w], one that is within the reach of second-order arithmetic.
Second, we show that this version of the construction can be carried out in
the weaker theory of second-order arithmetic.

The need to alter the previous construction is made manifest in the fol-
lowing result:

7.1 Theorem. Assume ZF +V = L[x]+ Al-determinacy, for some x € w®.
Suppose N is such that

(1) On C N C HOD gnd
(2) N =6 is a Woodin cardinal.

Then § > wQL[x].

[z]

. L . o .
However, it turns out that w;"" can be a Woodin cardinal in an inner

model that overspills HOD*[].

7.2 Theorem. Assume ZF +V = L[z]+ Al-determinacy, for some x € w®.
Then there exists an N C L[z]| such that

N E ZFC + wlL[I] is a Woodin cardinal.

Moreover, this result is optimal.

7.3 Theorem. Assume ZF + Al-determinacy. Then there is a real x such
that

(1) L[z] = Al-determinacy, and

(2) for all a < wle, a is not a Woodin cardinal in any inner model N
such that On C N.

In Sect. 7.1 we prove Theorem 7.2. More precisely, we prove the following;:

7.4 Theorem. Assume ZF +DC+ Al-determinacy. Then for a Turing cone
of z,
HOD[I;[}JCT] E ZFC + wlL[z] is a Woodin cardinal.
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This involves relativizing the previous construction to the Turing degree
of x, replacing the notions that concerned reals (for example, winning strate-
gies) with relativized analogues that concern only those reals in the Turing
degree of x.

In Sect. 7.2 we show that the relativized construction goes through in the
setting of second-order arithmetic.

7.5 Theorem. Assume that PAy + Al-determinacy is consistent. Then
ZFC + “On is Woodin” is consistent.

Here PAj is the standard axiomatization of second-order arithmetic (with-
out AC). The statement that On is Woodin is to be understood schematically.
Alternatively, one could work with the conservative extension GBC of ZFC
and the analogous conservative extension of PAs. This would enable one to
fuse the schema expressing that On is Woodin into a single statement.

7.1. First Localization

To prove Theorem 7.4 we have to prove an analogue of the Generation Theo-
rem where wy is replaced by wy. The two main steps are (1) getting a suitable
notion of strategic determinacy and (2) getting definable prewellorderings for
all ordinals less than w;.

For x € w¥ we “relativize” our previous notions to the Turing degree
of . The relativized reals are R, = {y € w¥ | y <r z}. Fix A C R,.
A relativized strategy for I is a function o : {J,, w?™ — w such that o € R,.
A relativized strategy o for Iis winning in A iff forally € R,, 0 xy € A. The
corresponding notions for II are defined similarly. A relativized prestrategy is a
continuous function f such that (the code for) f is in R, and for all y € R,,,
f(y) is a relativized strategy for either I or II. We say that a relativized
prestrategy f is winning in A for I (II') with respect to B C R, if in addition
we have that for all y € B, f(y) is a relativized winning strategy for T (II)
in A. (In our present setting our basis B will always be [z]r.) We say
that a set A C R, is determined in the relativized sense if either I or II
has a relativized winning strategy for A. Let OD-[z]p-determinacy be the
statement that for every ODy,),. subset of R, either Player I or Player II has
a relativized winning strategy.

The strategic game relativized to [x]r is the game SG-[z]|r

I Ay - A, -
I foo o S
where we require

(1) A € .@(Rm) N OD[I] Any € f@(RI) N OD[I]Tyfo,.»-,fn and

T

(2) fn is a relativized prestrategy that is winning in A, with respect to
[x]Tv
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and IT wins if and only if IT can play all w rounds. We say that strategic de-
terminacy relativized to [x]p holds (ST-[x]p-determinacy) if II wins SG-[z]p.

We caution the reader that in the context of the relativized notions we
are dealing only with definable versions of relativized determinacy such as
OD-[z]p-determinacy and SG-[z]p-determinacy. In fact, full relativized de-
terminacy can never hold. But as we shall see both OD-[z]p-determinacy
and SG-[z]p-determinacy can hold.

7.6 Theorem. Assume ZF + DC + Al-determinacy. Let T be the theory
ZFC — Replacement + Ys-Replacement. There is a real xg such that for all
reals x and for all ordinals X if xg € La[x] and Ly[z] E T, then Ly[z] E
OD-[z]r-determinacy.

Proof. The proof is similar to that of Theorem 6.6. Assume for contradiction
that for every real xq there is an ordinal A and a real = such that xog € L[]
and Ly[z] E T + —-OD-[z]p-determinacy, where T = ZFC — Replacement +
Yo-Replacement. As before, by the Lowenheim-Skolem theorem and Yi-
determinacy the ordinal

uX (Ly[z] E T + -OD-[z]p-determinacy) if such a A exists
AMz) = .
undefined otherwise

is defined for a Turing cone of z. For each x such that A(x) is defined, let
A® C R, be the (OD[I]T)LMW)[I]-Ieast counterexample.
Consider the game

I a,b
1I c,d
where, letting p = (a, b, ¢, d), I wins iff A(p) is defined and Ly [p] = “a xd €

AP” where a and d can be thought of as strategies. This game is ¥, hence
determined.
We arrive at a contradiction by showing that neither player can win.

Case 1: T has a winning strategy oyg.

Let g =1 o¢ be such that for all > xg, A(x) is defined. We claim
that Ly (s, [xo] F “I has a relativized winning strategy o in A*”, which is a
contradiction. The relativized strategy o is derived as follows: Given d[n €
w" have II play zo[n,d[n in the main game. Let a[n,b[n be oy’s response
along the way and let a(n) be og’s next move. Then set o(d[n) = a(n).
(Clearly, o is continuous, and the real a = o(d) it defines is to be thought of
as coding a strategy for Player I.) This strategy o is clearly recursive in oy,
hence it is a relativized strategy.

It remains to show that for every d € R,,, o0 xd € A*. The point is
that for d € Ry, p =1 %o, where p = (a,b,xo,d) is the play obtained
by letting (a,b) = (o¢ * (xo,d))s. It follows that A\(p) = A(xg) and hence
Ly [p] = Laao)[xo] and AP = A%, Thus, Ly(,y)[zo] | “o(d) xd € A%,
S0 Li(zy)[zo] | “o is a relativized winning strategy for I in A®0”.
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Case 2: II has a winning strategy 7p.

Let g > 79 be such that for all z > xg, A(z) is defined and A(z) >
A(xg). Given al (n+1) € w™*! have I play a[(n+1),z0[(n + 1) in the main
game. Let c[n,d[n be 7y’s response along the way. Then set 7(aln) = d(n).
This strategy is clearly recursive in g, hence it is a relativized strategy, and,
as above, Ly(zy)[To] = “T is a relativized winning strategy for II in A%0”. A

7.7 Theorem. Assume ZF+DC+ Al-determinacy. Then for a Turing cone
of x,
L[z] = ST-[z]r-determinacy.

Proof. The proof is a straightforward variant of the proof of Theorem 6.9. In
fact it is simpler. We note the major changes.
As before we assume that V' = L[z] and show that there is a real zy with the
feature that if zg € Lx[z] and Ly[z] = T, then Ly[z] = ST-[z]r-determinacy.
Assume for contradiction that this fails. For z € w*, let

A (Lalz] |E T + =ST-[z]p-determinacy) if such a A exists
A(z) = .
undefined otherwise.

The following is immediate.
Claim 1. For a Turing cone of z, A(z) is defined.

For each z in the cone of Claim 1 Player I has a canonical strategy ¢* that
depends only on the Turing degree of z, the point being that if y =7 z then
L)yl = La 2]

As before our aim is to obtain a contradiction by defeating o for some
z in the Turing cone of Claim 1. We do this by constructing a sequence of
games Go, Gy, ...,G,, ... such that I must win via 0g,01,...,04,... and, for
a cone of z, the winning strategies give rise to prestrategies f§, ff,..., f7,...
that constitute a non-losing play against o* in (SG-[z]7)*>#,

Step 0. Consider (in L[z]) the game Gy

I € a,b
I c,d

where € is either 1 or 2 and, letting p = (a, b, ¢, d), I wins iff
(1) p satisfies the condition on z in Claim 1 (so o” makes sense) and
(2) e=11iff Lyy[p] | “axde Af”, where A = o?(2).

Claim 2. [ has a winning strategy og in Gg.

Proof. Assume for contradiction that I does not have a winning strategy
in Go. Then, by Yl-determinacy, II has a winning strategy 7o in Go. Let
zg =71 To be such that for all z >7 2z,
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(1) z satisfies the conditions of Claim 1 and

(2) if A and z are such that zg € Ly[z] and Ly[z] &= T then L)[z] E
OD-[z]p-determinacy (by Theorem 7.6).

Consider A5® = 0% (@). Since Ly(.,)[z0] = OD-[z]r-determinacy, assume
without loss of generality that Ly.,)[20] = “o is a relativized winning strat-
egy for I in AZ®”. We use 7y to defeat this relativized strategy. Run Gg
according to 79, having Player I (falsely) predict that Player I wins the aux-
iliary game, while steering into Ly(.,)[z0] by playing b = 2o and using o to
respond to 7y on the auxiliary play:

I 1 (oxd)r, 20
II c,d

The point is that p =7 2o (since 0,70 € R,,) and so A(p) = A(zp). Thus
the “steering problem” is immediately solved and we have a contradiction as
before. 4

Since the game is X3 for Player I, Player I has a Al strategy oo, by
Theorem 6.5.

Claim 3. For every real z 21 oo there is a prestrategy f§ such that f§ is
recursive in oo as i Claim 1 and f§ is a non-losing first move for II against
0% in (SG-[x]r)F >,

Proof. Fix z 27 0¢ as in Claim 1 and consider A = 07(2). Let f§ be
the prestrategy derived from og as follows: Given y[n and d[n have II play
y[n,dIn in Go. Let €,a[n,b[n be o(’s response along the way and let a(n)
be 0¢’s next move. Then let f&(yIn) = a(n). We have that f§ is recursive
in o9 <7 z and for y € [z]r, f§(y) € R.. It remains to see that for y € [2]r,
f&(y) is a relativized winning strategy for I in AZ. The point is that since
y € [2]r, AMy) = AM(2) and so Ly, [y] = La(»)[z] and Af = A§. Ford € R., by
definition f§(y) * d = a x d where a is such that (o * (y,d));r = (€, a,b). So,
letting p = (a, b, y,d) we have p =¢ y. Thus, e = 1iff Ly;)[2] F “f5(y) *d €
Ag. R

Step n + 1. Assume that we have defined (in L[z]) games Gy,...,G,
with winning strategies oy, . .., 0, € HOD such that for all z >¢ (0g,...,0,)
as in Claim 1 there are prestrategies fg,..., f? such that f? is recursive in
(00y...,04) (for all i < n) and f§,... f? is a non-losing partial play for II in
(SG-[z]7) =,

Consider (in L[z]) the game Gy, 11

1 € a,b
11 c,d

where € is 1 or 2 and, letting p = {a, b, ¢, d, 00, ...,0,), I wins iff
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(1) p satisfies the condition on z in Claim 1 (so o? makes sense) and

(2) e =1iff Lyp[p] E “axd e A} ", where AP | is I's response via o”
to II’s partial play f&,..., fP.

This game is %3(oq,...,0,) (for Player 1) and hence determined (since
00, - -, 0, € HOD and we have OD-determinacy).

Claim 4. [ has a winning strategy op41 in Gpy1.

Proof. The proof is as before, only now we use the relativized version of
Theorem 7.6 to enforce ODg, ... o, -[*]r-determinacy. =

Since the game is X3 (0o, . .., 0,,) for Player I, Player I has a Al(oq,...,0,)
strategy on+1, by the relativized version of Theorem 6.5.

Claim 5. For every real z 21 (0o, ...,0n) there is a prestrategy f7., such
that f7,, is recursive in (oo, ...,0n41) and f§,..., fi 1 is a non-losing first
move for IT against o* in (SG-[x]p) @,

Proof. The proof is just like the proof of Claim 3. a

Finally, letting 2°° as in Claim 1 be such that z*° >p z, for all n we
have that fZ~, ...,f>", ... defeats 0% in (SG-[z]7)"»= 7] which is a
contradiction. -

7.8 Theorem. Assume ZF + DC. Then for every x € w* and for every

[«]

a < wi™ there is an ODy,,. surjection p: [z]7 — o.

Proof. First we need to review Vopénka’s theorem. Work in L[z] and let
d = [z]p. Let
n={ACd|Aec 0D},

ordered under C. There is an ODgy isomorphism 7 between (B!, C) and a
partial ordering (By, <) in HOD,.

Claim 1. (Bgy, <) is complete in HODg, and every real in d is HOD4-generic
for Bg.

Proof. For completeness consider S C By in HODy. We have to show that
VS exists. Let S’ = 7#71[S]. Then \/S" = |JS’ € B as this set is clearly
ODy. So VS =7(\V9).

Now consider z € d. Let G, = {A € B, | z € A} and let G, = 7[G,]. We
claim that G, is HOD4-generic for By. Let S C By be a maximal antichain.
So\/ S =1. Let 8’ = 7~ 1[S]. Note \/ S’ = d. Thus there exists a b € S such
that z € w(b). So G, is HODg-generic for B;. Now the map f : w — By,
defined by f(n) = n({x € d | n € z}), is in HOD4. Moreover, n € z iff
f(n) € G,. Thus z € HODy4[G,]. =
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Notice that HOD4[G] = L[z] for every G = G, that is HODg4-generic
(where z € d) since such a generic adds a real in [z]p. Thus, if HOD4 # L[z]
then By is non-trivial. This is a key difference between our present setting
and that of Vopénka’s—in general our partial order does not have atoms.

If L{z] = HODy then clearly for each a < wle there exists a surjection
p:d— «a such that p € ODg4. So we may assume that L]x] # HOD,. Thus,

for every z € d
L[z] HODy4[G.]
Wi =wy .

Claim 2. Assume ZFC. Suppose | is an uncountable reqular cardinal, B is
a complete Boolean algebra, and VB |= X = wy. Then for every a < X there
is an antichain in B of size |«|.

Proof. If X is a limit cardinal then since B collapses all uncountable cardinals
below A it cannot be A-c.c. for any uncountable cardinal X < .

Suppose A = AT. We need to show that there is an antichain of size \. If
A > w then this is immediate since B collapses A and so it cannot be A-c.c. So
assume A = w. There must be an antichain of size w since not every condition
in B is above an atom. -

Letting A = wfm, we are in the situation of the claim. So, for every a < A
there is an antichain S, in B of size |a|. Letting S, = 77 1[S,] we have that
S!, is an ODg subset of B/, consisting of pairwise disjoint ODy subsets of d.
Picking an element from each set we get an ODg-surjection p: d — «. -

7.9 Theorem. Assume ZF +DC+ Al-determinacy. Then for a Turing cone
of x,
HOD[L[]I] = wlL[m] is a Woodin cardinal.
x|T

Proof. For a Turing cone of z, L[x] = OD[,),-determinacy (by the relativized
version of Theorem 6.6) and L[z] i ST-[x]r-determinacy (by Theorem 7.7).
Let  be in this cone and work in L[z]. Let d = [z]p. Since L[z] = ODy,-

determinacy, wlL[x] is strongly inaccessible in HOD,. Let H C wlL[x] code

HODy NV 1. Fix T € 2(w;™) 1 OD, and let Ty C wi™™ code T and H.

Let A = (A, | a < wf[w]> be such that A, is an OD, prewellordering of
length greater than or equal to a (by Theorem 7.8). Let B = d. Consider

the structure Lia]
M= (wa[x] (R)[TO,A,B]) .

We claim that
HODM |= There is a Tj-strong cardinal,

which completes the proof as before. The reason is that we are in the sit-
uation of the Generation Theorem, except with wf[x] replacing wQL @] and
ST-[z]r-determinacy replacing STP-determinacy. The proof of the Gener-

ation Theorem goes through unchanged. One just has to check that all of
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the operations we performed before (which involved definability in various
parameters) are in fact recursive in the relevant parameters. a

7.2. Second Localization

We now wish to show that the above construction goes through when we
replace ZF + DC with PA,. Notice that if we had Al-determinacy then this
would be routine.

7.10 Theorem. Assume PAy+ Al-determinacy. Then for all reals x, there
18 a model N such that x € N and

N |= ZFC + There is a Woodin cardinal.

Proof. Working in PA; if one has Al-determinacy then for every z € w*, z#
exists. It follows that for all z € w®, there is an ordinal o < w; such that
L. [z] | ZFC. Using Al-determinacy one can find a real zy enforcing OD-
determinacy. Thus we have a model L, [zo] satisfying ZFC + V = Lxo] +
OD-determinacy and this puts us in the situation of Theorem 6.10. —

The situation where one only has Al-determinacy is bit more involved.

7.11 Theorem. Assume that PAy + Al-determinacy is consistent. Then
ZFC + “On is Woodin” is consistent.

Proof Sketch. First we pass to a theory that more closely resembles the theory
used to prove Theorem 7.9. In PAs one can simulate the construction of
L, [z]. Given a model M of PA; and a real € M, there is a definable
set of reals A coding the elements of L, [x]. One can then show that the
“Inner model” L, [z] satisfies ZFC—Power Set+V = L[z] (using, for example
Comprehension to get Replacement). Thus, ZFC — Power Set + V = L[z] is
a conservative extension of PA,.

Next we need to arrange a sufficient amount of definable determinacy.
The most natural way to secure Al-determinacy is to let # encode winning
strategies for all Al games. However, this approach is unavailable to us since
we have not included AC in PAs and, in any case, we wish to work with OD-
determinacy (understood schematically). For this we simultaneously run (an
elaboration of) the proof of Theorem 6.6 while defining L, []. In this way,
for any model M of PAy, there is a real x and an associated definable set of
reals A which codes a model L, [z] satisfying ZFC — Power Set +V = L[z] +
OD-determinacy.

Working in ZFC — Power Set + V = L[z] + OD-determinacy we wish now
to show that

HODy,,.  ZFC 4 On is Woodin.

So we have to localize the construction of the previous section to the structure
(L, [x], [z]T). The first step is to show that

I]T

(Lo, [z], [#]T) E ST-[z]r-determinacy for n moves,
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for each n. Here by ST-[z]r-determinacy we mean what we meant in the
previous section. However, there is a slight metamathematical issue that
arises when we work without Power Set, namely, at each stage of the game
the potential moves for Player I are a proper class from the point of view of
(L, [2], [x]7). So in quantifying over these moves we have to use the first-
order definition of OD in (L, [x], [z]r). The winning condition for the n-move
version of the game is first-order over (L, [z], [z]7) but since the complexity
of the definition increases as n increases the full game is not first-order over
(L, [x], [£]7). This is why we have had to restrict to the n-move version.

The proof of this version of the theorem is just like that of Theorem 7.7,
only now one has to keep track of definability and verify that there is no
essential use of Power Set (for example, in the proof of Third Periodicity).
The proof of Theorem 7.8 goes through as before. Finally, as in the proof of
Theorem 7.9, the proof of the Generation Theorem gives a structure M such
that

HODM = ZFC + On is T-strong,

[z]T
wy [2],[2]T)
T
result. —

for an arbitrary ODEJCL] class T of ordinals, which implies the final

This raises the following question: Are the theories PA; + Al-determinacy
and ZFC + “On is Woodin” equiconsistent? We turn to this and other more
general issues in the next section.

8. Further Results

In this section we place the above results in a broader setting by discussing
some results that draw on techniques that are outside the scope of this chap-
ter. The first topic concerns the intimate connection between axioms of
definable determinacy and large cardinal axioms (as mediated through in-
ner models). The second topic concerns the surprising convergence between
two very different approaches to inner model theory—the approach based
on generalizations of L and the approach based on HOD. In both cases the
relevant material on inner model theory can be found in Steel’s chapter in
this Handbook.

8.1. Large Cardinals and Determinacy

The connection between axioms of definable determinacy and inner models of
large cardinals is even more intimate than indicated by the above results. We
have seen that certain axioms of definable determinacy imply the existence
of inner models of large cardinal axioms. For example, assuming ZFC + Al-
determinacy, for each z € w*, there is an inner model M such that x € M
and

M = ZFC + There is a Woodin cardinal.
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And, assuming ZFC + ADY® | in L(R) there is an inner model M such that
M = ZFC + There is a Woodin cardinal.

In many cases these implications can be reversed—axioms of definable de-
terminacy are actually equivalent to axioms asserting the existence of inner
models of large cardinals. We discuss what is known about this connection,
starting with a low level of boldface definable determinacy and proceeding
upward. We then turn to lightface determinacy, where the situation is more
subtle. It should be emphasized that our concern here is not merely with
consistency strength but rather with outright equivalence (over ZFC).

8.1 Theorem. The following are equivalent:
(1) Al-determinacy.

(2) For all x € w¥, there is an inner model M such that x € M and
M = There is a Woodin cardinal.

8.2 Theorem. The following are equivalent:
(1) PD (Schematic).

(2) For every n < w, there is a fine-structural, countably iterable inner
model M such that M = There are n Woodin cardinals.

8.3 Theorem. The following are equivalent:
(1) ADL®),
(2) In L(R), for every set S of ordinals, there is an inner model M and an
o< wlL(R) such that S € M and M |= o is a Woodin cardinal.
8.4 Theorem. The following are equivalent:
(1) ADY®) and R# exists.
(2) M7 exists and is countably iterable.
8.5 Theorem. The following are equivalent:
(1) For all B, V® = ADL(®),
(2) M7 exists and is fully iterable.

The above examples concern boldface definable determinacy. The situation
with lightface definable determinacy is more subtle. For example, assuming
ZFC + Al-determinacy, must there exist an @ < wy and an inner model M
such that « is a Woodin cardinal in M7 In light of Theorem 8.1 one would
expect that this is indeed the case. However, since Theorem 8.1 also holds
in the context of PAy one would then expect that the theories PAy + Al-
determinacy and PAs; 4+ “There is an a < w; and an inner model M such
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that M & « is a Woodin cardinal” are equivalent, and yet this expectation is
in conflict with the expectation that the theories PAs + Al-determinacy and
ZFC + “On is Woodin” are equiconsistent. In fact, this seems likely, but the
details have not been fully checked. We state a version for third-order Peano
arithmetic, PA3, and second-order ZFC. But first we need a definition and
some preliminary results.

8.6 Definition. A partial order P is d-productive if for all §-c.c. partial
orders Q, the product P x Q is d-c.c.

8.7 Theorem. In the fully iterable, 1-small, 1-Woodin Mitchell-Steel model
the extender algebra built using all extenders on the sequence which are strong
to their length is d-productive.

This is a warm-up since in the case of interest we do not have iterability.
It is unknown if iterability is necessary.

8.8 Theorem. Suppose 6 is a Woodin cardinal. Then there is a proper class
inner model N C 'V such that

(1) N =6 is a Woodin cardinal and
(2) N = There is a complete §-c.c. Boolean algebra B such that

N® = Al-determinacy.

Let ZFC5 be second-order ZFC.

8.9 Theorem. The following are equiconsistent:
(1) PA3 + Al-determinacy.
(2) ZFCq + On is Woodin.

We now turn from theories to models and discuss the manner in which
one can pass back and forth between models of infinitely many Woodin car-
dinals and models of definable determinacy at the level of AD*® and be-
yond. We have already dealt in detail with one direction of this—the trans-
fer from models of determinacy to models with Woodin cardinals—and the
other direction—the transfer from models with Woodin cardinals to models
of determinacy—was briefly discussed in the introduction, but the situation
is much more general. To proceed at the appropriate level of generality we
need to introduce a potential strengthening of AD.

A set A C w¥ is ©-borel if there is a set S C On, an ordinal «, and a
formula ¢ such that

A={yew’| LSyl = o[Sy]}-

It is fairly straightforward to show that to say that A is °°-borel is equivalent
to saying that it has a “transfinite borel code”. Notice that under AC every
set of reals is *°-borel.
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8.10 Definition. Assume ZF 4+ DCg. The theory AD" consists of the
axioms:

(1) Every set A C w* is *°-borel.

(2) Suppose A < © and 7 : A¥ — w* is a continuous surjection. Then for
each A C w* the set m~1[A] is determined.

8.11 Conjecture. AD implies AD™.

It is known that the failure of this implication has strong consistency
strength. For example, AD + =AD™ proves Con(ADg).

The following theorem—the Derived Model Theorem—is a generalization
of Theorem 1.5, mentioned in the introduction.

8.12 Theorem. Suppose that § is a limit of Woodin cardinals. Suppose that
G C Col(w, < §) is V-generic and let Rg = U{RV[GM] | @ < 0}. Let T be
the set of A C Rg such that

(1) AeV(Rg),

(2) L(A,Rg) = AD™.
Then L(Tg,Rg) = AD™T.

There is a “converse” to the Derived Model Theorem, the proof of which
is a generalization of the proof of Theorem 6.20.

8.13 Theorem. Assume AD" and V = L(Z(R)). There is a partial order
P such that if H is P-generic over V then there is an inner model N C V[H]
such that

(1) N E ZFC,
(2) wy is a limit of Woodin cardinals in N,
(3) there is a g which is Col(w, < w} )-generic over N and such that
(a) BV =R,
()T, = PR)Y,
where Ry and 'y are as in the previous theorem with N in the role of V.

Thus, there is an intimate connection between models with infinitely many
Woodin cardinals and models of definable determinacy at the level of AD (®)
and beyond. Moreover, the link is even tighter in the case of fine-structural
inner models with Woodin cardinals. For example, if one first applies the
Derived Model Theorem to M, (the Mitchell-Steel model for w-many Woodin
cardinals) and then applies the “converse” theorem to the resulting derived
model L(R*) then one recovers the original model M,,.
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8.2. HOD-Analysis

There is also an intimate connection between the two approaches to inner
model theory mentioned in the introduction—the approach based on gener-
alizations of L and the approach based on HOD.

As mentioned in the introduction, the two approaches have opposing ad-
vantages and disadvantages. The disadvantage of the first approach is that
the problem of actually defining the models that can accommodate large
cardinals—the inner model problem—is quite a difficult problem. However,
the advantage is that once the inner model problem is solved at a given level
of large cardinals the inner structure of the models is quite transparent and
so these models are suitable for extracting the large cardinal content inher-
ent in a given statement. The advantage of the approach based on HOD is
that this model is trivial to define and it can accommodate virtually every
large cardinal. The disadvantage—the tractability problem—is that in gen-
eral the inner structure of HOD is about as tractable as that of V' and so it is
not generally suitable for extracting the large cardinal content from a given
statement.

Nevertheless, we have taken the approach based on HOD and we have
found that AD*®) and Al-determinacy are able to overcome (to some extent)
the tractability problem for their natural models, L(R) and L[z] for a Turing
(or constructibility) cone of x. For example, we have seen that under AD® (R),

HODE® = 0™ is a Woodin cardinal,
and that under Al-determinacy, for a Turing cone of reals z,
HOD ) = wQL[m] is a Woodin cardinal.

Despite this progress, much of the structure of HOD in these contexts is far
from clear. For example, it is unclear whether under Al-determinacy, for
a Turing cone of reals z, HOD* satisfies GCH, something that would be
immediate in the case of “L-like” inner models.

Since the above results were first proved, Mitchell and Steel developed the
fine-structural version of the “L-like” inner models at the level of Woodin
cardinals. These models have the form L[E] where E is a sequence of
(partial) extenders and (as noted above) their inner structure is very well
understood—for example, they satisfy GCH and many of the other com-
binatorial properties that hold in L. A natural question, then, is whether
there is any connection between these radically different approaches, that is,
whether HOD as computed in L(R) under ADY® or in L[z], for a Turing
cone of z, under Al-determinacy, bears any resemblance to the L[E] models.
The remainder of this section is devoted to this question. We begin with
HOD*® and its generalizations (where a good deal is known) and then turn
to HOD*1! (where the central question is open). Again, the situation with
lightface determinacy is more subtle.
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The theorems concerning HOD” (R) only require AD” ®) but they are sim-
pler to state under the stronger assumption that AD” ®) holds in all generic
extensions of V. By Theorem 8.5, this assumption is equivalent to the state-
ment that M7 exists and is fully iterable.

The first hint that HODY®) is a fine-structural model is the remarkable
fact that

HOD'® AR = M, NR.

The agreement between HOD* ®) and M, fails higher up but HOD” (R) agrees

with an iterate of M, at slightly higher levels. More precisely, letting N be

the result of iterating M, by taking the ultrapower w} -many times using the

(unique) normal ultrafilter on the least measurable cardinal, we have that
HODI® 0 2(WwY) = Nn2(Ww)).
Steel improved this dramatically by showing that
HOD™® 1 Vo)
is the direct limit of a directed system of iterable fine-structural inner models.

8.14 Theorem (Steel). HOD*®) N Vj is a Mitchell-Steel model, where § =
(85)"®.

For a proof of this result see Steel’s chapter in this Handbook. As a
corollary one has that HOD” ®) satisfies GCH along with the combinatorial
principles (such as ¢ and O) that are characteristic of fine-structural models.

The above results suggest that all of HOD” (R) might be a Mitchell-Steel

—

inner model of the form L[FE]. This is not the case.
8.15 Theorem. HOD® is not a Mitchell-Steel inner model.

Nevertheless, HOD” (®) is a fine-structural inner model, one that belongs
to a new, quite different, hierarchy of models. Let

D= {L[E] | L[E] is an iterate of M,, by a countable tree
which is based on the first Woodin cardinal

and has a non-dropping cofinal branch}.

Any two structures in D can be compared and the iteration halts in countably
many steps (since we have full iterability) with iterates lying in D. So D is a
directed system under the elementary embeddings given by iteration maps.
By the Dodd-Jensen lemma the embeddings commute and hence there is a
direct limit. Let L[E°] be the direct limit of D. Let (62° | i < w) be the
Woodin cardinals of L[E>].

8.16 Theorem. Let L[E>] be as above. Then
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(1) LIE*] € HOD*®),

(2) LIE>®] N Vs = HOD*®) N Vs, where § = §3°,

(3) OF®) = 55 and

(4) (62)E®) s the least cardinal in LE™] which is A-strong for all A < 65°.

To reach HOD*® we need to supplement L[E>] with additional inner-
model-theoretic information. A natural candidate is the iteration strategy.
It turns out that by folding in the right fragment of the iteration strategy
one can capture HOD*®) | Let

T° = {T | T is a maximal iteration tree on L[E>] based on 6,

Te L[Em], and length(T) < sup{6;° | n < w}}
and

P ={(b,T) | T € T> and b is the true branch through T'}.
8.17 Theorem. Let L[E™] and P be as above. Then
HOD!® = L[E>, P].

In fact, there is a single iteration tree T € T°° such that if b is the branch
through T chosen by P then

HODL® = L[E> b].

This analysis has an interesting consequence. Notice that the model L[E ]
is of the form L[A] for A C 65°. Thus, although the addition of P does not
add any new bounded subsets of ©L®) it does a lot of damage to the model
above ©F®) | for example, it collapses w-many Woodin cardinals. One might
think that this is an artifact of L[E_"Oo] but in fact the situation is much more
general: Suppose L[E] is w-small, fully iterable, and has w-many Woodin
cardinals. Let P be defined as above except using the Woodin cardinals of
L[E]. Then L[E, P]NVs = L|E] N Vs, where ¢ is the first Woodin cardinal
of LIE], and L|E] C L[E, P] C L[E#]. For example, applying this result to
L[E] = M, one obtains a canonical inner-model-theoretic object between
M, and MjfE In this way, what appeared to be a coarse approach to inner
model theory has actually resulted in a hierarchy that supplements and refines
the standard fine-structural hierarchy.

The above results generalize. We need a definition.

8.18 Definition (MOUSE CAPTURING). MC is the statement: For all 2,y €
w*, x € OD, iff there is an iterable Mitchell-Steel model M of the form

L[E,y] such that = € M.
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The Mouse Set Conjecture, MSC, is the conjecture that it is a theorem of
ADT™ that MC holds if there is no iterable model with a superstrong cardinal.
There should be a more general version of MC, one that holds for extensions
of the Mitchell-Steel models that can accommodate long extenders. And this
version of MC should follow from AD'. However, the details are still being
worked out. See [12].

8.19 Theorem. Assume ADT +V = L(Z(R))+ 0y = © + MSC. Then the
inner model HODM(Z®) s of the form L[EW,P], with the key difference
being that L[E*] need not be w-small.

8.20 Theorem. Assume AD" +V = L(Z(R)) + 0y < © + MSC. Then
(1) ©q is the least Woodin cardinal in HOD,
(2) HOD N Vg, is a Mitchell-Steel model,
(8) HOD N Vg, 41 is not a Mitchell-Steel model, and

(4) HODN Vg, is a model of the form L[EOO, P] (assuming the appropriate
form of the Mouse Set Theorem).

One can move on to stronger hypotheses. For example, assuming AD™
and V = L(Z(R)), ADg is equivalent to the statement that Q (defined at
the beginning of Sect. 5) is a non-zero limit ordinal. There is a minimal
inner model N of ZF + ADg that contains all of the reals. The model HOD™
has w-many Woodin cardinals and these are exactly the members of the ©-
sequence. This model belongs to the above hierarchy and has been used
to calibrate the consistency strength of ADg in terms of the large cardinal
hierarchy. This hierarchy extends and a good deal is known about it.

We now turn to the case of lightface determinacy and the setting L[z] for
a Turing cone of x. Here the situation is less clear. In fact, the basic question
is open.

5 Open Question. Assume Al-determinacy. For a Turing cone of x, what
is HOD*® from a fine-structural point of view?

We close with partial results in this direction and with a conjecture. To
simplify the discussion we state these results under a stronger assumption
than is necessary: Assume Al-determinacy and that for all z € w¥, %
exists.

It follows that M; and M} exist. Let 2o € w* be such that M{" € L[zo].
Let 4, be the least inaccessible of L{zg] and let G C Col(w, < kg,) be
L[zo]-generic. The Kechris-Solovay result carries over to show that

L[z0][G] = OD-determinacy.
Furthermore,

HODL[ZO][G] _ HODL(R)L[I()][G] and w;[zg][G] _ @L(R)L[IO][G].
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Thus, the model L(R)L[IOHG} is a “lightface” analogue of L(R). In fact the
conditions of the Generation Theorem hold in L[z(][G] and as a consequence
one has that

HOD [IIG] 1= ng[ZO][G] is a Woodin cardinal.

For a model L[E] containing at least one Woodin cardinal let 5{? be the least
Woodin cardinal. Let

D= {L[ | € L[x0][G] | L]E] is an iterate of M; and 50 < wy Lizoll@ ]}.

Let L[E>] be the direct limit of D. Let 6> be the least Woodin of L[E™]
and let k> be the least inaccessible above §°°. Let

T>° = {T | T is a maximal iteration tree on LIE™],
T € L[E™®], and length(T) < x>}
and

P ={(b,T) | T € T> and b is the true branch through 7'}.

8.21 Theorem. Let L[E™, P] be as above. Then
(1) HODLIG q v = LIE*] N Vsee
(2) HODLIIGl — [1E* P] and
(3) w L[:vo (G _ so0.

A similar analysis can be carried out for other hypotheses that place one
in an “L(R)-like” setting. For example, suppose again that z( is such that
M7 € Llzg). One can “generically force” MA as follows: In L[zo] let P be
the partial order where the conditions (B, | o < ) are such that (i) for each
a < 7, B, is c.cc., (ii) |Ba| = wi, (iil) if & < § < v then B, is a complete
subalgebra of Bg, and (iv) v < ws, and the ordering is by extension. The
forcing is <wsg-closed. Let G C P be L[zg]-generic and let Bg be the union
of the algebras B, appearing in the conditions in G. It follows that B¢g is
c.c.c in Lxo][G]. Now, letting H C B¢ be L[zo][G]-generic, we have that
L[zo]|[G][H] satisfies MA. The result is that

HODZE ! =ollGIH] — L[E’oo7p]
for the appropriate E*> and P. However, in this context
HODollGIH] )2 LlzollG1H] 45 4 Woodin cardinal.

In the case of L(R) the non-fine-structural analysis showed that (§%)%®)
is A-strong in HODY® for all A < ©LX® and the HOD-analysis showed
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that in fact (§2)%®) is the least ordinal with this feature. In the case of
L[z0][G] the non-fine-structural analysis shows that some ordinal ¢ is A-strong
in HODLE0IG] — HODLE® Y g an A < Lol = @r@Holel Ny,
merology would suggest that § is § as computed in L[xo][G]. It turns out
this analogy fails: the least cardinal § that is A-strong in HOD® [2ollG] for all
A< w2L[z0][G] is in fact strictly less 6 as computed in L[xo][G].

But there is another analogy that does hold. First we need some defini-
tions. A set A C w* is v-Suslin if there is an ordinal v and a tree T on w X y
such that A = p[T] = {z € w* | Jy € ¥ Vn(zIn,y[n) € T}. A cardinal
is a Suslin cardinal if there exists a set A C w® such that A is x-Suslin but
not y-Suslin for any v < k. A set A C w¥ is effectively v-Suslin if there is an
ordinal v and an OD tree T C w x v such that A = p[T]. A cardinal x is an
effective Suslin cardinal if there exists a set A C w* such that A is effectively
k-Suslin but not effectively y-Suslin for any v < k.

In L(R), §% is the largest Suslin cardinal. Since L[zo][G] is a lightface
analogue of L(IR) one might expect that in L[zo][G], 83 is the largest effective
Suslin cardinal in L[zo][G]. This is indeed the case.

There is one more advance on the HOD-analysis for L[x] that is worth
mentioning.

8.22 Theorem. Assume A}-determinacy. For a Turing cone of x there is
a predicate A such that

(1) HODﬁm has the form L[E,P] where P is a fragment of the iteration
strategy,

(2) HODi[m] = wQL[r] is a Woodin cardinal,
(3) HODi[z] is of the form L[E] below wQLM,
(4) Llz] = ST-determinacy, and

(5) HODl n vy = HODQM N Vs where § is the least cardinal of HODQM

that is \-strong for all A < wQL[‘T].

Moreover, there exists a definable collection of such A and the collection has
size W

This provides some evidence that HOD ! is of the form L[E] below wQL (=]
and that HOD! is not equal to a model of the form L[E].

8.23 Conjecture. HOD™! is of the form L[E, P] where P sclects branches

—.

through all trees in L[E] based on the Woodin cardinal and with length less
than the successor of the Woodin cardinal.
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